On Derived Equivalences of Triangles, Rectangles and Lines

Sefi Ladkani

Max-Planck-Institute for Mathematics, Bonn

http://guests.mpim-bonn.mpg.de/sefil/

What is the connection between . . .

 $A_1, A_2, A_3, D_4, D_5, E_6, E_7, E_8$

Context

- Test algebras [Lenzing de la Peña 2008]
- Structured equivalence of *Euler forms* as an indicator of derived equivalence.
- Categories of singularities; weighted projective lines [Lenzing et al.]
- Auslander algebras and initial modules [Geiss-Leclerc-Schröer]
- Cluster algebra structures on . . .
 - Upper-triangular unipotent matrices [Geiss-Leclerc-Schröer]
 - Grassmannians [Scott 2006]

Lines

k - field, $\overrightarrow{A_n}$ - the quiver

$$\bullet_1 \xrightarrow{x} \bullet_2 \xrightarrow{x} \bullet_3 \xrightarrow{x} \cdots \xrightarrow{x} \bullet_n$$

The path algebra $k\overline{A_n}$ is the incidence algebra of the linear order on $\{1,2,\ldots,n\}$.

For $r \geq 2$, consider $A(n,r) = k\overline{A_n}/(x^r)$ — the path algebra modulo the ideal generated by all the relations x^r .

- A(n,r) is of finite representation type,
- We are interested in its derived equivalence class, following [Lenzing
 de la Peña, 2008].

The algebras A(n,r)

- $A(n,2) \sim k\overrightarrow{A_n}$.
- The derived equivalence class of A(n,3) for $1 \le n \le 11$:

$$A_1, A_2, A_3, D_4, D_5, E_6, E_7, E_8, C(2,3,5), C(2,3,6), C(2,3,7)$$

where C(2, p, q) is the *canonical algebra* of weight type (2, p, q) [Lenzing - de la Peña 2008].

• Characterization of the pairs (n,r) for which A(n,r) is *piecewise* hereditary [Happel - U. Seidel].

The ADE Chain: $A_1, A_2, A_3, D_4, D_5, E_6, E_7, E_8$

- The *cluster type* of . . .
 - the quiver

with n vertices [Barot-Geiss-Zelevinsky 2006].

— the coordinate rings of the *Grassmannians* [Scott 2006]

$$Gr_{3,5}, Gr_{3,6}, Gr_{3,7}, Gr_{3,8}$$

• The derived equivalence class of

Rectangles

 $n,m\geq 1$. Consider the incidence algebra of $\overrightarrow{A_n}\times \overrightarrow{A_m}$,

- Fully commutative quiver.
- Global dimension 2 (when $m, n \ge 2$).
- Periodic Coxeter transformation.

Derived equivalence of rectangles and lines

Theorem 1. $k(\overrightarrow{A_n} \times \overrightarrow{A_m}) \sim A(m \cdot n, m+1)$.

Generalizes $A(n,2) \sim k \overrightarrow{A_n}$ and $A(2n,3) \sim k(\overrightarrow{A_n} \times \overrightarrow{A_2})$, hence can be viewed as *higher ADE chains*.

Invariants of derived equivalence

Derived equivalent algebras (with finite global dimension)

Equivalent Euler forms

with respect to bases of indecomposable projectives: Cartan matrices

Similar Coxeter transformations

Same Coxeter polynomial

Examining the Cartan matrices

$$\overrightarrow{A_3} \times \overrightarrow{A_4} \qquad \qquad A(12,4)$$

$$\begin{pmatrix} \frac{1}{0} & \frac{1}{1} & \frac{1}{0} & \frac{1}{1} & \frac{$$

A statement on matrices . . .

Proposition. Let A be a square invertible matrix over a commutative ring K. Then the bilinear forms represented by the matrices

$$C = \begin{pmatrix} A & A & \dots & A & A \\ 0 & A & A & \ddots & A \\ \vdots & 0 & A & \ddots & \vdots \\ \vdots & & \ddots & \ddots & A \\ 0 & \dots & \dots & 0 & A \end{pmatrix} \quad and \quad \begin{pmatrix} A & A^T & 0 & \dots & 0 \\ 0 & A & A^T & \ddots & \vdots \\ \vdots & 0 & A & \ddots & 0 \\ \vdots & & \ddots & \ddots & A^T \\ 0 & \dots & \dots & 0 & A \end{pmatrix} = C'$$

are equivalent over K.

Proof. Find P such that $P^TCP = C'$.

There exists such P whose blocks are 0 or powers of $S = -A^{-1}A^{T}$.

... interpreted as derived equivalence

 Λ – finite-dimensional algebra over k with gl. dim $\Lambda < \infty$.

 $D\Lambda = \operatorname{Hom}_k(\Lambda, k)$, with multiplication maps

$$\Lambda \otimes_{\Lambda} D\Lambda \to D\Lambda, \qquad D\Lambda \otimes_{\Lambda} \Lambda \to D\Lambda, \qquad D\Lambda \otimes D\Lambda \to 0.$$

$$D\Lambda \otimes_{\Lambda} \Lambda \to D\Lambda$$
,

$$D\Lambda \otimes D\Lambda \to 0$$
.

Theorem 2.

Corollary. Taking $\Lambda = k \overrightarrow{A_m}$ we get Theorem 1.

A tilting complex

There are generalized versions for certain other auto-equivalences F.

Relevance

• Stable category of vector bundles on *weighted projective lines* [Kussin-Lenzing-Meltzer-de la Peña]

$$\underline{\mathrm{vect}}\,\mathbb{X}_{2,3,p}\simeq\mathcal{D}^b\left(A(2(p-1),3)\right)$$

Categories of (graded) singularities [loc. cit.]

$$x^2 + y^3 + z^p$$

• The cluster algebra structure on the coordinate ring of the *Grass-mannian* $Gr_{m+1,n+m+2}$ is related to $A_n \times A_m$ [Scott 2006].

Triangles

The Auslander algebra of $\overrightarrow{A_n}$ with linear orientation,

$$\operatorname{Auslander}(k\overrightarrow{A_n}) = \operatorname{End}_{k\overrightarrow{A_n}} \left(\bigoplus_{M} M \right)$$

where M runs over all indecomposable $k\overrightarrow{A_n}$ -modules.

Variants

The Auslander algebra of $\overleftarrow{A_{2n+1}}$ with *bipartite* orientation:

More generally, consider the *initial modules* [Geiss-Leclerc-Schröer]

$$kQ \oplus \tau^{-1}kQ \oplus \cdots \oplus \tau^{-r}kQ$$

for an acyclic quiver Q, where τ is the Auslander-Reiten translation.

Auslander algebras and rectangles

Theorem 3. Let Q be an acyclic quiver such that

$$\tau^{-1}kQ, \tau^{-2}kQ, \dots, \tau^{-r}kQ$$

are kQ-modules. Then

$$\operatorname{End}_{kQ}\left(\bigoplus_{i=0}^{r} \tau^{-i} k Q\right) \sim kQ \otimes_{k} k \overline{A_{r+1}}$$

Corollary. Auslander $(kA_{2n+1}) \sim k(A_{2n+1} \times A_{n+1})$.

Strategy of proof

• Examine the *Euler forms* (this time, with respect to the basis of simples)

$$C = \begin{pmatrix} A & -A & 0 & \dots & 0 \\ 0 & A & -A & \ddots & \vdots \\ \vdots & 0 & A & \ddots & 0 \\ \vdots & & \ddots & \ddots & -A \\ 0 & \dots & \dots & 0 & A \end{pmatrix} \qquad \begin{pmatrix} A & A^T & 0 & \dots & 0 \\ 0 & A & A^T & \ddots & \vdots \\ \vdots & 0 & A & \ddots & 0 \\ \vdots & & \ddots & \ddots & A^T \\ 0 & \dots & \dots & 0 & A \end{pmatrix} = C'$$

• Observe structured equivalence $C' = P^T C P$ with

$$P = diag(I, S, S^2, \dots, S^r),$$
 $S = -A^{-1}A^T$

- Construct appropriate tilting complex.
- Generalized version.

Back to triangles through repetitive algebras

Corollary.

$$\operatorname{Auslander}(\overrightarrow{A_{2n}}) \sim \operatorname{End}_{k \overleftarrow{A_{2n+1}}} \Bigl(\bigoplus_{i=0}^{n-1} \tau^{-i} k \overleftarrow{A_{2n+1}} \Bigr) \sim k(A_{2n+1} \times A_n)$$

... All these algebras are derived equivalent

$$\mathsf{Auslander}(\overrightarrow{A_4}) \sim \mathsf{End}_{k \overleftarrow{A_5}} \left(k \overleftarrow{A_5} \oplus \tau^{-1} k \overleftarrow{A_5} \right) \sim k(A_2 \times A_5) \sim A(10,3)$$