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1.1. Introduction

These are lecture notes for a short course presented at the IAS Park City
Summer School in July 2003 by the second author. The material of these lectures
has been developed in cooperation by both authors.

The aim of the course was to give an introduction to nonlinear Fourier analysis
from a harmonic analyst’s point of view. Indeed, even the choice of the name for
the subject reflects the harmonic analyst’s taste, since the subject goes by many
names such as for example scattering theory, orthogonal polynomials, operator the-
ory, logarithmic integrals, continued fractions, integrable systems, Riemann Hilbert
problems, stationary Gaussian processes, bounded holomorphic functions, etc.

We present only one basic model for the nonlinear Fourier transform among a
large family of generalizations of our model. The focus then is to study analogues
of classical questions in harmonic analysis about the linear Fourier transform in the
setting of the nonlinear Fourier transform. These questions concern for example the
definition of the Fourier transform in classical function spaces, continuity properties,
invertibility properties, and a priori estimates. There is an abundance of analytical
questions one can ask about the nonlinear Fourier transform, and we only scratch
the surface of the subject.

The second half of the lecture series is devoted to showing how the nonlinear
Fourier transform appears naturally in several fields of mathematics. We only
present a few of the many applications that are suggested by the above (incomplete)
list of names for the subject.

There is a vast literature on the subject of this course, in part generated by
research groups with few cross-references to each other. Unfortunately we are not
sufficiently expert to turn these lecture notes into anything near a survey of the
existing literature. In the bibliography, we present only a small number of fairly
randomly chosen entrance points to the vast literature.

We would like to thank the Park City Math Institute, its staff, and the con-
ference organizers for organizing a stimulating and enjoyable summer school. We
would like to thank R. Killip and S. Klein for carefully reading earlier versions
of the manuscript and making many suggestions to improve the text. Finally, we
thank J. Garnett for teaching us bounded analytic functions.
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1.2. The nonlinear Fourier transform on l0, l
1 and lp

1.3. The nonlinear Fourier transform

In this lecture series, we study a special case of a wide class of nonlinear Fourier
transforms which can be formulated at least as general as in the framework of
generalized AKNS-ZS systems in the sense of ([3]). For simplicity we refer to the
special case of a nonlinear Fourier transform in this lecture series as “the nonlinear
Fourier transform”, but the possibility of a more general setting should be kept in
mind.

More precisely, we discuss (briefly) a nonlinear Fourier transform of functions
on the real line, and (at length) a nonlinear Fourier series of coefficient sequences,
i.e., functions on the integer lattice Z. Fourier series can be regarded as abstract
Fourier transform on the circle group T or dually as abstract Fourier transform on
the group Z of integers, while ordinary Fourier transform is the abstract Fourier
transform of the group R of real numbers. We shall therefore use the word Fourier
transform for both models which we discuss. Indeed, to the extend that we discuss
the general theory here, it is mostly parallel in both models, with the possible
exception of the general existence result for an inverse Fourier transform in Lecture
1.10 which the authors have not been able to verify in the model of the nonlinear
Fourier transform of functions on the real line.

For a sequence F = (Fn) of complex numbers parameterized by n ∈ Z, we
define the Fourier transform as

(1.1) F̂ (θ) =
∑

n∈Z
Fne

−2πiθn

and one has the inversion formula

Fn =

∫ 1

0

F̂ (θ)e2πiθn dθ

A natural limiting process takes this Fourier transform to the usual Fourier trans-
form of functions on the real line. We have made the choice of signs in the exponents
so that this limit process is consistent with the definition of the Fourier transform
in [26].

We shall pass to a complex variable

z = e−2πiθ

so that (1.1) becomes

F̂ (z) =
∑

n∈Z
Fnz

n

after identifying 1-periodic functions in θ with functions in z ∈ T. The choice of
sign in the exponent here is the one most convenient for us.

The discrete nonlinear Fourier transform acts on sequences Fn parameterized
by the integers, n ∈ Z, such that each Fn is a complex number in the unit disc D.
To begin with we shall assume these sequences are compactly supported. That is,
Fn = 0 for all but finitely many values of n.

For a complex parameter z consider the following formally infinite recursion:

(
an bn

)
=

1√
1− |Fn|2

(
an−1 bn−1

)( 1 Fnz
n

Fnz
−n 1

)
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a−∞ = 1, b−∞ = 0

Here a−∞ = 1 and b−∞ = 0 is to be interpreted as an = 1 and bn = 0
for sufficiently small n, which is consistent with the recursion formula since the
transfer matrix

(1.2)
1√

1− |Fn|2

(
1 Fnz

n

Fnz
−n 1

)

is the identity matrix for sufficiently small n by the assumption that Fn is compactly
supported.

The nonlinear Fourier transform of the sequence Fn is the pair of functions
(a∞, b∞) in the parameter z ∈ T, where a∞ and b∞ are equal to an and bn for
sufficiently large n. We write

︷︸︸︷
F (z) = (a∞(z), b∞(z))

We will momentarily identify the pair of functions (a∞, b∞) with an SU(1, 1) valued
function on T.

While evidently a∞ and b∞ are finite Laurent polynomials in z (rational func-
tions with possible poles only at 0 and ∞), we regard the nonlinear Fourier trans-
form as functions on the unit circle T. Later, when we consider properly infinite
sequences Fn, restriction to T as domain will be a necessity.

Observe that for z ∈ T the transfer matrices are all in SU(1, 1). Hence we can
write equivalently for the above recursion

(
an bn
bn an

)
=

1√
1− |Fn|2

(
an−1 bn−1
bn−1 an−1

)(
1 Fnz

n

Fnz
−n 1

)

with (
a−∞ b−∞
b−∞ a−∞

)
=

(
1 0
0 1

)

and all matrices (
an bn
bn an

)

are in SU(1, 1), and in particular |an|2 = 1 + |bn|2.
Thus the Fourier transform can be regarded as a map

l0(Z,D) → C(T, SU(1, 1))

where l0(Z,D) are the compactly supported sequences with values inD, and C(T, SU(1, 1))
are the continuous functions on T with values in SU(1, 1).

While we shall not do this here, one can naturally define similar nonlinear
Fourier transforms for a variety of Lie groups in place of SU(1, 1). The group
SU(2) leads to an interesting example. We remark that here we define Fourier
transforms using Lie groups in a quite different manner from the way it is done
in representation theory. There one defines Fourier transforms of complex valued
functions on groups, and one remains in the realm of linear function spaces. Here
we end up with group valued functions, a much more nonlinear construction.

If E is an open set in the Riemann sphere, define E∗ to be the set reflected
across the unit circle, i.e,

E∗ = {z : z−1 ∈ E}
The operation ∗ is the identity map on E ∩T.
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If c is a function on E, define

c∗(z) = c(z−1)

as a function on E∗. This operation preserves analyticity. On the circle T , this
operation coincides with complex conjugation:

c∗(z) = c(z)

for all z ∈ T ∩E.
We then observe the recursion

(1.3)

(
an bn
b∗n a∗n

)
=

1√
1− |Fn|2

(
an−1 bn−1
b∗n−1 a∗n−1

)(
1 Fnz

n

Fnz
−n 1

)

with (
a−∞ b−∞
b∗−∞ a∗−∞

)
=

(
1 0
0 1

)

All entries in these matrices are meromorphic functions on the entire Riemann
sphere. Namely, these recursions hold on T and thus hold on the entire sphere by
meromorphic continuation of an, bn, a

∗
n, b
∗
n.

Observe that the matrix (
an(z) bn(z)
b∗n(z) a∗n(z)

)

is not necessarily in SU(1, 1) for z outside the circle T. However,

ana
∗
n = 1 + bnb

∗
n

continues to hold on the complex plane since it holds on the circle T.
Thinking of the pair (c, d) as the first row of an element of a function which

takes values in SU(1, 1) on the circle T, we shall use the convention to write

(a, b)(c, d) = (ac+ bd∗, ad+ bc∗)

For small values of Fn the nonlinear Fourier transform is approximated the
linear inverse Fourier transform. This can be seen by linearizing in F . The factor
(1−|Fn|2)−1/2 is quadratic and we disregard it. The remaining formula for a∞ and
b∞ is polynomial in F and F . If we only collect the constant and the linear term,
we obtain

(a∞, b∞) = (1,
∑

n∈Z
Fnz

n)

Thus a∞ is constant equal to 1 in linear approximation and b∞ is the Fourier
transform ∑

n∈Z
Fnz

n

in linear approximation.
The following lemma summarizes a few algebraic properties of the nonlinear

Fourier transform.

Lemma 1.1. If Fn = 0 for n 6= m, then

(1.4)
︷︸︸︷
(Fn) = (1− |Fm|2)−1/2(1, Fmz

m)
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If
︷︸︸︷
(Fn) = (a, b), then we have for the shifted sequence whose n-th entry is Fn+1

(1.5)
︷ ︸︸ ︷
(Fn+1) = (a, bz−1)

If the support of F is entirely to the left of the support of G, then

(1.6)
︷ ︸︸ ︷
(F +G) =

︷︸︸︷
F
︷︸︸︷
G

If |c| = 1 then

(1.7)
︷ ︸︸ ︷
(cFn) = (a, cb)

For the reflected sequence whose n-th entry is F−n

(1.8)
︷ ︸︸ ︷
(F−n)(z) = (a∗(z−1), b(z−1))

Finally, for the complex conjugate of a sequence, we have

(1.9)
︷︸︸︷
(Fn)(z) = (a∗(z−1), b∗(z−1))

Observe that statements (1.5),(1.7), (1.8) and (1.9) are exactly the behaviour of
the linearization a ∼ 1 and b ∼∑Fnz

n. Statements (1.5) and (1.7) are most easily
proved by conjugation with diagonal elements in SU(1, 1). Concerning statements
(1.8) and (1.9), observe that under the reflection n → −n or under complex con-
jugation the Laurent expansion of the diagonal element a turns into the expansion
with complex conjugate coefficients.

1.4. The image of finite sequences

Our next concern is the space of functions a∞, b∞ obtained as Fourier trans-
forms of finite D-valued sequences Fn.

It is immediately clear that a and b are finite Laurent polynomials. The fol-
lowing lemma describes the degree of these Laurent polynomials. Define the upper
degree of a Laurent polynomial to be the largest N such that the N -th coefficient is
nonzero, and define the lower degree to be the least N such that the N -th coefficient
is nonzero.

Lemma 1.2. Let Fn be a nonzero finite sequence with NLFT (a, b). Let N− be
the smallest integer such that F−N 6= 0. and let N+ be the largest integer such that
FN+ 6= 0, Then a is a Laurent polynomial

a =
0∑

n=N−−N+

ǎ(n)zk

with exact lowest degree N− − N+ and exact highest degree 0. The constant term
of this Laurent polynomial is

ǎ(0) =
∏

k

(1− |Fk|2)−1/2

Moreover, b is of the form

b =

N+∑

k=N−

b̌(n)zn

with exact highest degree N+ and exact lowest degree N−.
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A particular consequence of this lemma is that the order of the highest and
lowest nonvanishing coefficients for the Laurent polynomial of b are the same as for
the sequence F .

Proof. The Lemma can be proved by induction on the length 1 +N+ − N−
of the sequence Fn. If the length is 1, then (a, b) is equal to a transfer matrix (set
N = N− = N+),

(a, b) =
(
(1− |FN |2)−1/2, (1− |FN |2)−1/2FNz

N
)

This proves the lemma for sequences of length one.
Now let l > 1 and assume the theorem is true for lengths less than l and assume

Fn has length l. Set N = N+, then we have

a = (1− |FN |2)−1/2a′ + (1− |FN |)−1/2z−NFN b
′

where (a′, b′) is the NLFT of the truncated sequence F ′ which coincides with F
everywhere except for the N -th entry where we have F ′N = 0. By induction, z−Nb′

has highest degree at most −1 (since b′ has highest degree at most N − 1), so the
constant term of a is (1 − |Fn)

−1/2 times the constant term of a′ and there are no
terms of positive order of a. The lowest order term of a′ is at least N− −N+ + 1,
while the lowest order term of z−Nb′ is exactly N− −N+. Thus for a we have the
lowest and highest order coefficients claimed in the lemma.

Similarly, we have

b = (1− |FN |2)−1/2a′zNFN + (1 − |FN |)−1/2b′

Only the second summand produces a nonzero coefficient of degree N− and this is
the lowest degree of b. Only the first summand produces a nonzero coefficient or
order N+ and this is the highest order coefficient of b. �

The meromorphic extensions of a and b to the Riemann sphere satisfy the
recursion (1.3). On the Riemann sphere, we shall be interested in the open unit
disc D = {z : |z| < 1} and the unit disc at infinity D∗ = {1/z : |z| < 1}. Observe
that a is holomorphic on D∗.

Lemma 1.3. Let (a, b) =
︷︸︸︷
F for some finite sequence F . Then a has no zeros

in the disc at infinity D∗.

Proof. It suffices to prove the lemma under the assumption Fn = 0 for n < 0,
because we can translate F and use Lemma 1.1.

The constant term of a is nonzero, and therefore a is not zero at ∞.
For |z| > 1 we rewrite the recursion

(
an bn

)
=

1√
1− |Fn|2

(
an−1 bn−1

)( 1 Fnz
n

Fnz
−n 1

)

as

(
|z|nan bn

)
=

1√
1− |Fn|2

(
|z|nan−1 bn−1

)( 1 Fn(z/|z|)n
Fn(z/|z|)−n 1

)

Therefore

|znan|2 − |bn|2 = |znan−1|2 − |bn−1|2 ≥ |zn−1an−1|2 − |bn|2
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because |z| > 1. Now it follows by induction that

|znan|2 − |bn|2 > 0

because this is true for n near −∞. Thus a is not zero at z. �

Corollary 1.4. We have |an(z)| ≥ 1 for |z| > 1. Moreover, an(∞) is positive
and greater than or equal to 1.

Proof. Since a has no zeros, the function log |a| is harmonic on D∗. On the
boundary it is non-negative, and by the maximum principle it is non-negative on
D∗. It remains to see positivity of a(∞), but this is clear since a(∞) is the constant
term in the Laurent polynomial of a. �

Next we observe that if (a, b) is the NLFT of a finite sequence, then a is already
determined by b.

Lemma 1.5. Let b be a Laurent polynomial. Then there exists a unique Laurent
polynomial a such that aa∗ = 1 + bb∗, a has no zeros in D∗, and a(∞) > 0.

Proof. Observe that P = 1 + bb∗ is a nonzero Laurent polynomial. It can
only have poles at 0 and ∞, and by symmetry the order of these two poles have to
be equal. Assume P has pole of oder n at 0, clearly n ≥ 0. By symmetry P has
pole of order n at ∞. Since P is clearly has no zeros on T, by symmetry it has
exactly n zeros in D and n zeros in D∗.

Uniqueness: In order for aa∗ to have the correct order of pole at 0, the Laurent
polynomial a has to be a polynomial in z−1 of order n. In order for aa∗ to have
the same zeros as P , it has to have the same zeros as P in D and no other zeros.
This determines a up to a scalar factor. The condition a(∞) > 0 determines a up
to a positive factor. Since 1 + bb∗ is nonzero, this positive factor is determined by
1 + bb∗ = aa∗.

Existence: Let a be a polynomial of degree n in 1/z whose zeros are exactly
the zeros of P in D. Then a(∞) 6= 0. By multiplying by a phase factor we may
assume a(∞) > 0. By multiplying by a positive factor we may assume that a∗a
coincides with P on at least one point of T. Then 1 + bb∗ − aa∗ has 2n+ 1 zeros,
but at most two poles of order n. Thus 1 + bb∗ − aa∗ = 0. �

We are now ready to characterize the target space of the Fourier transform of
finite sequences.

Theorem 1.6. The nonlinear Fourier transform is a bijection from the set of
all finite sequences (Fn) in the unit disc into the space of all pairs (a, b) with b an
arbitrary Laurent polynomial and a the unique Laurent polynomial which satisfies
aa∗ = 1 + bb∗, a(∞) > 0, and has no zeros in D∗.

Remark: While not stated explicitly in the theorem, all pairs (a, b) described
in the theorem satisfy not only a(∞) > 0 but also a(∞) ≥ 1. Moreover, a and b
have the same length. This follows from the theorem and the previous discussion.

Proof. Clearly the Fourier transform maps into the described space by the
previous discussion.

We know that the upper and lower degree of F are the same as the upper and
lower degree of b. Thus it suffices to prove bijectivity under the assumption of fixed
upper and lower degree of F and b. By shifting F and b we may assume both have
lower degree 0, and we can use induction on the common upper degree N .
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In the case N = 0, meaning F ≡ 0, and the in case N = 1 we have

b = F0(1− |F0|2)−1/2

and the map F0 → b is clearly a bijection from D to C. Now assume we have
proved bijectivity up to upper degree N − 1.

We first prove injectivity, i.e., F of upper degree N can be recovered from (a, b).
It suffices to show that F0 can be recovered from (a, b). Then we can by induction
recover the truncated sequence F ′, which coincides with F except for F ′0 = 0 from
the Fourier transform of F ′ which can be calculated as

(a′, b′) = (1− |F0|2)−1/2(1,−F0)(a, b)

However, this last identity also implies that

0 = b′(0) = (1− |F0|2)1/2b′(0) = b(0)− F0a
∗(0)

Hence

F0 =
b(0)

a∗(0)

and this quotient is well defined since a∗(0) 6= 0. Thus F0 is determined by (a, b)
and we have proved injectivity for upper degree N .

Next, we prove surjectivity. Let b have upper degree N and let a be the unique
Laurent polynomial which satisfies aa∗ = 1 + bb∗, a(∞) > 0, and has no zeros in
D∗. We set formally

F0 =
b(0)

a∗(0)

Observe that |F0| < 1 since b/a∗ is holomorphic in D, continuous up to T, and
bounded by 1 on T. We calculate formally the truncated Fourier transform data

(a′, b′) = (1− |F0|2)−1/2(1,−F0)(a, b)

Then b′ is a polynomial of upper degree at most N and lower degree at least 1.
It now suffices to prove that (a′, b′) is the nonlinear Fourier transform of a

sequence of length N − 1. For this it suffices to show that a′ is the unique Laurent
polynomial such that 1 + b′b′∗ = a′a′∗, a(∞) > 0, and a′ has no zeros in D∗.

However,

1 + b′b′
∗
= a′a′

∗

holds on T and therefore everywhere since the determinant of the matrix (a, b)
coincides with that of (a′, b′) on T. The recursion

(a, b) = (1 − |F0|2)−1/2(1, F0)(a
′, b′)

implies

a(∞) = (1− |F0|2)−1/2a′(∞)

and thus a′(∞) > 0. Finally, we observe that

a′(z) = (1 − |F0|2)−1/2(a− F0b
∗)

does not vanish inD∗ since b∗/a is bounded by 1 inD∗ and thus a strictly dominates
F0b
∗ in D∗. �
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1.5. Extension to l1 sequences

We have defined the Fourier transform for finite sequences. Now, we would like
to extend the definition to infinite sequences.

As in the case of the linear Fourier transform, the defining formula actually
extends to sequences in l1(Z, D), i.e., summable sequences of elements in D.

Define a metric on the space SU(1, 1) by

dist(G,G′) = ‖G−G′‖op
This clearly makes SU(1, 1) a complete metric space, since C4 is a complete metric
space and SU(1, 1) is a closed subset of C4 with the inherited topology.

Define L∞(T, SU(1, 1)) to be the metric space of all essentially bounded func-
tions G : T → SU(1, 1)

sup
z

dist(id, G(z)) <∞

(in the usual sense of the essential supremum) with the distance

dist(G,G′) = sup
z

dist(G(z), G′(z))

On the space of all summable sequences in D define the distance

dist(F, F ′) =
∑

n

‖Tn − T ′n‖op

where Tn denotes the transfer matrix defined in (1.2). This makes l1(Z, D) a
complete metric space. We claim that on sets

Bǫ = {Fn : sup
n

|Fn| < 1− ǫ}

with ǫ > 0 (every element in l1(Z, D) is in such a set, and also every Cauchy
sequence in l1(Z, D) is inside one of these sets) this distance is bi-Lipschitz to

dist′(F, F ′) =
∑

n

|Fn − F ′n|

Namely, if Fn and F ′n are in Bǫ, then

‖Tn − T ′n‖op =

=
∣∣∣(1− |Fn|2)−1/2 − (1 − |Fn|2)−1/2

∣∣∣+
∣∣∣(1− |Fn|2)−1/2Fn − (1− |F ′n|2)−1/2F ′n

∣∣∣
This is bounded by a constant depending on ǫ. Thus we only need to show equiv-
alence to |Fn − F ′n| if the latter is smaller than a constant depending on ǫ. This
however follow easily by Taylor expansion of the nonlinear terms in the expression
for ‖Tn − T ′n‖op.

In particular, we observe that the finite sequences are dense in l1.

Lemma 1.7. With the above metrics, the NLFT on l0(Z, D) extends uniquely
to a locally Lipschitz map from l1(Z, D) to L∞(T, SU(1, 1)). The NLFT of such
sequences can be written as the convergent infinite ordered product of the transfer
matrices.

Proof. To prove existence and uniqueness of the extension, it suffices to prove
the Lipschitz estimate on bounded sets for finite sequences.

Using ‖Tn‖ ≥ 1 we have by Trotter’s formula:

‖
∏

n

Tn −
∏

n

T ′n‖op ≤ [
∑

n

‖Tn − T ′n‖op][
∏

n

‖Tn‖op][
∏

n

‖T ′n‖op]
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Moreover, we have
∏

n

‖Tn‖op ≤ exp[
∑

n

[‖Tn‖op − 1]] ≤ exp[
∑

n

‖Tn − id‖op]

hence the right-hand side remains bounded on bounded sets of l1(Z, D). Thus, on
a bounded set we have

‖
∏

n

Tn −
∏

n

T ′n‖op ≤ C[
∑

n

‖Tn − T ′n‖op]

with C depending on the set. This proves the Lipschitz estimate on bounded sets.
By the abstract theory of metric spaces, the NLFT extends to a locally Lipshitz

map on l1(Z, D). Given any sequence F , the truncations of the sequence to the
interval [−N,N ] converge in l1(Z, D) to F , and thus the sequence of nonlinear
Fourier transforms converges to the NLFT of F .

Convegence in the target space is not only in L∞(T, SU(1, 1)), but also in
the space C(T, SU(1, 1)) of continuous functions, which is a closed subspace. This
implies that the NLFT of the truncated sequences converge pointwise and uniformly
to the NLFT of F .

Observe that if F ∈ Bǫ, then the truncations of Fn to intervals [−N,N ] remain
in Bǫ, and converge to F in l1(Z, D). Thus the products of the transfer matrices
converge to the NLFT of F . �

We observe that for F ∈ l1(Z, D) we have

sup
z∈T

‖(a(z), b(z))‖op ≤
∏

n

‖(1− |Fn|2)−1/2(1, Fn)‖

or, applying the logarithm to both sides and using Lemma 1.55:

sup
z

arccosh|a(z)| ≤
∑

n

arccosh((1 − |Fn|2)−1/2)

Define g(y) = (log(cosh(y)))1/2. Then g vanishes at 0 and is concave on the positive
half axis, and therefore g(x) + g(y) ≥ g(x + y) for all 0 ≤ x, y, and the analogue
inequality holds for any countable number of summands. Applying g to the last
display we thus obtain

(1.10) sup
z
(log |a(z)|)1/2 ≤

∑

n

(log((1− |Fn|2)−1/2))1/2

In the following section, this estimate will be compared to estimates for sequences
in spaces lp(Z, D) for various p.

1.6. Extension to lp sequences, 1 < p < 2

In this section we define the nonlinear Fourier transform of lp sequences with
1 < p < 2. The discussion in this section is an extraction from the work of Christ
and Kiselev. Mainly we rely on [6] and we state and use but not prove theorems
from that paper.

Let F ∈ l0(Z, D) be a finite sequence. By the distributive law, we can write

︷︸︸︷
F (z) =

∏

n∈Z
(1− |Fn|2)−1/2(1, Fnz

n)
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=

(∏

n∈Z
(1− |Fn|2)−1/2

)( ∞∑

n=0

[ ∑

i1<···<in

n∏

k=1

(0, Fikz
ik)

])

Here all formally infinite products and sums are actually finite since almost all
factors and summands are trivial, and where the summand for n = 0 on the right-
hand side is equal to (1, 0).

Observe that the first factor in the last display is independent of z and is a
convergent product under the assumption F ∈ lp(Z, D) with 1 < p < 2. The
second factor in the last display is a multilinear expansion, i.e., a Taylor expansion
in the sequence F near the trivial sequence F = 0.

We shall see that for F ∈ lp(Z, D), each term in this multilinear expansion is
well defined as a measurable function in z and that the multilinear expansion is
absolutely summable for almost all z ∈ T. This allows us to define the nonlinear
Fourier transform for lp sequences as a measurable function on T.

Theorem 1.8. Let 1 ≤ p < 2 and let p′ be the dual exponent p/(p − 1). Let
F ∈ lp(Z, D). Then the multilinear term

(1.11)
∑

i1<···<in

[
n∏

k=1

(0, Fikz
ik)

]

is a well defined element of the quasi-metric space Lp′/n(T,M2×2) and depends
continuously on the sequence F ∈ lp(Z, D). The multilinear expansion

(1.12)

∞∑

n=0

[ ∑

i1<···<in

n∏

k=1

(0, Fikz
ik)

]

is absolutely summable for almost every z. Defining

(a, b)(z) :=

(∏

n∈Z
(1− |Fn|2)−1/2

)( ∞∑

n=0

[ ∑

i1<···<in

n∏

k=1

(0, Fikz
ik)

])

we have |a|2 = 1+ |b|2 almost everywhere, the function a has an outer extension to
D∗ with a(∞) > 0, and we have the estimate

(1.13) ‖(log |a|)1/2‖Lp′(T) ≤ Cp

∥∥∥| log(1 − |F.|2)|1/2
∥∥∥
lp(Z)

The case p = 1 of inequality (1.13) has been observed in (1.10). Indeed, the
case p = 1 of this theorem is considerably easier than the case p > 1.

The multilinear expansion described in this theorem fails to converge in general
if p = 2, see [22]. However, inequality (1.13) remains true for p = 2 if the nonlinear
Fourier transform is defined properly. We will discuss this in subsequent sections.
It is an interesting open problem whether Cp in inequality (1.13) can be chosen
uniformly in p as p approaches 2.

Proof. The quasi-metric of the space Lq(T,M2×2) is defined as

(

∫

T

‖G(z)‖qop)1/q

To prove that each multilinear term (1.11) is a well defined element in Lp′/n(T,M2×2),
it suffices to prove that the multilinear map Tn, originally defined on finite sequences
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by

Tn(F
(1), . . . , F (n))(z) =

∑

i1<···<in

[
n∏

k=1

(0, F
(k)
ik
zik)

]

satisfies the a priori estimate

‖Tn(F (1), . . . , F (n))‖p′/n ≤ C

n∏

k=1

‖F (k)‖p

By the general theory of multilinear maps on topological vector spaces, the map
Tn extends then uniquely to a continuous map

lp(Z)× · · · × lp(Z) → Lp′/n(T)

To prove the above a priori estimate, we use the following theorem formulated
slightly differently in [5]:

Theorem 1.9. Let 1 < p < 2. Let kj for j = 1, . . . , n be locally integrable
functions on R×R such that the map

(1.14) Kjf(y) :=

∫
kj(y, x)f(x) dx

which is defined on bounded compactly supported f satisfies the a priori bound

‖Kjf‖p′ ≤ C‖f‖p
Then the operator Tn defined by

Tn(f1, . . . , fn) =

∫

x1<···<xn

n∏

j=1

kj(y, xj)fj(xj) dxj

satisfies the a priori bound

‖Tn(f1, . . . , fn)‖p′/n ≤ C

n∏

j=1

‖fj‖p

For the proof of this theorem we refer to [5] with improvements on the constant
C in [6].

To apply the theorem to the case at hand we need to convert the integral in
(1.14) to a sum. This is easily done by considering functions that are constant on
each interval [l, l+1) for l ∈ Z, but some care is to be taken so that the integration in
the definition of Tn can be turned into a summation over a discrete set. Specifically,
define kj(y, x) to be zero for y /∈ [0, 2π] and

kj(x, y) = e±iy[x/n]

where [x] denotes the largest integer smaller than x and the sign ± is positive or
negative depending on whether j is odd or even. Further we define fj such that
for every integer m, the restriction of fj to the interval [nm, n(m+ 1)) is equal to
Fm1[n(m+1)−j,n(m+1)−j+1) if j is odd and equal to the complex conjugate of this

expression if j is even. With z = eiy one observes that for odd n

Tn(f1, . . . , fn) =
∑

i1<···<in

Fi1z
i1Fi2z

i2 · · ·Finz
in
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and for even n

Tn(f1, . . . , fn) =
∑

i1<···<in

Fi1z
i1Fi2z

i2 . . . Finz
in

Thus the desired bound for (1.11) follows from Theorem 1.9.
To obtain good bounds of the multilinear terms and conclude that the expansion

(1.12) is absolutely summable almost everywhere we invoke the next theorem from
[6].

Define a martingale structure on R to be a collection of intervals Em
j with

m ≥ 0 and 1 ≤ j ≤ 2m such that the following conditions are satisfied modulo
endpoints

(1) The union ∪jE
m
j is equal to R for every m

(2) The intervals Em
j and Em

j′ are disjoint for j 6= j′

(3) If j < j′, x ∈ Em
j and x′ ∈ Em

j′ , then x < x′

(4) For every j,m we have Em
j = Em+1

2j−1 ∪Em+1
2j

Given such a martingale structure, to each locally integrable function f we associate
gf ∈ [0,∞] by

gf =

∞∑

m=1




2m∑

j=1

|
∫

Em
j

f |2



1/2

Theorem 1.10. There is a constant B such that the following holds. Define

(1.15) Tn(f1, . . . , fn) :=

∫

x1<···<xn

n∏

i=1

fi(xi) dxi

and let X be a finite set of locally integrable functions on R. Assume that we are
given a fixed martingale structure and define

g := max
f∈X

gf

Then for every n > 1 and every f1, . . . , fn ∈ X,

|Tn(f1, . . . , fn)| ≤ (n!)−1/2Bngn

For each parameter y, we apply this theorem with the same ki and fi as in the
application of the previous theorem. Thus the number g depends on the parameter
y. Writing again z = eiy we obtain for even n

∑

i1<···<in

Fi1z
i1Fi2z

i2 . . . Finz
in ≤ (n!)−1/2Bngn(z)

and similarly for odd n. If we can show that for a proper choice of the martingale
structure the function g(z) is finite for almost every z, then this implies immediately
that the multilinear expansion (1.12) converges for almost all z.

We choose the martingale structure adapted to fi in the sense of [6] (observe
that all the fi are identical up to complex conjugation). As in the remark to
Theorem 1.1 of [6] one checks that

‖g‖p′ ≤ ‖F‖p
Thus in particular the expansion (1.12) converges for almost every z.
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The diagonal entry a of (a, b) is only affected by the even terms in the mul-
tilinear expansion (1.12). Thus we obtain with the same martingale structure as
before

|a| ≤ [
∏

n

(1− |Fn|2)−1/2]
∑

n

((2n)!)−1/2B2ng2n

≤ [
∏

n

(1− |Fn|2)−1/2]
∑

n

(n!)−1B2ng2n = [
∏

n

(1− |Fn|2)−1/2] exp(B2g2)

(log |a|)1/2 ≤ C[
∑

n

| log(1− |Fn|2)|]1/2 + Cg

This easily proves (1.13).
To complete the proof of Theorem 1.8 it remains to prove that the nonlinear

Fourier transform (a, b) of an lp sequence, which we have now defined using the
multilinear expansion, satisfies |a|2 = 1 + |b|2 and a has an outer extension to D∗.
We shall, for simplicity, only argue for sequences supported on Z≥0. The case of
sequences on the full line Z is then a slight variation using truncations at both ends
of the sequence.

Assume F ∈ lp(Z≥0, D) and consider the nonlinear Fourier transforms

(a(≤N), b(≤N))

of the truncations F (≤N). If we can show that (a(≤N), b(≤N)) converge to (a, b)
almost everywhere, then we obtain immediately |a|2 = 1+ |b|2. Moreover, with the
additional a priori estimate (1.16) and Lebesgue’s dominated convergence theorem
we have that log |a(≤N)| converges to log |a| in L1 and one easily concludes that a
is outer. �

Theorem 1.11. Let F ∈ lp(Z≥0, D). With the notation as above, the sequence

(a(≤N), b(≤N)) converges for almost every z to (a, b). Moreover, we have the a priori
estimate

(1.16) ‖ sup
N

log |a(≤N)|‖p
′

L ≤ Cp‖| log((1− |Fn|2)|1/2‖lp

Proof. We first show that almost everywhere convergence follows from the a
priori estimate (1.16).

Let M > N an write

(a(≤M), b(≤M)) = (a(≤N), b(≤N))(a′, b′)

By continuity of multiplication in SU(1, 1), we have to show smallness of (a′, b′) for
large N , independently of M and outside a set of prescribed small measure.

This however is precisely what (1.16) provides if applied to the tail F (>N).
Thus it remains to prove (1.16). This a priori estimate follows by arguments

similar to those given before with the following theorem taken from [6], which is a
modification of Theorem 1.10.

For a given martingale structure Em
j we define

g̃(f) =

∞∑

m=1

m




2m∑

j=1

|
∫

Em
j

f |2



1/2
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Theorem 1.12. Define

(1.17) Mn(f1, . . . , fn) := sup
y,y′

∣∣∣∣∣

∫

y<x1<···<xn<y′

n∏

i=1

fi(xi) dxi

∣∣∣∣∣

and let X be a finite set of locally integrable functions on R. Assume we are given
a fixed martingale structure and define

g̃ := max
f∈X

g̃(f)

Then for every n > 1 and every f1, . . . , fn ∈ X

|Mn(f1, . . . , fn)| ≤ (n!)−1/2Bng̃n

Applying this theorem as before proves Theorem 1.11. This also completes the
proof of Theorem 1.8. �

1.7. The nonlinear Fourier transform on l2(Z≥0)

1.8. Extension to half-infinite l2 sequences

Most of this section is an adaption from an article by Sylvester andWinebrenner
[27].

Assume F is a square summable sequence with values in the open unit disc,
i.e., an element of l2(Z, D).

As for the linear Fourier transform, the defining equation for the nonlinear
Fourier transform of F (infinite product of transfer matrices) does not necessarily
converge for given z ∈ T. Indeed, almost everywhere convergence of the partial
products - a nonlinear version of a theorem of Carleson - is an interesting open
problem, see the discussion in [23].

It however converges in a certain L2 sense. As in the linear theory, the main
ingredient to prove this is a Plancherel type identity.

Lemma 1.13. Let Fn be a finite sequence of elements in the unit disc. Then

with (a, b) =
︷︸︸︷
F we have

∫ 1

0

log |a(e2πiθ)| dθ =
∫

T

log |a(z)| = −1

2

∑

n

log(1 − |Fn|2)

Remark 1: Observe that the integrand log |a(z)| on the left - hand side is
positive, as is each summand − log(1 − |Fn|2) on the right - hand side. Thus this
equation has the flavor of a norm identity.

Exercise: prove that in lowest order approximation (quadratic) this becomes
the usual Plancherel identity.

Remark 2: This formula appears at least as early as in a 1936 paper by Verblun-
sky [32, p. 291].

Proof. Since Fn is a finite sequence, a = a∞ is a polynomial in z−1 with
constant term ∏

n

(1− |Fn|2)−1/2

and non-vanishing in D∗ by Lemma 1.3.
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Thus we have∫

T

log(a(z)) = log(a(∞)) = −1

2

∑

n

log(1 − |Fn|2)

Since the right-hand side is real, we also have∫

T

log |a(z)| = −1

2

∑

n

log(1− |Fn|2)

�

Let l2(Z≥0, D) be the space of sequences supported on the nonnegative integers
(“right half-line”) with values in D. We now proceed to describe the space H which
we will show is the range of the nonlinear Fourier transform on l2(Z≥0, D).

Consider the space K of all measurable SU(1, 1) functions on the circle with

(1.18)

∫

T

log |a(z)| <∞

We can embed this space into the space L1(T)× L2(T) × L2(T) mapping the
function (a, b) to the function (log |a|, b/|a|, a/|a|). Clearly by our assumption on
the space K, log |a| is in L1(T), while b/|a| is an essentially bounded measurable
function because (b, a) is in SU(1, 1) almost everywhere, and a/|a| is also an essen-
tially bounded measurable function.

This embedding is indeed injective, since we can recover the modulus of a
almost everywhere from log |a|, we can recover the phase of a almost everywhere
from a/|a|, thus we can recover a almost everywhere. Then we can recover b almost
everywhere from b/|a|.

We endow the space K with the inherited metric. Thus the distance between
two functions (a, b) and (a′, b′) is given by

∫

T

log |a| − log |a′|+
(∫

T

|b/|a| − b′/|a′||2
)1/2

+

(∫

T

|a/|a| − a′/|a′||2
)1/2

Indeed, this makes K a complete metric space. To see this, it is enough to
show that the image of the embedding is closed, because the space L1 × L2 × L2

is complete. However, the image is the subspace of all functions (f, g, h) such that
f is real and nonnegative almost everywhere, g satisfies |gef |2 + 1 = |ef |2 almost
everywhere, and h has values in T almost everywhere. Any limit of a sequence
in this subspace satisfies the same constraints almost everywhere, and thus the
subspace is closed.

We observe that in the above definition of the metric we could have used quo-
tients of the type b/a − b′/a′ instead of b/|a| − b′/|a′| and obtained an equivalent
metric. This is because

|b/|a| − b′/|a′|| = |(b/a)(a/|a|)− (b/a)(a′/|a′|) + (b/a)(a′/|a′|)− (b′/a′)(a′/|a′|)|
≤ |a/|a| − a′/|a′||+ |(b/a)− (b′/a′)|

and similarly

|b/a− b′/a′| ≤ |(b/|a|)− (b′/|a′|)|+ |a/|a| − a′/|a′||
Here we have used |b|/|a| < 1.

Likewise, we could have used quotients b/a∗ in the definition of the distance. If
G denotes the group SU(1, 1) and K is the compact subgroup of diagonal elements,
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then b/a parameterizes the left residue classes K\G while b/a∗ parameterizes the
right residue classes G/K.

Some calculations to follow will be slightly simplified if we note that we can
work with quasi-metrics rather than metrics. A quasi-metric on a space is a distance
function with definiteness, d(x, y) = 0 implies x = y, symmetry, d(x, y) = d(y, x),
and a modified triangle inequality

d(x, z) ≤ Cmax(d(x, y), d(y, z))

Just like a metric, a quasi-metric defines a topology through the notion of open
balls. This topology is completely determined by its convergent sequences. Also,
Cauchy sequences are defined, and one can talk about completeness of quasi-metric
spaces.

Two quasi-metrics on the same space are called equivalent if there is some
strictly monotone continuous function C vanishing at 0 such that

d(x, y) ≤ C(d′(x, y))

d′(x, y) ≤ C(d(x, y))

Two equivalent quasi-metrics produce the same convergent sequences and the same
Cauchy sequences.

A quasi-metric equivalent to the above metric is given by

dist((a, b), (a′, b′)) =
∫

T

| log |a| − log |a′||+
∫

T

|b/|a| − b′/|a′||2 +
∫

|a/|a| − a′/|a′||2

The space K is too large to be the image of the NLFT. As we shall see, the
image of the NLFT lies in a subspace of K on which the phase of a does not contain
any information other than that already contained in log |a|.

More precisely, let L be the subspace of K consisting of all pairs (a, b) such
that a is the boundary value of an outer function — also denoted by a — on D
that is positive at ∞.

The outerness condition together with positivity of a at ∞ can be rephrased as

a/|a| = e−ig

where

g = p.v.

∫

T

log |a(ζ)|Im(
ζ + z

ζ − z
) dζ

i.e., g is the Hilbert transform of log |a|. Recall that the harmonic extension of the
Hilbert transform to D vanishes at 0.

Lemma 1.14. Let Fn be a finite sequence of elements in D and (a, b) =
︷︸︸︷
F .

Then (a, b) ∈ L.

Proof. Clearly (a, b) ∈ K. The function a is holomorphic in a neighborhood
of the closure of D∗ and has no zeros there. Therefore a and a−1 are in H∞(D∗)
and by Lemma 1.54 in the appendix the function a is outer on D∗. �

Lemma 1.15. The space L is closed in K. The restriction of the quasi-metric
of K to L is equivalent to the following quasi-metric on L:

dist((a, b), (a′, b′)) =

∫

T

| log |a| − log |a′||+
∫

T

|b/|a| − b′/|a′||2
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If (a, b) and (a′, b′) are in L, then
∫

T

|a/|a| − a′/|a′||2 ≤ C

∫

T

| log |a| − log |a′||

Namely, ∫
|a/|a| − a′/|a′||2

≤
∫ 2

0

λ|{|a/|a| − a′/|a′|| > λ}| dλ

≤
∫ 2

0

λ|{|Im(log(a)− log(a′))| > λ}| dλ

where log(a) and log(a′) are the boundary values of the branches of the logarithm
which are real at ∞. Using the weak type 1 bound for the Hilbert transform, we
can estimate the last display by

≤
∫ 2

0

λ(C‖ log |a| − log |a′|‖1/λ) dλ

≤ C‖ log |a| − log |a′|‖1
This estimate shows that the quasi-metric defined in the lemma is equivalent on
L to the distance defined on K. Moreover, it shows that a sequence in L which is
convergent in K converges to an element in L and thus L is closed.

Observe that on L we have

(1.19) dist(id, (a, b)) ≤ 3

∫

T

log |a|

because aa∗ = 1 + bb∗ and 1− x ≤ log(1/x) imply
∫

T

|b/|a||2 ≤ 2

∫

T

log |a|

Also observe that for (a, b) ∈ L, knowledge of the quotient b/|a| (or b/a∗ or b/a)
is sufficient to recover (a, b). Namely, we can recover |a| almost everywhere using the
formula |a|2 = 1+ |b|2. Then we can recover the argument of a almost everywhere
as the Hilbert transform of log |a|. Then we can recover b almost everywhere from
a and the quotient b/|a| (or b/a∗ or b/a).

Define the space H to be the subspace of L of all functions such that b/a∗ is
the boundary value of an analytic function on D (also denoted by b/a∗) that is in
the Hardy space H2. Since the Hardy space H2 (identified as space of functions on
T) is a closed subspace of L2, we have that H is a closed subspace of L.

If F is a finite sequence supported on the right half-line, i.e., Fn = 0 for n < 0,
then clearly (a, b) ∈ H.

The following string of lemmas will prove that the nonlinear Fourier transform
is a homeomorphism from l2(Z≥0, D) onto H.

Lemma 1.16. Let F be a sequence in l2(Z≥0, D) and let F (≤N) denote the

truncations to [0, N ]. Then (aN , bN) =
︷ ︸︸ ︷
F (≤N) is a Cauchy sequence in H.

Remark: Once this lemma has been established, it is possible to define F̂ to be
the limit of this Cauchy sequence.

Proof. We need the following auxiliary lemma:
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Lemma 1.17. For G,G′ ∈ L we have

dist(GG′, G) ≤ Cdist(G′, id) + C [dist(G, id)dist(G′, id)]
1/2

Proof. We have

(1.20) dist(GG′, G) ∼
∫

T

| log |aa′ + bb′| − log |a||+
∫

T

|ab
′ + ba′

aa′ + bb′
− b

a
|2

Consider the first summand. We have

| log |aa′ + bb′| − log |a||

= | log |a′|+ log |1 + (b/a)(b′/a′)(a′/a′)||
≤ | log |a′||+ | log |1 + (b/a)(b′/a′)(a′/a′)||

Upon integration over T, the first summand is bounded by dist(G′, id). On the set
of all z such that (b′/a′)(z) ≥ 1/10, we estimate

| log |1 + (b/a)(b′/a′)(a′/a′)||
≤ | log(1− |b′/a′|)| ≤ C| log |1− |b′/a′|2| = 2C| log |a′||

which again upon integration is bounded by dist(G′, id). On the set of all z with
(b′/a′)(z) ≤ 1/10, we estimate

| log |1 + (b/a)(b′/a′)(a′/a′)|| ≤ C|b/a||b′/a′|
Upon integration over T and application of Cauchy-Schwarz, this is bounded by
the square root of dist(G, id)dist(G′, id).

We consider the second summand on the right-hand side of (1.20). We claim
that

(1.21)

∣∣∣∣
ab′ + ba′

aa′ + bb′
− b

a

∣∣∣∣ ≤ C
|b′|
|a′| + C

∣∣∣∣1−
a′

|a′|

∣∣∣∣

This will finish the proof, since upon taking the square and integrating, the right-
hand side is bounded by dist(G′, id) (here we use that the distance functions on L

and K are equivalent). The claim is evident if |b′|/|a′| is greater than 1/10, since
the left-hand side of (1.21) is bounded by 2. Assume

1

10
>

|b′|
|a′| >

1

10

|b|
|a|

Then we use triangle inequality on the left-hand side of (1.21) and obtain
∣∣∣∣
ab′ + ba′

aa′ + bb′
− b

a

∣∣∣∣ ≤ C

∣∣∣∣
ab′ + ba′

aa′

∣∣∣∣+ C
|b|
|a| ≤ C

|b′|
|a′|

Assume |b′|/|a′| < 1
10 |b|/|a|. Then

∣∣∣∣
ab′ + ba′

aa′ + bb′
− b

a

∣∣∣∣ ≤
∣∣∣∣

ab′

aa′ + bb′

∣∣∣∣+
∣∣∣∣(

ba′

aa′ + bb′
− ba′

aa′
)

∣∣∣∣ +
∣∣∣∣
a′

a′
− 1

∣∣∣∣
|b|
|a|

≤ C
|b′|
|a′| + C

|b′|
|a′| + C

∣∣∣∣1−
a′

|a′|

∣∣∣∣
This proves Lemma 1.17. �



1.8. EXTENSION TO HALF-INFINITE l2 SEQUENCES 21

We continue the proof of Lemma 1.16. Consider

dist(
M∏

n=0

Tn,
N∏

n=0

Tn) = dist(GG′, G)

where

G =

N∏

n=0

Tn and G′ =
M∏

n=N+1

Tn

By the Plancherel identity and (1.19) we have

dist(G, id) ≤
∫

log |aN | ≤ C
N∑

n=1

∣∣log |1− |Fn|2|
∣∣ ≤ C

(since F ∈ l2) and similarly,

dist(G′, id) ≤ C
M∑

n=N+1

∣∣log |1− |Fn|2|
∣∣ ≤ ǫ

if N > N(ǫ) is chosen large enough depending on the choice of ǫ. Thus, for M >
N > N(ǫ), we have by Lemma 1.17

dist(

M∏

n=0

Tn,

N∏

n=0

Tn) ≤ Cǫ1/2

This shows that
︷ ︸︸ ︷
F (≤N) is Cauchy in H.

�

Thus we can define the NLFT on l2(Z≥0, D) as the limit of the NLFT of the
truncated sequences. We have not yet shown any genuine continuity of the NLFT,
but we will do that further below. Using Theorem 1.11, one can show that this
definition of the NLFT coincides with the old definition on the subset lp(Z≥0, D)
of l2(Z≥0, D) for 1 ≤ p < 2.

As the distance between the NLFT of the truncated sequence and the NLFT
of the full sequence converges to 0, the Plancherel identity continues to hold on all
of l2(Z≥0, D).

Lemma 1.18. The NLFT is injective on l2(Z≥0).

Proof. We know for the finite truncations that

F0 = b(≤N)(0)/a(≤N)∗(0) =

∫

T

b(≤N)/a(≤N)∗

Where we used that b/a∗ has holomorphic extension to a neighborhood of D.

By convergence of the data (a(≤N), b(≤N)) in H we see that b(≤N)/a(≤N)∗ con-
verges in L2(T) to b/a∗, where (a, b) is the NLFT of F . Thus

F0 =

∫

T

b/a∗

Observe that the quotient b/a∗ is sufficient to determine F0. This is consis-
tent with the earlier observation that this quotient contains the full information of
(a, b) ∈ H.
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To proceed iteratively, we need to determine the NLFT (ã, b̃) of the “layer

stripped” sequence F̃ in l2(Z≥0, D); this is defined by F̃n = Fn for n > 0 and

F̃0 = 0. More precisely, we will determine the quotient b̃/ã∗ using only the quotient

b/a∗. Write r = b/a∗, r̃ = b̃/ã∗ etc.
Using the product formula for finite sequences we calculate

(ã(≤N), b̃≤N) = (1 − |F0|2)−1/2(1,−F0)(a
(≤N), b(≤N))

r̃(≤N) =
r(≤N) − F0

−F0r(≤N) + 1

As N tends to ∞, the equation tends in L2 norm to

r̃ =
r − F0

−F0r + 1

For the left-hand side this follows directly from the definitions. For the right-hand
side this follows from the fact that the map

s→ s− F0

−F0s+ 1

has bounded derivative on the closure of D and thus turns L2 convergence of r into
L2 convergence of r−F0

−F0r+1
(recall F0 is fixed and |F0| < 1.)

Thus we can calculate b̃/ã∗.
By an inductive procedure (conjugate the new problem by a shift to reduce it

to the old problem for sequences starting at 0) we can calculate all Fn. This proves
injectivity.

�

The layer stripping method in the proof of this lemma can be used to obtain
the following result: If F is in l2 and if F (≤N) and F (>N) are the truncations to
[0, N ] and [N + 1,∞), then

(a, b) = (a(≤N), b(≤N))(a(>N), b(≤N))

This is clear if N = 0. If N = 1, this has been observe in the proof of the previous
lemma. Then one can use induction to prove this for all N .

For later reference we note that

r>N := b(>N)/(a(>N))∗

has a holomorphic extension to D which vanishes to order N + 1 at 0.

Lemma 1.19. The NLFT is surjective from l2 onto the space H

Proof. Let (a, b) ∈ H. Then r = b/a∗ is an analytic function in D bounded
by 1. Moreover, r(0) < 1 since the extension of r to T is strictly less than 1 almost
everywhere. Following the calculations in the proof of the previous lemma, we set
formally

F0 = r(0)

and

zr̃ =
r − F0

−F0r − 1
Being the Möbius transform of a bounded analytic function, the right-hand side is
still an analytic function in D bounded by 1 and it vanishes at 0 by construction.
Thus, by the Lemma of Schwarz, we can divide by z and calculate formally r̃ which
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is again an analytic function in D bounded by 1. This procedure can be iterated
and gives a sequence Fn.

This iteration process can be applied to any analytic function bounded by 1,
regardless of any further regularity of this function. This process is called Schur’s
algorithm after [24].

We show that r̃ as constructed above is of the form b̃/ã∗ for some (a, b) ∈ H.
To this end, it suffices to show that 1−|r̃|2 (which is formally |ã|−2) is log integrable

over T. Then we can determine the outer function ã and calculate b̃. Observe that
as bounded analytic function, r̃ is automatically in H2(D).

We have

1− |r̃|2 =
|F0r − 1|2 − |r − F0|2

|F0r − 1|2

=
|F0r|2 − |r|2 − |F0|2 + 1

|F0r − 1|2

=
(1− |F0|2)(1− |r|2)

|F0r − 1|2
Observe that F0r−1 is bounded and bounded away from 0 and so is its holomorphic
extension to D, thus its logarithm is integrable over T and equal to the value of
the logarithm at 0: ∫

log(1 − F0r) = log(1− |F0|2)

Taking logarithms and integrating gives
∫

log(1− |r̃|2) = log(1− |F0|2) +
∫
(1− |r|2)− 2 log(1− |F0|2)

∫
log(1− |r̃|2) = − log(1− |F0|2) +

∫
log(1− |r|2)

Discussing the signs we obtain

(1.22)

∫
| log(1− |r̃|2)| = −| log(1− |F0|2)|+

∫
| log(1− |r|2)|

Thus log(1− |r̃|2) is integrable.
We can iterate to calculate formally Fn. Using (1.22) inductively, we obtain

(1.23)

∞∑

n=0

| log(1− |Fn|2)| ≤
∫

| log(1− |r|2)|

Thus the sequence Fn we calculated is in l2(Z≥0, D) and it is a candidate for
the preimage of (a, b) under the NLFT.

Let (ã, b̃) denote the NLFT of Fn. We will show that indeed, (a, b) = (ã, b̃) and
we have equality in (1.23).

As noted earlier,

(ã, b̃) = (ã(≤N), b̃(≤N))(ã(>N), b̃(>N))

where the factors on the right-hand side are defined by the usual truncations.
Observe that by unwinding Schur’s algorithm introduced above, we obtain

(a, b) = (ã(≤N), b̃(≤N))(a(>N), b(>N))
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where (a(>N), b(>N)) is the unique element in H such that b(>N))/a(>N) is equal
to the N -th function in Schur’s algorithm.

Thus in the expression

(ã, b̃)−1(a, b)

we can cancel factors to obtain

(1.24) (ã, b̃)−1(a, b) = (ã(>N), b̃(>N))−1(a(>N), b(>N))

Consider an off- diagonal entry of the right-hand side of (1.24):

(ã(>N))∗b(>N) − b̃(>N)(a(>N))∗

This is a Nevanlinna function on D. The Taylor coefficients of this function at 0
vanish up to order N . By (1.24), this function does not actually depend on N ,
therefore all Taylor coefficients at 0 vanish. Thus the function vanishes on D, and
so do its radial limits on T almost everywhere. Thus the off diagonal coefficients of

(ã, b̃)−1(a, b)

vanish and we have for some function c

(a, b) = (ã, b̃)(c, 0)

This function c has to have modulus 1 almost everywhere on T, since the last
display can be read as identity between SU(1, 1) valued measurable functions on
T. Calculating a diagonal entry in the last display, we obtain

a = ãc

Since a and ã are outer, so is c. However, any outer function with constant modulus
on T is constant. Moreover, c is positive since a and ã are positive at ∞. This
proves c = 1. �

Lemma 1.20. The NLFT is a continuous map from l2(Z≥0, D) to H.

Proof. Fix F ∈ l2(Z≥0, D) and choose ǫ > 0. Choose N very large depending
on ǫ.

For F ′ close to F depending on N , ǫ we write

dist((a, b), (a′, b′)) ≤ dist((a, b), (a(≤N), b(≤N)))+

+dist((a(≤N), b(≤N)), (a′
(≤N)

, b′
(≤N)

)) + dist((a′
(≤N)

, b′
(≤N)

), (a′, b′))

We intend to argue that all the terms on the right-hand side are less than ǫ/3.
By the definition of (a, b), the first term can be made small by choosing N large

enough. Likewise the third term can be made small, since the distance between
the truncation and the full Fourier transform depends only on the l2 norm of the
sequence F ′ and the l2 norm of the tail of this sequence, which can be both con-
trolled by choosing N large enough and F ′ close enough to F . Thus it remains to
control the middle term.

Consider the space of D-valued sequences on [0, N ] with the l2 norm. Since the
space is finite dimensional, the l2 norm is equivalent to the l1 norm.

Observe that for two matrices (a, b) and (a′, b′) in SU(1, 1) we have

| log |a| − log |a′|| ≤ |a− a′| ≤ ‖(a, b)− (a′, b′)‖op
and

|b/|a| − b′/|a′|| ≤ |b− b′| ≤ ‖(a, b)− (a′, b′)‖op
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Thus, if F ′(≤N)
is sufficiently close to F (≤N) w.r.t. l2 and thus l1, then

sup
z

∣∣∣log |a(≤N)| − log |a′(≤N)|
∣∣∣+ sup

z

∣∣∣b(≤N)/|a(≤N)| − b′
(≤N)

/|a′(≤N)|
∣∣∣

is small, and thus

dist((a′, b′), (a(≤N), a(≤N)))

is small. �

We remark that this proof does not give any uniform continuity. The weak
point in the argument is the comparison of the l2 with the l1 norm of a finite
sequence without any good control over the length of the sequence.

Lemma 1.21. The inverse of the NLFT is a continuous map from H to l2(Z≥0, D).

Proof. We first prove that all Fn depend continuously on (a, b). This is clear
for F0 since

F0 =

∫
b/a∗

and the integral is continuous in the L2 norm of b/a∗.
To use induction, we need to show that (see the proof of injectivity)

r → r − F0

−F0r + 1

is a jointly continuous mapping of F0 ∈ D and r ∈ H2 into H2. This follows from
the fact that the Möbius transform with F0 provides a Lipschitz distortion on the
closed unit disc, and the distortion depends continuously on F0.

Now let (a, b) be given and let F be its inverse NLFT. Given ǫ, we can find N
very large so that the [N,∞) tail of F is very small. Let (a′, b′) be close to (a, b)
and let F ′ be the inverse NLFT. Then we can assume for all n ≤ N

log(1− |Fn|2)− log(1− |F ′n|2)
is much smaller than ǫ, by continuity of all Fn individually.

Next we have∑

n>N

| log(1− |F ′n|2)| =
∑

n

| log(1 − |F ′n|2)| −
∑

n≤N
| log(1− |F ′n|2)|

≤
∑

n

| log(1− |Fn|2)| −
∑

n≤N
| log(1− |Fn|2)|+ ǫ ≤ 2ǫ

Here we have used that (a, b) and (a′, b′) are close and therefore, by the Plancherel
identity, the quantities ∑

n

log(1− |Fn|2)
∑

n

log(1 − |F ′n|2)

are close. Also we have used the previously observed continuity for individual Fn.
Now it is straight forward to obtain

∑

n

| log(1− |Fn|2)− log(1 − |F ′n|2)| < 4ǫ

by considering separately n > N and n ≤ N . �
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1.9. Higher order variants of the Plancherel identity

The main ingredient in the l2 theory of the nonlinear Fourier transform de-
scribed in the previous section is the Plancherel identy∫

T

log |a| = −1

2

∑

n∈Z
log(1− |Fn|2)

Both sides of the identity are equal to a(∞), which on the left-hand side is expressed
as a Cauchy integral and on the right-hand side is expressed in terms of the sequence
F by solving explicitly the recursion for a(∞).

There are higher order identities of this type, which arise from calculating
higher derivatives of log(a) at ∞. These identities are nonlinear analogues of
Sobolev identities, i.e., identities between expressions for Sobolev norm of a function
in terms of the function itself and in terms of its Fourier transform.

We discuss a∗ instead of a. The contour integral for log(a∗)(k)(0) can easily be
written in closed form:

log(a∗)(z) =

∫

T

ζ + z

ζ − z
log |a|(ζ) =

∫

T

[
2ζ

ζ − z
− 1

]
log |a|(ζ)

Taking derivatives in z we obtain for k > 0

log(a∗)(k)(z) =

∫

T

2ζk!

(ζ − z)k+1
log |a|(ζ)

log(a∗)(k)(0) =

∫

T

2k!

ζk
log |a|(ζ)

Solving the recursion in terms of the Fn is harder to do in closed form. Such
formulae are stated in Case’s paper [4], see also [19].

We shall calculate only the cases k = 1, 2. For an application to the theory of
orthogonal polynomials, see [10].

Lemma 1.22. For F a square summable sequence we have

2

∫

T

z−1 log |a|(z) =
∑

n

FnFn+1

4

∫

T

z−2 log |a|(z) = −
∑

n

(FnFn+1)
2 + 2

∑

n

Fn(1− |Fn+1|2)Fn+2

Proof. We first reduce to the case of compactly supported seqeunces F by
approximating an arbitrary sequence by its truncations Fn. At least for half infinite
sequences we have already seen that log |an| converges to log |a| in L1 norm, and in
the next section we will discuss and establish the same fact for general sequences
in l2(D,Z). Thus the left-hand side of each of the identities in the lemma is well
approximated by the truncations. Also the right-hand side clearly converges if F
is in l2. Thus it suffices to show the identities for compactly supported F .

Assume F is compactly supported. We expand the product
∏

n∈Z
(1 − |Fn|2)−1/2[(1, 0) + (0, Fnz

n)]

Only the terms of even order in F contribute to the diagonal elements and thus

a∗(z)
∏

n

(1 − |Fn|2)1/2
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= 1 +
∑

n1<n2

Fn1Fn2z
n2−n1 +

∑

n1<n2<n3<n4

Fn1Fn2Fn3Fn4z
n2−n1zn4−n3 + . . .

Since n1 < n2 and n3 < n4 etc., we see that the bilinear term in F is has lowest
order z and the four-linear term has lowest order z2, while all other terms have
order at least z3. Thus for the purpose of calculating the first two derivatives at ∞
we only need to consider the terms that are explicitly written.

Indeed, we have

a∗(z)
∏

n

(1− |Fn|2)1/2 = 1 +
∑

n

FnFn+1z

+
∑

n

FnFn+2z
2 +

∑

n1+1<n2

Fn1Fn+1Fn2Fn2+1z
2 +O(z3)

Considering the case k = 1 we have

log(a∗)′(0) =
(a∗)′(0)

a∗(0)
=
∑

n

FnFn+1

This proves the first identity of Lemma 1.22.
Considering the case k = 2 we have

log(a∗)′′(0) =
(a∗)′′(0)

a(0)
− (a∗)′(0)2

a∗(0)2

= 2
∑

n

FnFn+2 + 2
∑

n1+1<n2

Fn1Fn+1Fn2Fn2+1 − [
∑

n

FnFn+1]
2

= −
∑

n

(FnFn+1)
2 + 2

∑

n

Fn(1− |Fn+1|2)Fn+2

This proves the second identity of Lemma 1.22. �

1.10. The nonlinear Fourier transform on l2(Z)

1.11. The forward NLFT on l2(Z)

We have defined the nonlinear Fourier transform for square summable sequences
supported on the nonnegative integers. Indeed, we have shown that it is a home-
omorphism onto H, the space of all measurable SU(1, 1) valued function (a, b)
such that a has an outer extension to D∗, a(∞) > 0, and b/a∗ has a holomorphic
extension to D which is in the Hardy space H2(D).

Demanding that property (1.8) of Lemma 1.1 continues to hold for infinite
sequences, we define for F supported on n ≤ 0:

︷︸︸︷
F (z) := (a∗(z−1), b(z−1))

where (a, b) is the Fourier transform of the reflected sequence F̃ with F̃n = F−n.
It is clear that the nonlinear Fourier transform thus defined is a homeomor-

phism from l2(Z≤0, D) to H∗, the latter denoting the space of all SU(1, 1) valued
measurable functions (a, b) such that a has an outer extension to D∗, a(∞) > 0,
and b/a has a holomorphic extension to D∗ which is in the Hardy space H2(D∗).

Let H∗0 be the space of all elements in H∗ such that b(∞) = 0. By the shifting
property (1.5) of Lemma 1.1, it is easy to deduce that this space is the homeomor-
phic image of l2(Z≤−1, D).
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If Fn is any square summable sequence in l2(Z, D), then we can cut it as

Fn = F (≤−1)
n + F (≥0)

n

where F
(≤−1)
n = 0 for n ≥ 0 and F

(≥0)
n = 0 for n ≤ −1. Then we define a

measurable SU(1, 1) valued function on T by

(1.25)
︷︸︸︷
F :=

︷ ︸︸ ︷
F (≤−1)

︷ ︸︸ ︷
F (≥0)

in accordance with property (1.6) of Lemma 1.1. We shall use the suggestive nota-
tion

(a, b) = (a−, b−)(a+, b+)

for (1.25).
It is easy to verify that the NLFT defined by (1.25) on l2(Z, D) satisfies the

properties of Lemma 1.1. The properties of Lemma 1.1 imply that the exact location
of the cut we used in (1.25) is not relevant for the definition.

As noted previously, the definition of the NLFT on l2(Z≥0, D) was consistent
with earlier definitions on the subset lp(Z≥0, D) for p < 2. Passing from the half-
line to the full line, since definition (1.25) and the old definition of the NLFT on
lp(Z, D) are consistent with Lemma 1.1, the two definitions coincide on lp(Z, D).

Lemma 1.23. The NLFT is continuous from l2(Z, D) to L. The Plancherel
identity ∫

T

log |a(z)| = −1

2

∑

n

log(1− |Fn|2)

holds.

Proof. Recall that L is the space of all SU(1, 1) valued measurable functions
(a, b) such that a has an outer extension to D∗ and a(∞) > 0.

First we check that the nonlinear Fourier transform indeed maps to L. We need
to verify that a has an outer extension to D∗ and that a(∞) > 0. But we have

a = a−a+ + b−b
∗
+

and all functions on the right-hand side extend holomorphically to D∗ with

b−(∞) = 0

Therefore
a(∞) = a−(∞)a+(∞) > 0

Moreover,

a = a−a+

(
1 +

b−
a−

b∗+
a+

)

and the first two factors on the right-hand side are outer. The last factor has
positive real part on on D∗ because the extensions of b−/a− and b∗+/a+ to D∗ are
bounded by 1. Thus the Herglotz representation theorem applies to the last factor,
which then can be seen to be in Hp(D∗) for all p < 1. The reciprocal of the last
factor has also positive real part and is also in Hp(D∗) for all p < 1. Thus the last
factor is an outer function.

The proof of continuity invokes Lemma 1.17. Given F , we can use the inde-
pendence of the cut in Definition (1.25) to cut F and any nearby F ′ at a very large
integer N (depending only on F ), so that the tail to the right of N of both F and
F ′ is negligible by the Plancherel identity and Lemma 1.17. Then we can apply



1.11. THE FORWARD NLFT ON l2(Z) 29

continuity of the nonlinear Fourier transform on the (shifted) half line to show that
the parts of F and F ′ to the left of N have nearby nonlinear Fourier transforms.

The same argument also proves the Plancherel identity. �

We now observe

Lemma 1.24. The nonlinear Fourier transform is not injective on l2(Z, D).

Proof. We claim that

(a, b) =

(
2z

z − 1
,
z + 1

z − 1

)

is in H ∩H∗. Therefore it has nonzero preimages in l2(Z≥0) and in l2(Z≤0), and
since these preimages are not finite sequences (a is not a Laurent polynomial), these
two preimages are necessarily distinct members of l2(Z, D).

It remains to prove the claim. We observe

a(z)a∗(z)− b(z)b∗(z)

=
(2z)(2z−1)

(z − 1)(z−1 − 1)
− (z + 1)(z−1 + 1)

(z − 1)(z−1 − 1)

=
4

−z + 2− z−1
− z + 2 + z−1

−z + 2− z−1
= 1

The function a is outer on D∗ since it is in Hp(D∗) for all p < 1 and its reciprocal
is in H∞(D∗). We also have a(∞) = 2 > 0.

Moreover, both
b(z)

a(z)
=
z + 1

2z

and
b∗(z)

a(z)
= −z + 1

2z

are holomorphic in D∗ and in H2(D∗). This proves the claim. �

We now discuss the inverse problem, i.e., finding a (sometimes not unique)
sequence F whose nonlinear Fourier transform is a given (a, b).

Given data (a, b) ∈ L, we need to factorize it

(a−, b−)(a+, b+) = (a, b)

with (a−, b−) ∈ H∗0 and (a+, b+) ∈ H. Any such factorization is in bijective corre-
spondence to a sequence F ∈ l2(Z, D) whose truncations satisfy

︷ ︸︸ ︷
F≤−1 = (a−, b−)

︷︸︸︷
F≥0 = (a+, b+)

Thus the inverse problem for the nonlinear Fourier transform is a matrix fac-
torization problem with (mainly but not exclusively) holomorphicity conditions on
the matrix factors.

Observe that the corresponding linear problem is the decomposition of a func-
tion f ∈ L2(T) as the sum of a function in the Hardy space H2 and a function in

the conjugate Hardy space H
2

0 (where the index 0 stands for functions with mean
zero).
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Finding a factorization of a matrix function on T into a product of two matrix
functions, one extending to D and one extending to D∗ is called a Riemann-Hilbert
problem.

Our factorization is a somewhat twisted Riemann-Hilbert problem, because the
matrices both have entries which extend to D and D∗. Moreover, the factorization
problem is constrained in that there are algebraic relations between the matrix
entries and there is an outerness condition on a−, a+ and a normalization condition
at ∞.

However, the factorization problem can be reduced to a more genuine Riemann-
Hilbert problem by the following algebraic manipulations. The factorization equa-
tion together with the determinant condition can be rewritten as

(
a+
∗ −b+

b∗− a∗−

)(
a+ b+
b∗+ a∗+

)
=

(
1 0
b∗ a∗

)

Here the second row comes from the factorization problem while the first row comes
from

(a+, b+)
−1(a+, b+) = (1, 0)

Similarly we obtain
(

a∗+ −b+
−b∗+ a+

)(
a+ −b−
b∗+ a−

)
=

(
1 −b
0 a

)

Multiplying the two equations and using the determinant condition on (a, b) gives
(
a+
∗ −b+

b−
∗ a−∗

)(
a+ −b−
b+
∗ a−

)
=

(
1 −b
b∗ 1

)

In the last equation, all entries of the first factor on the left-hand side extend to
D while all entries of the second factor on the left-hand side extend to D∗ (the
function b− is in addition required to vanish at ∞). The Riemann-Hilbert problem
is still constrained in that the entries of the two matrices on the left are dependent,
however the constraints can be subsumed in the statement that the factorization
should be invariant under the map

T :

(
a b
c d

)
→
(

a∗ −c∗
−b∗ d∗

)

This map reverses the order of multiplication, T (G)T (G′) = T (G′G), and one can
easily check that this symmetry produces all algebraic constraints between the two
factors.

Observe that while a no longer appears explicitly in the factorization problem,
a∗ and a formally coincide with the determinants of the two factors and thus taking
determinants everywhere we formally obtain the equation

a∗a = 1 + bb∗

Observe that for any solution of this Riemann-Hilbert problem we can produce
another solution by multipying the first factor by a function c of modulus 1 on
T with holomorphic extension to D and the second factor by c∗. To obtain any
hope for uniqueness, one has to make the additional analytic assumption that say
all functions of the first matrix are in N+(D) (as defined in the appendix) and all
entries of the second matrix are in N+(D∗) and that the determinants of the two
matrices are outer on D and D∗ respectively. A sharper constraint is to require that
the diagonal entries of the two factors are outer functions on D and D∗ respectively.
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Then the only obvious ambiguity left is a scalar factor, which can be normal-
ized by requiring the determinants of both matrices to be positive at 0 and ∞
respectively.

1.12. Existence and uniqueness of an inverse NLFT for bounded a

We shall now prove existence and uniqueness of the solution to the factorization
problem under the additional assumption that a is bounded. We shall use the
original formulation rather than the more genuine Riemann-Hilbert problem.

Lemma 1.25. If (a, b) ∈ L and in addition a is a bounded function, then there
is a unique Fn ∈ l2(Z, D) such that

︷︸︸︷
Fn = (a, b)

Proof. By the half-line theory it suffices to find and show uniqueness of a
decomposition

(1.26) (a−, b−)(a+, b+) = (a, b)

such that the factors on the left-hand side are in H∗0 and H respectively.
We first prove the following, which does not require a to be bounded.

Lemma 1.26. Let (a, b) ∈ L. For any factorization of the Riemann-Hilbert
problem

(a−, b−)(a+, b+) = (a, b)

with (a−, b−) ∈ H∗0 and (a+, b+) ∈ H, we have that a−/a and a+/a are functions
in H2(D∗).

Proof. As a−/a and a+/a are outer, it suffices to show that the boundary
values of these functions on T are in L2.

The Riemann-Hilbert problem gives

a = a−a+[1− (b−/a−)(b
∗
+/a+)]

or equivalently,

(1.27) a−a+/a = [1− (b−/a−)(b
∗
+/a+)]

−1

We first show that the real part of the right-hand side is in L1(T).
This function extends to D∗ with positive real part, because the quotients

b−/a− and b∗+/a+ are strictly bounded by 1 onD∗. By the Theorem 1.49 of Herglotz
discussed in the appendix, the real part of (1.27) is the harmonic extension of a
positive measure. Almost everywhere on T, the real part of the function a−a+/a
coincides with the density of the absolutely continuous part of this measure and is
thus in L1(T).

As

Re(
a−a+
a

) + Re(
b−b∗+
a

) = 1

from the Riemann-Hilbert factorization, we also have that

(1.28) Re

[
a−a+
a

− b−b∗+
a

]

is absolutely integrable.
The Riemann-Hilbert factorization can be rewritten in terms of the equations

(a−, b−) = (a, b)(a∗+,−b+)
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(a+, b+) = (a∗−,−b−)(a, b)
These give

a− = aa∗+ − bb∗+
b+ = a∗−b− b−a

∗

Which in turn give

a∗+ =
a−
a

+
bb∗+
a

b− = −b+
a∗

+
a∗−b

a∗

Thus we can write for (1.28) on T:

Re

[
a−a∗−
aa∗

+
a−b∗b+
aa∗

+
b∗+b+
aa∗

− b∗+a
∗
−b

aa∗

]

= Re

[
a−a∗−
aa∗

+
b∗+b+
aa∗

]

In the last line we have cancelled two terms inside the brackets which added up to
a purely imaginary quantity on T. From integrability of the last line, we observe
that

a−/a ∈ L2(T)

and also, since a+a
∗
+ = 1 + b+b

∗
+ and |a| > 1 on T,

a+/a ∈ L2(T)

This proves the lemma. �

We now prove the uniqueness part of Lemma 1.25.
By Lemma 1.26, it suffices to prove uniqueness under the additional assumption

that a+, b
∗
+, a−, b− are in H2(D∗).

We rewrite the Riemann-Hilbert problem as

(a−, b−) = (a, b)(a+
∗,−b+)

Since a is nonvanishing on T, we can rewrite the second equation as

b−
a

= −b+ +
b

a
a+

Let PD be the orthogonal projection from L2(T ) to H2(D). Then the previous
display implies

b+ = PD

(
b

a
a+

)

since b+ is already in H2(D) and b−/a is in H2(D∗) with vanishing constant term.
Next, we have again from the Riemann-Hilbert factorization

a∗−
a∗

= a+ − b∗

a∗
b+

Applying the orthogonal projection PD∗ from L2(T ) to H2(D∗), we obtain

a+ =
a−(∞)

a(∞)
+ PD∗

(
b∗

a∗
b+

)

Here we have used that a+ is already in H2(D∗) and the quotient a∗−/a
∗ is in

H2(D) and thus its PD projection is equal to its constant term, which is real and
equal to a−(∞)/a(∞).
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Observe that evaluating the extension of

a = a−a+ + b−b
∗
+

at ∞ gives

a(∞) = a−(∞)a+(∞) + 0

Thus we can can rewrite the expression for a+ as

a+ =
1

a+(∞)
+ PD∗

(
b∗

a∗
b+

)

For any constant c, the affine linear map

(A,B) 7→
(
c+ PD∗

(
b∗

a∗
B

)
, PD

(
b

a
A

))

is a contraction in L2(T)⊕L2(T) (Hilbert space sum). Namely, PD and PD∗ have
norm 1 in L2(T), while multiplication by b/a or b∗/a∗ have norm strictly less than
1 in L2(T). Here we use that a is bounded and thus

∣∣∣∣
b

a

∣∣∣∣ ≤
∣∣∣∣1−

1

|a|2
∣∣∣∣
1/2

≤ 1− ǫ

Therefore, by the contraction mapping principle, this map has a unique fixed
point (Ac, Bc). Indeed, by linearity, this fixed point is (cA1, cB1).

From the above it follows that (a+, b+) is equal to this unique fixed point for
some constant c. To prove uniqueness of (a+, b+), it therefore suffices to show that
we can determine c uniquely.

The phase of the constant c is determined by the requirement

a+(∞) = cA1(∞) > 0

The modulus of c can then be determined by

cA1(∞) =
1

cA1(∞)
+ PD

(
b

a
b∗+

)
(∞)

and thus

cA1(∞)2 = 1 + PD(
b

a
b∗+)(∞)cA1(∞)

The second summand on the right-hand side is necessarily real and positive since
the left-hand side is larger than 1. This gives a quadratic equation for cA1(∞) with
a positive and a negative solution. Since cA1(∞) is necessarily positive, it is there-
fore uniquely determined. Thus we can recover (a+, b+) = (cA1, cA1) completely
from (a, b). By matrix division, we also obtain (a−, b−). Thus the solution to the
Riemann Hilbert problem is unique.

It remains to prove existence of the solution to the Riemann-Hilbert problem.
In the next section, we will prove existence without assuming boundedness of a.
However, the proof of existence for bounded a is much easier. Therefore we choose
to present it here.

Consider again the above fixed point equation and let (A,B) ∈ H2(D∗)⊕H2(D)
be the unique solution for c = 1.

Observe that by interpolation, the linear map is also a contraction on H2+ǫ ⊕
H2+ǫ for small ǫ. Namely, the map is bounded in any space Hp ⊕Hp with 2 < p <
∞. The operator norm may be large for any fixed p, but interpolating this estimate
with the estimate for H2 ⊕ H2, where the operator norm is less than 1, gives for
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sufficiently small ǫ an operator norm on H2+ǫ ⊕ H2+ǫ which is still less than 1.
Hence the unique solution in H2 ⊕ H2 is actually in the subspace H2+ǫ ⊕ H2+ǫ,
since this subspace also contains a solution by the contraction mapping principle.
Hence the regularity of the solution to the Riemann-Hilbert problem will be slightly
better than Lemma 1.26 suggests. We shall not need this extra regularity in the
current proof.

We claim that the function

AA∗ −BB∗

is constant on T. Since it is manifestly real, it suffices to show that it is in the
Hardy space H1(D) (being in a Hardy space Hp with p ≥ 1 makes the linear
Fourier coefficients supported on a half-line, while being real makes the moduli of
the Fourier coefficients symmetric about 0). Use the fixed point equation to write
the function as

= A[1 + PD(
b

a
B∗)] +B∗PD(

b

a
A)

= A[1− (id− PD)(
b

a
B∗)] +B∗(id− PD)(

b

a
A)

Here the two terms involving the identity operators that have artificially been in-
serted are negatives of each other. Observe that id − PD is projecting onto the
space H2

0 (D
∗) of functions in the Hardy space H2(D∗) with vanishing constant

coefficient.
Thus the entire last displayed expression is an element in H1(D∗), since it is

the sum of products of functions in H2(D∗).
Moreover, we observe that the constant coefficient of this expression is that of

A: ∫

T

AA∗ −BB∗ =

∫

T

A = A(∞)

Thus the constant coefficient of A is real. Indeed, it is positive, as we see from the
following calculation: ∫

T

AA∗ +BB∗

=

∫

T

A(1 + PD(
b

a
B∗)) +B∗PD(

b

a
A)

=

∫

T

A(1 +
b

a
B∗) +B∗

b

a
A

In the last line we have dropped the projection operators, because the operands are
integrated against functions in the Hardy space H2(D∗). However, estimating the
last display using |b/a| ≤ 1 on T, we obtain:

∫

T

AA∗ +BB∗ ≤
∫

T

A+ 2

∫

T

|A||B|
or ∫

T

(|A| − |B|)2 ≤ A(∞)

Thus the constant coefficient of A is nonnegative.
Indeed, in the above string of inequlities, identity holds only if |A| = |B| =

0 almost everywhere on T, since |b/a| is strictly less than 1 almost everywhere.
However, A = B = 0 is inconsistent with the fixed point equation. Therefore, we
have strict inequality and the constant coefficient of A is strictly positive.
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Set

a+(z) := A(z)[A(∞)]−1/2

b+(z) := B(z)[A(∞)]−1/2

Then

|a+|2 − |b+|2 = 1

almost everywhere on T and a+ ∈ H2(D∗) and b+ ∈ H2(D).
Now we can define a− and b− by

(a−, b−) := (a, b)(a+
∗,−b+)

but to complete the proof we need to show that (a−, b−) ∈ H∗0. We also need to
show that a+ is outer.

Clearly we have a−a∗− = 1 + b−b∗− almost everywhere on T since the other
matrices in the equation are SU(1, 1) almost everywhere.

Next we check that a− and b− have the correct holomorphicity properties.
From the fixed point equations,

a− = aa∗+ − bb∗+

= a
1

a+(∞)
+ aPD(

b

a
b+
∗)− bb∗+

= a
1

a+(∞)
− a(id− PD)(

b

a
b+
∗)

Clearly this is an element of H2(D∗). Moreover, the constant term obeys

a−(∞) =
a(∞)

a+(∞)

and so is positive as required.
Similarly, using the fixed point equation for b+,

b− = −ab+ + ba+

= −aPD(
b

a
a+) + ba+

= (1− PD)(
b

a
a+)

Thus b− is in H2(D∗)
To prove that we have indeed solved the Riemann-Hilbert problem, we have to

verify that a− and a+ are outer.
Consider the equation

a = a−a+ + b−b
∗
+

Every function in this equation is holomorphic in D∗. We divide by the outer
function a to obtain

1 = a−a+a
−1 + b−b+

∗a−1

since the first summand on the right is larger in modulus on T than the second, we
conclude that

Re(a−a+a
−1) ≥ 1/2
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almost everywhere on T. This implies that the function a−a+a−1, which is in
H1(D∗) and thus equal to its Poisson integral on D∗, has real part larger than 1/2
on D∗. Then the reciprocal function a

a−a+
is in H∞(D∗) and

1

a+
=

(
a

a−a+

)(
a−
a+

)

is in H2(D∗) by Lemma 1.26. By Lemma 1.54, a+ is outer. Likewise one concludes
that a− is outer.

This completes the proof of Lemma 1.25. �

1.13. Existence of an inverse NLFT for unbounded a

In this section we prove that for every (a, b) ∈ L, there exists a factorization

(a−, b−)(a+, b+) = (a, b)

with (a−, b−) ∈ H∗0 and (a+, b+) ∈ H. We shall call such a factorization a Riemann-
Hilbert factorization. This factorization is not necessarily unique. If it is unique,
then we say that (a, b) has a unique Riemann-Hilbert factorization.

In the previous section we used the Banach fixed point theorem to produce a
Riemann-Hilbert factorization when a ∈ H∞(D∗). This same approach does not
work in the general case; we shall instead use the Riesz representation theorem
for linear functionals on a Hilbert space. In general there will be several choices of
Hilbert space to work with, which will cause non-uniqueness of the Riemann-Hilbert
factorization.

We introduce two examples of such Hilbert spaces, which in general may be
different and will turn out to be extremal examples. They are vector spaces over
the real (not complex) numbers. Given (a, b) ∈ L, we consider the following inner
product on pairs of measurable functions on T:

(1.29) 〈(A′, B′), (A,B)〉 :=
∫

T

Re[A′(A∗ − b

a
B∗) + (B′)∗(B − b

a
A)]

whenever the integral on the right-hand side is absolutely integrable. We empha-
size that absolute integrability is only required for the real part of the algebraic
expression in the integrand.

This inner product is positive definite, as we see from the following calculation:

‖(A,B)‖ := 〈(A,B), (A,B)〉 ≥
∫

T

|A|2 + |B|2 − 2|b/a||A||B|

≥
∫

T

|b/a|(|A| − |B|)2 +
∫
(1− |b/a|)(|A|2 + |B|2)

≥ 1

2

∫

T

(1− |b/a|2)(|A|2 + |B|2)

=
1

2

∫

T

(|A|2 + |B|2)|a|−2 ≥ 0

Equality holds in the last estimate if and only if A and B vanish almost everywhere
on T. Therefore the inner product is positive definite. Moreover, we have seen that
the integrand in (1.29) is nonnegative almost everywhere if (A,B) = (A′, B′).

The above calculation also shows that a necessary condition for for the inner
product (1.29) to be defined is A/a ∈ L2(T) and B/a ∈ L2(T).
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Define Hmax to be the space of all pairs (A,B) such that A/a ∈ H2(D∗)
and B/a∗ ∈ H2(D) and ‖(A,B)‖ < ∞ with respect to the inner product (1.29).
This space is evidently a pre-Hilbert space with inner product (1.29). It is indeed
a Hilbert space, because for any Cauchy sequence, the boundary values of A/a
and B/a∗ converge in L2(T) and thus remain in H2(D∗) and H2(D) respectively.
By an application of Fatou’s lemma, the limit has again finite norm and thus
is in Hmax. The previous display shows that Hmax is continuously embedded in
aH2(D∗)× a∗H2(D).

The space H2(D∗)×H2(D) is contained in Hmax, because

〈(A,B), (A,B)〉 ≤ 2

∫

T

|A|2 + |B|2

Define Hmin to be the closure of H2(D∗) ×H2(D) in Hmax. As we will see, there
are examples of data (a, b) for which the space Hmin is strictly contained in Hmax.

We now introduce the real linear functional to which the Riesz representation
theorem will be applied. It takes the same form on Hmax and Hmin and is given by

λ : (A,B) → Re[A(∞)]

Observe that this linear functional is indeed continuous on Hmax and thus also
Hmin, since it is even continuous on the larger space aH2(D∗) × a∗H2(D), as can
be seen immediately from

ReA(∞) = a(∞)Re

∫

T

A/a

Let (Amin, Bmin) be the unique element in Hmin which produces this linear
functional in Hmin and is guaranteed to exist by the Riesz representation theorem:

〈(Amin, Bmin), (A,B)〉 = λ(A,B)

for all (A,B) ∈ Hmin. Let (Amax, Bmax) be the unique element in Hmax which
produces this linear functional in Hmax.

Theorem 1.27. Let (a, b) ∈ L. Then there exists a factorization

(a, b) = (a−, b−)(a+, b+)

with (a−, b−) ∈ H∗0 and (a+, b+) ∈ H. Moreover, with (Amax, Bmax) and (Amin, Bmin)
defined as above, two possible choices of such a Riemann-Hilbert factorization are
given by

(1.30) (a+, b+) := (Amin, Bmin)Amin(∞)−1/2

and

(1.31) (a+, b+) := (Amax, Bmax)Amax(∞)−1/2

with the corresponding (a−, b−), which are easily determined by matrix division.

Proof. The proofs that (1.30) and (1.31) give Riemann Hilbert factorizations
are very similar. We shall formulate the proof for (1.30) and comment on the
changes needed to prove (1.31).

Define L to be the space of all pairs (A,B) of measurable functions such that
A/a ∈ H2(D∗), B/a∗ ∈ L2(T), and ‖(A,B)‖ <∞.
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We claim that H2(D∗) × L2(T) is dense in L. Indeed, let (A,B) ∈ L be
orthogonal to all elements of H2(D∗)×L2(T). Choosing A′ = 0 and B′ of modulus
one such that (B′)∗(B − b

aA) is nonnegative real, we have

0 = 〈(A′, B′), (A,B)〉 =
∫

|B − b

a
A|

and thus

(1.32) B − b

a
A = 0

almost everywhere. Now choosing A′ ∈ H2 arbitrary and B′ = 0 we obtain

0 = 〈(A′, B′), (A,B)〉

=

∫

T

A′(A∗ − b

a
B∗) =

∫

T

A′A∗(1− |b/a|2) =
∫

T

A′

a

A∗

a∗

By Beurling’s theorem (see [16]), since a is outer, the set of all A′/a with A′ ∈
H2(D∗) is dense in H2(D∗). Thus, redefining A′,

∫

T

A′
A∗

a∗
= 0

for all A′ ∈ H2(D∗). But A∗/a∗ ∈ H2(D), thus A∗/a∗ = 0. Hence A = B = 0 by
(1.32) and we have shown that the orthogonal complement of H2(D∗) × L2(T) is
trivial, thus proving our claim.

Define Hn to be the closure of H2(D∗) × znH2(D) in L, in particular H0 =
Hmin. (Here is the main difference in proving the theorem for (Amin, Bmin) and
(Amax, Bmax). To prove the theorem for (Amax, Bmax), one would need to define
Hn to be the space of all (A,B) ∈ L such that B/a∗ ∈ znH2(D).)

Since evaluation of z−nB at 0 is a continuous functional on Hn,

z−nB = a∗(0)

∫

T

z−nB/a∗

we see that Hn+1 is precisely the subspace of Hn of all (A,B) such that z−nB
vanishes at 0. Thus Hn+1 has real co-dimension two in Hn.

Let H∞ be the intersection of all Hn for n ∈ Z, then it is clear that H∞ consists
of pairs (A,B) such that B vanishes to infinite order at 0 and thus is identically
equal to 0. Finiteness of the norm of (A,B) is then equivalent to A ∈ H2(D∗) and
thus evidently H∞ = H2(D∗)× {0}.

Let H−∞ be the closure of the union of all Hn for n ∈ Z. Since every element
of H2(D∗) × L2(T) can be approximated by a sequence of elements in spaces Hn

with decreasing n, we see that H−∞ is equal to the closure of H2(D∗) × L2(T)
which is all of L.

Let (An, Bn) be the element which represents the linear functional λ in the
subspace Hn. It is easy to see that

(A∞, B∞) = (1, 0)

(A−∞, B−∞) = a(∞)(a, b)

Observe that the operation (A,B) → (B∗zn, A∗zn) is a bijection on the space
H2(D∗)× znH2(D), and extends to a bijective isometry of Hn.

We claim

(1.33) (An+1, Bn+1) = (An, Bn)− Fn(B
∗
nz

n, A∗nz
n)
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for a certain complex number Fn ∈ D.
Indeed, since λ is non-zero (it is so on H∞), we have

(1.34) ReAn(∞) = 〈(An, Bn), (An, Bn)〉 > 0

and there is a unique Fn ∈ C such that the off-diagonal entry on the right-hand
side of (1.33) vanishes to order n+1 at 0. For later reference we pause to argue that
taking real part on the left-hand side of (1.34) is superfluous since An(∞) itself is
positive. Namely, (A,B) → (cA, cB) is an isometry of Hn for |c| = 1 and since

Re[cAn] = 〈(An, Bn), (cAn, cBn)〉
is maximized for c = 1, we have that An(∞) > 0.

Now we observe that

(B∗nz
n, A∗nz

n)

is orthogonal to Hn+1. Namely, let (A,B) ∈ Hn+1, then

〈(B∗nzn, A∗nzn), (A,B)〉 = 〈(An, Bn), (B
∗zn, A∗zn)〉 = λ(B∗zn, A∗zn) = 0

Thus the right-hand side of (1.33) is the orthogonal projection of (An, Bn) onto
Hn+1 and thus indeed equal to (An+1, Bn+1).

We now verify that |Fn| < 1. This simply follows from the fact that

‖(B∗nzn, A∗nzn)‖ = ‖(An, Bn)‖
and the fact that the terms in (1.33) form a Pythagorean triple and (An+1, Bn+1) 6=
0. Another consequence is that

(1.35) ‖(An+1, Bn+1)‖ = (1 − |Fn|2)1/2‖(An, Bn)‖
Each vector (An, Bn) is the orthogonal projection of (A−∞, B−∞) onto Hn,

and the projection of (An, Bn) onto H∞ is (A∞, B∞). Thus the length of each
vector (An, Bn) is squeezed between two finite numbers

‖(A−∞, B−∞)‖ ≥ ‖(An, Bn)‖ ≥ ‖(A∞, B∞)‖
By an inductive argument using (1.35) we see that

∏

n

(1− |Fn|2)1/2

is a convergent product and thus the sequence F = (Fn) is in l
2(Z, D).

Let (ã, b̃) be the nonlinear Fourier transform of F . We need to show that

(a, b) = (ã, b̃). We claim that

(An, Bn)
∏

k≥n
(1 − |Fn|2)1/2

is the nonlinear Fourier transform (ã(≥n), b̃(≥n)) of the truncated sequence F (≥n).
Consider

(1.36) ((ã(≥n))∗,−b̃(≥n))(An, , Bn)
∏

k≥n
(1− |Fk|2)1/2

where we have used the convention to read each vector as the first row of a positive
scalar multiple of a SU(1, 1) matrix.

Observe that (1.33) reads as

(An+1, Bn+1) = (1,−Fnz
n)(An, Bn)
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Therefore, by the recursion equation for (a(≥n), b(≥n)), the quantity (1.36) is inde-
pendent of the parameter n.

There is an increasing sequence nk of integers such that pointwise almost ev-
erywhere on T we have

(ã(≥nk), b̃(≥nk)) → (1, 0)

(Ank
, Bnk

) → (A∞, B∞) = (1, 0)

as k → ∞. For the first limit this follows from convergence of the sequence F (≥n)

to 0 in l2 and thus convergence of log |ã(≥n)| in L1, convergence of the phase

ã(≥n)/|ã(≥n)| in L2, and convergence of b̃(≥n)/ã(≥n) in L2. For the second limit
this follows from convergence of An/a and Bn/a

∗ in L2. Thus (1.36) is equal to
(1, 0) almost everywhere. Taking a similar limit as n→ −∞ we observe

(ã∗,−b̃)(A−∞, B−∞)
∏

k

(1− |Fk|2)1/2 = (1, 0)

This proves that (a, b) is a positive scalar multiple of (ã, b̃), but since both are
SU(1, 1) valued they are indeed equal.

Finally, we observe from splitting the sequence F as F (<0)+F (≥0) that (ã(≥0), b̃(≥0))
is the right factor of a Riemann-Hilbert factorization of (a, b), and that we have

(Amin, Bmin) = ã0(∞)(ã0, b̃0)

This completes the proof that (1.30) produces a Riemann-Hilbert factorization.
The proof for (Amax, Bmax) is similar with changes as indicated above. �

The above construction of a Riemann-Hilbert factorization easily provides the
following strengthening. Let (a, b) ∈ L and

(a, b) = (a−, b−)(a+, b+)

be any Riemann-Hilbert factorization. Then the vector (Amin, Bmin) constructed as
above with respect to (a, b) is identical to the vector (A+,min, B+,min) constructed
as above with respect to (a+, b+). To see this, it suffices to show that the inner
products

〈(A′, B′), (A,B)〉 :=
∫

T

Re[A′(A∗ − b

a
B∗) + (B′)∗(B − b

a
A)]

〈(A′, B′), (A,B)〉+ :=

∫

T

Re[A′(A∗ − b+
a+

B∗) + (B′)∗(B − b+
a+

A)]

coincide on the space H2(D∗)×H2(D). Indeed, by polarization it suffices to show
this for (A,B) = (A′, B′). However, the difference of these inner products is then
given by

Re

∫

T

2[
b

a
− b+
a+

]AB∗

We have

b− = −ab+ + ba+

b−
aa+

=
b

a
− b+
a+
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Observe that here the right-hand side is bounded on T, while the left-hand side is
in H2

0 (D
∗) and thus in H∞0 (D∗). The difference of the inner products is then given

by

Re

∫

T

2
b−
aa+

AB∗

Since A and B∗ are in H2(D∗), this difference is equal to 0.

Theorem 1.28. Let (a, b) ∈ L. Then there is a unique factorization

(a, b) = (a−−, b−−)(ao, bo)(a++, b++)

such that

(a−−, b−−) ∈ H∗0
(ao, bo) ∈ H∗0 ∩H

(a++, b++) ∈ H

and (a−−, b−−) and (a++, b++) do not have any Riemann-Hilbert factorizations
other than

(a++, b++) = (1, 0)(a++, b++)

and

(a−−, b−−) = (a−−, b−−)(1, 0)

Moreover, we have the sub-factorization property: Any Riemann-Hilbert factoriza-
tion

(1.37) (a, b) = (a−, b−)(a+, b+)

comes with further (obviously unique) Riemann-Hilbert factorizations

(a−, b−) = (a−−, b−−)(a−ob−o)

(a+, b+) = (ao+, bo+)(a++b++)

where (a−−, b−−) and (a++, b++) are as above and

(a−ob−o), (ao+, bo+) ∈ H∗0 ∩H

We have

(1.38) (ao, bo) = (a−ob−o)(ao+, bo+)

The passage from the Riemann-Hilbert factorization (1.37) of (a, b) to the Riemann-
Hilbert factorization (1.38) of (ao, bo) constitutes a bijective correspondence between
the Riemann-Hilbert factorizations of (a, b) and the Riemann-Hilbert factorizations
of (ao, bo).

Before proving the theorem, we prove the following lemma.

Lemma 1.29. If (a, b) ∈ H and

(a, b) = (a−, b−)(a+, b+)

is a Riemann-Hilbert factorization, then (a−, b−) ∈ H. Conversely, if

(a−, b−) ∈ H∗0 ∩H

(a+, b+) ∈ H

then

(a, b) := (a−, b−)(a+, b+) ∈ H
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Observe that by reflection there is an analogous lemma with (a, b) ∈ H∗0 and
(a+, b+) ∈ H∗0.

Proof. Assume we have a Riemann-Hilbert factorization of (a, b) ∈ H. Then

b+ = a∗−b− b−a
∗

(1.39)
b−
a∗−

=
b

a∗
− b+
a∗−a

∗

Every summand on the right-hand side is in H2(D), hence so is the expression on
the left-hand side. This proves the first statement of the lemma.

Next, assume
(a−, b−) ∈ H∗0 ∩H

(a+, b+) ∈ H

Clearly the product (a, b) is in L by Lemma 1.23. Then b/a∗ ∈ H(D) follows again
from (1.39). This proves the second statement of the lemma. �

Now we can prove Theorem 1.28.

Proof. With the notation of Theorem 1.27, set

(a++, b++) = Amin(∞)−1/2(Amin, Bmin)

As we have observed in the discussion prior to the statement of Theorem 1.28, for
any Riemann-Hilbert factorization

(a, b) = (a−, b−)(a+, b+)

we have a Riemann-Hilbert factorization

(a+, b+) = (ao+, bo+)(a++, b++)

The lemma just shown implies that

(ao+, bo+) ∈ H∗0 ∩H

Thus we have shown the sub-factorization property for (a++, b++).
By the sub-factorization property, (a++, b++) is the only possible right factor

in a Riemann-Hilbert factorization of (a, b) which does not have a Riemann-Hilbert
factorization other than identity times itself. We claim that (a++, b++) indeed does
not have any further Riemann-Hilbert factorization. Assume we have a Riemann-
Hilbert factorization

(a++, b++) = (ã, b̃)(a+++, b+++)

Then by an application of Lemma 1.29 we observe that (a+++, b+++) is a right
factor of a Riemann-Hilbert factorization of (a, b), and thus by the sub-factorization
property

(a+++, b+++) = (ã∗,−b̃)(a++, b++)

is also a Riemann-Hilbert factorization. Thus both (ã, b̃) and its inverse are in

H ∩ H∗0. Thus b̃/ã is in H2(D) ∩ H2
0 (D

∗). Therefore b̃/ã = 0 and consequently

(ã, b̃) = (1, 0). This proves that (a++, b++) does not have any nontrivial Riemann-
Hilbert factorization.

Since by Lemma 1.29 any triple factorization of (a, b) as in the Theorem gives
a Riemann-Hilbert factorization

(a, b) = [(a−−, b−−)(ao, bo)][(a++, b++)]
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we have uniquely identified the factor (a++) as the only possible in such a triple
factorization. Similarly we can uniquely identify the factor (a−−, b−−), and by an
application of the sub-factorization property we actually obtain the triple factor-
ization from knowledge of these two factors.

Finally, we observe that any Riemann-Hilbert factorization of (a, b) gives a
Riemann-Hilbert factorization of (ao, bo) as described in the theorem, and vice
versa every Riemann-Hilbert factorization of (ao, bo) necessarily has two factors in
H∗0 ∩H by Lemma 1.29 and therefore comes from a Riemann-Hilbert factorization
of (a, b). This proves the theorem. �

For any (a, b) ∈ L call log |a(∞)| the energy of (a, b). The energy of (a, b) is a
nonnegative real number. Indeed, it is positive unless (a, b) = (1, 0). If

(a, b) = (a−, b−)(a+, b+)

is a Riemann-Hilbert factorization, then we have additivity of the energies

log |a(∞)| = log |a+(∞)|+ log |a−(∞)|
(evaluate a = a−a+ + b−b∗+ at ∞).

The sub-factorization property shows that the right factor (a++, b++) of the
triple factorization minimizes the energy among all right factors of Riemann-Hilbert
factorizations of (a, b), and indeed is a unique minimizer. Since (a++, b++) was
constructed through a minimal Hilbert space Hmin in Theorem 1.27, it is natural to
guess that the solution constructed from the spaceHmax in Theorem 1.27 maximizes
the energy. This is the main content of the following lemma:

Lemma 1.30. With the notation of Theorems 1.27 and 1.28 we have

(ao, bo)(a++, b++) = (Amax, Bmax)Amax(∞)−1/2

Proof. Consider the notation of Theorem 1.27 and the space Hmax. We claim
that for every Riemann-Hilbert factorization

(a, b) = (a−, b−)(a+, b+)

we have
(a+, b+) ∈ Hmax

By Lemma 1.26, a+/a and b∗+/a are in H2(D∗). Therefore it suffices to show that
‖(a+, b+)‖ is finite. However, we have

‖(a+, b+)‖ =

∫
Re[a+(a

∗
+ − b

a
b∗+) + b∗+(b+ − b

a
a∗+)]

=

∫
Re[

a+a−
a

− b∗+b−
a

]

and the right-hand side has been shown to be finite in the proof of Lemma 1.26.
Therefore, (a+, b+) ∈ Hmax.

We have the quantitative estimate

‖(a+, b+)‖ = −1 + 2

∫
Re[

a+a−
a

]

≤ −1 + 2a+(∞)a−(∞)a(∞)−1 = 1

In the inequality we have used the observation in the proof of Lemma 1.26 that
a−a+/a has positive real part, and thus the real part of its value at ∞ is the total
mass of the positive measure given by the Herglotz representation theorem. The
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total mass of this measure dominates the total mass of its absolutely continuous
part Re(a+a−/a).

Applying the linear functional λ to (a+, b+) ∈ Hmax gives

a+(∞) = 〈(a+, b+), (Amax, Bmax)〉
≤ ‖(a+, b+)‖‖Amax, Bmax)‖

≤ Amax(∞)1/2

This proves that (a+, b+) has smaller energy than the solution (Amax, Bmax)Amax(∞)−1/2

of the Riemann-Hilbert factorization theorem. Thus (Amax, Bmax)Amax(∞)−1/2

maximizes the energy of the right factor of a Riemann-Hilbert factorization of (a, b).
On the other hand, by symmetry (a−−, b−−) (uniquely) minimizes the energy of
the left factor of a Riemann-Hilbert factorization, just as (a++, b++) minimizes the
energy of the right factor. By additivity of the energy this proves the lemma. �

1.14. Rational functions as Fourier transform data

1.15. The Riemann-Hilbert problem for rational functions

The class L of nonlinear Fourier transform data of l2 sequences contains ele-
ments (a, b) such that a and b are rational functions in z. We call (a, b) rational if
a and b are rational.

Indeed, any pair (a, b) of rational functions is an element of L if aa∗ = 1+ bb∗,
a(∞) > 0, and the function a has no zeros and poles in D∗. These pairs can easily
be parameterized by the function b, as the following lemma states:

Lemma 1.31. For each rational function b there is precisely one rational func-
tion a such that aa∗ = 1 + bb∗, a has no zeros and poles in D∗, and a(∞) > 0.
This is the unique function a such that (a, b) ∈ L.

For rational (a, b) ∈ L, we have (a, b) ∈ H if and only if b has no poles in D,
and (a, b) ∈ H0 if and only if in addition b(0) = 0. Likewise, we have (a, b) ∈ H∗ if
and only if b has no poles in D∗ and we have (a, b) ∈ H∗0 if and only if in addition
b(∞) = 0.

Proof. Let b be a rational function. Consider the rational function g = 1+bb∗.
Then g(z) = g∗(z) and the zeros and poles of g are symmetric about T: if z is a
pole of order n, then so is z∗ and likewise for the zeros. Moreover, there are no
zeros of g on T and the poles of g on T are of even order.

Let a be a rational function whose zeros and poles in D are precisely the zeros
and poles of g in D with the same order, whose poles on T are precisely the poles
of g but with half the order, and which has no zeros on T ∪ D∗ and no poles on
D∗. Thus poles and zeros of a are completely specified and a is determined up to
a scalar factor. We assume a to be positive at ∞, which determines the phase of
this scalar factor.

Consider

f = (aa∗)−1(1 + bb∗)

Then this rational function evidently has no zeros and no poles and therefore it is
constant. Since it is positive on T, we may normalize a with a positive factor such
that f = 1.

We claim that (a, b) ∈ L. Certainly aa∗ = 1 + bb∗ by construction. The
function a is holomorphic in D∗ with no zeros in D∗. Any rational function with
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these properties is outer on D∗. To see this, it suffices by multiplicativity of outer
functions to show that functions of the form (1/z−1/z0) with z0 ∈ D∪T are outer,
which is easy to verify.

This proves that there exists an a with (a, b) ∈ L. Uniqueness follows very
generally from the fact that the normalized outer function a is determined by |a|
almost everywhere on T, and the latter is determined by b. This proves the first
statement of the lemma.

Clearly holomorphicity of b in D is necessary for (a, b) ∈ H(D). However, if
b is holomorphic in D, which is the same as saying b has no poles in D, then b/a
is a rational function holomorphic in D and bounded by 1 almost everywhere on
T, and thus holomoprhic in a neighborhood of D ∪ T and thus in H2(D). This
proves (a, b) ∈ H(D). The statement about H0(D) is clear. This together with the
symmetric statement for D∗ proves the remaining statements of the lemma. �

The next lemma states that solving the problem of Riemann-Hilbert factoriza-
tion does not leave the class of rational functions.

Lemma 1.32. Assume (a, b) ∈ L is rational. Given any factorization

(a−, b−)(a+b+) = (a, b)

with (a−, b−) ∈ H2(D∗) and (a, b) ∈ H(D), then (a−, b−) and (a+, b+) are also
rational.

Proof. Recall from Lemma 1.26 that

a−
a
,
b−
a
,
a+
a
,
b∗+
a

∈ H2(D∗)

In particular ∫

T

∣∣∣a+
a

∣∣∣
2

(r·) ≤ C

for r ≥ 1. Now aa∗ = 1+ bb∗ implies that the poles of b on T have the same order
as the poles of a on T. Thus b/a, which is also a rational function, is actually
holomorphic on a neighborhood of T.

Using
a∗− = a+a

∗ − b∗b+
we obtain

a+
a∗

=
1

a∗
a∗−
a∗

+
b

a∗
b+
a∗

On the right-hand side, the functions a∗−/a
∗ and b+/a

∗ are in the Hardy space
H2(D), while the rational functions 1/a∗ and b∗/a∗ are holomorphic in a neighbor-
hood of T.

Therefore, a+ has a meromorphic extension to D which is holomorphic in an
annulus 1− ǫ < |z| < 1 for some small ǫ and satisfies

∫

T

∣∣∣a+
a∗

∣∣∣
2

(r·) ≤ C

for 1− ǫ < r ≤ 1
Observe that a and a∗ have comparable moduli in a small neighborhood of T

since the quotients a/a∗ and a∗/a are holomorphic near T.
Thus ∫

T

∣∣∣a+
a

∣∣∣
2

(r·) ≤ C
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for 1 − ǫ < r < 1 for some small ǫ, and the same estimate has been observed
previously for r ≥ 1.

We claim that holomorphicity of a+/a in a neighborhood of T with possible
exception on T together with the above estimates implies that a+/a is indeed
holomorphic across T.

In the current situation that a+/a is in addition meromorphic in D and D∗

with finitely many poles we can argue as follows.
We may remove the poles of a+/a in D by the following recursive procedure. If

a+/a has a pole at z∞ ∈ D, then we subtract a constant from a+/a so that the new
function has a zero at a distinct point z0 ∈ D, and then we multiply the function
by (z − z∞)/(z − z0). This reduces the order of the pole at z∞ and leaves the
order of all other poles unchanged. Iterating this procedure we obtain a function g
which is holomorphic in D and D∗. The above L2 estimates prevail throughout this
iteration, possibly with different constants C, so g is in H2(D)∩H2(D∗). Therefore
g is constant, and we conclude that a+/a is rational. The estimates near T then
imply that it has no poles on T.

More generally, the claim can be proved using the theorem of Morera: a function
is holomorphic in a disc if the Cauchy integral over each triangle vanishes. For
triangles which avoid T this is obvious for a+/a, and for triangles which intersect
T one obtains vanishing of the Cauchy integral by approximating the triangle by
shapes avoiding T and then using maximal function estimates to pass to the limit.

This proves that a+ is rational, and one can argue similarly that b+, a−, b− are
rational.

This proves Lemma 1.32. �

The lemma just proved reduces the Riemann-Hilbert problem for rational (a, b)
to a purely algebraic problem in the class of rational functions. Even better, the
following lemma states that the solution functions a−, b−, a+, b+ are in a sense sub-
ordinate to a, b. This reduces the Riemann-Hilbert problem to a finite dimensional
problem.

If f is meromorphic near z ∈ C, denote by ord(f, z) the order of the pole of f
at z. Thus

f(ζ)(z − ζ)ord(f,z)

is holomorphic at z and does not vanish at z. For rational functions we define the
order at ∞ in the usual manner using a change of coordinates on the Riemann
sphere. Observe that the order is a negative number if f vanishes at z.

Call a rational function g subordinate to another rational function f on a
certain domain if for all points z in the domain such that ord(g, z) > 0 we have
ord(f, z) ≥ ord(g, z). We call g subordinate to f if g is subordinate to f on the whole
Riemann sphere. Clearly, if we fix f , the set of rational functions g subordinate to
f is a finite dimensional vector space.

Lemma 1.33. Let (a, b) ∈ L be rational. Then a is subordinate to bb∗.
If (a−, b−) ∈ H0 and (a+, b+) ∈ H such that

(a−, b−)(a+, b+) = (a, b)

then the rational functions b− and b+ are subordinate to b.

Proof. Since (a, b) ∈ L, we have aa∗ = 1 + bb∗. Since a∗ does not vanish in
D ∪ T, we see that a is subordinate to bb∗ on a neighborhood of D ∪ T. Since a
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has no poles on D∗, it is subordinate to bb∗ on D∗ and thus on the whole Riemann
sphere.

Now let (a−, b−) and (a+, b+) be a Riemann-Hilbert factorization as in the
lemma. Then

b− = −ab+ + ba+

b+ = −b−
a

+ b
a+
a

On D∗ ∪T, the functions b−/a and a+/a have no poles, since they are in H2(D∗).
The last display then implies that b+ is subordinate to b on a neighborhood of
D∗ ∪T. Since b+ has no poles on D, it is subordinate to b on the whole Riemann
sphere.

Similarly one proves that b− is subordinate to b. �

Lemma 1.34. Let (a, b) ∈ L be rational. Then there exists a unique Riemann-
Hilbert factorization

(1.40) (a, b) = (a−, b−)(a+, b+)

such that b+ does not have any poles on T. The factor (a+, b+) coincides with
the factor (a++, b++) in the triple factorization of Theorem 1.28. Similarly, there
exists a unique Riemann-Hilbert factorization (1.40) such that b− does not have
any poles on T. For this factorization, the factor (a−, b−) coincides with the factor
(a−−, b−−) in the triple factorization of Theorem 1.28.

Proof. If there exists a Riemann-Hilbert factorization (1.40) such that b+ has
no pole on T, then the factor (a+, b+) has to coincide with (a++, b++). Namely,
it is clear that (a+, b+) has no further nontrivial Riemann-Hilbert factorization by
Lemma 1.25. This implies that (a+, b+) is equal to (a++, b++).

In particular we have proved that the requirement that b+ has no poles on T

makes the Riemann-Hilbert factorization unique.
It remains to show that such a Riemann-Hilbert factorization exists.
We set up a Banach fixed point argument as in the proof of Lemma 1.25. Recall

from the proof of that lemma that, for every constant c, the affine linear mapping

T : (A,B) → (c+ PD∗(
b∗

a∗
B), PD(

b

a
A))

is a weak contraction mapping in the sense that

‖T (A,B)− T (A′, B′)‖ ≤ ‖(A,B)− (A′, B′)‖
where the norms are with respect to L2(T) ⊕ L2(T). Indeed, unless (A′, B′) =
(A,B), the inequality is strict since multiplication by b/a strictly lowers the L2

norm of any nonzero element. This implies that on any invariant finite dimensional
subspace of L2(T), the mapping is a strict contraction in the sense

‖T (A,B)− T (A′, B′)‖ ≤ (1− ǫ)‖(A,B)− (A′, B′)‖
for some ǫ depending on the subspace. This can be seen by a compactness argument.

Consider the finite dimensional space V of all rational (A,B) such that B is
subordinate to b, A is subordinate to b∗, and A and B have no poles on T. This
is clearly a subspace of L2(T) ⊕ L2(T). For any rational function f without poles
on T the projection PDf is up to an additive constant the sum of the principal
parts of the poles of f in D∗, while PD∗f is up to an additive constant the sum of
the principal parts of the poles of f in D. Therefore, PDf is a rational function
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subordinate to f with no poles in D and PD∗f is a rational function subordinate
to f with no poles in D∗.

We observe that for (a, b) ∈ H the quotient b/a has no poles on T and is
subordinate to b on D∗. Thus for any (A,B) ∈ V we have that PD∗(b

∗B/a∗) is
subordinate to b∗ and PD(bA/a) is subordinate to b. Thus V is invariant under the
mapping T for any c. Since T is a strict contraction mapping on V , there exists a
fixed point in V under this mapping. Using this fixed point (A,B) for c = 1, we
can as in the proof of Lemma 1.25 produce a right factor

(a+, b+) = A(∞)−1(A,B)

to the Riemann-Hilbert factorization problem for (a, b). Clearly b+ has no poles on
T, so this is the desired right factor.

The symmetric statement concerning left factors is proved similarly. This com-
pletes the proof of Lemma 1.34. �

The above shows that there is a very satisfactory description of the set of
rational elements in L which qualify to be left, middle, or right factors in a triple
factorization as in Theorem 1.28. Namely, possible left (middle, right) factors are
exactly those rational (a, b) ∈ L for which b has only poles in D, (T, D∗).

It remains to study the possible factorizations of a rational middle factor in the
triple factorization. Thus we are reduced to study the Riemann-Hilbert problem
for rational (a, b) ∈ H∗0 ∩H. Any factorization consists again of rational factors in
H∗0 ∩H.

This problem too has a very satisfactory answer, though the formulation of the
answer is a little more involved.

Before we proceed further, we shall briefly digress on the maximum principle.
The maximum principle says that any nonconstant holomorphic function on D
which is continuous on D ∪ T attains its maximum only on T. If the function
is actually differentiable on D ∪ T, then the following lemma gives more precise
information. It is a version of the maximum principle which may be less well
known.

Lemma 1.35. Let f be a nonconstant holomorphic map from D to itself and
assume that f and f ′ have continuous extensions to the boundary T. Thus f and
f ′ map D ∪T to D ∪T.

If f attains its maximum at z ∈ T, then f ′(z) = z∗ωf(z) for some strictly
positive ω.

Proof. Multiplying f by a constant phase factor, if necessary, we may assume
f(z) = 1. Consider the real part u of f . It has a maximum at z. In particular, u
has zero derivative in the direction tangential to T. Therefore, the gradient of u
has to be radial and is either 0 or outward pointing. This proves

∂u

∂x
+ i

∂u

∂y
= ωz

for some ω ≥ 0 Thus, by the Cauchy Riemann equations,

f ′(z) =
∂u

∂x
+ i

∂v

∂x
=
∂u

∂x
− i

∂u

∂y
= ωz∗ = ωz∗f(z)

It remains to show that ω is not zero, i.e., that the harmonic function u does
not have vanishing derivative at z. Assume by a rotation that z = 1. It will
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suffice to find some function ũ which dominates u in the intersection of D with a
neighborhood of 1, such that ũ is differentiable at 1 with nonvanishing derivative.

Since u is not constant, we find two points on T where u is strictly less than
1. The two points divide the circle into wo arcs C1 and C2. Let L be the line
connecting the two points. Assume w.l.o.g. that C1 contains 1 and let z0 be a
point of C2. Define

ũ(ζ) = 1 + ǫRe
ζ + z0
ζ − z0

for some small ǫ > 0. Since ũ is 1 on the arc C1, it dominates u there. Since u is
strictly less than 1 in the (compact) line L, we can choose ǫ small enough so that
ũ dominates u on the line. By the (easy) maximum principle, ũ dominates u inside
the enterior of C2 ∪L. It remains to prove that ũ has nonvanishing derivative at 1.
This however can be done easily by direct inspection. �

We continue to study Riemann-Hilbert factorizations

(a, b) = (a−, b−)(a+, b+)

for rational (a, b) ∈ H∩H∗0. Thus b and a have only poles on T. Indeed, they have
the same poles as 1 + bb∗ = aa∗ shows.

By Lemma 1.33, the functions a+ and a− can only have poles where a has
poles. Consider the identity

(1.41) a = a−a+(1 +
b−
a−

b+
a+

)

The function

(1.42)
b−
a−

b+
a+

maps D∪T to itself. Therefore, the last factor on the right-hand side of (1.41) can
only vanish at point z ∈ T when z is a maximum of the function (1.42) on D ∪T.
By Lemma 1.35, the last factor in (1.41) can only have a simple zero at z.

Therefore, for every pole z of a, we have either

(1.43) ord(a, z) = ord(a−, z) + ord(a+, z)

or

(1.44) ord(a, z) = ord(a−, z) + ord(a+, z)− 1

We say that the pole z is split if (1.43) holds, and we say that it is shared if (1.44)
holds. If z is a shared pole, then both functions b−/a− and b∗+/a+ have modulus
one at z. Therefore, both functions a+ and a− have a pole at z and by (1.44) both
poles have order at most ord(a, z).

For each pole z of a we define

n := ord(a, z), n− := ord(a−, z), n+j := ord(a+, z)

Define the functions

A+ := 1− b+b
∗

a+a∗
=

a∗−
a+a∗

=
1

a+a∗+

1

1 +
b∗−
a∗−

b+
a∗+
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A− := 1− b−b∗

a∗−a
=

a+
a∗−a

=
1

a−a∗−

1

1 + b−
a−

b∗+
a+

On T, the functions A+ and A− have positive real part except possibly where
a has a pole (use the first representation for A+, A−). There, A+ vanishes of order
n+ n−− n+ and A− vanishes of order n+ n+ − n− (use the second representation
for A+, A−). In particular, A+ vanishes of order 2n+ if the pole is split or 2n+ − 1
if the pole is shared.

For each shared pole z, we define µ+ and µ− by the asymptotic expansions

A+(ζ) = −µ+z(ζ − z)n
+−1(

1

ζ
− 1

z
)n

+

+O(ζ − z)2n
+

A−(ζ) = −µ−z∗(ζ − z)n
−

(
1

ζ
− 1

z
)n
−−1 +O(ζ − z)2n

−

)

We claim that µ+ and µ− are positive.
To see this for A+, we set

a+(ζ) = γ(ζ − z)−n
+

+O(ζ − z)−n
++1

and, by Lemma 1.35,

(1 +
b∗−b+
a∗−a

∗
+

)′(z) = (
b∗−b+
a∗−a

∗
+

)′(z) = (
b∗−b+
a∗−a

∗
+

)(z)z∗µ = −z∗µ

for some positive µ. Using the third representation of A+ we obtain

µ+ = 1/(µ|γ|2)
awhich shows that µ+ is positive. The proof that µ− is positive is similar.

Write
1

aa∗
(ζ) = µ(ζ − z)n(

1

ζ
− 1

z
)n +O(ζ − z)2n+1

Then the identity

A+A− =
1

aa∗

shows that

µ+µ− = µ

Our goal is to see that the parameters n+ and n− for all poles together with
the parameters µ+ and µ− for all shared poles parameterize the Riemann-Hilbert
factorizations of (a, b). We shall first adress the easier statement that all Riemann-
Hilbert factorizations are uniquely determined by these parameters.

Lemma 1.36. Let (a, b) be rational in H ∩ H∗0. Then any Riemann-Hilbert
factorization

(a, b) = (a−, b−)(a+, b+)

is uniquely determined if the parameters n+ and n− for all poles and the parameters
µ+, and µ− for all shared poles are specified.

Proof. We assume to get a contradiction that there are two Riemann Hilbert
factorizations with right factors (a+, b+) and (ã+, b̃+) respectively, which have the
same parameters listed in the lemma.

Define (c, d) by

(ã+, b̃+) = (c, d)(a+, b+)
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Our task is to show that (c, d) = (1, 0). It suffices to show that d is constant. Then
d has to be constant 0 as one can see from evaluating the defining equation for
(c, d) at 0 and using that b+, b̃+ vanish at 0 while a∗+ does not. Then c = ã+/a+ is
an outer function on D∗ and of constant modulus 1 on T, and thus it is constant.
This constant is equal to 1 as one can see from evaluating c at ∞.

Observe that d is a rational function and can only have poles where a has poles.
Therefore, it suffices to show that d is holomorphic at all poles of a.

Fix a pole z. Define r := b/a and similarly r+, r−, r̃+. Then we have

r − r+ =
1

r∗
(1− r∗r+ − (1 − r∗r)) =

1

r∗
(A+ − (1− r∗r))

Observe that r∗ has modulus one at z and 1 − rr∗ = (aa∗)−1 vanishes of order 2n
at z. Moreover, A+ vanishes at least of order 2n+−1 at z and its Taylor coefficient
of order 2n+ at z is determined by µ+.

Therefore, r−r+ vanishes at least of order 2n+−1 at z and its Taylor coefficient
of order 2n is determined by r and µ+. The same holds for r − r̃+, and by taking
differences we see that r+ − r̃+ vanishes of order 2n+ at z. Since a+ has a pole of
order n+ at z, we see that

(r+ − r̃+)a+ã+ = b+ã+ − b̃+a+ = d

has no pole at z. �

Theorem 1.37. Assume (a, b) ∈ H ∩H∗0 is rational. Let zj ∈ T, j = 1, . . . , N
be the distinct poles of a and denote the order of the pole zj by nj.

Assume we are given numbers 0 ≤ n+
j , n

−
j ≤ nj for j = 1, . . . , N such that for

each j either
n+
j + n−j = nj

(split case) or
n+
j + n−j − 1 = nj

(shared case). Assume further that for each j in the shared case we are given
positive real numbers µ+

j , µ
−
j with

µ+
j µ
−
j = µj

where µj is defined by

1

aa∗
(ζ) = µj(ζ − zj)

nj (
1

ζ
− 1

zj
)nj +O(ζ − zj)

2nj+1

Then there exists a unique Riemann-Hilbert factorization

(a, b) = (a−, b−)(a+, b+)

such that
ord(a+, zj) = n+j

ord(a−, zj) = n−j
and, if j is in the shared case,

A+(ζ) = −µ+
j zj(ζ − zj)

n+
j
−1(

1

ζ
− 1

z j
)n

+
j +O((ζ − zj)

2n+
j )

A−(ζ) = −µ−j z∗j (ζ − zj)
n−
j (

1

ζ
− 1

z j
)n
−
j
−1 +O((ζ − zj)

2n−
j )

All Riemann-Hilbert factorizations of (a, b) are obtained in this way.
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Proof. Our previous discussion of the parameters n+
j ,n
−
j ,µ

+
j and µ−j already

implies that every Riemann-Hilbert factorization of (a, b) comes with parameters as
described in the theorem and the parameters determine the factorization uniquely.

It thus remains to show that for a given set of parameters such a Riemann-
Hilbert factorization exists.

It is enough to consider the case when b is nonzero at ∞, because

(a, b) = (a−, b−)(a+, b+)

is equivalent to
(a, bzn) = (a−, b−z

n)(a+, b+z
n)

and thus one can reduce the case of b vanishing at ∞ to the case of b not vanishing
at ∞.

We first prove existence of a Riemann-Hilbert factorization in the easier case
when all poles are split. We write

b(z) = b(∞)
[∏

(z − yk)
] [∏

(z − zj)
−nj

]

where yk are the zeros of b counted with multiplicities.
For each j, consider points z+j ∈ D∗ and z−j ∈ D close to zj. It shall be enough

to consider z±j such that they avoid the zeros of b and are all pairwise distinct as

well as distinct from all (z±j )
∗. Consider the perturbation b̃ of b defined by

b̃(z) = b(∞)
[∏

(z − yk)
] [∏

(z − z+j )
−n+

j

] [∏
(z − z−j )

−n−
j

]

This function has the same zeros with multiplicities as b, but the poles are at
perturbed locations.

Since the zeros yk are fixed, we have an upper bound on∫

T

log+ |b̃|

uniformly in the choice of the points z±j .

By Lemma 1.31, there is a unique rational ã such that (ã, b̃) ∈ L. The equation

1 + b̃b̃∗ = ãã∗ implies that there is a uniform upper bound on∫

T

log+ |ã|

and since ã is outer on D∗ we have a uniform upper bound on ã(∞). Trivially, we
also have the lower bound 1 ≤ |ã(∞)|.

Since ã is bounded on T, Lemma 1.25 gives a unique Riemann-Hilbert factor-
ization

(ã, b̃) = (ã−, b̃−)(ã+, b̃+)

Applying Lemma 1.33 thoroughly to the situation at hand, we conclude that ã+
has poles only at the points (z+j )

∗ with order at most n+
j , while ã− has poles only

at the points z−j with order at most n−j . Moreover, since |ã+(∞)| and |ã−(∞)|
are bounded below by one and ã+(∞)ã−(∞) = ã(∞), we obtain that ã+(∞) and
ã−(∞) are in a fixed compact set avoiding 0.

We can write

ã+(z) = ã+(∞)
[∏

(z − x+k )
] [∏

(z − (z+j )
∗)−ñ

+
j

]

where x+k are the zeros of ã+ with multiplicities and ñ+
j ≤ n+

j .
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Now we consider a sequence of choices of z±j such that for each j both points z+j
and z−j converge to zj . For ea Since the zeros x+k remain in the compact set D ∪ T
and the value ã+(∞) remains in a compact set away from 0, there is a subsequence
for which the ñ+

j are constant, each zero x+k converges (assuming the zeros are

appropriatelyenumerated), and the value ã+(∞) converges. For this subsequence,
ã+ converges uniformly on compact sets away from the poles of a to a limit a+.
The zeros of a+ are still in D ∪ T an the poles are on T. Thus a+ is still outer.
Clearly also a+(∞) is positive as a limit of positive numbers.

Similarly, one can choose a further subsequence so that all other terms in the
identity

(ã, b̃) = (ã−, b̃−)(ã+, b̃+)

converge uniformly on compact sets away from the poles of a. In the limit, we
obtain a Riemann-Hilbert factorization

(a, b) = (a−, b−)(a+, b+)

By construction, the poles of a+ and of a− at zj are at most of order n+
j and n−j

respectively. Since the sum of these orders for any Riemann-Hilbert factorization
has to be at least nj, the orders of a+ and a− at zj are exactly n

+
j and n−j . Thus we

have proved existence of a Riemann-Hilbert factorization for the given parameters
in the completely split case.

Now we modify the above argument so that it works in the case when there are
shared poles.

For each split pole zj, we choose again z+j and z−j exactly as before. For every

shared pole, we choose z+j and z−j as before but with the additional constraint that

(1.45) µ+
j |(z+j )∗ − zj |2n

+
j = µ−j |z−j − zj|2n

−
j

We define

b̃(z) = b(∞)
[∏

(z − yk)
]

 ∏

zj shared

(z − zj)



[∏

(z − z+j )
−n+

j

] [∏
(z − z−j )−n

−
j

]

Compared to the completely split case, we have defined b̃ to have an additional
zero at each shared pole zj . Since for each shared pole we have n+

j + n−j = nj + 1,

the numerator and denominator of the rational function defining b̃ have the same
degree and b̃(∞) is again finite.

As before, we obtain a unique Riemann-Hilbert factorization

(ã, b̃) = (ã−, b̃−)(ã+, b̃+)

Then we let z±j tend to zj respecting the additional constraint (1.45) for each shared
pole. As before, we can choose a subsequence so that all quantities in the Riemann-
Hilbert factorization converge uniformly on compact sets away from the poles zj.
In the limit, we obtain a Riemann-Hilbert factorization

(a, b) = (a−, b−)(a+, b+)

We need to show that this factorization has the given parameters n±j and µ±j .
As before, for each split pole zj the order of poles of the limits a+ and a− are at
most n+

j and n−j and thus have to be exactly n+
j and n−j .
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We consider a shared pole zj . We calculate

b̃ = ã−b̃+ + b̃−ã
∗
+

b̃

ã−ã∗+
=
b̃+
ã∗+

+
b̃−
ã−

At the shared pole zj, the left-hand side vanishes:

(1.46) 0 =
b̃+(zj)

ã∗+(zj)
+
b̃−(zj)

ã−(zj)

Since for every element (a′, b′) ∈ L, the modulus of b′/a′ on T can be expressed in
terms of the modulus of a, we conclude from (1.46) that

(1.47) |ã+(zj)| = |ã−(zj)|
In a compact neighborhood of zj avoiding the poles zk with k 6= j, we can write

ã+(z) = (z − (z+j )
∗)−n

+
j h̃+(z)

ã−(z) = (z − z−j )
−n−

j h̃−(z)

where h̃+ and h̃− converge uniformly on the neighborhood to functions h+ and h−.
The equation (1.47) then becomes

|zj − (z+j )
∗|−n+

j |h̃+(zj)| = |zj − z−j |−n−j |h̃+(zj)|
By choice of the z±j we thus have for some constant c̃:

|h̃+(zj)| = c̃(µ+
j )
−1/2

|h̃−(zj)| = c̃(µ−j )
−1/2

Taking the limit, we obtain

|h+(zj)| = c(µ+
j )
−1/2

|h−(zj)| = c(µ−j )
−1/2

for some constant c. We claim that c is not zero. Assume to get a contradiction
that it is zero, then h+ and h− vanish at zj . From the equations

a+(z) = (z − zj)
−n+

j h+(z)

a−(z) = (z − zj)
−n−

j h−(z)

we see that a+ and a− have order of pole at most n+
j − 1 and n−j − 1 at zj. The

sum of these orders is less than nj , a contradiction. Therefore c is not zero.
Then h+ and h− do not vanish at zj and a+ and a− have poles of exact order

n+
j and n−j at zj. Thus we are indeed in the case of a shared pole.

Moreover, we calculate in the limit

|a+|2
|a−|2

=
µ−j
µ+
j

|z − zj |−2n
+
j
+2n−

j +O(|z − zj |−2n
+
j
+2n−

j
+1)

Now we use µ+
j µ
−
j = µj and

1

|a|2 = µ2
j |z − zj|2nj +O(|z − zj|2nj+1)
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to obtain

|a+|2
|a−|2|a|2

= |µ−j |2|z − zj|−2n
+
j
+2n−

j
+2nj +O(|z − zj|−2n

+
j
+2n−

j
+2nj+1

Comparing with the asymptotics for A− and doing the analogue calculation for A+

we conclude that the shared pole zj has indeed the parameters µ+
j and µ−j . �

1.16. Orthogonal polynomials

1.17. Orthogonal polynomials

In this lecture, we describe how the nonlinear Fourier transform on the half-
line relates to orthogonal polynomials. The material on orthogonal polynomials is
folklore, a standard reference is [28] and a more recent introduction with interesting
applications is [8].

Let µ be any compactly supported positive measure on the plane C with the
normalization ‖µ‖ = 1.

Let H be the Hilbert space completion of the linear span of the set of functions
z0 = 1, z1, z2, . . . (monomials) under the inner product

〈f, g〉 =
∫
fg dµ

If a finite set z0, . . . , zn of monomials is linearly dependent in this Hilbert space,
then necessarily µ has finite support. Namely, linear dependence means that some
linear combination of these monomials, which is nothing but a polynomial P (z), is
equivalent to 0 in the Hilbert space. This means

‖P‖ =

∫
|P (z)|2 dµ = 0

As |P |2 and dµ are positive, this can only happen if the support of µ is contained
in the null set of P , which is finite. Conversely, if µ has finite support, then it is
easy to find a polynomial which vanishes on the support and thus is equivalent to
0 in the Hilbert space.

From now on the standing assumption is that µ has infinite support.
We can apply the Gram-Schmidt orthogonalization process to the sequence of

vectors zn. Let
φ0 = z0 = 1

and let φn be the unique polynomial of degree n which has unit length in the Hilbert
space H , has positive highest coefficient, and is orthogonal to all polynomials of
degree less than n. Since the space of polynomials of degree less than n has exact
codimension 1 in the space of polynomials of degree less than or equal to n, such a
polynomial φn exists and clearly has exact degree n. The orthogonality condition
determines φn up to a scalar factor. The modulus of this scalar factor is determined
by the requirement that φn has unit length, and the phase is determined by the
requirement that the highest coefficient of φn, which is the coefficient in front of
zn, is positive.

The polynomials φn form an orthonormal set. Indeed, they form an orthonor-
mal basis of H since they span the same subspace as the monomials zn, which by
definition span the full space H .

The linear operator
T : f → zf
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originally defined on all polynomials f , is bounded with respect to the norm on H
because the function z is bounded on the support of µ. Therefore, the operator T
extends to a unique bounded operator on H .

We can express the map T in the basis φn. This means we represent elements
in H as infinite linear combinations

∑
ajφj and let T act on the column vector

(aj)j≥0 by matrix multiplication from the left by a matrix (Jij)i,j≥0:

(aj) → (
∑

j

Jijaj)

As zφj is a polynomial of degree j+1, we have Jij = 0 if i > j+1. Moreover, zφj
has positive highest coefficient, and thus Jj+1,j > 0. We call a matrix a Hessenberg
matrix if it satisfies these two constraints, namely positivity on the subdiagonal
and vanishing below the subdiagonal.

The requirement that Hessenberg matrices be positive on the subdiagonal is a
matter of convenient normalization to produce uniqueness results. One can conju-
gate a Hessenberg matrix by a diagonal unitary matrix and thus obtain an equiv-
alent matrix which vanishes below the subdiagonal but is merely nonzero on the
subdiagonal. In the literature, one often calls these more general matrices Hessen-
berg matrices.

We will specialize to two cases.
Case 1: The measure µ is supported on the real line R. In this case T : f → zf

is selfadjoint since

〈Tf, g〉 =
∫
zfg dµ =

∫
fzg dµ = 〈f, T g〉

where we have used that z is real on the support of µ. Thus J is a selfadjoint
matrix, and since it is Hessenberg, it is tridiagonal (Jij = 0 if |i − j| > 1). A
Hessenberg matrix which is self adjoint is called a Jacobi matrix.

Observe that the j-th column vector of a Jacobi matrix has two real parameters
not determined by the previous columns: the subdiagonal is a positive number by
definition of Hessenberg matrices and independent of the previous columns, the
diagonal entry has to be a real number by selfadjointness and is independent of
the previous columns, while the superdiagonal entry is determined by the previous
column.

We know that T and thus J have to be bounded operators. For tridiagonal
matrices Jij , boundedness is equivalent to supij |Jij | <∞.

Case 2: The measure is supported on the circleT. In this case we have T ∗T = id
since

〈T ∗Tf, g〉 = 〈Tf, T g〉 =
∫
zfzg dµ =

∫
fg dµ = 〈f, g〉

Observe that T ∗T = id does not imply that T is unitary, since TT ∗ = id may fail.
For example, if the measure µ is a normalized Lebesgue measure on T, then the
monomials zn form an orthonormal set. The operator T in this case is the standard
shift operator and is obviously not surjective since the image of T contains only
functions with zero constant term.

Unlike in the selfadjoint case, the matrix J is not sparse above the diagonal.
However, we still have two new real parameters per column. The condition J∗J = id
implies that the column vectors are orthonormal. Thus the first n entries of the
n-th column have to be orthogonal to the previous columns, and thus there is only
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a complex parameter in D (the vector of the first n entries must have norm less
than 1) as degree of freedom, and then the (n + 1)-st entry is determined since it
is positive and makes the column have unit length.

Observe that boundedness of a matrix satisfying J∗J = id is automatic.

Theorem 1.38. The above construction of a Jacobi matrix provides a bijective
correspondence between

(1) A compactly supported positive measure µ supported on the real line with
‖µ‖ = 1 and infinite support.

(2) A tridiagonal selfadjoint matrix J = (Jij)i,j≥0 that has strictly positive
elements on the subdiagonal and has finite operator norm.

Proof. We need to show that the map from measures to Jacobi matrices
described above is injective and surjective.

The matrix J determines the moments of dµ because∫
zndµ = 〈T nφ0, φ0〉 = 〈Jne0, e0〉

where en denotes the n-th standard unit vector whose n-th entry is 1 and all other
entries are 0. But then by the Stone-Weierstrass theorem, this determines dµ.
Hence the map µ 7→ J is injective.

To show surjectivity, let J be a Jacobi matrix and write down the Neumann
series

(J − z)−1 = −
∞∑

n=0

Jn

z(n+1)

Since J is bounded, for |z| greater than the operator norm of J the Neumann series
converges and provides a proper meaning to the left-hand side of the last equation.

We can form the function

m(z) =
1

π

〈
(J − z)−1e0, e0

〉

This function is holomorphic in a neighborhood of ∞ on the Riemann sphere since
the Neumann series converges there. Moreover,

m(z) = −1/z +O(z−2)

as z → ∞.
We would like to show that m can be extended to the open upper half-plane

and has positive imaginary part there. Let z have positive imaginary part and let
z0 be purely imaginary with sufficiently large (in modulus) negative imaginary part.
Then the Neumann series

(J − z)−1 = ((J − z0)− (z − z0))
−1 =

∞∑

n=0

− (J − z0)
n

(z − z0)n+1

converges because

|z0 − z|2 = |z0 − Im(z)|2 + |Re(z)|2 = |z0|2 + 2|z0||Im(z)|+O(1)

while

‖z0 − J‖2 = sup
‖f‖=1

〈(J − z0)f, (J − z0)f〉

= sup
‖f‖=1

〈z0f, z0f〉+ 〈Jf, Jf〉 = |z0|2 +O(1)
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This shows that both (J − z)−1 and m extend holomorphically to the upper half-
plane.

For Im(z) > 0, let φz := (J − z)−1e0. We observe

Im(m(z)) =
1

π
〈φz , (J − z)φz〉 =

1

π
Im(z)‖φz‖2

Thus m has positive imaginary part in the upper half plane.
By the Herglotz representation theorem there is a positive measure µ on the

real line such that

m(z) =
1

π

∫
1

ζ − z
dµ(ζ)

The measure is compactly supported onR sincem is holomorphic in a neighborhood
of ∞.

As m(z) has the asymptotics

z−1 +O(z−2)

near ∞, we have ‖µ‖ = 1.
We prove that µ is not supported on a finite set. The most important ingredient

in the following argument is that J has no zeros on the subdiagonal i = j + 1.
Assume to get a contradiction that the measure is supported on a finite set.

Then the integral representation for m shows that m is a rational function and
therefore there is a polynomial

p(z) =

m∑

k=0

akz
k

such that p(z)m(z) is a polynomial. The latter polynomial has the form

− 1

π

m∑

k=0

akz
k
∞∑

n=0

z−(n+1) 〈Jne0, e0〉

Since this is a polynomial, for sufficiently large n the coefficient in the Laurent
series has to be zero. This leads to the identity

m∑

k=0

ak
〈
Jn+ke0, e0

〉
= 0

for large n. By selfadjointness of J , we also obtain for large n and all m ≥ 0
m∑

k=0

ak
〈
Jn+ke0, J

me0
〉
= 0

Since the vectors Jme0 with m ≥ 0 span the full Hilbert space l2(Z≥0), this gives
m∑

k=0

akJ
n+ke0 = 0

This is however absurd if J is a Hessenberg matrix with positive elements on the
subdiagonal.

To complete the proof of surjectivity, it remains to show that the measure µ
that we have constructed gives rise to the matrix J . By construction we have for
large |z| ∫

(ζ − z)−1 dµ(ζ) =
〈
(J − z)−1e0, e0

〉
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Comparing coefficients in the Neumann series gives for n ≥ 0
∫
ζn dµ(ζ) = 〈Jne0, e0〉

By self adjointness of J we also have
∫
ζn dµ(ζ) = 〈Jne0, J

me0〉

The same identity holds with J replaced by the matrix J̃ constructed from the
measure µ by the Gram-Schmidt orthogonalization process. Therefore, it suffices
to show that the numbers

(1.48) 〈Jne0, J
me0〉

determine J . We claim that knowing these numbers, we can express all of the
standard basis vectors en as linear combination of J0e0, . . . J

ne0. This is clear for
n = 0. Assume by induction we can express e0, . . . , en in terms of J0e0, . . . , J

ne0.
We can calculate the coefficients

〈
Jn+1e0, ej

〉
for j ≤ n by expressing ej in terms of

J0e0, . . . , J
jej and using (1.48). As Jn+1e0 is a linear combination of e0, . . . , en+1,

it remains to determine the coefficient in front of en+1. This coefficient is positive,
hence we can then determine this coefficient by determining the length of Jn+1e0,
which we can do by (1.48). This poves the claim.

Using the claim, we can calculate 〈Jen, em〉 for all n,m and thus obtain all
coefficients of J . This completes the proof of surjectivity.

�

In the case of measures on the circle we obtain

Theorem 1.39. The above construction of a Hessenberg matrix provides a
bijective correspondence between

(1) A positive measure µ supported on the circle T with ‖µ‖ = 1 and infinite
support.

(2) A matrix J = (Jij)i,j≥0 which satisfies Jij = 0 for i > j + 1, J(j+1),j > 0
for all j, and J∗J = id.

Proof. The proof is a reprise of the arguments in the proof of the previous
theorem. We shall only describe the inverse map and leave the other details as an
exercise.

We can use Neumann series to define

z + J

z − J
= (z + J)

∞∑

n=0

Jnz−(n+1)

for |z| > 1. Then we define

m(z) =

〈
z + J

z − J
e0, e0

〉

on D∗. Setting
φz := (z − J)−1e0

we have

Rem(z) = Re 〈(z + J)φz , (z − J)φz〉
= 〈zφz, zφz〉 − 〈Jφz , Jφz〉 = (|z|2 − 1)‖φz‖2
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Thus m has positive real part on D∗ and by the Herglotz representation theorem
is the extension of a unique positive measure µ:

m(z) =

∫

T

z + ζ

z − ζ
dµ

This is the desired measure. �

Assume J is a matrix with J∗J = 1 and Jij = 0 for i − 1 > j. Then we have
JJ∗J = J and thus JJ∗ = 1 on the image of J . We claim that the image of J
has codimension at most 1, and in case that the codimension is exactly 1, then e0
complements the image:

image(J) + span(e0) = l2(Z≥0)

The claim simply follows from the fact that

e0, Je0, J
2e0, . . . , J

ne0

evidently span the same space as

e0, e1, e2, . . . en

If the codimension of the image is 0, then J is unitary. This happens if and only if
e0 is in the image of J . A criterion when this happens can be derived from Szegö’s
theorem stated below. Namely, J is unitary if and only if both sides of the identity
in Szegö’s theorem are zero.

Theorem 1.40. (Szegö) Let µ be a measure on T with a.c. part wdθ (we denote
by dθ Lebesgue measure on T normalized so that

∫
T
dθ = 1). Then

inf
f

∫
|1− f |2 dµ = exp

∫

T

log |w| dθ

where f runs through all polynomials in z with zero constant term and ‖f‖ = 1 in
L2(µ).

In case the left-hand side is nonzero, it has the meaning of | 〈u, 1〉 |2 where u is
the unit vector perpendicular to the image of J . The right-hand side becomes zero
if
∫
log |w| = −∞.
We will prove this theorem in the next section in the case that both sides are

finite.

1.18. Orthogonal polynomials on T and the nonlinear Fourier

transform

In this section we relate orthogonal polynomials on the circle T to the nonlinear
Fourier transform on the half-line.

The nonlinear Fourier transform (a, b) of a sequence in l2(Z≥1, D) gives rise
to an analytic function b/a∗ which maps D to itself and vanishes at 0. Via a
Möbius transform of the target space D, such an analytic functions is in unique
correspondence with an analytic function m on D which has positive real part and
is equal to 1 at 0:

m(z) =
1− b/a∗

1 + b/a∗

By the Herglotz representation theorem, this function is uniquely associated with
a positive measure on T with total mass 1. By Theorem 1.39, assuming for the
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moment that this measure does not have finite support, the measure is in unique
correspondence with a Hessenberg matrix. The following theorem states that the
diagonal and subdiagonal entries of the Hessenberg matrix can easily be expressed
in terms of the sequence F .

Theorem 1.41. Let F ∈ l2(Z≥1, D) and let (a, b) be the nonlinear Fourier
transform of F . Let µ be the positive measure on T whose harmonic extension to
D is equal to the real part of

m(z) =
1− b/a∗

1 + b/a∗

Then the Hessenberg matrix associated to µ via Theorem (1.39) satisfies

(1.49) Ji(i−1) = (1− |Fi|2)1/2

(1.50) Jii = −FiFi+1

for i ≥ 1 and

(1.51) J00 = −F1

The main point of this theorem is that taking the forward nonlinear Fourier
transform is equivalent to calculating the spectral data (the measure µ) of a Hessen-
berg matrix, while taking the inverse nonlinear Fourier transform or “layer stripping
method” is equivalent to the Gram-Schmidt orthogonalization process.

Proof. For F a sequence in l2(Z≥1, D) with nonlinear Fourier transform (a, b),
we consider the truncated sequences F≤n and their nonlinear Fourier transforms

(a≤n, b≤n) = (an, bn)

Define for n ≥ 0

(1.52) φn(z) = zn[an(z) + b∗n(z)]

By Lemma 1.2, φn is a polynomial in z of exact degree n, and the highest coefficient
of φn is equal to the constant coefficient of an and therefore it is positive. In
particular, φ0 = 1.

We can write (1.52) in matrix form (with our standing convention to complete
the second row of a matrix by applying the ∗ operation to and reversing the order
of the entries of the first row) as

(1.53) (z−nφn, z
nφ∗n) = (1, 1)(an, bn)

Thus we obtain a recursion formula by multiplying a transfer matrix from the
right:

(z−(n+1)φn+1, z
n+1φ∗n+1) = (z−nφn, z

nφ∗n)(1 − |Fn+1|2)−1/2(1, Fn+1z
n+1)

In particular, we have the identity

z−(n+1)φn+1 = (1 − |Fn+1|2)−1/2[z−nφn + Fn+1z
−1φ∗n]

which can be rewritten as

(1.54) zφn = (1 − |Fn+1|2)1/2φn+1 − Fn+1z
nφ∗n

This recursion formula (1.54) together with φ0 = 1 contains all information on the
sequence φn, but it will be convenient to rewrite the recursion in a different form.
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In (1.53), we may also multiply from the right by an inverse transfer matrix to
obtain

(z−(n−1)φn−1, z
n−1φ∗n−1) = (z−nφn, z

nφ∗n)(1− |Fn|2)−1/2(1,−Fnz
n)

z−(n−1)φn−1 = (1− |Fn|2)−1/2[z−nφn − Fnφ
∗
n]

(1.55) φn = (1− |Fn|2)1/2zφn−1 + Fnz
nφ∗n

Let the collection of polynomials φn be fomally an orthonormal basis of a
Hilbert space H . Thus abstractly the Hilbert space is the set of all linear com-
binations of the φn with square summable coefficients, and the inner product is
given by the standard inner product on the space of square summable sequences.
Further below we will identify the measure on T with respect to which the φn are
the Gram-Schmidt orthogonal polynomials, but for now we only need H abstractly
defined.

We claim that T : f → zf , originally defined on the set of polynomials, extends
to an isometry onH . This will follow once we have shown that the φn are the Gram-
Schmidt orthogonal polynomials of a measure supported on T. However, we find
the following proof instructive, and the proof will also help to calculate the diagonal
and subdiagonal entries of the Hessenberg matrix representing T .

We shall prove by induction the following two statements

(1.56) ‖zφn−1‖ = 1

(1.57) 〈zφn−1, φn〉 = (1 − |Fn|2)1/2

Observe that equation (1.52) applied for n = −1 gives φ−1 = z−1. In this sense the
above two statements for n = 0 reduce to the fact ‖φ0‖ = 1.

Assume by induction that (1.56) and (1.57) are true for some n. Then by
pairing (1.55) with zφn−1 we see that the two summands on the right-hand side of
(1.55) are orthogonal. As the coefficients in (1.55) form a Pythagorean triple, we
conclude

(1.58) ‖znφ∗n‖ = 1

Using this in (1.54) together with the obvious fact that φn+1 is orthogonal to znφ∗n,
we obtain ‖zφn‖ = 1 and 〈zφn, φn+1〉 = (1 − |Fn+1|2)1/2. This concludes the
induction step.

Now we prove by induction on n that

(1.59) 〈zφn, zφm〉 = 0

for m < n. Fix n and assume that (1.59) is true for all indices smaller than n.
By eliminating znφ∗n from (1.54) and (1.55), zφn becomes a linear combination of
terms manifestly orthogonal to zφm if m < n − 1. If m = n − 1, we use (1.55)
and (1.57) to observe that znφ∗n is perpendicular to zφn−1 and we insert this into
(1.54). This proves (1.59) for the index n.

Therefore, the orthonormal basis φn is mapped to an orthonormal set via the
operation T : f → zf . This proves that T is an isometry.

The operator T in the basis φn is given by a Hessenberg matrix J , i.e., Jij = 0
for i > j + 1 and Jj+1,j > 0 (recall the highest coefficient of φn is positive).
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Indeed, we read from the above recursions that the Hessenberg matrix satisfies
(1.49), (1.50), and (1.51). Only the proof of (1.50) is slightly more involved. It
follows from adding Fn times (1.54) and Fn+1 times (1.55) to obtain

Fnzφn + Fn+1φn = Fn(1− |Fn+1|2)1/2φn+1 + Fn+1(1 − |Fn|2)1/2zφn−1
Taking the φn component everywhere gives

Fn 〈zφn, φn〉+ Fn+1 = Fn+1(1− |Fn|2)
Which proves (1.50).

We know from the abstract theory discussed in the previous section that there
is a positive measure µ on the circle with ‖µ‖ = 1 such that the φn are the Gram-
Schmidt orthogonal polynomials with respect to this measure. We need to show
that the Herglotz function m of this measure satisfies

m(z) =
1− s(z)

1 + s(z)

where we have set s = b/a∗.
We first argue that it suffices to prove the claim under the additional assumption

that the sequence F is compactly supported. To pass to the case of general F , we
approximate s by sn. Clearly sn converges on the disc D pointwise to s since we
know convergence of (an, bn) to (a, b) in H. Thus the measures µn (defined as above
by the function sn = bn/a

∗
n) converge weakly to the measure µ (defined as above

by the function s). Observe that the polynomials φm defined as zm(am + b∗m) do
only depend on the first m coefficients of F and thus are the same as if defined
by the truncated sequences as long as the truncation parameter n is larger than or
equal to m.

Suppose we can prove that the inner product 〈φm, φm′〉 with respect to the
measure µn for all sufficiently large n is equal to the Kronecker delta of m and
m′. By passing to the weak limit, the inner product with respect to µ is also the
Kronecker delta. Thus the φn are an orthonormal basis for µ.

We now prove the orthonormality property of φn under the additional assump-
tion that Fn is a finite sequence. Then a, b and m are analytic across the circle T,
and the measure µ associated to the Herglotz function m is absolutely continuous
with respect to normalized Lebesgue measure and has density Re(m). We can write

Re(m) =
1

2

[
1− s

1 + s
+

1− s∗

1 + s∗

]

=
1− ss∗

(1 + s)(1 + s∗)

=
1

(a∗ + b)(a+ b∗)
We need to show that with respect to this measure,

φn = zn(an + b∗n)

is orthogonal to all zk with k < n and has length 1.
Consider the decomposition (we write a+ for a>n etc.)

(
a b

)
=
(
an bn

) (
a+ b+

)

or equivalently (
a b

) (
a∗+ −b+

)
=
(
an bn

)
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We obtain

an + b∗n = aa∗+ − bb∗+ + b∗a∗+ − a∗b∗+
= (a+ b∗)a∗+ − (a∗ + b)b∗+

And thus ∫

T

z−kzn(an + b∗n)

(a∗ + b)(a+ b∗)

(1.60) =

∫

T

zn−k
[

a∗+
a∗ + b

− b∗+
a+ b∗

]

However,
a∗+

a∗ + b
is holomorphic on D and

b∗+
a+ b∗

is holomorphic on D∗ with a zero of order n + 1 at ∞. Thus the above integral
(1.60) is zero for 0 ≤ k < n.

For n = k we write for (1.60)
∫

T

a∗+
a∗ + b

− b∗+
a+ b∗

=
a∗+(0)

a∗(0) + b(0)
=

1

an(∞)

As the highest order coefficient of φn is an(∞), we obtain

‖φn‖2 = an(∞) 〈zn, φn〉 = 1

Thus we have verified that µ is the measure with respect to which the φn are
orthonormal.

We remark that if F is a finite sequence and n is the order of the largest nonzero
element of F , then the density of the measure is given by

1

(a∗n + bn)(an + b∗n)
=

1

|φn|2
�

We are now ready to prove Szegö’s theorem under the assumption that Fn is a
square integrable sequence and thus log |a| is integrable.

The measure µ splits as µ = µs + µac where µs is singular with respect to the
Lebesgue measure and µac is absolutely continuous with density w ∈ L1(T).

Since Re(m) is equal to w almost everywhere on T, we have
∫

logw =

∫
log(

1

(a∗ + b)(a+ b∗)
)

=

∫
log

1

|a|2 +

∫
log

1

1 + s
+

∫
log

1

1 + s∗

The last two integrals vanish because the function 1/(1 + s) is holomorphic and
outer on D and equal to 1 at 0. Thus

∫
logw = −2

∫
log |a|
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On the other hand, inff ‖1 − f‖ on the left-hand side of Szegö’s theorem is
equal to the modulus squared of the inner product 〈u, 1〉 where u is a unit vector
perpendicular to the image of T : f → zf . (We shall momentarily establish that
under the assumption of square integrable Fn this image has indeed codimension
1.) We claim that the vector u is the strong limit as n→ ∞ of the vectors

znφ∗n

These vectors are unit vectors by (1.58) and perpendicular to zφ0, . . . , zφn−1 by
(1.55). Thus the strong limit of these vectors has to be a unit vector perpendicular
to the image of T : f → zf .

To show the existence of the strong limit, we observe that applying the star
operation to (1.55) and multiplying by zn we obtain

(1.61) znφ∗n = (1− |Fn|2)1/2zn−1φ∗n−1 − Fnφn

This recursion implies that

znφ
∗
n =

n∑

k=0

ck,nFkφk

for some constants ck,n bounded by 1. Using orthogonality of the vectors φn we
obtain that the sequence (znφ

∗
n) has a limit u.

Using (1.61) and orthogonality of φn to φ0 for n > 1, we obtain

〈u, 1〉 =
∞∏

i=1

(1 − |Fn|2)1/2

Thus the left-hand side of Szegö’s theorem is
∏∞

i=1(1 − |Fn|2) and the identity of
Szegö’s theorem follows by the nonlinear Plancherel identity.

This proves Szegös theorem in the setting of square summable F . It can be
shown that in case F is not square summable, orthogonal polynomials can still be
defined using the Hessenberg matrix associated to the sequence F , and both sides
of Szegö’s theorem vanish.

1.19. Jacobi matrices and the nonlinear Fourier transform

Orthogonal polynomials on R and Jacobi matrices are related to the nonlin-
ear Fourier transform on l2(Z≥1, [−1, 1]), i.e., the space of bounded real valued
sequences Fn on the the half-line. Since Jacobi matrices are a discrete model for
Schrödinger operators, the material discussed here also relates to the spectral the-
ory of Schrödinger operators. We only touch upon the subject, entry points to some
related current literature are [19], [7], [25].

Our main concern is again to show that on the one hand one can parameterize
a class of Jacobi matrices easily by sequences F ∈ l2(Z≥1, [−1, 1]), and on the other
hand one can determine the measure µ associated to such a Jacobi matrix easily
from the nonlinear Fourier transform (a, b) of F .

We first observe that if F is a sequence in l2(Z, [−1, 1]), then the nonlinear
Fourier transform (a, b) of F satisfies

(1.62) a(z∗) = a∗(z), b(z∗) = b∗(z)

by property (1.9) stated in Lemma 1.1. Conversely, any element (a, b) ∈ H satis-
fying (1.62) has a real sequence F ∈ l2(Z≥0, D) as preimage under the nonlinear
Fourier transform.
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Theorem 1.42. Let F ∈ l2(Z≥1, [−1, 1]) and let (a, b) be the nonlinear Fourier
transform of F . Let µ be the positive measure on [−2, 2] whose harmonic extension
to the upper half plane is the imaginary part of the function m defined by

m(w + w∗) =
1

w − w∗
1− b(w)/a∗(w)

1 + b(w)/a∗(w)

Then the Jacobi matrix associated to µ via Theorem 1.38 satisfies

(1.63) Jn,n = (F2n+1(1 + F2n)− F2n−1(1 − F2n))

(1.64) Jn+1,n = (1 + F2n)
1/2(1− |F2n+1|2)1/2(1− F2n+2)

1/2

for n ≥ 1 and

(1.65) J1,0 = 21/2(1− |F1|2)1/2(1− F2)
1/2

(1.66) J0,0 = 2F1

We remark that the elements of the sequence Fn with even n enter into the
formulas for Jij in a different manner from the elements with odd index. Interesting
special cases occur when either all Fn with even index n vanish, or all Fn with odd
index n vanish, but we do not further elaborate on this here.

Proof. We study orthogonal polynomials for measures supported on the in-
terval [−2, 2]. By a simple scaling argument, it is no restriction if we fix the length
of this interval. One can relate these polynomials to orthogonal polynomials on the
circle T using the conformal map

w → y = w + w∗

from D to the Riemann sphere slit at [−2, 2]. This map is sometimes called the
Joukowski map. The Joukowski map extends to the boundary T of D and maps
T \ {−1, 1} two-to-one onto the interval (−2, 2) and maps {−1, 1} to one to one to
the endpoints {−2, 2} of that interval.

Using this map on T, one can push forward measures on T to measures on
[−2, 2]. This provides a bijection from measures µ′ onT with the symmetry µ′(w) =
µ′(w∗) to measures µ on [−2, 2]. The relation between µ′ and µ is given by the
formula ∫

f(w + w∗) dµ′(w) =

∫
f(y) dµ(y)

We shall assume that the measure µ′ is positive and normalized to ‖µ′‖ = 1. Then
the same normalization holds for µ.

By the Herglotz representation theorem, there is a holomorphic function m′

on D whose real part is the harmonic extension of µ′. By the Herglotz represen-
tation theorem for the upper half-plane, there is a function m on the upper half
plane whose imaginary part is the harmonic extension of the compactly supported
measure µ on R. We claim

m′(w) = (w − w∗)m(w + w∗)

Namely, using the Poisson kernel for the disc, we have

m′(w) =

∫
v + w

v − w
dµ′(v)
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Using the symmetry of µ′, we obtain

m′(w) =
1

2

∫

T

v + w

v − w
+
v∗ + w

v∗ − w
dµ′(v)

=

∫

T

1− w2

(v − w)(v∗ − w)
dµ′(v)

=

∫

T

w∗ − w

(vw∗ − 1)(v∗ − w)
dµ′(v)

= (w − w∗)

∫

T

[(v + v∗)− (w + w∗)]−1 dµ′(v)

= (w − w∗)

∫

R

[y − (w + w∗)]−1 dµ(y)

= (w − w∗)m(w + w∗)

This proves the claim.
We now discuss how the orthogonal polynomials in the variable y = w + w∗

can be identified with orthogonal polynomials in the variable w on T with respect
to µ′. As in the previous section, let φn denote the orthogonal polynomials in the
variable w on T with respect to the measure µ′. Thus

φn(w) = wn[an(w) + b∗n(w)]

where (an, bn) are the truncated nonlinear Fourier transforms of a sequence Fn

supported on Z≥1. Due to the symmetry of µ′ we have

φ∗(w) = φ(w∗), a∗(w) = a(w∗), b∗(w) = b(w∗)

and the sequence Fn is real.
As φ2n is orthogonal to all monomials of degree up to 2n− 1, the function

ψn(w) := (w∗)nφ2n(w)

is orthogonal to all functions wk with −n ≤ k ≤ n − 1. Consequently, ψn is also
orthogonal to all

(1.67) (w + w∗)k , 0 ≤ k ≤ n− 1

By symmetry under w → w∗, also ψ∗n(w) is orthogonal to all (1.67), and so is

(1.68) Ψn = ψn + ψ∗n = [wn(a+ b∗) + w−n(a∗ + b)]

However, Ψn is itself symmetric under w → w∗, and thus a polynomial in y = w+w∗

of degree n. Therefore, up to an as of yet unspecified scalar factor, Ψn is the n-th
orthogonal polynomial with respect to µ.

To determine the scalar factor we calculate∫
Ψn(w)Ψ

∗
n(w) dµ

′

=

∫
(ψn + ψ∗n)(ψn + ψ∗n)

= 2 + 2Re

∫
ψ2
n dν

= 2 + 2Re

∫
w−2nφ2nφ2n

If n = 0, this is simply equal to 4.
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Assume n > 0. Since φ2n is an orthogonal polynomial in the variable w with
respect to µ′, we see that the last display is equal to

(1.69) = 2 + 2Re

∫
φ2n(w)w

−2nc0

where c0 is the constant coefficient of φ2n, which can be obtained from (1.55) and
(1.61)

c0 = F2n

2n∏

k=1

(1 − |Fk|2)−1/2

However, again by the fact that φ2n is an orthogonal polynomial, (1.69) is equal to

= 2 + 2Re

∫
φ2n(w)φ

∗
2n(w)c0(c2n)

−1

where c−12n is the highest coefficient of φ2n. From (1.61) and the value of c0 stated
above we obtain

cn =
2n∏

k=1

(1− |Fk|2)−1/2

Thus, since Fn is real,
‖Ψn‖2 = 2(1 + Fn)

Define
Φ0 = 1

and, for n ≥ 1,
Φn = 2−1/2(1 + F2n)

−1/2Ψn

Then Φn is the n-th orthogonal polynomial with respect to µ. Observe that the
expression for Φn in the case of generic n remains correct if we set F0 = 1.

We calculate the Jacobi matrix associated to the polynomials Φn. Assume first
n ≥ 1. We can write for (1.68)

(Ψn,Ψn) = (1, 1)(a, b)(wn, 0)(1, 1)

Then we have the recursion equations

(1 − |F2n+1|2)1/2(1 − |F2n+2|2)1/2(Ψn+1,Ψn+1)

= (1, 1)(a, b)(1, F2n+1w
2n+1)(1, F2n+2w

2n+2)(wn+1, 0)(1, 1)

= (1, 1)(a, b)(wn, 0)(w,F2n+1)(1, F2n+2)(1, 1)

(1.70) = (1, 1)(a, b)(wn, 0)([w + F2n+1][(1 + F2n+2], 0)(1, 1)

In the last step we have used that for any real number γ and any (a, b) we have

(a, b)(γ, γ) = (a+ b, 0)(γ, γ)

Similarly,
(1− |F2n−1|2)1/2(1− |F2n|2)1/2(Ψn−1,Ψn−1)

= (1, 1)(a, b)(1,−F2nw
2n)(1,−F2n−1w

2n−1)(wn−1, 0)(1, 1)

= (1, 1)(a, b)(wn, 0)(1,−F2n)(w
∗,−F2n−1)(1, 1)

(1.71) = (1, 1)(a, b)(wn, 0)(w∗ − F2nw − F2n−1 + F2nF2n−1, 0)(1, 1)

Multiplying (1.70) by (1+F2n)/(1 +F2n+2) and adding to (1.71) we obtain on the
right-hand side

(1, 1)(a, b)(wn, 0)(w + w∗ + F2n+1(1 + F2n)− F2n−1(1 − F2n), 0)(1, 1)
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= (w + w∗ + F2n+1(1 + F2n)− F2n−1(1 − F2n))(Ψn,Ψn)

where we have pulled a real scalar matrix out of the product. Collecting the terms
and expressing Ψn in terms of Φn gives for n ≥ 2:

(1 + F2n)
1/2(1− |F2n+1|2)1/2(1− F2n+2)

1/2Φn+1

+(1 + F2n−2)
1/2(1− |F2n−1|2)1/2(1− F2n)

1/2Φn−1

= (w + w∗)Φn + (F2n+1(1 + F2n)− F2n−1(1 − F2n))Φn

This identity shows that we can express multiplication by y = w + w∗ in the basis
Φn by a matrix J with

Jn,n = (F2n+1(1 + F2n)− F2n−1(1− F2n))Φn

and

Jn+1,n = (1 + F2n)
1/2(1− |F2n+1|2)1/2(1− F2n+2)

1/2

for n ≥ 1. To obtain the value for J1,0, we review the above calculation for n = 1

and observe that it remains correct if Φ0 is replaced by 21/2Φ0 in view of the special
normalization of Φ0. Thus

J21 = 21/2(1− |F1|2)1/2(1− F2)
1/2

To calculate J0,0, we specialize (1.70) to n = 0:

21/2(1− |F1|2)1/2(1− F2)
1/2(Φ1,Φ1)

= (1, 1)(w + F1, 0)(1, 1)

Or

21/2(1− |F1|2)1/2(1− F2)
1/2Φ1 = (w + w∗)Φ0 + 2F1Φ0

Thus

J0,0 = 2F1

�

1.20. Further applications

1.21. Integrable systems

The linear Fourier transform takes partial differential operators into multi-
plication operators by coordinate functions. Hence the linear Fourier transform
takes simple partial differential equations such as linear equations with constant
coefficients into algebraic equations. The latter can often be solved by explicit ex-
pressions modulo the task of taking the linear Fourier transform and inverting it.
In this section we discuss that the nonlinear Fourier transform can be used similarly
to obtain explicit solutions to certain nonlinear partial differential equations, again
modulo the task of taking the nonlinear Fourier transform and inverting it. We
will present the calculations on a purely formal and thus expository level. They
can be made rigorous in appropriate function spaces, e.g., by the precise calculus
in [3]. The formal calculations for the particular example of the modified Korteweg
de Vries equation that we choose for the exposition can be found in [30]. A more
general discussion can be found in [15].

We need the nonlinear Fourier transform of functions on R and we shall briefly
introduce it.
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Recall that the linear Fourier transform of sequences is defined by

F̂ (θ) =
∑

n∈Z
Fne

−inθ

Here θ lives on the interval [−π, π] ⊂ R. To pass to the continuous Fourier trans-
form on R, one can do a limiting process by letting θ ∈ [−π/ǫ, π/ǫ] and n ∈ ǫZ with
ǫ approaching 0. Taking an appropriate limit, one obtains the Fourier transform of
a function F on R

(1.72) F̂ (k) =

∫

R

F (x)e2ikx dx

Here we have used a special normalization of 2ikx in the exponent of the exponential
function, which is maybe unusual but convenient for the discussions to follow.

Now consider F ∈ l2(Z, D), its truncations F≤n and their nonlinear Fourier

transforms
︷︸︸︷
F≤n = (an, bn). Then we have the recursion equation

(an(z), bn(z)) = (an−1(z), bn−1(z))
1

1− |Fn|2
(1, Fnz

n)

Subtracting (an−1, bn−1) on both sides we obtain

(an(z), bn(z))− (an−1(z), bn−1(z))

= (an−1(z), bn−1(z))

[
1

1− |Fn|2
(1, Fnz

n)− (1, 0)

]

A similar type of limiting process as in the linear case, leads to an expression for the
nonlinear Fourier transform on R. The discrete variable n becomes a continuous
variable x ∈ R, and the variable z becomes e2ik for some real k, and we obtain

∂

∂x
(a(k, x), b(k, x)) = (a(k, x), b(k, x))(0, F (x)e2ikx)

In case of compactly supported F , solutions (a, b) to this ordinary differential equa-
tion are constant to the left and to the right of the support of F . We denote these
constant values by (a(k,−∞), b(k,−∞)) and (a(k,∞), b(k,∞)). To obtain the non-
linear Fourier transform, we set the initial value condition

(a(k,−∞), b(k,−∞)) = (1, 0)

and then define ︷︸︸︷
F (k) = (a(k,∞), b(k,∞))

We review how the linear Fourier transform is used to solve linear constant
coefficient PDE. Our example is the Cauchy problem for the Airy equation. Thus
the problem is to find a solution F (x, t) to the Airy equation

Ft = Fxxx

(where a variable in the index denotes a partial derivative) with the initial condition

F (0, x) = F0(x)

for some given function F0. Taking formally the linear Fourier transform of F in

the x variable one obtains a function F̂ (t, k) satisfying

F̂t = (−2ik)3F̂ = 8ik3F̂

F̂ (0, k) = F̂0(k)
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For fixed k this is an ordinary differential equation in t which has the solution

F̂ (t, k) = e8ik
3tF̂0(k)

Taking the inverse Fourier transform, one obtains

F (t, x) = (e8ik
3tF̂0(k))̌

Aanlogously, the nonlinear Fourier transform can be used to solve certain non-
linear partial differential equations. As an example we discuss the Cauchy problem
for the modified Korteweg-de Vries (mKdV)

(1.73) Ft = Fxxx + 6F 2Fx

F (0, x) = F0(x)

Observe that the mKdV equation is a perturbation of the Airy equation by the
nonlinear term 6F 2Fx.

We take the nonlinear Fourier transform of the initial data:
︷︸︸︷
F0 (k) = (a(k), b(k))

Then the solution to the mKdV equation is formally given by

(1.74)
︷︸︸︷
F (t, k) = (a(k), e8ik

3tb(k))

Therefore, safe for the task of taking a nonlinear Fourier transform and an inverse
nonlinear Fourier transform, this is an explicit solution.

We outline a proof of (1.74) on a formal level. The argument can be made
rigorous in approriate function spaces.

A Lax pair is a pair of time dependent differential operators L(t), P (t) in spatial
variables such that L is selfadjoint, P is anti-selfadjoint, and

d

dt
L(t) = [P (t), L(t)] = P (t)L(t)− L(t)P (t)

This Lax pair equation implies that eigenvectors of L are preserved under the flow
of P . More precisely, this means that if we have a solution φ to the evolution
equation

d

dt
φ(t) = P (t)φ(t)

and at time t = t0 we have

L(t0)φ(t0) = λφ(t0)

then we also have
L(t)φ(t) = λφ(t)

for all t. Namely,
d

dt
[Lφ− λφ] = [P,L]φ+ LPφ− λPφ

= P [Lφ− λφ]

Thus if Lφ− λφ vanishes for some t0, then it vanishes for all time.
We introduce the Lax pair which is useful for the mKdV equation. The op-

erators L and P are two by two matrices of differential operators. For some real
function F (t, x) define the selfadjoint operator

L(t) =

(
0 −i( ∂

∂x + F (t, x)
i(− ∂

∂x + F (t, x) 0

)
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where F denotes the operator of multiplication by F . We remark that this operator
is called a Dirac operator, since it is a square root of a Schrödinger operator:

L2(t) =

(
− ∂2

∂x2 + Fx + F 2 0

0 − ∂2

∂x2 − Fx + F 2

)

Thus L2 separates into two operators that are of Schrödinger type.
We consider the eigenfunction equation for L:

Lφ = kφ

If we make the ansatz

(1.75) φ(t, k, x) =

(
a(t, k, x)eikx + b(t, k, x)e−ikx

a(t, k, x)eikx − b(t, k, x)e−ikx

)

then the eigenfunction equation for L turns into the ordinary differential equation

∂

∂x
(a, b) = (a, b)(0, F e2ikx)

used to define the nonlinear Fourier transform.
Define the anti-selfadjoint operator P = P (t) by

P =

(
4 ∂3

∂x3 + 3
{

∂
dx , Fx + F 2

}
− 4(ik)3 0

0 4 d3

dx3 + 3
{

∂
∂x ,−Fx + F 2

}
− 4(ik)3

)

where {A,B} = AB+BA denotes the anti-commutator of A and B. The operator
P (t) depends on the parameter k, but only through an additive multiple of the
identity matrix which vanishes upon taking a commutator.

Using some elementary algebraic manipulations, the Lax pair equation

d

dt
L = [P,L]

turns into the mKdV equation (1.73) for F . Thus L and P as above are a Lax pair
precisely when F satisfies the mKdV equation.

With the ansatz (1.75), the evolution equation for φ,

d

dt
φ = Pφ

becomes a partial differential equation for a and b.
We shall now assume that F (t, x) is compactly supported in x and remains in

a fixed compact support as t evolves. This assumption is only good for the purpose
of an exposition of the main ideas. In reality no solution to the mKdV equation
remains supported in a compact set under the time evolution, so in a rigorous
argument one needs to discuss asymptotic behaviour of the solutions for large |x|.

To the right and to the left of the support of F , the functions a and b are
constant and we write a(t, k,±∞) and b(t, k,±∞) for the values to the right and
left of the support of F . Outside the support of F , the partial differential equations
for for a(t, k,±∞) and b(t, k,±∞) become

d

dt
a(t, k,±∞)eikx =

[
4
d3

dx3
− 4(ik)3

]
a(t, k,±∞)eikx

d

dt
b(t, k,±∞)e−ikx =

[
4
d3

dx3
− 4(ik)3

]
b(t, k,±∞)e−ikx
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The right-hand side of the equation for a vanishes and thus we obtain that a remains
constant:

a(t, k,±∞) = a(0, k,±∞)

The equation for b reduces to

d

dt
b(t, k,±∞) = 8ik3b(t, k,±∞)

which has the solution

b(t, k,±∞) = b(0, k,±∞)e8ik
3t

We now specialize to the solutions to the eigenfunction equation for L such
that

a(t, k,−∞) = 1

b(t, k,−∞) = 0

This is consistent with the evolution calculated above. Thus we have
︷︸︸︷
F (t, k) = (a(t, k,∞), b(t, k,∞)) = (a(0, k,∞), b(0, k,∞)e8ik

3t)

This is the explicit form of the solution F to the mKdV equation that we claimed.

1.22. Gaussian processes

We shall very briefly discuss the link between the nonlinear Fourier transform
and stationary Gaussian processes. A detailed account on the subject of Gaussian
processes can be found in [12].

Probability theory in the view of an analyst is a theory of measure and in-
tegration where the underlying measure spaces are hidden as much as possible in
language and notation. For probabilists’ intuition, the underlying measure spaces
are uninteresting. Many statements in probability theory are fairly independent of
the special structure of the underlying measure space.

A random variable f is a measurable function on some measure space of total
measure 1. Analysts would write f(x) referring to an element x of the underlying
measure space. The integral of this function over the measure space is called the
mean or the expectation E(f) of f . Analysts would write

∫
f(x)dµ(x) referring to

the measure µ. A collection of random variables living on the same measure space
is called a family of random variables. The measure of a set in the measure space
is called the probability P of the set. Inded, since the set is usually discribed by
conditions on one or several random variables, the set is called the “event” that the
random variables satisfy these conditions.

For example, one writes

P (f > λ)

for the measure µ({x : f(x) > λ}) and calls it the probability of the event f > λ.
The function P (f > λ) in λ is called the distribution function of the random variable
f .

A real valued random variable is called Gaussian, if

P (f > λ) = c

∫ ∞

λ

e−(s−s0)
2/2σ ds
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where c is normalized so that P (f > −∞) = 1. Observe that for a Gaussian
variable, the distribution function is determined by the mean value E(f) = s0 and
the variance

E((f − E(f))2) = E(f2)− E(f)2 = σ

A Gaussian family indexed by Z consists of a family of random variables

fn, n ∈ Z

such that each fn is Gaussian distributed with mean zero and also each finite linear
combination

f =
∑

n∈Z
γnfn

is Gaussian distributed.
In particular, E(fn) = 0 for all n. By linearity of the expectation, E(f) = 0 for

all finite linear combinations f as above. Therefore, the distribution of each linear
combination f is determined by the variance E(f2). By linearity of the expectation,
we have the formula

E(f2) =
∑

n,m∈Z
γnγmE(fnfm)

On the space of finite sequences (γn), identified as random variables f as above,
we can define an inner product of two elements f and f ′ by E(ff ′). It is positive
definite since E(f2) > 0 for all f . Let H be the Hilbert space closure of this inner
product space. The elements of this Hilbert space are again random variables.

Orthogonality in this space translates to the probabilistic notion of indepen-
dence. Independence means a factorization of the distribution functions:

P (f > λ, f ′ > λ′) = P (f > λ)P (f ′ > λ′)

If two random variables are orthogonal in H , then

E(η1η2) = 0 = E(η1)E(η2)

and E(η1η2) = E(η1)E(η2) is a necessary condition for independence. In the setting
of Gaussian variables, it is also sufficient for independence.

If H ′ is a subspace of H , then every f ∈ H can be split as

f = f ′ + f ′′

where f ′ is in H and f ′′ is in the orthogonal complement of H ′. The probabilistic
interpretation is that f ′ is known if all elements in H are known, while f ′′ is
independent of any knowledge about H ′.

A stationary Gaussian process is one for which

E(fnfm) = Q(n−m)

for some sequence of numbers Q ∈ l∞(Z). Equivalently, a Gaussian process is

stationary if it is equal to the shifted proces f̃n = fn−1. In particular, the length
of the vectors fn in a stationary Gaussian process is independent of n.

We observe that Q(n) = E(fn, f0) ≤ E(f0, f0) = Q(0) for all n. This is a
special case of the property

∑

n,m

Q(n−m)γnγm ≥ 0

for all finite sequences γn. Indeed, the left-hand side has the meaning of E(f2) for
some f and is therefore non-negative. This property is called positive definiteness
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of the sequence Q. The following theorem by Bochner characterizes all positive
definite sequences.

Theorem 1.43. A nonzero sequence Qn satisfies
∑

n,m

Q(n−m)γnγm ≥ 0

for all real valued finite sequences γn if and only if it is the Fourier series of a
positive measure on T:

Qn =

∫

T

zn dµ

We only prove one direction of the theorem. Assume Qn is the Fourier series
of a positive measure. Then

∑

n,m

Q(n−m)γnγm =
∑

m,n

∫
zn−mγnγm dµ

=

∫
|
∑

n

γnz
n|2 dµ ≥ 0

This proves one direction of Bochner’s theorem.
Now there is an evident isometric isomorphism from H to L2(µ). It maps the

elements fn to the function zn. Isometry is seen as follows:

E(fn, fm) = Q(n−m) =

∫
zn−m dµ = 〈zn, zm〉L2(µ)

Surjectivity follows from the definition of L2(µ) as the closure of the linear span of
the monomials zn.

The space L2(µ) takes us into the setting of orthogonal polynomials on the circle
T. Indeed, by reflection we consider polynomials in z−1 and have the following
immediate consequence of Szegö’s theorem:

Corollary 1.44. The past, namely the span of f−1, f−2, . . . determines the
present f0, i.e., f0 is in the closed span of f−1, f−2, . . . if and only if

∫

T

log |w| = −∞

where w is the absolutely continuous part of µ.

1.23. Appendix: Some Background material

This lecture has two sections. The first section gives some background material
on boundary regularity of harmonic and holomorphic functions on the unit disc.
This section contains several theorems that are important for a rigorous develop-
ment of the nonlinear Fourier transform.

The second section recalls some facts about the group Sl2(R) and the isomor-
phic group SU(1, 1). This section is meant to help understand some of the algebraic
manipulations done in this lecture series on a group theoretical level, but otherwise
is somewhat irrelevant for the overall understanding of the lecture series.
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1.24. The boundary behaviour of holomorphic functions

We shall study classes of holomorphic functions on the unit disc defined by
some size control.

For example, for any monotone increasing function φ : R≥0 → R≥0 we can
consider the space of holomorphic functions

(1.76) {f : sup
r<1

∫

T

φ(|f(r·)|) <∞}

Here
∫
T
denotes the integral over the circle T, i.e., the set of all z ∈ C with |z| = 1,

with the usual Lebesgue measure on T normalized to have total mass 1.
∫

T

f :=
1

2π

∫ 2π

0

f(eiθ) dθ

Thus for fixed r the integral in (1.76) has the meaning of an average over the
circle of radius r about the origin.

We shall mainly be interested in φ(x) = xp (producing Hardy spaces) and
φ(x) = log+(x) = max(0, log |x|) (producing Nevanlinna class).

The largest space we consider and the space containing all functions we shall
be concerned with is the Nevanlinna class:

N = {f : sup
r<1

∫

T

log+ |f(r·)| <∞}

This space can be identified with a space of almost everywhere defined functions
on the circle, as the following theorem describes:

Theorem 1.45. If f ∈ N , then f has radial limits

lim
r→1

f(rz)

for almost every z in T. (Here r is real and less than 1.) If the radial limits of
two functions f1, f2 ∈ N coincide on a subset of T of positive measure, then the
functions are equal.

The proof of this theorem will be discussed below.
The uniqueness result is not special to Nevanlinna class, provided one passes

to the notion of nontangential limits. A precise version of this statement is given in
the theorem below. The previous theorem also holds with “nontangential” in place
of “radial”, but we shall not need this.

Theorem 1.46. Assume that two holomorphic functions on the disc each have
nontangential limits on sets of positive measure, and the limits coincide on a set of
positive measure, then the two functions are equal.

This statement is false if “nontangential” is replaced by “radial”.

For a proof of this theorem and a discussion of nontangential limits see Garnett’s
book [16].

Thus we can talk about “the holomorphic extension” of a function defined on
a positive set on T, provided such an extension exists.

One of the reasons for us to try to identify holomorphic functions with their
limits on the boundary is that on the Riemann sphere, the circle T is the boundary
of the unit disc about 0 and the boundary of the unit disc about ∞. We would
like to study simultaneously and compare the spaces of holomorphic functions on
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both discs. The boundary values of the functions on T are the only link between
the two spaces.

While knowledge of the real part of a holomorphic function on the disc is
sufficient to determine the imaginary part up to an additive constant, the above
uniqueness result heavily relies on the fact that we know the limits of both the
real and imaginary part. In particular, the analogue statement fails for harmonic
functions, as the example Re( z+1

z−1 ) shows, which has limit 0 almost everywhere on
the circle T but clearly is not zero.

Thus the notion of harmonic extension cannot be used as freely as that of
holomorphic extension, indeed it cannot be used easily in the context of functions
defined almost everywhere. However, harmonic extensions of measures are well
defined. This is described in the following theorem:

Theorem 1.47. Given a complex Borel measure µ on T (an element in the dual
space of the space of continuous functions with the supremum norm), the function

f(z) =

∫
Pz dµ

where Pz is the Poisson kernel,

Pz(ζ) = Re

(
ζ + z

ζ − z

)

is a harmonic function on the disc. Radial limits of this function exist almost
everywhere and coincide almost everywhere with the density f ∈ L1 of the absolutely
continuous part of µ, i.e.

µ =
1

2π
fdθ + µs

where µs is singular with respect to Lebesgue measure dθ

Proof. The kernel Pz is harmonic in z ∈ D, and thus the superposition∫
Pz dµ of harmonic functions is again harmonic (use the mean value characteriza-

tion of harmonicity and Fubini’s theorem). To study the existence and behaviour of
radial limits, it suffices to consider separately the cases of µ absolutely continuous
and µ singular with respect to Lebesgue measure. If µ is absolutely continuous,
µ = 1

2πfdθ, we estimate

|f(z)−
∫

T

Przf | ≤ |f(z)− g(z)|+ |g(z)−
∫

T

Przg|+ |
∫

T

Prz(f − g)|

≤ |f(z)− g(z)|+ |g(z)−
∫

T

Przg|+ C|M(f − g)(z)|

whereM is the Hardy - Littlewood maximal function, which up to a constant factor
C dominates the integration against the Poisson kernel independently of r, and g
is some appropriate smooth function. If g is sufficiently close to f in L1 norm,
then outside a small set the difference |f − g| is small. Outside a possibly different
small set, M(f − g) is small by the Hardy - Littlewood maximal theorem. The
term g(z)−

∫
T
Przg can be made small by choosing r close to 1 depending on the

choice of the smooth function g. Making this argument rigorous using the correct
quantifyers one proves convergence of

∫
T
Przf to f(z) outside a set of arbitrarily

small measure, i.e., almost everywhere.
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If µ is singular, one proves using a Vitali - type covering lemma that µ has
vanishing density almost everywhere,

lim
h→0

µ([t− h, t+ h])/2h = 0

for almost every t. For points t of zero density one then observes that Pr ∗ f(t)
tends to 0. �

Observe that if µ is absolutely continuous with a continuous density function,
then one can prove that the harmonic function f defined in the above theorem has
continuous extension to D ∪ T. On T the function f coincides with the density
of µ. Moreover, by the maximum principle, this extension is the unique harmonic
function which has continuous extension to T coinciding with the density function
of µ.

The following is a variant of the above theorem:

Theorem 1.48. Given a real measure µ on T, the function

f(z) =

∫
Im(

ζ + z

ζ − z
) dµ(ζ)

is a harmonic conjugate to the function defined in the previous theorem in the unit
disc. Its radial limits exist almost everywhere and are equal almost everywhere to
the Hilbert transform of µ.

Proof. Harmonicity (holomorphicity) follows again by characterizing harmonic
(holomorphic) functions by mean value (Cauchy) integrals and then using Fubini’s

theorem and the fact that the kernel ζ+z
ζ−z is holomorphic. To see that radial lim-

its exist, one has to study convergence of the conjugate Poisson kernels, which
amounts to estimating maximal truncated singular integrals. We leave details as
an exercise. �

There is a nice intrinsic characterization of those harmonic functions which are
extensions of positive measures, due to Herglotz [17].

Theorem 1.49. Any positive harmonic function is the harmonic extension of
a unique positive measure.

We shall sometimes call a holomorphic function whose real or imaginary part
is positive a Herglotz function.

A real harmonic function is the extension of a measure if it can be written as
f1 − f2 with two positive harmonic functions.

Proof. If f is a positive harmonic function, then for each radius r there is a
positive measure µr on T with density f(rz). Let µ be a weak-∗ limit as r → 1 of
an appropriate subsequence of this collection of measures (each of them has total
mass equal to f(0) by the mean value property). By weak convergence, the Poisson
extension of µ is equal to the pointwise limit of the Poisson extensions of µr, and
thus equal to f . This proves existence of a measure whose Poisson extension is f . If
µ1 and µ2 are two measures with the same harmonic extension, then the difference
measure has vanishing Fourier coefficients (this follows from calculating the Taylor
coefficients of the harmonic extension at 0), and thus is zero. �
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Just as the real and imaginary parts of boundary values of a holomorphic
function do not individually determine the function, neither does the absolute value
of the boundary values. Indeed, the absolute value of the boundary value function
a.e. does not even in general determine membership in a space. For Nevanlinna
class, observe that Fatou’s theorem implies (let f also denote the boundary value
function on the circle)

∫

T

log+ |f | ≤ sup
r<1

∫

T

log+ |f(r·)|

Thus ∫

T

log+ |f | <∞

is a necessary condition for f to belong to N . But it is not a sufficient condition
since Fatou’s inequality can be strict and finiteness of∫

log+ |f |

does not imply membership in Nevanlinna class. An example is the function
exp(1+z

1−z ), which has absolute value 1 almost everywhere on the circle T but is
not Nevanlinna class.

Similar statements hold for most function spaces, in particular the Hardy
spaces.

Let us note another application of Fatou’s theorem to Nevanlinna class func-
tions.

Lemma 1.50. If f ∈ N and f 6= 0, then log |f | is absolutely integrable on T.

The point of the lemma is that originally we control only the positive part of
log |f |, but via the lemma we also control the negative part.

Proof. By dividing by a power of z if necessary, we may assume f(0) 6= 0
(here we use f 6= 0). As log |f(z)| is subharmonic in the disc, we have

log |f(0)| ≤
∫

log |f(r·)| =
∫

log+ |f(r·)| +
∫

log− |f(r·)|

The first inequality is a consequence of subharmonicity and can be shown by Green’s
theorem (analoguously to the proof of the mean value property of harmonic func-
tions), using the fact that the distributional Laplacian of log |f | is a positive measure
(instead of zero as for harmonic functions).

Using the Nevanlinna class assumption we observe

log |f(0)| − C ≤
∫

log− |f(r·)|

and so Fatou’s lemma implies

log |f(0)| − C ≤
∫

log− |f |

�

Observe that this lemma also proves the uniqueness part of Theorem 1.45.
Since the difference of two Nevanlinna functions is Nevanlinna again, it suffices to
prove that if the limit function vanishes on a set of positive measure, then it is
constant 0. However, if the limit function vanishes on a set of positive measure,
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then log |f | is not integrable on the circle, so by the lemma f is identically equal to
0.

When estimating the size of holomorphic functions, it is natural to consider
the logarithm of |f |, which produces a harmonic function if f is zero free and a
subharmonic function if f has zeros. Thus Nevanlinna class functions are related
to harmonic extensions because for zero free Nevanlinna functions log |f | is the
harmonic extension of a measure.

Lemma 1.51. If f ∈ N then f can be factored as f1f2 where f1 is an analytic
function in D bounded by 1 and log |f2| is the harmonic harmonic extension of a
measure. If f has no zeros, we may pick f1 = 1.

Proof. As before, we consider the measures µr defined by
∫

T

gdµr =

∫

T

g(·) log+ |f(r·)|

By the Nevanlinna property of f , these measures have bounded total mass (in-
dependent of r), and thus there is a weak-∗ limit, µ, of a subsequence of these
measures. Let f2 be a function in N such that log |f2| is the harmonic extension
of µ. Using subharmonicity of f and a limiting process, one can show that f2
dominates f , thereby proving the above theorem.

If f has no zeros, then f/f2 has no zeros, and log(f/f2) is a holomoprhic
function with negative real part. Thus its real part is the harmonic extension of a
negative measure. Thus log(f) is the harmonic extension of a measure. �

We can now prove existence of radial limits almost everywhere for any Nevan-
linna function f . It suffices to prove existence for f1 and f2 where f = f1f2 is a
splitting as in the last lemma. By adding a constant to f1, we may assume that
f1 has positive real part. For such functions we proved existence of the radial lim-
its almost everywhere before. The function f2 has no zeros, and thus log(f2) is
holomorphic and its real part is positive. Thus radial limits of f2 exist.

The bounded function f1 cannot be omitted from the last theorem, because
f may have zeros. Using Blaschke products, one may choose f1 to be a possibly
infinite Blaschke product. This can be deduced from the following lemma:

Lemma 1.52. Let f ∈ N and let zn be the zeros of f (multiple zeros appear in
the sequence according to multiplicity). Then

∑

n

(1 − |zn|) <∞

Conversely, if zn is any such sequence with 0 appearing m times, then the (Blaschke)
product

B(z) = zm
∏

zn 6=0

−zn
|zn|

z − zn
1− zzn

converges uniformly on compact subsets of D to a bounded analytic function with
exactly the zeros zn. The radial limits of B on T have modulus 1 almost everywhere
on T.

Proof. See Garnett’s book [16]. �
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We define an outer function to be a Nevanlinna function without zeros such
that log |f | is the harmonic extension of an absolutely continuous measure. Thus
log |f | is the Poisson integral of its a.e. radial limits.

Outer functions are very special functions: they are determined (up to a con-
stant phase factor) by the modulus of their limits almost everywhere.

This relates to the following lemma, which is a form of an “inverse Fatou” for
outer functions.

Lemma 1.53. If the boundary value functions of an outer function is in Lp,
then the outer function is in Hp.

Proof. By Poisson extension we have

log |f(z)| =
∫
Pz(.) log |f(.)|

By convexity of the function erx and Jensen’s inequality we have

|f(z)|p ≤
∫
Pz(.)|f(.)|p

This implies that the restrictions of f to smaller circles are uniformly in Lp. �

We will use the following criterion for outerness.

Lemma 1.54. Let f and 1/f be in Hp(D) for some p > 0. Then f is outer.

Proof. Since f and 1/f are hoplomoprhic in D, we can choose a branch of
log(f) which is holomorphic in D. The Lp estimates for f and f−1 can be used to
obtain L2 estimates of log(f) on circles of radius r about 0, uniformly in r. Thus
log(f) in H2(D), which implies it is the Poisson extension of its boundary values.
This implies that f is outer. �

1.25. The group Sl2(R) and friends

The general linear group Gl2(C) consists of all 2×2 invertible complex matrices
with the usual matrix product as group multiplication.

This group acts on the complex vector space C2 by linear transformations
(
u
v

)
→
(
a b
c d

)(
u
v

)

Indeed, Gl2(C) can be identified as the group of linear automorphisms of C2. The
projective (complex) line P 1 is the set of all complex lines in C2 of the form

Lα,β = {(αz, βz), z ∈ C}
with parameters (α, β) and αβ 6= 0.

The projective line P1 is a complex manifold with two charts C → P 1 given by
z → Lz,1 and z′ → L1,z′ . The first chart misses only the line L1,0 and the second
chart misses only the line L0,1. The transition between the two charts is given by
z = 1/z′.

Thus P 1 is isomorphic to the Riemann sphere. We shall mainly use the first
chart described above and write z = ∞ for the line L1,0.

The action of Gl2(C) on P1 is then given by the linear fractional transformation

z → az + b

cz + d
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Thus the action is by biholomorphic maps (Möbius transforms) of the Riemann
sphere. Indeed, every biholomorphic self map of the Riemann sphere has to be
a fractional linear transformation (exercise), and thus be given by action of an
element in Gl2(C). Thus we have a surjection of Gl2(C) onto the set of Möbius
transforms of the Riemann sphere.

Two elements in Gl2(C) give the same Möbius transform, if and only if they
are scalar multiples of each other. (The trivial action only comes from the scalar
matrices). The group of matrices in Gl2(C) with determinant one is called Sl2(C).
Since every matrix can be normalized to have determinant one (if det(g) = λ, then
det(νg) = 1 if ν2 = λ−1, an equation that can always be solved for ν in the complex
numbers), Sl2(C) still covers all Möbius transforms. However, the two elements id
and −id of Sl2(C) both map onto the identity Möbius transform. Thus Sl2(C) is
a double cover of the group of Möbius transforms. The quotient of Sl2(C) by the
central subgroup with two elements id and −id is called PSL2(C). The group of
Möbius transforms of the sphere is isomorphic to PSL2(C).

The group of Möbius transforms which leave the real line (a great circle) on
the Riemann sphere invariant, has to come from an automorphism of C2 which
maps real vectors in C2 to real vectors, and thus has to come from a real linear
automorphism of R2.

These maps precisely give the matrices in Gl2(C) with real entries. The group
of these matrices is Gl2(R). This group has two connected components, the com-
ponent of elements with positive determinant and the component of elements with
negative determinant. The elements of the first component map the upper half
plane (positive imaginary part) to the upper half plane, the elements of the other
component map the upper half plane to the lower half plane. The group of matrices
in Gl2(R) with determinant 1 is called Sl2(R). The group can be identified as a
double cover of all biholomorphic self maps of the upper half plane. The quotient
by the central subgroup of two elements is called PSl2(R).

By conformal equivalence, more precisely by a rotation of the Riemann sphere,
the Möbius transforms of the upper half plane correspond to the Möbius transforms
on the unit disc D = {z : |z| < 1}. The latter are matrices in Sl2(C) which leave
the set of vectors of the form (eiφz, z) with φ ∈ R invariant. These vectors are
exactly the null vectors of the quadratic form

B(u, v) = |u|2 − |v|2

A linear map preserving the null vectors of this form has to leave the whole quadratic
form invariant up to a scalar multiple. By the determinant constraint, this multiple
has to be 1 or −1, again corresponding to the maps which map inside of the unit
circle to inside, or inside to outside respectively. The matrices in Sl2(C) which
leave B invariant are precisely those that can be written in the form

(
a b

b a

)

with |a|2 − |b|2 = 1. These matrices form the group SU(1, 1). It is a double cover
of PSU(1, 1), which is SU(1, 1)/{id,−id}. By the above discussion this group is
isomorphic to Sl2(R), and an explicit isomorphism can be given by conjugating
with a Möbius transform mapping the upper half plane to the disc. An explicit
isomorphism is given by

Sl2(R) → SU(1, 1)
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(
a b
c d

)
→
(

(a+ d)/2 + i(b− c)/2 (a− d)/2 + i(b+ c)/2
(a− d)/2− i(b+ c)/2 (a+ d)/2− i(b− c)/2

)

Let us discuss eigenvalues of matrices in Sl2(R). The eigenvalues of a matrix
G in Sl2(R) satisfy the equation

λ2 − Tr(G)λ+ 1 = 0

and the trace, Tr(G), is a real number. For |Tr(G)| < 2, the two solutions are
conjugates; they are distinct and have modulus one. In this case we call the group
element elliptic. For |Tr(G)| = 2, there is a double root 1 or −1. Such group
elements (in general Jordan blocks) are called parabolic. For |Tr(G)| > 2, we have
two distinct real roots. Such group elements are called hyperbolic.

The Möbius transformation associated to a matrix in Sl2(C) will have two fixed
points on the Riemann sphere unless it is the identity transformation (which fixes
all points), or is a Jordan block and so has only one fixed point. For matrices in
SU(1, 1) or Sl2(R) the classification into elliptic, parabolic, or hyperbolic points
can be understood by the location of these fixed points relative to the domain (disc,
half plane).

The elliptic elements have a fixed point in the interior of the domain (disc, half
plane). Rotations of the unit disc are easy examples, but any fixed point is possible.
Parabolic Möbius transforms have a single fixed point on the boundary of the
domain. Horizontal translation of the upper half plane is an example. Hyperbolic
elements have two fixed points on the boundary. Multiplication of the upper half
plane by a positive scalar is such an example.

Intuitive geometric coordinates on SU(1, 1) are

(b/|a|, arg(a)) ∈ D ×R/2πZ

Observe that the modulus of b/|a| determines the modulus of a and b via the
constraint |a|2 − |b|2 = 1. The argument of b is equal to the argument of b/|a|,
and the argument of a is given. Thus the above coordinates indeed determinant a
and b. Since b/|a| lies in the open unit disc, the group SU(1, 1) can be visualized
as a solid open torus or equivalently an infinite cylinder in C × R where the last
coordinate is taken modulo 2π. The main axis b/|a| = 0 consists of the elements in
the compact subgroup of elements

(
eiφ 0
0 e−iφ

)

In Sl2(R) these elements correspond to the rotations
(

cos(φ) sin(φ)
− sin(φ) cos(φ)

)

Rotating about the main axis by an angle 2φ corresponds to multiplying b
by a phase factor e2iφ. This can be achieved by conjugating with the previously
displayed diagonal element of SU(1, 1). Thus rotating the torus about the main
axis is an inner automorphism.

Reflecting across the plane determined by requiring b to be real corresponds to
replacing b by its complex conjugate. This corresponds to transposing the matrix,
which is an anti-automorphism (it changes the order of multiplication). Using the
previous rotation symmetry, reflecting across any plane through the main axis is
an anti-automorphism.
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General Lie theory puts the tangent vectors at the identity element in one-
to-one correspondence with one parameter subgroups. We claim that any such
subgroup lies in the plane spanned by the tangent vector and the main axis. For
the compact subgroup along the main axis this is trivially evident. For any other
subgroup, observe that reflecting across this plane gives another one parameter
subgroup (these groups are commutative) with the same tangent vector, and thus
the reflected subgroup has to be the same as the original subgroup. Thus the
subgroup lies inside the plane.

Moreover, we claim that the subgroups are contained in traces of the form

(1.77) sin(arg(a))|a|/|b| = const

Which is to be read projectively.
Indeed it suffices to prove this for those subgroups with real b. Consider two

matrices in SU(1, 1) with parameters a, b and a′, b′ and assume b, b′ real. If the two
elements are in the same subgroup, than the off diagonal element of the product is
again real,

0 = Im(ab′ + ba′) = |a| sin(arg(a)b′ − |a|′ sin(arg(a′))b

This proves the claim.
If the modulus of the constant in (1.77) is less than one, the entire trace de-

termined by the above equation is contained in the solid torus. The entire trace is
a subgroup consisting of elliptic elements. The subgroup is compact. We remark
that the special subgroup consisting of the main axis of the infinite cylinder is only
special in the chosen coordinates. It is by inner automorphisms equivalent to any
of the other elliptic subgroups.

If the constant in (1.77) has modulus equal to one, the solution set of the
equation (1.77) meets the boundary of the solid torus. Intersecting with the open
torus, we obtain two connected components. The component containing the identity
element is a non-compact subgroup, the other component is −1 times this subgroup.
All elements in these groups and remainder class are parabolic.

If the constant has modulus larger than one, then the trace of the equation
intersected with the torus has again two components. On component is a subgroup
consisting of hyperbolic elements, the other component is −1 times the subgroup
and also consists of hyperbolic elements. (The two components are mapped onto
the same group in PSU(1, 1).)

If the constant is infinite, which means sin(arg(a)) = 0, then the trace consists
of two lines, one through the origin is a hyperbolic subgroup, the other one through
−1 is −1 times this subgroup.

Note that all automorphisms of the group leave the infinitesimal cone of para-
bolic elements near the origin invariant. The group acts naturally on its Lie algebra,
which is R3. Since the group leaves a cone invariant, it is easy to see that it acts
as SO(2, 1). Thus there is a map from Sl2(R) to SO(2, 1). The kernel of this map
consists of the identity matrix and minus the identity matrix, therefore there is an
embedding of PSL2(R) into SO(2, 1).

Exercise: If K is the compact subgroup of SU(1, 1) of diagonal elements, calcu-
late the residue classes SU(1, 1)/K and K\SU(1, 1). They are spirals in the solid
torus representing SU(1, 1).
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Lemma 1.55. If G ∈ SU(1, 1), then

‖G‖op = |a|+ |b|
log ‖G‖op = arccosh(|a|) = arcsinh(|b|)

Proof. The operator norm of G does not change if we multiply from the left
or from the right by an element in the subgroup of diagonal elements. Thus we may
assume that a and b are real and positive. Now the matrix is real and symmetric
and thus its operator norm is equal to the maximal eigenvalue. However, a basis of
eigenvectors is (1, 1) and (1,−1) so the eigenvalues are |a|+ |b| and |a| − |b|. This
proves the lemma. �
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2.1. Introduction

The linear Fourier transform on the integers can be defined as follows. If Fn ∈
l2(Z) is a square-summable sequence of complex numbers, then we can (formally,

at least) define the linear Fourier transform F̂ (z) on the unit circle T := {z ∈ C :
|z| = 1} by the formula

F̂ (z) =
∑

n∈Z
Fnz

n.

Strictly speaking, this summation is absolutely convergent only when Fn is in l1(Z),

but of course the Plancherel theorem guarantees that the map F 7→ F̂ can be
continuously extended from l1(Z) to l2(Z), and is in fact a unitary transformation
from l2(Z) onto L2(T) (where we normalize the measure on T to have total mass
one). We also remark that if F is supported on the discrete positive half-line

[0,∞) := {n ∈ Z : n ≥ 0}, then F̂ is in fact contained in the Hardy space H2(D)
of the unit disk D := {z ∈ C : |z| < 1}, and conversely. Similarly if F is supported

on the discrete negative half-line (−∞,−1] then F̂ is contained in the Hardy space
H2

0 (D∗) of the exterior disk D∗ := {z ∈ C : |z| > 1} ∪ {∞}, where H2
0 (D∗) denotes

those elements of H2(D∗) whose extension to D∗ vanishes at infinity.
The linear Fourier transform is of course useful for many tasks. We just mention

one of them here: if one wishes to solve the linear discrete Schrödinger equation1

∂tFn(t) = i(Fn+1(t) + Fn−1(t))

then one can easily verify the formula

(2.1) F̂ (t, z) = exp(i(z + z−1)t)F̂ (0, z).

Thus, if one knows how to compute Fourier transforms and inverse Fourier trans-
forms, one can solve the Cauchy problem for the linear discrete Schrödinger equation
(or indeed for any linear discrete equation) explicitly, say for initial data Fn(0) in
l2(Z).

The purpose of this paper is to generalize the above (very well-known) results
to the (Dirac) non-linear Fourier transform (NLFT) on the integers. The NLFT
will be defined on potentials Fn ∈ l2(Z) which obey the additional constraint that
|Fn| < 1 for all n; such potentials will be called admissible. Formally, the NLFT︷︸︸︷
F (z) of such a potential is defined for z ∈ T by the formula

(2.2)
︷︸︸︷
F (z) =

∏

n∈Z

1√
1− |Fn|2

(
1 Fnz

−n

Fnz
n 1

)
,

where the (non-commutative) product is interpreted from left-to-right, thus for-
mally we have ∏

n∈Z
Mn = . . .M−2M−1M0M1M2 . . . .

This infinite product is only absolutely convergent when F is in l1(Z), but we
will show (in analogy with the linear situation) that we may extend the non-linear

1It is traditional to also place a factor of −2iFn(t) on the right-hand side, but we have elected
not to do so here (or later on in (2.7)) in order to simplify our formulae slightly. In any event this
factor of −2iFn(t) can be restored simply by multiplying Fn(t) by e−2it.
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Fourier transform2 from l1(Z) to l2(Z) by developing a non-linear version of the
Plancherel theorem.

Thus the NLFT
︷︸︸︷
F (z) is a multiplicative analogue of the linear Fourier trans-

form F̂ (z), but takes values in the space of 2 × 2 complex matrices instead of the
complex numbers; the factor 1√

1−|Fn|2
ensures that this matrix has determinant 1.

In fact it must take the form

︷︸︸︷
F (z) =

(
a(z) b(z)

b(z) a(z)

)
,

where |a(z)|2−|b(z)|2 = 1; the functions a(z) and b(z) (or more precisely 1/a(z) and
b(z)/a(z)) are sometimes known as transmission and reflection coefficients. In fact,
as we shall see, these functions are closely connected with the scattering transform
of a discrete Dirac operator L = L[F ], defined as follows. Let L2(T) ⊕ L2(T) be

the space of pairs

(
α(ζ)
β(ζ)

)
of square-integrable functions on the unit circle3 T,

with inner product

〈
(
α1

β1

)
,

(
α2

β2

)
〉L2(T)⊕L2(T) :=

∫

T

α1α2 + β1β2.

We endow L2(T) ⊕ L2(T) with the orthonormal Fourier basis

(2.3) vn :=

(
ζn

0

)
; wn :=

(
0
ζ−n

)

and then define the linear operator L : L2(T) ⊕ L2(T) → L2(T) ⊕ L2(T) on the
Fourier basis vectors by the formulae

Lvn :=
√
1− |Fn|2vn+1 + Fnwn

Lwn+1 := −F ∗nvn+1 +
√
1− |Fn|2wn.

(2.4)

It is easy to check that L is well-defined and in fact extends to a unitary operator
on L2(T)⊕ L2(T), with inverse L−1 = L∗ given by

L−1vn+1 :=
√
1− |Fn|2vn − Fnwn+1

L−1wn := F ∗nvn +
√
1− |Fn|2wn+1.

(2.5)

In particular, the spectrum of L resides entirely on the unit circle. This fact will
ensure, for instance, that L has no bound states away from the unit circle, which
makes the analysis of these operators somewhat simpler than similar operators such
as Jacobi matrices. However, when F is slowly decaying (e.g. if it is admissible
but no better) it is still possible for L to have embedded bound states or singular
continuous spectrum on the circle; we shall see that this will cause some difficulties
with analyzing the NLFT.

2We do not however resolve the very interesting question of whether this infinite product
converges in a pointwise sense for almost every z when F is in l2(Z). This would be a non-linear
version of a famous theorem of Carleson [Terry: Supply reference! Maybe also discuss NL Walsh
case, Christ-Kiselev].

3We parameterize the circle here by ζ to distinguish it from the complex parameter z. The
relation will be given by z = ζ±2.
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The NLFT shares many features in common with the linear Fourier transform,
except of course that it is non-linear. When the potential F is very small, we in
fact have the Born approximation

(2.6)
︷︸︸︷
F (z) ≈

(
1 + 1

2P[0,+∞)|F̂ |2(z) F̂ (z)

F̂ (z) 1 + 1
2P(−∞,0]|F̂ |2(z)

)
,

which is easily obtained by discarding all terms of cubic and higher order in F . Here
P[0,+∞) is the Riesz projection that maps

∑
n∈Z cnz

n to
∑

n∈[0,+∞) cnz
n (i.e. the

orthogonal projection from L2(T) to H2(D), and similarly for P(−∞,0]. Later on
we shall see other common features, for instance the non-linear Fourier transform
enjoys many of the same symmetries as the linear Fourier transform and also has a
Plancherel identity. Moreover, just as the linear Fourier transform can be used to
solve the discrete linear Schrödinger equation, the non-linear Fourier transform can
be used to solve4 the discrete non-linear Schrödinger equation (or Ablowitz-Ladik
equation)

(2.7) ∂tFn = i(1− |Fn|2)(Fn−1 + Fn+1).

The factor (1−|Fn|2) will ensure that the property of being admissible (in particular,
that |Fn| < 1 for all n) is preserved by the flow (2.7). As is well known, this equation
is completely integrable, and in fact can be placed in Lax pair formulation with the
operator L defined above in (2.4); we review this fact in ???. As a consequence, we
can show (in analogy with (2.1), see also (2.6)) that

(2.8) b(t, z) = exp(i(z + z−1)t)b(0, z); a(t, z) = a(0, z)

whenever F solves the Ablowitz-Ladik equation (2.7). Initially we will only be able
to derive this for sufficiently fast decaying potentials F , but later on we will use a
continuity argument to extend this fact to all admissible solutions to (2.7).

In view of (2.8), one sees that one could solve (2.7) explicitly (for l2(Z) poten-
tials, for instance) if one knew how to compute the NLFT and its inverse for l2(Z).
The forward NLFT is straightforward, being given more or less explicitly by (2.2),
but the inverse NLFT is more difficult. When the potential F has sufficient decay
(e.g. is integrable), then the non-linear Fourier transform is a bounded function
of z, and one can use the inverse scattering methods of Gelfand-Levitan (based
on inverting Hankel operators) and Marcenko (based on solving a discrete integral
equation, basically a linear Fourier transform of the Gelfand-Levitan approach) to
invert the NLFT uniquely; for ease of reference we reproduce that result here. In
the special case when F is supported on a half-line one can also use a “layer strip-
ping” (or Schur algorithm) approach to recover the potential; this method works
even when F is admissible and no better. [Terry: insert references here!]

However when F is supported on the full line, and is admissible and no better,
then inversion becomes more difficult. In fact we show that it is possible to have
several potentials with the same NLFT. This phenomenon is partly due to the
presence of singular spectrum of the Dirac operator L (a fact which is only partially
detected by the scattering data a(z), b(z)), however even if one restricts to those
class of potentials F for which L has purely absolutely continuous spectrum, there
is still breakdown of uniqueness, in that it is still possible to find two distinct

4In fact, the NLFT can solve a number of discrete evolution equations, including a discrete
version of the modified KdV equation; see [Terry: insert Ablowitz-Ladik reference here].
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admissible potentials with the same NLFT. For Jacobi matrices, this phenomenon
was first observed by Yuditskii and Volberg [34].

Nevertheless, we are still able to obtain some results regarding the inverse
NLFT. First, by modifying the Hilbert space method introduced by Yuditskii and
Volberg, we are able to show that every set of scattering data a(z) and b(z) which
is “admissible” (specifically, that a(z) is an outer function on D, is positive real-
valued at the origin and |a(z)|2−|b(z)|2 = 1 almost everywhere on T) is the NLFT
of at least one admissible potential on the line. In fact we supply two methods for
giving such a potential, and the two potentials thus produced coincide if and only if
the solution to the inverse NLFT is unique. Indeed, these two potentials form the
two extreme solutions to the inverse NLFT; we will show in a very specific sense
that all other solutions lie “in between” these two extremes.

[Emphasize that this work is mostly self-contained despite touching on a number
of different fields.]

[Thank Camil, John Garnett, Barry Simon, anyone else?]

2.2. Functions on the circle, disk, and exterior disk

In this section we set out some standard notation for complex functions on the
disk and recall some known facts concerning these functions. A standard reference
for these facts is [16].

We will be considering various complex-valued or matrix-valued measurable
functions from the circle T := {z ∈ C : |z| = 1}, endowed with normalized circle

measure |dz|2π , thus
∫

T

f :=
1

2π

∫ 2π

0

f(eiθ) dθ.

Many of these functions will have holomorphic or meromorphic extensions to the
disk D := {z ∈ C : |z| < 1} or the exterior disk D∗ := {z ∈ C : |z| > 1} ∪
{∞}. We abuse notation and use z to denote the identity function z 7→ z, z−1

to denote its reciprocal z 7→ z−1, etc. Note from the Plancherel theorem that
the functions {zn}n∈Z form an orthonormal basis of L2(T). We define a (scalar)
Laurent polynomial to be a finite linear combination ĉ of integer powers of z, thus
ĉ =

∑
n∈Z cnz

n for some compactly supported sequence cn; such functions extend
of course to the punctured plane C−{0}, and extend also to 0 if c is supported on
[0,+∞) and to ∞ if c is supported on (−∞, 0].

We also shall need other circles (1 ± ε)T := {z ∈ C : |z| = 1 ± ε} close to
the unit circle T. We always give these circles normalized arclength measure, so
that the total mass of these circles is always 1. Observe from Cauchy’s theorem
that

∫
rT f =

∫
r′T f if f is holomorphic on an open neighborhood of the annulus

bordered by rT and r′T.
We will identify a function f on the circle T with its holomorphic extensions (if

they exist) to D orD∗ (possibly with singularities at 0 or∞), where these extensions
converge non-tangentially a.e. back to f on T. By the theorem of [??Riesz??] we
know that such extensions, if they exist, are unique. We also adopt the usual
convention of identifying two functions on T if they agree almost everywhere.

Given any (possibly infinite) interval [p, q] := {n ∈ Z : p ≤ n ≤ q} of the
integers, we let H2

[p,q] be the closed subspace of L2(T) generated by the orthonormal

basis {zn : n ∈ [p, q]}; note that this is the image of l2([p, q]) under the linear
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Fourier transform, and L2(T) = H2
(−∞,∞). In particular we can define the usual

Hardy spaces
H2(D) := H2

[0,+∞);H
2(D∗) := H2

(−∞,0]

together with their mean zero variants

H2
0 (D) := H2

[1,+∞);H
2
0 (D∗) := H2

(−∞,−1].

As is well known H2(D) consists of boundary values of holomorphic functions in
D which are uniformly in L2 on circles slightly smaller than the unit circle, while
H2

0 (D) is the codimension one subspace of H2(D) consisting of functions which
vanish at the origin; there are similar properties for H2(D∗) and H2

0 (D∗). Also
observe that H2

0 (D) (resp. H2
0 (D∗)) is the orthogonal complement of H2(D∗) (resp.

H2(D)) in L2(T).
If f is a complex-valued function on T, D, or D∗, we define the conjugate f∗

to be the function
f∗(z) := f(z−1);

thus if f is defined on T, D, or D∗, then f∗ is defined on T, D∗, or D respectively;
in particular, f ∈ H2(D) if and only if f∗ ∈ H2(D∗), etc. We note that the
conjugation operation preserves holomorphicity, and is a skew-linear involution.
On the circle T we of course have f∗(z) = f(z). We observe that the conjugate of
identity function z is z−1.

[Define Nevanlinna, Smirnov, outer]
A Herglotz function on D∗ is any holomorphic function f : D∗ → {z ∈ C :

Re(z) ≥ 0} from the unit disk to the right half-plane, normalized so that f(∞) = 1.
The Herglotz representation theorem (see e.g. [16]) shows that one can associate
to each Herglotz function f a unique probability measure µ on T such that

f(z) =

∫

T

z + eiθ

z − eiθ
dµ(eiθ)

for all z ∈ D∗. Furthermore, f lies in the Hardy space Hp(D∗) for all 0 < p < 1
(but not necessarily at p = 1!) and thus has non-tangential limits a.e. on T; indeed,

we have Ref(z) = dµac

|dz|/2π (z) for almost every z ∈ T, where µac is the absolutely

continuous component of µ and |dz|2π is normalized measure on T. Also, there exists
a real-valued distribution on T, which we shall call Hµ (H denoting the Hilbert
transform), such that µ+ iHµ is the weak limit of f ; in other words

lim
ε→0

∫

(1+ε)T

c(z)f(z) =

∫

T

c(z) dµ+ i

∫

T

c(z)Hµ

for any smooth function c(z) on a neighbourhood of T. In particular if c vanishes
on T then the left-hand side is zero, while if c is real-valued on T then

lim
ε→0

Re

∫

(1+ε)T

c(z)f(z) =

∫

T

c(z) dµ.

In particular we see that the defect

Re

∫

T

c(z)f(z)− lim
ε→0

Re

∫

(1+ε)T

c(z)f(z)

in the convergence of Re
∫
(1+ε)T c(z)f(z) is equal to

∫
T
c(z) d(µsc + µpp), where

µsc + µpp is the singular component of µ. Thus we can use the defect of integrals
on circles to detect the presence of singular measure.
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2.3. Matrix-valued functions on the disk

For any two complex functions a(z), b(z) defined a.e. on T, define the 2 × 2
matrix M [a, b] by

M [a, b] =

(
a b∗

b a∗

)
;

this is then a matrix-valued function defined almost everywhere on T. The space of
all such matrices is clearly a real vector space. It is also closed under multiplication:

(2.9) M [a−, b−]M [a+, b+] =M [a−a+ + b∗−b+, a
∗
−b+ + b−a+].

We say that M [a, b] is SU(1, 1)-valued if the determinant is identically 1 almost
everywhere on T, i.e. aa∗−bb∗ = |a|2−|b|2 = 1 on T. The space of SU(1, 1)-valued
matrix functions is a group with identity id =M [1, 0] and inverse

(2.10) M [a, b]−1 =M [a∗,−b].
Observe that in the event that M [a, b] can be holomorphically extended to D and
D∗, then the identity aa∗ − bb∗ = 1 must then still hold (by uniqueness of exten-
sions), but the identity |a|2 − |b|2 = 1 need not. We can a SU(1, 1)-valued Laurent
polynomial any SU(1, 1)-valued matrix function whose coefficients are all Laurent
polynomials.

For any SU(1, 1)-valuedM [a, b], we define the reflection coefficients r = r[a, b],
s = s[a, b] by

r :=
b

a
; s :=

b∗

a
.

Thus we have the pointwise estimate |r| = |s| < 1 almost everywhere on T.
Observe that the adjoint of M [a, b] is given by

M [a, b]∗ =M [a∗, b],

in particular the space of SU(1, 1)-valued matrices is closed under adjoint. The
space is similarly closed under transpose: M [a, b]t =M [a, b∗].

We now define matrix-valued non-linear analogues of the spaces L2(T), H2
[p,q],

H2(D), H2(D∗), H2
0 (D), and H2

0 (D∗). Define L2(T) to be the space of SU(1, 1)-
valued functions M [a, b] on the torus such that a extends to an outer function on
D with a(0) real and positive. Observe that since a is outer, the function 1/a is
also outer; in particular a has no zeroes in D. Since |a|2 = 1 + |b|2 ≥ 1 on T, we
thus see from the maximum principle that |1/a(z)| ≤ 1 for all z ∈ D. In particular
we have 1 ≤ a(0) < +∞; we shall refer to a(0) as the energy of M [a, b], and denote
it as E(M [a, b]) := a(0). Since a is outer and has magnitude greater than or equal
to 1, we see in particular that a is log-integrable in T with

0 ≤
∫

T

log |a| = log a(∞) < +∞.

Also we see that the phase arg(a) of a is the imaginary part of log a and thus can
be recovered from log |a| via the Hilbert transform. In particular, the phase of a
can be determined explicitly from the magnitude. We refer to elements M [a, b] in
L2(T) as scattering data; later we shall see that these elements are precisely the
non-linear Fourier transform (or scattering transform) of admissible potentials.

IfM [a, b] ∈ L2(T) is a scattering datum, then the reflection coefficients r = b/a,
s = b∗/a are bounded functions on T, and in particular lie in L2(T). We can then
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endow L2(T) with a somewhat artificial metric, writing

d(M [a, b],M [a′, b′]) := ‖ log |a| − log |a′|‖L1(T) + ‖r − r′‖L2(T) + ‖s− s′‖L2(T)

where r = b/a, s = b∗/a and similarly for r′, s′. This is clearly a metric on L2(T)
(recall that if |a| = |a′|, then a and a′ must have the same phase and are thus
equal), and can easily be seen to turn L2(T) into a complete metric space. Later
on, we shall prove that the NLFT is a continuous surjection from L2(Z;D) onto
L2(T), although it is not quite a bijection or a homeomorphism because there is
failure of injectivity.

For any finite interval [p, q] in the integers, we define the space H2
[p,q] to be the

space of all scattering data M [a, b] ∈ L2(T) such that a ∈ H2
[0,q−p] and b ∈ H2

[p,q].

This definition has to be modified for the half-infinite case, as a and b will no longer
lie in L2(T); instead we will use reflection coefficients. More precisely, we define
H2

[p,+∞) to be the space of scattering dataM [a, b] ∈ L2(T) where r ∈ H2
[p,+∞), and

H2
(−∞,q] to be the space of scattering data M [a, b] ∈ L2(T) where s∗ ∈ H2

(−∞,q].

We warn the reader that while H2
[p,+∞) ∩ H2

(−∞,q] contains H2
[p,q], the two spaces

are not equal; this is in fact a major contributor to the failure of uniqueness of the
NLFT on the integers.

We then define

H2(D) := H2
[0,+∞); H2(D∗) := H2

(−∞,0]; H2
0(D) := H2

[1,+∞); H2
0(D∗) := H2

(−∞,−1].

The spaces H2
[p,q] can be easily verified to be closed subspaces of L2(T) (mainly

because their linear analogues H2
[p,q] are closed subspaces of L2(T)). As we shall

see, the NLFT will be a homeomorphism from l2([p, q]) to H2
[p,q] for any finite or

half-infinite interval [p, q], but not quite for the full interval (−∞,∞).

2.4. The non-linear Fourier transform for compactly supported

potentials

Define an admissible potential to be any sequence F = (Fn)
∞
n∈Z in l2(Z) such

that |Fn| < 1 for all n. We call l2(Z;D) the space of all such potentials, which
we endow with the topology induced by l2(Z). If F ∈ l2(Z;D) is an an admissible
potential, we define the energy E(F ) to be the quantity

E(F ) :=
∏

n∈Z

1√
1− |Fn|2

;

observe that this product is absolutely convergent and 1 ≤ E(F ) < +∞.
We also define the transfer matrices5 Mn←n+1 by

(2.11) Mn←n+1 =
1√

1− |Fn|2
M [1, Fnz

n];

these are SU(1, 1)-valued Laurent polynomials on T, which then of course extend
to the punctured plane C−{0}. More generally, for any integers n′ > n, we define

(2.12) Mn←n′ :=
∏

n≤m<n′

Mm←m+1 =Mn←n+1Mn+1←n+2 . . .Mn′−1←n′ ;

5The reason for the arrow pointing left here is because of the convention that operators should
lie to the left of their operands; this will prevent the groupoid law (2.13) from being reversed.
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thus all the transfer matrices Mn→n′ are SU(1, 1)-valued Laurent polynomials. We
observe the groupoid law

(2.13) Mn←n′Mn′←n′′ =Mn←n′′

whenever n < n′ < n′′.
If F is compactly supported, then the transfer matrices M−N→N eventually

become constant as N → +∞, and so we can define M−∞←+∞ to equal this

constant value; we refer to this as the non-linear Fourier transform
︷︸︸︷
F of F . In

other words,
(2.14)︷︸︸︷
F :=M−∞←+∞ :=

∏

−∞<n<+∞
Mn←n+1 =

∏

−∞<n<+∞

1√
1− |Fn|2

M [1, Fnz
n].

Again, for compactly supported potentials we see that
︷︸︸︷
F is a SU(1, 1)-valued

Laurent polynomial.
Thus for instance, the non-linear Fourier transform of the zero potential Fn ≡ 0

is the identity function
︷︸︸︷
0 = M [1, 0], while the non-linear Fourier transform of a

Dirac mass Fnδn (where δn is the Kronecker delta at n) is

(2.15)
︷ ︸︸ ︷
Fnδn =

1√
1− |Fn|2

M [1, Fnz
n].

From the groupoid law we observe the multiplicativity property

(2.16)
︷ ︸︸ ︷
F1 + F2 =

︷︸︸︷
F1

︷︸︸︷
F2

whenever F1 is supported to the left of F2 (i.e. F1(n)F2(n
′) is non-zero only when

n < n′); this is a weak analogue of the additivity property F̂1 + F2 = F̂1 + F̂2 for
the linear Fourier transform. Note in fact that the two properties (2.15), (2.16)

could be used to define
︷︸︸︷
F for all compactly supported potentials.

We now record some useful symmetries of the non-linear Fourier transform,
which are analogues of the corresponding symmetries for the linear Fourier trans-
form.

Lemma 2.1. Let F be an admissible potential with compact support.

• (Phase rotation symmetry) If eiθ ∈ T and F ′ is the potential F ′n := eiθFn,
then ︷︸︸︷

F ′ =M [e−iθ/2, 0]
︷︸︸︷
F M [eiθ/2, 0],

or in other words b′(z) = eiθb(z) and a′(z) = a(z).
• (Translation symmetry) If k ∈ Z and F ′ is the potential F ′n := Fn−k, then

︷︸︸︷
F ′ =M [z−k/2, 0]

︷︸︸︷
F M [zk/2, 0]

or in other words b′(z) = zkb(z) and a′(z) = a(z).
• (Modulation symmetry) If eiα ∈ T and F ′ is the potential F ′n := einαFn,
then ︷︸︸︷

F ′ (z) =
︷︸︸︷
F (eiαz)

or in other words b′(z) = b(eiαz) and a′(z) = a(eiαz).
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• (Reflection symmetry) If F ′ is the potential F ′n = F ∗−n, then

︷︸︸︷
F ′ (z) =

︷︸︸︷
F (z)t

or in other words b′(z) = b(z)∗ and a′(z) = a(z).

The reader should verify that the above symmetries are consistent with the
Born approximation (2.6) and the corresponding symmetries for the linear Fourier
transform. Although we are currently only verifying these symmetries for com-
pactly supported potentials, they will easily extend to all admissible potentials by
a limiting argument once we show the continuity of the NLFT in the next section.

Proof. The phase rotation symmetry follows from the observation that

M ′n←n+1 =M [e−iθ/2, 0]Mn←n+1M [eiθ/2, 0]

for all n ∈ Z. The translation symmetry is similar. The modulation symmetry fol-
lows by direct expansion of both sides, and the reflection symmetry can be obtained
by observing that M ′n←n+1 =M t

−n←−n+1. �

We now give the nonlinear Plancherel theorem for compactly supported poten-
tials.

Proposition 2.2. Let [p, q] be any finite interval in the integers. Then the

map F 7→
︷︸︸︷
F is a homeomorphism from l2([p, q];D) to H2

[p,q], where H2
[p,q] was

defined in the previous section. Furthermore for every F ∈ l2([p, q]) we have the
Plancherel identity

E(
︷︸︸︷
F ) = E(F )

or in other words

(2.17)

∫

T

log |a| = log a(0) =
∏

n∈Z

1√
1− |Fn|2

.

This should be compared with the situation for the linear Fourier transform,
which maps l2([p, q]) unitarily to H2

[p,q]; observe also that (2.17) is consistent with

the Born approximation and with the linear Plancherel identity
∫

T

|F̂ |2 =
∑

n∈Z
|Fn|2.

One can also view (2.17) as a trace identity for the unitary operator L defined
earlier, but we will not pursue this viewpoint.

Proof. We induct on the cardinality of the interval [p, q]. When [p, q] is empty
the claims are vacuously true, and when p = q the claims can be verified by direct
inspection. Now suppose inductively that [p, q] has cardinality greater than 1, and
the claim has already been proven for all smaller intervals. The key is the following
lemma.

Lemma 2.3. Let [p1, q1], [p2, q2] be two finite intervals such that q1 < p2 (i.e.
[p1, q1] lies to the left of [p2, q2]. Then for any M [a1, b1] ∈ H2

[p1,q1]
and M [a2, b2] ∈

H2
[p2,q2]

, we have

M [a1, b1]M [a2, b2] ∈ H2
[p1,q2]
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and

(2.18) E(M [a1, b1]M [a2, b2]) = E(M [a1, b1])E(M [a2, b2]).

Proof. Using translation invariance we may take p2 = 0. WriteM [a1, b1]M [a2, b2] =
M [a, b]. Since the two factors on the left are SU(1, 1)-valued, so is the right factor,
thus |a|2 − |b|2 = 1. Also by (2.9) we have

a = a1a2 + b∗1b2 = a1a2(1 + r2s1)

where r2 = b2/a2, s1 = b∗1/a1. Since M [a2, b2] lies in H2
[0,q2]

, we see that r2 is

holomorphic on D and has magnitude strictly less than 1 on this disk. Similarly s1
is also holomorphic on D, is strictly less than 1, and vanishes at the origin. Thus
1 + r2s1 is holomorphic on the disk, bounded and bounded away from zero, and
equals one at the origin. Since a1, a2 are outer, this implies that a is also outer,
and that a(0) = a1(0)a2(0), which is (2.18). Finally, since aj is in H2

[0,qj−pj ]
and

bj is in H2
[pj ,qj ]

for j = 1, 2, one can easily see from (2.9) that a ∈ H2
[0,q2−p1]

and

bj ∈ H2
[p1,q2]

, and thus M [a, b] ∈ H2
[p1,q2]

as desired. �

From this lemma, (2.16) and induction we thus see that the NLFT maps
l2([p, q]) to H2([p, q]); this map is also clearly continuous from (2.14). Now we
prove that this map is injective on l2([p, q]). By translation invariance we may take
p = 0. Let F be any element of l2([0, q]); we write F = F0δ0 + F ′ where δ0 is the
Kronecker delta at 0, and F ′ ∈ l2([1, q]). By (2.16) we have

(2.19)
︷︸︸︷
F =

1√
1− |F0|2

M [1, F0]
︷︸︸︷
F ′ .

If we write
︷︸︸︷
F =M [a, b] and

︷︸︸︷
F ′ =M [a′, b′], we thus have

a =
1√

1− |F0|2
(a′ + F ∗0 b

′); b =
1√

1− |F0|2
(F0a

′ + b′).

Since a′ ∈ H2
[0,q−1] and b

′ ∈ H2
[1,q], we thus see that b extends holomorphically to

D and

a(0) =
1√

1− |F0|2
a′(0); b(0) =

F0√
1− |F0|2

a′(0).

In particular we have

(2.20) F0 =
b(0)

a(0)
= r(0).

In particular we can reconstruct F0 from
︷︸︸︷
F =M [a, b], and hence by (2.19) we can

recover
︷︸︸︷
F ′ from

︷︸︸︷
F . By the inductive hypothesis the NLFT is already injective

on l2([1, q]), and is hence also injective on l2([0, q]). [Christoph: should probably
mention layer stripping and/or the Szego algorithm here.]

Now we show the NLFT is also surjective from l2([p, q];D) to H2([p, q]), by
reversing the above injectivity argument. Again, we may take p = 0. Let M [a, b]
be any element of H2([0, q]). We define the complex number F0 by (2.20); note
that

F0 =
b(0)

a(0)
=

∫

T

b

a

and in particular |F0| < 1 (since |a|2 = 1 + |b|2 , and hence b/a| < 1, on T).
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We then define a′, b′ by the analogue of (2.19), namely

M [a, b] =:
1√

1− |F0|2
M [1, F0]M [a′, b′],

thus

(2.21) M [a′, b′] :=
1√

1− |F0|2
M [1,−F0]M [a, b]

and hence by (2.9)

(2.22) a′ =
1√

1− |F0|2
(a− F ∗0 b); b′ =

1√
1− |F0|2

(−F0a+ b).

We know that a ∈ H2
[0,q] and b ∈ H2

[0,q]; by (2.20) we thus see that b′ ∈ H2
[1,q]. At

first glance it seems that we can only place a′ in H2
[0,q], but (2.20) and an inspection

of the zq coefficient of the identity aa∗ − bb∗ = 1 shows that a − F ∗0 b has no zq

coefficient and thus a′ ∈ H2
[0,q−1]. Also we see that M [a′, b′] is SU(1, 1)-valued and

hence |a′|2 − |b′|2 = 1 on T. Evaluationg a′ at zero and using (2.20) we see that

a′(0) =
√
1− |F0|2a(0)

and in particular a′(0) is positive and real. Finally from the identity

a− F ∗0 b = a(1− F ∗0 r)

and noting that r is bounded by 1 on D we see that 1 − F ∗0 r is bounded and is
bounded away from zero, and thus a′ is outer. Thus M [a′, b′] ∈ H2

[1,q], and by

inductive hypothesis arises as the non-linear Fourier transform of a potential F ′

in l2([1, q]). By setting F = F0δ0 + F and using (2.16) we obtain M [a, b] =
︷︸︸︷
F ,

which proves surjectivity.
Note this argument also shows that the inverse of the NLFT from H2([p, q]) to

l2([p, q];D) is continuous; note that both spaces are finite-dimensional so the exact
nature of the topology on H2([p, q]) is not a concern. This completes the proof of
the Proposition. �

2.5. The non-linear Fourier transform on half-line potentials

We now extend the non-linear Fourier transform, defined in the previous sec-
tion for compactly supported potentials, to admissible potentials on the half-line
[0,+∞). If the potential is absolutely summable (i.e. in l1([0,+∞)) then the for-
mula (2.2) is absolutely convergent, but just as with the linear Fourier transform,
there is no obvious reason why this series should converge for potentials that are
merely admissible. However, the Plancherel identity (2.17) will allow us to make
the NLFT well-defined for such potentials, just as the linear Plancherel identity
does the same to the linear Fourier transform on l2(Z). Our main theorem here is

Theorem 2.4. Let F ∈ l2([0,+∞),D) be an admissible potential on [0,+∞),
and let F≤N be the restriction of F to [0, N ]. Then the non-linear Fourier trans-

forms
︷︸︸︷
F≤N form a Cauchy sequence in the complete metric space H2

[0,+∞) = H2(D).

In particular we may define the non-linear Fourier transform of F by the for-

mula
︷︸︸︷
F := limN→+∞

︷︸︸︷
F≤N . Furthermore, the NLFT is a homeomorphism from

l2([0,+∞);D) to H2(D).
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[Cite Sylvester here, mention Layer stripping.]

Proof. Let F ∈ l2([0,+∞);D) be an admissible potential on [0,+∞). From

Proposition 2.2 we see that
︷︸︸︷
F≤N lies in H2

[0,N ], and hence in H2(D). Now we

show that
︷︸︸︷
F≤N is a Cauchy sequence. Let 0 ≤ N < N ′. Then we can write

F≤N ′ = F≤N +F(N,N ′], where F(N,N ′] is the restriction of F to (N,N ′]. If we write
︷ ︸︸ ︷
F≤N ′ =M [a≤N ′ , b≤N ′ ], etc., then by (2.16) we have

(2.23) M [a≤N ′ , b≤N ′ ] =M [a≤N , b≤N ]M [a(N,N ′], b(N,N ′]]

In particular we have by (2.9) we have

(2.24) a≤N ′ = a≤Na(N,N ′](1 + s≤Nr(N,N ′]),

where s≤N = b∗≤N/a≤N , etc. Hence we have the pointwise estimate on T
∣∣log |a≤N ′ | − log |a≤N |

∣∣ ≤ log |a(N,N ′]|+ | log |1 + s≤Nr(N,N ′]||.
But since |s≤N | is bounded by 1, and r(N,N ′] has magnitude

√
1− |a(N,N ′]|−2, we

thus have6 ∣∣log |a≤N ′ | − log |a≤N |
∣∣ ≤ C log |a(N,N ′]|.

By (2.17) we thus have

(2.25) ‖ log |a≤N ′ | − log |a≤N |‖L1(T) ≤ C
∑

N<n≤N ′
|Fn|2.

In particular we see that log |a≤N | is a Cauchy sequence in L1(T).
Now we consider the L2(T) convergence of r≤N . We have

r≤N ′ − r≤N =
b≤N ′a≤N − b≤Na≤N ′

a≤N ′a≤N
.

But if we rearrange (2.23) as

(2.26) M [a∗≤N ,−b≤N ]M [a≤N ′ , b≤N ′ ] =M [a(N,N ′], b(N,N ′]]

and apply (2.9) we see that

b(N,N ′] = a≤Nb≤N ′ − b≤Na≤N ′

and thus

r≤N ′ − r≤N =
b(N,N ′]

a≤N ′a≤N
.

But taking operator norms of all terms in we obtain

|a(N,N ′]| ≤ C|a≤N ′ ||a≤N |
and hence

|r≤N ′ − r≤N | ≤ C
|b(N,N ′]|
|a(N,N ′]|

.

Since 1 + |b(N,N ′]|2 = |a(N,N ′]|2, we see that

|b(N,N ′]|2
|a(N,N ′]|2

≤ C log |a(N,N ′]|

6Here and in the sequel we use C to denote various absolute constants.
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and hence by (2.17)

(2.27) ‖r≤N ′ − r≤N‖2L2 ≤ C
∑

N<n≤N ′
|Fn|2

and so r≤N is a Cauchy sequence in L2(T).
Finally, we consider the L2(T) convergence of s≤N . We begin by applying the

Hilbert transform (which is of weak-type (1, 1)) to (2.25) we see that

‖ arg a≤N − arg a≤N ′‖L1,∞ ≤ C
∑

N<n≤N ′
|Fn|2;

exponentiating this we obtain

‖
a∗≤N
a≤N

−
a∗≤N ′

a≤N
‖L1,∞(T) ≤ C

∑

N<n≤N ′
|Fn|2

and thus (since the expression inside the norm is bounded)

‖
a∗≤N
a≤N

−
a∗≤N ′

a≤N
‖L2(T) ≤ C

∑

N<n≤N ′
|Fn|2.

Since s≤N = r∗≤N
a∗≤N

a≤N
, and similarly for N ′, we thus see from this and (2.27) that

‖s≤N ′ − s≤N‖2L2 ≤ C
∑

N<n≤N ′
|Fn|2.

Thus
︷︸︸︷
F≤N is a Cauchy sequence in H2(D). Indeed note that we have proven the

more precise bound

d(
︷︸︸︷
F≤N ,

︷ ︸︸ ︷
F≤N ′) ≤ C

∑

N<n≤N ′
|Fn|2.

We can thus define a non-linear Fourier transform
︷︸︸︷
F for any F ∈ l2([0,+∞);D),

and we have the convergence estimate

(2.28) d(
︷︸︸︷
F≤N ,

︷︸︸︷
F ) ≤ C

∑

N<n

|Fn|2.

Now we show continuity. Let F (k) be any sequence of admissible potentials in
l2([0,+∞);D) which converges to another potential F in l2([0,+∞);D). We need
to show that for every ε > 0 we have

d(
︷︸︸︷
F (k),

︷︸︸︷
F ) ≤ Cε

for all sufficiently large k. To show this we first choose N large enough so that
∑

N<n

|Fn|2 ≤ ε,

and then choose k so large so that
∑

N<n

|F (k)
n |2 ≤ ε.

Thus from (2.28) we have

d(
︷︸︸︷
F≤N ,

︷︸︸︷
F ), d(

︷ ︸︸ ︷
F (k)≤N ,

︷︸︸︷
F (k)) ≤ Cε.
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From the continuity on finite intervals [0, N ] (from Proposition 2.2) we can also
choose k large enough so that

d(

︷︸︸︷
F

(k)
≤N ,

︷︸︸︷
F≤N ) ≤ ε.

The claim then follows from the triangle inequality.
Because of this continuity we now know that the symmetries in Lemma 2.1, as

well as the groupoid law (2.16) and the Plancherel identity (2.17) will continue to
hold for these class of potentials by a limiting argument.

Now we show injectivity of the NLFT from l2([0,∞)) to H2(D). This will be
a repetition of the proof of injectivity in Proposition 2.2. Let F be any admissible
potential in l2([0,∞)), and let F≤N be as before. Then we have by (2.20)

F0 = r≤N (0) =

∫

T

r≤N .

Taking limits as N → +∞ (since r≤N is convergent to r in H2(D)), we obtain

(2.29) F0 = r(0) =

∫

T

r =
b(0)

a(0)
.

So we see as before that F0 can be reconstructed from
︷︸︸︷
F . Now write F = F0δ0+F

′

as before. Applying (2.16), we thus see that

(2.30)
︷︸︸︷
F =

1√
1− |F0|2

M [1, F0]
︷︸︸︷
F ′ ,

and hence we can reconstruct F ′ from F . If we write F ′ = F1δ1 + F ′′, where F ′′

is the restriction of F to [2,+∞), then by a similar argument to the above (using
the translation invariance first to shift F ′ back to [0,∞)) we can recover F1 from︷︸︸︷
F ′ . Continuing this “layer stripping” procedure indefinitely we can reconstruct

all of the potential F from
︷︸︸︷
F , which shows the injectivity.

Next, we show surjectivity from l2([0,∞)) to H2(D); again, this is analogous to
the corresponding argument in Proposition 2.2. Let M [a, b] lie in H2(D); we need
to find a potential F in l2([0,+∞);D) whose nonlinear Fourier transform equals
M [a, b]. Since M [a, b] lies in H2(D), r extends holomorphically into D and has
magnitude strictly less than 1 on almost all of T. Thus we can define F0 by (2.29),
and we have |F0| < 1. Now we define M [a′, b′] by (2.21) (or (2.22)). Since |F0| < 1,
we see that 1 − F ∗0 r is holomorphic on D and is bounded away from zero. Thus
by (2.22) a′ is an outer function, and by (2.29) we see that a′(0) is a positive real.
Also, from (2.22) we see that

r′ =
b′

a′
=

−F0 + r

1− F ∗0 r
;

since 1 − F ∗0 r is bounded away from zero, we see that r′ lies in H2(D); in fact it
lies in H2

0 (D) since r′(0) vanishes thanks to (2.29). Finally, from (2.21) we see that
M [a′, b′] is SU(1, 1)-valued on T. Thus M [a′, b′] lies in H2

0(D) = H2
[1,∞).

We can then translate M [a′, b′], to M [z−1/2, 0]M [a′, b′]M [z1/2, 0], which lies in
H2(D), and apply the above procedure again. Undoing the translation, this gives
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us another complex number |F1| < 1 such that

M [a′, b′] =
1√

1− |F1|2
M [1, F1z]M [a′′, b′′]

where M [a′′, b′′] ∈ H2
[2,∞). Continuing this process indefinitely, we obtain a se-

quence (Fn)n≥0 of complex numbers with |Fn| < 1, such that for every N ≥ 0 we
have

M [a, b] = (
∏

0≤n<N

1√
1− |Fn|2

M [1, Fnz
n])M [a≥N , b≥N ]

where M [a≥N , b≥N ] ∈ H2
[N,∞). In other words, if we use the transfer matrices

defined in (2.11), (2.12), we have

(2.31) M [a, b] =M0←NM [a≥N , b≥N ].

Write M0←N =:M [a<N , b<N ]. By Proposition 2.2 we haveM [a<N , b<N ] ∈ H2
[0,N),

so a<N , b<N ∈ H2
[0,N). From (2.9) we have

a = a<Na≥N + b∗<Nb≥N = a≥N (a<N + b∗<Nr≥N ).

Since M [a≥N , b≥N ] ∈ H2
[N,∞), we have r≥N ∈ H2

[N,+∞), and hence b∗<Nr≥N ∈
H2

(0,+∞) = H2
0 (D). Thus b∗<Nr≥N vanishes at the origin, and so we have

E(M [a, b]) = a(0) = a≥N (0)a<N (0) = E(M0←N )E(M [a≥N , b≥N ]).

Since the energy of scattering data is always at least 1, we thus have

E(M0←N ) ≤ E(M [a, b]).

By the Plancherel identity (2.17) we thus have
∑

0≤n≤N

1√
1− |Fn|2

≤ E(M [a, b])

and hence F (extended by zero on (−∞, 0)) is an admissible potential with

E(F ) =
∑

n∈Z

1√
1− |Fn|2

≤ E(M [a, b]).

Since F is admissible, we can form the nonlinear Fourier transform
︷︸︸︷
F of F . We

now claim that
︷︸︸︷
F =M [a, b], which would prove the surjectivity. To this end, we

define the function M [a∞, b∞] by

M [a∞, b∞] =M [a, b]−1
︷︸︸︷
F ;

our task is to show that M [a∞, b∞] is the identity M [1, 0]. For any N ≥ 0, we see
from (2.16) that

︷︸︸︷
F =M0←N

︷︸︸︷
F≥N

where F≥N is the restriction of F to [N,+∞). From this and (2.31) we thus see
that

M [a∞, b∞] =M [a≥N , b≥N ]−1
︷︸︸︷
F≥N .

Writing
︷︸︸︷
F≥N =:M [a′≥N , b

′
≥N ], we then see from (2.9) and (2.10) that

b∞ = a≥Nb
′
≥N − a′≥Nb≥N = a≥Na

′
≥N (r′≥N − r≥N ).
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Since a≥N , a′≥N is in the Nevanlinna class on D and r′≥N , r≥N both live in H2
[N,∞)

(because
︷︸︸︷
F≥N andM [a≥N , b≥N ] both live in H2

[N,∞)), we thus see that b∞ is Nevan-

linna on D and vanishes to orderN at the origin. ButN is arbitrary, hence b∞ must
be identically zero. This implies that r′≥N = r≥N for every N ; taking magnitudes

we thus see that |a′≥N | = |a≥N | on T. Since a′≥N and a≥N are both outer, this

implies that a′≥N = a≥N , and thus M [a≥N , b≥N ] =M [a′≥N , b≥N ]. But this implies

that M [a∞, b∞] =M [1, 0], and thus
︷︸︸︷
F =M [a, b]. This proves the surjectivity of

the NLFT from l2([0,+∞)) to H2(D).
Finally, it remains to verify that the inverse NLFT is continuous. First observe

from (2.29) that the map from
︷︸︸︷
F to F0 is continuous on H2(D). From (2.30)

this implies that the map from
︷︸︸︷
F from

︷︸︸︷
F ′ is continuous from H2(D) to H2

0(D).

Iterating this, we see that the map from
︷︸︸︷
F to Fn is continuous on H2(D) for

all n ≥ 0. Now let F (k) be any sequence of admissible potentials in l2([0,+∞);D)

such that
︷︸︸︷
F (k) converges to

︷︸︸︷
F in H2(D); by the above discussion we have the

pointwise convergence result limk→∞ F
(k)
n = Fn for all n ∈ Z. In particular, we see

that

lim
k→∞

∏

0≤n≤N

1√
1− |F (k)

n |2
=

∏

0≤n≤N

1√
1− |Fn|2

for any 0 ≤ N < +∞. Also, since E(
︷︸︸︷
F (k)) converges to E(

︷︸︸︷
F ), we see from (2.17)

that E(F (k)) converges to E(F ), so in particular

lim
k→∞

∏

0≤n

1√
1− |F (k)

n |2
=
∏

0≤n

1√
1− |Fn|2

= E(F ).

Thus for any ε > 0, if we choose N large enough so that

1 ≤
∏

n>N

1√
1− |Fn|2

< 1 + ε

(using the admissibility of F to do so), we see that

1 ≤
∏

n>N

1√
1− |F (k)

n |2
< 1 + 2ε

for sufficiently large k; taking logarithms, this implies that
∑

n>N

|F (k)
n − Fn|2 < C

∑

n>N

|F (k)
n |2 + |Fn|2 < Cε.

But since F
(k)
n converges pointwise to Fn, we also have

∑

0≤n≤N
|F (k)

n − Fn|2 < Cε

for k large enough. This shows that F (k) converges to F in the l2 topology, which
gives inverse continuity as desired. �

Using reflection symmetry (and also translation symmetry by one unit) we
obtain the analogous result on the negative half-line:
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Corollary 2.5. Let F ∈ l2((−∞,−1],D) be an admissible potential on (−∞,−1],
and let F≥−N be the restriction of F to [−N,−1]. Then the non-linear Fourier

transforms
︷ ︸︸ ︷
F≥−N form a Cauchy sequence in the complete metric space H2

(−∞,−1] =

H2
0(D∗). In particular we may define the non-linear Fourier transform of F by the

formula
︷︸︸︷
F := limN→+∞

︷ ︸︸ ︷
F≥−N . Furthermore, the NLFT is a homeomorphism

from l2((−∞,−1];D) to H2
0(D∗).

There are of course analogous results for other half-lines such as (−∞, q] and
[p,+∞) by translation symmetry; the NLFT is a homeomorphism from l2((−∞, q];D)
onto H2

(−∞,q] and from l2([p,+∞);D) onto H2
[p,+∞) (one can think of these facts

as a nonlinear version of the Paley-Wiener theorem). Of course all these definitions
of the NLFT are consistent with each other since they all agree on compactly sup-
ported potentials, which are dense in all the above spaces, and we have established
continuity of the NLFT.

[Mention here the Muscalu-Tao-Thiele counterexample that shows the NLFT
is not C3. But mention also Christ-Kiselev.]

The uniqueness of the inverse NLFT on the half-line is closely related to the
uniqueness of the inverse spectral problem for (admissible) Dirac operators on the
discrete half-line; we will return to this point briefly when we discuss the eigenfunc-
tion problem for such operators. We remark here though that Killip and Simon
[19] have recently solved the inverse spectral problem for (admissible) Jacobi ma-
trices on the discrete half-line, which has the substantial additional difficulty of
potentially having an infinite number of isolated eigenvalues in the spectrum.

2.6. The NLFT on the whole line Z

Having defined the NLFT on both the positive half-line and negative half-line,
we now concatenate the two (using (2.16)) on the whole line. The key lemma is

Lemma 2.6. IfM [a−, b−] ∈ H2
0(D∗) andM [a+, b+] ∈ H2(D), thenM [a−, b−]M [a+, b+] ∈

L2(T), and

(2.32) E(M [a−, b−]M [a+, b+]) = E(M [a−, b−])E(M [a+, b+]).

Furthermore, this multiplication operation is continuous from H2
0(D∗) ×H2(D) to

L2(T).

Later on we shall show that this multiplication map is surjective, but not
injective.

Proof. Write M [a, b] := M [a−, b−]M [a+, b+]. Clearly M [a, b] is SU(1, 1)-
valued. By (2.9) we have

(2.33) a = a−a+b
∗
−b+ = a−a+(1 + r+s−).

But r+ ∈ H2(D) and s− ∈ H2
0 (D), with both functions strictly less than 1 a.e. on

T, and hence on D (by the maximum principle). Hence 1 + r+s− is a Herglotz
function on D which equals 1 at the origin, and in particular is outer. Thus a is
outer, and

a(0) = a−(0)a+(0)

which is (2.32). In particular a(0) is real and positive, and so M [a, b] lies in L2(T)
as claimed.
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Now we consider the continuity. Let M [a
(k)
− , b

(k)
− ] be a sequence in H2

0(D∗)
converging to M [a−, b−] ∈ H2

0(D∗), and let M [a
(k)
+ , b

(k)
+ ] be as sequence in H2(D)

converging to M [a+, b+] ∈ H2(D). Write M [a(k), b(k)] := M [a
(k)
− , b

(k)
− ]M [a

(k)
+ , b

(k)
+ ]

and M [a, b] := M [a−, b−]M [a+, b+]. We need to show that M [a(k), b(k)] converges
toM [a, b]. Actually it suffices to do this for a subsequence, since the initial sequence

was arbitrary. In particular we may pass to a subsequence for which M [a
(k)
± , b

(k)
± ]

converge pointwise to M [a±, b±], and hence M [a(k), b(k)] converges pointwise to
M [a, b].

The convergence of r(k) to r and s(k) to s then follows from the Lebesgue
dominated convergence theorem, so it suffices to check log |a(k)|. From (2.33) we
have

log |a| = log |a−|+ log |a+|+ log |1 + r+s−|
and similarly

log |a(k)| = log |a(k)− |+ log |a(k)+ |+ log |1 + r
(k)
+ s

(k)
− |.

Since log |a(k)± | converges to log |a±| in L1(T), it thus suffices to show that
∫

T

∣∣log |1 + r
(k)
+ s

(k)
− | − log |1 + r+s−|

∣∣→ 0.

But we can use the identity |a(k)± |2 = 1+|b(k)± |2 to easily verify the pointwise estimate

| log |1 + r
(k)
+ s

(k)
− || ≤ C log |a(k)− |+ C log |a(k)+ |

and the right-hand side is convergent in L1(T),and so the claim follows from the
generalized Lebesgue dominated convergence theorem. �

From the above lemma we can define the NLFT of any admissible potential
F ∈ l2(Z;D) by the formula

︷︸︸︷
F =

︷ ︸︸ ︷
F(−∞,0)

︷ ︸︸ ︷
F[0,+∞

where F(−∞,0] is the restriction of F to (−∞, 0], and similarly for F[0,+infty). By
(2.16) this definition is consistent with the prior definition of the NLFT for com-
pactly supported potentials, and by the above Lemma, Theorem 2.4, and Corollary
2.5 we see that the NLFT is thus a continuous map from l2(Z;D) to L2(T). Fur-
thermore we have the Plancherel identity (2.17) for all admissible potentials, as
well as Lemma 2.1 and (2.16).

One consequence of the continuity of the NLFT on l2(Z;D) is that we can
now define transfer matrices Mn←+∞, M−∞←n, and M−∞←+∞ by the obvious

limiting procedure; note in particular that M−∞←+∞ is exactly the same as
︷︸︸︷
F .

Also observe that the convergence ofM−N←N (for instance) to M−∞←+∞ is in the
topology of L2(T), but this can be altered to pointwise convergence a.e. by passing
to a subsequence in the usual manner.

It remains to consider the question of whether the NLFT, as a map from
l2(Z;D) to L2(T), is surjective or injective. In light of the previous results, this
is equivalent to asking whether the multiplication map from H2

0(D∗) × H2(D) to
L2(T) is surjective or injective; in other words, whether for any given scattering
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datum M [a, b] ∈ L2(T) there is existence and uniqueness of the Riemann-Hilbert
problem (RHP)
(2.34)

M [a, b] =M [a−, b−]M [a+, b+]; M [a−, b−] ∈ H2
0(D∗),M [a+, b+] ∈ H2(D).

Unfortunately the uniqueness to the RHP (and hence injectivity of the NLFT)
can fail. The obstruction is that there are non-trivial elements M [a0, b0] in the
intersection space H0, defined by

H0 := H2
0(D∗) ∩H2(D);

in other words, there exist SU(1, 1)-valued functions M [a0, b0] such that a0 is an
outer function on D with a0(0) > 0, and such that b0/a0 and b∗0/a0 lie in H2(D)
and H2

0 (D) respectively. A simple example is given by

b0 :=
2 sinh θ

z − 1
; a0 :=

eθz − e−θz

z − 1

where θ > 0 is an arbitrary parameter. More generally, one can construct examples
M [a0, b0] in H0 by choosing b0 to be any function in both N+(D) andN+

0 (D∗) (e.g.
a rational function vanishing at infinity whose only poles are at T), and then set

a0 to be the unique outer function with magnitude log |a0| = log
√
1 + |b0|2 and

which is real and positive at the origin. These examples clearly show the NLFT
is not injective on the full line Z, since Theorem 2.4 and Corollary 2.5 show that
M [a0, b0] is the non-linear Fourier transform of a non-trivial admissible potential
on [0,+∞) and also a non-trivial admissible potential on (−∞, 0]. Equivalently,
these examples show that failure of uniqueness for the RHP (2.34), as the identity
M [1, 0]M [a0, b0] =M [a0, b0]M [1, 0] clearly shows.

Thus the NLFT does not have a globally well-defined inverse. Nevertheless,
it will turn out that in many situations the NLFT can be inverted; that there
are many examples of scattering data M [a, b] in L2(T) which arise from only one
admissible potential F in l2(Z;D); when this happens, we say that M [a, b] has
unique inverse NLFT. For instance, we will show in ??? that one has unique inverse
NLFT whenever M [a, b] is a bounded function of T, or if M [a, b] lies in H2(D) or
H2(D∗) and is an L2 function of T. Furthermore, we can show that the space H0 is
in some sense the only obstruction to inverting the NLFT. More precisely, we will
show the following factorization theorem. Let H− denote the space of all potentials
M [a−, b−] in H2

0(D∗) which have unique inverse NLFT, and similarly define H0 to
be the space of all potentialsM [a+, b+] in H2(D) which have unique inverse NLFT.

Theorem 2.7 (Triple factorization). Let M [a, b] ∈ L2(T) be a scattering da-
tum. Then there exists a unique factorization

(2.35) M [a, b] =M [a−−, b−−]M [a0, b0]M [a++, b++]

where M [a−−, b−−] ∈ H−, M [a0, b0] ∈ H0, M [a++, b++] ∈ H+, with

(2.36) E(M [a, b]) = E(M [a−−, b−−])E(M [a0, b0])E(M [a++, b++]).

Furthermore, any solution to the Riemann-Hilbert problem (2.34) can itself be fac-
torized in the form
(2.37)
M [a−, b−] =M [a−−, b−−]M [a−0, b−0]; M [a+, b+] =M [a0+, b0+]M [a++, b++]
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where M [a−0, b−0], M [a0+, b0+] solve the reduced RHP

(2.38) M [a−0, b−0]M [a0+, b0+] =M [a0, b0]; M [a−0, b−0],M [a0+, b0+] ∈ H0.

Conversely, every solution to the reduced RHP (2.38) induces a solution to the
original RHP (2.34) via (2.37).

Thus the problem of solving the RHP (2.34) is equivalent to that of solving
the RHP (2.38); this explains our earlier comment that H0 was in some sense the
only obstruction to inverting the NLFT. In particular we see thatM [a, b] has unique
inverse NLFT if and only if its middle factorM [a0, b0] in the canonical factorization
is trivial (i.e. is equal toM [1, 0]). To put it another way, the set of functionsM [a, b]
with unique inverse NLFT is equal to H− · H+.

The rest of the paper is devoted to proving this theorem, which is non-trivial
and requires quite a bit of machinery involving the scattering theory of the Dirac
operator L[F ]. While the theorem does give quite a bit of insight into the inver-
sion problem for the NLFT, there are still several questions that we were unable
to answer satisfactorily. While we do have an explicit construction for finding
M [a−−, b−−], M [a++, b++], and M [a0, b0] from M [a, b], which in principle gives
an explicit characterization of H−, H+, and of the unique inverse NLFT property,
this construction relies on the Riesz representation theorem for Hilbert spaces (cf.
the proof of Beurling’s theorem) and so is not easy to work with in practice. For
instance, we do not yet have a satisfactory necessary and sufficient condition on the

potential F in order for
︷︸︸︷
F to have unique inverse NLFT, although we do have

some partial results in this direction.
We close this section with a basic result which is consistent with Theorem 2.7.

Lemma 2.8. We have H2
0(D∗) ·H0 ⊆ H2

0(D∗) and H0 ·H2(D) ⊆ H2(D). As an
immediate corollary we have H0 · H0 ⊆ H0.

Proof. It suffices to prove the first claim. LetM [a−, b−] ∈ H2
0 andM [a0, b0] ∈

H0, and M [a, b] := M [a−, b−]M [a+, b+]. By Lemma 2.6 we know that M [a, b] ∈
L2(T). From the identity a0a

∗
0 − b0b

∗
0 = 1 we can write a0 =

1+b0b
∗
0

a∗0
. Thus a0 has a

holomorphic extension to D∗, as everything on the right- hand side does also and
a∗0 is outer on D∗. From the formula b = a∗−b0 + b−a0 (from (2.9)) we thus see
that b has a holomorphic extension to D∗ which vanishes at infinity. Since b/a∗

was already in L2(T), it is now in H2
0(D) also, and so M [a, b] ∈ H2

0(D∗) as desired.
The second claim in the Lemma is similar, and the third follows immediately by
intersecting the first two claims. �

Before we begin the proof of Theorem 2.7, we must return to the Lax operator
L defined in (2.4) and relate it to the NLFT. This will be done next.

2.7. Connection between the NLFT and the Lax operator L

Let F be an admissible potential, and let L = L[F ] be the Lax operator acting
on L2(T) ⊕ L2(T) defined in (2.4). In this section we show how the NLFT is
connected to the scattering and spectral data of L[F ].

We begin by considering the generalized eigenfunction equation

(2.39) L[F ]Φ = ζΦ
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where ζ is a complex number, and Φ is a formal linear combination of the Fourier
basis vectors vn, wn of L2(T) ⊕ L2(T) defined in the introduction:

(2.40) Φ =
∑

n

φnvn + ψnwn.

Our discussion will be purely algebraic for now, and we will not assume that the
complex numbers φn or ψn have any decay properties as n → ±∞; in particular,
Φ need not actually belong to the Hilbert space L2(T) ⊕ L2(T), but may merely
be a pair of formal Fourier series; note from (2.4) that L is well defined on such
formal objects. Because L[F ] is unitary, one should usually think of the spectral
parameter ζ as lying on the unit circle T, although for our formal analysis here all
we need is that ζ is finite and invertible.

To motivate the analysis let us first consider the trivial case F ≡ 0. In this
case L[0] is just the direct sum of a left shift and right shift,

L[0]vn = vn+1; Lwn+1 = wn

(or in the physical basis L[0]Φ = ζΦ) and the eigenfunction equation (2.39) becomes

φn+1 = ζφn; ψn = ζψn+1

and hence the general solution in this case is given by7

(2.41) φn = aζn; ψn+1 = bζ−n

for some complex constants a, b. In particular we see that the coefficients of Φ will
grow exponentially if ζ ∈ D or zeta ∈ D∗, and stay bounded (but not in l2) when
ζ ∈ T. This is consistent with the well-known fact that the spectrum of L[0] is
purely absolutely continuous and is supported on T (indeed, in the physical space
representation L[0] is just the operation of multiplication by ζ on L2(T) ⊕ L2(T).

Now let us consider non-zero admissible potentials Fn. Using (2.4), the eigen-
function equation (2.39) becomes

√
1− |Fn|2φn − F ∗nψn+1 = ζφn+1

Fnφn +
√
1− |Fn|2ψn+1 = ζψn

which after some algebraic manipulation can be rewritten as

φn =
1√

1− |Fn|2
(ζφn+1 + F ∗nψn+1)

ψn =
1√

1− |Fn|2
(Fnφn+1 + ζ−1ψn+1).

Motivated by (2.41), we now introduce the change of variables

(2.42) φn =: anζ
n; ψn =: bnζ

1−n

7In the physical space representation, Φ does not belong to L2(T) ⊕ L2(T) but is instead a
(vector-valued) Dirac mass at ζ. Thus one may think of the physical space representation as the
spectral representation of L[0].
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so that the above equation becomes

an =
1√

1− |Fn|2
(an+1 + F ∗nζ

−2nbn+1)

bn =
1√

1− |Fn|2
(Fnζ

2nφn+1 + bn+1).

But this can be written using the transfer matrices (2.11) as

M [an, bn](ζ) =Mn←n+1(ζ
2)M [an+1, bn+1](ζ).

Applying the groupoid law (2.13) we thus see that

(2.43) M [an, bn](ζ) =Mn←n′(ζ
2)M [an′ , bn′ ](ζ)

whenever −∞ < n < n′ < +∞. Thus the transfer matrices Mn←n′ form (up to
some trivial factors) the fundamental solution of the eigenfunction equation (2.39).

Observe the presence of ζ2 in the above formula. This suggests that changing
the spectral parameter from ζ to −ζ will not significantly affect the eigenfunction
equation (2.39). Indeed, one can see this directly by introducing the parity operator
σ : L2(T)⊕ L2(T) → L2(T)⊕ L2(T) defined in the Fourier basis by

σvn := (−1)nvn; σwn := (−1)n+1wn

or equivalently in the physical space representation as

σ

(
α(ζ)
β(ζ)

)
:=

(
α(−ζ)
−β(−ζ)

)
,

and then observing (using the Fourier basis) that σL[F ]σ−1 = −L[F ]. Thus L[F ]
is unitarily conjugate to −L[F ], which explains the equivalence of the spectral
parameters ζ and −ζ. One could exploit this parity property by working with L2

(with spectral parameter z := ζ2) instead of L[F ]; since L[F ]2 commutes with σ
we can then split L2(T) ⊕ L2(T) into even and odd components8. (The analogue
of this in the continuous case would be a Dirac operator on L2(R)⊕L2(R), whose
square was direct sum of two scalar Schrödinger operators on L2(R)). The operator
L[F ]2 is somewhat like a Jacobi matrix, however it does not have as clean a form
as the original operator L[F ], and so we shall continue working with the Dirac
operator directly; it will mean however that all our Hilbert spaces will be in some
sense “twice as large” as the analogous objects in the Jacobi theory.

We also observe that L[F ] is skew-unitarily conjugate to L[F ]−1. More pre-
cisely, if we define the skew-linear involution ∗ : L2(T) ⊕ L2(T) → L2(T)⊕ L2(T)
in the Fourier basis by

∗vn := wn; ∗wn := vn

or equivalently in the physical space basis by

∗
(
α
β

)
=

(
β∗

α∗

)
,

then ∗ is skew-unitary (i.e. 〈∗v, ∗w〉 = 〈v, w〉 for all v, w ∈ L2(T) ⊕ L2(T)), and
one can easily verify from (2.4), (2.5) that ∗L[F ]∗ = L[F ]−1. Also we have the
anti-commutation property ∗σ = −σ∗.

8More precisely, one can split into one component where α is even and β is odd, and a
component where α is odd and β is even.
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Since L[F ] is unitary on L2(T)⊕L2(T), the spectral theorem for unitary opera-
tors (reference? Reed-Simon, perhaps?) shows that there is a canonical projection-
valued measure dµ = dµ[F ] on T, such that µ(T) = 1 and

f(L[F ]) =

∫

T

f(z)〈dµ(z)

for any continuous function f on T. This measure splits as usual as dµ = dµac +
dµsc+dµpp. The corresponding projection operators 1 = µac(T)+µsc(T)+µpp(T)
induces a decomposition of the norm

‖v‖2L2(T)⊕L2(T) = ‖v‖2(L2(T)⊕L2(T))ac
+ ‖v‖2(L2(T)⊕L2(T))sc

+ ‖v‖2(L2(T)⊕L2(T))pp

where the semi-norm ‖v‖(L2(T)⊕L2(T))ac
is defined by

‖v‖(L2(T)⊕L2(T))ac
:= ‖µac(T)v‖L2(T)⊕L2(T),

etc. and a corresponding orthogonal decomposition

L2(T) ⊕ L2(T) = (L2(T) ⊕ L2(T))ac ⊕ (L2(T) ⊕ L2(T))sc ⊕ (L2(T) ⊕ L2(T))pp

of the Hilbert space L2(T) ⊕ L2(T), where (L2(T) ⊕ L2(T))ac is the range of
the orthogonal projection µac(T) (or equivalently, the space of vectors v where
‖v‖L2(T)⊕L2(T) = ‖v‖(L2(T)⊕L2(T))ac

), etc. For instance, if F = 0, then dµ is
purely absolutely continuous (so dµsc = dµpp = 0), and is given by

〈dµvn, vm〉L2(T)⊕L2(T) = ζn−m
|dζ|
2π

〈dµwn, wm〉L2(T)⊕L2(T) = ζm−n
|dζ|
2π

〈dµvn, wm〉H = 0

〈dµwn, vm〉L2(T)⊕L2(T) = 0

for all n,m ∈ Z, where |dζ|2π is normalized arclength measure on T. In the physical
space representation dµ is equally simple:

〈dµ
(
α1

β1

)
,

(
α2

β2

)
〉L2(T)⊕L2(T) = (α1α

∗
2 + β1β

∗
2 )(ζ)

|dζ|
2π

.

We have shown that the non-linear Fourier transform is connected with the
eigenfunction equation for L[F ]. It will thus be unsurprising that it is also connected
with the spectral and scattering theory for L[F ]. In fact, the reflection and trans-
mission coefficients 1/a, b/a, b∗/a will be closely related wave operators Ω0←±∞
for L[F ], which map onto the absolutely continuous component (L2(T)⊕L2(T))ac
of the Hilbert space L2(T)⊕ L2(T).

2.8. Scattering theory

Let F ∈ l2(Z;D) be an admissible potential. We now investigate the scattering
theory of the unitary operator L = L[F ], i.e. the asymptotic behavior of the
evolution operators L[F ]m as m → ±∞; one may think of m as a discrete time
parameter. We will compare this operator to the corresponding free operators
L[0]m, which are of course given explicitly by

L[0]mvn = vn+m; L[0]mwn = wn−m.
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Observe that L[0]m can also be given in the physical space representation as

L[0]m(α, β)(ζ) = (ζmα(ζ), ζmβ(ζ)),

so we will sometimes write ζm instead of L[0]m.
First, we need to understand the matrix coefficients of L[F ]m in the Fourier

basis {vn}n∈Z ∪ {wn}n∈Z. We will focus mainly on the positive values of m, since
L[F ]−m is the adjoint of L[F ]m. We recall that the parity operator σ and conjuga-
tion operator ∗ are related to L[F ]m by the relations

(2.44) σL[F ]mσ−1 = (−1)mL[F ]m; ∗L[F ]m∗ = L[F ]−m.

Lemma 2.9. Let n, n′,m be integers.

• (Parity property) If n+ n′ +m is odd, then

〈L[F ]mvn, vn′〉L2(T)⊕L2(T) = 〈L[F ]mvn, wn′〉L2(T)⊕L2(T) = 0,

while if n+ n′ +m is even, then

〈L[F ]mwn, vn′〉L2(T)⊕L2(T) = 〈L[F ]mwn, wn′〉L2(T)⊕L2(T) = 0.

• (Finite speed of propagation) If m > 0, then 〈L[F ]mvn, vn′〉L2(T)⊕L2(T)

and 〈L[F ]mwn′ , wn〉L2(T)⊕L2(T) vanishes unless 2 − m ≤ n′ − n ≤ m,
while 〈L[F ]mvn, wn′〉L2(T)⊕L2(T) and 〈L[F ]mwn, vn′〉L2(T)⊕L2(T) vanishes
unless |n′−n| ≤ m−1. In other words, L[F ]mvn is a linear combination of
vn+2−m, . . . , vn+m and wn+1−m, . . . , wn+m−1, while L[F ]mwn is a linear
combination of vn+1−m, . . . , vn+m−1 and wn−m, . . . , wn+m−2.

• (Boundary values) If m > 0, then

〈L[F ]mvn, vn+m〉L2(T)⊕L2(T) = 〈L[F ]mwn+m, wn〉L2(T)⊕L2(T) =
∏

n≤n′<n+m

√
1− |Fn′ |2.

Proof. The parity property can be proven by using the parity property in
(2.44). The finite speed of propagation property follows easily from (2.4) and
induction. Now we check the boundary value estimate. It suffices to verify the
estimate for 〈L[F ]mvn, vn+m〉, as the estimate for 〈L[F ]mwn+m, wn〉 follows using
the conjugation property in (2.44). We use induction. For m = 1 the estimate
follows directly from (2.4). For m > 1 we use (2.4) to compute

〈L[F ]mvn, vn+m〉L2(T)⊕L2(T) = 〈L[F ]m−1(
√
1− |Fn|2vn+1+Fnwn), vn+m〉L2(T)⊕L2(T).

The contribution of wn vanishes by finite speed of propagation, so we have

〈L[F ]mvn, vn+m〉L2(T)⊕L2(T) =
√
1− |Fn|2〈L[F ]m−1vn+1, vn+m〉L2(T)⊕L2(T),

and the claim follows by induction. �

As a corollary of the boundary value formula, and the unitarity of L[F ]m, we
have

〈L[F ]−mL[0]mvn, L[F ]−m
′

L[0]m
′

vn〉L2(T)⊕L2(T) = 〈L[F ]m′−mvn+m, vn+m′〉L2(T)⊕L2(T)

=
∏

n+m≤n′<n+m′

√
1− |Fn′ |2

when m < m′. In particular, since F is admissible, we have

lim
m,m′→+∞

〈L[F ]−mL[0]mvn, L[F ]−m
′

L[0]m
′

vn〉L2(T)⊕L2(T) = 1.



112 2. THE DIRAC SCATTERING TRANSFORM

But since L[F ]−mL[0]mvn and L[F ]−m
′

L[0]m
′

vn are unit vectors, we thus see from
the cosine rule that

lim
m,m′→+∞

‖L[F ]+mL[0]mvn − L[F ]−m
′

L[0]m
′

vn‖2L2(T)⊕L2(T) = 0.

In other words, L[F ]−mL[0]mvn is a Cauchy sequence in L2(T)⊕ L2(T). A similar
argument shows that L[F ]−mL[0]mwn is also a Cauchy sequence. By the usual
limiting argument (starting with finite linear combinations of basis vectors, and ex-
ploiting the uniform boundedness of L[F ]−mL[0]m) we may then define the forward
wave operator Ω0←+∞ = Ω0←+∞[F ] on L2(T)⊕ L2(T) by

Ω0←+∞v := lim
m→+∞

L[F ]−mL[0]mv

for all v ∈ L2(T)⊕L2(T), where the limit is in the strong sense in L2(T)⊕L2(T).
Thus Ω0←+∞ is an isometry on L2(T)⊕ L2(T), i.e. it is a unitary transformation
from L2(T)⊕L2(T) to the range Ω0←+∞(L2(T)⊕L2(T)). We can similarly define
a backward wave operator Ω0←−∞ = Ω0←−∞[F ] on L2(T)⊕ L2(T) by

Ω0←−∞v := lim
m→−∞

L[F ]−mL[0]mv.

It is clear from the definitions that we have the intertwining relationships

(2.45) L[F ]kΩ0←±∞ = Ω0←±∞L[0]
k = Ω0←±∞ζ

k

for any integer k. In particular, we see that L[F ] preserves the space Ω0←±∞(L2(T)⊕
L2(T)), and the action here is unitarily equivalent to that of L[0]. Since L[0] has
purely absolutely continuous spectrum, we thus see the range of Ω0←±∞(L2(T) ⊕
L2(T)) is contained9 in (L2(T) ⊕ L2(T))ac. Later we will show that in fact
Ω0←±∞(L2(T) ⊕ L2(T)) = (L2(T) ⊕ L2(T))ac; in other words, we have asymp-
totic completeness on the absolutely continuous portion of the spectrum. This was
already known for potentials with some decay (see for instance the work of [35] for
the continuous Schrödinger model), but appears to be new for potentials which are
merely in l2(Z;D), at least in the case of discrete Dirac operators on the line.

From (2.44) we obtain the intertwining property

(2.46) ∗Ω0←+∞∗ = Ω0←−∞.

and the parity preservation property

(2.47) Ω0←±∞σ = σΩ0←±∞.

Now define the adjoint wave operators

Ω±∞←0 := Ω∗0←±∞.

These adjoints are unitary from the Hilbert space Ω0←±∞(L2(T) ⊕ L2(T)) onto
L2(T) ⊕ L2(T) and vanish on the orthogonal complement of this space. Observe
that Ω±∞←0Ω0←±∞ = 1, while Ω0←±∞Ω±∞←0 is the orthogonal projection onto
Ω0←±∞(L2(T) ⊕ L2(T)).

We define the linear operators α±∞←0 : H → L2(T) and β±∞←0 : H → L2(T)
by

(2.48) Ω±∞←0(v) =:

(
α±∞←0(v)
β±∞←0(v)

)
;

9In particular this shows that L[F ] has absolutely continuous spectrum at almost every point
in T; this is the analogue of the well-known result of Deift-Killip (ref?) for Dirac operators on
the discrete line.
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thus α±∞←0 and β±∞←0 are simply the components of Ω±∞←0. Clearly we have

(2.49) ‖α±∞←0(v)‖2L2(T) + ‖β±∞←0(v)‖2L2(T) = ‖Ω±∞←0v‖2L2(T)⊕L2(T).

Also, the intertwining property (2.45) implies that

α±∞←0(L[F ]
kv) = ζkα±∞←0(v)

β±∞←0(L[F ]
kv) = ζkβ±∞←0(v)

Ω±∞←0(L[F ]
kv) = ζkΩ±∞←0(v)

(2.50)

while from (2.46) we have

α±∞←0(∗v) = β∓(v)
∗

β±∞←0(∗v) = α∓(v)
∗

Ω±∞←0(∗v) = ∗Ω±∞←0(v)

(2.51)

and from (2.47) we have

α±∞←0(σv)(ζ) = α±∞←0(v)(−ζ)
β±∞←0(σv)(ζ) = −β±∞←0(v)(−ζ)

Ω±∞←0(σv) = σΩ±∞←0(v).

(2.52)

If we thus apply α±∞←0 and β±∞←0 to the second equation in (2.4), noting
that wn = ∗vn, we thus obtain the identities

ζβ∓∞←0(vn+1)
∗ = −F ∗nα±∞←0(vn+1) +

√
1− |Fn|2β∓(vn)∗

ζα∓∞←0(vn+1)
∗ = −F ∗nβ±∞←0(vn+1) +

√
1− |Fn|2α∓(vn)∗.

After some algebra, we then obtain

β∓∞←0(vn)
∗ =

1√
1− |Fn|2

(ζβ∓∞←0(vn+1)
∗ + F ∗nα±∞←0(vn+1))

α±∞←0(vn) =
1√

1− |Fn|2
(Fnβ∓∞←0(vn+1)

∗ + ζ−1α±∞←0(vn+1)).

Using the transfer matrices in (2.11), this can be rewritten (cf. (2.42)) as

M [ζn−1β∓∞←0(vn)
∗, ζ−nα±∞←0(vn)] =Mn←n+1(ζ

−2)M [ζnβ∓∞←0(vn+1)
∗, ζ−n−1α±∞←0(vn+1)],

and thus by induction

M [ζn−1β∓∞←0(vn)
∗, ζ−nα±∞←0(vn)] =Mn←n′(ζ

−2)M [ζn
′−1β∓∞←0(vn′)

∗, ζ−n
′

α±∞←0(vn′)]

for all n < n′. By (2.50), (2.51) we can write this as

M [α±∞←0(L[F ]
n−1wn),α±∞←0(L[F ]

−nvn)]

=Mn←n′(ζ
−2)M [α±∞←0(L[F ]

n′−1wn′), α±∞←0(L[F ]
−n′vn′)].

Now let n′ → +∞. We know that L[F ]−n
′

vn′ converges in L2(T) ⊕ L2(T) to

Ω0←+∞v0 by definition; similarly L[F ]n
′−1wn′ converges to Ω0←−∞w1. Thus α±∞←0(L[F ]

n′−1wn′ )

and α±∞←0(L[F ]
−n′vn′) converge in L2(T) to α±∞←0(Ω0←−∞w1) and α±∞←0(Ω0←+∞v0)

respectively. By passing to a subsequence we may change this L2(T) convergence
to pointwise a.e. convergence. Also, Mn←n′(ζ

−2) converges (in the L2(T) topology
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in the variable z = ζ−2) to Mn←+∞(ζ−2); again we may pass to a subsequence to
convert this convergence to pointwise a.e. convergence. We can then conclude that

M [α±∞←0(L[F ]
n−1wn), α±∞←0(L[F ]

−nvn)](ζ) =Mn←+∞(ζ−2)

M [α±∞←0(Ω0←−∞w1), α±∞←0(Ω0←+∞v0)](ζ)

(2.53)

for almost every ζ ∈ T. If we let n → −∞ and apply a similar argument, we then
conclude that

M [α±∞←0(Ω0←+∞w1),α±∞←0(Ω0←−∞v0)](ζ) =M−∞←+∞(ζ−2)

M [α±∞←0(Ω0←−∞w1), α±∞←0(Ω0←+∞v0)](ζ)

for almost every ζ ∈ T.

Recall that M−∞←+∞ =
︷︸︸︷
F = M [a, b]. Since Ω±∞←0Ω0←±∞ = 1), we see

from (2.48) that α±∞←0(Ω0←±∞v0) = 1 and α±∞←0(Ω0←±∞w1) = 0. Thus we
have

M [0, α+∞←0(Ω0←−∞v0)(ζ)] =M [a(ζ−2), b(ζ−2)]M [α+∞←0(Ω0←−∞w1)(ζ), 1]

and

M [α−∞←0(Ω0←+∞w1)(ζ), 1] =M [a(ζ−2), b(ζ−2)]M [0, α−∞←0(Ω0←+∞v0)(ζ)]

for a.e. ζ ∈ T. Some algebra using (2.9) and the identity aa∗− bb∗ = 1 then allows
us to solve for α±∞←0(Ω∓v0) and α±∞←0(Ω∓w1) in terms of a and b:
(2.54)

α+∞←0(Ω0←−∞v0)(ζ) =
1

a(ζ−2)
; α+∞←0(Ω0←−∞w1)(ζ) = −b

∗(ζ−2)

a(ζ−2)
; α−∞←0(Ω0←+∞v0)(ζ) =

1

a∗(ζ−2)

Using (2.45), (2.50) we can thus compute α±∞←0(Ω∓v) for all basis vectors v and
almost every ζ ∈ T:

α+∞←0(Ω0←−∞vn)(ζ) = ζn
1

a(ζ−2)
;

α+∞←0(Ω0←−∞wn)(ζ) = −ζ1−n b
∗(ζ−2)

a(ζ−2)
;

α−∞←0(Ω0←+∞vn)(ζ) = ζn
1

a∗(ζ−2)
;

α−∞←0(Ω0←+∞wn)(ζ) = ζ1−n
b∗(ζ−2)

a∗(ζ−2)
.

Using (2.46), (2.51) we can then compute the corresponding formulae for β±∞←0:

β−∞←0(Ω0←+∞wn)(ζ) = ζ−n
1

a∗(ζ−2)
;

β−∞←0(Ω0←+∞vn)(ζ) = −ζn−1 b(ζ
−2)

a∗(ζ−2)
;

β+∞←0(Ω0←−∞wn)(ζ) = ζ−n
1

a(ζ−2)
;

β+∞←0(Ω0←−∞vn)(ζ) = ζn−1
b(ζ−2)

a(ζ−2)
.
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In particular, if we let v be any vector in the range of Ω0←−∞, e.g.

(2.55) v = Ω0←−∞
∑

n

cnvn + dnwn,

then we have

α+∞←0(v)(ζ) =
1

a(ζ−2)
(
∑

n

cnζ
n)− ζb∗(ζ−2)

a(ζ−2)
(
∑

n

dnζ
−n)

and

β+∞←0(v)(ζ) =
ζ−1b(ζ−2)

a(ζ−2)
(
∑

n

cnζ
n) +

1

a(ζ−2)
(
∑

n

dnζ
−n).

(Such formulae are justified when cn, dn are compactly supported, and then one
can use a limiting argument to obtain the general case, noting that b/a, 1/a, etc.
are bounded functions). In particular, since aa∗ − bb∗ = |a|2 − |b|2 = 1 on T, we
have the pointwise estimate

|α+∞←0(v)(ζ)|2 + |β+∞←0(v)(ζ)|2 = |
∑

n

cnζ
n|2 + |

∑

n

dnζ
−n|2

for a.e. ζ ∈ T. But the right-hand side is just

|α−∞←0(v)(ζ)|2 + |β−∞←0(v)(ζ)|2

by (2.55) and (2.48) (recall that Ω0←−∞ is an isometry). Integrating this on T

using (2.49), we obtain

‖Ω+∞←0v‖2L2(T)⊕L2(T) = ‖Ω−∞←0v‖2L2(T)⊕L2(T).

Since v was an arbitrary element of Ω0←−∞(L2(T) ⊕ L2(T)), this implies that
Ω0←−∞(L2(T) ⊕ L2(T)) ⊆ Ω0←+∞(L2(T) ⊕ L2(T)). A similar argument shows
that Ω0←+∞(L2(T) ⊕ L2(T)) ⊆ Ω0←−∞(L2(T) ⊕ L2(T)), and so the isometries
Ω0←+∞, Ω0←−∞ have the same range:

Ω0←−∞(L2(T) ⊕ L2(T)) = Ω0←+∞(L2(T)⊕ L2(T)).

Furthermore, the above argument shows that

(2.56) α+∞←0(v)(ζ) =
1

a(ζ−2)
α−∞←0(v)(ζ) −

ζb∗(ζ−2)

a(ζ−2)
β−∞←0(v)(ζ)

and

(2.57) β+∞←0(v)(ζ) =
ζ−1b(ζ−2)

a(ζ−2)
α−∞←0(v)(ζ) +

1

a(ζ−2)
β−∞←0(v)(ζ)

for all v ∈ Ω0←±∞(L2(T) ⊕ L2(T)). We can write this in another way. Define
the scattering operator Ω+∞←−∞ be the operator on L2(T)⊕L2(T) defined in the
physical space representation as

(2.58) Ω+∞←−∞

(
α−∞(ζ)
β−∞(ζ)

)
=

(
1

a(ζ−2)
−ζb∗(ζ−2)
a(ζ−2)

ζ−1b(ζ−2)
a(ζ−2)

1
a(ζ−2)

)(
α−∞(ζ)
β−∞(ζ)

)
.

Then (2.56), (2.57) can be rewritten as

(2.59) Ω+∞←−∞Ω−∞←0 = Ω+∞←0.
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Observe that the scattering operator Ω+∞←−∞ is unitary on L2(T) ⊕ L2(T), and
its inverse Ω−∞←+∞ := Ω−1+∞←−∞ is given by

(2.60) Ω−∞←+∞

(
α+∞(ζ)
β+∞(ζ)

)
=

(
1

a∗(ζ−2)
ζb∗(ζ−2)
a∗(ζ−2)

−ζ−1b(ζ−2)
a∗(ζ−2)

1
a∗(ζ−2)

)(
α+∞(ζ)
β+∞(ζ)

)
.

Note that the scattering operator Ω+∞←−∞ is determined completely by the re-
flection and transmission coefficients 1/a, b/a, b∗/a, and conversely one can recover
these coefficients from the scattering operator. Thus we recover the well-known
interpretation of the functions a(z), b(z) as scattering coefficients of the Dirac op-
erator L; the novelty here is that we are able to handle potentials that lie in l2(Z)
(as opposed to potentials with more decay, e.g. l1(Z) potentials).

We now show asymptotic completeness on the absolutely continuous portion of
the spectrum. For any integer n, we introduce the half-line transfer matrices

M [a−∞←n, b−∞←n] :=M−∞←n =
︷ ︸︸ ︷
F(−∞,n)

and

M [an←+∞, bn←+∞] :=Mn←+∞ =
︷ ︸︸ ︷
F[n,+∞;

by (2.13) (or (2.16)) we thus have

(2.61) M [a, b] =M [a−∞←n, b−∞←n]M [an←+∞, bn←+∞].

From (2.53) (and (2.45), (2.50)) we have

M [ζn−1α±∞←0(wn), ζ
−nα±∞←0(vn)] =M [an←+∞(ζ−2), bn←+∞(ζ−2)]

M [α±∞←0(Ω−∞←nw1), α±∞←0(Ωn←+∞v0)];

from (2.54) we thus have

M [ζn−1α+∞←0(wn), ζ
−nα+∞←0(vn)] =M [an←+∞(ζ−2), bn←+∞(ζ−2)]M [−b

∗(ζ−2)

a(ζ−2)
, 1]

and

M [ζn−1α−∞←0(wn), ζ
−nα−∞←0(vn)] =M [an←+∞(ζ−2), bn←+∞(ζ−2)]M [0,

1

a∗(ζ−2)
].

Thus we can compute the scattering data of vn and wn in terms of a, b, an←+∞, bn←+∞, a−∞←n, b−∞←n.
Indeed, from the identity

M [a−∞←n, b−∞←n] =M [a, b]M [an←+∞, bn←+∞]−1

=M [a, b]M [a∗n←+∞,−bn←+∞]

=M [aa∗n←+∞ − b∗bn←+∞, ba
∗
n←+∞ − bn←+∞a

∗]

(2.62)
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we see that

β−∞←0(wn)
∗(ζ) = α+∞←0(vn)(ζ) = ζn(a∗n←+∞(ζ−2)− bn←+∞(ζ−2)b∗(ζ−2)

a(ζ−2)
)

= ζn
a−∞←n(ζ

−2)

a(ζ−2)

β−∞←0(vn)
∗(ζ) = α+∞←0(wn)(ζ) = ζ1−n(b∗n←+∞(ζ−2)− an←+∞(ζ−2)b∗(ζ−2)

a(ζ−2)
)

= −ζ1−n b
∗
−∞←n(ζ

−2)

a(ζ−2)

β+∞←0(wn)
∗(ζ) = α−∞←0(vn)(ζ) = ζn

a∗n←+∞(ζ−2)

a∗(ζ−2)

β+∞←0(vn)
∗(ζ) = α−∞←0(wn)(ζ) = ζ1−n

b∗n←+∞(ζ−2)

a∗(ζ−2)
.

(2.63)

The reader may verify that these formulae are consistent with (2.56), (2.57).
Now for any integer N , consider the function

fN(ζ) :=
a−∞←NaN←+∞ − b∗−∞←NbN←+∞
a−∞←NaN←+∞ + b∗−∞←NbN←+∞

(ζ−2) =
1− rN←+∞s−∞←N

1 + rN←+∞s−∞←N
(ζ−2).

Since M [a−∞←N , b−∞←N ] ∈ H2
0(D∗) and M [aN←+∞, bN←+∞] ∈ H2(D), we see

that rN←+∞ and s−∞←N extend holomorphically to D and are strictly less than
1 in magnitude on D, with s−∞←N vanishing at the origin; thus fN is a Herglotz
function on D∗ which equals 1 at infinity. By the Herglotz representation theorem
there thus exists a probability measure µN on T such that

fN (ζ) =

∫

T

ζ + eiθ

ζ − eiθ
dµN (eiθ)

for all ζ ∈ D∗. This measure turns out to have the same support properties10 as
the spectral measure µ, and is also useful to establish asymptotic completeness of
the wave operators Ω0←±∞ on Hac:

Proposition 2.10. We have Ω0←−∞(L2(T) ⊕ L2(T)) = Ω0←+∞(L2(T) ⊕
L2(T)) = Hac; in particular, for every v ∈ Hac, there exists vectors v+, v− ∈
L2(T) ⊕ L2(T) such that

lim
m→±∞

‖L[F ]mv − L[0]mv±‖H = 0.

Furthermore, for any N , the support of µsc is the same as that of µN,sc, and the
support of µpp is the same as that of µN,pp, while the supports of µac and µN,ac are
both equal to T.

The second part of this proposition can also be deduced by evaluating the
spectral measure µ at vn, wn by means of resolvents (which can be calculated
explicitly by modifying the analysis of the eigenfunction equation (2.39)), but we
will choose a different argument which will also show the asymptotic completeness
of Ω0←±∞.

10In fact, the µN are mutually absolutely continuous with respect to each other as N varies;
this is basically because the transfer matrix MN←N′ and its inverse are bounded on T for finite
N < N ′.
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Proof. Without loss of generality we may take N = 0, since translating F by
a finite amount does not change the spectral or scattering properties of L[F ] (it
merely conjugates L[F ] by a translation operator). From (2.45) and (2.46) we know
that the space Ω0←±∞(L2(T)⊕L2(T)) is invariant under L[F ] and under ∗; thus the
orthogonal complement Ω0←±∞(L2(T)⊕L2(T))⊥ of this space in L2(T)⊕L2(T) is
similarly invariant under L[F ] and ∗. Since we already know that Ω0←±∞(L2(T)⊕
L2(T)) is contained in Hac, the first claim of this proposition will then follow if we
can show that the spectrum of L[F ] is purely singular on Ω0←±∞(L2(T)⊕L2(T))⊥.
In fact we will show that the spectrum of L[F ] on Ω0←±∞(L2(T) ⊕ L2(T))⊥ is
exactly equal to the support of µ̃sc + µ̃pp.

Let X ⊂ L2(T)⊕L2(T) be the set of finite linear combinations of basis vectors
vn, wn; this is a dense subspace of L2(T) ⊕ L2(T), closed under both L[F ] and ∗.
We observe that elements of this space are also finite linear combinations of the
vectors {L[F ]mv0}m∈Z∪{L[F ]mw0}m∈Z (thus the pair of vectors v0, w0 are a cyclic
pair of vectors for L[F ]). To see this, observe from (2.4) that we may write v1 and
w1 in terms of v0, w0, and various powers of L[F ]; iterating this we can obtain all
the basis vectors vn, wn for positive n. The negative n are handled by the same
argument. Thus we have two quite different bases for generating X ; on the one
hand we have the orthonormal Fourier basis {vn}n∈Z ∪ {wn}n∈Z, and on the other
hand we have11 a “dynamic basis” {L[F ]mv0}m∈Z ∪ {L[F ]mw0}m∈Z, which is not
orthonormal in general (except when F = 0, when the dynamic basis coincides with
the Fourier basis) but allows us to represent L[F ] as a shift operator. This will be
very useful, as several facts about X will be easy to check in one basis but quite
non-trivial in the other.

We shall begin by rewriting the inner product on L2(T)⊕L2(T), restricted to
X , in another way. First observe that for elements v ∈ L2(T)⊕L2(T), the functions
α+∞←0(v), β+∞←0(v), α−∞←0(v)

∗, and β−∞←0(v)
∗ extend holomorphically to the

punctured disk D\{0} (with the singularity at 0 being either removable or a pole).
To see this, we see from the above discussion that it suffices to verify it when
v = L[F ]mv0 or v = L[F ]mw0. But by (2.50) and (2.51) it suffices to do this
when v = v0. But this follows from (2.63), since M [a−∞←0, b−∞←0] ∈ H2

0(D∗),
M [a0←+∞, b0←+∞] ∈ H2(D), and M [a, b] ∈ L2(T).

We now analyze the inner product 〈v, w〉H restricted X , as well as the slightly
smaller (semi-definite) inner product

〈v, w〉Ω0←±∞(L2(T)⊕L2(T)) := 〈Ω0←±∞v,Ω0←±∞w〉H;

note from (2.59) and the unitarity of the scattering operators Ω∓∞←±∞ that this
inner product is independent of the choice of sign. By Plancherel (or Parseval) and
(2.48) we may write

〈v, w〉Ω0←±∞(L2(T)⊕L2(T)) =

∫

T

α±∞←0(v)α
∗
±∞←0(w) + β±∞←0(v)β

∗
±∞←0(w);

using (2.56), (2.57) and the fact that |a|2 − |b|2 = 1, we may rewrite this as

〈v, w〉Ω0←±∞(L2(T)⊕L2(T)) =

∫

T

α+∞←0(v)(ζ)α−∞←0(w)
∗(ζ)a(ζ−2)

+ β−∞←0(v)(ζ)β+∞←0(w)
∗(ζ)a∗(ζ−2).

(2.64)

11We have not proven the linear independence of this basis, as it is not necessary for our
argument, but it can be easily checked using (2.50) and (2.63).
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By our previous discussion, for v, w ∈ X we know that the first term in the integrand
extends to the punctured exterior disk D∗\{∞}, while the second term extends to
the punctured disk D\{0}. Inspired by this, we define the bilinear form 〈v, w〉X on
X by the formula

〈v, w〉X :=

∫

T+

α+∞←0(v)(ζ)α−∞←0(w)
∗(ζ)a(ζ−2)+

∫

T−

β−∞←0(v)(ζ)β+∞←0(w)
∗(ζ)a∗(ζ−2)

where T− denotes a circle {z ∈ C : |z| = 1
1+ε} for some 0 < ε, normalized to have

total mass 1, and T+ is similarly defined as {z ∈ C : |z| = 1+ ε} with total mass 1.
Note the Cauchy integral formula ensures that this definition is independent of ε,
but as we shall see, we cannot quite take ε = 0, because of the presence of “singular
measure” on T; the inner product 〈v, w〉Ω0←±∞(L2(T)⊕L2(T)) will turn out to be just
the “absolutely continuous” portion of 〈v, w〉X .

We now make the above heuristic discussion rigorous. The form 〈v, w〉X is
clearly complex linear in v and skew-linear in w. From (2.50) we see that

(2.65) 〈L[F ]v, L[F ]w〉X = 〈v, w〉X
for all v, w ∈ X , while from (2.51) we see that

(2.66) 〈∗v, ∗w〉X = 〈w, v〉X
for all v, w ∈ X .

We now make the (not entirely obvious) claim that this bilinear form has the
self-adjointness property

(2.67) 〈w, v〉X = 〈v, w〉X .
It suffices to verify this when v and w lie in the dynamic basis {L[F ]mv0}m∈Z ∪
{L[F ]mw0}m∈Z, since as mentioned earlier these vectors finitely generate X . Let
us first consider the case when v = L[F ]nv0 and w = L[F ]mw0 for some n,m ∈ Z.
Then from (2.63) (with n = 0) and (2.50) we have

〈v, w〉X =

∫

T+

ζn−m−1a−∞←0(ζ
−2)b0←+∞(ζ−2)

a(ζ−2)
+

∫

T−

−ζn−m−1b−∞←0(ζ
−2)a∗0←+∞(ζ−2)

a∗(ζ−2)

and

〈w, v〉X =

∫

T+

−ζm−n+1b∗−∞←0(ζ
−2)a0←+∞(ζ−2)

a(ζ−2)
+

∫

T−

ζm−n+1a∗−∞←0(ζ
−2)b∗0←+∞(ζ−2)

a∗(ζ−2)

and the claim follows by inspection (notice that the change of variables ζ 7→ ζ
−1

effectively maps T− to T+ and vice versa). By (2.66) it thus remains to verify the
case when v = L[F ]nv0 and w = L[F ]mv0; by (2.65) we may take n = 0 and m ≥ 0.
First consider the case m = 0; our task is to show that 〈v0, v0〉X is real. In fact it
is equal to 1. To see this, we expand

〈v0, v0〉X =

∫

T+

a−∞←0(ζ
−2)a0←+∞(ζ−2)

a(ζ−2)
+

∫

T−

−b−∞←0(ζ
−2)b∗0←+∞(ζ−2)

a∗(ζ−2)
.

But the first integrand extends holomorphically to D∗ and has value a−∞←0(0)a0←+∞(0)
a(0) =

1 at infinity, while the second integral extends holomorphically to D and has value
−b−∞←0(∞)b0←+∞(0)

a(0) = 0 at the origin. Thus 〈v0, v0〉X = 1 as claimed.
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Now consider the case m > 0. We expand
(2.68)

〈v0, L[F ]mv0〉X =

∫

T+

ζ−ma−∞←0(ζ
−2)a0←+∞(ζ−2)

a(ζ−2)
+

∫

T−

−ζ−mb−∞←0(ζ
−2)b∗0←+∞(ζ−2)

a∗(ζ−2)

and
(2.69)

〈L[F ]mv0, v0〉X =

∫

T+

ζma−∞←0(ζ
−2)a0←+∞(ζ−2)

a(ζ−2)
+

∫

T−

−ζmb−∞←0(ζ
−2)b∗0←+∞(ζ−2)

a∗(ζ−2)
.

The first integrand in (2.68) is holomorphic on D∗ and vanishes at infinity, so the
integral is zero. Similarly the second integrand in (2.69) is holomorphic on D and
vanishes at the origin, so the integral is also zero. Conjugating the remaining term
in (2.69), it thus suffices to show that

∫

T−

−ζ−mb−∞←0(ζ
−2)b∗0←+∞(ζ−2)

a∗(ζ−2)
=

∫

T−

ζ−ma∗−∞←0(ζ
−2)a∗0←+∞(ζ−2)

a∗(ζ−2)
.

But this follows since a∗ = a∗−∞←0a
∗
0←+∞ + b−∞←0b

∗
0←+∞, and hence

∫

T−

ζ−m
a∗−∞←0(ζ

−2)a∗0←+∞(ζ−2) + b−∞←0(ζ
−2)b∗0←+∞(ζ−2)

a(ζ−2)
=

∫

T−

ζ−m = 0.

We can now equate this bilinear form with the inner product on L2(T)⊕L2(T).

Lemma 2.11. For all v, w ∈ X, we have 〈v, w〉X = 〈v, w〉L2(T)⊕L2(T).

We remark that this lemma can be used to compute the matrix coefficients of
L[F ]m explicitly in terms of transfer matrices, but we will not do so here.

Proof. It suffices to verify this when v and w lie in the orthonormal basis
{vn}n∈Z ∪ {wn}n∈Z. We have already shown that 〈v0, v0〉X = 〈v0, v0〉H = 1; a
similar argument shows that 〈vn, vn〉X = 〈vn, vn〉H = 1 for all n ∈ Z. Applying
(2.66) we see a similar statement for the wn.

Now we check the remaining inner products of basis vectors. By (2.66) it
suffices to show that

〈vn, wm〉X = 0 for all n,m

and

〈vn, vm〉X = 0 for all n ≥ m.

By (2.67) we may take12 m ≥ n. By (2.63) we thus have

〈vn, wm〉X =

∫

T+

ζn+m−1 a−∞←n(ζ
−2)bm←+∞(ζ−2)

a(ζ−2)
−
∫

T−

ζn+m−1 b−∞←n(ζ
−2)a∗m←+∞(ζ−2)

a∗(ζ−2)
.

But since rm←+∞ ∈ H2
[m,+∞) and all the “a” functions are outer on D, we see that

the first integrand is holomorphic on D∗ and has a zero of order 2m−(n+m−1) > 0
at infinity, so the first integral vanishes. Similarly, since s−∞←n ∈ H2

[n+1,+∞) and

all the “a” functions are outer on D, we see that the second integrand is holomorphic
on D and has a zero of order n+m− 1− 2(n− 1) > 0 at the origin, so the second
integral also vanishes.

12This use of the non-trivial self-adjointness property (2.67) is crucial, as the computation is
far messier for m < n!
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Now we expand 〈vn, vm〉X similarly as

〈vn, vm〉X =

∫

T+

ζn−m
a−∞←n(ζ

−2)am←+∞(ζ−2)

a(ζ−2)
+

∫

T−

ζn−m
b−∞←n(ζ

−2)b∗m←+∞(ζ−2)

a∗(ζ−2)
.

The first integrand is holomorphic on D∗ with a zero of order m − n at infinity
(since all the “a” functions are outer on D), and so the first integral vanishes.
Since s−∞←n ∈ H2

[1−n,+∞) and rm←+∞ ∈ H2
[m,+∞), and all the “a” functions are

outer on D, we see that the second integrand is holomorphic on D with a zero of
order m− n+2 at the origin, so the second integral also vanishes. This proves the
Lemma. �

As a corollary of the above lemma we see that

‖v‖2L2(T)⊕L2(T) =

∫

T+

α+∞←0(v)(ζ)α−∞←0(v)
∗(ζ)a(ζ−2)+

∫

T−

β−∞←0(v)(ζ)β+∞←0(v)
∗(ζ)a∗(ζ−2)

for all v ∈ X , while from (2.64) we have

‖Ω±∞←0v‖2L2(T)⊕L2(T) =

∫

T

α+∞←0(v)(ζ)α−∞←0(v)
∗(ζ)a(ζ−2)β−∞←0(v)(ζ)β+∞←0(v)

∗(ζ)a∗(ζ−2).

Since the left-hand sides are real, we can conjugate the second factor of each to
obtain

‖v‖2L2(T)⊕L2(T) = Re

∫

T+

(α+∞←0(v)(ζ)α−∞←0(v)
∗(ζ) + β−∞←0(v)

∗(ζ)β+∞←0(v)(ζ))a(ζ
−2)

‖Ω±∞←0v‖2L2(T)⊕L2(T) = Re

∫

T

(α+∞←0(v)(ζ)α−∞←0(v)
∗(ζ) + β−∞←0(v)

∗(ζ)β+∞←0(v)(ζ))a(ζ
−2).

To compare these expressions, we use the dynamic basis to write v in terms of the
vectors L[F ]mv0, L[F ]

mw0 for various m ∈ Z. In other words, we may write

v = c(L[F ])v0 + d(L[F ])w0

for some Laurent polynomials c, d. By (2.50) we thus have

α±∞←0(v) = c(ζ)α±∞←0(v0)+d(ζ)α±∞←0(w0); β±∞←0(v) = c(ζ)β±∞←0(v0)+d(ζ)β±∞←0(w0);

using (2.63) we thus have

α+∞←0(v) =
c(ζ)a−∞←0(ζ

−2)− ζd(ζ)b∗−∞←0(ζ
−2)

a(ζ−2)

β+∞←0(v) =
ζ−1c(ζ)b0←+∞(ζ−2) + d(ζ)a0←+∞(ζ−2)

a(ζ−2)

α−∞←0(v) =
c(ζ)a∗0←+∞(ζ−2) + ζd(ζ)b∗0←+∞(ζ−2)

a∗(ζ−2)

β−∞←0(v) =
−ζ−1c(ζ)b−∞←0(ζ

−2) + d(ζ)a∗−∞←0(ζ
−2)

a∗(ζ−2
.

Substituting this into our previous formulae for ‖v‖H and ‖Ω0←±∞v‖H, we obtain

‖v‖2L2(T)⊕L2(T) = Re

∫

T+

(cc∗ + dd∗)f0 + 2ζ−1cd∗g + 2ζdc∗h

‖Ω±∞←0v‖2L2(T)⊕L2(T) = Re

∫

T

(cc∗ + dd∗)f0 + 2ζ−1cd∗g + 2ζdc∗h,

(2.70)
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where

f0(ζ) :=
a−∞←0a0←+∞ − b∗−∞←Nb0←+∞

a
(ζ−2) =

1− r0←+∞s−∞←0

1 + r0←+∞s−∞←0
(ζ−2)

is the function defined earlier, and g, h are the auxiliary functions

g(ζ) :=
a−∞←0b0←+∞

a
(ζ−2) =

r0←+∞
1 + r0←+∞s−∞←0

(ζ−2)

and

h(ζ) := −b
∗
−∞←0a0←+∞

a
(ζ−2) = − s−∞←0

1 + r0←+∞s−∞←0
(ζ−2).

We observed earlier that f0 is Herglotz on D∗., with associated measure µ0 on T.
In fact we have the more general statement that f0 + ωg + ωh is Herglotz on D∗
for all complex numbers ω in the closed unit disk D = {z ∈ C : |z| ≤ 1}. Indeed, it
is clear that f0 + ωg + ωh is holomorphic on D∗ and equals 0 at infinity; it suffices
then to check that it has positive real part. By convexity it suffices to verify the
case when |ω| = 1. But then we can factorize

f0 + ωg + ωh =
(1 + ωr0←+∞)(1− ωs−∞←0)

1 + r0←+∞s−∞←0
(ζ−2).

To show that this has positive real part, it suffices to show that its reciprocal does,
i.e. that

Re
1 + r0←+∞s−∞←0

(1 + ωr0←+∞)(1− ωs−∞←0)
(ζ−2) > 0.

But we can split the left-hand side as

1

2
Re

1− ωr0←+∞
1 + ωr0←+∞

(ζ−2) +
1

2
Re

1 + ωs−∞←0

1− ωs−∞←0
(ζ−2)

and both terms are clearly positive (since r0←+∞ and s−∞←0 are bounded by 1 on
D).

By the Herglotz representation theorem, we can thus associate to each ω ∈ D
a probability measure µω on T such that

(2.71) (f0 + ωg + ωh)(ζ) =

∫

T

ζ + eiθ

ζ − eiθ
dµω(e

iθ)

for all ζ ∈ D∗. By taking various linear combinations of this identity, we thus see
that µω must depend on ω linearly, in the sense that

µω = µ0 + ων + ων

for some complex measures ν, ν; since µω is always real we see that ν must indeed
be the conjugate of ν, as the notation suggests. Since the µω are always positive
for all ω ∈ D, we easily see from this identity (and the [?Hahn?] decomposition
theorem for measures) that ν is absolutely continuous with respect to µ0, and in fact
must take the form ν = ρµ0 for some function ρ ∈ L∞(µ0) with ‖ρ‖L∞(µ0) ≤ 1/2.
Thus

µω = (1 + ωρ+ ωρ)µ0,
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which then implies from (2.71) that

f0(ζ) =

∫

T

ζ + eiθ

ζ − eiθ
dµ0(e

iθ)

g(ζ) =

∫

T

ζ + eiθ

ζ − eiθ
ρdµ0(e

iθ)

g(ζ) =

∫

T

ζ + eiθ

ζ − eiθ
ρ∗dµ0(e

iθ).

Applying this to (2.70), and observing that f0, g, h are all finite linear combinations
of Herglotz functions, we obtain

‖v‖2L2(T)⊕L2(T) = Re

∫

T

(cc∗ + dd∗)dµ0 + 2ζ−1cd∗ρdµ0 + 2ζdc∗ρ∗dµ0

‖Ω±∞←0v‖2L2(T)⊕L2(T) = Re

∫

T

(cc∗ + dd∗)dµ0,ac + 2ζ−1cd∗ρdµ0,ac + 2ζdc∗ρ∗dµ0,ac.

Actually the Re can be dropped since the integrands are already manifestly real.
In particular we see that
(2.72)

‖v‖2L2(T)⊕L2(T)−‖Ω±∞←0v‖2L2(T)⊕L2(T) =

∫

T

(|c|2+|d|2+4Re(ζ−1cd∗ρ))(dµ0,sc+dµ0,pp)

for all v ∈ X . Now recall that X is dense in L2(T) ⊕ L2(T), and that L[F ]
on X corresponds to multiplying c and d by ζ. Thus the action of L[F ] on
Ω0←±∞(L2(T) ⊕ L2(T))⊥ is unitarily equivalent to the action of multiplication
by ζ on the space formed by the space L2

ρ(µ0,sc + µ0,pp), defined as the closure of
the space {(c(z), d(z)) : c, d Laurent polynomials} under the semi-norm

‖(c, d)‖2 :=

∫

T

(|c|2 + |d|2 + 4Re(ζ−1cd∗ρ))(dµ0,sc + dµ0,pp)

and with any null vectors (which can occur when |ρ| = 1/2; see below) quotiented
out. This shows Ω0←±∞(L2(T)⊕L2(T))⊥ has no absolutely continuous portion of
the spectrum of L[F ], and hence Ω0←±∞(L2(T) ⊕ L2(T)) = Hac as desired. The
above discussion also shows that the singular continuous and pure point components
of µ coincide with that of µ0, as claimed. The claim about µ0 and µ both having
absolutely continuous spectrum equal to T is also clear; the former follows from
inspection (since f0 is non-zero a.e. on T, in fact it is log-integrable), and the latter
follows since the spectrum of L[F ] on Ω0←±∞(L2(T) ⊕ L2(T)) is (by (2.45)) the
same as that of L[0] on L2(T) ⊕ L2(T), which is absolutely continuous on all of
T. �

Remark. Morally speaking, when singular spectrum occurs, 1+s−∞→0r0→+∞(ζ−2)
must vanish, and ρ should equal 1

2r0→+∞(ζ−2) = − 1
2s−∞→0(ζ

−2). This heuristic
can be made rigorous; indeed, one to show that |ρ| = 1/2 almost everywhere with
respect to µ0,sc + µ0,pp, which implies that L2

ρ(µ0,sc), and hence Hsc is unitarily

equivalent to L2(µ0,sc), and similarly for the pure point portion of the spectrum;
this can be thought of as a generalization of the well-known fact (shown for instance
via Wronskians) that an eigenvalue equation such as (2.39) can have at most one
linearly independent solution in l2(Z). We sketch the argument as follows. The idea
is to use the fact that L[F ]−mvm converges to Ω0←+∞v0 as m → +∞, and so its
projection to Ω0←±∞(L2(T) ⊕ L2(T))⊥ goes to zero. However, one can show that
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L[F ]−mvm = cm(L[F ])v0+dm(L[F ])w0 for some Laurent polynomials cm(ζ), dm(ζ)
satisfying cmc

∗
m − dmd

∗
m = 1 (in fact M [cm, ζ

−1dm] = M−10←m(ζ2), as can be seen
by induction). These facts are only compatible with (2.72) if |ρ| = 1/2 a.e. on
µ0,sc + µ0,pp. One can then use ρ to define s−∞→0(ζ

−2) and r0→+∞(ζ−2) on the
singular spectrum a.e. on µ0,sc + µ0,pp.

Proposition 2.10 gives us a criterion to test when a Dirac operator L[F ] with
admissible potential F has purely absolutely continuous spectrum; this occurs if and
only if the function f0 (or any other fN ) is a Herglotz function D∗ generated by an
absolutely continuous measure. (Equivalently, ef0 must be an outer function onD∗).
Note that this criterion depends on half-line transfer matricesMN→+∞,M−∞→N as

well as the nonlinear Fourier transform
︷︸︸︷
F . In fact the nonlinear Fourier transform︷︸︸︷

F is not always, by itself, enough to determine whether L[F ] has any singular
spectrum or not. For instance, consider the example M [a, b] ∈ H0 ⊂ L2(T) given
by

b :=
2 sinh θ0
z − 1

; a :=
eθ0z − e−θ0z

z − 1
which was considered earlier; here θ0 > 0 is an arbitrary parameter. From Theorem
2.4, Corollary 2.5, Lemma 2.6 we know that every solution of the Riemann-Hilbert

problem (2.34) gives rise to a potential F with
︷︸︸︷
F =M [a, b], and with M0→+∞ =

M [a+, b+] and M−∞→0 = M [a−, b−]. We will have purely absolutely continuous
spectrum if and only if the function

(2.73)
1− s−r+
1 + s−r+

=
a−a+ + b∗−b+

a
,

which is necessarily Herglotz on D, arises from an absolutely continuous measure
(we now work in D instead of D∗ by means of the change of variables z = ζ−2. For
instance, in the two extreme factorizations

M [a, b] =M [1, 0]M [a, b]

and

M [a, b] =M [a, b]M [1, 0]

which give rise to potentials supported on [0,+∞) and (−∞, 0] respectively, the
function (2.73) is identically 1 and so there is no singular spectrum; as observed in
[34], this shows that the problem of non-uniqueness for the inverse NLFT cannot
be solved simply by restricting one’s attention to Dirac operators with purely ab-
solutely continous spectrum. In fact half-line admissible potentials can never have
any singular continuous or pure point spectrum13. However, there are intermediate

13The reader may object that there are many constructions on the half-line that give embed-
ded eigenvalues, etc. for admissible potentials, but in those constructions a non-zero boundary
condition is imposed, e.g. in the notation of (2.39), (2.40) one might impose that (φ0, ψ0) = (1, 0)

or (φ0, ψ0) = (0, 1); this would correspond to the singular nature of a function such as
1∓r+
1±r+

rather than
1−s−r+
1+s−r+

. In the full line setting, the “boundary condition” is that the eigenfunction

Φ must decay as an l2 function in both directions, which in the case of a half-line potential forces

(φ0, ψ0) = (0, 0), which then quickly forces all of Φ to vanish. It is however an interesting question
to see how the singular spectrum of two half-line potentials (with appropriate boundary condi-
tions) relate to the singular spectrum of the concatenated full line potential; the compatibility of
boundary conditions of the half-line potentials is of course crucial.
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factorizations

(2.74) M [a, b] =M [aθ, bθ]M [aθ0−θ, bθ0−θ]

for 0 ≤ θ ≤ θ0, where

bθ :=
2 sinh θ

z − 1
; aθ :=

eθz − e−θ

z − 1
;

of course the two extremes θ = 0, θ = θ0 correspond to the two extreme factoriza-
tions given earlier. (For θ < 0 or θ > θ0, either aθ or aθ0−θ ceases to be an outer
function on D). But for the intermediate factorizations 0 < θ < θ0, the function
(2.73) can be seen to have a simple pole at 1, and so the corresponding measure
dµ0 will acquire a point mass at 1 (although the mass of this point will go to zero
as θ → 0 or θ → θ0). Thus the Dirac operators corresponding the intermediate
factorizations have an embedded eigenvalue at 1, i.e. an eigenfunction in l2(Z) with
eigenvalue 1.

One can in fact show that the factorizations in (2.74) are the only solutions to
the Riemann-Hilbert problem with the specified M [a, b]; we will tackle this (and
the more general problem of solving Riemann-Hilbert problems for rational function
data) in a future paper. Thus there is a continuum of solutions here to the RHP,
with the two extremes admitting no singular spectrum and the intermediate cases
exhibiting some singular spectrum. This turns out to be the typical14 behavior, as
we shall see when we derive triple factorization.

We close this section with an alternate characterization of the presence of sin-
gular spectrum.

Lemma 2.12. Let F be an admissible potential with non-linear Fourier trans-
formM [a, b], let N be an arbitrary integer, and letM [a−∞←N , b−∞←N ] =M−∞←N

and M [aN←+∞, bN←+∞] = MN←+∞ be the half-line transfer matrices. Then we
have ∫

T

|a−∞←N |2 + |bN←+∞|2
|a|2 =

∫

T

|b−∞←N |2 + |aN←+∞|2
|a|2 ≤ 1

and equality occurs if and only if L[F ] has purely absolutely continuous spectrum.
In particular, we see that a−∞←N/a, b−∞←N/a, aN←+∞/a, and bN←+∞/a all lie
in L2(T).

Proof. We recall that the function fN defined by

fN(ζ) =
a−∞←NaN←+∞ − b∗−∞←NbN←+∞
a−∞←NaN←+∞ + b∗−∞←NbN←+∞

(ζ−2)

was a Herglotz function onD∗. In particular, RefN (ζ) is equal a.e. to the absolutely
continuous portion of the measure µN associated to this function, which means that∫

T

RefN ≤ 1

14Actually, the picture is slightly more complicated than this. For instance, if M [a, b] had
a double pole at 1 instead of a single pole, what happens is that in addition to the two extreme
solutions to the RHP with no singular spectrum, there is also an intermediate solution to the
RHP where M [a−, b−] and M [a+, b+] each have a simple pole at 1, and again there is no singular

spectrum. Then there are two line segments of solutions, each of which connects this intermediate
solution to one of the two extreme solutions, and the solutions in these line segments each have
an embedded eigenvalue at 1. We will investigate these phenomena more thorougly in a future
paper.
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with equality occurring if and only if this measure µN has purely absolutely con-
tinuous spectrum, which by Proposition 2.10 is equivalent to L[F ] having purely
absolutely continuous spectrum. But by (2.61) the denominator of fN is equal to
a, while from (2.62) we have

a−∞←n = aa∗n←+∞ − b∗bn←+∞

b−∞←n = ba∗n←+∞ − bn←+∞a
∗

which after some algebra becomes

an←+∞ =
a∗−∞←n

a∗
+
bb∗n←+∞

a∗

b−∞←n =
ba−∞←n

a
− bn←+∞

a
.

Substituting this into the definition of fN , we obtain after some more algebra

RefN (ζ) =
|a−∞←N |2 + |bN←+∞|2

|a|2 (ζ−2);

this is also equal to |b−∞←N |2+|aN←+∞|2
|a|2 (ζ−2) since

|a−∞←N |2 − |b−∞←N |2 = |aN←+∞|2 − |bN←+∞|2 = 1.

The claim follows. �

2.9. A flag of Hilbert spaces

Let F be an admissible potential. In the last section we determined a fair
amount about the structure of the Dirac operator L = L[F ] on L2(T)⊕L2(T). For
instance, we isolated a subspace (L2(T)⊕ L2(T))ac of L

2(T)⊕L2(T) which was in-
variant under L[F ], ∗, and σ, and such that the system (L[F ], ∗, σ, (L2(T)⊕ L2(T))ac)
was unitarily equivalent (via either of the two adjoint wave operators Ω±∞←0, which
are related by (2.59)) to the system (L[0], ∗, σ, L2(T) ⊕ L2(T)). In particular Hac

contains a number of interesting vectors such as Ω0←±∞(vn) and Ω0←±∞(wn).
We now see how the original orthonormal basis vectors vn, wn relate to these

scattering basis vectors Ω0←±∞(vn), Ω0←±∞(wn), or more precisely how various
Hilbert spaces generated by one space correspond to the other. In the vacuum case
F = 0, Ω0←±∞ is the identity and so these basis vectors co-incide, but of course
for non-zero F these vectors will be different.

For any integer N , define the vector space V<N ⊂ L2(T) ⊕ L2(T) to be the
Hilbert space spanned by the orthonormal basis vectors {vn : n < N} ∪ {wn :
n < N}. Similarly define V≥N to be the Hilbert space spanned by {vn : n ≥
N} ∪ {wn : n ≥ N}. Clearly these spaces are orthogonal complements of each
other: V≥N = V ⊥<N .

Now let V min
<N be the smallest Hilbert space which contains the vectors

{Ω0←+∞(wn) : n < N} ∪ {Ω0←−∞(vn) : n < N}.
Note that the set of vectors {Ω0←+∞(wn) : n < N} and {Ω0←−∞(vn) : n < N}
are separately orthonormal, but their union is not necessarily so. Note that this
space necessarily lies in (L2(T) ⊕ L2(T))ac, thanks to Proposition 2.10. Similarly
define V min

≥N ⊂ (L2(T) ⊕ L2(T))ac to be the smallest Hilbert space which contains
the vectors

{Ω0←+∞(vn) : n ≥ N} ∪ {Ω0←−∞(wn) : n ≥ N}.



2.9. A FLAG OF HILBERT SPACES 127

Then define V max
<N := (V min

≥N )⊥ and V max
≥N := (V min

<N )⊥; these spaces necessarily

contain (L2(T)⊕ L2(T))sc ⊕ (L2(T)⊕ L2(T))pp.

Lemma 2.13. For any N , we have

V min
<N ⊆ V<N ⊆ V max

<N

or equivalently that
V min
≥N ⊆ V≥N ⊆ V max

≥N .

Proof. It suffices to prove that V min
<N ⊆ V<N and V min

≥N ⊆ V≥N , as the other
two inclusions follow by taking orthogonal complements. We shall just prove the
first, as the second is similar. It suffices to show that Ω0←+∞(wn),Ω0←−∞(vn) ∈
V<N for all n < N . By the definition of Ω0←±∞, it in fact suffices to show that
L[F ]−mwn−m, L[F ]mvn−m ∈ V<N for all n < N and m > 0. But this follows from
the finite speed of propagation property in Lemma 2.9, and the definition of V<N .
The corresponding claim that V min

≥N ⊆ V≥N is proven similarly. �

In particular, if V min
<N = V max

<N , then V<N is completely determined from the
scattering data Ω0←±∞(vn), Ω0←±∞(vn); later we will show that this is a necessary

and sufficient condition for
︷︸︸︷
F to have unique inverse NLFT.

We also observe the obvious invariances ∗V<N = σV<N = V<N and ∗V≥N =
σV≥N = V≥N . Clearly the spaces V<N are increasing in N , and V≥N is decreasing
in N , with

⋂

N

V<N =
⋂

N

V≥N = {0} and
∑

N

V<N =
∑

N

V≥N = L2(T)⊕ L2(T)

(here we use
∑

α Vα to denote the smallest Hilbert space containing all of the Vα;
it is conjugate to

⋃
under orthogonal complement). Also, while V<N is not quite

invariant under L, we do have LV<N ⊂ V<N+1, as can be seen directly from (2.4).
We also observe the following more precise inclusions.

Lemma 2.14. For any N , we have the formulae

V<N+1 = V<N +CΩ0←+∞(wN ) +CΩ0←−∞(vN )

V<N = V<N+1 ∩ (CΩ0←−∞(wN ))⊥ ∩ (CΩ0←+∞(vN ))⊥.

Proof. We just prove the first claim, as the second is similar. Since V<N+1

contains V min
<N+1, which in turn contains Ω0←+∞(wN ) and Ω0←−∞(vN ), we see

that the left-hand side certainly contains the right-hand side. To show the other
containment, observe that V<N has codimension two inside V<N+1, so it will suffice
to show that the vectors Ω0←+∞(wN ) and Ω0←−∞(vN ) are linearly independent
modulo V<N . Actually since these two vectors lie in different eigenspaces of the
parity operator σ, and V<N is σ-invariant, it suffices to show that these vectors
lie outside of V<N . We shall just do this for Ω0←+∞(wN ) as the other is similar
(and follows from conjugation-invariance). Since V<N is contained in V max

<N , it will
suffice to show that Ω0←+∞(wN ) is not orthogonal to Ω0←−∞(wN ). But by (2.59)
we have

〈Ω0←+∞(wN ),Ω0←−∞(wN )〉L2(T)⊕L2(T) = 〈wN ,Ω+∞←−∞(wN )〉L2(T)⊕L2(T);

applying (2.58) we see that this is equal to∫

T

1

a(ζ−2)
=

1

a(0)
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which is non-zero as desired. �

We now show a sort of converse to the above results, in that any family of
Hilbert spaces V<N in an abstract Hilbert space H (equipped with the operators
L, ∗, σ) which obey the above properties generate a Dirac operator with specified
scattering data.

Theorem 2.15. Let M [a, b] ∈ L2(T) be a scattering datum, and let H be
a Hilbert space with a unitary operator L : H → H, a skew-unitary involution
∗ : H → H, and a unitary involution σ : H → H such that we have the commutation
relations

(2.75) ∗L∗ = L−1, Lσ = −σL and ∗ σ = −σ ∗ .
Suppose also that we have unitary operators Ω0←±∞ : L2(T) ⊕ L2(T) → Hac for
some closed subspace Hac of H, with the commutation properties

(2.76) Ω0←±∞L[0] = LΩ0←±∞; Ω0←±∞∗ = ∗Ω∓; Ω0←±∞σ = σΩ0←±∞,

and such that the scattering operator Ω+∞←−∞ := Ω∗0←+∞Ω0←−∞ is given by
(2.58). Suppose we also have a closed subspace V<N for every integer N such that

V<N+1 = V<N +CΩ0←+∞(wN ) +CΩ0←−∞(vN )

V<N = V<N+1 ∩ (CΩ0←−∞(wN ))⊥ ∩ (CΩ0←+∞(vN ))⊥

∗V<N = σV<N = V<N

LV<N ⊆ V<N+1⋂

N

V<N = 0

∑

N

V<N = H.

(2.77)

Then, up to a unitary transformation of H, the space H is equal to L2(T)⊕L2(T),

and L is equal to L[F ] for some potential F such that
︷︸︸︷
F =M [a, b]. Furthermore,

the operators ∗, σ, Ω0←±∞, α±∞←0, β±∞←0, and spaces V<N correspond to the
operators and spaces with the same name defined previously.

Proof. Define the operators Ω±∞←0 : H → L2(T)⊕L2(T) to be the adjoints
of Ω0←±∞, and define α±∞←0, β±∞←0 by (2.48). Observe from (2.76) and (2.58)
that these functions the identities (2.50), (2.51), (2.52), (2.56), (2.57), (2.49).

We first use the parity operator σ to decompose all our spaces into two pieces.
Since σ is a unitary involution, we have σ2 = 1, and so the projections P+ :=
1+σ
2 and P− := 1−σ

2 are complementary orthogonal projections. Since V<N is σ-
invariant, we have the decomposition V<N = P+V<N ⊕ P−V<N . Also, from (2.76)
we know that Ω0←±∞(vN ) lies in the range of P+ if N is even and P− if N is odd,
and vice versa for Ω0←±∞(wN ). Thus we have
(2.78)
P(−1)NV<N+1 = P(−1)NV<N+CΩ0←−∞(vN ); P(−1)N+1V<N+1 = P(−1)N+1V<N+CΩ0←+∞(wN )

and
(2.79)

P(−1)NV<N = P(−1)NV<N+1∩(CΩ0←+∞(vN ))⊥; P(−1)N+1V<N = P(−1)N+1V<N+1∩(CΩ0←−∞(wN ))⊥.
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We now do a “Gram-Schmidt” procedure to extract an orthonormal basis from
these two nested sequences of subspaces. First, to avoid degeneracy, we must show
that the inner product between the unit vectors Ω0←−∞(vN ) and Ω0←+∞(vN ) is
non-zero. Using (2.59), we have

〈Ω0←−∞(vN ),Ω0←+∞(vN )〉H = 〈Ω+∞←−∞(vN ), vN 〉L2(T)⊕L2(T).

Applying (2.58) we thus see that

〈Ω0←−∞(vN ),Ω0←+∞(vN )〉H =

∫

T

1

a(ζ−2)
=

1

a(0)
.

In particular, the vectors 〈Ω0←−∞(vN ),Ω0←+∞(vN )〉H are not orthogonal. A sim-
ilar argument (using (2.76) if desired) gives that

〈Ω0←−∞(wN ),Ω0←+∞(wN )〉H =
1

a(0)
> 0.

In particular, from this and (2.78), (2.79) we see that P±V<N is a codimension
one subspace inside P±V<N+1. Thus the orthogonal complement of P±V<N in
P±V<N+1 is a complex line. If ± = (−1)N , then this orthogonal complement is
not orthogonal to Ω0←−∞(vN ), and so we can define a unique unit vector v′N in
this complement such that 〈v′N ,Ω0←−∞(vN )〉 is real and positive, while if ± =
(−1)N+1 then the orthogonal complement is not orthogonal to Ω0←+∞(wN ), and
so we can define w′N to be the unique unit vector in this complement such that
〈w′N ,Ω0←+∞(wN )〉 is real. Note that by construction we have σv′N = (−1)Nv′N
and σw′N = (−1)N+1w′N . Also since ∗ must map P±VN to P∓VN (by the ∗-
invariance of VN and (2.75)) we see that we must have ∗v′N = w′N . Thus the parity
and conjugation operator act on v′N and w′N just like they do on vN and wN in
L2(T) ⊕ L2(T).

The unit vectors v′N and w′N are orthogonal to each other since they lie in
different eigenspaces of σ. By construction, we see that

V<N+1 = V<N ⊕Cv′N ⊕Cw′N .

Iterating this we see that

V<N2 = V<N1 ⊕
⊕

N1≤N<N2

Cv′N ⊕Cw′N

for all N1 < N2. Sending N2 to +∞ and N1 to −∞ and using the hypotheses in
(2.77), we thus see that

H =
⊕

N∈Z
Cv′N ⊕Cw′N

or in other words that {v′N , w′N : N ∈ Z} is an orthonormal basis of H. Thus we
may apply a unitary transformation if necessary to replace H with L2(T)⊕L2(T),
and v′N , w′N with vN , wN ; henceforth we shall do so, and erase the distinction
between v′N and vN , between w′N and wN , and between H and L2(T) ⊕ L2(T).
Note that by the above discussion we have

(2.80) V<N =
⊕

N ′<N

CvN ′ ⊕CwN ′

and

(2.81) V ⊥<N =
⊕

N ′≥N
CvN ′ ⊕CwN ′ .
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Now let us investigate the action of L on the basis vectors vN , wN . We begin
with computing15 LwN . From the hypothesis LV<N+1 ⊆ V<N+2 we see that
LwN ∈ V<N+2. But we also know that wN lies in V<N+1, which is orthogonal
to Ω0←−∞(wN+2) by (2.77). Thus LwN is orthogonal to LΩ0←−∞(wN+2), which
equals Ω0←−∞(wN+1) by (2.76). But LwN is also orthogonal to Ω0←+∞(vN+1) by
parity considerations, since by (2.75) we see that LwN lies in a different eigenspace
of σ than vN+1. Thus LwN actually lies in V<N+2∩(CΩ0←−∞(wN ))⊥∩(CΩ0←+∞(vN ))⊥ =
V<N+1. On the other hand, we know that wN is orthogonal to V<N , hence LwN

is orthogonal to LV<N−1. To understand this space, first observe from (2.77) that
LV<N−2 lies in V<N−1, hence (by applying ∗ and (2.75)) L−1V<N−2 also lies in
V<N−1. Hence LV<N−1 contains V<N−2, and so LwN is orthogonal to V<N−2.

To summarize, we have shown that LwN is contained in V<N+1 and is orthog-
onal to V<N−2. From (2.80), (2.81) that LwN must be a linear combination of vN ,
wN , vN−1, and wN−1. But since Lσ = −σL, LwN must have the opposite parity
to wN , and thus LwN must be a linear combination of vN and wN−1.

Since wN has a positive inner product with Ω0←+∞(wN ) by construction, LwN

has a positive inner product with LΩ0←+∞(wN ) = Ω0←+∞(wN−1). And wN−1 also
has positive inner product with Ω0←−∞(wN−1) by construction. Meanwhile, vN is
orthogonal to all of V<N , and in particular to Ω0←+∞(wN−1), which is contained
in V<N by (2.77). Since LwN was a combination of wN−1 and vN , we thus see that
the inner product of LwN with wN−1 is strictly positive. Since LwN , wN−1, and
vN are all unit vectors, we may therefore find a complex number |FN−1| < 1 such
that

LwN = −F ∗N−1vN +
√
1− |FN−1|2wN−1,

or upon incrementing N ,

(2.82) LwN+1 = −F ∗NvN+1 +
√
1− |FN |2wN .

Applying ∗ and (2.75) we obtain

L−1vN+1 = −FNwN +
√
1− |FN |2vN ;

applying L to both sides and using (2.82), we obtain (after some algebra)

LvN =
√
1− |FN |2vN+1 + FNwN .

In other words, L = L[F ] is given by (2.4). We now show that F is admissible, i.e.

that
∏

N

√
1− |FN |2 is non-zero.

An inspection of the proof of Lemma 2.9 reveals that it does not use that F
is admissible (basically because one only applies L a finite number of times). In
particular, we see that

(2.83) 〈L[F ]mvn, vn+m〉L2(T)⊕L2(T) =
∏

n≤n′<n+m

√
1− |Fn′ |2

for any n ∈ Z and m > 0. Thus it will suffice to prove that these inner products
are bounded away from zero; in fact we will show that

(2.84) 〈L[F ]mvn, vn+m〉L2(T)⊕L2(T) ≥
1

a(0)
.

15Readers familiar with Jacobi matrices may recognize the following argument as essentially
the same as the one which shows that the operation of multiplication by z on L2(µ) is given by a
Jacobi matrix in the basis of orthogonal polynomials; the main new feature of the Dirac operator
is that it introduces parity considerations.
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To prove this, first recall that vn+m lies in the orthogonal complement of P(−1)n+mV<n+m

in P(−1)n+mV<n+m+1. Meanwhile, the vector Ω0←+∞(vn+m) is also orthogonal
to P(−1)n+mV<n+m, but has a non-zero inner product with vn+m (since vn+m 6∈
V<n+m). Thus we have
(2.85)
〈v,Ω0←+∞(vn+m)〉L2(T)⊕L2(T) = 〈v, vn+m〉L2(T)⊕L2(T)〈vn+m,Ω0←+∞(vn+m)〉L2(T)⊕L2(T)

for all v ∈ P(−1)n+mV<n+m+1. Applying this in particular to v = Ω0←−∞(vn+m),
we obtain

1

a(0)
= 〈Ω0←−∞(vn+m), vn+m〉L2(T)⊕L2(T)〈vn+m,Ω0←+∞(vn+m)〉L2(T)⊕L2(T).

In particular, since the former inner product was positive real by hypothesis, so is
the latter, and since all vectors are unit vectors we thus have

(2.86)
1

a(0)
≤ 〈Ω0←±∞(vn+m), vn+m〉L2(T)⊕L2(T) ≤ 1.

Now consider L[F ]mvn. From Lemma 2.9 we see that L[F ]mvn can be written as a
linear combination of vectors {vn′ , wn′ : n

′ ≤ n+m} and hence lies in V≤n+m. By
parity we see that it in fact lies in P(−1)n+mV<n+m. In particular by (2.85) we have

〈L[F ]mvn,Ω0←+∞(vn+m)〉L2(T)⊕L2(T) =〈L[F ]mv, vn+m〉L2(T)⊕L2(T)

〈vn+m,Ω0←+∞(vn+m)〉L2(T)⊕L2(T).

The left-hand side is equal to 〈vn,Ω0←+∞(vn)〉L2(T)⊕L2(T), which by (2.86) is at
least 1/a(0), and the claim (2.84) follows. Thus F is admissible. In particular, we

can define the scattering maps Ω̃0←±∞ : L2(T)⊕ L2(T) → L2(T)⊕ L2(T) by

Ω̃0←±∞v := lim
m→±∞

L[F ]−mL[0]mv.

We do not know yet whether these scattering maps Ω̃0←±∞ co-incide with the map
Ω0←±∞ given to us by hypothesis, but if they did we would be able to deduce from
(2.56), (2.57) (which holds for Ω0←±∞ and M [a, b] by hypothesis, and holds for

Ω̃0←±∞ and
︷︸︸︷
F by previous discussion) that

︷︸︸︷
F =M [a, b] as desired.

It remains to show that the partial isometries Ω̃0←±∞ and Ω0←±∞ coincide. By

(2.76) it suffices to do so for v0. We first show that Ω0←±∞(v0) lies in Ω̃0←±∞(L2(T)⊕ L2(T)),
i.e. that

(2.87) lim
m→±∞

L[F ]−mL[0]mv = Ω0←±∞(v0)

for some vector v (ideally we would have v = v0, but we will not show this yet).
Equivalently, we wish to show that the sequence L[0]−mL[F ]mΩ0←±∞(v0) con-
verges; by (2.76) we may rewrite this sequence as L[0]−mΩ0←±∞(vm).

We shall just do this for the ± = + case; the ± = − case is similar, and consists
basically of replacing all the spaces below by their orthogonal complements and
changing the sign of m.

We know that Ω0←+∞(vm) is orthogonal to V<m, hence L[0]−mΩ0←+∞(vm) is
orthogonal to V<0. Thus we may write

L[0]−mΩ0←+∞(vm) =
∑

n≥0
cn,mvn + dn,mwn



132 2. THE DIRAC SCATTERING TRANSFORM

for some coefficients cn,m, dn,m; since vm is a unit vector we have
∑

n≥0
|cn,m|2 + |dn,m|2 = 1.

Now observe that

cn,m = 〈L[0]−mL[F ]mΩ0←+∞(v0), vn〉 = 〈Ω0←+∞(v0), L[F ]
−mL[0]mvn〉

and hence cn,m converges pointwise to cn := 〈Ω0←+∞(v0), Ω̃0←+∞(vn)〉 as m →
+∞. Similarly dn,m converges to dn := 〈Ω0←+∞(v0), Ω̃0←+∞(wn)〉. If we can
upgrade this pointwise convergence to l2 convergence then we will have established
the claim (2.87). To show this, pick any ε > 0, and choose N so large that

∑

n≥N
|cn,0|2 + |dn,0|2 ≤ ε2.

Then pick m≫ N so large that

(2.88)
∑

n≥m−N
|Fn|2 ≤ δ2

where δ = δ(ε,N) > 0 is a small number to be chosen later. We can then split
Ω0←+∞(v0) = A + B, where A is linear combination of the finite set of vectors
{vn, wn : 0 ≤ n < N} and B has norm at most ε. By finite speed of propagation we
then see that L[F ]mA is V<N+m. But L[F ]mΩ0←+∞(v0) is orthogonal to V<N , thus
L[F ]mΩ0←+∞(v0) is equal to a linear combination of {vn, wn : m ≤ n < N +m}
plus an error of norm at most ε. We now dispose of the wn terms. We write
L[F ]mA = L[0]NL[F ]m−NA + (L[F ]N − L[0]N)L[F ]m−NA. From finite speed of
propagation we know that L[F ]m−NA ∈ V<N , hence L[0]NL[F ]m−NA is orthogonal
to {wn : m ≤ n ≤ N +m}. The second term (L[F ]N −L[0]N )L[F ]m−NA can have
coefficients in the set {wn : N ≤ n ≤ N + m}, but the size of these coefficients
is at most C(N)δ thanks to (2.88). Thus by making δ sufficiently small, we can
ensure that L[F ]mΩ0←+∞(v0) is equal to a linear combination of {vn : m ≤ n ≤
N+m} plus an error of norm at most 2ε. Thus L[0]mL[F ]−mΩ0←+∞(v0) is a linear
combination of {vn : 0 ≤ n ≤ N} plus an error of at most 2ε. This is uniform in m
and thus can be used (together with the pointwise convergence of coefficients) to
show the convergence of L[0]mL[F ]−mΩ0←+∞(v0). This proves (2.87) for ± = +.
Notice also that the above argument shows that the dn,m are converging to 0 as
m→ +∞, so dn = 0 and thus

(2.89) 〈Ω0←±∞(v0), Ω̃0←+∞(wn)〉 = 0.

We still have to prove that Ω0←+∞(v0) = Ω̃0←+∞(v0). Since we now know

that Ω0←+∞(v0) lies in the range of Ω̃0←+∞ (i.e. it is in the absolutely continuous
portion of L2(T) ⊕ L2(T)) it will suffice to show that α̃+∞←0(Ω0←+∞(v0)) = 1

and β̃+∞←0(Ω0←+∞(v0)) = 0, where α̃±∞←0 and β̃±∞←0 are defined as in (2.48)

but with Ω̃0←±∞ instead of Ω0←±∞.

The claim β̃+∞←0(Ω0←+∞(v0)) = 0 follows from (2.89), so now we turn to
showing α̃+∞←0(Ω0←+∞(v0)) = 1. First recall that Ω0←+∞(vm) = L[F ]mΩ0←+∞(v0)
is orthogonal to vm−r for any r > 0 and m ∈ Z (since the latter vector lies in V<m),
hence L[0]−mL[F ]mΩ0←+∞(v0) is orthogonal to v−r. Taking limits as m → ±∞
we see that 〈Ω0←+∞(v0), Ω̃0←±∞(v−r)〉L2(T)⊕L2(T) = 0 for all r < 0. In particular,
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from (2.48) we thus see that α̃±∞←0(Ω0←+∞(v0)) lies in H
2(D) for both choices of

sign ±. By (2.76) and (2.50) we have
(2.90)

α̃+∞←0(Ω0←+∞(vn)) = ζnα̃+∞←0(Ω0←+∞(v0)); β̃+∞←0(Ω0←+∞(vn)) = 0.

In particular we have

α̃+∞←0(Ω0←+∞(
∑

n

cnvn)) =
∑

n

cnζ
nα̃+∞←0(Ω0←+∞(v0))

β̃+∞←0(Ω0←+∞(
∑

n

cnvn)) = 0

for any compactly supported sequence cn. Applying (2.49), the fact that Ω0←+∞
is an isometry, and that vn is orthonormal, we thus have

(
∑

n

|cn|2)1/2 = ‖(
∑

n

cnζ
n)α̃+∞←0(Ω0←+∞(v0))‖L2(T).

By Plancherel and a limiting argument we thus have

‖f‖L2(T) = ‖fα̃+∞←0(Ω0←+∞(v0))‖L2(T)

for all f ∈ L2(T); this implies that |α̃+∞←0(Ω0←+∞(v0))| = 1. Since we already
know that α̃+∞←0(Ω0←+∞(v0)) ∈ H2(D), this implies that α̃+∞←0(Ω0←+∞(v0))
is an inner function on D. A similar argument shows that α̃−∞←0(Ω0←−∞(v0)) is
an inner function on D∗.

Write M [ã, b̃] =
︷︸︸︷
F . From (2.60) and the claim β̃+∞←0(Ω0←+∞(v0)) = 0

already shown, we have

α̃−∞←0(Ω0←+∞(v0))(ζ) =
1

ã∗(ζ−2)
α̃+∞←0(Ω0←+∞(v0))(ζ).

Meanwhile, for any integer n we have

α̃−∞←0(Ω0←−∞(vn)) = ζnα̃−∞←0(Ω0←−∞(v0)); β̃−∞←0(Ω0←−∞(vn)) = 0.

by the analogue of (2.90) for Ω0←−∞(wn). Thus by (2.49) we have

〈Ω0←+∞(v0),Ω0←−∞(vn)〉L2(T)⊕L2(T) =

∫

T

1

ã∗(ζ−2)
α̃+∞←0(Ω0←+∞(v0))(ζ)ζ

−nα̃−∞←0(Ω0←−∞(v0))
∗(ζ).

On the other hand, from (2.49) we have

〈Ω0←+∞(v0),Ω0←−∞(vn)〉L2(T)⊕L2(T) =

∫

T

α−∞←0(Ω0←+∞(v0))α−∞←0(Ω0←−∞(vn))
∗

+ β−∞←0(Ω0←+∞(v0))β−∞←0(Ω0←−∞(vn))
∗.

From (2.48) we see that α−∞←0(Ω0←−∞(vn)) = ζn and β−∞←0(Ω0←−∞(vn)) = 0.
Similarly α+∞←0(Ω0←+∞(v0)) = 1 and β+∞←0(Ω0←+∞(v0)) = 0, so by (2.60) we
have

α−∞←0(Ω(v0))(ζ) =
1

a∗(ζ−2)
.

Thus we have

〈Ω0←+∞(v0),Ω0←−∞(vn)〉L2(T)⊕L2(T) =

∫

T

1

a∗(ζ−2)
ζ−n.

Thus we have∫

T

1

ã∗(ζ−2)
α̃+∞←0(Ω0←+∞(v0))(ζ)ζ

−nα̃−∞←0(Ω0←−∞(v0))
∗(ζ) =

∫

T

1

a∗(ζ−2)
ζ−n
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for all n. This forces

1

ã∗(ζ−2)
α̃+∞←0(Ω0←+∞(v0))(ζ)ζ

−nα̃−∞←0(Ω0←−∞(v0))
∗(ζ) =

1

a∗(ζ−2)

for almost every ζ ∈ T. But 1
a∗(ζ−2) and

1
ã∗(ζ−2) are outer onD, while α̃+∞←0(Ω0←+∞(v0))

and α̃−∞←0(Ω0←−∞(v0))
∗ are inner onD. By the uniqueness of inner and outer fac-

torizations, we thus see that α̃±∞←0(Ω0←±∞(v0)) are constant functions with unit
magnitude. However, since Ω0←+∞(v0) has positive inner product with L[F ]

−mL[0]mv0 =
L[F ]−mvm for every integer m (e.g. by (2.86)), we see from (2.48) that the
constant coefficient of α̃+∞←0(Ω0←+∞(v0)) is real and non-negative. Thus have
α̃+∞←0(Ω0←+∞(v0)) = 1 as desired. This completes the proof of Theorem 2.15. �

Fix M [a, b] ∈ L2(T). We can apply this Theorem to invert the NLFT for this
choice of scattering data; in fact we will now give two such inversions.

We first have to choose H. Notice that the scattering map Ω+∞←−∞ defined
in (2.58) depends purely on the scattering datumM [a, b] and is unitary on L2(T)⊕
L2(T). We will set H to be the graph of this map, i.e. H is the space of all pairs

H := {(u−∞, u+∞) ∈ (L2(T)⊕L2(T))×(L2(T)⊕L2(T)) : u+∞ = Ω+∞←−∞u−∞}
equipped with the norm

‖(u−∞, v+∞)‖H := ‖u−∞‖L2(T)⊕L2(T) = ‖u+∞‖L2(T)⊕L2(T).

We define operators L, ∗, σ on this space by

L(u−∞, u+∞) = (L[0]u−∞, L[0]u+∞) = ζ(u−∞, u+∞)

∗(u−∞, u+∞) = (∗u+∞, ∗u−∞)

σ(u−∞, u+∞) = (σu−∞, σu+∞);

One can easily verify that these operations map H to itself and also obey the
commutation relations (2.75). One can then define the wave operators Ω0←±∞ :
L2(T) ⊕ L2(T) → H by
(2.91)
Ω0←+∞(u+∞) := (Ω−∞←+∞u+∞, u+∞), Ω0←−∞(u−∞) := (u−∞,Ω+∞←−∞u−∞);

the adjoint operators are given by

Ω±∞←0(u−∞, u+∞) = u±∞.

Note that the wave operators are surjective here (so H = Hac), and thus unitary.
This will mean that any potential constructed via Theorem 2.15 using this space
will have purely absolutely continuous spectrum. (One can also easily verify the
converse to this statement, any solution to the inverse NLFT ofM [a, b] with purely
absolutely continuous spectrum can be constructed using this space H. This space
corresponds to the spaces L2

s± used by Yuditskii and Volberg [34] in the Jacobi

matrix case.)
We now have a choice as to how to define the spaces V<N . As before we define

V min
<N :=

∑

n<N

CΩ0←+∞(wn) +CΩ0←−∞(vn)

and

V max
<N :=

⋂

n≥N
(CΩ0←−∞(wn))

⊥ + (CΩ0←+∞(vn))
⊥.
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Observe that V min
<N ⊆ V max

<N for all N ; this comes directly from the definitions,

noting that a is outer on D and hence
∫
T

1
a∗(ζ−2)ζ

n = 0 for all n > 0.

As noted earlier, we must have V<N lie between V min
<N and V max

<N . Suppose we

choose V<N to equal Vmin
<N ; we claim that this choice obeys all the properties in

(2.77). The first and third claims are clear, while the fourth follows from (2.76).
To prove the second, we observe from the inclusion Vmin

<N ⊆ V max
<N that

V<N ⊆ V<N+1 ∩ (CΩ0←−∞(wN ))⊥ ∩ (CΩ0←−∞(vN ))⊥.

But from the first property of (2.77) we see that V<N has codimension at most two
in V<N+1. But since Ω0←+∞(wN ) has non-zero inner product with Ω0←−∞(wN )
(indeed, by (2.58) the inner product is 1/a(0)) and is orthogonal to Ω0←+∞(vn),
and vice versa for Ω0←−∞(vN ), we see that the codimension is exactly two, and
the above inclusion must be equality. To prove the fifth claim of (2.77), it suffices
to prove the stronger statement that

⋂

N

V max
<N = {0}.

To see this, suppose we have a vector (u−∞, u+∞) ∈ H which lies in
⋂

N V max
<N , then

by construction of V max
<N we thus see that (u−∞, u+∞) is orthogonal to Ω0←−∞(wN )

and Ω0←+∞(vN ) for every N . Thus u−∞ is orthogonal to every wN , and u+∞ is
orthogonal to every vN . If one then writes

u±∞ =

(
α±∞
β±∞

)

then by (2.58) we see that β−∞ = α+∞ = 0, and thus from (2.58) (or (2.56), (2.57))

0 =
1

a(ζ−2)
α−∞(ζ)

β+∞(ζ) =
ζ−1b(ζ−2)

a(ζ−2)
α−∞(ζ).

Since a is a.e. finite on T, we thus see that (v−∞, v+∞) vanishes, as desired. This
proves the fifth property of (2.77). Finally, the sixth property of (2.77) is a dual
version of the (stronger version) of the fifth.

We can then invoke Theorem 2.15 to create an admissible potential F :=

F right[a, b] such that
︷ ︸︸ ︷
F right[a, b] = M [a, b]. We call this F the rightmost inverse

NLFT of M [a, b]; as we shall see, it has the largest amount of energy on right half-
lines amongst all the inverse nonlinear Fourier transforms of M [a, b]. As remarked
eralier, L[F right[a, b]] has purely absolutely continuous spectrum on T.

A similar argument (which we omit) shows that the choice V<N := V max
<N also

obeys all the properties in (2.77), and thus gives rise to another admissible potential
F := F left[a, b] whose nonlinear Fourier transform is equal toM [a, b]. This will turn
out to be the leftmost inverse NLFT, which contains the largest amount of energy
on left half-lines amongst all inverse nonlinear Fourier transforms of M [a, b]. The
Dirac operator associated to this potential also has purely absolutely continuous
spectrum on T. Note also from (2.17) that F left[a, b] and F right[a, b] must have
exactly the same energy on the line Z, namely 1/a(0). However as we shall see the
energy of these two potentials can be distributed in different ways on the line.
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In particular, we have now shown that every scattering datumM [a, b] ∈ L2(T)
arises in at least one way (and possibly two) as the non-linear Fourier transform of
an admissible potential. In the next section we shall clarify this statement further,
when we prove the triple factorization theorem (Theorem 2.7). For now, we at least
show that these two examples of an inverse NLFT can be used to characterise the
uniqueness of the inverse NLFT.

Proposition 2.16. Let M [a, b] ∈ L2(T) be a scattering datum, and let H,
Vmin
<N , V max

<N , F right[a, b], F left[a, b] be as above. Then the following statements are
equivalent.

• (i) The vectors {Ω0←+∞(wn)}n<0, {Ω0←−∞(vn)}n<0 {Ω0←+∞(vn)}n≥0,
{Ω0←−∞(wn)}n≥0 span a dense subspace of H.

• (ii) V min
<0 = V max

<0 .
• (iii) V min

<N = V max
<N for all N .

• (iv) F left[a, b] = F right[a, b].
• (v) E(F left[a, b]|[N,+∞)) = E(F right[a, b]|[N,+∞)) for some integer N .

• (vi) E(F left[a, b]|(−∞,−N)) = E(F right[a, b]|(−∞,N)) for some integer N .
• (vii) M [a, b] has a unique inverse NLFT.

Proof. The equivalence of (i) and (ii) follows from the definitions of V min
<0 and

Vmax
<0 (and recalling that V min

<0 is contained in V max
<0 . The implication (iii) =⇒

(ii) is trivial. To see that (ii) implies (iii), merely note that both V min
<N and

Vmax
<N obey (2.77), which allow V<N to be constructed recursively from V<0. The

implication (iii) implies (iv) is trivial, as is the implication that (iv) implies (v).
The equivalence of (v) and (vi) is just the statement that Fmax[a, b] and Fmin[a, b]
have the same energy on Z. To see that (vi) implies (iii), suppose for contradiction
that V min

<N was strictly smaller than V max
<N for some N , and hence for all N (again

by using (2.77)). By parity and conjugation invariance of these spaces, this also
implies that P±V min

<N is strictly smaller than P±V max
<N for both choices of sign ±.

Let vmin
N be the basis of H constructed in Theorem 2.15, i.e. the unique unit vector

in P(−1)NV
min
<N+1 orthogonal to the codimension one subspace P(−1)NV

min
<N which

had a positive inner product with Ω0←−∞(vN ). Since Ω0←−∞(vN ) was orthogonal
to P(−1)NV

min
<N by (2.77), we thus see that the vector

vmin
N

〈Ω0←−∞(vN ), vmin
N 〉H

is nothing more than the orthogonal projection of Ω0←−∞(vN ) to P(−1)NV
min
<N+1.

Similarly
vmax
N

〈Ω0←−∞(vN ), vmax
N 〉H

is the orthogonal projection of the same vector Ω0←−∞(vN ) to the larger space
P(−1)NV

max
<N+1. Since the projection to the larger space clearly has the larger norm,

we thus have

〈Ω0←−∞(vN ), vmax
N 〉H < 〈Ω0←−∞(vN ), vmin

N 〉H.
But by the limiting version of the boundary value formula in Lemma 2.9 (or (2.83))
we have

〈Ω0←−∞(vN ), vmax
N 〉H =

∏

n<N

√
1− |Fmax

N [a, b]|2
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and

〈Ω0←−∞(vN ), vmin
N 〉H =

∏

n<N

√
1− |Fmin

N [a, b]|2

and hence

E(Fmax[a, b]|(−∞,N)) > E(Fmin[a, b]|(−∞,N)).

Since N is arbitrary, this contradicts16 (vi) as desired.
Finally, observe that (vii) trivially implies (iv). Now assume (iv) (and hence (i)-

(vi), by the previous discussion), and suppose that F is an inverse NLFT toM [a, b],
and form the transfer matricesM [a−, b−] =M−∞←0 and M [a+, b+] =M0←+∞; by
Theorem 2.4, Corollary 2.5, Lemma 2.6 these matrices solve the Riemann-Hilbert
problem (2.34).

Observe that the pair

(u−∞, u+∞) := (




a∗+(ζ−2)

a∗(ζ−2)

− ζ−1b−(ζ
−2)

a∗(ζ−2)


 ,

(
a−(ζ

−2)
a(ζ−2)
ζ−1b+(ζ−2)

a(ζ−2)

)
)

is an element of H. Indeed, by (2.63) this is nothing more than the adjoint wave
operators of F applied to v0:

(u−∞, u+∞) = (Ω−∞←0[F ](v0),Ω+∞←0[F ]v0),

and the claim then follows from (2.59). (Alternatively, one could use Lemma 2.12
to verify that all the factors in (u−∞, u+∞) are square integrable, and then use
(2.58) and (2.34) to verify that u+∞ = Ω+∞←−∞u−∞).

Observe that u−∞ extends holomorphically to D, while u+∞ extends holomor-
phically to D∗. Thus u−∞ is orthogonal to vn for all n < 0 and wn for all n > 0,
while u+∞ is similarly orthogonal to wn for all n < 0 and vn for all n > 0. This im-
plies that (u−∞, u+∞) is orthogonal to V min

<0 and (V max
<1 )⊥. But we are assuming

that V max
<1 is equal to V min

<1 , hence (u−∞, u+∞) lies in the orthogonal comple-

ment of V min
<0 in V <1

min. As we know from the proof of Theorem 2.15, this space is
two-dimensional and is spanned by vmin

0 and wmin
0 . But from applying the parity

operator to the definition of (u−∞, u+∞) we see that this vector lies in the range
of P+, and hence must be a constant multiple of vmin

0 , say (u−∞, u+∞) = cvmin
0 .

Applying (2.63) to determine the adjoint wave operators of vmin
0 this means that

a+ = c∗amin
+ ; b− = cbmin

− ; a− = camin
− ; b+ = cbmin

− ,

where M [amin
± , bmin

± ] are the half-line transfer matrices associated with Fmin[a, b].

But since a+ and amin
+ (for instance) are both real and positive at the origin we know

that c is real; since M [a−, b−]M [a+, b+] = M [amin
− , bmin

− ]M [amin
+ , bmin

+ ] = M [a, b]

we see that c2 = 1. Thus c = 1, which implies that a± = amin
± and b± = bmin

± . By

Theorem 2.4 and Corollary 2.5 we thus see that F = Fmin[a, b], and the uniqueness
is proved. �

This proposition gives, at least in principle, a means of determining whether
a potential M [a, b] has a unique inverse NLFT, but it does not seem very easy to
work with. It seems of interest to determine a better criterion for uniqueness.

16In fact this argument shows more: that enlarging the space V<N leads to shifting more of
the energy of the corresponding potential F to the left of N instead of to the right.



138 2. THE DIRAC SCATTERING TRANSFORM

2.10. Proof of triple factorization

We can now begin the proof of Theorem 2.7. Define the Riesz projections
P[0,+∞) : L2(T) → H2(D) and P(−∞,0) : L2(T) → H2

0 (D∗) to be the orthog-

onal projections of L2(T) to H2
0 (D∗). We begin with a key observation that

the left component of F right[a, b] depends on only one component of a, b, namely
P(−∞,0)(b/a) = P(−∞,0)(r).

Proposition 2.17. Let M [a, b] be a scattering datum in L2(T). Then the
restriction of Fmin[a, b] to (−∞, 0) depends only on P(−∞,0)(r) = P(−∞,0)(b/a); in

other words, if M [ã, b̃] is another scattering datum in L2(T) with P(−∞,0)(b/a) =

P(−∞,0)(b̃/ã), then the corresponding potential F right[ã, b̃] agrees with F right[a, b]
on (−∞, 0).

As we shall see later, the converse of this proposition is also true: one can
recover P(−∞,0)(b/a) from the values of F right[a, b] on (−∞, 0). The linear analogue

of this is that one can recover P(−∞,0)(F̂ ) from the values of F on (−∞, 0) and vice
versa.

Proof. The idea is to run the inversion procedure in Theorem 2.15 care-
fully and note that to recover the left half of Fmin[a, b] only requires knowledge
of P(−∞,0)(b/a).

We recall the Hilbert space H introduced in the previous section, and recall
the space V min

<0 defined in that section as

V min
<0 =

∑

n<0

CΩ0←+∞(wn) +CΩ0←−∞(vn).

The set of vectors

(2.92) {Ω0←+∞(wn),Ω0←−∞(vn) : n < 0}
thus span (a dense subspace of) V min

<0 . Let us now understand the Hilbert space
structure of (2.92); in other words, let us compute all the inner products between the
elements of (2.92). They are all unit vectors, and the vectors {Ω0←+∞(wn) : n < 0}
and {Ω0←−∞(vn) : n < 0} are separately orthonormal (since the wave maps Ω0←±∞
are isometries). But the first set of vectors are not orthogonal to the second. Indeed,
we have

〈Ω0←+∞(wn),Ω0←−∞(vm)〉H = 〈wn,Ω+∞←−∞vm〉L2(T)⊕L2(T),

and hence by (2.58) and (2.3)

〈Ω0←+∞(wn),Ω0←−∞(vm)〉H =

∫

T

ζ−n−m+1 b
∗(ζ−2)

a∗(ζ−2)
.

Since n,m < 0, we see that we may replace b/a by P(−∞,0)(b/a) without affecting
the above integral, thus

〈Ω0←+∞(wn),Ω0←−∞(vm)〉H =

∫

T

ζ−n−m+1(P(−∞,0)(b/a))
∗(ζ−2).

Thus, the Hilbert space structure of the vectors (2.92) which span V min
<0 is deter-

mined entirely by P(−∞,0)(b/a).

Define the map Ψ : V min
<0 → l2((−∞, 0))⊕ l2((−∞, 0)) by

Ψ(v) := ((〈v,Ω0←+∞(wn)〉H)n<0, (〈v,Ω0←−∞(vn)〉H)n<0);
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this is a continuous linear map since the vectors {Ω0←+∞(wn) : n < 0} and
{Ω0←−∞(vn) : n < 0} are separately orthonormal. It is also injective since (2.92)
spans V min

<0 . Thus we can define the Hilbert space Ψ(V min
<0 ), endowed with the

Hilbert space structure pushed forward from Vmin
<0 via Ψ (so the Hilbert space

structure on Ψ(V min
<0 ) is not the one induced from the ambient space l2((−∞, 0))⊕

l2((−∞, 0))). This space is spanned by the vectors Ψ(Ω0←+∞(wn)) and Ψ(Ω0←−∞(vn))
for n < 0. But by the previous discussion, these vectors (thought of as elements
of ”l2((−∞, 0)) ⊕ l2((−∞, 0))) are completely determined by P(−∞,0)(b/a), as are

the inner product in Ψ(V min
<0 ) between these vectors. This means thata the space

Ψ(Vmin
<0 ), and the Hilbert space structure on this space, is determined completely

by P(−∞,0)(b/a). Also the action of the parity operator σ, pushed forward to

Ψ(Vmin
<0 ) by Ψ, is also completely determined by P(−∞,0)(b/a) because its action

on the basis vectors Ψ(Ω0←+∞(wn)) and Ψ(Ω0←−∞(vn)) (which are determined by
P(−∞,0)(b/a)) is known. In particular, the parity projection operators P±, pushed
forward by Ψ, can be defined on the parity-invariant space Ψ(V min

<0 ) and are com-
pletely determined by P(−∞,0)(b/a).

Now consider the subspaces V min
<n in Vmin

<0 for n ≤ 0. This space, by definition,
is spanned by a specific subset of (2.92). Thus Ψ(V min

<n ) can be determined as
the span inside Ψ(Vmin

<0 ) of a set of vectors which is completely determined by
P(−∞,0)(b/a). One can then compute the orthogonal complements of P±Ψ(V min

<n )

in P±Ψ(V min
<n+1), and thus determine the unit vectors Ψ(vmin

n ), Ψ(wmin
n ) for n < 0

up to a complex phase, again using only P(−∞,0)(b/a) and no other knowledge of a

or b. But we know that Ψ(vmin
n ) has a positive inner product with Ψ(Ω0←−∞vn)

and so in fact we can determine Ψ(vmin
n ) exactly in terms of P(−∞,0)(b/a). Similarly

we can reconstruct Ψ(wmin
n ) from P(−∞,0)(b/a).

Recall that the operator L maps V min
<−1 to V min

<0 , and hence we can push this

forward by Ψ to create a map from Ψ(V min
<−1 ) to Ψ(V min

<0 ). This map can be
completely determined by P(−∞,0)(b/a) because we know its action on basis vec-
tors, namely it maps Ψ(Ω0←−∞(vn)) to Ψ(Ω0←−∞(vn+1)) and Ψ(Ω0←+∞(wn))
to Ψ(Ω0←−∞(wn−1)) by (2.45). In particular, we can determine Ψ(Lvmin

n ) and
Ψ(Lwmin

n ) for n < −1 entirely in terms of P(−∞,0)(b/a). By (2.4) we can thus

reconstruct F right
n [a, b] for n < 0 entirely in terms of P(−∞,0)(b/a), as desired. �

A similar argument gives

Proposition 2.18. Let M [a, b] be a scattering datum in L2(T). Then the
restriction of F left[a, b] to [0,+∞) depends only on P[0,+∞)(s

∗) = P[0,+∞)(b/a
∗).

To apply Proposition 2.17 and Proposition 2.18 we make the following obser-
vation:

Lemma 2.19. Let M [a−, b−] ∈ H2
0(D∗) and M [a+, b+] ∈ H2(D), and define

M [a, b] by M [a, b] = M [a−, b−]M [a+, b+] (thus M [a, b] ∈ L2(T) by Lemma 2.6).
Then P(−∞,0)(b/a) = P(−∞,0)(b−/a−) and P[0,+∞)(b/a

∗) = P[0,+∞)(b/a
∗).

Proof. From the identity

M [a+, b+] =M [a−, b−]
−1M [a, b] =M [a∗−,−b−]M [a, b] =M [a∗−a− b∗−b, a−b− b−a]

we thus see that b+ = a−b− b−a and thus

b

a
− b−
a−

=
b+
aa−

.
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The left-hand side lies in L2(T), and the right-hand side extends holomorphically to
[0,+∞), thus the left-hand side actually lies in H2(D) and vanishes when P(−∞,0)

is applied, which proves the first claim. The second claim similarly follows from
the identity

M [a−, b−] =M [a, b]M [a+, b+]
−1 =M [a, b]M [a∗+,−b+] =M [aa∗+−b∗b+, ba∗+−a∗b+]

and hence b− = ba∗+ − a∗b+, and thus

b

a∗
− b+
a∗+

=
b−
a∗a∗+

and one argues as before. �

Combining this lemma with the above two Propositions we immediately obtain
a preliminary result on the Riemann-Hilbert problem.

Corollary 2.20. Let M [a, b] ∈ L2(T) be scattering data, and let M [a−, b−] ∈
H2

0(D∗) and M [a+, b+] ∈ H2(D) be a solution to the Riemann-Hilbert problem
(2.34). Then

F right[a, b]|(−∞,0) = F right[a−, b−]|(−∞,0)

and

F left[a, b]|[0,+∞) = F left[a+, b+]|[0,+∞)

We are now in a position to prove the triple factorization theorem.

Proof of Theorem 2.7. Fix M [a, b] ∈ L2(T). Define F−− to be the re-
striction of F right[a, b] to (−∞, 0) and F++ to be the restriction of F left[a, b] to
[0,+∞); thus F−− and F++ are admissible potentials on the left and right half lines
respectively. In particular, if we define M [a−−, b−−] and M [a++, b++] to be the
nonlinear Fourier transforms of F−− and F++ then we haveM [a−−, b−−] ∈ H2

0(D∗)
and M [a++, b++] ∈ H2(D) by Theorem 2.4 and Corollary 2.5.

Now suppose we have some solution M [a, b] = M [a−, b−]M [a+, b+] to the
Riemann-Hilbert problem (2.34). By Corollary 2.20 we know that F right[a−, b−] is
equal to F−− on (−∞, 0), and thus we may write

F right[a−, b−] = F−− + F−0

for some admissible potential F−0 supported on [0,+∞). If we write M [a−0, b−0]
for the nonlinear Fourier transform of F−0, we thus see from (2.16) that

M [a−, b−] =M [a−−, b−−]M [a−0, b−0].

Now let us investigate the holomorphicity properties ofM [a−0, b−0]. From Theorem
2.4 we already know that M [a−0, b−0] lies in H2(D), so a−0 is outer on D and
b−0/a−0 lies in H2(D). But from the identity

M [a−−, b−−] =M [a−, b−]M [a−0, b−0]
−1

=M [a−, b−]M [a∗−0,−b−0]
=M [a−a

∗
−0 − b∗−b−0, b−a

∗
−0 − a−b−0]

we have b−− = b−a∗−0 − a∗−b−0 and hence

b−0
a∗−0

=
b−
a∗−

− b−−
a∗−a

∗
−0
.
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Observe that the right-hand side extends holomorphically to D∗, and hence so
must the left-hand side. Since the left-hand side is also in L2(T), we see that
b−0/a∗−0 ∈ H2(D∗) and hence M [a−0, b−0] lies in H2

0(D∗) as well as H2(D). Thus

it in fact lies in the space H0 defined in the discussion after (2.34).
A similar argument allows us to write

M [a+, b+] =M [a0+, b0+]M [a++, b++]

where M [a0+, b0+] ∈ H0. In particular we have

M [a, b] =M [a−, b−]M [a+, b+] =M [a−−, b−−]M [a−0, b−0]M [a0+, b0+]M [a++, b++].

If we define

M [a0, b0] :=M [a−−, b−−]
−1M [a, b]M [a++, b++]

−1

then we have

M [a−0, b−0]M [a0+, b0+] =M [a0, b0]

for all solutions to the Riemann-Hilbert problem (2.34). By Lemma 2.8 we see that
M [a0, b0] is also in H0 (note that we have at least one solution to the Riemann-
Hilbert problem (2.34)).

We have established a solution to (2.35), but we have not yet verified that
M [a−−, b−−] lies in H− and that M [a++, b++] lies in H+. We shall just prove the
former claim, as the latter is similar. Suppose that M [a−−, b−−] is not in H−, so
it does not have a unique inverse RHP. By Corollary 2.5, there must therefore be a
solution to the RHP

(2.93) M [a−−, b−−] =M [ã−, b̃−]M [ã+, b̃+]

with M [ã−, b̃−] ∈ H2
0(D∗), M [ã+, b̃+] ∈ H2(D), and with M [ã+, b̃+] not equal to

the identity M [1, 0]. But then M [ã−, b̃−] is one part of a solution to the Riemann-
Hilbert problem (2.34), since

M [a, b] =M [ã−, b̃−](M [ã+, b̃+]M [a0, b0]M [a++, b++])

and the expression in parentheses is in H2(D) by Lemma 2.8. Thus by the previous
analysis we have a factorization

M [ã−, b̃−] =M [a−−, b−−]M [ã0−, b̃0−]

for some M [ã0−, b̃0−] ∈ H0. Taking energies of both sides using Lemma 2.6 we
obtain in particular that

E(M [ã−, b̃−]) = E(M [a−−, b−−])E(M [ã0−, b̃0−])

while from (2.93) we similarly have

E(M [a−−, b−−]) = E(M [ã−, b̃−])E(M [ã+, b̃+]).

But all energies are finite and greater than or equal to one, which forcesE(M [ã+, b̃+])

to equal 1, which forces (e.g. by inverting the NLFT and using (2.17)) M [ã+, b̃+]
to equal M [1, 0], a contradiction. Thus M [a−−, b−−] does lie in H−, and similarly
M [a++, b++] lies in H+. This gives the factorization (2.35).

Now we show uniqueness. Suppose that there is an alternative factorization

M [a, b] =M [ã−−, b̃−−]M [ã0, b̃0]M [ã++, b̃++]



142 2. THE DIRAC SCATTERING TRANSFORM

with the three factors on the right in H−, H0, H+ respectively. Then M [ã−−, b̃−−]
is again a left factor of a solution to the Riemann-Hilbert problem (2.34), and so
again we have a factorization

M [ã−−, b̃−−] =M [a−−, b−−]M [a−0, b−0]

for some M [a−0, b−0] ∈ H0. But we of course also have the factorization

M [ã−−, b̃−−] =M [ã−−, b̃−−]M [1, 0].

But M [ã−−, b̃−−] lies in H− and hence should have unique inverse RHP, which

is only possible of M [ã−−, b̃−−] = M [a−−, b−−]. A similar argument shows that

M [ã++, b̃++] = M [a++, b++], and hence M [ã0, b̃0] = M [a0, b0]. This establishes
uniqueness of the factorization (2.35).

The energy identity (2.36) follows from two applications of Lemma 2.6. The
factorization (2.37) and (2.38) were already established by above discussion. Fi-
nally, the converse implication, that every solution to (2.38) induces a solution to
(2.34) follows from several applications of Lemma 2.8. This completes the proof of
Theorem 2.7. �

By Theorem 2.7, every scattering datum M [a, b] can be split canonically into
three components, a left-line component M [a−−, b−−] which has a unique inverse
NLFT, supported on (−∞, 0), a right-line component M [a++, b++] which has a
unique inverse NLFT, supported on [0,+∞), and a central component M [a0, b0]
which can be inverted either on the left line, the right line, or some combination
of the two. In a future paper we will compute this factorization more explicitly in
the case when b (and hence a) are rational functions; it then turns out that b−− is
generated by the poles of b in D, b++ is generated by the poles of b in D∗, and b0
is generated by the poles of b in T.

Note also that out of all the solutions to the Riemann-Hilbert problem (2.34),
the factorizationM [a, b] =M [a−−, b−−](M [a0, b0]M [a++, b++]) has the largest en-
ergy on the right factor (and hence the least energy on the left factor), while the
other extreme factorizationM [a, b] = (M [a−−, b−−]M [a0, b0])M [a++, b++] behaves
of course in the converse direction. This explains our earlier remark that F right

is the solution to the inverse NLFT of M [a, b] with the most mass in [0,+∞) (or
indeed in [N,+∞) for any N), and F left is the solution with the most mass in
(−∞, 0) (or (−∞, N)).

As discussed in the previous section, the two extreme solutions of the Riemann
Hilbert problem both had Dirac operators L[F ] with purely absolutely continuous

spectrum. Thus if L[F ] has some singular spectrum, the inverse NLFT for
︷︸︸︷
F

cannot be unique. It seems reasonable to conjecture a converse, that ifM [a, b] does
not have unique inverse NLFT, then there exists a solution F to the inverse NLFT
problem such that L[F ] has some singular spectrum. In the case when b and a
are rational functions, we have verified this conjecture (indeed in this case we can
construct a continuous family of L[F ] each of which contains embedded eigenvalues
at the poles of b); we shall detail this in a later paper.

If M [a, b] lies in H2
0(D), then the right-line component M [a++, b++] becomes

trivial, i.e. M [a++, b++] = M [1, 0], since clearly M [a, b] = M [a, b]M [1, 0] is the
solution to (2.34) with the least amount of energy on the second factor. Thus we
see (from Lemma 2.8) that H2

0(D) factorizes uniquely as H− · H0, and similarly
H2(D) factorizes uniquely as H0 · H+.
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It seems of interest to determine which admissible potentials F on the left
halfline (−∞, 0) (for instance) have non-linear Fourier transforms in H−, and which
ones have non-linear Fourier transforms in H0. We do not know the answer to this
question, but a tentative conjecture would be that the former occurs if and only if
L[F ] has no singular spectrum on the half-line for any choice of boundary condition
at 0. Again, in the case of rational scattering data we know that this is a necessary
and sufficient condition to lie in H−, and we will detail this in a later paper.

We close this section with some (rather weak) sufficient conditions to guarantee
uniqueness of the inverse NLFT.

Proposition 2.21. If M [a, b] ∈ H2
0(D∗) and b ∈ L2(T), then M [a, b] has

unique inverse NLFT. Similarly if M [a, b] ∈ H(D) and b ∈ L2(T).

It seems reasonable to conjecture that this L2(T) condition can be relaxed to
L1(T), in analogy with the well-known result that a non-constant L1(T) function
cannot have holomorphic extensions to both D and D∗ simultaneously. The rational
examples given by (2.74) shows that uniqueness breaks down if L1(T) is replaced
by L1,∞(T).

Proof. We just show this whenM [a, b] ∈ H2
0(D∗), as the other claim is similar.

As discussed above, this means that M [a++, b++] = M [1, 0], which implies by
construction of M [a++, b++] that F

left[a, b] vanishes on [0,+∞).
By Lemma 2.16 it suffices to show that V max

<1 is contained in V min
<1 . In fact it will

suffice to show that the single vector vmax
0 lies in V min

<1 . To see this, observe from
∗-invariance that this will imply wmax

0 also lies in V min
<1 . Also Lwmax

0 will then lie
in LV min

<1 ⊆ V min
<2 by (2.77), but this vector is orthogonal to both Ω0←−∞(w2) and

Ω0←+∞(v2) (the former by parity considerations and the latter by (2.77) applied
to Vmax

<N and (2.45)), and so Lwmax
0 lies in Vmin

<1 . Applying (2.4) we thus see that

wmax
−1 lies in Vmin

<1 , and then by ∗-invariance so does vmax
−1 . Continuing in this

manner we see in fact that all the basis vectors of V max
<1 are contained in V min

<1 ,
and hence V max

<1 = V min
<1 as desired.

It remains to show that vmax
0 lies in V min

<1 . Since vmax
0 is one of the basis

vectors associated with F left[a, b], which vanishes on [0,+∞), we see from (2.4)
that vmax

0 = L[F ]−mvmax
m for all m ≥ 0. Letting m → +∞ we thus see that

vmax
0 = Ω0←+∞(v0), which by (2.58) is equal to

vmax
0 = Ω0←+∞(v0) = (

(
1

a∗(ζ−2)
−ζ−1b(ζ−2)

a∗(ζ−2)

)
,

(
1
0

)
.).

Using aa∗ − bb∗ = 1, we can split this as

vmax
0 = (

(
a(ζ−2)
0

)
,

(
1
ζ−1β(ζ−2)

)
.)+(

( −b(ζ−2)b∗(ζ−2)
a∗(ζ−2)

−ζ−1b(ζ−2)
a∗(ζ−2)

)
,

(
0
−ζ−1β(ζ−2);

)
.)

since b (and hence a) lie in L2(T), we can verify from (2.58) that both summands
lie in H. Furthermore, the first summand lies in the span of the orthonormal set
{Ω0←−∞(vn) : n ≤ 0} since a(ζ−2) lies in H2(D∗), while the second summand
similarly lies in the span of {Ω0←+∞(wn) : n ≤ 0} since −ζ−1β(ζ−2) lies in H2(D).
This shows that vmax

0 lies in V min
<1 as desired. �

Corollary 2.22. If M [a, b] ∈ L2(T) and b ∈ L∞(T), then M [a, b] has unique
inverse NLFT.
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Again, it seems that L∞(T) should be weakened, at least to L2(T) and perhaps
even to the real-variable Hardy space H1(T).

Proof. We solve the Riemann-Hilbert problem (2.34) (e.g. using Theorem
2.7) to obtain a factorization M [a, b] =M [a−, b−]M [a+, b+]. Since b (and hence a)
are bounded, we see from Lemma 2.12 that a±, b± lie in L2. Thus by Lemma 2.21
M [a−, b−] lies in H− and M [a+, b+] lies in H+. Thus in the triple factorization
of M [a, b], M [a0, b0] = M [1, 0] is trivial, and so one has unique inverse NLFT by
Theorem 2.7. �

In the case where a and b is bounded one can in fact solve the Riemann-Hilbert
problem (2.34) directly by means of inverting Hankel operators, by the method of
Gelfand, Levitan, and Marcenko (see e.g. [11] for more details). Indeed, if one
rewrites (2.34) as

M [a−, b−] =M [a, b]M [a+, b+]
−1 =M [a, b]M [a∗+,−b+] =M [aa∗+−b∗b+, ba∗+−a∗b+]

we obtain the identities

a+ =
a∗−
a∗

+
b

a∗
b∗+; b+ = −b−

a∗
+

b

a∗
a∗+.

Since b (and hence a) is bounded, b±, a± must lie in L2(T) thanks to Lemma 2.12.

The function
a∗−
a∗ lies in H2(D∗), while b−

a∗ lies in H2
0 (D∗). Thus if we apply the

projection operators P[0,+∞) to these equations we obtain

a+ = C + P[0,+∞)(sb
∗
+); b+ = P[0,+∞)(sa

∗
+)

where C is the value of
a∗−
a∗ at infinity. Since a is bounded, the reflection coefficient

s = b/a∗ is bounded in magnitude by 1 − ε for some ε > 0, which implies that
the map f 7→ P[0,+∞)(sf

∗) is a strict contraction on L2(T). Thus we may use the
contraction mapping theorem (or Neumann series) to solve for a+ and b+ up to a
constant; one can then recover this constant by recalling that a+ is positive at zero,

and that the constant C equals a−(0)
a(0) = 1

a+(0) .

Observe that a and b are necessarily bounded when the potential F is absolutely
summable; this can be seen directly from the infinite product representation (2.2),
which is absolutey convergent in this case. (This is the non-linear analogue of the
fact that l1(Z) sequences have bounded Fourier transforms). But as we can already
see from Theorem 2.4, the best size estimate we can expect for the non-linear Fourier
transform of l2(Z;D) sequences is that a (and hence b) are only log-integrable.

2.11. Lax pair

In this section we give the Lax pair formulation of the Ablowitz-Ladik equa-
tion (2.7). We begin with some basic remarks on well-posedness of this equation.
Observe that if F is an l2(Z) sequence, then so is the right-hand side of (2.7); in
fact, the dependence of the right-hand side is locally Lipschitz from l2(Z) to itself,
and from this and an easy application of the Picard existence theorem we see that
this equation is locally well-posed in l2(Z) (i.e. for any choice of l2(Z) initial data
Fn(0), there exists a unique l2(Z) solution existing for time depending on the l2(Z)
norm of the data, and furthermore the map from data to solution is continuous in
l2(Z)). Furthermore, from the identity

(2.94) ∂t|Fn|2 = i(1− |Fn|2)(F ∗nFn−1 − FnF
∗
n−1 − FnF

∗
n+1 + Fn+1F

∗
n)
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we see that the l2(Z) norm of F is conserved, and hence one in fact has global
well-posedness in l2(Z). Indeed, from (2.94) and summation by parts we obtain the
estimate

∂t
∑

n

(1 + n2)k/2|Fn|2 ≤ C(k, ‖F‖l2(Z)

∑

n

(1 + n2)k/2|Fn|2

for any k ≥ 0. Thus we see that if F is rapidly decreasing in n at time t = 0, then
it is also rapidly decreasing for all later times t.

The operator L(t) = L[F (t)] also evolves in time. In fact the evolution is given
by a Lax pair:

Lemma 2.23. Let F be a potential evolving under the flow (2.7). Then we have

∂tL = [P,L]

where P (t) is the skew-adjoint operator defined by

(2.95) P = i(−LJL+ L∗JL∗

2
+D),

J is the reflection operator defined by

Jvn := vn; Jwn := −wn

and D = D(t) is the diagonal operator defined by

D =
[L, J ]2 + [L∗, J ]2

8
J

or equivalently

Dvn :=
F ∗n−1Fn + Fn−1F ∗n

2
vn; Dwn := −F

∗
n−1Fn + Fn−1F ∗n

2
wn.

Proof. P is clearly skew-adjoint, since J and D are self-adjoint. We first com-
pute ∂tL on basis vectors. To abbreviate the notation we write en :=

√
1− |Fn|2

and Fn±1 := Fn−1 + Fn+1. From (2.7) we see that

∂ten =
i

2
en(FnF

∗
n±1 − F ∗nFn±1).

Differentiating (2.4), we thus obtain that

∂tLvn :=
i

2
en(FnF

∗
n±1 − F ∗nFn±1)vn + ie2nFn±1wn

∂tLwn+1 := ie2nF
∗
n±1vn+1 +

i

2
en(FnF

∗
n±1 − F ∗nFn±1)wn.

(2.96)

Now we compute [P,L]. We may split L = A+B, where A and B are given by

Avn := envn+1 + Fnwn

Awn+1 := 0

Bvn := 0

Bwn+1 := −F ∗nvn+1 + enwn.

Then we clearly have LJ = A−B. Thus

[LJL,L] = [LJ,L]L = [A−B,A+B]L = 2[A,B]L.

Taking adjoints, we obtain

[L∗, L∗JL∗] = 2L∗[A,B]∗;



146 2. THE DIRAC SCATTERING TRANSFORM

since L is unitary, we have [X,L] = L[L∗, X ]L for any operator X , and hence

[L∗JL∗, L] = 2[A,B]∗L.

Thus we have

[P,L] = −i([A,B] + [A,B]∗)L+ i[D,L].

A direct computation shows that

[A,B]vn+1 = −BAvn+1 = −Fn+1Bwn+1 = Fn+1F
∗
nvn+1 − Fn+1enwn

and

[A,B]wn = ABwn = −F ∗n−1Avn = −F ∗n−1envn+1 − F ∗n−1Fnwn.

Taking adjoints, we obtain

[A,B]∗vn+1 = F ∗n+1Fnvn+1 − Fn−1enwn

and

[A,B]∗wn+1 = −F ∗n+1envn+1 − Fn−1F
∗
nwn

and hence

([A,B] + [A,B]∗)vn+1 = (F ∗n+1Fn + Fn+1F
∗
n)vn+1 − Fn±1enwn

([A,B] + [A,B]∗)wn = −F ∗n±1envn+1 − (F ∗n−1Fn + Fn−1F
∗
n)wn.

Combining this with (2.4), we obtain

([A,B] + [A,B]∗)Lvn =en(F
∗
n+1Fn + Fn+1F

∗
n − FnF

∗
n±1)vn+1

− (Fn±1e
2
n + Fn(F

∗
n−1Fn + Fn−1F

∗
n))wn

([A,B] + [A,B]∗)Lwn+1 =− (F ∗n (F
∗
n+1Fn + Fn+1F

∗
n) + Fn±1e

2
n)vn+1

+ (F ∗nFn±1 − F ∗n−1Fn − Fn−1F
∗
n)enwn

Meanwhile, a direct computation shows that

[D,L]vn =
F ∗n+1Fn + Fn+1F

∗
n − F ∗n−1Fn − Fn−1F ∗n
2

envn+1 − (F ∗n−1Fn + Fn−1F
∗
n)Fnwn

[D,L]wn+1 = −(F ∗n+1Fn + Fn+1F
∗
n)F

∗
nvn+1 + en

F ∗n+1Fn + Fn+1F
∗
n − F ∗n−1Fn − Fn−1F ∗n
2

wn.

Comparing these equations with (2.96), the claim follows. �

Formally, Lemma 2.23 implies that the Ablowitz-Ladik equation (2.7) is com-
pletely integrable and can be inverted by means of the non-linear Fourier transform.
We now make this more rigorous.

Proposition 2.24. Let F (t) be an l2(Z;D) solution to (2.7). Then the non-

linear Fourier transform
︷︸︸︷
F (t) =M [a(t), b(t)] obeys the equation

(2.97)
︷︸︸︷
F (t) =M [exp(−i(z + z−1)t/2), 0]

︷︸︸︷
F (t)M [exp(i(z + z−1)t/2), 0]

for all t ∈ R, or in other words we have the relation (2.8).

Proof. Although this argument is by now very well known, we include it
here for completeness. Because we are in the discrete setting there will be very
little difficulty in making the Lax pair formalism rigorous (for instance, spatial
derivatives in this setting are just finite difference operators, which are bounded on
every reasonable space).
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We may restrict the time parameter to a fixed compact interval [−T, T ], and
allow all our bounds to depend on T . It suffices to verify this relation for solutions
F (t) which are rapidly decreasing in space, since these solutions are dense in the
class of l2(Z;D) solutions, and we have well-posedness of the discrete equation (2.7)
in l2(Z;D) and continuity of the non-linear Fourier transform (from Lemma 2.6.
One can then easily verify from (2.7) and repeated differentiation in time that F
is infinitely differentiable in time and all of its time derivatives are also rapidly
decreasing in space.

At time zero, we define generalized eigenfunctions

Φ(0, ζ) =
∑

n

an(0, ζ)ζ
nvn + bn(0, ζ)ζ

1−nwn

(i.e. we use the ansatz (2.42)) for each ζ ∈ T by solving the eigenfunction equation

L[F (0)]Φ(0, ζ) = ζΦ(0, ζ)

with initial data
lim

n→+∞
an(0, ζ) = 1; lim

n→+∞
bn(0, ζ) = 0.

This eigenfunction is well-defined since F is rapidly decreaasing. Indeed from (2.43)
and a limiting argument we see that

M [an(0, ζ), bn(0, ζ)] =Mn←+∞(0, ζ2)M [1, 0],

and so in particular by taking limits as n→ −∞

M [a−∞(0, ζ), bn(0, ζ)] =
︷︸︸︷
F (0)(ζ2).

Because F is rapidly decreasing, it is absolutely integrable and hence all the trans-
fer matrices are bounded. Thus Φ(0, ζ) has bounded coefficients. We abuse no-
tation slightly and use l∞ to denote the Banach space of generalized functions∑

n∈Z φnvn + ψnwn with bounded coefficients, equipped with the norm

‖
∑

n∈Z
φnvn + ψnwn‖l∞ := max(sup

n
|φn|, sup

n
|ψn|).

Now fix ζ ∈ T. We evolve Φ in time by the equation

(2.98) Φt = P (t)Φ

where P (t) is the operator defined in Lemma 2.23. Observe that the difference
operator P (t) is bounded on l∞ since F stays bounded. Thus the Picard existence
theorem guarantees a local-in-time solution to this equation in l∞ as long as the
l∞ norm of Φ stays bounded; repeated differentiation then shows this solution is
smooth in time. We now use Lemma 2.23 to compute

∂t(L[F (t)]Φ(t, ζ)) = Lt[F (t)]Φ(t, ζ) + L[F (t)]Φt(t, ζ)

= [P (t), L[F (t)]]Φ(t, ζ) + L[F (t)]Φt(t, ζ)

= P (t)L[F (t)]Φ(t, ζ).

Combinign this with the previous equation we see in particular that

∂t(L[F (t)]Φ(t, ζ)− ζΦ(t, ζ)) = P (t)(L[F (t)]Φ(t, ζ) − ζΦ(t, ζ)).

Since (L[F (t)]Φ(t, ζ) − ζΦ(t, ζ)) lies in l∞, equals 0 at time t = 0, and P (t) is
bounded on l∞, we can appeal to the uniqueness component of the Picard existence
theorem to then conclude that L[F (t)]Φ(t, ζ)− ζΦ(t, ζ) vanishes for all times t near
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0. Thus we see that Φ(t, ζ) solves the eigenfunction equation (2.39) for each t near
0. In particular, since F (t) is rapidly decreasing, we may write

(2.99) Φ(t, ζ) =
∑

n

an(t, ζ)ζ
nvn + bn(t, ζ)ζ

1−nwn

where an(t, ζ) and bn(t, ζ) are rapidly convergent to some limiting value a±∞(t, ζ)
and b±∞(t, ζ) as n→ ±∞, and furthermore

(2.100) M [a−∞(t, ζ), b−∞(t, ζ)] =
︷︸︸︷
F (t)(ζ2)M [a+∞(t, ζ), b+∞(t, ζ)].

Since the time derivatives of F exist and are also rapidly decreasing, it is easy to
establish that the derivatives of an(t, ζ) and bn(t, ζ) converge to those of a±∞(t, ζ)
and b±∞(t, ζ) as n→ ±∞.

Now let us look at the action on L(t) and P (t) on basis vectors vn, wn as
|n| → +∞. Since F (t) is rapidly decreasing, L[F (t)] behaves like L[0] modulo an
error rapidly decreasing in n. Since L[0] and L[0]∗ commute with J , we thus see
that Dvn and Dwn are rapidly decreasing in n. Thus we have

Pvn = −i vn−2 + vn+2

2
+ . . . ; Pwn = +i

wn−2 + wn+2

2
+ . . .

where the error . . . is rapidly decreasing in n. Applying this to (2.98), (2.99) we
obtain

∂tan = −i ζ
2 + ζ−2

2
an + . . . ; ∂tbn = i

ζ2 + ζ−2

2
bn + . . . .

Passing to the limits at ±∞, the . . . errors decay rapidly to zero and we obtain

∂ta±∞ = −i ζ
2 + ζ−2

2
a±∞; ∂tb±∞ = i

ζ2 + ζ−2

2
b±∞

which can of course be solved explicitly as

a±∞(t) = exp(−i ζ
2 + ζ−2

2
t)a±∞(0); b±∞(t) = exp(+i

ζ2 + ζ−2

2
t)a±∞(0).

Reconciling this with (2.100) we obtain

M [exp(−i ζ
2 + ζ−2

2
t), 0]

︷︸︸︷
F (0)(ζ2) =

︷︸︸︷
F (t)M [exp(−i ζ

2 + ζ−2

2
t), 0]

which is (2.97), at least for short times t. Note that this also shows that a±∞(t) and
b±∞(t) stay bounded (in fact, their magnitudes are constant); this combined with
the rapid decrease of F (t) shows that the eigenfunctions Φ(t, ζ) stay bounded, and
so the Picard existence theorem allows us to continue this argument indefinitely in
time on the compact interval [−T, T ]. �
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The SU(2) scattering transform

This chapter is a revised version of the PhD thesis of the third author.
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3.1. Introduction

This chapter develops the theory of the SU(2) non-linear Fourier series or
transform, so named because the Fourier transform data is an SU(2) valued function
as opposed to the SU(1, 1) valued non-linear Fourier transform discussed in the first
two chapters of this book. Recall that SU(2) is the set of complex valued matrices
of the form

(
a b

−b a

)

with determinant 1, while a SU(1, 1) matrix is of the form
(
a b

b a

)

with determinant 1.
What begins with a seemingly harmless change of a sign in the definition of the

Fourier transform results in different behaviour in several respects. This percolates
to well know phenomena in other branches of mathematics including the theory of
non-linear dispersive equations. For example, compare the defocusing and focusing
nonlinear Schrödinger equations:

i
∂F

∂t
(x, t) = −∂

2F

∂x2
+ 2|F |2F (x, t) ,

i
∂F

∂t
(x, t) = −∂

2F

∂x2
− 2|F |2F (x, t) .

The defocusing equation can formally be solved by the SU(1, 1) nonlinear Fourier
transform, while the focusing equation can be solved by the SU(2) nonlinear Fourier
transform. A major difference in the theory of these two equations is the appearance
of soliton solutions for the the focusing equations, which are not present in the the-
ory of the defocusing equation. We will use the word “soliton” at the corresponding
place in the theory of the nonlinear Fourier transform.

As in the previous chapters we restrict attention to nonlinear Fourier series,
i.e. we will take the Fourier transform of data which are functions on the set of
integers Z. Our main interest is in data in l2(Z,C), the square summable complex
valued sequences on Z.

Parallel to the previous chapters, we discuss the following questions:

(1) How does one define the non-linear Fourier transform data for sequences
(Fn) ∈ l2(Z,C)?

(2) Characterize the range of the nonlinear Fourier transform on l2(Z,C) and
its topology.

(3) Existence, (non-) uniqueness, and construction of preimages under the
NLFT. These aspects of the theory are not completely understood, so we
will discuss in more detail the special case of rational Fourier transform
data.

(4) Discuss continuity of the NLFT and the inverse NLFT whenever appro-
priate.

In Section 2 we introduce the discrete SU(2) NLFT by defining it first on finite
sequences and then l1 sequences, and we will derive some basic properties of the
NLFT. It will map sequences of complex numbers to SU(2) valued functions on the
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unit circle T. For convenience, we will write SU(2) matrices by their first row and
write the NLFT data as (a, b) where a, b are complex valued functions on T with
|a|2 + |b|2 = 1.

In Section 3 we work on half line sequences, i.e. in the spaces l2(Z≥0) and
l2(Z<0). We will define the NLFT and prove that it is injective on these spaces.
We also characterize the image spaces which will be denoted by H and H∗0. To
prove that the NLFT from l2(Z≥0) to H is onto, we construct the inverse NLFT
by measn of the ”layer stripping method”. Finally, a metric on H is defined such
that the NLFT is a homeomorphism between l2(Z≥0) and H. However, H is not
complete under that metric. This will lead to some discussion about the completion
of H. We will observe that the incompleteness is mainly due to the appearance of
soliton factors (a, 0) under the limiting process, where ā is the boundary value of
an inner function.

Having established some understanding of the NLFT on half line data, it is
natural to approach the NLFT of full line l2(Z) data as a product of NLFT data of
two half lines. The inverse process is a factorization problem known as Riemann-
Hilbert factorization . In Section 4 we study the special case of rational NLFT data
(a, b) and find a bijection between the set of decompositions (a−, b−)(a+, b+) =
(a, b) and some extended scattering data {b, Z, ni,mi, γi}, where Z is the zero set of
a∗, {ni} represents the orders of the zeros, and {mi, γi} is additional information
not contained in (a, b) that describes the fibers of the inverse NLFT. To derive this
result, we apply some theorems from [21], more precisely we need a vbariant of
their theorems becasue we need to allow the case in which a has zeros on T, hence
we will give a proof of the result. Moreover, we follow the discussions in [14] and
construct the so called matrix Blaschke-Potapov factors which degenerate on given
points with desired orders and residues.

In Section 5 we study the soliton solutions, i.e. the NLFT data (a, 0) where
ā is the boundary value of an inner function. We have encountered this type of
data in Section 3. They are not in the spaces H nor H∗0 but in their completions.
We will characterize some of them as being the NLFT data of at least one but not
necessarily a unique full line potential. We conjecture that all soliton solutions are
in the range of the NLFT.

In fact, the exact formula for all inverse potentials of (B∗, 0) is derived, where B
is a finite Blaschke product. Also we prove that any half line rational data (a+, b+) ∈
H ((a−, b−) ∈ H∗0), after finitely many steps of layer stripping if necessary, can be
paired with another half line rational data (a−, b−) ∈ H∗0 ((a+, b+) ∈ H) so that
(a−, b−)(a+, b+) is a soliton solution.

Several open problems remain. In particular it would be desireable to develop
a theory for the SU(2) NLFT parallel to the SU(1, 1) theory in Chapter 2 of this
book.
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3.2. SU(2) NLFT on Finite Sequences and l1(Z,C)

We begin by defining the SU(2) nonlinear Fourier transform on l0(Z,C), the
set of sequences of complex numbers with finite support.

Let (Fn) ∈ l0(Z,C) be given. For a complex parameter z on the torus T, we
define the following recursion:

(
an bn
−b̄n ān

)
=

1

(1 + |Fn|2)1/2
(

an−1 bn−1
−b̄n−1 ān−1

)(
1 Fnz

n

−F̄nz
−n 1

)
,(3.1)

a−∞ = 1, b−∞ = 0 .(3.2)

Here a−∞ = 1 and b−∞ = 0 are to be interpreted that an and bn are constant
equal 0 for sufficiently small n, more precisely for n to the left of the support of the
sequence (Fn).

For each z ∈ T the matrices(
an(z) bn(z)
−b̄n(z) ān(z)

)

are products of matrices in SU(2) and therefore themselves in SU(2). To abbreviate
notation we will only write the first row (an(z), bn(z)) to denote the SU(2) matrices.
Note that both a and b are finite Laurent polynomials and are in particular rational
functions and have holomorphic extensions to C \ {0}.

The SU(2) NLFT of (Fn), denoted by
︷︸︸︷
(Fn), is defined as

(a∞(z), b∞(z)) = lim
n→∞

(an(z), bn(z))

for z ∈ T. Since an and bn eventually remain constant for sufficiently large n,

the limiting process is trivial. The following are some basic properties of
︷︸︸︷
(Fn) =

(a(z), b(z)).

Lemma 3.1. Let (Fn) be a finite sequence and
︷︸︸︷
(Fn) = (a, b). Then b(z) is a

finite Laurent series with lowest degree N−, the minimum of the support of (Fn),
and highest degree N+, the maximum of the support of (Fn). On the other hand,
a(z) is a Laurent polynomial with lowest degree N− − N+, highest degree 0, and
a(∞) =

∏
(1 + |Fn|2)−1/2 > 0. Moreover, |a(z)|2 + |b(z)|2 = 1 for z ∈ T.

The proof is by induction on the length 1 +N+ −N− of the sequence (Fn) as
in the first chapter of this book and is skipped here.

Lemma 3.2. Suppose
︷︸︸︷
(Fn) = (a, b). If (Fn+1) denotes the shifted sequence

whose n-th entry is Fn+1, then
︷ ︸︸ ︷
(Fn+1) = (a, bz−1). If |c| = 1, then

︷ ︸︸ ︷
(cFn) = (a, cb).

This is easily seen by conjugation with

(
z−1/2 0

0 z1/2

)
or

(
eiθ 0
0 e−iθ

)

where ei2θ = c.
Let f(z) be a complex function. We define f∗ to be another complex function

such that

f∗(z) = f(
1

z̄
).

Then it is easy to see that aa∗ + bb∗ = 1 if (a, b) is the image of a finite sequence
via the NLFT. The next theorem characterizes the image of finite sequences as the
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collection of all such Laurent polynomials a, b. Moreover, we can prove that the
NLFT is injective on finite sequences.

Theorem 3.3. The NLFT is bijective from l0(Z,C) onto the space
S = {(a(z), b(z)) : a(z), b(z) are Laurent polynominals such that aa∗ + bb∗ =
1 and 0 < a(∞) <∞}.

Proof. Clearly the NLFT maps l0 sequences into the space S.
Suppose (a, b) ∈ S. By the assumption 0 < a(∞) < ∞ we know that a

is a polynomial in z−1 with constant term > 0. Let N be the degree of this
polynomial. Also denote the upper and lower degree of b by N+ and N−. Then we
have N = N+ −N− since aa∗ + bb∗ = 1.

Since the forward NLFT maps upper and lower degree of F to upper and lower
degree of b by Lemma 3.1, we may prove bijectivity for fixed N+ and N−. By the
shift symmetry between F and b stated in Lemma 3.2 we may assume N− = 0.

We then prove bijectivity by induction on N+ = N . For N = 0, (a, b) ∈ S
consists of constant functions a and b such that |a|2 + |b|2 = 1 and a > 0, which
implies b ∈ D and a is uniquely determined by b. Observe that the map F0 → b
defined by b = F0(1 + |F0|2)−1/2 is bijective from C to D. Thus F → (a, b) is
bijective in the case N = 0.

Now assume we have proved bijectivity up to upper degree N − 1 and proceed
to prove it for upper degree N . We first prove injectivity i.e. the sequence F can
be recovered from (a, b). We first show that F0 can be recovered by (a, b). Let
F ′ denote the (unknown) truncated sequence which coincides with F except for

F ′0 = 0, and denote
︷︸︸︷
(F ′) = (a′, b′). Then

(a′, b′) = (1 + |F0|2)−1/2(1,−F0)(a, b)(3.3)

which implies that

b′(0) = (1 + |F0|2)−1/2(b(0) + F0a
∗(0)) = 0.

Hence

F0 = − b(0)

a∗(0)
.

Note that this quotient is well defined since a∗(0) > 0. Thus F0 is determined
by (a, b) and then (a′, b′) is derived by (3.3). By induction hypothesis, F ′ can be
recovered by (a′, b′). Therefore we have proved injectivity for upper degree N .

Now we prove surjectivity for upper degreeN > 0. Let (a, b) ∈ S and assume as
before the lower degree and upper degree of the Laurent polynomial b are 0 and N
respectively. Let F0 = −b(0)/a∗(0) and (a′, b′) = (1+|F0|2)−1/2(1,−F0)(a, b). Then
by taking the determinant of the last equation we see that the Laurent polynomials
a′ and b′ satisfy

a′a′∗ + b′b′∗ = 1.

Moreover, b′ is a polynomial with upper degree at most N and lower degree at least
1, and

a′(∞) = (1 + |F0|2)1/2a(∞).

Thus 0 < a′(∞) <∞ and (a′, b′/z) ∈ S where the upper degree of b′/z is less than

N . By induction, there is a finite sequence (Gn) such that
︷ ︸︸ ︷
(Gn) = (a′, b′). Let (Fn)
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be the sequence such that F0 = −b(0)/a∗(0) and Fn = Gn−1 for n > 0. Then it is

clear that
︷︸︸︷
(Fn) = (a, b) and we have proved the surjectivity for upper degree N .

�

Remark: The process we used here to produce the inverse potential is called the
layer stripping method . In Section 3 this method will be used again to construct
the inverse NLFT for half line l2 sequences.

Lemma 3.4. Assume we are given any Laurent polynomial b(z) with |b(z)| ≤
1 on Π but |b| is not identically 1 on T. For any set Z in D and prescribed
multiplicities there is a unique Laurent polynomial a such that (a, b) ∈ S and the
zeros of a∗ in D are exactly the ones in Z with the prescribed multiplicities.

We will prove a more general lemma (see Lemma 3.18) in Section 4 about
rational NLFT data and omit the proof of the present lemma.

Now we are ready to extend the NLFT to the first class of infinite sequences,
l1(Z). The Fourier transform of such data will be an SU(2) valued function on T,
written as before as (a, b). We will only partially have holomorphic extensions of
these functions beyond T.

Define a metric on SU(2) by

dist(T, T ′) = ||T − T ′||op .

Obviously this makes SU(2) a complete metric space because the space of 2 by 2
complex matrices is complete under this metric and SU(2) is a closed subset of it.

Define L∞(T, SU(2)) to be the metric space of all essentially bounded functions
A : T → SU(2) i.e. supz dist(id, A(z)) <∞, with the distance

dist(A,A′) = sup
z
dist(A(z), A′(z)).

In fact, since SU(2) has finite diameter, all measurable functions from T to SU(2)
are in L∞(T, SU(2)). Also note that C(T, SU(2)) is a closed subset in L∞(T, SU(2))
and thus is complete under this metric.

As in the case of the linear and the SU(1,1) Fourier transform, we can easily
extend the defining recursion formula to l1(Z). Here l1(Z) denotes the usual space
of absolutely summable sequences on Z with have the usual norm ||F ||l1 =

∑ |Fn|.

Theorem 3.5. The NLFT on l0(Z) extends uniquely to a Lipschitz map from
l1(Z) to C(T, SU(2)).

Proof. We first derive a Lipschitz estimate on finite sequences. Given two
finite sequences F and F ′, let

Tn(z) =
1

(1 + |Fn|2)1/2
(

1 Fnz
n

−F̄nz
−n 1

)
where z ∈ T.

Since Tn is unitary, TnT
∗
n = Id, ||Tn(z)||op = 1 for all n ∈ Z, z ∈ T. By Trotter’s

formula we have

||
∏

Tn(z)−
∏

T ′n(z)||op ≤
∑

n

||Tn(z)− T ′n(z)||op .
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Now we claim that ||Tn(z)− T ′n(z)||op ≤ 2|Fn − F ′n| for all z ∈ T. But we have

||Tn(z)− T ′n(z)||op ≤
∣∣∣∣

1

(1 + |Fn|2)1/2
− 1

(1 + |F ′n|2)1/2
∣∣∣∣

+

∣∣∣∣
Fn

(1 + |Fn|2)1/2
− F ′n

(1 + |F ′n|2)1/2
∣∣∣∣

and both terms are less than |Fn − Fn′ | since the functions x 7→ (1 + x2)−1/2 and
x 7→ x(1 + x2)−1/2 are 1-Lipschitz on R.

Hence ||∏Tn(z) −
∏
T ′n(z)||op ≤ 2

∑ |Fn − F ′n| = 2||F − F ′||l1 for all z ∈
T. As C(T, SU(2)) is a complete metric space with the metric dist(A,A′) =
supz ||A(z)−A′(z)||op and the image of finite sequences is contained in C(T, SU(2)),
this Lipschitz estimate says that we can uniquely extend the NLFT to a Lipschitz
map from l1(Z) to C(T, SU(2)).

�
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3.3. Extension to half line l2 sequences

In this section we define the NLFT for half line sequences (in l2(Z≥0) or
l2(Z<0)), characterize the image space, and construct the inverse map. Moreover,
we define a metric on the image space so that the NLFT is a homeomorphism, say,
between l2(Z≥0) and the image space.

As in the case of the linear Fourier transform, for sequences in l2(Z) the defining
recursion formula does not necessarily converge pointwise. Instead, one uses a
Plancherel type identity to obtain convergence in a certain sense. Writing

∫

T

f(z) =

∫ 1

0

f(e2πiθ)dθ

for the average of the function f on T, we have the following Plancherel identity
for the NLFT.

Lemma 3.6. Let (Fn) be a finite sequence. (a, b) =
︷︸︸︷
(Fn). We have

−
(∫

T

log |a(z)|dz +
∑

log |zk|
)

=
1

2

∑

n

log(1 + |Fn|2) ,(3.4)

where (zk) is the sequence of zeros of a∗ in D and higher order zeros appear several
times in the sequence according to their multiplicity.

Proof. Since (a, b) is the NLFT of a finite sequence, a∗ is a polynomial in z.
If we let B be the Blaschke product formed by the zeros of a∗ in D, then a∗/B is
an outer function on D (see [16] for background on bounded analytic functions).
Thus inside D, log |a∗/B(z)| is the harmonic extension of its boundary value. Also
note that B(0) 6= 0 since a∗(0) = (

∏
(1 + |Fn|2))1/2 6= 0. Hence,

∫

T

log |a(z)| =
∫

T

log

∣∣∣∣
a∗

B
(z)

∣∣∣∣ = log |a∗(0)| − log |B(0)|

= −1

2

∑
log(1 + |Fn|2)−

∑
log |zi| ,

where {zi} are the zeros of B. i.e. zeros of a∗ in D.
�

Note that in equation (3.4) each term on the left hand side is positive. Hence
each term on the left hand side is controlled by the right hand side, which is
equivalent to the l2 norm of (Fn) for (Fn) in a fixed ball about the origin of l2. As
the right hand side is defined for all (Fn) ∈ l2(Z), this will help us to extend the
NLFT to all l2(Z) sequences.

Remark: For more general a∗ ∈ H∞(D), such as we will encounter for the
NLFT of infinite sequences (Fn) ∈ l2, a∗ can be decomposed into a∗ = fBg where
f is an outer function, B is a Blaschke product, and g is a singular inner function.
The Plancherel identity will then be
∫

T

log |a∗(z)| =
∫

T

log |f(z)| = log |f(0)| = log |a∗(0)| − log |B(0)| − log |g(0)|.

In this case log |g(0)| takes care of the ”singular measure” part because it is just
the total measure of σg where σg is the singular measure on the boundary that
generates log |g|.

Now we proceed to describe the range of NLFT on l2(Z≥0). Define
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(1) The space L to be the space of all measurable SU(2) matrix valued func-
tion (a, b) on T such that ā is in the Hardy space H1(T) and thus has an
analytic extension to D denoted by a∗, and a∗(0) > 0.

(2) The space H to be the space of (a, b) ∈ L such that b is in the Hardy space
H2(T) and thus has an analytic extension to D, which is also denoted by
b. Moreover, a∗ and b have no common inner factor.

(3) The space H∗0 to be the space of all (a, b) ∈ L such that b̄ is in the Hardy
space H2(D) and thus has an analytic extension to D denoted by b∗.
Moreover, b∗(0) = 0 and a∗ and b∗ have no common inner factor.

Note that the various functions in H1(T) and H2(T) in the above definitions
are really bounded by 1 and thus in H∞(T). The special choice of Hardy space
exponents above is in reference to a convenient choice of metric used below.

Saying that a∗ and b have no common inner factor means that there is no non-
trivial inner function s such that a∗/s and b/s are bounded. Alternatively, consider
for f ∈ Hp(D), p > 0, the factorization

f(z) = exp

(
ic+

1

2π

∫ 2π

0

eit + z

eit − z
log |f(eit)|dt

)

Bf (z) exp

(−1

2π

∫ 2π

0

eit + z

eit − z
dσf (t)

)
,

where Bf (z) is the Blaschke product consisting of zeros of f(z), σf is a nonnegative
singular measure, and c is a constant. Under these notations, a∗ and b have no
common inner factor if a∗ and b have no common zeros and σa∗ and σb are mutually
singular.

Note that if (a, b) ∈ H then the meromorphic function b/a∗ on D will uniquely
determine a∗ and b. Namely, the inner parts of the functions of b and a∗ can be
determined since they have no common inner factor. The outer functions can be
determined from the absolute values |a| and |b|, which can be determined from
|b|/|a| and the identity |a|2 + |b|2 = 1. Traditionally, b/a∗ is called the reflection
coefficient.

We consider the metric

d̂ ((a, b), (a′, b′)) =

∫

T

|a− a′|+
(∫

T

|b− b′|2
)1/2

+ |log a∗(0)− log(a′)∗(0)|

on L,H, and H∗0.
It is easy to see that L is complete under d̂. Namely, the map (a, b) →

(a, b, log(a∗(0))) maps into a closed subset of H1(T)×L2(T)×R because its range
is given by all triples (a, b, c) satisfying the closed conditions |a|2 + |b|2 = 1 almsot
everywhere and

∫
T
a ≥ 0 and log

∫
T
a = c. However, H,H∗0 are not complete under

d̂ because in general a∗ and b may have a common inner factor when (a, b) is in
the closure of H. In the end of this section we will discuss the completion of H.
First, despite the incompleteness, we prove that the NLFT is a homeomorphism

from l2(Z≥0) to (H, d̂) and from l2(Z<0) to (H∗0, d̂).
First we show that the NLFT of truncations of l2 sequences converge in the

metric of L.

Lemma 3.7. Let F be a sequence in l2(Z≥0) and let F≤n denote the truncations

to [0, n]. Then (an, bn) =
︷︸︸︷
F≤n is a Cauchy sequence in the metric space (H, d̂).
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With this lemma we can define
︷︸︸︷
F = (a, b) as a limit in L, which is complete

and contains H. Later we need to do some work to prove that (a, b) ∈ H because

(H, d̂) is not complete.
To prove Lemma 3.7, we first prove the following auxiliary lemma:

Lemma 3.8. If (a, b) is the NLFT of a a finite sequence (Fn), then

d̂((a, b), (1, 0)) ≤ C1

∑
log(1 + |Fn|2) + C2

(∑
log(1 + |Fn|2)

)1/2
,

where C1, C2 are fixed constants.

Proof.

d̂ ((a, b), (1, 0)) =

∫
|a− 1|+

(∫
|b|2
)1/2

+ | log a∗(0)|

≤
∫
(1− |a|) +

∫ ∣∣∣∣
a

|a| − 1

∣∣∣∣+
(∫

|b|2
)1/2

+ | log a∗(0)| .

As (a, b) comes from a finite sequence, Lemma 3.1 says that | log a∗(0)| = 1/2
∑

log(1+
|Fn|2), which is the desired estimate for this term. Using that a∗ is a polynomial in
z, we can write a∗|D = faBa where fa is an outer function, Ba is a finite Blaschke
product and fa(0), Ba(0) > 0. We claim that

∫ ∣∣∣∣
a

|a| − 1

∣∣∣∣
2

≤ C

(∫
| log |a||+

∫
|Ba − 1|2

)

for all (a, b) in the range of finite sequence. Before proving the claim we proceed to
bound

∫
| log |a||,

∫
(1−|a|),

∫
|b|2, and

∫
|Ba− 1|2 by

∑
log(1+ |Fn|2). The bound

for the logarithmic integral is clear from the Plancherel identity. Observe that for
0 ≤ x ≤ 1, 1− x ≤ | log x|. Thus,

∫
(1 − |a|) ≤

∫
| log |a|| and

∫
|b|2 =

∫
(1− |a|2) ≤ 2

∫
| log |a|| .

This proves the desired estimate for these integrals. Next,
∫

|Ba − 1|2 =
∫
(2− 2ReBa) = 2(1− ReBa(0)) .

As Ba(0) > 0, ReBa(0) = Ba(0) =
∏ |zk| where {zk} are the zeros of Ba in D, i.e.

zeros of a∗ in D. Hence, 1− ReBa(0) ≤ | logBa(0)| = −∑ log |zk| and∫

T

|Ba − 1|2 ≤ −2
∑

log |zk|.

Finally, by Hölder’s inequality and the Plancherel identity we conclude that d̂((a, b), (1, 0)) ≤
C1

∑
log(1 + |Fn|2) + C2(

∑
log(1 + |Fn|2))1/2.

Now we prove the claim.The function fa is outer and hence fa(0) > 0 implies
that on the circle

fa
|fa|

= eig

where g = p.v.
∫
T
log |a(ζ)|Im( ζ+z

ζ−z ), the Hilbert transform of log |a|.
∫

|fa/|fa| − 1|2 = 2

∫ 2

0

t|{|fa/|fa| − 1| > t}|dt ≤ 2

∫ 2

0

t|{|g| > t}|dt
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By the weak type 1 bound for the Hilbert transform, |{|g| > t}| ≤ C|| log |a|||L1/t.
Thus ∫

|fa/|fa| − 1|2 ≤ C|| log |a|||L1 .

Since |a/|a| − 1| = |ā/|a| − 1| = |Bafa/|fa| − 1| ≤ |fa/|fa| − 1|+ |Ba − 1|,
∫

|a/|a| − 1|2 ≤ 2

(∫
|fa/|fa| − 1|2 +

∫
|Ba − 1|2

)

≤ 2C

∫
| log |a||+ 2

∫
|Ba − 1|2.

We have proved the claim.
�

Now we proceed to prove Lemma 3.7.

Proof. Observe that {an} are polynomials in z−1, and {bn} are polynomials
in z. Thus, a∗n and bn have no singular inner factor. Furthermore, a∗n and bn have
no common zeros in D because ana

∗
n+bnb

∗
n = 1. Hence, a∗n and bn have no common

inner factor and as a result (an, bn) ∈ H for all n.
Let G = (a, b), G′ = (a′, b′) be SU(2) valued functions. Then GG′ = (aa′ −

bb̄′, ab′ + bā′). If we assume that b̄b′ is the boundary value of an analytic function
on D which vanishes at 0, then

d̂(GG′, G) =

∫

T

|aa′ − bb̄′ − a|+
(∫

T

|ab′ + bā′ − b|2
)1/2

+ | log(a′)∗(0)|.

Since ∫
|aa′ − bb̄′ − a| ≤

∫
|a||a′ − 1|+

∫
|bb′| ≤

∫
|a′ − 1|+

∫
|b′|

and ||ab′ + bā′ − b||L2(T) ≤ ||b′||L2 + ||a′ − 1||L2,

with Hölder’s inequality and the fact that |a′| ≤ 1, it is easy to see

d̂(GG′, G) . d̂(G′, id) + (d̂(G′, id))1/2 .

Let (a(n,m], b(n,m]) =
︷ ︸︸ ︷
F(n,m] where F(n,m] is the restriction of F to the interval

(n,m]. Then d̂((am, bm), (an, bn)) = d̂((an, bn)(a(n,m], b(n,m]), (an, bn)) and b̄nb(n,m]

is a polynomial with lowest degree ≥ 1. Thus, from the previous inequality and the

auxiliary lemma, d̂((am, bm), (an, bn)) .
∑m

k=n+1 log(1 + |Fk|2) + (
∑m

k=n+1 log(1 +

|Fk|2))1/4. Hence, {(an, bn)} is a Cauchy sequence in H.
�

Lemma 3.9. NLFT is injective on l2(Z≥0).

Proof. Suppose (a, b) ∈ L and (a, b) =
︷︸︸︷
Fn for some (Fn) ∈ l2(Z≥0). We

show that (Fn) can be determined by a and b and thus prove the injectivity.

As usual, we let (an, bn) =
︷︸︸︷
F≤n. From our discussion of finite sequences,

F0 = bn/a
∗
n(0) for all n. Since bn converges to b in H2(D), we have lim bn(0) = b(0).

Similarly, lim a∗n(0) = a∗(0) because a∗n converges to a∗ in H1(D). Moreover,
a∗n(0) = (

∏n
k=0(1 + |Fk|2))−1/2 → (

∏∞
k=0(1 + |Fk|2))−1/2 = a∗(0) > 0. Hence

F0 = bn/a
∗
n(0) = lim bn/a

∗
n(0) = b/a∗(0) i.e. F0 is determined by a∗ and b.
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Let (F̃n) be the layer stripped sequence i.e. F̃n = Fn for n > 0 and F̃0 = 0.

Define (ã, b̃) =
︷︸︸︷
(F̃n). We have

(an, bn) =
1

(1 + |F0|2)1/2
(

1 F0

−F̄0 1

)
(ãn, b̃n). Thus,

ã∗n =
1

(1 + |F0|2)1/2
(a∗n + F̄0bn) ,(3.5)

b̃n =
1

(1 + |F0|2)1/2
(−F0a

∗
n + bn) .(3.6)

As n → ∞, ã∗n → ã∗, a∗n → a∗ in H1(D), and b̃n → b̃, bn → b in H2(D). Because
|a∗n| and |bn| are bounded by 1 and T has finite measure, we conclude that a∗n → a∗

and bn → b in Hp(D) for any p ≥ 1. Thus, the left hand side of (3.5) converges
to ã∗ in H1(D) and its right hand side converges to (1 + |F0|2)−1/2(a∗ + F̄0b) in
H1(D). Therefore,

ã∗ =
1

(1 + |F0|2)1/2
(a∗ + F̄0b).

Similarly,

b̃ =
1

(1 + |F0|2)1/2
(−F0a

∗ + b).

As a result, (ã∗, b̃) can be determined by (a∗, b). By induction, we can determine
Fn for all n. Hence, NLFT is injective on l2(Z≥0).

�

Remark : This proof also implies the following observation: Suppose (Fn) ∈
l2(Z≥0). Let F≤n and F>n be the restrictions to [0, n] and [n+1,∞) and (an, bn) =︷︸︸︷
F≤n, (a>n, b>n) =

︷︸︸︷
F>n. Then

(a, b) = (an, bn)(a>n, b>n) .

The base case n = 0 is shown in the proof of the lemma. Then we can use induction
to prove this for all n.

The proof of the lemma shows in particular that the layer stripping method
produces the inverse NLFT of data (a, b) in the range of the NLFT of sequences in
l2(Z≥0). The next lemma shows that we can apply the layer stripping method on

a more general class of (a∗, b) and obtain an l2 sequence (Fn). However,
︷︸︸︷
(Fn) may

not be (a, b). If
︷︸︸︷
(Fn) 6= (a, b), then (a, b) can not be in the range of l2(Z≥0).

Lemma 3.10. Given any a∗ ∈ H∞(D) and b ∈ H∞(D) such that |a∗|2+|b|2 = 1
on T and a∗(0) > 0. We can apply the layer stripping method on a∗ and b and
obtain a sequence (Fn) ∈ l2(Z≥0) with

∞∏

k=0

(1 + |Fk|2) ≤
1

(a∗(0))2
.

Later we will see that the equality holds if and only if
︷︸︸︷
(Fn) = (a, b).
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Proof. Applying the layer stripping method on a∗ and b, we obtain F0 =
b/a∗(0),

a∗≥1 =
1

(1 + |F0|2)1/2
(a∗ + F̄0b) , b≥1 =

1

z(1 + |F0|2)1/2
(b− F0a

∗)

It is obvious that a∗≥1 and b≥1 also satisfy all the assumptions and

a∗≥1(0) =
1

(1 + |F0|2)1/2
(a∗(0) + a∗(0)|F0|2) = (1 + |F0|2)1/2a∗(0)

In general, after n+ 1 steps we have

1 ≥ a∗≥n+1(0) = (1 + |Fn|2)1/2a∗≥n(0) = (

n∏

k=0

(1 + |Fk|2))1/2a∗(0).

Thus,
n∏

k=0

(1 + |Fk|2) ≤
1

(a∗(0))2
for all n

which says (Fn) ∈ l2(Z≥0) and
∏∞

n=0(1 + |Fn|2) ≤ (a∗(0))−2. �

Now we show that the range of l2(Z≥0) lies in H.

Lemma 3.11. If (a, b) =
︷︸︸︷
(Fn) for some (Fn) ∈ l2(Z≥0), then (a, b) ∈ H

Proof. We already know that (a, b) ∈ L. Since b is the limit in L2(T) of the
elements b≤n ∈ H2(T), we have b ∈ H2(T). It remains to show that a∗ and b∗

have no common inner factor. Suppose to get a contradiction that they do have a
common inner factor g. Then a∗/g ∈ H1(D) and b/g ∈ H2(D). It is easy to see
that the layer stripping method applied a∗/g, b/g produces the same potential as
for a∗, b, namely the layer stripped data are the functions a∗≥n and b∗≥n divided by

g. Lemma 3.9 shows that the potential obtained must be (Fn).
The previous lemma says that

∞∏

k=0

(1 + |Fk|2) ≤
(g(0))2

(a∗(0))2
<

1

(a∗(0))2
.

However, since (a, b) =
︷︸︸︷
(Fn),

a∗(0) = lim
n→∞

a∗n(0) = lim
n→∞

(

n∏

k=0

(1 + |Fk|2))−1/2

i.e.
∞∏

k=0

(1 + |Fk|2) =
1

(a∗(0))2

and we get a contradiction. Therefore a∗ and b have no common inner factor. �

Finally, let us establish the range of the NLFT on l2(Z≥0).

Lemma 3.12. NLFT is surjective from l2(Z≥0) to H.
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Proof. Given (a, b) ∈ H, we apply the layer stripping method on it and obtain

an l2 sequence (Fn), n ≥ 0. Let (ã, b̃) =
︷︸︸︷
(Fn). We will prove that (ã, b̃) = (a, b).

According to the remark after Lemma 3.9,

(ã, b̃) =
︷ ︸︸ ︷
(F≤N )

︷ ︸︸ ︷
(F>N ) = (ãN , b̃N )(ã>N , b̃>N)

for every nonnegative integer N . And b̃>N vanishes at 0 with order > N .
On the other hand, the layer stripping method says that

(a, b) =
︷ ︸︸ ︷
(F≤N )(a>N , b>N)(3.7)

where (a>N , b>N) satisfies all the conditions described in H except that a∗>N and
b>N might have common inner factor. Moreover, b>N vanishes at 0 with order
> N . Hence

(ã, b̃)−1(a, b) = (ã>N , b̃>N)−1(a>N , b>N ) for all N.

Note that the (1, 2) component of the right hand side is

ã∗>Nb>N − b̃>Na
∗
>N

which is an analytic function on D and vanishes at 0 with order > N . Because the
expression is independent of N , we conclude that all Taylor coefficients at 0 vanish.
Thus,

ã∗>Nb>N − b̃>Na
∗
>N = 0 for all N.

Especially,

b>N =
b̃>N

ã∗>N

a∗>N .(3.8)

Since (ã>N , b̃>N ) comes from a tail of (Fn) ∈ l2(Z≥0), ||b̃>N ||L2(T) and ||ã>N −
1||L1(T) are very small when N is large enough. Hence, given any ǫ > 0, we can
find N0 such that for all N > N0,∣∣∣∣∣

b̃>N

ã∗>N

∣∣∣∣∣ < ǫ on T except on a set of measure ≤ ǫ.

Moreover, |b>N | and |a∗>N | ≤ 1 a.e. on T. Then from (3.8) we can easily see that

b>N → 0 in H2(D)

We claim that a∗>N → g in H1(D) for some function g, the proof of this claim
is postponed. Assuming the claim, g is an inner function. This follows from |g| = 1
a.e. on T, which in turn follows from |a>N |2 + |b>N |2 = 1 on T for all N and
b>N → 0 in H2(D).

By (3.7),

a∗ = −b̃∗Nb>N + ã∗Na
∗
>N .(3.9)

The term b̃∗Nb>N is analytic in D and on T its L2 norm is smaller or equal to the

L2 norm of b>N . Thus b̃∗Nb>N → 0 in H2(D) ( also in Hp(D) for all p ≥ 1 ). Since
ã∗N → ã∗, a∗>N → g in H1(D) and |ã∗N |, |a∗>N | ≤ 1. Therefore, ã∗Na

∗
>N → ã∗g in

H1(D) ( also in Hp(D) for all p ≥ 1 ). Hence as N → ∞, the right hand side of
equation (3.9) goes to ã∗g in H1(D), and we conclude that a∗ = ã∗g. Similarly,

b = b̃g.
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If g is constant, then g = 1 (since |g| = 1 and a∗(0), ã∗(0) > 0). In this case

(a, b) = (ã, b̃) =
︷︸︸︷
(Fn) i.e. (a, b) is in the range of l2(Z≥0). Otherwise, a∗ and b have

common inner factor which contradicts to the assumption (a, b) ∈ H. Therefore we
have proved the lemma.

Now we prove the claim. From equation (3.7),
︷ ︸︸ ︷
(F(n,m])(a>m, b>m) = (a>n, b>n)

for all m > n. Hence
a∗>n = ã∗(n,m]a

∗
>m − b̃∗(n,m]b>m ,

|a∗>n − a∗>m| ≤ |a∗>m||ã∗(n,m] − 1|+ |b̃∗(n,m]b>m| ≤ |ã∗(n,m] − 1|+ |b̃∗(n,m]b>m| .

Since (ã(n,m], b̃(n,m]) =
︷ ︸︸ ︷
(F(n,m]), ||ã∗(n,m] − 1||L1(T) → 0 as n,m → ∞. Moreover,

b̃∗(n,m]b>m is analytic in D and ||b̃∗(n,m]b>m||L1(T) ≤ ||b>m||L1(T). The later term

goes to zero because b>m → 0 in H2(D). Hence (a∗>n) is a Cauchy sequence in
H1(D) and we have proved the claim

�

This proof also shows the following fact:

Lemma 3.13. Given any a∗ ∈ H∞(D) and b ∈ H∞(D) such that |a∗|2+|b|2 = 1
on T and a∗(0) > 0. Let (Fn) be the l2(Z≥0) sequence produced by applying the

layer stripping method on (a, b). Then
︷︸︸︷
(Fn)(g

∗, 0) = (a, b) where g is the common
inner factor of a∗ and b.

In particular, we have the identity
∞∏

k=0

(1 + |Fk|2) =
(g(0))2

(a∗(0))2
.

Hence
∏∞

k=0(1+ |Fk|2) = 1/(a∗(0))2 if and only if g(0) = 1 which means g must be

the constant 1 and
︷︸︸︷
(Fn) = (a, b).

The following two lemmas prove the continuity of the NLFT and the inverse
NLFT.

Lemma 3.14. The NLFT is a continuous map from l2(Z≥0) to {H, d̂}.
Proof. Given F ∈ l2(Z≥0) and any ǫ > 0, we will find δ > 0 such that

d̂

(︷︸︸︷
F ,

︷︸︸︷
F ′
)

≤ ǫ for all F ′ with ||F − F ′||l2 ≤ δ.

Again we let (a, b) =
︷︸︸︷
F , (a′, b′) =

︷︸︸︷
F ′ , and (an, bn) =

︷︸︸︷
F≤n. We write

d̂((a, b), (a′, b′)) ≤ d̂((a, b), (an, bn)) + d̂((an, bn), (a
′
n, b
′
n)) + d̂((a′n, b

′
n), (a

′, b′))

From Lemma 3.7 and its proof we know that

d̂((an, bn), (a, b)) ≤ C

{∑

k>n

log(1 + |Fk|2) +
(∑

k>n

log(1 + |Fk|2)
)1/4

}

for all (a, b) ∈ H, where C is a fixed constant i.e. d̂((an, bn), (a, b)) are uniformly
bounded depending only on the l2 norm of the tail.
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Therefore, we first choose N large such that d̂((aN , bN ), (a, b)) ≤ ǫ/3. Then
we choose δ > 0 such that for all F ′ with ||F − F ′||l2 ≤ δ, ||F ′>N || is still small

enough so that d̂((a′N , b
′
N ), (a′, b′)) ≤ ǫ/3. Moreover, when δ is small, the l1 norm

of F≤N − F ′≤N is small. Thus, from the results of l1 sequences, ||an − a′n||L∞
and ||bn − b′n||L∞ are small. Hence, we can choose δ such that the middle term

d̂((an, bn), (a
′
n, b
′
n)) is less than ǫ/3.

�

Remark : This proof does not give us uniform continuity, and one may pose
the question whether the NLFT is uniformly continuous in the specified metrics.

Next we show that the inverse NLFT from {H, d̂} to {l2(Z≥0), d} is continuous
where the quasi-metric on l2(Z≥0) is defined as

d((Fn), (F
′
n)) =

∞∑

n=0

log(1 + |Fn − F ′n|2).

It is easy to check that d((Fn), (Gn)) = 0 if and only if (Fn) = (Gn) and the
modified triangle inequality

d((Fn), (Gn)) ≤ 2d((Fn), (Hn)) + 2d((Hn), (Gn))

holds. Moreover, {l2(Z≥0), d} is complete.
Locally d is equivalent to the usual l2 norm. Hence it is also true that the

inverse NLFT from {H, d̂} to {l2(Z≥0), || · ||l2} is continuous. However, with the
quasi-metric d the proof will be easier.

Lemma 3.15. The inverse NLFT from {H, d̂} to {l2(Z≥0), d} is continuous.

Proof. The inverse NLFT is given by the layer stripping method. Given

(a, b) ∈ H, for any (a′, b′) ∈ H with d̂((a, b), (a′, b′)) sufficiently small we have

F0 =
b(0)

a∗(0)
=

∫
T
b∫

T
a∗

is close to F ′0 =

∫
T
b′∫

T
(a′)∗

.

Moreover, the new data after the first step of layer stripping,

a∗≥1 =
F̄0b+ a∗

(1 + |F0|2)1/2
, b≥1 =

b − F0a
∗

z(1 + |F0|2)1/2
,

is very close to

(a′≥1)
∗ =

F̄ ′0b
′ + (a′)∗

(1 + |F ′0|2)1/2
, b′≥1 =

b′ − F ′0(a
′)∗

z(1 + |F ′0|2)1/2

in {H, d̂} if d̂((a, b), (a′, b′)) is sufficiently small. Moreover, |
∫
T
(a′≥1)

∗| = |(a′≥1)∗(0)| ≥
|(a′)∗(0)| > 0. Hence,

F1 =

∫
T
b≥1∫

T
a∗≥1

is close to F ′1.

And by induction, for any fixed N0 and all (a′, b′) ∈ H with d̂((a, b), (a′, b′)) suffi-
ciently small depending on (a, b) and N0 we have supn≤N0

|Fn − F ′n| is as small as
desired.
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Now given ǫ > 0, letN0 be the positive integer such that
∑

n>N0
log(1+|Fn|2) ≤

ǫ/8. We write

d((Fn), (F
′
n)) =

∞∑

n=0

log(1 + |Fn − F ′n|2)(3.10)

≤
N0∑

n=0

log(1 + |Fn − F ′n|2) + 2
∑

n>N0

log(1 + |Fn|2) + 2
∑

n>N0

log(1 + |F ′n|2)

Choose ǫ/16 > δ > 0 such that for all d̂((a, b), (a′, b′)) < δ, the first term in the
above inequality is smaller than ǫ/8, also

∣∣∣∣∣
N0∑

n=0

log(1 + |Fn|2)−
N0∑

n=0

log(1 + |F ′n|2)
∣∣∣∣∣ < ǫ/16 , and

∣∣∣∣∣
∞∑

n=0

log(1 + |Fn|2)−
∞∑

n=0

log(1 + |F ′n|2)
∣∣∣∣∣ = 2| log a∗(0)− log(a′)∗(0)|

≤ 2d̂((a, b), (a′, b′)) < ǫ/8.

Then the tail
∑

n>N0
log(1 + |F ′n|2) is also small since

∑

n>N0

log(1 + |F ′n|2)

=
∞∑

n=0

log(1 + |F ′n|2)−
N0∑

n=0

log(1 + |F ′n|2)

≤
∣∣∣∣∣
∞∑

n=0

log(1 + |Fn|2)−
∞∑

n=0

log(1 + |F ′n|2)
∣∣∣∣∣

+
∑

n>N0

log(1 + |Fn|2) +
∣∣∣∣∣
N0∑

n=0

log(1 + |Fn|2)−
N0∑

n=0

log(1 + |F ′n|2)
∣∣∣∣∣

< ǫ/8 + ǫ/8 + ǫ/16 =
5

16
ǫ.

Thus, by (3.10)

d((Fn), (F
′
n)) <

ǫ

8
+

2ǫ

8
+

5ǫ

8
= ǫ

for all (a′, b′) ∈ H such that d̂((a, b), (a′, b′)) ≤ δ.
�

Remark : We have shown that the NLFT is a homeomorphism between {H, d̂}
and l2(Z≥0) (with either the metric d or the usual l2 norm). But note that the

space {H, d̂} is not complete while l2(Z≥0) is complete under both metrics. Hence
the inverse NLFT can not be uniformly continuous.

Similarly we can prove that the NLFT is a homeomorphism between l2(Z<0)

and {H∗0, d̂}.
Next, we go a little further to study the completion of H.
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Let H be the closure of H in the space {L, d̂} Then,

H = {(a, b) : (a, b) ∈ L and b has an analytic exension on D }
= {(aḡ, bg) : (a, b) ∈ H and g ∈ G}

where G is the collection of all inner functions which are positive at 0.
It is trivial that if (a, b) is in H then b is the boundary value of an H2 or even

H∞ function. On the other hand, it is easy to see that (aB∗, bB) ∈ H for all
(a, b) ∈ H and Blaschke products B with B(0) > 0, because we can approximate
(aB∗, bB) by (aB∗, bBn) where Bn is a Blaschke product with zero set disjoint from
but close to the zero set of B. Moreover Frostman’s Theorem ( see [16] ) says that
the set of Blaschke products is dense in the set of inner functions under H∞ norm.
Hence (aḡ, bg) lies in H for all (a, b) ∈ H and g an inner function such that g(0) > 0.

In a later section we discuss ”soliton data”, which are data of the type (ḡ, 0)
where g is an inner function. For example, we will prove that for every Blaschke
product B with B(0) > 0, (B∗, 0) has a rapidly decaying (full line) inverse potential
(Gn). It is easy to see that after the translation, (Gn+m) is still an inverse potential
for (B∗, 0). Thus we can approximate (aB∗, bB) in another way. Let (Fn) be the
potential of (a, b) and (Gn) be the potential of (B∗, 0). We define a sequence of l2

potentials, (H
(k)
n ), such that

H(k)
n = Fn for n < k , and H(k)

n = Gn−2k for n ≥ k.

Then as k → +∞,

d̂

(︷︸︸︷
H

(k)
<k , (a, b)

)
< c(||F≥k||l2)1/4 → 0 and

d̂

(︷︸︸︷
H

(k)
≥k , (B

∗, 0)

)
< c(||G<−k||l2)1/4 → 0.

Therefore, it is easy to see that
︷︸︸︷
H(k) =

︷︸︸︷
H

(k)
<k

︷︸︸︷
H

(k)
≥k ∈ H converges to (a, b)(B∗, 0) =

(aB∗, bB) 6∈ H.

This example of a sequence of potentials (H
(k)
n ) provides a typical picture. It

is a sequence of l2 potentials with a nontrivial tail which nearly produces a soliton
data and is shifted farther and farther to the right. In the limit this tail produces

the common inner factor. Note that (H
(k)
n ) is not a Cauchy sequence in l2(Z≥0),

but any finite truncation (H
(k)
<N ) is a Cauchy sequence. With this picture in mind,

we define the space l2(Z≥0)×G and give it the metric

d ((F, g), (F ′, g′)) = inf
N,M∈Z

d ((F, g), (F ′, g′), N,M)

where for any two integers N,M the distance d ((F, g), (F ′, g′), N,M) is defined as

||F<N − F ′<M ||l2 + d̂

(︷︸︸︷
F≥N (ḡ, 0),

︷ ︸︸ ︷
F ′≥M (ḡ′, 0)

)
+

∫

T

1− |a≥N |+
∫

T

1− |a′≥M | .

The last two terms encourage to cut at N,M such that the tails are like soliton
data. The second term combines the NLFT of these tails with the inner function
part.
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Obviously, d has symmetry, i.e. d((F, g), (F ′, g′)) = d((F ′, g′), (F, g)). The
triangle inequality holds as well, since for all (F i, gi) ∈ H and positive integers Ni

, i = 1, 2, 3, we have

d((F 1, g1), (F 3, g3), N1, N3)

≤ d((F 1, g1), (F 2, g2), N1, N2) + d((F 2, g2), (F 3, g3), N2, N3)

since the l2 norm and the metric d̂ satisfy the triangle inequalities. By first taking
infN1 , infN3 , then infN2 to the last inequality, we conclude that

d((F 1, g1), (F 3, g3)) ≤ d((F 1, g1), (F 2, g2)) + d((F 2, g2), (F 3, g3)).

Noreover d satisfies definiteness, i.e. d((F, g), (F ′, g′)) = 0 implies F = F ′ and
g = g′. To prove this, suppose first that the inf in the definition of d((F, g), (F ′, g′))

is obtained at some N0,M0. Then, F<N0 = F ′<M0
and

︷ ︸︸ ︷
F≥N0(ḡ, 0) =

︷ ︸︸ ︷
F ′≥M0

(ḡ′, 0).
The last equality means that g and g′ as the common inner factor are the same
and F≥N0 = F ′≥M0

since the NLFT on the half line is injective. Therefore, F = F ′

and g = g′. Suppose the inf in the definition of d((F, g), (F ′, g′)) is not attained by
any finite pair N,M . Let Nn,Mn be the sequence of pairs such that it approaches
the inf. Then we can argue that both positive sequences Nn and Mn must go to
infinity. Thus the first term in the definition of d says that F = F ′. Moreover,

||g − g′||H1 ≤ d̂((ḡ, 0), (ḡ′, 0))

≤ d̂

(
(ḡ, 0),

︷ ︸︸ ︷
F≥Nn

(ḡ, 0)

)
+ d̂

(︷ ︸︸ ︷
F≥Nn

(ḡ, 0),
︷ ︸︸ ︷
F ′≥Mn

(ḡ′, 0)

)

+ d̂

(︷ ︸︸ ︷
F ′≥Mn

(ḡ′, 0), (ḡ′, 0)

)

and as n→ ∞ each term goes to zero. Hence g = g′. As a conclusion, d is a metric.
It would be interesting to understand whether l2(Z≥0) ×G is complete under

d.
Now we define an operator, also called the NLFT, from l2(Z≥0)×G to H such

that

NLFT : (F, g) →
︷︸︸︷
F (ḡ, 0).

And the inverse map from H to l2(Z≥0)×G is defined as:

NLFT−1 : (a, b) → (F, g)

where F is obtained by applying the layer stripping method on (a, b), and g is the
common inner factor of a∗ and b. We will prove that the NLFT is a homeomorphism
between l2(Z≥0)×G and H.

Lemma 3.16. The NLFT is continuous from l2(Z≥0)×G to H with the metrics
defined above.

Proof. Given (F, g) ∈ l2(Z≥0)×G and ǫ > 0. Since the NLFT is continuous on
l2(Z≥0) and {(F<N )} is a Cauchy sequence in l2(Z≥0), there is a δ0 > 0 such that if

H ∈ l2(Z≥0) and ||H−F<N ||l2 < δ0 for someN ∈ N, then d̂

(︷︸︸︷
H ,

︷︸︸︷
F<N

)
< ǫ2/100.
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Let δ < 1/2min(δ0, ǫ
2/100). Then for all (F ′, g′) ∈ H with d((F, g), (F ′, g′)) < δ,

there is some N0 and M0 such that

||F<N0 − F ′<M0
||l2 + d̂

(︷ ︸︸ ︷
F≥N0(ḡ, 0),

︷ ︸︸ ︷
F ′≥M0

(ḡ′, 0)

)
< min(δ0, ǫ

2/100).

Thus d̂

(︷ ︸︸ ︷
F<N0 ,

︷ ︸︸ ︷
F<M0

)
and d̂

(︷ ︸︸ ︷
F≥N0(ḡ, 0),

︷ ︸︸ ︷
F ′≥M0

(ḡ′, 0)

)
< ǫ2/100. We will prove

that

d̂

(︷︸︸︷
F (ḡ, 0),

︷︸︸︷
F ′ (ḡ′, 0)

)
= d̂

(︷ ︸︸ ︷
F<N0

︷ ︸︸ ︷
F≥N0(ḡ, 0),

︷ ︸︸ ︷
F<M0

︷ ︸︸ ︷
F≥M0(ḡ

′, 0)

)
< ǫ.

Let
︷ ︸︸ ︷
F<N0 = (a, b),

︷ ︸︸ ︷
F ′<M0

= (a′, b′),
︷ ︸︸ ︷
F≥N0(ḡ, 0) = (c, d), and

︷ ︸︸ ︷
F ′≥M0

(ḡ′, 0) = (c′, d′).

Then on T
︷︸︸︷
F (ḡ, 0) = (ac− bd̄),

︷︸︸︷
F ′ (ḡ′, 0) = (a′c′− b′d̄′, a′d′+ b′c̄′). Observe that

||a− a′||L1(T), ||c− c′||L1(T), ||b− b′||L2(T), ||d− d′||L2(T), | log a∗(0)− log(a′)∗(0)|,
and | log c∗(0)− log(c′)∗(0)| all are smaller than ǫ2/100. Moreover, the sup norm of
|a|, |b|, |c|, |d| . . . are less than 1. Thus with Hölder’s inequality we can show that

||(ac− bd̄)− (a′c′ − b′d̄′)||L1(T) + ||(ad+ bc̄)− (a′d′ + b′c̄′)||L2(T) < ǫ/2.

Moreover,

(ac− bd̄)∗(0) = a∗(0)c∗(0) , (a′c′ − b′d̄′)∗(0) = (a′)∗(0)(c′)∗(0).

Hence

| log(ac− bd̄)∗(0)− log(a′c′ − b′d̄′)∗(0)|
≤ | log a∗(0)− log(a′)∗(0)|+ | log c∗(0)− log(c′)∗(0)|
≤ ǫ2/50 < ǫ/2.

In short, we have proved that d̂

(︷︸︸︷
F (ḡ, 0),

︷︸︸︷
F ′ (ḡ′, 0)

)
< ǫ for all (F ′, g′) ∈ H

such that d((F, g), (F ′, g′)) < δ. Hence the NLFT is continuous. �

Lemma 3.17. The inverse NLFT from H to l2(Z≥0)×G is continuous.

Proof. Given (a, b) = (ãḡ, b̃g) ∈ H and ǫ > 0 where (ã, b̃) ∈ H and g is the
common inner function. We will find δ > 0 such that for all (a′, b′) ∈ H with

d̂((a, b), (a′, b′)) < δ we have d((F, g), (F ′, g′)) < ǫ where (F, g) and (F ′, g′) are the
images of (a, b) and (a′, b′) via the inverse NLFT.

Since
︷︸︸︷
F = (ã, b̃), first choose N0 large such that

∫
T
1 − |ã≥N0| < ǫ/10.

By the proof of Lemma 3.15, there is δ0 > 0 such that for all (a′, b′) ∈ H with

d̂((a, b), (a′, b′)) < δ0 we have ||F<N0 − F ′<N0
||l2 < ǫ/10 and because the NLFT is

continuous on the half line we can further require that d̂

(︷ ︸︸ ︷
F<N0 ,

︷ ︸︸ ︷
F<N0

)
< ǫ2/100.

Then we claim that δ = min(δ0, ǫ
2/100) will do.

Suppose d̂((a, b), (a′, b′)) < δ. Then ||F<N0 − F ′<N0
||l2 < ǫ/10 and by assump-

tion
∫
1 − |ã≥N0 | < ǫ/10. Now, we will prove that d̂

(︷ ︸︸ ︷
F≥N0(ḡ, 0),

︷ ︸︸ ︷
F ′≥N0

(ḡ′, 0)

)

automatically and
∫
1− |ã′≥N0

| are also small.
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Since

(a, b) =
︷ ︸︸ ︷
F<N0

︷ ︸︸ ︷
F≥N0(ḡ, 0) and (a′, b′) =

︷ ︸︸ ︷
F ′<N0

︷ ︸︸ ︷
F ′≥N0

(ḡ′, 0)

we have ︷ ︸︸ ︷
F≥N0(ḡ, 0) = (

︷ ︸︸ ︷
F<N0)

−1(a, b) ∈ H.

On T, the right hand side is

(¯̃a<N0a+ b̃<N0 b̄, ¯̃a<N0b− b̃<N0 ā).

We also have the similar expression for
︷ ︸︸ ︷
F ′≥N0

(ḡ′, 0). Since d̂((a, b), (a′, b′)) < δ ≤

ǫ2/100 and d̂

(︷ ︸︸ ︷
F<N0 ,

︷ ︸︸ ︷
F ′<N0

)
< ǫ2/100, it is easy to see that

∫

T

|ã≥N0 ḡ − ã′≥N0
ḡ′| ≤ ǫ2/10 < ǫ/10 and

d̂

(︷ ︸︸ ︷
F≥N0(ḡ, 0),

︷ ︸︸ ︷
F ′≥N0

(ḡ′, 0)

)
< ǫ/2.

Then we also have∫

T

||ã≥N0 | − |ã′≥N0
|| =

∫

T

||ã≥N0 ḡ| − |ã′≥N0
ḡ′|| ≤

∫

T

|ã≥N0 ḡ − ã′≥N0
ḡ′| < ǫ/10.

And together with the assumption
∫
1−|ã≥N0| < ǫ/10, we derive that

∫
1−|ã′≥N0

| <
ǫ/5. Hence

||F<N0 −F ′<N0
||l2 + d̂

(︷ ︸︸ ︷
F≥N0(ḡ, 0),

︷ ︸︸ ︷
F ′≥N0

(ḡ′, 0)

)
+

∫
1− |ã≥N0 |+

∫
1− |ã′≥N0

| < ǫ

Hence by definition d((F, g), (F ′, g′)) < ǫ.
�
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3.4. Rational Functions as Fourier Transform Data

In this section, we consider (a, b) ∈ L where a and b are rational functions
and we investigate the Riemann Hilbert problem of finding (a+, b+) ∈ H, and
(a−, b−) ∈ H∗0 such that (a−, b−)(a+, b+) = (a, b). We prove the existence of such
Riemann Hilbert factorizations. If a∗ has zeros inside D, the factorization is not
unique, and we are able to construct all factorizations and parameterize them by a

collection of subspaces γ
(j)
i of C2.

We begin with some preliminary information about rational data (a, b).

Theorem 3.18. For every rational function b such that |b| ≤ 1 but b is not
identically 1 on T, and for any finite subset Z = {z1, z2, ..., zn} ⊂ D \ {0} together
with corresponding positive integers {m1,m2, ...,mn}, there is a unique rational
function a such that (a, b) ∈ L and Z is the zero set of a∗ in D with corresponding
multiplicities m1,m2, ...,mn.

Note that for rational functions a, b, |a|2+ |b|2 = 1 on T if and only if aa∗+ bb∗

is constant 1 because aa∗ + bb∗ = |a|2 + |b|2 on T.
We emphasize the comparison of this lemma with Lemma 3.4. In Lemma 3.4,

to insure that a is a Laurent polynomial, we need the restriction that zeros of a∗

form a subset of the zeros of 1− bb∗ while here zeros of a∗ can be any finite set.

Proof. We construct a rational function a with the desired properties. Define
P = 1 − bb∗. Then P is a rational function with the symmetry P = P ∗. Hence
z ∈ D is a pole or zero of P with order m if and only if z∗ = z̄−1 ∈ D∗ is a pole
or zero of P with the same order. Since |b| ≤ 1 on T, we have 0 ≤ P ≤ 1 on
T. Therefore P has no poles on T and each zero of P on the circle, being a local
minimum, is of even order.

We describe the rational function a up to a scalar multiple by establishing the
correct zeros and poles. First let a0 be the rational function which has no poles and
zeros in D∗, which has the same zeros as P on T but with half the multiplicities,
and which has the same zeros and poles as P on D with the same multiplicities.
Note that a0a

∗
0 has the same zeros and poles as P , but a0 does not have the desired

zeros in D. To rectify this, we define

a = a
n∏

i=1

Bmi

zi

where Bzi is the Blaschke factor which has a zero at zi and a pole at z∗i . Since each
Blaschke factor B satisfies BB∗ = 1 we have that aa∗ still has the same zeros and
poles as P and a has the desired set of zeros in D with multiplicities.

According to our construction of a, the rational function f = P/aa∗ has no
poles and no zeros and therefore is a constant. Moreover, f is positive on T. Hence
we can normalize a by a positive factor so that f = 1. We can also normalize a by
a phase factor to obtain a∗(0) > 0. Hence a is a rational function with a∗(0) > 0
and aa∗ + bb∗ = 1. Also, a∗ is analytic in D. This means (a, b) ∈ L and a satisfies
all the desired properties.

Now we prove that such rational a is unique. Observe that rational functions
which are analytic in D are of the form fouterB when restricted to D where fouter
is an outer function and B is a Blaschke product. The Blaschke product part of
a∗ is determined when we are given its zeros in D. The outer function part is
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determined (up to a phase factor) by |a∗| on T which is given as
√
1− |b|2. And

the phase factor is determined by a∗(0) > 0. Hence a∗|D is uniquely determined.
Since a∗ is rational, it is determined by its restriction to D. Therefore a∗, and thus
a, is unique.

�

Lemma 3.19. Assume (a, b) ∈ L is rational. Then for any factorization

(a−, b−)(a+, b+) = (a, b), (a−, b−) ∈ H∗0, (a+, b+) ∈ H,

we have that (a−, b−) and (a+, b+) are also rational.

Proof. We first show that b+ is a rational function.
Given that a and b are rational functions, and |a|, |b| ≤ 1 on T, we know that

a and b have no poles on T and are bounded in a neighborhood around T.
The identity (a−, b−)(a, b) = (a+, b+)

−1 implies b− = −ab+ + ba+ and hence
ab+ = ba+−b−. On the right hand side of the last equation, a+ and b− have analytic
extensions on D∗, and b is a rational function. Hence ab+ has a meromorphic
extension to D∗ with finitely many poles in D∗. Moreover, |a+|, |b−| ≤ 1 on D∗,
and b is bounded in a neighborhood of T. Therefore,

∫
T
|ab+|2(r.) is bounded for

1 ≤ r ≤ 1 + ǫ for some ǫ ≥ 0. On the other hand, b+ has an analytic extension
on D with absolute value smaller or equal to 1 and a is a rational function which
is bounded in a neighborhood of T. Hence ab+ is meromorphic in D with finitely
many poles in D and

∫
T
|ab+|2(r.) is bounded for 1− ǫ ≤ r ≤ 1 for some ǫ ≥ 0.

Now we can remove the poles of ab+ by the following recursive procedure. If
z∞ is a pole of ab+, then subtract a constant from ab+ so that the new function
has a zero at z0. Then we multiply the new function by (z−z∞)/(z−z0). This will
reduce the order of the pole at z∞ and leave the order of other poles unchanged and
doesn’t produce new poles. Iterating this procedure, we obtain a function g, which
is holomorphic in D and D∗ and

∫
T
|g|2(r.) remains bounded for 1− ǫ ≤ r ≤ 1+ ǫ.

That means g ∈ H2(D) ∩H2(D∗) and thus g is a constant. This proves that ab+
is a rational function and so is b+.

Similarly, with the equation a∗− = a∗a++b∗b+, we can prove that a+ is rational.
And by (a−, b−) = (a, b)(a+, b+)

−1, (a−, b−) is also rational. �

Given a rational data (a, b) ∈ L, we now transform the factorization problem
(a, b) = (a−, b−)(a+, b+) with (a−, b−) ∈ H∗0 and (a+, b+) ∈ H, into a more classical
Riemann-Hilbert problem.

Given aa∗ + bb∗ = 1, it is easily checked that the following conditions

{
(a−, b−)(a+, b+) = (a, b)
a+a

∗
+ + b+b

∗
+ = 1, a−a∗− + b−b∗− = 1

(3.11)

are equivalent to either of the following equivalent equations:

(
a∗+ −b+
−b∗− a∗−

)(
a+ b+
−b∗+ a∗+

)
=

(
1 0

−b∗ a∗

)
(4.2a)

or

(
a∗+ −b+
b∗+ a∗+

)(
a+ −b−
−b∗+ a−

)
=

(
1 −b
0 a

)
(4.2b)
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If we multiply equation (4.2b) by equation (4.2a), we obtain
(

a∗+ −b+
−b∗− a∗−

)(
a+ b−
−b∗+ a−

)
=

(
1 −b

−b∗ 1

)
(3.12)

Hence, given two rational functions a and b such that (a, b) ∈ L, (3.11) ⇒ (3.12).
Moreover, if we require (a+, b+) ∈ H and (a−, b−) ∈ H∗0, then on the left hand side
of (3.12), all the entries of the first matrix (hereafter denoted by A+) are analytic
in D and a∗ appears implicitly as its determinant. Similarly, all the entries of the
second matrix(hereafter denoted by A−) are analytic in D∗ and a appears implicitly
as its determinant. Thus (3.12) as a classical Riemann-Hilbert factorization of the

matrix

(
1 −b

−b∗ 1

)
(hereafter denoted by A) into a product

A = A+A
∗
+

where (
a b
c d

)∗
is defined as

(
a∗ c∗

b∗ d∗

)
.

and all entries of A+ have holomorphic extensions to D.
Conversely, assume we have such a Riemann-Hilbert factorization of A and

assume it satisfies the following properties:

(1) The two elements in the first row of A+ have no common inner factor.
The two elements in the second row of A+ have no common inner factor.

(2) detA+ is a rational function such that the zeros in D equal the zeros of
a∗ in D.

(3) A+(0) is of the form

(
+ ∗
0 +

)
where + denotes a positive element.

Then, (a−, b−)(a+, b+) is a decomposition of (a, b) into factors in H∗0 and H respec-
tively, where (

a∗+ −b+
−b∗− a∗−

)
= A+.

To see this, note that the product of the first row of A+ and the first column of
A∗+ gives us a+a

∗
+ + b+b

∗
+ = 1. Hence according to the above Properties 1 and 3,

(a+, b+) ∈ H. Similarly, (a−, b−) ∈ H∗0. Moreover, the determinants of the left
hand side and the right hand side of (3.12) give us (detA+)(detA+)

∗ = 1 − bb∗,
which together with the above Property 2 implies that detA+ = a∗+a

∗
−−b+b∗− = a∗

(by Lemma 3.19).
We call a Riemann Hilbert factorization of A with Properties 1,2,3 listed above

an admissible Riemann Hilbert factorization.
To obtain the Riemann Hilbert factorization for matrices A whose determi-

nant does not vanish on T , we reproduce a result from [21]. There the authors
define a factorization in Lp (1 < p < ∞) of a measurable matrix function G on
T to be a representation G = G+ΛG− where Λ is a diagonal matrix of the form
diag[zκ1, · · · , zκn ] for some integers κ1 ≥ κ2 ≥ · · ·κn and G+ ∈ H+

p , G− ∈ H−q ,

G−1+ ∈ H+
q , G−1− ∈ H−p . In particular, detG+ and detG− are non-vanishing on

functions on D ∪T and D∗ ∪T respectively.
The exponents κi are called p-partial indices of G. The sum κ1 + · · · + κn

is called the p-total index of X . It is shown that though the factorization is
not unique, the partial indices are uniquely determined by G and p. Moreover,
If G = G1

+ΛG
1
− = G2

+ΛG
2
− are two factorizations of G in Lp, then G2

+ = G1
+H
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and G2
− = Λ−1H−1ΛG1

− for some invertible matrix H = (hij) such that hij is a
polynomial of degree ≤ κi − κj if κi − κj ≥ 0 and hij = 0 if κi − κj < 0. In the
case of a rational 2× 2 matrix X as in our Riemann Hilbert problem, the p-partial
indices n1, n2 are independent of 1 < p < ∞, and one can actually show that the
partial indices are all equal to 0.

We now state the precise result we need from [21]. Since we allow degeneracy
on T, which is slightly more general than stated in [21], and for the sake of self
containment, we present a proof as well.

Lemma 3.20. Assume |b| ≤ 1 on T, but |b| is not constant 1 on T. Then there
is a rational matrix function A+ which is analytic and non-degenerate in D and
A+A

∗
+ = A. Such A+ is unique up to multiplication by a unitary matrix from the

right.

Proof. Note that on every point z of T the matrix A(z) is positive semidefi-
nite, and that A = A∗. Moreover, A(z) is positive definite on all but finitely many
points of T.

Set A0 = A. We will define a sequence of rational matrix functions Ai by
the recursion Ai+1 = BiAiB

∗
i with rational matrix functions Bi, such that Ai will

have decreasing order of poles outside {0,∞} with increasing i. By virtue of the
recursion we retain the property that Ai is positive definite on T and Ai = A∗i ,
and we will also keep the matrix of Ai(1) constant through most of the steps by
imposing that Bi(1) is the identity matrix.

Assume Ai is already defined and let zi ∈ D be a point such that some entry
of Ai has a pole at zi. By the symmetry relation A = A∗ this is equivalent to some
entry of Ai having a pole at z∗i ∈ D∗. Let f be the Möbius transformation of the
Riemann sphere which sends zi to ∞ and leaves the points 0 and 1 invariant. Let
Bi(z) = f(z)id, then clearly Ai+1 := B−1i Ai(B

∗
i )
−1 has a reduced order of pole at

z0 and z∗0 while the order of poles elsewhere outside {0,∞} is unchanged. We may
repeat this process until all (finitely) many poles of any entry of A outside {0,∞}
are removed.

Next we remove the zeros of det(Ai) in D and D∗ by a similar process. First
note that det(Ai) is not constant equal 0 by the assumption that |b| is not constant
1 on T, hence there are only finitely many zeros to be removed. Assume Ai is
already defined and let zi ∈ D be a zero of det(Ai), which is equivalent to z∗i ∈ D∗

being a zero of det(Ai). Then there is a unit vector v such that vTAi(zi) = 0. Let w
be a unit vector perpendicular to v. In the basis v, w the matrix z then necessarily
takes the form (

(z − z0)r(z) (z − z0)s(z)
t(z) u(z)

)

with r, s, t, u analytic near z0. Let f be again the Möbius transformation of the
Riemann sphere which sends z0 to ∞ and leaves the points 0 and 1 invariant. Then
the determinant of the matrix(

f(z) 0
0 1

)(
(z − zi)r(z) (z − zi)s(z)

t(z) u(z)

)

has a zero of one order less at z0 while the order of zeros at all other points outside
{0,∞} is unchanged. If Bi denotes the left factor in this product as matrix in the
original basis, we note that the determinant

Ai+1 = BiAiB
∗
i
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has reduced order of zeros at z0 and z∗0 and unchanged order of zeros at all other
points outside {0,∞}. We may iterate this process until all zeros of det(A) outside
{0,∞}∪T are removed.

Next we remove the zeros of det(Ai) on T by a similar process. Let zi be
such a zero and let v as before be a unit vector such that vTAi(zi) = 0. Then
vTAi(zi)v = 0 and since Ai is positive semidefinite on T, this has to be a zero of
even order and thus at least of order 2. In the basis given by v and a perpendicular
unit vector w the matrix Ai(z) in the vicinity of zi takes the form

(
(z − z0)

2r(z) (z − z0)s(z)
(z − z0)t(z) u(z)

)
.

Note that both off diagonal terms vanish at zi since Ai(zi) = A∗i (zi). Then with
the notation as above,

(
f(z) 0
0 1

)(
(z − zi)

2r(z) (z − zi)s(z)
(z − zi)t(z) u(z)

)(
f∗(z) 0
0 1

)

is still analytic near zi and has lower order of vanishing at zi, while leaving the
order of zeros outside {zi, 0,∞} unchanged. Proceeding as before we remove in
this way all zeros on T.

Let An−1 denote the final matrix in this process, hence An−1 is analytic and
non-singular outside {0,∞}. Letting An = Bn−1An−1B∗n−1 for some appropri-
ate constant unitary matrix Bn−1 we may assume that An(1) is diagonal. While
det(An) may have a pole at 0 or ∞, a winding number argument excludes this
possibility since det(An) is positive on T. Being a rational function, det(An) is
then actually constant.

Each diagonal entry of An can be expressed by eTi Anei for unit vectors ei. Again
this rational function may in principle have a pole at 0 or ∞, but this possibility
is excluded by positivity of this rational function on T using positive definiteness
of An. Hence the diagonal entries of An are constant as well. The product of the
diagonal entries is equal to the determinant, since this is the case at z = 1. Hence
the off diagonal terms of An, which are conjugate to each other on T, have to be
constant equal to 0 on T. By analyticity they have to be constant 0 everywhere.
Finally setting An+1 = BnAnB

∗
n for some appropriate constant diagonal matrix

Bn with positive diagonal entries assures An+1 is constant equal to the identity
matrix. Note that these last two steps producing An and An+1 are the only ones
which change the matrix Ai(1), but they do so by a controlled amount determined
by the eigenvalues of A(1) which are less than supz∈T |b(z)| away from 1. Denoting
by A+ the product of the matrices Bi from i = 1 to i = n we obtain the factorization
A = A+A

∗
+.

Now we show the uniqueness of A+. If there is another rational matrix B
which is analytic and non-degenerate in D and BB∗ = A = A+A

∗
+, then A

−1
+ B =

A∗+(B
∗)−1 which will be denoted by C. Thus C = A−1+ B is analytic in D and

similarly C = A∗+(B
∗)−1 is analytic in D∗. Moreover, it is continuous on T. This

is clear if det(A) has no zeros on T since then A+ and B are regular on T. If det(A)
has a zero at z0 ∈ T, we observe that there is unit vector v such that vTA = 0,
and hence also vTA

+A∗+v = ||vTA+||2 = 0 and hence vTA+ = 0 and similarly for
B. Considering the matrix

Bf =

(
f(z) 0
0 1

)
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as in the above process of removal of zeros we note that BfA+ and BfB are
analytic near z0 but with lower order vanishing of determinant. If the determinant
still vanishes at z0, we iterate this process until the matrix becomes regular, hence
we find a sequence B1, . . . Bn so that B1 . . . BnA+ and B1 . . . BnB are analytic and
regular near z0. But then C = A−1+ B = A−1+ B−1n . . . B−11 B1 . . . BnB is regular near
z0. Hence C is a constant matrix. In addition, C∗ = C−1 which means C is unitary.
Therefore A+ is unique up to a unitary matrix. �

Note that A+ is non-degenerate in D. In particular A+(0) is invertible. It
is a well-known fact that for an invertible 2 by 2 complex matrix G, there is a

unique unitary matrix T and a unique matrix G′ of the form

(
+ ∗
0 +

)
such that

GT = G′. Therefore if we require A+ to be of this form as stated in Property 3,
then it is uniquely determined.

We call the factor A+ described in the previous lemma and with the normal-
ization of A+(0) being upper triangular with positive diagonal entries the regular

factor of A, because it is regular on D, and we denote it by Ã+. Note that Ã+

gives an admissible Riemann-Hilbert factorization without singularities in D, in
particular the entries in the first row of Ã+ do not have a common inner factor
since they do not simultaneously vanish in D, and similarly for the entires of the
second row.

We now consider the Riemann-Hilbert factorization with zeros, i.e. we find A+

which degenerates at given prescribed points Z = {z1, z2, . . . , zn} ∈ D \ {0}.
We shall develop the matter through special cases of increasing complexity, we

will follow the discussion in [14] using Blaschke Potapov factors as described in the
following lemma.

Lemma 3.21. Given z1 ∈ D \ {0} and a one dimensional subspace γ1 of C2,
there is a unique meromorphic matrix function B on the Riemann sphere such that

(1) The entries of B have no pole outside z∗1 .
(2) For z ∈ T the matrix B(z) is unitary.
(3) The determinant det(B) a vanishes only at z1 and it vanishes of first order

there.
(4) B(0) is upper triangular and has positive diagonal entries
(5) For every vector v ∈ C2 we have B(z1)v ∈ γ1.

Proof. We first prove existence by explicitly describing such a matrix B. Let
P be the orthogonal projection onto the space γ1 and define the auxiliary matrix
(Blaschke Potapov factor) B′(z) = (P + (I − P )f(z)), where f(z) is a Blaschke
factor vanishing at z1. Since f has modulus 1 on T, this matrix B′(z) is unitary
for z ∈ T . The determinant of B′ is equal to f(z) and thus satisfies the desired
properties. The entries of B′ can only have a pole where f has, and f only has
a pole at z∗1 . The range of B′(z1) is the range of P , which is γ1. Since B′(0) is
non-singular, there exists a unitary matrix T such that B′(0)T is upper triangular
and positive on the diagonal. Then B(z) = B′(z)T has all the desired properties.

To prove uniqueness of the matrix B, assume we have some other matrix func-
tion B′ satisfying the properties listed in the lemma. Note that (B′)∗B′ is the
identity matrix on T. Since (B′)∗B′ is meromorphic on the sphere, it is constant
equal to the identity matrix. Hence (B′)−1 = (B′)∗ wherever defined, and similarly
B−1 = B∗
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Let v be a unit vector spannning γ1 and let w be a unit vector perpendicular
to v. Changing into the basis (v, w) the functions B, B′ take the form

(
r(z) s(z)

(z − z1)t(z) (z − z1)u(z)

)
,

(
r′(z) s′(z)

(z − z1)t
′(z) (z − z1)u

′(z)

)

with functions r, s, t, u, r′, s′, t′, u′ analytic near z1, since the range of the matrix
at z1 is spanned by the vector (1, 0)T in this basis. Since det(B) vanishes of first
order, it follows that all entries of

B−1B′ =
1

det(B)

(
(z − z1)u(z) −s(z)
−(z − z1)t(z) r(z)

)
,

(
r′(z) s′(z)

(z − z1)t
′(z) (z − z1)u

′(z)

)

are analytic near z1. We claim that all its entries are analytic near (z1)
∗ as well. For

this it suffices to check that the entries of (B−1B′)∗ are analytic near z1. However,

(B−1B′)∗ = (B′)∗(B−1)∗ = (B′)−1B

is analytic near z1 by the symmetric argument as above. It follows that B−1B′ is
analytic everywhere and thus constant. This constant matrix is both unitary (by
evaluation on T) and upper triangular with positive diagonal entries (by evaluation
at 0). Hence it is the identity matrix, which proves B = B′. �

We denote the matrix B in this lemma by Bz1,γ1 . In Lemma 3.21, we chose to
parameterize for fixed z1 the matrix Bz1,γ1 by its range γ1 at z1. Alternatively, we
could have used the kernel at z1 to parameterize these matrices. This is the content
of the following lemma.

Lemma 3.22. For fixed z1 ∈ D\{0}, the map γ1 → ker(Bz1,γ1) is a self-bijection
on the set of one dimensional subspaces of C2.

Proof. We construct the inverse map. For δ1 a one dimensional subspace, Let
Q be the orthogonal projection onto that subspace. Define B′(z) = (1−Q)+Qf(z)
with f as above a Blaschke factor vanishing at z1. Let T be the unique unitary
map such that TB′(0) is upper triangular with positive entries on the diagonal.
Then the function B(z) = TB′(z) satisfies the assumptions of the Lemma above
with γi the range of the rank one matrix B(z1). To establish the claimed bijection
it remains to show that for each one dimensional space δi there is a unique matrix
function B satisfying the properties of the previous lemma for some γi. For this we
consider another such matrix B′ with the same kernel. Analogously to the previous
lemma, by passing to a basis spanned by a unit vector in δ1 and a perpendicular
unit vector, we prove that B′B−1 is regular at z1 and then also regular at z∗1 . hence
it is constant and hence it is constant equal to the identity matrix. �

Returning to the discussion of factorizations A = A+(A+)
∗, we first consider

the case that det(A+) has only one zero z1 in D \ {0} and this is a simple zero. We

choose a one dimensional subspace γ1 ⊂ C2 such that Ã+(z1)γ1 is neither spanned

by (1, 0)T nor by (0, 1)T , note that this excludes exactly two subspaces since Ã+(z1)

is regular. Then we write A+ := Ã+Bz1,γ1 . We have:

(1) A+ is analytic in D.

(2) A+A
∗
+ = Ã+Ã+

∗
= A.

(3) A+ degenerates at z1, det(A+) has a simple zero there, and this is the
only point of degeneracy in D.

(4) A+(0) is upper triangular with positive enties on the diagonal.
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(5) The entries of the first row of A+ do not have a common inner factor.
The entries of the second row of A+ do not have a common inner factor.

The last property follows since the entries of the first row of A+ may only vanish at
z1, but they do not both vanish at z1 by choice of γ1. Similarly for the second row.
We have thus produced an admissible Riemann Hilbert factorization of A with one
prescribed simple zero of det(A+) in D.

Now consider Z = {z1} but z1 is a multiple zero with ord(detA+, z1) = n.
There are in principle two cases to be discussed:

Case 1.: A+(z1) 6= 0.
Case 2.: A+(z1) = 0.

However, in Case 2 the two entries of the first row of A+ have a common zero at z1,
which is inadmissible. We are thus reduced to discussing Case 1. Then necessarily
A+(z) has rank one. Similarly to above we write

A+ = Ã+Bz1,γ1Bz1,γ2 . . . Bz1,γn

for some sequence of γ1, . . . γn of one dimensional subspaces of C2. Non-vanishing
of A+(z1) requires that Bz1,γi

γi+1 6= {0} for each 1 ≤ i < n. Note that this
condition for all 1 ≤ i < n is sufficient for non-vanishing of A+(z1). As before,

we also require ˜A+(z1)γ1 to not be spanned by (1, 0) or (0, 1) so as to obtain an
admissible Riemann Hilbert factorization.

Based on these special cases we are ready to describe the family of Riemann
Hilbert factorizations for any prescribed set of zeros of det(A+) in D.

Theorem 3.23. Assume we are given a rational function b with |b| ≤ 1 on T

and b is not identically 1 on T. Define

A =

(
1 −b

−b∗ 1

)
.

Assume we are given a finite subset Z = {z1, z2, . . . , zk} of D \ {0} and positive
integers n1, n2, . . . , nk. Then there is a bijection between

(1) the set of data consisting of one dimensional subspaces γ
(i)
j for 1 ≤ i ≤

k and 1 ≤ j ≤ nk with Ã+γ
(i)
1 not spanned by (1, 0)T or (0, 1)T and

B
zi,γ

(i)
j

γ
(i)
j+1 6= {0} for all 1 ≤ i ≤ k and 1 ≤ j < nk and

(2) the set of admissible Riemann Hilbert factorizations

A = A+(A+)
∗,

i.e., A+ a rational matrix function analytic in D such that the zeros
of det(A+) inside D are exactly the points z1, . . . zk with multiplicities

n1, . . . nk, A+(0) is of the form

(
+ ∗
0 +

)
, and the two entries of the

first row of A+ have no common inner factor and the two entries of the
second row have no common inner factor.

Proof. We first describe a different parametrization of the set of admissible
Riemann Hilbert factorizations that depends on the chosen enumeration of zeros
{z1, . . . , zk}. We write

(3.13) A+ = Ã+Bz1,γ̃(1)1 . . . Bz1,γ̃
(1)
n1

Bz2,γ̃(2)1 . . . Bz1,γ̃
(2)
n2

. . . Bzk,γ̃(k)1 . . . Bz1,γ̃
(k)
nk
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for some choices of γ̃
(i)
j which satisfy B

zi,γ̃
(i)
j

γ̃
(i)
j+1 6= {0} for all 1 ≤ i ≤ k and

1 ≤ j < nk, and γ̃
(i)
1 avoids the two subspaces which make A+(zi) be spanned by

(1, 0)T or (0, 1)T , a condition which depends on all matrices to the left of B
zi,γ̃

(i)
1

in

the above product. Note that all these matrices are non-singular at zi, hence this
last condition excludes exactly two subspaces. Then clearly A+ gives an admissible
Riemann Hilbert factorization.

To see that this is a parametrization of all admissible Riemann Hilbert factor-

izations we will recover the data γ̃
(i)
j from A+. To do so we argue recursively by the

total order
∑k

i=1 nk. If this total order is zero, we are done by Lemma 3.20. As-
sume we are given a Riemann Hilbert factorization A = A+(A+)

∗ with the desired
zeros and multiplicities. Then choose B = B

zk,γ̃
(k)
nk

by Lemma 3.22 so as to have

the same one dimensional kernel as A+ and consider A+B
−1. Note that A+B

−1

is regular at zk by an analoguous discussion as in the Lemma 3.22. Then A+B
−1

is the left factor of a Riemann Hilbert factorization of lower total order than A+,
and by induction we find a unique factorization as in (3.13) of A+B

−1. Multiplying
from the right by B gives the desired factorization of A+.

The particular parameterization by γ̃
(i)
j in the above proof is unsatisfactory,

since it depends on the enumeration of the zeros in Z. To find the parameterization
that is independent of enumeration as claimed in the theorem, we choose for each

i the numbers γ̃
(i)
j which arise from the above argument by an enumeration that

has zi as first element. These numbers are independent of the exact enumeration
chosen and depend only on local properties near zi, since the Blaschke Potapov
factors with superscript (1) are constructed first. To see that these new parameters
are equivalent to the old ones for some fixed enumeration, we shall successively
replace the old parameters by the new ones, running through the Blaschke Potapov
factors from right to left.

Note that γ
(i)
j describes the range of the Blaschke Botapov factor B

(i)
j in the

product

A+ = Ã+ . . . B
(i)
j B

(i)
j+1 . . . B

(i)
ni
BrightT

where B is the product of Blaschke factors with upper index (i′) with i′ 6= i, while

γ̃
(i)
j describes the range of the factor B̃

(i)
j in the product

A+ = Ã+B̃leftB̃
(i)
1 . . . B̃

(i)
j B̃

(i)
j+1 . . . B̃

(i)
ni
B̃rightT̃

where B̃left and B̃right are the products of the Blaschke factors to the left and to the
right of the ones indexed by (i) in the fixed order. To show that these ranges are
in bijective correspondence with each other, it suffices to show by Lemma 3.22 that
the kernels of these matrices are in bijective correspondence. For this it suffices to
show that the matrix

B̃
(i)
j+1 . . . B̃

(i)
ni
B̃rightT̃ T

∗B−1(B(i)
ni

)−1 . . . (B(i)
j+1)

−1

has a regular continuation at the point zi. This will follow by induction on the
number ni− j. If that number is zero, then the product only has regular factors at
zi and the assertion is clear. To prove the induction step, we assume the product as
written is regular, and prove that the corresponding product with one extra factor

on either side is regular as well. By construction B
(i)
j is the right most factor of
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the matrix
Ã+B

(i)
1 . . . B

(i)
j

= A+T
−1B−1(B(i)

ni
)−1 . . . (B

(i)
j+1)

−1

and hence has the same kernel as the regular extension of this matrix at zi. On the
other hand, this same matrix can be written as

Ã+B̃leftB̃
(i)
1 . . . B̃

(i)
j B̃

(i)
j+1 . . . B̃

(i)
ni
B̃rightT̃ T

−1B−1(B(i)
ni
)−1 . . . (B(i)

j+1)
−1

and the kernel of this matrix has to be the same as the kernel of the product of the
right most factors

B̃
(i)
j B̃

(i)
j+1 . . . B̃

(i)
ni
B̃rightT̃ T

−1B−1(B(i)
ni

)−1 . . . (B(i)
j+1)

−1

which by accounting orders of vanishing of the determinant of each factor is singular

at zi. Hence we may multiply (B
(i)
j )−1 to the right of this matrix and retain a

regular extension to zi. This is what had to be shown, and we have established

that we can successively replace the γ
(i)
j by γ̃ij retaining a good parameterization.

�
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3.5. Soliton Data

In this section we focus on data of the type (a, 0) ∈ L. This type of data
in the analoguous continuous model is related to soliton solutions for the focusing
nonlinear Schrödinger equation [14]. Following this connection we will also call
such data soliton data. Observe that (a, 0) ∈ L implies that a∗ is an inner function.

In the previous section we have described all preimages of soliton data under
the nonlinear Fourier transform in case a is a rational function, which for soliton
data means that a is a finite Blaschke product. As part of our discussion of soliton
data we will first extend these results to the case of a being an infinite Blaschke
product. With Frostman’s theorem in mind this is a step towards general inner
functions, however we are not able to give a satisfactory description of the inner
function case.

Then we will derive the exact formula for all inverse potentials of rational
soliton data and see that such potentials are rapidly decaying.

Finally, we will show that every rational data (a+, b+) ∈ H, after applying
finitely many steps of layer stripping if necessary, can be paired with another ratio-
nal data (a−, b−) ∈ H∗0 such that (a−, b−)(a+, b+) is of the form (a, 0). Similarly
all rational data (a−, b−) ∈ H∗0, after applying finitely many steps of layer strip-
ping if necessary, can be paired with another rational data (a+, b+) ∈ H such that
(a−, b−)(a+, b+) = (a, 0). Thus we can derive a formula for all inverse potentials
of rational data (a, b) ∈ L and in particular establish that any inverse potential of
rational data is rapidly decaying.

Theorem 3.24. Given a∗ an infinite Blaschke product with zeros {zi} ⊂ D \
{0} and corresponding multiplicities {ni}. There is a bijection between the set of

sequences of subspaces {γ(ji)} of C2 for 1 ≤ j ≤ ni and 1 ≤ i < ∞ satisfying the

conditions that γ
(i)
1 not spanned by (1, 0)T or (0, 1)T and B

zi,γ
(i)
j

γ
(i)
j+1 6= {0} for all

1 ≤ i ≤ ∞ and 1 ≤ j < nk and the set of factorizations (a−, b−)(a+, b+) = (a, 0) in

such a way that the spaces γ
(i)
j describe the singularity of A+ =

(
a∗+ −b+
−b∗− a∗−

)

at the point zi as in Theorem 3.23.

Proof. First we prove that given {γ(i)j } as in the theorem, there exists a
corresponding factorization. We approximate a∗ by the finite Blaschke product

a∗n =

n∏

i=1

(
− z̄i
|zi|

z − zi
1− z̄iz

)ni

.

Since a∗n is rational, we may apply Theorem 3.23 to obtain an admissible Riemann

Hilbert factorization with parameters {γ(ji)}, 1 ≤ j ≤ ni, 1 ≤ i ≤ n}:

An
+ =

(
(an+)

∗ −bn+
−(bn−)

∗ (an−)
∗

)

Note that in the notation of that theorem, Ã+ is the identity matrix.
Since (an+)

∗, bn+, (a
n
−)
∗, (bn−)

∗ are analytic and bounded by 1 on D, the theo-
rem of Arzela-Ascoli provides a subsequence such that (ank

+ )∗, bnk

+ , (ank

− )∗, (bnk

− )∗

converge uniformly on compact subsets of D. Thus (ank

+ )∗, bnk

+ , (ank

− )∗, (bnk

− )∗ con-
verge to some H∞(D) functions a∗+, b+, a

∗
−, b
∗
−. We claim that (a−, b−) ∈ H∗0,

(a+, b+) ∈ H and (a−, b−)(a+, b+) = (a, 0).
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Let A+ =

(
a∗+ −b+
−b∗− a∗−

)
. Since detAnk

+ = a∗nk
and it converges to detA+

uniformly on compact sets inside D, we have detA+ = a∗+a
∗
− − b+b

∗
− = a∗, which

is half of the equation (a−, b−)(a+, b+) = (a, 0).

Next observe that ||Ank

+ (z)||op ≤ 1 for all z ∈ D since ||Bj
i (z)||op = 1 for

all z ∈ D. Thus, ||A+(z)||op ≤ 1 on D. Since the entires of A+ are bounded
analytic functions in D, they have almost everywhere on T nontangential limits,
which we also denote by A+. The estimate ||A+(z)||op ≤ 1 then remains true
almost everywhere on T. However | detA+| = |a∗| = 1 a.e. on the circle, and thus
det(A+A

∗
+) = 1 almost everywhere on T. Since A+A

∗
+ is also positive semidefinite

on T, and bounded in operator norm by 1, we see that A+A
∗
+ is the identity matrix

almost everywhere on T.

Next since all Ank

+ (0) are of the form

(
+ ∗
0 +

)
, so if their limit A+(0).

To establish that that {γ(1i)} is the range of A+ at {zi}, pick a nonzero vector
v perpendicular to the range and note that vTAnk

+ (zi) = 0 for all k. Hence in the

limit vTA+(zi) = 0. We may now multiply A+ by (B
z1,γ

(i)
1 ,zi

)−1 from the left as

in the discussions of Lemma ??, and proceed inductively with identifying ranges

as γ
(i)
j . After multiplication by all ni factors of the form (B

zi,γ
(i)
j

)−1 we obtain a

matrix function regular at zi as we can verify by accounting the order of vanishing
of the determinant of each factor. This establishes in particular that A+(zi) is rank
one. This establishes also that the entries of the first row of A+(zi) and the entries
of the second row of A+(zi) do not simultaneously vanish at zi, by the choice of

γ
(i)
1 .

If a∗+ and b+ have common singular inner factor, say g, then detA+ also has
the factor g. However, detA+ is the infinite Blaschke product

∏∞
i=1 B

ni

i (z) and
has no singular inner part. Thus, a∗+ and b+ ( a∗− and b∗− ) can not have common
singular inner factor. Hence, we have showed that (a+, b+) ∈ H, (a−, b−) ∈ H∗0,
and (a−, b−)(a+, b+) = (a, 0) is the desired factorization corresponding to the spaces

{γ(i)j }.
To prove the uniqueness of such decomposition, suppose that there is another

factorization A′+(A
′
+)
∗ = I, detA′+ = a∗, and {γ(i)j } represents the images of A′+

at {zi}. Then A−1+ A′+ is analytic on D expect for possible poles {zi}. However, at
{zi} the parameters γ

(i)
j match and by an argument as before this means that the

product A−1+ A′+ has an analytic extension to zi. Since the (i,j) element of A−1+ A′+
is a H∞(D) function, say fij , divided by the infinite Blaschke product detA+ =
a∗ and has no poles in D. Hence fij must have the factor a∗. Therefore each

element of A−1+ A′+ belongs to H∞(D). Similarly, (A′+)
−1A+ belongs to H∞(D)

and thus ((A′+)
−1A+)

∗ = A∗+(A
′∗
+)
−1 ∈ H∗0. However, on T, A+A

∗
+ = A′+A

′∗
+ = I

i.e. A−1+ A′+ = A∗+(A
′∗
+)
−1. Thus A−1+ A′+ can be extended as a bounded analytic

function on the whole Riemann sphere. Therefore, A−1+ A′+ is a constant matrix.

Moreover, it is unitary on Π and of the form

(
+ ∗
0 +

)
at 0. Hence A−1+ A′+ = I.

So far we have constructed the map from {γ(i)j } to the factorization

(a−, b−)(a+, b+) = (a, 0) and showed that it is injective. It is easy to see that
this map is onto. Given any factorization (a−, b−)(a+, b+) = (a, 0), let A+ =



182 3. THE SU(2) SCATTERING TRANSFORM

(
a∗+ −b+
−b∗− a∗−

)
and collect the constants {γ(i)j } that describe the local behaviour

of the matrix A+ at the degenerating points zi. The {γ(i)j } are well defined and

satisfy the properties of the theorem since A+(zi) has to have rank one and range
different from the span of (0, 1)T and the span of (1, 0)T , and there are only finitely

many parameters γ
(i)
j for fixed i since det(A+) can only vanish up to finite order.

�

For (a, 0) ∈ L where a∗ is a general inner function, it is tempting to use
Frostman’s theorem to approach a∗ by {a∗n} where {a∗n} is a sequence of Blaschke
products and converges to a∗ uniformly on D. Each (an, 0) is factorable and the

decompositions are described by constants {γ(i)j }. However, we do not have a good
description of the variety of the factorizations in the limit, as we do not understand

what data replaces the γ
(i)
j in the limit.

We pass to the next item of our discussion of soliton data and construct a
formula for the inverse potential of (a, 0) where a∗ is a finite Blaschke product.

First assume that a∗ has only simple zeros {zi}, i = 1, . . . , n i.e.

a∗ =
n∏

i=1

− z̄i
|zi|

z − zi
1− z̄iz

.(3.14)

Then given any γi ∈ C∗ for i = 1, . . . , n there is a unique rational matrix A+

analytic in D such that A+A
∗
+ = Id, detA+ = a∗, with ImA+(zi) = 〈

(
1

−γi

)
〉,

and A+(0) is normalized. Denote A+ =

(
a∗+ −b+
−b∗− a∗−

)
. Now we compute its

inverse potential.

Lemma 3.25. Given (a, 0) ∈ L where a∗ is of the form (3.14) with zi 6=
zj for all i 6= j and constants γi ∈ C∗ for i = 1, . . . , n. There is a unique

A+ =

(
a∗+ −b+
−b∗− a∗−

)
described as above. Applying the layer stripping method

for (a+, b+) and (a−, b−), we obtain a geometrically decreasing sequence (Fk),

Fk = −
i=n∏

i=1

|zi|
detM1(k)

detM(k)
, for k ∈ Z

where M(k) is a n by n matrix with

M(k)ij =
1 + γ̄iγj z̄i

kzkj
z̄i−1 − zj

, and M1(k) =




γ̄1z̄1
k

M(k)
...

γ̄nz̄n
k

z−11 · · · z−1n 0


 .

If γi 6= 0,∞ for all i, then (Fk) is the unique l2 sequence such that
︷ ︸︸ ︷
(F≥0) = (a+, b+),︷ ︸︸ ︷

(F<0) = (a−, b−) and
︷︸︸︷
(F ) = (a, 0). Suppose γi = 0 or ∞ for some i. Reorder the

zeros of a∗ so that γj 6= 0,∞ for 1 ≤ j ≤ k, γj = 0 for k + 1 ≤ j ≤ l, and γj = ∞
for l + 1 ≤ j ≤ n. Then

︷ ︸︸ ︷
(F≥0)((B1)∗, 0) = (a+, b+), ((B

2)∗, 0)
︷ ︸︸ ︷
(F<0) = (a−, b−)

where B1 is the Blaschke product with simple zeros {zl+1, zl+2, . . . , zn} such that
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B1(0) > 0 and B2 is the Blaschke product with simple zeros {zk+1, zk+2, . . . , zl}
such that B2(0) > 0.

Proof. Denote A+(0) =

(
a∗+(0) −b+(0)
−b∗−(0) a∗−(0)

)
=

(
a1 b
0 a2

)
, a1, a2 > 0.

Then the layer stripping method give us F0 = b+(0)/a
∗
+(0) = −b/a1.

From our discussion in the previous section, A+ is just the normalization of the
product of Blaschke-Potapov factors,

Bi = I +

(
− z̄i
|zi|

z − zi
1− z̄iz

− 1

)
Pi,

and thus A−1+ (1/z̄i) = A∗+(zi). Hence A
−1
+ is meromorphic on C∗ with simple poles

zi. Write

A−1+ (z) = A0 +

i=n∑

i=1

Ai

z − zi

for some constant matrices A0, A1, · · · , An. Then, A0 = A−1+ (∞) = A∗+(0) =(
a1 0
b̄ a2

)
.

Claim that Ai =

(
pi
qi

)(
γi 1

)
for some pi, qi ∈ C.

Since A−1+ (z) → Ai/(z − zi), and A+(z) → Ci = A+(zi) as z → zi, we have

AiCi = CiAi = 0. Moreover ImCi = 〈
(

1
−γi

)
〉. Thus Ai =

(
pi
qi

)(
γi 1

)
for

some pi, qi ∈ C.
We can further solve for pi and qi. Since

ImA+(zi) = 〈
(

1
−γi

)
〉, KerA∗+(zi) = KerA−1+ (1/z̄i) = 〈

(
γ̄i
1

)
〉.

Hence,

A−1+ (
1

z̄i
)

(
γ̄i
1

)
=

(
a1 0
b̄ a2

)(
γ̄i
1

)
+

j=n∑

j=1

1

z̄i−1 − zj
Aj

(
γ̄i
1

)
=

(
0
0

)

The first component gives us a system of linear equations for pi which reads as

a1γ̄i +

j=n∑

j=1

γj γ̄i + 1

z̄i−1 − zj
pj = 0 , for all i.

Thus

M(0)




p1
...
pn


 = −a1




γ̄1
...
γ̄n


 .

Observe that

A−1+ (0) =

(
1/a1 −b/(a1a2)
0 1/a2

)
=

(
a1 0
b̄ a2

)
−

i=n∑

i=1

1

zi

(
piγi pi
qiγi qi

)
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And the (1, 2) component tells us −b/(a1a2) = −∑ pi/zi or

F0 = −b/a1 = a2
( − 1

z1
· · · − 1

zn

)



p1
...
pn




= a1a2
(

1
z1

· · · 1
zn

)
M(0)−1




γ̄1
...
γ̄n


 .

Since a1a2 = detA+(0) = a∗(0) =
∏ |zi|, together with Cramer’s rule,

F0 = −
(∏

|zi|
) detM1(0)

detM(0)
.

To obtain F1, we switch the cutting point from n = 0 to n = 1. That means we
apply the layer stripping method for new A1

+ which is
(

a∗≥1 −b≥1/z
−zb∗≤0 a∗≤0

)

= (1 + |F0|2)−1/2
(

a∗≥0 + F̄0b≥0 z−1(F0a
∗
≥0 − b≥0)

−z(F̄0a
∗
<0 + b∗<0) a∗<0 − F0b

∗
<0

)

= (1 + |F0|2)−1/2
(
z−1/2 0

0 z1/2

)
A+

(
1 F0

−F̄0 1

)(
z1/2 0

0 z−1/2

)

It is clear that A1
+ degenerates at zi with ImA1

+(zi) = 〈
(

1
−γizi

)
〉. The layer

stripping method works similarly on new A1
+ with new coefficients {γizi}. Thus

F1 = −
∏

|zi|
detM1(1)

detM(1)
.

And by induction, we prove the formula for all k ∈ Z.
We prove the claim that (Fk) is geometrically decaying. Since after applying k

steps of layer stripping method, new γki = γiz
k
i = O(|zi|k) as k → +∞, ImA+(zi) →

〈
(

1
0

)
〉 with the same order. i.e. |γi| = O(|zi|k). Thus, the Blaschke-Potapov

factor is of the form

Bi =

(
1 0
0 − z̄i

|zi|
z−zi
1−z̄iz

)
+O(rk)

where r = max{|z1|, |z2|, . . . , |zn|}. Therefore,

Ak
+ =

(
1 0
0
∏n

i=1 − z̄i
|zi|

z−zi
1−z̄iz

)
+O(rk) and

|Fk| =
∣∣∣∣
(Ak

+(0))12

(Ak
+(0))11

∣∣∣∣ = O(rk).

As k → −∞, ImA+(zi) → 〈
(

1
0

)
〉+O(|zi|−k). And

Ak
+ =

( ∏n
i=1 − z̄i

|zi|
z−zi
1−z̄iz 0

0 1

)
+O(r−k).
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Hence |Fk| = O(r−k) as k → −∞.
If γi 6= 0,∞ for all i, then (a+, b+) ∈ H and (a−, b−) ∈ H∗0. From the proof

of Lemma 3.3, we know that
︷ ︸︸ ︷
(F≥0) = (a+, b+),

︷ ︸︸ ︷
(F<0) = (a−, b−) and thus

︷︸︸︷
(F ) =

(a, 0). Otherwise, γi = 0 or ∞ for some i. Since γi = 0 means a∗−(zi) = b∗−(zi) = 0
and γi = ∞ implies a∗+(zi) = b+(zi) = 0. Thus a∗+ and b+ have common inner
factor B1 while a∗− and b∗− have common inner factor B2. Thus Lemma 3.3 says

that
︷ ︸︸ ︷
(F≥0)((B1)∗, 0) = (a+, b+) and ((B2)∗, 0)

︷ ︸︸ ︷
(F<0) = (a−, b−).

�

For the one simple zero case, i.e. a∗ = B where B is the Blaschke factor
vanishing at z0, it seems that the inverse potential is described by a parameter
γ ∈ C \ {0}. By the previous lemma,

Fn(γ) =

(
1

|z0|
− |z0|

)
γ̄z̄n0

1 + |γ|2|z0|2n
.

Hence,

Fn(cγ) = c̄Fn(γ) for all |c| = 1, and Fn(z0γ) = Fn+1(γ)

which means that the changes of the phase of γ only cause the changes of the phase
of the inverse potential and multiplying γ by z0 causes the shift of the potential.

Lemma (3.2) says that if
︷︸︸︷
Fn = (a, b) then

︷︸︸︷
cFn = (a, cb) for all |c| = 1 and︷ ︸︸ ︷

Fn+1 = (a, bz−1). Thus it may be natural to quotient by the equivalence relation:

(Fn) ∼ (Gn) if there is some |c| = 1 and m ∈ N such that (Fn) = (cGn+m).

After quotienting this equivalence relation, we can reduce the parameter γ to the
interval (|z0|2, |z0|). However inside this interval, it is not clear how to relate po-
tentials from different parameters.

We have constructed the inverse potential for rational (a, 0) where a∗ only
has simple zeros. Based on this we can construct the inverse potential for general
rational (a, 0). Given

a∗ =
k0∏

i=1

Bni

i , Bi =
−z̄i
|zi|

z − zi
1− z̄iz

, zi 6= zj for all i 6= j,

there is a bijection between the half line decomposition (a−, b−)(a+, b+) = (a, 0)

and the data {γji } satisfying (??), (??). With such {γji }, we have

A+(z) =

(
a∗+ −b+
−b∗− a∗−

)
=

k0∏

i=1

ni∏

j=1

(I − Pij +Bi(z)Pij)

where Pij =
1

1 + |δij |2
(

|δij |2 δ̄ij
δij 1

)

and {δij} are determined by {γji }. We approach A+ by Ã+(z) =
∏k

i=1

∏ni

j=1(I −
Pij +Bij(z)Pij) where

Bij(z) =
−ω̄ij

|ωij |
z − ωij

1− ω̄ijz
, with ωi1 = zi for all i, ωij 6= ωst for all (i, j) 6= (s, t)
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and let ωij → zi for all 2 ≤ j ≤ ni. Observe that Ã+ has simple zeros {ωij} and

ImÃ+(ωij) = 〈
i−1∏

s=1

ns∏

t=1

(I − Pst +Bst(ωij)Pst)×

(I − Pi1 +Bi1(ωij)Pi1)(I − Pi2 +Bi2(ωij)Pi2) · · ·

(I − Pij−1 +Bij−1(ωij)Pij−1)

(
1

−δij

)
〉

Define Γij such that ImÃ+(ωij) = 〈
(

1
−Γij

)
〉. Then it is clear that Γij is a

rational function of variables {ωst} for 1 ≤ s ≤ i − 1, 1 ≤ t ≤ ns and {ωil} for
1 ≤ l ≤ j.

When ωij is close to zi,

ImÃ+(ωij) ∼ 〈
i−1∏

s=1

si∏

t=1

(I − Pst +Bs(zi)Pst)

(
1

−δi1

)
〉 = ImA+(zi).

Since by assumption γ1i 6= 0,∞, we have Γij 6= 0,∞ for all (i, j). Thus we can

apply the previous lemma and obtain the inverse potential (F̃n) for Ã+.
For a better notation, we replace the double index (i, j) by single index k =

k(i, j) = (
∑i−1

s=1 ns) + j, where 1 ≤ k ≤∑k0

i=1 ni, and let N =
∑k0

i=1 ni. Then

F̃n = −
∏

k

|ωk(i,j)|
det M̃1(n)

det M̃(n)
, where M̃(n) is a N ×N matrix such that

(M̃(n))kl =
1 + Γ̄kΓlω̄

n
kω

n
l

ω̄−1k − ωl

and M̃1(n) =




Γ̄1ω̄
n
1

M̃(n)
...

Γ̄N ω̄
n
N

ω−11 · · · ω−1N 0


 .

Observe that as ωk(i,j) → ωk(i,l) for some l < j, (I−Pil+Bil(ωij)Pil) → I−Pil.

Therefore ImÃ+(ωij) → ImÃ+(ωil) i.e. Γk(i,j) → Γk(i,l) and k(i, j) column (row)

of M̃(n) converges to k(i, l) column (row) of M̃(n). And it is also true for M̃1(n).

Hence to compute det M̃(n) we can do the following process:

Step 1.: Subtract k(i, 1) column from k(i, 2), k(i, 3), . . . , k(i, ni) columns
and pull out the factor ωk(i,j) −ωk(i,1) from k(i, j) column for all i, j > 1.

Note that after step 1, k(i, j) column still converges to k(i, 2) column
as ωk(i,j) → ωk(i,2) for j > 2. So we go further to the next step:

Step 2.: Subtract k(i, 2) column from k(i, 3), k(i, 4), . . . , k(i, ni) columns
and pull out the factor ωk(i,j) −ωk(i,2) from k(i, j) column for all i, j > 2.

And we can repeat this process inductively so that in step n, we
subtract k(i, n) column from k(i, n + 1), k(i, n + 2), . . . , k(i, ni) columns
and pull out the factor ωk(i,j)−ωk(i,n) from k(i, j) column for all i, j > n.

After maxi ni − 1 steps we will stop. Then we repeat the whole process for rows
but pull out the factor ω̄k(i,j) − ω̄k(i,n) (instead of ωk(i,j) −ωk(i,n)) from k(i, j) row

in step n for all n. Similarly, to compute det M̃1(n) we apply the same process on

first N columns and first N rows of M̃1(n).
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Then when taking the limit ωk(i,j) → ωk(i,1) = zi, we will have

F̃n → Fn = −
k0∏

i=1

|zi|ni
M(n)

M1(n)

whereM(n) is obtained from M̃(n) by applying operators 1
(j−1)!

∂j−1

∂ωj−1
k(i.j)

to the k(i, j)

column of M̃(n), operators 1
(j−1)!

∂j−1

∂ω̄j−1
k(i.j)

to the k(i, j) row of M̃(n) and taking value

at ωk(i,j) = zi for all i, j. M1(n) is obtained from M̃1(n) in the same way.
We now prove that (Fn) is bounded by a geometric sequence.
First claim that shifting the cutting point from 0 to n can be viewed as changing

the coefficients from {γji } to {γji (n)} where γ1i (n) = γ1i z
n
i and γji (n)z

−n
i → ci,j,+

as n → +∞, (γji (n))
−1zni → ci,j,− as n → −∞ where ci,j,+, ci,j,− ∈ C are some

constants. Then the same argument in the proof of Lemma 3.25 says that

An
+ =

(
1 0
0
∏
Bni

i

)
+O(rn) as n→ +∞

An
+ =

( ∏
Bni

i 0
0 1

)
+O(r−n) as n→ −∞

where r = max{|z1| . . . |zk0 |}. And thus |Fn| = |(An
+(0))12/(A

n
+(0))11| = O(r|n|)

for |n| → ∞.

Define Uz =

( 1√
z

0

0
√
z

)
, and Tn = (1 + |Fn|2)−1/2

(
1 Fn

−F̄n 1

)
. From

the proof of Lemma 3.25, we know that changing the cutting point from 0 to n
gives us new An

+ which is
(

a∗≥n − b≥n

zn

−znb∗<n a∗<n

)
= Un

z A+T0U
−1
z T1U

−1
z · · ·Tn−1U−1z .

It is easy to see that An
+ has image 〈

(
1

−zni γ1i

)
〉 at zi.

Let B̃j
i , j = 1 . . . ni, be the Blaschke-Potapov factors which degenerate at

zi and (B̃ni

i )−1(B̃ni−1
i )−1 · · · (B̃1

i )
−1An

+ can be defined analytically at zi. Then

ImB̃j
i (zi) = 〈

(
1

−γji (n)

)
〉. Suppose we have shown that (γji (n)z

−n
i )±1 → ci,j,± as

n→ ±∞ for j ≤ k. For j = k + 1,

ImB̃k+1
i (zi) = Im(B̃k

i )
−1(B̃k−1

i )−1 · · · (B̃1
i )
−1Ã+(zi)

= Im(B̃k
i )
−1 · · · (B̃1

i )
−1Un

z A+(zi)

= ImUn
z [U

−n
z (B̃k

i )
−1Un

z ] · · · [U−nz (B̃1
i )
−1Un

z ]A+(zi).

And the induction assumption says that

Im[U−nz (B̃k
i )
−1Un

z ] · · · [U−nz (B̃1
i )
−1Un

z ]A+(zi)

will converge to some V± as n goes to ±∞. Now claim that V+ 6= 〈
(

0
1

)
〉 and V− 6=

〈
(

1
0

)
〉. Then ImB̃k+1

i (zi) → ImUn
ziV± as n → ±∞ and thus (γk+1

i (n)z−ni )±1 →
ci,k+1,± as n→ ±∞ for some ci,k+1,±. Hence we have proved it by the induction.



188 3. THE SU(2) SCATTERING TRANSFORM

Assume that V+ = 〈
(

0
1

)
〉. Then as n large,

Wn(zi) = [U−nz (B̃k
i )
−1Un

z ] · · · [U−nz (B̃1
i )
−1Un

z ]A+(zi) is of the form
(

0 0
a1 a2

)
+ ǫ(n)

where a1, a2 are constants that are not both zeros and ǫ(n) → 0 as n → +∞. Let
bi be the Blaschke factor vanishing at zi. Then

U−nz B̃j
iU

n
z = U−nz

1

1 + |γji (n)|2

(
1 + bi|γji (n)|2 (bi − 1)γ̄ji (n)

(bi − 1)γji (n) |γji (n)|2 + bi

)
Un
z

=
1

1 + |γji (n)|2

(
1 + bi|γji (n)|2 (bi − 1)γji (n)z

n

(bi − 1)γ̄ji (n)z
−n |γji (n)|2 + bi

)
.

Thus as n→ +∞,

U−nz B̃j
iU

n
z →

(
1 0

ci,j,+(bi − 1) bi

)
for j = 1, . . . , k.

Since

A+ = [U−nz B̃1
i U

n
z ] · · · [U−nz B̃k

i U
n
z ]Wn

for all n, we have

A+(zi) =

(
1 0

−ci,1,+ 0

)
· · ·
(

1 0
−ci,k,+ 0

)(
0 0
a1 a2

)
=

(
0 0
0 0

)

which contradicts to our assumption that ImA+(zi) 6= 〈
(

0
0

)
〉. Similarly, we can

show that V− 6= 〈
(

1
0

)
〉.

The following lemma characterize all rational half line data (a+, b+) ∈ H such
that after pairing with a (a−, b−) ∈ H∗0, (a−, b−)(a+, b+) = (a, 0) is a soliton
solution.

Lemma 3.26. Given rational (a+, b+) ∈ H, there exists (a−, b−) ∈ H∗0 (a−, b−)(ak, bk)
is a soliton data (a, 0) if and only if b+(∞) = 0. If b+(∞) 6= 0, then there is a
finite k so that if the sequence of complex numbers (F ) = (F0, F1, · · · , Fk) consists

of the coefficients of the first k steps of layer stripping for (a+, b+), then (ã+, b̃+)

defined by (ã+, b̃+z
k) = (

︷︸︸︷
(F ) )−1(a+, b+) is an element of H and b̃+(∞) = 0.

Proof. First assume (a−, b−)(a+, b+) = (a, 0) for some (a−, b−) ∈ H∗0. Then

(3.15) a−a+ − b−b
∗
+ = a

(3.16) a−b+ + b−a
∗
+ = 0 .

Taking a linear combination to cancel b− gives

a−a+a
∗
+ + a−b+b

∗
+ = aa∗+ .

By the determinant condition for (a+, b+) this gives

a− = aa∗+ .

Evaluating at ∞ and noting that a(∞), a−(∞) > 0 gives a∗+(∞ > 0. Now evaluat-
ing (3.16) at ∞ and using that b−(∞) = 0 we obtain b+(∞) = 0.
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Conversely, assume b+(∞) = 0. Using the determinant condition for a+ at
∞ gives a+(∞)a∗+(∞) = 1 and hence a∗+(∞) > 0. Choose a∗ to be the Blaschke
product of minimal order so that a∗a+ has no pole in D and set a∗− = a∗a+. Note
that a−(∞) > 0 since the same is true for a and a∗+. Now set b− = −b+a, then
clearly we have (??). Moreover we have

a−a
∗
− + b−b

∗
− = a+a

∗
+ + b+b

∗
+ = 1

and using this one readily checks (3.15). It is then clear that (a−, b−) is the desired
first factor of the soliton data (a, 0).

Finally, assume that b+(∞) is not equal to 0, hence it is finite of ∞. Note that
the determinant condition

a+a
∗
+ + b+b

∗
+ = 1

evaluated at ∞ shows that a∗+(∞) has a pole at most of the order of b+ at ∞
because a+(∞) is finite and non-zero and b∗+(∞) is finite. One step of layer stripping

produces new data (ã+, b̃+) with

b̃+ = (1 + |F0|2)−1/2(b+ − F0a
∗
+)

and the previous discussion shows that b̃+ has at most the same order of pole as b+
at ∞. The potential sequence for (ã+, b̃+) vanbishes at 0, in other words b+(0) = 0,

and we may shift the sequence back obtaining the NLFT data (ã+, b̃+z
−1). Note

that b̃+z
−1 has a pole of one order less than b+, and it vanishes if b+ was finite.

Thus iterating the layer stripping and shifting one more time than the original order
of pole of b+ at ∞ we arrive at data in H which is the right factor of a factorization
of soliton data. �

a = a−/a∗+.
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