1 NLPDE I, WS 12/13, Exercise Sheet 5

Due Nov 13 in tutorial session. This sheet has 4 exercises

Exercise 1:

Let ϕ be a smooth compactly supported function in \mathbb{R}^n .

Prove that for every x

$$\lim_{\epsilon \to 0} \int_{\mathbf{R}^n \setminus B_{\epsilon}(x)} (f(y) - f(x)) |y - x|^{-n-1} \, dy$$

exists.

Exercise 2:

Define f to be an α - Hölder atom on the cube Q (in \mathbb{R}^n) if

- 1. for all x, y we have $|f(x) f(y)| \le |x y|^{\alpha}$
- 2. f is supported on Q.
- 3. $\int f(x) \, dx = 0$

Define an atomic C^{α} function f to be a countable linear combination

$$\sum_i a_i f_i$$

where f_i is an α -Hölder atom on a cube Q_i and a_i are real numbers such that $\sum_i |a_i| |Q_i|$ is finite.

Prove that the above linear combination converges almost everywhere.

Prove or disprove that for every $\epsilon > 0$ there is a set E_{ϵ} of measure at most ϵ and a constant C_{ϵ} such that outside the set E_{ϵ} the function $f(x) = \sum_{i} a_{i} f_{i}(x)$ is defined and satisfies a Hölder condition

$$|f(x) - f(y)| \le C_{\epsilon} |x - y|^{\alpha}$$

for x, y not in the set E_{ϵ} .

Exercise 3:

Define the atomic C^{α} norm $||f||_{C^{\alpha}}$ to be the infimum of the quantity $\sum_{i} |a_{i}||Q_{i}|$ over all representations of f as in the previous exercise (two such representations are considered to represent the same function if they coincide almost everywhere).

Prove that for $0 < \alpha < \alpha + s < 1$ convolution with the function $g(x) = |x|^{-n+s}$ maps atomic C_{α} Hölder atom to atomic $C_{\alpha+s}$ with

$$||g * f||_{C_{\alpha+s}} \le C ||f||_{C_{\alpha}}$$

for some constant C possibly depending on s, α .

(Hint: First define g * f on the dense subset of finite linear combinations of atoms, prove the desired estimate there, and then extend the map to all of atomic C^{α} by density arguments.)

Exercise 4:

A centered Gaussian is a function of the form $g_s(x) = e^{-s|x|^2}$ for some parameter s > 0.

- 1. Calculate $\int_{\mathbf{R}^n} g_s(x) dx$
- 2. Calculate the convolution of two centered Gaussians with parameters s, t
- 3. Determine for which c, α and β we have

$$c|x|^{\beta} = \int_0^\infty \lambda^{\alpha} e^{-\lambda|x|^2} d\lambda$$

for some convergent integral. Your expression should be explicit using the Gamma function defined by

$$\Gamma(c) = \int_0^\infty e^{-t} t^{c-1} dt$$

for c > 0.

4. Define I^s to be the convolution operator with $|x|^{-n+s}$ in \mathbb{R}^n . Use all of the above to find an expression for the constant in $I^sI^t = cI^{s+t}$ whenever 0 < s, t and s + t < 1.