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Abstract. We provide a derived equivalence classification of the gentle algebras aris-
ing from triangulations of marked bordered unpunctured surfaces. Two such algebras
are derived equivalent if and only if they have the same derived invariant introduced by
Avella-Alaminos and Geiss; this in turn happens if and only if the corresponding quiv-
ers with potentials can be connected by a sequence of “good” mutations. Thus there is
an effective algorithm that decides whether two such algebras are derived equivalent.

We also show that for any marked bordered unpunctured surface, the gentle alge-
bras arising from its triangulations with the property that their adjacency quiver has
maximal number of arrows constitute a complete derived equivalence class of finite-
dimensional algebras. Furthermore, any connected gentle algebra whose derived in-
variant of Avella-Alaminos and Geiss is equal to that of the algebras in this class
necessarily belongs to that class.

1. Introduction

Gentle algebras are certain finite-dimensional algebras defined combinatorially in
terms of quivers with relations. As shown by Schröer and Zimmermann, the class of
gentle algebras is closed under derived equivalence [17]. It is a long standing problem to
classify the gentle algebras up to derived equivalence, but only partial results have been
achieved so far [2, 3, 7].

In this note we solve the derived equivalence classification problem for the subclass of
gentle algebras arising from surface triangulations that has been introduced by Assem,
Brüstle, Charbonneau-Jodoin and Plamondon [1]. These algebras are the Jacobian al-
gebras of the quivers with potentials [10] associated to (ideal) triangulations of marked
bordered oriented surfaces without punctures [11, 12].

There are two natural approaches to address derived equivalence classification prob-
lems of a given collection of algebras arising from some combinatorial data. The top-
down approach is to divide these algebras into equivalence classes according to some
invariants of derived equivalence, so that algebras belonging to different classes are not
derived equivalent. The bottom-up approach is to systematically construct, based on
the combinatorial data, tilting complexes yielding derived equivalences between pairs of
these algebras and then to arrange these algebras into groups where any two algebras
are related by a sequence of such derived equivalences. To obtain a complete derived
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equivalence classification one has to combine these approaches and hope that the two
resulting partitions of the entire collection of algebras coincide.

Indeed, our main result shows that the two approaches can be successfully combined
to give a complete derived equivalence classification of the gentle algebras arising from
surface triangulations.

For the top-down approach we use the derived invariant for gentle algebras that was
developed by Avella-Alaminos and Geiss [3]. It takes the form of a function φΛ : N2 → N
that can be effectively computed from the quiver with relations of a gentle algebra Λ.
In some cases this invariant is fully capable of distinguishing the derived equivalence
classes [2, 3, 7], but in general it is not complete, that is, there exist gentle algebras
Λ and Λ′ which are not derived equivalent but nevertheless φΛ = φΛ′ . Therefore one
must use other methods in order to establish the derived equivalence of the algebras in
question.

For the bottom-up approach we use constructions that are based on good mutations
of quivers with potential, which correspond to particular kind of derived equivalences
between their corresponding Jacobian algebras. The notion of good mutation has been
introduced in our earlier work [14] in relation with assessing the derived equivalence of
endomorphism algebras of neighboring cluster-tilting objects in 2-Calabi-Yau categories.
It turns out that it plays crucial role in the derived equivalence classification of cluster-
tilted algebras of Dynkin types A, D and E as well as affine type Ã [4, 5, 6, 8]. For the
gentle algebras arising from surface triangulations, good mutations correspond also to
certain flips of triangulations.

1.1. Notions. In order to state our results more precisely, we introduce some relevant
notions. We start by defining good mutations of quivers with potentials. Let (Q,W ) be
a quiver with potential (QP) without loops and 2-cycles and let P(Q,W ) be its Jacobian
algebra. Consider the following complexes of finitely generated right projective P(Q,W )-
modules

T−
k =

(
Pk

f−→
⊕
j→k

Pj

)
⊕

(⊕
i6=k

Pi

)
, T+

k =
(⊕
k→j

Pj
g−→ Pk

)
⊕

(⊕
i6=k

Pi

)
.

Here, Pi denotes the projective module corresponding to i spanned by all paths start-
ing at i, the map f (respectively, g) is induced by all the arrows ending (respectively,
starting) at k, and the terms Pi for i 6= k lie in degree 0.

Definition 1. The QP mutation of (Q,W ) at the vertex k is good if at least one of the
complexes T−

k , T+
k is a tilting complex over P(Q,W ) whose endomorphism algebra is

isomorphic to the Jacobian algebra P(µk(Q,W )) of the mutation of (Q,W ) at k.

By definition, a good QP mutation at k implies the derived equivalence of the Jacobian
algebras P(Q,W ) and P(µk(Q,W )).

We recall the definition of the gentle algebras arising from surface triangulations, which
are our main object of study. A marked bordered oriented surface without punctures is a
pair (S, M) where S is a compact connected Riemann surface with non-empty boundary
∂S and M ⊂ ∂S is a finite set of marked points containing at least one point from
each connected component of ∂S. The homeomorphism type of (S, M) is determined by
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the genus g of S, the number b ≥ 1 of connected components of its boundary and the
(positive) numbers n1, . . . , nb of marked points on each boundary component.

Let T be a triangulation of (S, M). Fomin, Shapiro and Thurston [11] associate to
T its adjacency quiver QT whose vertices are in bijection with the (internal) arcs of T
and for any pair of arcs i, j which are two sides of a triangle τ of T there is an arrow
i → j if j follows i in the clockwise order on the sides of τ induced by the orientation
on S. An internal triangle τ whose sides in the clockwise order are the arcs i, j, k thus
yields an oriented 3-cycle i → j → k → i in QT . The potential WT on QT associated to
T by Labardini [12] is the sum of all the oriented 3-cycles corresponding to the internal
triangles of T and its Jacobian algebra ΛT = P(QT ,WT ) is then the gentle algebra
associated to T in [1].

We now define the parameters of a triangulation which encode the topological data
relevant to the derived equivalence classification.

Definition 2. Let T be a triangulation of (S, M). A dome in T is a triangle containing
two boundary segments (necessarily from the same component) as sides.

The following picture explains the name, where a solid line denotes an arc and
a line denotes a boundary segment.

· · ·
Thus one can associate to T a sequence d1, . . . , db of b non-negative integers counting

the number of domes incident to each boundary component.

Definition 3. Let T be a triangulation of (S, M). The sequence

g, b, {(n1, d1), . . . , (nb, db)}
obtained by combining the topological data of (S, M) with the information on the domes
of T is called the parameters of T .

Note that the sequence (n1, d1), . . . , (nb, db) is considered as a multi-set, that is, up to
permutation of the indices 1, . . . , b.

1.2. Main results. For a triangulation T , denote by (QT ,WT ) the corresponding quiver
with potential, by ΛT = P(QT ,WT ) its Jacobian algebra and by φΛT

its derived invariant
of Avella-Alaminos and Geiss.

Theorem A. Let T , T ′ be triangulations of marked bordered unpunctured surfaces.
Then the following conditions are equivalent:

(a) T and T ′ have the same parameters;
(b) φΛT

= φΛT ′ ;
(c) ΛT and ΛT ′ are derived equivalent;
(d) (QT ,WT ) and (QT ′ ,WT ′) are connected by a sequence of good QP mutations.

Note that the implications (d) ⇒ (c) ⇒ (b) are always true by definition. In addition,
the equivalence of conditions (a) and (b) follows from a recent result of David-Roesler and
Schiffler [9], see Section 2.1 below. The crucial part of the proof of the theorem is thus
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to show the implication (a) ⇒ (d). To this end, we characterize the good mutations as
those corresponding to flips of triangulations preserving the number of internal triangles,
see Section 2.2, and then invoke a suitable connectivity argument, see Section 2.3.

Remark 1. The parameters of a triangulation encode in particular the homeomor-
phism type of the marked surface. Thus, two algebras arising from triangulations of
non-homeomorphic marked unpunctured surfaces are never derived equivalent. When
considering the implication (a) ⇒ (d), we may therefore assume that T and T ′ are
triangulations of the same marked unpunctured surface.

Remark 2. As special instances of the theorem one recovers the derived equivalence
classifications of cluster-tilted algebras of Dynkin type A by Buan and Vatne [8] and
those of affine type Ã by Bastian [4], corresponding to the cases where the surface S is
a disc (g = 0 and b = 1) or an annulus (g = 0 and b = 2), respectively.

Remark 3. Since the Jacobian algebras ΛT = P(QT ,WT ) are gentle, good QP mu-
tations are Brenner-Butler (co-)tilts. Moreover, it turns out that a QP mutation of
(QT ,WT ) is good if and only if the corresponding Jacobian algebras are derived equiva-
lent, see Section 2.2. Thus, we may formulate the “connectivity” condition (d) in several
equivalent ways, as in the next proposition.

Proposition 1. Let T , T ′ be triangulations of a marked bordered unpunctured surface
(S, M). Then the following conditions are equivalent:

(d) (QT ,WT ) and (QT ′ ,WT ′) are connected by a sequence of good QP mutations;
(d’) (QT ,WT ) and (QT ′ ,WT ′) are connected by a sequence of QP mutations such that

all intermediate Jacobian algebras are derived equivalent;
(d”) ΛT and ΛT ′ are connected by a sequence of Brenner-Butler tilts and co-tilts such

that all intermediate algebras are gentle algebras arising from triangulations of
(S, M).

The implication (c) ⇒ (d) in the theorem is remarkable, as it allows to translate the
question of derived equivalence to that of the existence of a sequence of basic moves
which are much easier to control. This is a highly non-trivial assertion, as demonstrated
by the following remarks.

Remark 4. Quivers with potentials have also been assigned to triangulations of marked
surfaces with punctures, i.e. when the set of marked points is not entirely contained in
the boundary of the surface [11, 12]. However, for the corresponding Jacobian algebras,
the implication (c) ⇒ (d) does not hold in general. Indeed, already for cluster-tilted
algebras of Dynkin type D, which arise from triangulations of a disk with one puncture,
there are derived equivalent such algebras whose quivers are not connected by a sequence
of good mutations [6].

Remark 5. The equivalent implication (c) ⇒ (d”) shows in particular that any two
derived equivalent gentle algebras arising from surface triangulations are related by a
sequence of Brenner-Butler tilts or co-tilts. This does not hold for gentle algebras in
general. For example, the gentle algebras corresponding to the two quivers below with
the relations αβ and βγ are derived equivalent but nevertheless cannot be related by a
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sequence of Brenner-Butler tilts or co-tilts, see also the discussion in [2, §6].

•
α

��

// •

•
β //// •

γ

OO •
α

����

•

• β // •

γ

OO OO

Remark 6. The cluster-tilted algebras of Dynkin type E, as well as the Jacobian al-
gebras associated to the members of the mutation classes of the exceptional quivers
E

(1,1)
6 and X6, are neither gentle nor arising from triangulations of (punctured) sur-

faces. Nevertheless, a statement analogous to the implication (c) ⇒ (d) holds for these
algebras [5, 13].

For a marked bordered unpunctured surface (S, M), denote by L(S,M) the family of
(isomorphism classes of) gentle algebras arising from the triangulations of (S, M). The
family L(S,M) is finite, but in general it is neither closed under derived equivalence nor
all its members are derived equivalent to each other.

Our next result shows that there is always a distinguished subfamily L◦(S,M) ⊆ L(S,M)

which constitutes a complete derived equivalence class of finite-dimensional algebras,
and moreover it is characterized by its derived invariant of Avella-Alaminos and Geiss.

Definition 4. For a marked bordered unpunctured surface (S, M), let L◦(S,M) ⊆ L(S,M)

denote the family of gentle algebras arising from the triangulations of (S, M) having
maximal number of domes.

Remark 7. A triangulation T of (S, M) has maximal number of domes if and only if
its adjacency quiver QT has maximal number of arrows within its mutation class, see
Section 2.1.

Theorem B. Let (S, M) be a marked bordered unpunctured surface. Then the following
assertions hold:

(i) If Λ,Λ′ ∈ L◦(S,M), then Λ and Λ′ are related by a sequence of Brenner-Butler tilts
or co-tilts, and in particular they are derived equivalent.

(ii) If Λ ∈ L◦(S,M) and Λ′ is a connected gentle algebra such that φΛ = φΛ′, then also
Λ′ ∈ L◦(S,M).

(iii) If Λ ∈ L◦(S,M) and Λ′ is an algebra derived equivalent to Λ′, then Λ′ ∈ L◦(S,M).

Part (i) of the theorem is a consequence of Theorem A. Part (iii) follows from (ii),
since the class of gentle algebras is closed under derived equivalence [17]. The proof of
part (ii) is given in Section 2.4.

With the exception of the cases of a disc with 4 or 5 marked points, the subfamily
L◦(S,M) coincides with L(S,M) if and only if the set M of marked points contains exactly
one point from each boundary component of S, or equivalently, none of the triangulations
of (S, M) has any domes, see also [15]. For any pair (g, b) 6= (0, 1) there is, up to
homeomorphism, a unique such marked bordered unpunctured surface of genus g with
b boundary components. We denote by Qg,b the set of (right equivalence classes of)
quivers with potentials associated with the triangulations of that surface. Applying the
above results, we can regard the entire mutation class Qg,b as a derived equivalence class:
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Corollary ([13]). All the quivers in the mutation class Qg,b have the same number of
arrows and any of their QP mutations is good.

The corresponding class of (finite-dimensional) Jacobian algebras is closed under de-
rived equivalence, and any two of its members are connected by a sequence of Brenner-
Butler tilts or co-tilts, so in particular they are derived equivalent.

2. Outline of the proofs

2.1. Top-down. In this section we separate the gentle algebras arising from surface
triangulations according to their derived invariant of Avella-Alaminos and Geiss [3].
Recall that for a gentle algebra Λ it is given as a function φΛ : N2 → N.

This invariant has been computed by David-Roesler and Schiffler in [9] for a class of
algebras called “surface algebras” which contains the gentle algebras arising from surface
triangulations.

By abuse of notation, we denote by (n, m) the characteristic function of the singleton
{(n, m)} ⊂ N2, taking the value 1 on (n, m) and zero otherwise. A function φ : N2 → N
having finite support can thus be written as a formal sum φ =

∑
(n,m)∈N2 φ(n, m)(n, m).

Proposition 2. Let T be a triangulation with parameters g, b, (n1, d1), . . . , (nb, db) and
let ΛT be the corresponding gentle algebra. Then

φΛT
= (n1 − d1, n1 − 2d1) + (n2 − d2, n2 − 2d2) + · · ·+ (nb − db, nb − 2db) + t(0, 3)

where t = 4(g − 1) + 2b +
∑b

i=1 di.

Proof. This is a reformulation of [9, Theorem 4.6], once we know that t is the number
of internal triangles of T . This is shown in the next lemma below. �

Lemma. Let T be a triangulation with parameters g, b, (n1, d1), . . . , (nb, db). Then:

(a) The number of vertices in the quiver QT is 6(g − 1) + 3b +
∑b

i=1 ni.
(b) The number of arrows in the quiver QT is 12(g − 1) + 6b +

∑b
i=1(ni + di).

(c) The number of internal triangles of T is 4(g − 1) + 2b +
∑b

i=1 di.

Proof. Let n denote the number of arcs of T , which is also the number of vertices of QT .
According to [11], it is given by n = 6(g − 1) + 3b +

∑b
i=1 ni. For 0 ≤ j ≤ 2, denote by

tj the number of triangles of T with j sides that are boundary segments. Then t0 is the
number of internal triangles, t2 is the number of domes and 3t0 + t1 is the number of
arrows in the quiver QT .

By definition, t1 =
∑b

i=1(ni − 2di) and t2 =
∑b

i=1 di. To determine t0, let us count
in two ways the pairs (γ, τ) there τ is a triangle of T and γ is an arc which is one of its
sides. On the one hand, there are 3t0 + 2t1 + t2 such pairs. On the other hand, since
each arc is a side of exactly two triangles, there are 2n such pairs. The formula for t0
now follows from the equality 2n = 3t0 + 2t1 + t2 by using the above expressions for n,
t1 and t2. �

Remark 8. Proposition 2 shows that φΛT
depends only on the parameters of the trian-

gulation T , and that conversely, the parameters of T can be recovered from φΛT
. This

proves the equivalence of conditions (a) and (b) in Theorem A.
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Remark 9. We also see that if ΛT and ΛT ′ are derived equivalent, then T and T ′ can
be viewed as triangulations of the same marked bordered unpunctured surface.

2.2. Bottom-up. We build derived equivalences by using the combinatorial data un-
derlying the classification problem. Namely, certain flips of triangulations will give rise
to derived equivalences of the corresponding gentle algebras.

In view of Remark 9, we may restrict our attention to triangulations of some fixed
marked unpunctured surface. Given a triangulation T and an arc k of T , there is another
triangulation µk(T ) obtained from T by a flip of the arc k. It is known [11] that flips
are compatible with quiver mutations, that is, Qµk(T ) ' µk(QT ) and moreover the QPs
(Qµk(T ),Wµk(T )) and µk(QT ,WT ) are right equivalent [12].

Results from our previous works [13, 15] can be used to determine, for any two trian-
gulations connected by a single flip, whether the associated gentle algebras are derived
equivalent or not. We summarize them in the following proposition.

Proposition 3. Let T be a triangulation and k an arc of T . Then all the conditions
below are equivalent:

(i) The triangulations T and µk(T ) have the same parameters;
(ii) The triangulations T and µk(T ) have the same number of internal triangles;
(iii) The quivers QT and µk(QT ) have the same number of arrows;
(iv) The in-degree and the out-degree of the vertex k in the quiver QT are not both 1;
(v) The algebras ΛT and Λµk(T ) are derived equivalent;
(vi) The algebras ΛT and Λµk(T ) have the same Cartan determinant;
(vii) The mutation at k of (QT ,WT ) is good.

2.3. Connectivity argument. In order to successfully combine the bottom-up with
the top-down approaches and obtain a complete derived equivalence classification, we
must show that any two triangulations with the same parameters can be connected by a
sequence of flips which do not change these parameters. This is the content of the next
proposition.

Proposition 4. Let T , T ′ be two triangulations of a marked bordered unpunctured sur-
face (S, M) with the same numbers d1, d2, . . . , db of domes incident to each boundary
component of ∂S. Then one can move from T to T ′ by a sequence of flips without
creating or destroying any dome.

It is a well-known and classical fact that T and T ′ can be connected by a sequence of
flips, but a-priori each of these flips might change the numbers of domes. So the main
point is that one can find a sequence of flips while keeping the numbers of domes fixed
along the way. This can be done by carefully adapting the combinatorial proof of the
classical fact of connectivity by flips given by Mosher in [16, pp. 36–41].

Remark 10. This proposition, together with Proposition 3, implies the equivalence of
conditions (a) and (d) in Theorem A, and thus completes its proof.

Remark 11. Similar connectivity results have been obtained for quivers in the mutation
class of a Dynkin quiver of type A [8, Lemma 2.3] and for mutation classes of the affine
quivers Ã [4, Lemma 3.9]. These results can be seen as special instances of Proposition 4
formulated in quiver language, corresponding to the cases where the surface S is a disc
(type A) or an annulus (type Ã).
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2.4. Gentle algebras with prescribed invariant. It remains to show part (ii) of
Theorem B. Indeed, it is a consequence of the next proposition.

For a function φ : N2 → N, denote by Lφ the family of connected gentle algebras Λ
with φΛ = φ.

Proposition 5. Let b ≥ 1 and t ≥ 0. Let m1, . . . ,mb be positive integers and ε1, . . . , εb ∈
{0, 1}. Consider the function φ : N2 → N given by

(?) φ = (m1, ε1) + · · ·+ (mb, εb) + t(0, 3).

(a) The family Lφ is not empty if and only if there exists an integer g ≥ 0 such that
t = 4(g − 1) + 2b +

∑b
i=1(mi − εi).

(b) If Lφ is not empty, then Lφ = L◦(S,M) where (S, M) is the marked bordered
unpunctured surface of genus g with b boundary components and 2mi−εi marked
points on the i-th component of ∂S.

(c) Conversely, let (S, M) be a marked bordered unpunctured surface. Then L◦(S,M) =
Lφ for the function φ given as in (?) and determined as follows:
b is the number of components of ∂S, the numbers mi ≥ 1 and εi ∈ {0, 1} are
uniquely determined by the condition that the number of marked points on the
i-th component is 2mi− εi, and t = 4(g− 1) + 2b +

∑b
i=1(mi− εi) where g is the

genus of S.

Proof. Let Λ ∈ Lφ. Since φΛ(m, ε) vanishes whenever ε ≥ 2, any zero-relation α1α2 in
the quiver of Λ must be part of an oriented n-cycle α1α2 . . . αn with full zero-relations
αiαi+1 for 1 ≤ i < n and αnα1, for some n ≥ 1. Moreover, we have n = 3 since φΛ(0, n)
vanishes for other values of n.

By [1, Prop. 2.8], the algebra Λ arises from a triangulation of a marked unpunctured
surface. The rest now follows from Proposition 2, observing that ni = 2mi − εi and
di = mi − εi it the maximal possible number of domes incident to the i-th boundary
component. �

Remark 12. Let (S, M) be a marked bordered unpunctured surface. Assume that there
is a boundary component C ⊆ ∂S with boundary segments β1, β2 incident to a marked
point p ∈ M . Let γ be an arc as in the following picture

· β1

γ

·p β2 ·

giving rise to a triangle ∆ whose sides (in clockwise order) are β1, γ and β2.
Consider the bordered surface S′ = S \ (∆ ∪ β1 ∪ β2) and let M ′ = M \ {p}. The

corresponding boundary component C ′ of S′ is obtained from C by replacing β1∪β2 with
the arc γ. If (S′,M ′) has non-empty triangulations, there is a one-to-one correspondence
between these triangulations and triangulations of (S, M) with dome ∆.

We deduce that when (g, b) 6= (0, 1), any sequence of parameters

g, b, {(n1, d1), . . . , (nb, db)}
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with 0 ≤ di ≤ bni
2 c is realizable by a triangulation of some marked unpunctured surface

(S, M) of genus g, and that the sequence 0, 1, {(n1, d1)} with n1 ≥ 4 and 2 ≤ d1 ≤ bni
2 c

is realizable by a triangulation of a disc with n1 marked points.

Let b ≥ 1 and t ≥ 0. Consider the function φ as in (?), where m1, . . . mb, ε1, . . . , εb

are integers such that mi ≥ 1 and 0 ≤ εi ≤ mi. It follows from the above remark and
Proposition 2 that Lφ contains a gentle algebra arising from surface triangulation (and
in particular, it is non-empty) if t = 4(g−1)+2b+

∑b
i=1(mi−εi) for some integer g ≥ 0.

Remark 13. Let T ′ and T ′′ be triangulations of marked unpunctured surfaces (S′,M ′),
(S′′,M ′′) with parameters

g′, b′,
{
(n′1, d

′
1), . . . , (n

′
b′ , d′b′)

}
, g′′, b′′,

{
(n′′1, d

′′
1), . . . , (n

′′
b′′ , d′′b′′)

}
,

and let ΛT ′ , ΛT ′′ be the corresponding gentle algebras. The gentle algebra ΛT ′ ×ΛT ′′ is
not connected, and can be thought as arising from a triangulation of the non-connected
surface (S′ ∪ S′′,M ′ ∪M ′′).

Assume that g′ and g′′ are not both zero and let ΛT be the gentle algebra arising from
a triangulation T with parameters

g′ + g′′ − 1, b′ + b′′,
{
(n′1, d

′
1), . . . , (n

′
b′ , d′b′), (n′′1, d

′′
1), . . . , (n

′′
b′′ , d′′b′′)

}
.

We deduce from Proposition 2 that φΛT
= φΛT ′ + φΛT ′′ , hence the algebras ΛT and

ΛT ′×ΛT ′′ have the same derived invariant of Avella-Alaminos and Geiss. However, they
are not derived equivalent, as one is connected and the other is not.

Moreover, observe that ΛT ∈ L◦(S,M) if and only if ΛT ′ ∈ L◦(S′,M ′) and ΛT ′′ ∈ L◦(S′′,M ′′),
thus the conclusion of Proposition 5 is false if we drop the condition that the algebras in
Lφ are connected. This justifies our assumption of connectivity throughout the paper.
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