1 RHA, SS 13, Exercise Sheet 6

Due June 05. 2013.

Exercise 1:

Construct for arbitrarily large N finite sets A, B of cardinality at most N in an abelian group, and construct $G \subset A \times B$ such that $\{a + b : (a, b) \in G\}$ has cardinality at most N and the map $(a, b) \rightarrow a - b$ is injective on G, such that the cardinality of G is at least $N^{1.6}$

Hint: Consider an example where A and B are the subset $\{0, 1, 3\}$ of cardinality 3 in the group of integers. Then take large Cartesian products of this set with itself.

Exercise 2 :

Let f be an analytic function in the strip of complex numbers with real part between 0 and 1 and assume f has continuous extension to the closed strip. Assume the modulus of the function is bounded by a on the line $\Re(z) = 0$ and by b on the line $\Re(z) = 1$. Assume the function satisfies

$$|f(z)| \le C + |z|^n$$

for some constants C and n and all z in the strip.

Prove that

$$|f(z)| \le a^{1-\Re(z)}b^{\Re(z)}$$

for all z in the strip.

Hint: First consider the case a = b = 1 and apply the maximum principle to the function f times an appropriate exponential function restricted to the upper half of the strip. To pass from special case to general a, b multiply the function with another exponential function.

Exercise 3:

Let T be a linear operator mapping $L^1(\mathbf{R}^n)$ to $L^1(\mathbf{R}^n)$ and $L^{\infty}(\mathbf{R}^n)$ to $L^{\infty}(\mathbf{R}^n)$.

For E_i and F_j two finite collection of pairwise disjoint measurable sets on \mathbb{R}^n , complex numbers c_i, d_j of modulus one and real numbers u_i, v_j consider

$$f(s) := \left(T(\sum_{i} u_i^s c_i 1_{E_i}), \sum_{j} v_j^{1-s} d_j 1_{F_j}) \right) ,$$

the bracket denoting integration of the product of the two functions. Show hat this function f is analytic in s.

Carefully apply the previous exercise to show that T has a bounded extension from $L^p(\mathbf{R}^n)$ to $L^p(\mathbf{R}^n)$ for 1 and give a good bound on the operator norm.