1 RHA, SS 13, Exercise Sheet 5

Due May 15. 2013.

Exercise 1:

Carefully write down the bushes argument to prove that a compact set in \mathbb{R}^n containing a unit line segment in every direction has lower Minkowski dimension at least (n+1)/2 (Drury exponent)

Exercise 2 :

Let $d\sigma$ denote the rotation invariant measure on the sphere S in \mathbb{R}^n . Prove that

$$\int_{S} e^{-2\pi i \langle x,\xi \rangle} \, d\sigma = c_n \int_{-1}^{1} e^{-2\pi i |\xi| u} (1-u^2)^{(d-3)/2} \, du$$

for some constant c_n depending on the dimension n.

Exercise 3:

Consider the cylinder $C = \{(x_1, \ldots, x_n) \in \mathbf{R}^n, ||(x_1, \ldots, x_{n-1})|| = 1\}$ and let ϕ be a smooth function on \mathbf{R} vanishing outside (-1, 1). Let $d\sigma$ be the hypersurface area on the cylinder. Define

$$\int_C \phi(x_n) e^{-2\pi i \langle x,\xi \rangle} \, d\sigma =: f(\xi)$$

For each unit vector $e \in \mathbf{R}^n$ discuss the asymptotics of $f(\lambda e)$ as $\lambda \to \infty$.