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Abstract. We relate the notions of BB-tilting and perverse derived
equivalence at a vertex. Based on these notions, we define mutations of
algebras, leading to derived equivalent ones.

We present applications to endomorphism algebras of cluster-tilting
objects in 2-Calabi-Yau categories and to algebras of global dimension
at most 2.

Introduction

In [12, §2], Brenner and Butler introduced a construction of tilting mod-
ules, known as BB-tilting modules, generalizing APR-tilts [6], which are
themselves generalizations of the BGP reflection functors introduced in [11].
Roughly speaking, for a finite dimensional algebra A over a field, the as-
sociated BB-tilting modules are parameterized by the simple A-modules
satisfying certain homological conditions (to be recalled in Section 1.1 be-
low).

On the other hand, Chuang and Rouquier introduced the notion of per-
verse Morita equivalences, which are certain derived equivalences that are
controlled by filtrations S = (φ = S0 ⊂ S1 ⊂ · · · ⊂ Sr) of the set of iso-
morphism classes of simple A-modules together with perversity functions
p : {1, . . . , r} → Z, see [42, §2.6].

In this paper we focus on the special case where the filtration S has
only two levels and |p(2) − p(1)| = 1. This case leads to complexes of A-
modules consisting of only two projective terms concentrated in consecutive
degrees. Such complexes have already been discussed in the literature, see
for example [24] and the discussion of the associated torsion theory in [25].

Many of the constructions of tilting complexes introduced in the literature
to show derived equivalences for various kinds of algebras are in fact such
perverse equivalences. Examples are [37, Theorem 11.5.1] for symmetric
algebras; [7, Theorems 29, 32] for gentle algebras; [8], [10, §3.1] and [38,
Theorems 3.12, 3.15] for cluster-tilted algebras; and [44] for certain Jacobian
algebras.

We start in Sections 1 and 2 by reviewing the relations between these
two notions of tilting for a finite dimensional algebra A given by a quiver
with relations. To any vertex k without loops in the quiver, there are two
complexes T−k and T+

k attached. We list equivalent formulations, in homo-
logical as well as in combinatorial language, that these complexes are tilting
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complexes, hence leading to perverse equivalences with respect to the two-
level filtration S with S1 = {k}. Furthermore, we show that BB-tilting can
always be regarded as a perverse equivalence induced by a complex T−k , and
conversely, under certain additional assumptions, the perverse equivalence
given by T−k is given by BB-tilting.

This leads us to define, in Section 3, mutations of finite dimensional alge-
bras over an algebraically closed field, leading to derived equivalent ones. To
any vertex k without loops in the quiver of such an algebra A, the negative
mutation µ−k (A) is defined as the endomorphism algebra of T−k when it is
a tilting complex. Similarly, the positive mutation µ+

k (A) is defined as the
endomorphism algebra of T+

k when it is a tilting complex. Thus, a vertex k
leads to at most two mutations of A, and they are derived equivalent to A.
In addition, we define the BB-mutation µBB

k (A) as the endomorphism alge-
bra of the BB-tilting module associated with k, when it is defined. Hence,
when µBB

k (A) is defined, so is µ−k (A) and they coincide. Analog notions for
Calabi-Yau algebras have been introduced in [30].

From a K-theoretical viewpoint, we also show that the change-of-basis
transformation of the Grothendieck groups induced by a mutation of an
algebra coincides with that occurring in the matrix mutation, in the sense
of Fomin and Zelevinsky [21], of the skew-symmetric matrix corresponding
to the quiver of the algebra, provided that it has no loops and 2-cycles.

Mutations of algebras arise naturally when considering endomorphism al-
gebras of objects related by approximation sequences in additive categories.
This has been essentially observed by Hu and Xi in [26]. In Section 4 we
show that in an additive Hom-finite category over an algebraically closed
field with split idempotents, if Λ and Λ′ are the endomorphism algebras of
two basic objects related by replacing the indecomposable k-th summand by
another through an approximation sequence, then the mere existence of the
two BB-mutations µBB

k (Λ) and µBB
k (Λ′op) automatically implies that they

take the “correct” values, namely Λ′ and Λop, respectively.
Such approximation sequences, known as exchange sequences, appear in

relation with mutations of cluster-tilting objects in 2-Calabi-Yau (2-CY) cat-
egories [13, 15, 22, 31], studied in connection with representation theoretical
interpretation of cluster algebras [21]. In Section 5 we apply the results of
the previous section to the study of endomorphism algebras of cluster-tilting
objects in Hom-finite idempotent split Frobenius stably 2-CY categories, as
well as in such triangulated 2-CY categories, where these algebras are known
as 2-CY-tilted algebras. The latter algebras include the cluster-tilted alge-
bras [17] and more generally [1, 14] finite dimensional Jacobian algebras of
quivers with potentials [20].

We generalize a result in [22] and show that in the Frobenius case, the
endomorphism algebra of a cluster-tilting object U admits all the BB-, nega-
tive and positive mutations at any vertex corresponding to a non projective-
injective summand of U , and moreover all these mutations coincide with the
endomorphism algebra of the mutation of U at that summand.

In the triangulated case, the picture is more complicated, and mutation
of cluster-tilting objects does not always lead to a mutation of their en-
domorphism algebras. Indeed, neighboring two 2-CY-tilted algebras, that
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is, endomorphism algebras of two cluster-tilting objects related by a mu-
tation, are always near-Morita equivalent [17, 34, 40], but not necessarily
derived equivalent. However, several derived equivalence classifications of
cluster-tilted algebras [8, 10, 18] have revealed that there are far less derived
equivalence classes than isomorphism classes of such algebras (at least when
their number is finite). Moreover, these classifications rely on showing that
sufficiently many pairs of neighboring algebras are in fact derived equivalent.

In an attempt to provide a conceptual explanation of these facts, we study
the conditions that two neighboring 2-CY-tilted algebras Λ and Λ′ are re-
lated by BB-mutation. Following [10], we call in this case the corresponding
mutation of the cluster-tilting objects a good mutation, since it leads to a
mutation of their endomorphism algebras.

Obviously, a necessary condition for Λ′ = µBB
k (Λ) is that µBB

k (Λ), hence by
symmetry also µBB

k (Λ′op), are defined. We show that this condition is also
sufficient, that is, the existence of these two BB-mutations automatically
implies that they take the “correct” values, namely Λ′ and Λop, respectively,
yielding a good mutation between Λ and Λ′.

We present several applications of this result. Firstly, by combining it
with [16], we deduce an efficient algorithm that determines whether two
neighboring cluster-tilted algebras of any Dynkin type (given by their quiv-
ers) are related by a BB-tilt. Secondly and more generally, building on their
Gorenstein property [34], we give a numerical criterion for the derived equiv-
alence via BB-mutation of neighboring 2-CY-tilted algebras, stated only in
terms of their Cartan matrices, provided that they are invertible over Q.

Another interesting class of algebras for which mutation can be related
to the quiver mutation of [21] consists of the algebras of global dimension
at most 2. Following [3, 32], we associate to such an algebra A a quiver
Q̃A called the extended quiver, and show that when it has no loops and
2-cycles, then the extended quiver of a mutation µ−k (A) or µ+

k (A) that has
global dimension at most 2 is obtained from Q̃A by mutation at k.

We also provide an interpretation in terms of the generalized cluster cat-
egory CA of A introduced in [1]. Namely, when CA is Hom-finite, then the
image in CA of any of the complexes T−k and T+

k equals the mutation at k
of the canonical cluster-tilting object in CA, if the corresponding complex is
tilting with endomorphism algebra of global dimension at most 2.

1. Preliminaries

Let K be a field and let A = KQ/I be a finite dimensional algebra over K
given as a quotient of the path algebra of a finite quiver Q by an admissible
ideal I. For an arrow α in Q, let s(α) and t(α) denote its start and end
vertices. Our convention is that two arrows α, β can be composed (as αβ)
if t(α) = s(β).

Let modA be the category of finite dimensional right A-modules and
denote by Db(A) its bounded derived category. Let D = Homk(−, k) be the
duality on k-vector spaces. For a vertex i of Q, denote by Si the simple
module corresponding to i and by Pi its projective cover, which is spanned
by all (non-zero) paths starting at i. Thus an arrow α gives rise to a map
Pt(α)

α−→ Ps(α).
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Throughout this section, we fix a vertex k of Q which has no loops, that
is, Ext1A(Sk, Sk) = 0.

1.1. BB-tilting modules. Let τ denote the Auslander-Reiten translation
in modA.

Definition 1.1. We say that the BB-tilting module is defined at the vertex
k if the A-module

TBB
k = τ−1Sk ⊕

(⊕
i6=k

Pi

)
is a tilting module of projective dimension at most 1. In this case, TBB

k is
called the BB-tilting module associated with k.

It is shown in [43, Theorem 2.5] that the condition in Definition 1.1 is
equivalent to the conditions that HomA(DA,Sk) = 0 and Ext1A(Sk, Sk) = 0.
In particular, Sk is not injective, meaning that k is not a source. See also [12]
for the original construction and the survey article [4, §2.8].

1.2. Perverse equivalence at a vertex. We describe the construction
of [42, §2.6.2] (and its dual) for the filtration φ ⊂ {k} ⊂ {1, . . . , n} with
perversities differing by 1.

Let k be a vertex of Q without loops, and consider the maps

Pk
f−→

⊕
α : t(α)=k

Ps(α),
⊕

β : s(β)=k

Pt(β)
g−→ Pk

where f =
⊕

α is induced by the arrows α ending at k and g =
⊕

β is in-
duced by the arrows β starting at k. Note that f is a minimal left add(A/Pk)-
approximation of Pk and g is a minimal right add(A/Pk)-approximation of
Pk (these notions are defined later in Section 4).

Let Lk be the cone of f and Rk be the cone of g shifted one place to the
right. In a shortened notation, these are the complexes

Lk = Pk
f−→

⊕
j→k

Pj , Rk =
⊕
k→j

Pj
g−→ Pk

where Pk is in degree −1 in Lk and in degree 1 in Rk.
Define complexes T−k and T+

k of projective A-modules by

T−k = Lk ⊕
(⊕

i6=k

Pi

)
, T+

k = Rk ⊕
(⊕

i6=k

Pi

)
.(1.1)

In other words, T−k and T+
k are obtained by replacing the summand Pk in

the (trivial) tilting complex A by the complex Lk or Rk, respectively. When
we want to stress the dependency of these complexes on the algebra A, we
shall use the notation T−k (A) and T+

k (A).

2. BB-tilting vs. perverse equivalence at a vertex

We keep the assumptions of the previous section. In particular, k is a
vertex without loops.
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2.1. Conditions for tilting. In general, T−k and T+
k need not be tilting

complexes. Therefore we start by giving the necessary and sufficient condi-
tions on T−k and T+

k to be tilting, see also [25], [44] and [30, Theorem 4.1].
Observe that the summands of each of the complexes T−k and T+

k always
generate perA, the triangulated subcategory of Db(A) consisting of the per-
fect complexes (that is, bounded complexes of finitely generated projectives).
This follows from the two short exact sequences of complexes

0 →
⊕
j→k

Pj → Lk → Pk[1] → 0, 0 → Pk[−1] → Rk →
⊕
k→j

Pj → 0,

recalling that none of the summands Pj equals Pk.

Proposition 2.1. Let T−k , T+
k be the complexes defined in (1.1). Then:

(a) T−k is a tilting complex if and only if

HomDb(A)(Pi, Lk[−1]) = 0

for all vertices i 6= k.
(b) T−k is isomorphic in Db(A) to a tilting module if and only if

HomDb(A)(Pi, Lk[−1]) = 0

for all vertices i.
(c) T+

k is a tilting complex if and only if

HomDb(A)(Rk[1], Pi) = 0

for all vertices i 6= k.
(d) T+

k is never isomorphic in Db(A) to a tilting module.

Proof. The conditions in (a) and (c) are obviously necessary. We show now
claim (a). The proof of (c) is similar.

Since T−k is concentrated in only two consecutive degrees it is enough to
verify that

HomDb(A)(T
−
k , T−k [−1]) = 0 = HomDb(A)(T

−
k , T−k [1]).

As we are dealing with complexes whose terms are projective, morphisms
in the derived category can be computed as morphisms in the homotopy
category of complexes. Obviously, the morphism spaces

Hom(Pi, Pi′ [1]), Hom(Pi, Pi′ [−1]), Hom(Pi, Lk[1]), Hom(Lk, Pi[−1])

vanish for all i, i′ 6= k.
By assumption, HomDb(A)(Pi, Lk[−1]) = 0 for every i 6= k. It follows

that HomDb(A)(Lk, Lk[−1]) = 0 as well, by considering the right square of a
commutative diagram

Pk
f //

��

⊕
Pj

//

��

0

��
0 // Pk

f //
⊕

Pj

and using the assumption for each of the middle vertical maps Pj → Pk,
recalling that none of the Pj equals Pk.
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In addition, Hom(Lk, Pi[1]) = 0 for any i 6= k, as every path from i to k
(which corresponds to a map Pk → Pi) factorizes through one of the arrows
ending at k, so that one can always define the diagonal dotted homotopy in
the diagram

Pk
f //

��

⊕
Pj

��||
Pi

// 0

This also shows that Hom(Lk, Lk[1]) = 0, by considering the right square in
a commutative diagram

0 //

��

Pk
f //

��

⊕
Pj

��{{
Pk

f //
⊕

Pj
// 0

and applying the above argument for each of the middle vertical maps Pk →
Pj , recalling that none of the Pj equals Pk. The proof of (a) is thus complete.

For the proof of (b), note that H−1(T−k ) ' HomDb(A)(A,Lk[−1]). Finally,
for (d) observe that the map

⊕
k→j Pj → Pk can never be surjective, hence

H1(T+
k ) 6= 0. �

One can restate the conditions for T−k to be a tilting complex in terms of
the kernel of the map f whose cone is Lk.

Corollary 2.2. Let T−k be the complex of (1.1). Then:

(a) T−k is a tilting complex if and only if ker f ' Sm
k for some m ≥ 0.

(b) T−k is isomorphic in Db(A) to a tilting module if and only if f is a
monomorphism.

Proof. The claims follow from the isomorphisms

HomDb(A)(Pi, Lk[−1]) ' HomA(Pi, ker f)

for any vertex i and the corresponding claims in Proposition 2.1. Note
that our assumption that are no loops at k implies that any module whose
composition factors consist only of Sk is of the form Sm

k for some m ≥ 0. �

The conditions in Proposition 2.1 can also be conveniently rephrased in
terms of (non-vanishing of) paths, as follows. This is useful in practical
calculations.

Proposition 2.3. Let k be a vertex without loops and T−k , T+
k as in (1.1).

(a) T−k is a tilting complex if and only if for any non-zero linear com-
bination

∑
arpr of paths starting at k and ending at some vertex

i 6= k, there exists at least one arrow α ending at k such that the
composition

∑
arαpr is not zero.

(b) T−k is isomorphic in Db(A) to a tilting module if and only if the
condition of (a) holds for any vertex i (including k).
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(c) T+
k is a tilting complex if and only if for any non-zero linear com-

bination of paths
∑

arpr starting at some vertex i 6= k and ending
at k, there exists at least one arrow β starting at k such that the
composition

∑
arprβ is not zero.

Proof. We show only (a), as the proof of the other assertions is similar. By
considering the diagram below,

Pi
//

��

0

��
Pk

f //
⊕

j→k Pj

we see that the condition HomDb(A)(Pi, Lk[−1]) = 0 is equivalent to the
condition that for any non-zero morphism ρ : Pi → Pk, there exists an
arrow α : Pk → Pj such that the composition of ρ with α gives a non-zero
map Pi → Pj . �

Remark 2.4. From the proposition we immediately see that if k is a sink,
then T−k is always a tilting complex while T+

k is never one, whereas if k is a
source, then T−k is never a tilting complex while T+

k is always one.

Let Qop be the opposite quiver of Q. Namely, it has the same set of
vertices as Q, with an (opposite) arrow α∗ : j → i for any arrow α : i → j
of Q. If A = KQ/I, then the opposite algebra Aop can be written as Aop =
Qop/Iop where Iop is generated by the paths opposite to those generating I.
The simple and indecomposable projective Aop-modules corresponding to a
vertex i of Qop are then D(Si) and P ∗

i = HomA(Pi, A), respectively.
From the criteria in Proposition 2.3, we immediately deduce the following.

Corollary 2.5. T−k (A) is a tilting complex for A if and only if T+
k (Aop) is

a tilting complex for Aop.

We conclude this section by giving another simple criterion for the BB-
tilting module to be defined at the vertex k. It will be used in Section 5.3.

Lemma 2.6. Let k be a vertex without loops and let · · · → R−1 → R0 →
0 → . . . be a minimal projective resolution of DA. Then TBB

k is defined if
and only if Pk does not occur as summand in R0.

Proof. Recall that TBB
k is defined if and only if HomA(DA,Sk) vanishes. The

claim now follows from the fact that for any module M , HomA(M,Sk) '
HomA(P (M), Sk) where P (M) is the projective cover of M . �

2.2. BB-tilt as perverse equivalence at a vertex and vice versa.

Lemma 2.7. The sequence

(2.1) Pk
f−→

⊕
j→k

Pj → τ−1Sk → 0

is a projective presentation of τ−1Sk.
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Proof. Since τ−1 = TrD, we start by writing a projective presentation of
the simple Aop-module D(Sk) as⊕

k→j

P ∗
j

f∗−→ P ∗
k → D(Sk) → 0

where the sum goes over the arrows α∗ : k → j in Qop, and apply Tr to
get (2.1). �

The relations between BB-tilting and perverse equivalences at a vertex
are summarized in the following proposition.

Proposition 2.8. Let k be a vertex (without loops) of Q.
(a) If the BB-tilting module is defined at k, then T−k is a tilting complex

and TBB
k ' T−k in Db(A).

(b) Conversely, if T−k is isomorphic in Db(A) to a tilting module, then
the BB-tilting module is defined at k and T−k ' TBB

k in Db(A).

Proof. (a) The assumption implies that pdA τ−1Sk ≤ 1. It follows that
the projective presentation of (2.1) is actually a resolution. In other
words, τ−1Sk ' Lk in Db(A). Hence TBB

k ' T−k .
(b) By Corollary 2.2, ker f = 0, hence (2.1) is a projective resolution of

τ−1Sk. Therefore pdA τ−1Sk ≤ 1 and τ−1Sk ' Lk in Db(A). Hence
TBB

k ' T−k is a tilting module of projective dimension at most 1.
�

Under certain additional assumptions, any perverse equivalence given by
a tilting complex T−k can be regarded as a BB-tilting module.

Lemma 2.9. Assume that Sk is not a submodule of the radical of Pk. If T−k
is a tilting complex, then the BB-tilting module is defined at k and T−k ' TBB

k

in Db(A).

Proof. By Corollary 2.2(a), ker f ' Sm
k for some m ≥ 0. On the other

hand, ker f ⊆ radPk. Therefore ker f = 0 and the result follows from
Corollary 2.2(b) and Proposition 2.8(b). �

Remark 2.10. When EndA(Pk) ' K, the assumption of the lemma holds.
This happens, in particular, when the quiver Q is acyclic (i.e. A is triangu-
lar), or when the algebra A is schurian, that is, dimK HomA(Pi, Pi′) ≤ 1 for
any two vertices i, i′ of Q.

Remark 2.11. When A is a symmetric algebra which is not semi-simple,
T−k is always a tilting complex [42, §2.6], but the assumption of Lemma 2.9
does not hold. Observe that TBB

k is never defined since A has no non-trivial
tilting modules.

Lemma 2.12. Assume that pdA τ−1Sk ≤ 2. If T−k is a tilting complex, then
the BB-tilting module is defined at k and T−k ' TBB

k in Db(A).

Proof. By Corollary 2.2(a), the sequence (2.1) yields an exact sequence

0 → Sm
k → Pk

f−→
⊕
j→k

Pj → τ−1Sk → 0
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for some m ≥ 0. If m > 0, then by our assumption, Sk must be projective,
hence Pk = Sk, so that f is a monomorphism, a contradiction. Thus m = 0
and the result follows. �

3. Mutations of algebras

3.1. Operations. We assume now that the field K is algebraically closed.
Let A = KQ/I be a finite dimensional K-algebra given as a quiver Q with
relations.

Definition 3.1. Let k be a vertex of Q without loops.
(a) We say that the negative mutation is defined at the vertex k if T−k (A)

is a tilting complex. In this case, we call

µ−k (A) = EndDb(A) T−k (A)

the negative mutation of A at the vertex k.
(b) We say that the positive mutation is defined at the vertex k if T+

k (A)
is a tilting complex. In this case,

µ+
k (A) = EndDb(A) T+

k (A)

is called the positive mutation of A at the vertex k.
(c) We say that the BB-mutation is defined at the vertex k if TBB

k (A)
is defined. In this case, we call

µBB
k (A) = EndA TBB

k (A)

the BB-mutation of A at the vertex k.

Obviously, when µBB
k (A) is defined, so is µ−k (A), and moreover µBB

k (A) '
µ−k (A). The following proposition justifies the name “mutations” for these
operations.

Proposition 3.2. Let k be a vertex of Q without loops.
(a) If µ−k (A) is defined, then µ+

k (µ−k (A)) is defined and isomorphic to A.
(b) If µ+

k (A) is defined, then µ−k (µ+
k (A)) is defined and isomorphic to A.

(c) If µBB
k (A) is defined, then µBB

k

((
µBB

k (A)
)op) is defined and isomor-

phic to Aop.

Given a vertex k, precisely one of the following situations can occur:
• Both µ−k (A) and µ+

k (A) are defined; or
• One of them is defined; or
• None of them is defined.

When k is a sink or a source in Q, then exactly one of the mutations is
defined, namely, µ−k (A) for a sink k and µ+

k (A) for a source k.

Example 3.3. Let A be the path algebra of the quiver

•1 // •2 // •3 .

Using Proposition 2.3, we see that at the vertex 1, only µ+
1 (A) is defined,

whereas at the vertex 3, only µ−3 (A) is defined. At the vertex 2, both µ−2 (A)
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and µ+
2 (A) are defined, and are given by the following quivers with zero

relations:

•2

}}{{
{{

•1 // •3

•2

•1 // •3

aaCCCC

Let A′ = µ−2 (A) be as in the left picture. Then at the vertex 1, none of
µ−1 (A′) and µ+

1 (A′) is defined.

3.2. K-theoretical interpretation. Let Q be a quiver with n vertices. For
a vertex 1 ≤ k ≤ n, define the n× n matrices r−k = r−k (Q) and r+

k = r+
k (Q)

by (
r−k

)
ij

=

{
−δij + |{arrows j → k in Q}| if i = k,
δij otherwise,

and

(
r+
k

)
ij

=

{
−δij + |{arrows k → j in Q}| if i = k,
δij otherwise.

As already observed in [22, Lemma 7.1], these matrices are closely related
to the Fomin-Zelevinsky matrix mutation [21] of the skew-symmetric matrix
corresponding to Q. Namely, recall that for a quiver Q there is an associated
skew-symmetric matrix bQ defined by

(3.1) (bQ)ij =
∣∣{arrows j → i}

∣∣− ∣∣{arrows i → j}
∣∣,

and one can recover Q from bQ as long as it has no loops or 2-cycles.
Fomin and Zelevinsky have defined the mutation µk(bQ), which is a again

a skew-symmetric matrix, for any vertex k. Then µk(bQ) is obtained from bQ

by viewing the latter as a matrix of a bilinear form and applying a change-
of-basis transformation given by the matrix r−k or r+

k . More precisely, the
following lemma is a reformulation of [22, Lemma 7.1].

Lemma 3.4. Assume that Q has no loops and no 2-cycles. Then for any
vertex k, we have

µk(bQ) =
(
r−k

)T
bQr−k =

(
r+
k

)T
bQr+

k .

Now we relate the matrices r−k and r+
k to mutations of algebras via the

notion of the Euler form. Let A = KQ/I be a finite dimensional K-algebra
given as a quiver with relations and let n be the number of vertices of Q.
The Cartan matrix of A is the n× n integral matrix CA whose entries are

(CA)ij = dimK HomA(Pi, Pj)

for 1 ≤ i, j ≤ n.
Recall that the Grothendieck group K0(perA) is free abelian on the gen-

erators [P1], . . . , [Pn], and the expression

(3.2) 〈X, Y 〉A =
∑
r∈Z

(−1)r dimK HomDb(A)(X, Y [r])
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is well defined for any X, Y ∈ perA and induces a bilinear form on K0(perA),
known as the Euler form, whose matrix with respect to the basis of projec-
tives is CA.

The following lemma is briefly mentioned in [10].

Lemma 3.5. Let T be a (basic) tilting complex in Db(A) with endomor-
phism algebra A′ = EndDb(A)(T ) and let T1, . . . , Tn be the indecomposable
summands of T . Then the Cartan matrix of A′ is given by CA′ = rCArT ,
where r = (rij)n

i,j=1 is the matrix defined by

[Ti] =
n⊕

j=1

rij [Pj ]

(that is, its i-th row is the class of the summand Ti in K0(perA) written in
the basis [P1], . . . , [Pn]).

Proof. As the indecomposable projectives of A′ correspond to the indecom-
posable summands of T , we have

(CA′)ij = dimK HomDb(A)(Ti, Tj) = 〈[Ti], [Tj ]〉A
since T is a tilting complex. The result now follows. �

Proposition 3.6. Let A = KQ/I be a finite dimensional K-algebra.

(a) If µ−k (A) is defined, then Cµ−k (A) = r−k · CA ·
(
r−k

)T .

(b) If µ+
k (A) is defined, then Cµ+

k (A) = r+
k · CA ·

(
r+
k

)T .

Proof. Use Lemma 3.5 and the definition of T−k (A) and T+
k (A) in (1.1). �

When the algebra A has finite global dimension, perA = Db(A) and the
classes [S1], . . . , [Sn] form a basis of K0(perA). The matrix of the Euler
form (3.2) with respect to that basis is then given by cA = C−T

A , that is, the
inverse of the transpose of CA.

Corollary 3.7. Assume that A has finite global dimension.

(a) If µ−k (A) is defined, then cµ−k (A) =
(
r−k

)T · cA · r−k .

(b) If µ+
k (A) is defined, then cµ+

k (A) =
(
r+
k

)T · cA · r+
k .

Proof. By Proposition 3.6 we have

cµ−k (A) =
(
Cµ−k (A)

)−T
=

(
r−k CA

(
r−k

)T
)−T

=
(
r−k

)−T
cA

(
r−k

)−1

=
(
r−k

)T
cAr−k

where for the last equality we used the fact that
(
r−k

)2 is the identity matrix.
�

4. Mutations of endomorphism algebras

Mutations of algebras arise naturally when considering endomorphism al-
gebras of objects related by approximation sequences in additive categories.
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This has been essentially observed by Hu and Xi in [26], where they in-
troduced the notion of almost D-split sequences. We recall their result,
formulating it in a form which will be convenient for our applications.

Let C be a category, D a full subcategory and X an object of C. A
morphism f : X → D is called a left D-approximation if D ∈ D and any
morphism f ′ : X → D′ with D′ ∈ D can be completed to a commutative
diagram as in the left picture.

X

f ′   A
AA

AA
AA

A
f // D

��
D′

D
g // X

D′
g′

>>}}}}}}}}

OO

f is a minimal left D-approximation if furthermore, when considering the
left diagram with f ′ = f , any dotted arrow making it commutative is an
automorphism of D. The notions of a right D-approximation and a minimal
right D-approximation are defined similarly using the right diagram, see [5].

Let C be an additive category with split idempotents. For an object
M ∈ C, denote by add M the full subcategory consisting of finite direct sums
of direct summands of M . It is equivalent to the additive category of finitely
generated projective EndC(M)-modules, via the functor HomC(M,−).

Proposition 4.1 (Lemma 3.4 of [26]). Let M ∈ C and let

X
f−→ B

g−→ X ′

be a sequence of morphisms satisfying the following conditions:
(i) f : X → B is a left addM -approximation of X and g : B → X ′ is a

right addM -approximation of X ′,
(ii) The induced sequences

0 → HomC(U,X)
f∗−→ HomC(U,B)

g∗−→ HomC(U,X ′)

0 → HomC(X ′, U ′)
g∗−→ HomC(B,U ′)

f∗−→ HomC(X, U ′)

are exact, where U = X ⊕M and U ′ = X ′ ⊕M .
Then the rings Λ = EndC(U) and Λ′ = EndC(U ′) are derived equivalent.

Moreover, examining the proof in [26], we see that the following complex
of projective Λ-modules

(4.1)
(
HomC(U,X)

f∗−→ HomC(U,B)
)
⊕HomC(U,M),

where HomC(U,X) is in degree −1 and the other terms are in degree 0,
is a tilting complex whose endomorphism ring is isomorphic to Λ′. The
exactness of the first sequence implies that this complex is quasi-isomorphic
to a tilting module.

The similarity of (4.1) and (1.1) suggests that one can replace some of
the conditions on f∗ and g∗ by intrinsic conditions expressed only in terms
of the algebras Λ and Λ′.

Theorem 4.2. Let K be an algebraically closed field and C be a K-linear,
Hom-finite, additive category with split idempotents. Let U1, U2, . . . , Un−1 be
non-isomorphic indecomposable objects of C and set M = U1 ⊕ · · · ⊕ Un−1.
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Let Un and U ′
n be indecomposable objects of C not in addM . Set U =

M ⊕ Un and U ′ = M ⊕ U ′
n and consider the endomorphism algebras

Λ = EndC(U) and Λ′ = EndC(U ′).

Number the vertices of their quivers in accordance with the numbering of the
summands Ui. Assume that:

(i) There exist morphisms

f : Un → B and g : B → U ′
n

such that f is a minimal left addM -approximation and g is a min-
imal right addM -approximation;

(ii) The induced sequences

HomC(U,Un)
f∗−→HomC(U,B)

g∗−→ HomC(U,U ′
n)

HomC(U ′
n, U ′)

g∗−→HomC(B,U ′)
f∗−→ HomC(Un, U ′)

are exact.
Then the following are equivalent:

(a) The BB-tilting modules TBB
n (Λ) and TBB

n (Λ′op) are defined (in par-
ticular, the quivers of Λ and Λ′ have no loops at the vertex n).

(b) The induced maps f∗ and g∗ are monomorphisms.
(c) Λ′ ' µBB

n (Λ) (in particular, Λ and Λ′ are derived equivalent).

Proof. The indecomposable projectives in modΛ are precisely the modules
HomC(U,Ui). The assumption that f : Un → B is a minimal left addM -
approximation implies that f∗ : HomC(U,Un) → HomC(U,B) is a minimal
left addHomC(U,M)-approximation in modΛ, and therefore the complex
T−n (Λ) can be written as

T−n (Λ) '
(
HomC(U,Un)

f∗−→ HomC(U,B)
)
⊕HomC(U,M).

From Proposition 2.8 and Corollary 2.2(b) we deduce that f∗ is a monomor-
phism if and only if TBB

n (Λ) is defined.
Similarly, the indecomposable projectives in modΛ′op are the modules

HomC(Ui, U
′) for i < n together with HomC(U ′

n, U ′). The assumption
that g : B → U ′

n is a minimal right addM -approximation implies that
g∗ : HomC(U ′

n, U ′) → HomC(B,U ′) is a minimal left addHomC(M,U ′)-
approximation in modΛ′op, and therefore the complex T−n (Λ′op) can be writ-
ten as

T−n (Λ′op) '
(
HomC(U ′

n, U ′)
g∗−→ HomC(B,U ′)

)
⊕HomC(M,U ′).

A similar reasoning to the above shows that g∗ is a monomorphism if and
only if TBB

n (Λ′op) is defined. This shows the equivalence of (a) and (b).
Now (c) follows from (b) by Proposition 4.1 and the discussion afterwards.

Finally, if Λ′ ' µBB
n (Λ), then Λop ' µBB

n (Λ′op) and hence (c) implies (a). �

We see that if Λ and Λ′ are the endomorphism algebras of two objects
related by replacing an indecomposable summand by another through an
approximation sequence, then the existence of the two BB-mutations µBB

n (Λ)
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and µBB
n (Λ′op) automatically implies that they take the “correct” values,

namely Λ′ and Λop, respectively.
In the applications, the condition (ii) in the theorem is usually automat-

ically satisfied. Indeed, consider an approximation sequence

(4.2) Un
f−→ B

g−→ U ′
n

as in (i) of the theorem.

Corollary 4.3. If C is exact and (4.2) is an exact sequence, then (ii) is
satisfied. Moreover, in this case f∗ and g∗ are monomorphisms so that
always Λ′ ' µBB

n (Λ).

Remark 4.4. If C is triangulated and (4.2) is a triangle, then (ii) is satis-
fied. In this case, the BB-tilting modules TBB

n (Λ), TBB
n (Λ′op) are not always

defined and the algebras Λ, Λ′ are not necessarily derived equivalent.

5. Mutations of endomorphism algebras in 2-CY categories

Cluster categories were introduced in [15] as a categorical framework for
the cluster algebras of Fomin and Zelevinsky [21]. Particular role is played
by the so-called cluster-tilting objects and their endomorphism algebras,
known as cluster-tilted algebras [17]. Cluster categories are 2-Calabi-Yau
triangulated categories, and the theory has been extended to such cate-
gories [1, 13, 14, 31, 34] as well as to Frobenius categories which are stably
2-Calabi-Yau [13, 22].

The results of the preceding section can be applied in the study of endo-
morphism algebras of cluster-tilting objects in these categories. We begin
by recalling the relevant notions.

Let K be an algebraically closed field and C a K-linear Hom-finite additive
category with split idempotents which is either:

• triangulated 2-Calabi-Yau (2-CY) category, that is, there exist func-
torial isomorphisms HomC(X, Y [2]) ' D HomC(Y, X) for X, Y ∈ C;
or

• a Frobenius category whose stable category, which is triangulated
by [23], is 2-CY.

When C is triangulated, we denote HomC(X, Y [1]) by Ext1C(X, Y ).
An object U ∈ C is rigid if Ext1C(U,U) = 0. It is a cluster-tilting object

if it is rigid and for any X ∈ C, Ext1C(U,X) = 0 implies that X ∈ addU .
When C is Frobenius stably 2-CY, any indecomposable projective-injective
is a summand of any cluster-tilting object.

The operation of mutation of [21] is categorified by mutation of cluster-
tilting objects, see [15, 31]. Let U = U1 ⊕ U2 ⊕ · · · ⊕ Un be a basic
cluster-tilting object written as a sum of n non-isomorphic indecompos-
ables. When C is triangulated, set m = n. When C is Frobenius, assume
that Um+1, . . . , Un are all the projective-injective summands of U . Then for
any 1 ≤ k ≤ m there exists a unique U ′

k non-isomorphic to Uk such that
µk(U) = (U/Uk)⊕U ′

k is a cluster-tilting object (here, U/Uk denotes the sum
of all Ui for i 6= k). Moreover, there are so-called exchange triangles

Uk
f−→ B

g−→ U ′
k U ′

k
f ′−→ B′ g′−→ Uk(5.1)
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when C is triangulated, and (exact) exchange sequences

0 → Uk
f−→ B

g−→ U ′
k → 0 0 → U ′

k
f ′−→ B′ g′−→ Uk → 0(5.2)

when C is Frobenius, such that the maps f, f ′ are minimal left add(U/Uk)-
approximations and g, g′ are minimal right add(U/Uk)-approximations.

5.1. Endomorphism algebras in 2-CY Frobenius categories. Let K
be an algebraically closed field and E a K-linear, Hom-finite, Frobenius
category which is stably 2-CY.

It is known by [39] that the derived equivalence class of the endomor-
phism algebra of a cluster-tilting object U in E does not depend on U , see
also [27, §5]. It is still of interest to relate the endomorphism algebras of two
cluster-tilting objects related by mutation. This has been done in [22] for
Frobenius categories arising from preprojective algebras. The following is a
generalization, essentially saying that the mutation operations of algebras
“commute” with mutation of cluster-tilting objects.

Theorem 5.1. Let U be a cluster-tilting object in E. Then for any non
projective-injective summand Uk of U , all the corresponding BB-, negative
and positive mutations of EndC(U) are defined and moreover,

EndE
(
µk(U)

)
' µBB

k

(
EndE(U)

)
= µ−k

(
EndE(U)

)
' µ+

k

(
EndE(U)

)
.

Proof. Using Corollary 4.3 for the left exchange sequence in (5.2), we get
that µBB

k (EndC(U)) is defined and

EndE
(
µk(U)

)
' µBB

k

(
EndE(U)

)
= µ−k

(
EndE(U)

)
.

Using this for µk(U) instead of U , we get that

EndE(U) ' EndE
(
µk(µk(U))

)
' µBB

k

(
EndE(µk(U))

)
= µ−k

(
EndE(µk(U))

)
,

hence µ+
k (EndE(U)) is also defined and isomorphic to EndC(µk(U)). �

5.2. Endomorphism algebras in 2-CY triangulated categories. Let
K be an algebraically closed field and C a K-linear, Hom-finite, triangulated
2-CY category with split idempotents.

Let U = U1⊕U2⊕· · ·⊕Un a cluster-tilting object. According to [17, 34],
the neighboring 2-CY-tilted algebras Λ = EndC(U) and Λ′ = EndC(µk(U))
are related by what is called in [40] near-Morita equivalence, namely if Sk and
S′k are the simple modules in Λ and Λ′ corresponding to the indecomposables
Uk and U ′

k, then

modΛ/〈addSk〉 ' modΛ′/〈addS′k〉.

This generalizes APR-tilting [6], which corresponds to the case where the
vertex k is a sink.

Another feature of APR-tilting is that the algebras related by an APR-
tilt are derived equivalent. However, it is easily seen (and well known) that
two nearly-Morita equivalent 2-CY-tilted algebras are in general not derived
equivalent.
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Example 5.2. The quivers of two cluster-tilted algebras of type A3 are
shown below. One is obtained from the other by mutation at the vertex 2.

•2

!!C
CC

C

•1

=={{{{
•3

•2

}}{{
{{

•1 // •3

aaCCCC
(5.3)

The corresponding algebras, where in the right one the composition of any
pair of consecutive arrows is zero, are nearly Morita equivalent but not
derived equivalent.

Nevertheless, several derived equivalence classifications of cluster-tilted
algebras [8, 10, 18] have revealed that, at least in finite mutation type, the
number of derived equivalence classes is much smaller than the number of
isomorphism classes of algebras (which equals the number of quivers in the
mutation class). For example, in type E8 there are 1574 algebras but only 15
derived equivalence classes [10]. Moreover, many of the classifications rely on
showing that sufficiently many pairs of near Morita equivalent cluster-tilted
algebras are also derived equivalent.

In an attempt to provide a conceptual explanation of these phenomena,
it is therefore interesting to formulate conditions that will guarantee the
derived equivalence of neighboring 2-CY-tilted algebras. A similar problem
for Jacobian algebras was studied in [44].

Theorem 5.3. Let U be a cluster-tilting object in C and let Λ = EndC(U)
and Λ′ = EndC(µk(U)) be two neighboring 2-CY-tilted algebras.

Then Λ′ ' µBB
k (Λ) if and only if the BB-tilting modules TBB

k (Λ) and
TBB

k (Λ′op) are defined. In particular, in this case Λ and Λ′ are derived
equivalent.

Proof. Use the left exchange triangle in (5.1) and Theorem 4.2. �

Example 5.4. Looking again at Example 5.2, denote by Λ and Λ′ the
left and right cluster-tilted algebras in (5.3). Then TBB

2 (Λ) is defined and
µBB

2 (Λ) is the algebra given by the left quiver of Example 3.3 (with zero
relation), hence Λ′ 6' µBB

2 (Λ). Observe that for any 1 ≤ i ≤ 3, none of the
mutations µ+

i (Λ′), µ−i (Λ′) is defined.

Theorem 5.3 motivates the following definition, see also [10].

Definition 5.5. Let U be a cluster-tilting object of C. The mutation µk(U)
is good if EndC(µk(U)) ' µBB

k (EndC(U)). In this case, we say that the
algebra EndC(µk(U)) is obtained from EndC(U) by a good mutation.

Remark 5.6. For certain classes of 2-CY-tilted algebras, such as cluster-
tilted algebras of Dynkin type, there exist algorithms to determine the rela-
tions from their quivers [16]. Moreover, the nature of these relations allows
to compute bases of paths for these algebras and hence, thanks to Proposi-
tion 2.3, to efficiently decide for any vertex whether the BB-tilting module
is defined.

The author has implemented these algorithms in a computer program
that determines whether two (neighboring) cluster-tilted algebras of Dynkin
type (given by their quivers) are related by a good mutation. In particular,
this allowed to verify the results of [10] on a computer.
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Inspired by the connectivity of the mutation graph of cluster-tilting ob-
jects in cluster categories [15], the following question naturally arises.

Question 5.7. Let Λ and Λ′ be two derived equivalent 2-CY-tilted algebras
(for a fixed 2-CY category C). Are they connected by a sequence of good
mutations (in C)?

In other words, does there exist a sequence of 2-CY-tilted algebras Λ =
Λ0,Λ1, . . . ,Λt = Λ′ such that for any 0 ≤ i < t, either Λi+1 is obtained from
Λi by a good mutation or Λi is obtained from Λi+1 by a good mutation?

The results in [8, 10, 18] show that the answer to this question is posi-
tive for the cluster-tilted algebras of types A, Ã and E. However, there are
cluster-tilted algebras of type D which are derived equivalent but not con-
nected by a sequence of good mutations, as shown by the following example,
see also the forthcoming paper [9].

Example 5.8. The quivers of two derived equivalent cluster-tilted algebras
of type D6 are shown below.

• // •
��3

33
3

•

EE����
•
����
��

•

YY3333
•oo

•
����
��

•oo

��

•
��3

33
3

99rrrrrrr •

YY3333

• // •

EE����

eeLLLLLLL

Since these algebras are self-injective [41], they have no non-trivial tilting
modules and in particular no good mutations.

5.3. A numerical criterion for derived equivalence. By a result of
Keller and Reiten [34], 2-CY-tilted algebras are Gorenstein of dimension at
most one. We now use this fact to obtain a criterion for the derived equiva-
lence via BB-mutation of neighboring 2-CY-tilted algebras in terms of their
Cartan matrices, under the assumption that these matrices are invertible
over Q.

For a finite dimensional algebra A with n non-isomorphic simples, we
denote by Ii the (indecomposable) injective envelope of Si.

Definition 5.9. Let A be a finite dimensional algebra with pdA DA < ∞.
We define the (integral) matrix SA by the following equalities in K0(perA):

[Ii] =
n∑

j=1

(SA)ij [Pj ], 1 ≤ i ≤ n.

When A has finite global dimension, the matrix −SA is the matrix of the
Coxeter transformation of A with respect to the basis of K0(perA) given by
the indecomposable projectives, see [36].

Lemma 5.10. Let A be a finite dimensional algebra with pdA DA < ∞.
(a) If idA A < ∞, then SA is invertible over Z.
(b) Let CA be the Cartan matrix of A. Then SACT

A = CA.
(c) In particular, if CA is invertible over Q, then SA equals the asym-

metry CAC−T
A .
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Proof. (a) Let w be the integral matrix defined by the equalities [Pi] =∑n
j=1 wij [Ij ] in K0(perA) for 1 ≤ i ≤ n. Then w · SA is the identity

matrix.
(b) By duality, we have Hom(Pl, Ii) ' D Hom(Pi, Pl) for 1 ≤ i, l ≤ n.

Thus
n∑

j=1

(SA)ij(CA)lj = 〈[Pl], [Ii]〉A = dimK Hom(Pl, Ii) = dimK Hom(Pi, Pl)

= (CA)il

and so SA · CT
A = CA.

�

As before, let U = U1 ⊕ · · · ⊕ Un be a basic cluster-tilting object in the
2-CY category C and let Λ = EndC(U) be the corresponding 2-CY-tilted
algebra. Since Λ is Gorenstein, the matrix SΛ is defined. We list some of its
properties, based on the notion of index from [19].

As the Gorenstein dimension of Λ is at most one [34], there exists a
minimal projective resolution of DΛ of the form

(5.4)
n⊕

j=1

P
ej

j →
n⊕

j=1

P
dj

j

with integers dj , ej ≥ 0 for 1 ≤ j ≤ n.

Lemma 5.11. Let 1 ≤ j ≤ n. Then one of dj, ej vanishes.

Proof. By [34], the resolution (5.4) arises from a triangle

U1 → U0 → νU → U1[1]

with U0, U1 ∈ addU , where ν ' [2] is the Serre functor in C. Since νU is a
rigid object of C, the objects U0 and U1 have no common summand by [19,
Prop. 2.1]. This means that dj and ej cannot be both positive. �

It follows that one can read the terms of the minimal projective resolution
of each Ii from the entries of the matrix SΛ.

Proposition 5.12. For 1 ≤ i ≤ n, let
n⊕

j=1

P
eij

j →
n⊕

j=1

P
dij

j

be a minimal projective resolution of Ii. Then:
(a) For any 1 ≤ j ≤ n,

dij =

{
(SΛ)ij if (SΛ)ij > 0,
0 otherwise;

eij =

{
−(SΛ)ij if (SΛ)ij < 0,
0 otherwise.

(b) A column of SΛ cannot contain both positive and negative entries.

Proof. Let 1 ≤ j ≤ n. We have dj =
∑n

i=1 dij and ej =
∑n

i=1 eij as sums of
non-negative integers. Since one of dj , ej vanishes by Lemma 5.11, we have
that all the entries dij or all the entries eij vanish.

In particular, since one of dij , eij vanishes, the first assertion follows from
(SΛ)ij = dij − eij .
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If the j-th column of SΛ contained entries of different signs, this would
mean that dij and ei′j are non-zero for some i, i′, which is impossible. �

By using the triangle U → U0 → U1 → U [1] with U0, U1 ∈ add νU we
obtain the dual statement.

Proposition 5.13. For 1 ≤ i ≤ n, let
n⊕

j=1

I
dij

j →
n⊕

j=1

I
eij

j

be a minimal injective resolution of Pi. Then:
(a) For any 1 ≤ j ≤ n,

dij =

{
(S−1

Λ )ij if (S−1
Λ )ij > 0,

0 otherwise;
eij =

{
−(S−1

Λ )ij if (S−1
Λ )ij < 0,

0 otherwise.

(b) A column of S−1
Λ cannot contain both positive and negative entries.

Corollary 5.14. Let k be a vertex without loops in the quiver of Λ. Then:
(a) TBB

k (Λ) is defined if and only if (SΛ)ik ≤ 0 for all 1 ≤ i ≤ n.
(b) TBB

k (Λop) is defined if and only if (S−1
Λ )ik ≤ 0 for all 1 ≤ i ≤ n.

Proof. By Lemma 2.6, TBB
k (Λ) is defined if and only if dk = 0. Now use

Proposition 5.12. The proof of the second statement is dual. �

Theorem 5.15. Let U be a cluster-tilting object in C and let Λ = EndC(U)
and Λ′ = EndC(µk(U)) be two neighboring 2-CY-tilted algebras. Assume
that their quivers have no loops at k.

Then Λ′ = µBB
k (Λ) if and only if (SΛ)ik ≤ 0 and

(
S−1

Λ′
)
ik
≤ 0 for any

1 ≤ i ≤ n.

Proof. Use Theorem 5.3 and Corollary 5.14. �

Remark 5.16. When the Cartan matrices CΛ and CΛ′ are invertible over
Q, the theorem gives an effective criterion to decide if Λ′ = µBB

k (Λ), by
examining the signs of the entries in the k-th columns of the asymmetries
SΛ = CΛC−T

Λ and S−1
Λ′ = CT

Λ′C
−1
Λ′ .

Example 5.17. Consider the cluster-tilted algebras Λ and Λ′ of type D5

whose quivers, related by a mutation at the vertex 3, are shown below.

•1 // •2 //

����
��

�
•3

����
��

�

•4

[[66666
// •5

[[66666

•1 // •2

����
��

�
•3oo

•4

[[66666
// •5

CC�����

Using the description of the relations given in [16], one computes their
Cartan matrices

CΛ =


1 0 0 1 0
1 1 0 1 1
1 1 1 0 0
0 1 0 1 0
0 1 1 1 1

 CΛ′ =


1 0 0 1 0
1 1 1 1 1
0 0 1 1 1
0 1 1 1 0
0 1 0 1 1
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and the corresponding asymmetries

SΛ =


0 0 0 1 −1
0 0 0 1 0
1 0 0 0 0
0 1 −1 0 0
0 1 0 0 0

 S−1
Λ′ =


0 1 −1 0 0
0 0 0 0 1
0 0 0 1 0
0 1 0 0 0
−1 1 0 0 0

 .

Since the entries in the third column of both matrices are non-positive,
the corresponding BB-tilting modules TBB

3 (Λ) and TBB
3 (Λ′op) are defined,

and we deduce that Λ′ ' µBB
3 (Λ) is obtained from Λ by a good mutation at

the vertex 3.

6. Mutations of algebras of global dimension at most 2

We start with the following motivating example. Consider the two skew-
symmetric matrices

b =

0 −1 0
1 0 −1
0 1 0

 b′ = µ2(b) =

 0 1 −1
−1 0 1
1 −1 0


whose associated quivers Q and Q′ via (3.1) are given by those in (5.3). So
by considering the matrices cQ and cQ′ defined by

(cQ)ij = −
∣∣{arrows i → j in Q}

∣∣,
one can think of b and b′ as the skew-symmetrizations b = cQ − cT

Q and
b′ = cQ′ − cT

Q′ .
As Q is acyclic while Q′ is not, the path algebra KQ is finite dimensional

while KQ′ is infinite dimensional, so they cannot be derived equivalent.
Thus, at a first stage one must introduce some relations on Q′ so that by
dividing its path algebra by the ideals they generate, one obtains a finite
dimensional algebra. The notion of quivers with potentials and their muta-
tions, introduced in [20], provides a systematic way of doing this, and the
resulting algebras are known as Jacobian algebras.

The Jacobian algebras corresponding to Q and Q′ are precisely the cluster-
tilted algebras of Example 5.2, which, despite being closely related via near
Morita equivalence, are not derived equivalent. One approach to get a de-
rived equivalence is to replace the Jacobian algebras by suitable dg-algebras
(the Ginzburg algebras). Then one is always able to interpret mutation as
derived equivalence, see [35].

Another approach is inspired from the fact that cluster-tilted algebras are
relation-extension of tilted algebras [3]. Therefore, by cleverly deleting ar-
rows and interpreting them as relations in the opposite direction, one should
obtain algebras of global dimension at most 2, see also [2], and (sometimes)
interpret quiver mutation as mutation of these algebras in the sense of Sec-
tion 3.

Indeed, if A = KQ, then by deleting the arrows in Q′ from 3 to 2 or
from 2 to 1, one gets the algebras µ−2 (A) and µ+

2 (A) respectively, see Exam-
ple 3.3, thus interpreting the quiver mutation at the vertex 2 as a mutation
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of algebras. Moreover, one can view b and b′ as the skew-symmterizations
of the corresponding Euler forms,

b = cA − cT
A, b′ = cµ−2 (A) − cT

µ−2 (A)
= cµ+

2 (A) − cT
µ+

2 (A)
.

6.1. Mutations of algebras as mutations of quivers. Let K be an
algebraically closed field and let A be a finite dimensional algebra of global
dimension at most 2. Denote by QA the quiver of A and recall that cA

denotes the matrix of the Euler form on Db(A) with respect to the basis of
simples. Motivated by [3, 32], we make the following definition.

Definition 6.1. The extended quiver of A, denoted Q̃A, has the same ver-
tices as QA, with the number of arrows from i to j equal to

dimK Ext1A(Si, Sj) + dimK Ext2A(Sj , Si).

When A is hereditary, Q̃A coincides with QA.

Lemma 6.2. b
eQA

= cA − cT
A.

Proof. We have(
b
eQA

)
ij

= −dimK Ext1A(Si, Sj)− dimK Ext2A(Sj , Si)

+ dimK Ext1A(Sj , Si) + dimK Ext2A(Si, Sj)

= (cA)ij − (cA)ji

since gl.dim A ≤ 2. �

Lemma 6.3. Let k be a vertex of Q̃A without loops.

(a) If µ−k (A) is defined and gl.dim µ−k (A) ≤ 2, then r−k (Q̃A) = r−k (QA).
(b) If µ+

k (A) is defined and gl.dim µ+
k (A) ≤ 2, then r+

k (Q̃A) = r+
k (QA).

Proof. We show only the first claim, as the proof of the second is similar. By
the definition of the matrices r−k , we only need to show that Ext2A(Sk, Si) = 0
for any i 6= k.

Let A′ = µ−k (A) and denote by F = RHom(T−k ,−) the equivalence from
Db(A) to Db(A′). From (1.1) and the definition of Lk we see that there exist
A′-modules M ′

i such that F (Si) ' M ′
i for i 6= k and F (Sk) ' M ′

k[−1] (in
fact, M ′

k is the simple A′-module corresponding to k, but we do not need
this here). It follows that

Ext2A(Sk, Si) = HomDb(A)(Sk, Si[2]) ' HomDb(A′)(M
′
k[−1],M ′

i [2])

= Ext3A′(M ′
k,M

′
i) = 0

by our assumption that gl.dim A′ ≤ 2. �

The following proposition shows that mutations between algebras of global
dimension at most 2 can be interpreted as mutations of the corresponding
extended quivers, as long as these quivers contain neither loops nor 2-cycles.

Proposition 6.4. Assume that Q̃A does not contain loops nor 2-cycles, and
let k be a vertex of Q̃A.
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(a) If µ−k (A) is defined and gl.dim µ−k (A) ≤ 2, then b
eQ

µ−
k

(A)

= µk(b eQA
).

Moreover, if Q̃µ−k (A) does not have loops or 2-cycles, then

Q̃µ−k (A) = µk(Q̃A).

(b) If µ+
k (A) is defined and gl.dim µ+

k (A) ≤ 2, then b
eQ

µ+
k

(A)

= µk(b eQA
).

Moreover, if Q̃µ+
k (A) does not have loops or 2-cycles, then

Q̃µ+
k (A) = µk(Q̃A).

Proof. By Lemma 3.4, Lemma 6.3 and Corollary 3.7,

µk(b eQA
) =

(
r−k (Q̃A)

)T
b
eQA

(
r−k (Q̃A)

)
=

(
r−k (QA)

)T
b
eQA

(
r−k (QA)

)
=

(
r−k (QA)

)T (
cA − cT

A

) (
r−k (QA)

)
= cµ−k (A) − cT

µ−k (A)
= b

eQ
µ−

k
(A)

.

This proves (a). The proof of (b) is similar. �

6.2. Interpretation in cluster categories. For certain algebras A with
gl.dim A ≤ 2, the above results can be refined to have an interpretation
in terms of the generalized cluster category CA associated with A that was
introduced in [1]. Recall that CA is the triangulated hull of the orbit category
Db(A)/νA[−2], where νA denotes the Serre functor on Db(A).

Consider the A-A-bimodule Ext2A(DA,A) and the tensor algebra Ã =
TA(Ext2A(DA,A)) known as the 3-preprojective algebra of A, see [29, 32].
In this section we assume that Ã is finite dimensional over K. It is shown
in [1] that under this condition the triangulated category CA is Hom-finite
and 2-Calabi-Yau, the image πA(A) of A under the canonical projection

πA : Db(A) → Db(A)/νA[−2] → CA

is a cluster-tilting object in CA with endomorphism algebra

EndCA
(πA(A)) ' Ã,

and the quiver of Ã is Q̃A.

Lemma 6.5 (Amiot). Let T be a tilting complex in Db(A) and let B =
EndDb(A)(T ). If gl.dim B ≤ 2, then πA(T ) is a cluster-tilting object in CA

whose endomorphism ring is isomorphic to B̃.

Proof. The assumptions imply that we have a commutative diagram

Db(A)
Φ=RHom(T,−)

'
//

πA

��

Db(B)

πB

��
CA

eΦ

'
// CB.

Since Φ maps T to B, the isomorphism Φ̃ maps πA(T ) to πB(B), and the
claim follows. �
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Lemma 6.6. Let X be a complex in Db(A) of the form

· · · → 0 → P−1 → P 0 → P 1 → 0 → . . .

where P i are projectives. If πA(X) ' πA(P ) in CA for a projective A-module
P , then X ' P already in Db(A).

Proof. For any n ∈ Z, denote by D≥n the full subcategory of Db(A) consist-
ing of complexes whose cohomology vanishes in degrees smaller than n. Let
F = νA[−2]. Since gl.dim A ≤ 2, we have F (D≥n) ⊆ D≥n for any n ∈ Z.

Since νAP is an injective A-module, we get that FP ∈ D≥2. Hence
FmP ∈ D≥2, thus HomDb(A)(X, FmP ) = 0 for any m > 0. Similarly, FX is
the complex of injectives νAP−1 → νAP 0 → νAP 1 concentrated in degrees
1, 2 and 3, so it lies in D≥1. It follows that HomDb(A)(P, FmX) = 0 for any
m > 0.

If πA(X) ' πA(P ), then by the definition of the orbit category [33], there
exist morphisms fm : P → FmX and gm : X → FmP in Db(A) for m ∈ Z,
all but finitely many are zero, such that∑

m∈Z
Fm(g−m) ◦ fm = 1P ,

∑
m∈Z

Fm(f−m) ◦ gm = 1X .(6.1)

But we have just shown that fm = 0 and gm = 0 for any m > 0, so the
equalities in (6.1) simplify to g0f0 = 1P and f0g0 = 1X , giving that X ' P
in Db(A). �

Proposition 6.7. Let k be a vertex of QA.
(a) Assume that µ−k (A) is defined and gl.dim µ−k (A) ≤ 2. Then πA(T−k )

is the mutation of the canonical cluster-tilting object πA(A) in CA at
the vertex k.

(b) Assume that µ+
k (A) is defined and gl.dim µ+

k (A) ≤ 2. Then πA(T+
k )

is the mutation of the canonical cluster-tilting object πA(A) in CA at
the vertex k.

Proof. πA(T−k ) is a cluster-tilting object in CA by Lemma 6.5. By (1.1), it
is obtained from πA(A) by replacing the summand πA(Pk) by πA(Lk). As
πA(Lk) 6' πA(Pk) by Lemma 6.6, we get the first claim by the uniqueness of
mutation [31]. The proof of the second claim is similar. �

Thus, when CA is Hom-finite, by combining Proposition 6.7 with [13,
Theorem II.1.6] we get an alternative proof of Proposition 6.4.

6.3. Examples. We give examples showing that starting with the extended
quiver Q̃A of an algebra A with gl.dim A ≤ 2, there are cases where a
mutation of Q̃A at a vertex has two interpretations as mutations of algebras,
as well as other cases where is has no such interpretation.

Example 6.8. Let A+, A and A− be the algebras given by the quivers with
relations

•1

}}{{
{{

!!C
CC

C

•2

!!C
CC

C •3

}}{{
{{

•4

•1

��

•2 •3

•4

aaCCCC
=={{{{

•1

}}{{
{{

!!C
CC

C

•2 •3

•4

OO
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(A+ has a commutativity relation while A− has zero relations). These alge-
bras are of global dimension at most 2 and their extended quivers Q̃A+ , Q̃A

and Q̃A− are given by

•1

}}{{
{{

!!C
CC

C

•2

!!C
CC

C •3

}}{{
{{

•4

OO •1

��

•2 •3

•4

aaCCCC
=={{{{

•1

}}{{
{{

!!C
CC

C

•2

!!C
CC

C •3

}}{{
{{

•4

OO

We see that A+ = µ+
4 (A) and A− = µ−4 (A) and correspondingly Q̃A+ =

µ4(Q̃A) = Q̃A− , hence the mutation from Q̃A to µ4(Q̃4) carries two different
interpretations as mutations of algebras, leading to different, yet derived
equivalent algebras.

The passage from A+ to A− can be viewed as a composition of the fol-
lowing two perverse equivalences at the vertex 4,

Db(A+)
RHom(TBB

4 (A+),−)
−−−−−−−−−−−−→

'
Db(A)

RHom(TBB
4 (A),−)

−−−−−−−−−−−→
'

Db(A−)

arising from the BB-tilting modules TBB
4 (A+) and TBB

4 (A). This compo-
sition coincides with the 2-APR-tilt [28] of A+ at the sink 4. In fact, one
can show that any 2-APR-tilt is a composition of the corresponding two
BB-tilts.

The next example shows that there are cases where the mutation equiva-
lence of the quivers Q̃A and Q̃B can not be interpreted as a derived equiva-
lence of the algebras A and B, even if the cluster categories CA and CB are
Hom-finite (Claire Amiot, private communication).

Example 6.9. Let A be the algebra given by the quiver with zero relations
as in the following picture.

•2 // •3

��7
77

7

•1

CC����

��7
77

7 •4

����
��

•5 // •6

The quiver Q̃A is given by the left picture below. If we mutate it at the
vertices 2, 4 and 5, we arrive at quiver Q given in the right picture.

•2 // •3

��7
77

7

wwpppppppp

•1

CC����

��7
77

7 •4

����
��

•5 // •6

ggNNNNNNNN

OO •2

����
��

•3oo

•1 •4

[[7777

•5

[[7777
•6oo

CC����

Nevertheless, A is not derived equivalent to the algebra B = KQ, despite
the fact that the quivers Q̃A and Q̃B = Q are mutation equivalent. Indeed,
even the corresponding Euler bilinear forms cA and cB are not equivalent.
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Note that the above sequence of mutations cannot be interpreted as a
sequence of perverse derived equivalences at the corresponding vertices. In-
deed, none of the complexes T−2 , T+

2 , T−4 , T+
4 , T−5 , T+

5 is a tilting complex
over A.
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