1 RHA, SS 13, Exercise Sheet 2

Due April 24 2013.

Exercise 1:

a) Let $1 and assume <math>T : L^p(\mathbf{R}^n) \to L^1(\mathbf{R}^n) \oplus L^\infty(\mathbf{R}^n)$ is a linear operator satisfying for all $f \in L^p(\mathbf{R})$

$$||Tf||_{\infty} \le ||f||_{\infty}$$

(which is trivial in case the RHS is infinite) and for all $\lambda > 0$

$$|\{x : |Tf(x)| \ge \lambda\}| \le \lambda^{-1} ||f||_1$$

Prove that there is a constant C_p such that for all $f \in L^p(\mathbf{R}^n)$ we have

$$||f||_p \le C_p ||f||_p$$

Hint: Use

$$||g||_p^p = p \int_0^\infty \lambda^{p-1} |\{x : |g(x)| > \lambda\}| d\lambda$$
,

cut functions where they are large and where they are small, and use Chebysheff.

- b) Do the same except with p < 2 and $||Tf||_2 \le ||f||_2$ instead of the estimate $||Tf||_{\infty} \le ||f||_{\infty}$
 - c) Similarly, Assume 1 and <math>1/p + 1/q = 1 and assume

$$||Tf||_{\infty} \le ||f||_1$$

and

$$||Tf||_2 \le ||f||_2$$

Then prove

$$||Tf||_q \le ||f||_p$$

Exercise 2:

Prove Khintchine's inequality in the following form:

On the interval [0, 1] consider for n = 0, 1, 2, ... the function

$$r_n(x) := \operatorname{sign}(\sin(2\pi 2^n x))$$

which take values -1, 1 (and 0 on a set of measure 0).

Then for every $0 there is a constant <math>C_p$ such that for any N and any tuple (a_0, a_1, \ldots, a_N) we have

$$C_p^{-1}(\sum_{n=0}^N |a_n|^2)^{1/2} \le \|\sum_{n=0}^N a_n r_n\|_p \le C_p(\sum_{n=0}^N |a_n|^2)^{1/2}$$

Exercise 3:

Let 1 such that <math>1/p + 1/q = 1. Prove that there does not exists a constant C such that

$$\|\widehat{f}\|_p \le C\|f\|_q$$

for every $f \in C_0^\infty(\mathbf{R}^n)$ Hint: take a random linear combination of translated and/or modulated Gaussians and use Khintchine.