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1. A Quick Review

(1a) Representative Functions. Let 𝐺 be a Lie group and 𝐾 either ℝ or ℂ, then 𝐶0(𝐺, 𝐾), the space
of continuous functions from 𝐺 to 𝐾 admits two natural 𝐺-actions: the left action 𝐿∶ 𝐺 × 𝐶0(𝐺, 𝐾) →
𝐶0(𝐺, 𝐾); (𝑔, 𝑓 ) ↦ (ℎ ↦ 𝑓 (𝑔ℎ)) and the right action 𝑅∶ 𝐶0(𝐺, 𝐾) × 𝐺 → 𝐶0(𝐺, 𝐾); (𝑓 , 𝑔) ↦ (ℎ ↦ 𝑓 (ℎ𝑔−1)).
Therefore we get two 𝐺-modules (𝐶0(𝐺, 𝐾), 𝐿) and (𝐶0(𝐺, 𝐾), 𝑅).
1.1 Definition. A function 𝑓 ∈ 𝐶0(𝐺, 𝐾) is called representative if the smallest 𝐺-module of (𝐶0(𝐺, 𝐾), 𝑅)
containing 𝑓 is finite-dimensional.

Let 𝑓 , 𝑔 ∈ 𝐶0(𝐺, 𝐾) be representative functions, then it’s easy to verify that 𝑓 𝑔 and 𝑓 + 𝑔 are also repre-
sentative. Therefore the set 𝒯 (𝐺, 𝐾) of all representative functions is a subalgebra of 𝐶0(𝐺, 𝐾). Since 𝐺 is
compact, it’s also a subalgebra of 𝐿2(𝐺, 𝐾), the ring of all 𝐿2-functions with the unique integration induced
from topological structure of 𝐺. Write Irr(𝐺, 𝐾) to be the set of all irreducible 𝐾 -representations of 𝐺, the
Peter-Weyl theorem states that

1.2 Theorem (Peter-Weyl). (1) 𝒯 (𝐺, 𝐾) is dense in 𝐶0(𝐺, 𝐾) and 𝐿2(𝐺, 𝐾) with the respective topologies;

(2) The irreducible characters generate a dense subspace of the space of continuous class functions.

Given a (𝐺, 𝐾)-representation 𝑉 , by picking a basis we can write this representation as a matrix-valued
function (𝑟𝑖𝑗)1≤𝑖,𝑗≤dim 𝑉 . The functions 𝑟𝑖𝑗 generate a subspace of 𝐶0(𝐺, 𝐾) invariant under the 𝐺 × 𝐺-action
on both the left and the right. Therefore we get a 𝐺 × 𝐺-submodule of 𝐶0(𝐺, 𝐾). Note that matrices can be
regarded as tensor products 𝑉 ∗ × 𝑉 with induced 𝐺-actions, hence we can regard the above assignment as a
𝐺-equivariant map 𝑉 ∗ ⊗ 𝑉 → 𝐶0(𝐺, 𝐾), mapping 𝜑 ⊗ 𝑣 ∈ 𝑉 ∗ ⊗ 𝑉 to the function 𝑔 ↦ 𝜑(𝑔𝑣).
1.3 Proposition. Any 𝐺-submodule 𝐵 of 𝐶0(𝐺, 𝐾) is a direct sum of submodules 𝐵∩(𝑉 ∗⊗𝑉 ) for 𝑉 irreducible.

1.4 Proposition. We have a direct sum decomposition of 𝐺 × 𝐺-modules

𝒯 (𝐺, 𝐾) ≅ ⨁
𝑉 irreducible

𝑉 ∗ ⊗ 𝑉 .

Here by irreducible we mean finite-dimensional 𝐺-modules which are irreducible.

(1b) Characters. We regard 𝐶0(𝐺, 𝐾) not only as a 𝐺 × 𝐺-module, but an algebra: for 𝜑, 𝜓 ∈ 𝐶0(𝐺, 𝐾),
define the product 𝜑 ∗ 𝜓 by

𝜑 ∗ 𝜓(𝑔) = ∫𝐺 𝜑(𝑔ℎ−1)𝜓 (ℎ)dℎ.

This gives 𝐶0(𝐺, 𝐾) a Banach algebra structure. A little bit more analysis tells us that 𝐿2(𝐺, 𝐾) with this
convolution product also gives a Banach algebra structure on 𝐿2(𝐺, 𝐾). Note that by Peter-Weyl theorem,
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𝒯 (𝐺, 𝐾) is dense in 𝐶0(𝐺, 𝐾) and also 𝐿2(𝐺, 𝐾), so to study the algebraic structure of 𝒜(𝐺, 𝐾)(either the
algebra of continuous or 𝐿2 functions), we can start with these representative functions.

1.5 Definition. Let 𝑉 be a (𝐺, 𝐾)-representation. The character 𝜒𝑉 ∶ 𝐺 → 𝐾 of 𝑉 is given by 𝜒𝑉 (𝑔) = Tr(𝑔),
where Tr∶ 𝐺 → 𝐾 is the trace function, i.e. pick any basis of 𝑉 , representing each 𝑔 as matrices, and take the
trace of these matrices.

Note that 𝜒𝑉 ∈ 𝑉 ∗⊗𝑉 since once we pick a basis 𝑒1, ⋯ , 𝑒𝑛 of 𝑉 and the corresponding dual basis 𝑒1, ⋯ , 𝑒𝑛 ∈
𝑉 ∗, the function is given by 𝜒𝑉 =

𝑛
∑
𝑖=1

𝑒𝑖 ⊗ 𝑒𝑖. Therefore via the embedding we have 𝜒𝑉 ∈ 𝒜(𝐺, 𝐾).

1.6 Proposition. Let 𝑉 and 𝑊 be two non-isomorphic irreducible 𝐺-modules and (𝑢𝑖𝑗), (𝑣𝑖𝑗) matrix represen-
tations of 𝑈 and 𝑉 , respectively, then the characters 𝜒𝑈 , 𝜒𝑉 satisfies the following:

(i) ∫𝐺 |𝜒𝑈 |2d𝑔 = ∫𝐺 |𝜒𝑉 |2d𝑔 = 1 and ∫𝐺 𝜒𝑈 ̄𝜒𝑉 d𝑔 = 0.

(ii) 𝜑 ∗ 𝜓 = 𝜓 ∗ 𝜑 for all functions 𝜑, 𝜓 ∈ 𝒜(𝐺, 𝐾), hence the algebra 𝒜(𝐺, 𝐾) is commutative.

(iii) If 𝑈 and 𝑉 are both unitary, then 𝑢𝑖𝑗 ∗𝑢𝑘𝑙 = 𝛿𝑗𝑘𝑢𝑖𝑙 where 𝛿𝑗𝑘 is the Kronecker delta function, and 𝑢𝑖𝑗 ∗𝑣𝑘𝑙 = 0
for any 𝑖, 𝑗, 𝑘, 𝑙 chosen.

(iv) 𝜒𝑈 ∗ 𝑢𝑖𝑗 = 𝑢𝑖𝑗 , 𝜒𝑉 ∗ 𝑣𝑖𝑗 = 𝑣𝑖𝑗 for all 𝑖, 𝑗.

2. Group Algebra From Lie Groups

Given a finite group 𝐺, we can associate a group algebra 𝐾[𝐺] ∶= {𝜑 ∶ 𝐺 → 𝐾} with additions given by
(𝜑, 𝜓 ) ↦ 𝜑 + 𝜓 and products given by convolution products

𝜑 ∗ 𝜓(𝑔) = ∫𝐺 𝜑(𝑔ℎ−1)𝜓 (ℎ)dℎ.

Then we know that representations of 𝐺 are the same as 𝐾[𝐺]-modules. For a given compact Lie group
𝐺, we have two different models for group algebras: the Banach algebra 𝐶0(𝐺, 𝐾) and the Hilbert algebra
𝐿2(𝐺, 𝐾)(i.e. an algebra which carries a complete bi-invariant inner product).

(2a) Banach group algebra. In this section we discuss mainly about Banach algebras and its modules.
Writeℬ as our Banach algebra 𝐶0(𝐺, 𝐾).
2.1 Definition. Aℬ-module 𝑉 is a locally convex topological vector space endowed with a continuous map
∗∶ ℬ × 𝑉 → 𝑉 such that

• (𝑓 ∗ 𝑔) ∗ 𝑣 = 𝑓 ∗ (𝑔 ∗ 𝑣);
• 1 ∗ 𝑣 = 𝑣 where 1 ∈ ℬ is the unit.

We make some digression into analysis before we move on. For any Banach or Hilbert 𝐺-vector space 𝑉 ,
we define 𝐶0(𝐺, 𝑉 ) to be the set of all continuous maps from 𝐺 to 𝑉 , with compact-open topology.

2.2 Proposition. There exists a continuous linear map

∫𝐺 ∶ 𝐶0(𝐺, 𝑉 ) → 𝑉 , 𝑓 ↦ ∫𝐺 𝑓 = ∫𝐺 𝑓 (𝑔)d𝑔

satisfying the following properties:
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(1) ∫ 𝑣d𝑔 = 𝑣 for all 𝑣 ∈ 𝑉 .
(2) ∫ 𝑓 (𝑔)d𝑔 = ∫ 𝑓 (𝑔−1)d𝑔.

(3) 𝑝 (∫𝐺 𝑓 ) ≤ ∫𝐺 𝑝𝑓 for each continuous seminorm 𝑝∶ 𝑉 → ℝ and any 𝑓 ∈ 𝐶0(𝐺, 𝑉 ).

(4) If 𝐿∶ 𝑉1 → 𝑉2 is a continuous linear map between locally convex complete Hausdorff spaces, then 𝐿 ∫ 𝑓 =
∫ 𝐿𝑓 for all 𝑓 ∈ 𝐶0(𝐺, 𝑉1).
Using this invariant integral, we can then transfer any Banach 𝐺-representation 𝑉 into a Banach ℬ-

module as follows: for each 𝜑 ∈ ℬ and 𝑣 ∈ 𝑉 , define
𝜑 ∗ 𝑣 ∶= ∫𝐺 𝜑(𝑔)𝑔𝑣d𝑔.

We can verify that this gives a continuous ℬ-action on 𝑉 , hence giving a ℬ-module. The converse will be
discussed later. Note that 𝒯 (𝐺, 𝐾) ⊆ ℬ is dense in ℬ, and furthermore, we have

2.3 Proposition. If 𝑓 is representative and 𝑣 ∈ 𝑉 , then 𝑓 ∗ 𝑣 is contained in a finite-dimensional 𝐺-subspace
of 𝑉 .
Proof. For each 𝑔 ∈ 𝐺, we have

𝑔(𝑓 ∗ 𝑣) = 𝑔 ∫𝐺 𝑓 (ℎ)ℎ𝑣dℎ = ∫𝐺 𝑓 (ℎ)𝑔ℎ𝑣dℎ = ∫𝐺 𝑓 (𝑔−1ℎ)ℎ𝑣dℎ.

Note that 𝑓 (𝑔−1𝑣) is in the 𝐺-orbit of 𝑓 in 𝒯 (𝐺, 𝐾), which is contained in a finite 𝐺-subspace 𝑊 of 𝒯 (𝐺, 𝐾),
and the map 𝑓 ↦ 𝑓 ∗ 𝑣 for fixed 𝑣 ∈ 𝑉 is a 𝐺-equivariant linear map 𝒯 (𝐺, 𝐾) → 𝑉 , the image of 𝑊 via this
map is finite-dimensional, which is a finite-dimensional 𝐺-subspace containing 𝑓 ∗ 𝑣 .

As a Corollary, we have

2.4 Corollary. Let 𝑉𝑠 be the direct sum of all finite-dimensional 𝐺-subspaces of 𝑉 , then 𝑉𝑠 is dense in 𝑉 .
Proof. Since 𝒯 (𝐺, 𝐾) is dense in ℬ, the image of 𝒯 (𝐺, 𝐾) × 𝑉 → 𝑉 in 𝑉 , written as 𝑊 , is also dense. If 𝑈 is
a finite-dimensional 𝐺-subspace of 𝑉 , then it can be decomposed into direct sum of irreducible 𝐺-subspaces,
hence we can without loss of generality assume 𝑈 is irreducible. Fix 𝑢 ∈ 𝑈 and consider the 𝐺-subspace
𝒯 (𝐺, 𝐾)𝑢 ⊂ 𝑈 . Since ℬ acts surjectively on 𝑈 , 𝒯 (𝐺, 𝐾) is dense and this action is continuous, the subspace
is non-trivial, hence by Schur’s lemma 𝒯 (𝐺, 𝐾)𝑢 = 𝑈 . This proves that every finite-dimensional 𝐺-subspace
is in the image of 𝒯 (𝐺, 𝐾) × 𝑉 → 𝑉 . Proposition 2.3 implies that 𝑊 is a direct sum of finite-dimensional
subspaces, hence 𝑊 = 𝑉𝑠 .

In particular, we have

2.5 Corollary. If 𝑉 is an irreducible Banach 𝐺-representation, then 𝑉 is finite-dimensional.

(2b)Hilbert group algebra. Nowwe discuss some further structures on aHilbert group algebra 𝐿2(𝐺, ℂ) ∶=
ℋ . Recall that given two functions 𝜑 and 𝜓 , the inner product of 𝜑 and 𝜓 is given by

⟨𝜑, 𝜓 ⟩ ∶= ∫𝐺 𝜑 ̄𝜓d𝑔.
In this case, we only consider Hilbert a.k.a. unitary representations of ℋ , which means that any ℋ -module
𝑉 carries an inner product ⟨−, −⟩𝑉 such that for all 𝜑 ∈ ℋ and all 𝑣 , 𝑤 ∈ 𝑉 we have ⟨𝜑 ∗ 𝑣 , 𝑤⟩𝑉 = ⟨𝑣, 𝜑∗ ∗ 𝑤⟩𝑉 .
In this case, the algebra of representative functions 𝒯 (𝐺, ℂ) is still dense in ℋ , and for each irreducible
representation 𝑉 , we know that
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• 𝜒𝑉 ∈ 𝑉 ∗ ⊗ 𝑉 is an idempotent of 𝒯 (𝐺, ℂ).
• Each 𝑉 ∗ ⊗ 𝑉 is a subalgebra of 𝒯 (𝐺, ℂ).

Therefore we have a decomposition of algebras

𝒯 (𝐺, ℂ) = ⨁
𝑉∈Irr(𝐺,ℂ)

𝜒𝑉 ∗ 𝒯 (𝐺, ℂ) ∗ 𝜒𝑉 ≅ ⨁
𝑉∈Irr(𝐺,ℂ)

𝑉 ∗ ⊗ 𝑉 .

Let 𝑉 be a unitary 𝐺-module, then the same construction gives us a Hilbert ℋ -module structure on 𝑉 . As a
Banach module, we know that 𝑉 has a dense subspace 𝑉𝑠 consisting of finite-dimensional 𝐺-representations.
In the case of Hilbert modules, we can give a finer description. Let 𝜒 be an irreducible character, define an
operator

𝑃𝜒 ∶ 𝑉 → 𝑉
defined by 𝑃𝜒 (𝑣) = 𝜒 ∗ 𝑣 .
2.6 Proposition. (1) 𝑃𝜒 is an orthogonal projector with image 𝑉𝜒 .
(2) 𝑉𝜒 and 𝑉𝜓 are orthogonal if 𝜒 ≠ 𝜓 .
(3) 𝑉 is the Hilbert sum of the 𝑉𝜒 for 𝜒 ∈ Irr(𝐺, ℂ).
(4) 𝑉𝜒 is the smallest closed subspace of 𝑉 containing all irreducible subspaces with character 𝜒 .
Proof. Since 𝜒 ∗ 𝜒 = 𝜒 , 𝑃𝜒 is a projector. It’s orthogonal since 𝑉 is a Hilbert module. If 𝜒 ≠ 𝜓 , pick 𝑣 ∈ 𝑉𝜒
and 𝑤 ∈ 𝑉𝜓 , we have ⟨𝑣 , 𝑤⟩𝑉 = ⟨𝜒 ∗ 𝑣, 𝜓 ∗ 𝑤⟩ = ⟨𝜓 ∗ ∗ 𝜒 ∗ 𝑣, 𝑤⟩𝑉 = 0 since 𝜓 ∗ ∈ 𝜓 ∗ 𝒯 (𝐺, ℂ) ∗ 𝜓 . The fourth
statement also follows since 𝜓 ∗ 𝜒 = 0 whenever 𝜓 and 𝜒 are distinct. Finally, the direct sum of all these 𝑉𝜒
is exactly the 𝐺-subspace 𝑉𝑠 of all finite-dimensional 𝐺-subspaces, hence 𝑉 is the closure of the direct sum,
which is the so-called Hilbert sum.

(2c) Induced representation. As an application, let’s talk about construction of induced representations.
Given a closed subgroup 𝐻 ⊆ 𝐺, we have a natural restriction functor res𝐺𝐻 ∶ 𝐺 Rep → 𝐻 Rep between
category of representations sending each 𝐺-representation 𝑉 to 𝑉 regarded as an 𝐻 -representation. The aim
of this section is to construct an adjoint functor ind𝐺𝐻 ∶ 𝐻 Rep → 𝐺 Rep. Let the group algebra 𝒜(𝐺, 𝐾) to be
either the Banach group algebra or the Hilbert one, from the previous section we have the following diagram
of functors:

𝐺 Rep 𝐻 Rep

𝒜(𝐺)Rep 𝒜(𝐻)Rep

res𝐺𝐻

res𝐺𝐻

Where the bottom arrow is simply given by “forgetting the 𝒜(𝐺)-module structure”. We know that the
functor res𝐺𝐻 is left adjoint to the functor ind𝐺𝐻 ∶ 𝒜(𝐻)Rep → 𝒜(𝐺)Rep given by tensoring on the left by
𝒜(𝐺), i.e. we have the following bijection

hom𝒜(𝐻)(res𝐺𝐻 𝑉 ,𝑊 ) ≃−→ hom𝒜(𝐺)(𝑉 , ind𝐺𝐻 𝑊).
However, we haven’t discussed how to go back from group algebras to Lie groups yet, so we should only
use the above discussion as a heuristic and construct the induced representation by hand. Let 𝑉 be an 𝐻 -
representation(possibly infinite-dimensional), consider the space

ind𝐺𝐻 𝑉 ∶= 𝐺 ×𝐻 𝑉 = {(𝑔, 𝑣)|(𝑔ℎ, 𝑣) = (𝑔, ℎ𝑣) ∀ ℎ ∈ 𝐻}.
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ind𝐺𝐻 𝑉 has a natural projection(into the first component) to the homogeneous space 𝐺/𝐻 , whose fiber at
each point is the Banach space 𝑉 . On the other hand, we can interpret the tensor product 𝒜(𝐺) ⊗𝒜(𝐻) 𝑉 as
the space 𝒜(𝐺, 𝑉 )𝐻 of functions 𝑓 ∶ 𝐺 → 𝑉 which is invariant underthe 𝐻 -action. Now we have

2.7 Proposition. There is a bijection between 𝐻 -invariant functions 𝑓 ∶ 𝐺 → 𝑉 and continuous sections of
𝐺 ×𝐻 𝑉 → 𝐺/𝐻 .

Both of them are called the induced representation of 𝑉 from𝐻 to𝐺. Furthermore, we have the adjunction

2.8 Proposition. Let 𝑉 be a 𝐺-representation and 𝑊 an 𝐻 -representation, then we have an isomorphism

hom𝐺(𝑉 , ind𝐺𝐻 𝑊) ≅−→ hom𝐻 (res𝐺𝐻 𝑉 ,𝑊 ).
This is called Frobenius reciprocity. This adjunction can be useful in computation: for instance, if 𝑉

is a trivial one-dimensional 𝐻 -representation, then ind𝐺𝐻 𝑉 ≅ 𝒜(𝐺/𝐻, 𝐾). By Frobenius reciprocity, we
know that hom𝐺(𝑊 , ind𝐺𝐻 𝑉 ) ≅ hom𝐻 (res𝐺𝐻 𝑊, 𝑉 ) = hom𝐻 (res𝐺𝐻 𝑊,𝐾), therefore for each 𝑊 ∈ Irr(𝐺, 𝐾),
the multiplicity of 𝑊 in ind𝐺𝐻 𝑉 is exactly the dimension dim𝑊𝐻 of the subspace of fixed points under the
𝐻 -action.

3. Tannaka-Kreǐn Duality

In this section, we discuss how to go from a given group algebra back to a Lie group. This depends in particular
some further algebraic structures on the group algebra, which makes it into a Hopf algebra. As an application,
we’ll discuss the complexification of compact Lie groups, and the relation of their representations.

(3a) From group algebras back to Lie groups. In this section, we want to reconstruct a Lie group 𝐺 from
its group algebra 𝐶0(𝐺, ℝ). Recall that given a compact Hausdorff space 𝑋 , the Banach space 𝐶0(𝑋 , ℂ) is a
commutative unital 𝐶∗-algebra. Conversely, given any commutative unital 𝐶∗-algebra 𝐵, we can construct a
corresponding compact Hausdorff space 𝑋 as

𝑋 = {𝔪|𝔪 is a maximal ideal of 𝐵}.
We can verify that 𝐵 is the algebra of continuous functions on 𝑋 . In the Lie group case, we need some further
structure to construct this correspondence. Note that a maximal ideal of a Banach 𝐾 -algebra is the same as
an algebra homomorphism 𝐵 → 𝐾 , so we can say 𝑋 = homAlg(𝐵, 𝐾). In our case, we consider the algebra of
representative functions 𝒯 (𝐺, 𝐾) and define the space 𝐺𝐾 as

𝐺𝐾 = hom𝐾 Alg(𝒯 , 𝐾).
To see that 𝐺𝐾 has a group structure, we need further algebraic structures on 𝒯 (𝐺, 𝐾). First observe that
3.1 Proposition. Let 𝐺 and 𝐻 be two compact Lie groups, then we have an isomorphism

𝒯 (𝐺 × 𝐻 , 𝐾) ≅ 𝒯 (𝐺, 𝐾) ⊗ 𝒯 (𝐻 , 𝐾).
Proof. Let 𝑓 ∈ 𝒯 (𝐺, 𝐾) and 𝑔 ∈ 𝒯 (𝐻 , 𝐾), then 𝑓 𝑔 is representative in 𝐶0(𝐺 × 𝐻 , 𝐾), hence we get a map
𝒯 (𝐺, 𝐾) ⊗ 𝒯 (𝐻 , 𝐾) → 𝒯 (𝐺 × 𝐻 , 𝐾), which can be verified to be a homomorphism of algebras. Conversely,
if 𝑢 is representative for 𝐺 × 𝐻 , then after choosing a basis, we can write it as a linear combination of pairs
of representative functions for 𝐺 and for 𝐻 , hence giving a map from 𝒯 (𝐺 × 𝐻 , 𝐾) → 𝒯 (𝐺, 𝐾) ⊗ 𝒯 (𝐻 , 𝐾).
Finally we can check these two maps are mutually inverse.
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Then given any algebra 𝒯 (𝐺, 𝐾), we have a natural diagonal map Δ∶ 𝒯 (𝐺, 𝐾) → 𝒯 (𝐺 × 𝐺, 𝐾) by taking
any representative function 𝑢 to 𝑢⊗𝑢. This is the coproduct operation on 𝒯 (𝐺, 𝐾), and we also have a counit
map 𝜖 ∶ 𝒯 (𝐺, 𝐾) → 𝐾 by sending any representative function 𝑢 to the value 𝑢(1) as well as a coinverse map
𝜂∶ 𝒯 → 𝒯 defined by 𝜂𝜑(𝑔) = 𝜑(𝑔−1). These operations satisfy the following relations:

• Δ is co-associative, i.e. for any 𝜑 ∈ 𝒯 (𝐺, 𝐾) we have Δ2(𝜑) ⊗ Δ(𝜑) = Δ(𝜑) ⊗ Δ2(𝜑).
• 𝜖(𝜑) = 𝜖(Δ(𝜑))Δ(𝜑) = Δ(𝜑)𝜖(Δ(𝜑)).
• 𝜂Δ(𝜑)Δ(𝜑) = 𝜖(𝜑).

We call an algebra admitting a coproduct, counit and coinverse structure satisfying the above relations a
Hopf algebra. Now we easily see that

3.2 Lemma. 𝐺𝐾 is a group.
The remaining part of this section aims to prove that 𝐺𝐾 ≅ 𝐺 as topological(hence Lie) groups. Note that

for each 𝑔 ∈ 𝐺, we have a natural evaluation map

ev𝑔 ∶ 𝒯 (𝐺, 𝐾) → 𝐾 ∶ 𝜑 ↦ 𝜑(𝑔).
This map can be verified to be a homomorphism of algebras, hence ev𝑔 ∈ 𝐺𝐾 , and we get a map 𝐺 → 𝐺𝐾 .
3.3 Proposition. The map 𝐺 → 𝐺𝐾 is injective for all 𝐾 .
Proof. If there exists an element 𝑔 ∈ 𝐺 such that ev𝑔 = ev1, pick any 𝑉 ∈ Irr(𝐺, 𝐾), we have 𝜒𝑉 (𝑔) =
dim 𝑉 𝑔 = 𝜒𝑉 (1) = dim 𝑉 and hence 𝑔 acts as identity on all irreducible representations of 𝐺. If 𝑔 ≠ 1, pick an
abelian subgroup 𝑇 containing 𝑔, and pick a one-dimensional non-trivial representation 𝑊 of 𝑇 , we get that
𝜒ind𝐺𝑇 𝑊 (𝑔) ≠ dim ind𝐺𝑇 𝑊 , a contradiction. Therefore we should have 𝑔 = 1, and hence 𝐺 injects into 𝐺𝐾 .

We define the topology on 𝐺𝐾 as the weakest topology such that all evaluation maps ev𝜑 ∶ 𝐺𝐾 → 𝐾 ,
ev𝜑(𝑓 ) = 𝑓 (𝜑) are continuous, then we can verify that this makes 𝐺𝐾 into a topological group. Moreover,

3.4 Lemma. The injection 𝐺 → 𝐺𝐾 is continuous.
Now we need to prove the converse result, i.e. the map 𝐺 → 𝐺ℝ is a homeomorphism, so that 𝐺ℝ com-

pletely recovers 𝐺. Firstly, if we have an embedding 𝑟 ∶ 𝐺 → 𝐺𝐿(𝑛, 𝐾), then each function 𝑟𝑖𝑗 lies in 𝒯 (𝐺, 𝐾),
and hence 𝑟 induces a map 𝑟𝐾 ∶ 𝐺𝐾 → 𝐺𝐿(𝑛, 𝐾) mapping each 𝑓 ∈ 𝐺𝐾 to (𝑓 (𝑟𝑖𝑗)).
3.5 Proposition. (1) The following diagram

𝐺 𝐺𝐾

𝐺𝐿(𝑛, 𝐾)

𝑖
𝑟

𝑟𝐾

is commutative, and if 𝑟 generates 𝒯 (𝐺, 𝐾), then 𝑟𝐾 is injective.

(2) If 𝐾 = ℝ, and 𝑟 is an orthogonal representation, then 𝑟ℝ𝐺ℝ ⊆ 𝑂(𝑛, ℝ) is a closed subgroup.

Proof. If 𝑟 generates 𝒯 (𝐺, 𝐾), then for two algebraic homomorphisms 𝑓 , 𝑔 so that 𝑟𝐾 (𝑓 ) = 𝑟𝐾 (𝑔), we have
𝑓 (𝑟𝑖𝑗) = 𝑔(𝑟𝑖𝑗). Now since (𝑟𝑖𝑗) generates 𝒯 (𝐺, 𝐾), we have 𝑓 = 𝑔, and therefore 𝑟𝐾 is injective. If 𝐾 = ℝ and 𝑟
maps 𝐺 into 𝑂(𝑛), then we should have (𝑟𝑖𝑗)𝑡(𝑟𝑖𝑗) = id, and since any 𝑓 ∈ 𝐺ℝ is a homomorphism of algebras,
it follows that (𝑓 (𝑟𝑖𝑗))𝑡(𝑓 (𝑟𝑖𝑗)) = id. This proves that 𝑟ℝ also maps 𝐺ℝ into 𝑂(𝑛). Finally, we need to show 𝐺ℝ is
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compact, so that its image is a closed subgroup of 𝑂(𝑛) and 𝑟ℝ is an embedding. Since (𝑟𝑖𝑗) generates 𝒯 (𝐺, ℝ),
any element of 𝒯 (𝐺, ℝ) is of the form 𝑃(𝑟𝑖𝑗) where 𝑃 is a polynomial in 𝑛2 coefficients, and the (𝑟𝑖𝑗) is in 𝑂(𝑛),
which implies that the image of the function 𝑃 is a closed interval 𝐼𝑃 in ℝ. Now the evaluation maps ev𝑃
together gives a continuous injection

∏
𝑃∈𝒯 (𝐺,ℝ)

∶ 𝐺ℝ → ∏
𝑃∈𝒯 (𝐺,ℝ)

𝐼𝑃 .

Since each 𝐼𝑃 is compact, the product∏𝐼𝑃 is also compact. Since we go through all the evaluation maps, this
product map is injective, and since each evaluation maps are continuous, the product map is continuous and
can be seen to be an embedding. An element (𝑎𝑃 ) ∈ ∏ 𝐼𝑃 is in the image of ∏ ev𝑃 if and only if 𝑎𝑃𝑄 = 𝑎𝑃𝑎𝑄 ,
𝑎1 = 1 and 𝑎𝑟𝑃 = 𝑟𝑎𝑃 for all 𝑃, 𝑄 ∈ 𝒯 (𝐺, ℝ). This implies that the image of ∏ ev𝑃 is compact. Therefore 𝐺ℝ
is compact and hence its image under 𝑟ℝ in 𝑂(𝑛) is a closed subgroup.

With this result, we can finally prove that

3.6 Theorem. 𝑖∶ 𝐺 → 𝐺ℝ is an isomorphism of Lie groups.

Proof. It suffices for us to prove that 𝑖 is surjective, which is equivalent to the fact that 𝑖∗∶ 𝒯 (𝐺ℝ, ℝ) ≅
𝒯 (𝐺, ℝ)(since then 𝑖∗ induce the isomorphism 𝐶0(𝐺ℝ, ℝ) ≅ 𝐶0(𝐺, ℝ), hence by picking open neighbourhoods
and constructing bump functions we know that 𝑖 should be surjective). Pick an orthogonal representation
of 𝐺 so that 𝑟 ∶ 𝐺 ↪ 𝑂(𝑛), then 𝑟ℝ is also an embedding. Combining with the above commutative diagram,
we can conclude that 𝑖∗ maps generators to generators, hence inducing an isomorphism on the algebra of
representative functions.

As a final remark, I should mention that we only give half of the correspondence between group algebras
and Lie groups. The other direction goes as follows: given a Hopf algebra 𝐻𝐾 over 𝐾 , we can construct a
group 𝐺𝐾 , and we should verify that the algebra 𝒯 (𝐺𝐾 , 𝐾) is again the algebra 𝐻𝐾 . This takes too much time
to explain so I only leave as a remark, and the details are omitted.

(3b) Complexification. Finally, we briefly discuss the complexification of 𝐺, which is exactly the group
𝐺ℂ. If 𝑟 ∶ 𝐺 → 𝐺𝐿(𝑛, ℂ) is an inclusion, then by Proposition 3.5 we get an inclusion 𝑟ℂ∶ 𝐺ℂ → 𝐺𝐿(𝑛, ℂ). We
want to prove that 𝐺ℂ is a complex Lie group(i.e. it’s holomorphic) by arguing that 𝑟ℂ𝐺ℂ is a closed subgroup
of 𝐺𝐿(𝑛, ℂ). The faithful representation 𝑟 gives us a surjective ring homomorphism 𝑟∗∶ ℂ[𝑋𝑖𝑗] → 𝒯 (𝐺, ℂ) by
mapping 𝑋𝑖𝑗 to 𝑟𝑖𝑗 , hence we have an isomorphism

𝒯 (𝐺, ℂ) ≅ ℂ[𝑋𝑖𝑗]/𝐼 ,

𝐼 being the kernel of 𝑟∗. Consider the analytic set 𝑉 (𝐼 ) ⊂ ℂ𝑛2 given by {𝑥 ∈ ℂ𝑛2 |𝑝(𝑥) = 0 ∀ 𝑝 ∈ ℂ[𝑋𝑖𝑗]}.
3.7 Lemma. There is a natural bijection 𝜎 ∶ 𝑉 (𝐼 ) → 𝐺ℂ inverse to 𝑟ℂ.

This is “Hilbert’s Nullstellensatz” from algebraic geometry. Equip 𝑉 (𝐼 ) with the subspace topology, then
𝑉 (𝐼 ) is naturally an analytic set, and it suffices for us to prove that the map 𝑟ℂ is a homeomorphism, so
that 𝐺ℂ is naturally holomorphic. Note that the topology of 𝐺ℂ is defined by evaluation maps ev𝑝 for any
𝑝 ∈ 𝒯 (𝐺, ℂ), but then 𝒯 (𝐺, ℂ) is generated by the representative functions 𝑟𝑖𝑗 , so the topology is defined
by the maps ev𝑟𝑖𝑗 . From this description we know that 𝜎 is continuous, hence 𝑟ℂ is a homeomorphism, and
therefore 𝐺ℂ is holomorphic.

Suppose 𝑟 is now a unitary representation, i.e. the image of 𝑟 is in 𝑈 (𝑛). Recall that on 𝐺𝐿(𝑛, ℂ) we have
the polar decomposition given by 𝐴 = 𝐻𝑃 for 𝐻 ∈ 𝑈 (𝑛) and 𝑃 ∈ 𝑃(𝑛) is a positive-definite hermitian matrix.
As a space, we get a decomposition 𝐺𝐿(𝑛, ℂ) ≅ 𝑈 (𝑛) × 𝑃(𝑛).
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3.8 Proposition. (1) If 𝐴 ∈ 𝐺ℂ and 𝐴 = 𝐻𝑃 , then 𝐻 and 𝑃 both lie in 𝐺ℂ, hence we have a decomposition as
spaces 𝐺ℂ ≅ (𝑈 (𝑛) ∩ 𝐺ℂ) × (𝑃(𝑛) ∩ 𝐺ℂ).

(2) 𝐺ℂ ∩ 𝑃(𝑛) is homeomorphic to an Euclidean space of dimension dim𝐺 = dim(𝐺ℂ ∩ 𝑈 (𝑛)).
(3) 𝐺ℂ ∩ 𝑈 (𝑛) is a maximal compact subgroup of 𝐺ℂ.
Proof. (1) If 𝐴 = 𝐻𝑃 , then we can find 𝑈 ∈ 𝑈 (𝑛) such that 𝑈𝑃𝑈−1 = 𝐷 where 𝐷 is a diagonal matrix with

positive real entries, hence there exists a diagonalmatrix 𝑍 with𝐷 = exp𝑍 . Let 𝐽 be the ideal generated by
𝑈 (𝑟𝑖𝑗)𝑈−1, so that 𝑉 (𝐽 ) = 𝑈𝑉 (𝐼 )𝑈−1, and we want to show that 𝐷 ∈ 𝑉 (𝐽 ). Note that 𝐻 is unitary, we have
𝐴∗𝐴 = 𝑃2 ∈ 𝑉 (𝐼 ), hence 𝑃2𝑘 ∈ 𝑉 (𝐽 ) and therefore 𝐷2𝑘 ∈ 𝑉 (𝐽 ) for all 𝑘 ∈ ℤ. Note that 𝐷2𝑘 = exp(2𝑘𝑍),
for all 𝑄 ∈ 𝐽 , we have 𝑄(exp(2𝑍)) = 0, then for all 𝑡 ∈ ℝ, we have 𝑄(exp(𝑡𝑍)) = 0, and in particular when
𝑡 = 1, we get that 𝑄(𝐷) = 0, and therefore 𝐷 ∈ 𝑉 (𝐽 ) and hence 𝑃 ∈ 𝐺ℂ. 𝐻 = 𝐴𝑃−1 ∈ 𝐺ℂ.

(2) Since 𝐺𝐿(𝑛, ℂ) ≅ 𝑈 (𝑛)×𝑃(𝑛), we have the corresponding Lie algebra satisfies 𝔤𝔩𝑛(ℂ) ≅ 𝔲(𝑛)⊕𝔭(𝑛), where
𝔲(𝑛) is the space of all skew-hermitian matrices𝐴∗+𝐴 = 0, and 𝔭(𝑛) is the space of all hermitian matrices.
Therefore we know that 𝔭(𝑛) = 𝑖𝔲(𝑛) and hence 𝔤𝔩𝑛(ℂ) ≅ 𝔲(𝑛)⊗ℝℂ. Similarly, given 𝐺ℂ, we want to prove
that 𝐺ℂ∩𝑃(𝑛) is homeomorphic via exponential map to the Lie algebra 𝑖𝐿(𝐺ℂ∩𝑈 (𝑛)). Let 𝑋 ∈ 𝐿(𝐺ℂ∩𝑈 (𝑛)),
then clearly exp𝑋 ∈ 𝑈 (𝑛) ∩ 𝐺ℂ and exp(𝑖𝑋 ) ∈ 𝑃(𝑛). Let 𝑝 ∈ 𝐼 so that 𝑝(exp𝑋) = 0 for such 𝑋 . Replacing
exp𝑋 by exp(𝑡𝑋 ) for 𝑡 ∈ ℂ gives an entire function 𝑝(exp 𝑡𝑋 ) on 𝑡 , which has a zero for all 𝑡 ∈ ℝ, hence
it’s identically zero for all 𝑡 , which implies that exp(𝑖𝑋 ) ∈ 𝐺ℂ. Therefore exp(𝑖𝑋) ∈ 𝐺ℂ ∩ 𝑃(𝑛) and hence
exp(𝑖−) maps 𝐿(𝐺ℂ ∩ 𝑈 (𝑛)) into 𝐺ℂ ∩ 𝑃(𝑛).
On the other hand, for each 𝐴 ∈ 𝑃(𝑛) ∩ 𝐺ℂ, we know that 𝐴 = exp 𝑖𝑋 for some 𝑋 ∈ 𝑈 (𝑛). The same
argument shows that exp𝑋 ∈ 𝐺ℂ, hence exp(𝑖−) is surjective. Note that exp is a local diffeomorphism,
hence it’s a diffeomorphism from 𝐿(𝐺ℂ ∩ 𝑈 (𝑛)) to 𝐺ℂ ∩ 𝑃(𝑛).

(3) If 𝐾 is a compact Lie group containing 𝐺 as its proper subgroup, then there is an element 𝐴 ∈ 𝐾 ⊆ 𝐺ℂ
which is not in 𝐺. Write 𝐴 = 𝑈𝑃 for 𝑈 ∈ 𝐺, then we know that 𝑃 ≠ id and 𝑃 ∈ 𝐾 since 𝑈 ∈ 𝐺 ⊆ 𝐾 .
Now 𝑡𝑃 ∈ 𝐾 for all 𝑡 ∈ ℝ+, which implies that 𝐾 is not compact, a contradiction. Therefore 𝐺 ⊆ 𝐺ℂ is a
maximal compact subgroup of 𝐺ℂ.
The second statement in the previous Proposition shows that 𝐺ℂ is actually a complexification of 𝐺.

Moreover, we can relate their representations as follows:

3.9 Proposition. If 𝑉 is a unitary representation of 𝐺 with 𝑟 ∶ 𝐺 → 𝑈(𝑛), then the induced embedding
𝑟ℂ∶ 𝐺ℂ → 𝐺𝐿(𝑛, ℂ) is holomorphic and hence 𝑉 is a holomorphic representation of 𝐺ℂ. More over, the
map 𝑟ℂ is uniquely determined by 𝑟 .
Proof. The reason is that 𝐺ℂ ∩ 𝑃(𝑛) ≅ 𝑖𝐿(𝐺), hence the image of 𝐺ℂ in 𝐺𝐿(𝑛, ℂ) is uniquely determined.
Holomorphicity is just tautology.

Therefore the holomorphic representations of 𝐺ℂ is exactly the same as unitary representations of 𝐺,
and in particular, irreducible representations of 𝐺 is the same as irreducible holomorphic representations of
𝐺ℂ. We also sometimes work in the algebro-geometric context, where we call 𝐺ℂ an algebraic group, and
holomorphic representations of 𝐺ℂ algebraic representations.
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