
LANGLANDS, WEIL, AND LOCAL CLASS FIELD THEORY
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Abstract. The local Langlands conjecture predicts a relationship between Galois repre-
sentations and representations of the topological general linear group. In this talk we explain
a special case of the program, local class field theory, with a goal towards its nonabelian
generalization. One of our main conclusions is that the Galois group should be replaced by
a variant called the Weil group.

As number theorists, we would like to understand the absolute Galois group ΓQ of Q. It
is hard to say briefly why such an understanding would be interesting. But for one, if we
understood the open, index-n subgroups of ΓQ then we would understand the number fields
of degree n. There are much deeper reasons, related to the geometry of algebraic varieties,
why we suspect ΓQ carries deep information, though that is more speculative.

One way to study ΓQ is through its n-dimensional complex representations, that is, (con-
jugacy classes of) homomorphisms

ΓQ → GLn(C).

Starting with a 1967 letter to Weil, Langlands proposed that these representations are related
to the representations of a completely different kind of group, the adelic group GLn(AQ).
This circle of ideas is known as the Langlands program.

The Langlands program over Q turned out to be very difficult. Even today, we cannot
properly formulate a precise conjecture. So to get a start on the problem, mathematicians
restricted attention to the completions of Q, namely Qp and R, and studied the problem
there. As over Q, Langlands conjectured a relationship between n-dimensional Galois rep-
resentations

ΓQp → GLn(C)

and representations of the group GLn(Qp), as well as an analogous relationship over R.
In a non-technical overview, it is difficult to explain anything of substance about the

Langlands program. The first reason is that this program draws on several areas of math-
ematics, including algebraic geometry, number theory, representation theory, and analysis.
The second reason is that the historical precursors to the program are rather complicated.
The third reason is that the program is incomplete. We cannot even properly formulate the
conjectures in the global setting. Nonetheless, it must be possible to say something, because
many mathematicians work in this field and our knowledge is rapidly advancing!

The goal of this talk is to say a few words about an important test case for the local
Langlands program, class field theory. One of our main conclusions is that the Galois group
should be replaced by a closely related group, the Weil group. I had hoped to say much more,
and in particular give a broad overview of the local Langlands correspondence for GLn, but
it surpassed my expositional ability to do so without becoming too abstract.

Date: 10 August 2021.
1



2 DAVID SCHWEIN

1. Structure of the p-adic Galois group

The Langlands program studies a specific kind of structure carried by ΓQp , its finite-
dimensional complex representations. But before we discuss the representation theory, it’s
worth summarizing what is known about the general structure of this profinite group.

There are two ways to study the structure of a group. First, you can describe it in terms of
generators and relations, explaining how to multiply elements in the group. Second, you can
describe it in terms of a composition series, explaining how the group is built from simpler
groups. For the Galois group of Qp, we have good answers to both of these questions.

1.1. Presentation. We have known a presentation for ΓQp since the 1980’s. The following
theorem is due to Jannsen and Wingberg [NSW08, Theorem 7.5.14].

Theorem 1. Let k 6= Q2 be a finite extension of Qp of degree n. There is a presentation for
the profinite group Γk with n+ 3 generators and with relations analogous to the relations for
the fundamental group of a compact surface of genus ≈ n/2.

Surprisingly, Jannsen and Wingberg’s description of ΓQp is not the end of the story. I
have never seen it used to prove a technical result of interest to the Langlands program.
Nonetheless, Jannsen and Wingberg’s theorem is significant for the following two reasons.
First, it indicates that the Galois group carries a much more interesting kind of structure
than anything that could be captured by group theory alone. Second, the suggested analogy
between p-adic fields and compact Riemann surfaces had inspired several fruitful geometric
formulations of the Langlands program.

1.2. Ramification filtration. Instead of working with a presentation of a group, we can
study it by breaking it into simpler pieces, in other words, by introducing a filtration and
studying the subquotients of the filtration. For the group ΓQp , there are three essential
pieces, coming from unramified extensions, tamely ramified extensions, and wildly ramified
extensions. The third case is by far the most complicated.

Since the unramified part of ΓQp comes from Fp, we start by reviewing the structure of ΓFp .
For each n ≥ 1, the field Fp admits a unique extension Fpn of degree n, the cyclotomic
extension containing the (pn − 1)th roots of unity. The Galois group of this extension is
cyclic with a canonical generator, the Frobenius automorphism Fr: x 7→ xp. It follows that
the Galois group of Fp is the inverse limit

ΓFp = lim←−
n

Z/nZ = Ẑ.

So this group is already abelian and we can completely understand it through its characters.
Let’s now turn to the p-adic numbers. The Galois group ΓQp is nonabelian because not

every finite extension of Qp is Galois. For instance, for any fixed p, the field Qp contains only
finitely many roots of unity. If Qp does not contain an nth root of unity then the extension
Qp(p

1/n) is not Galois.
The Galois theory of Fp gives insight into the Galois theory of Qp through the following

construction. An algebraic extension K of Qp is unramified if p is prime in OK . The unram-
ified extensions are exactly the lifts of extensions of Fp to extensions of Qp. More precisely,
for each n ≥ 1, the field Qp admits a unique unramified extension Qpn of degree n, the
cyclotomic extension containing the (pn − 1)th roots of unity. The Galois group of this ex-
tension is cyclic with canonical generator. The description of unramified extensions, follows
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from the description of finite field extensions by Hensel’s Lemma. The canonical generator
of Gal(Qnr

p /Qp) is a lift of the Frobenius: it raises the adjoined roots of unity to the pth
power.

Consequently, the maximal unramified extension Qnr
p of Qp has the same (relative) Galois

group as the (absolute) Galois group of Fp, namely Ẑ. Hence there is a short exact sequence

1 Gal(Qp/Qnr
p ) Gal(Qp/Qp) Gal(Qnr

p /Qp) 1

1 IQp ΓQp Ẑ 1

(1) {thm5}

The group IQp is called the inertia group. Since Ẑ is topologically cyclic, the short exact

sequence above splits, that is, ΓQp ' IQp o Ẑ, though the splitting is noncanonical.
The inertia group is quite complicated, and all the complexity comes from wild ramifica-

tion. Recall that an extension of Qp is wildly ramified if it is totally ramified and its degree
is a power of p. The inertia group IQp sits at the top of a tower of subgroups (IrQp

)r≥0 of IQp

called the higher ramification groups. By a “tower” we mean that

IrQp
⊇ IsQp

if r ≤ s.

The group

PQp = I0+Qp
:=
⋃
r>0

IrQp

is called the wild inertia group. It is a pro-p group that classifies the wildly ramified extensions.
The difference between the inertia group and the wild inertia group is small:

IQp/PQp '
∏
`6=p

Z` ( Ẑ.

To define IrQp
precisely takes some work – see, for instance, Chapter IV of Serre’s Local Fields

[Ser79] – but the rough idea is that the deeper an automorphism of Qp lies in the ramification

filtration, the less it can move elements of Qp.
The ramification filtration suggests a strategy for answering questions about ΓQp : start

with the unramified part and work deeper and deeper into the filtration. This strategy has
succeeded in proving several cases of a general local Langlands correspondence.

2. Local class field theory and the Weil group

The simplest Galois representations are the characters, homomorphisms ΓQp → C×. Since
the group C× is abelian, every character of ΓQp factors through the abelianization Γab

Qp
of ΓQp ,

in other words, the maximal abelian quotient. It turns out that the abelianization admits a
simple and explicit description, which is roughly summarized by the following slogan:

Γab
Qp
≈ Q×p .

This approximation cannot be upgraded to an isomorphism, however, because the Galois
group is (profinite, hence) compact while the units group is noncompact. In this section we
use the ramification filtration of the previous section to give a plausibility argument for a
correct version of the approximation above, Artin reciprocity. We then explain how to fix this
deficiency by replacing the Galois group with a closely related group called the Weil group.
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2.1. p-adic class field theory. To understand Γab
Qp

, use the ramification filtration. We saw
earlier that this filtration on ΓQp is continuous, in the sense that it has a jump at every
positive number. But once we abelianize, the Hasse-Arf theorem states that the ramification
filtration on Γab

Qp
is discrete: it only jumps at integers. Further, the subquotients of the

filtration are Z/pZ, except from 1 to 0, where the subquotient is F×p . All in all, we have the
following picture:

· · · Γab,n+1
Qp

Γab,n
Qp

· · · Γab,1
Qp

Γab,0
Qp

Γab
Qp
.

Z/pZ Z/pZ Z/pZ Z/pZ F×
p Ẑ (2) {thm3}

As for the units group Q×p , it fits into a short exact sequence

1 Z×p Q×p Z 1.
ordp

Furthermore, Q×p is filtered by the higher unit groups with Q×,0p := Z×p and

Z×,np := ker(Z×p −→ (Z/pnZ)×)

for n ≥ 1. The subquotient for the top of the filtration is

Q×p /Z×p ' Z

by the p-adic order map. The second subquotient Z×p /Z×,1p is isomorphic to F×p by the map
sending a p-adic number to its first digit. The other quotients in the filtration are isomorphic
to Z/pZ since

(1 + apn)(1 + bpn) = 1 + (a+ b)pn +O(pn+1).

All in all, we have the following picture:

· · · Z×,n+1
p Z×,np · · · Z×,1p Z×p Q×p

Z/pZ Z/pZ Z/pZ F×
p Z (3) {thm4}

Diagrams (2) and (3) are very similar, and match up under Artin reciprocity, but there

is one slight difference. On the Galois side, the top quotient is Ẑ; on the units-group side,
the top quotient is Z. There are two ways to fix this discrepancy, by changing either the
units-group side or the Galois side.

On the units-group side, we can form the profinite completion Q×p,pro. After completion,
there is an isomorphism

Γab
Qp
' Q×p,pro.

However, profinitely completing Q×p is somewhat unnatural. For one, it shrinks the size of
the character group: the characters of Q×p,pro are precisely the unitary characters of Q×p , but
the latter group has non-unitary characters, namely x 7→ |x|sp for s ∈ C.

On the Galois side, we can shrink the Galois group by replacing Ẑ with Z in the short-exact
sequence (1):

1 IQp WQp Z 1

1 IQp ΓQp Ẑ 1

dense dense
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Formally, the diagram above is a pullback of group extensions, and the resulting group
WQp := Z ×Ẑ ΓQp is known as the Weil group of Qp. With this reformulation, the one that
we prefer, Artin reciprocity states that

W ab
Qp
' Q×p .

The Weil group is very nearly the right form of the Galois group for the Langlands program.

2.2. Real local class field theory. What can be said at the real place? Here the absolute
Galois group ΓR is cyclic of order two, and there is not much substance in studying its
abelianization. However, in analogy with the p-adic case, we would like to define some kind
of real Weil group whose abelianization is R×. We define WR as the nonsplit extension

1 C× WR ΓR 1

Explicitly, WR is the group obtained from C× by adjoining an element j such that

j2 = −1 and jzj−1 = z̄ for z ∈ C.

Since [j, z] = z̄/z, the commutator subgroup of WR is the circle group S1. Hence

W ab
R = (C×/S1)× ΓR ' R×,

the archimedean reformulation of local class field theory that uses the Weil group.
The definitions of the real and p-adic Weil groups seem very different from each other.

Nonetheless, there is a uniform definition using group cohomology [Tat79, Section 1].

2.3. Beyond class field theory. One final summary of local class field theory is in order,
a reformulation that suggests the shape of the general local Langlands correspondence. For
k = R or k = Qp, the local Langlands correspondence for GL1 is the canonical bijection
between the following two objects.

(1) One-dimensional representations Wk → GL1(C) (Galois side)
(2) Irreducible complex representations of GL1(k) (Automorphic side)

To generalize the correspondence to GLn, we need only replace GL1 above by GLn and add
a few more words. The local Langlands correspondence for GLn, which is a theorem, states
that there is a canonical bijection between the following two objects.

(1) n-dimensional representations W ′
k → GLn(C) (Galois side)

(2) Irreducible admissible complex representations of GLn(k) (Automorphic side)

Here W ′
k is the Weil-Deligne group, a mild enhancement of the Weil group when k = Qp.

Appendix A. Real local Langlands for GL2

In this appendix we explain the local Langlands correspondence for the group GL2 and
the field R. Here is the statement of the correspondence.

Theorem 2. There is a bijection between

(1) two-dimensional representations WR → GL2(C) and (Galois side)
(2) irreducible admissible representations of GL2(R). (automorphic side)

In this section we explain the two sides of the bijection. Our treatment of the subject
follows Tate [Tat79, (2.2.2)] and Kudla [Kud94].
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A.1. Representations of WR. The representations that interest us are semisimple, mean-
ing they decompose as a direct sum of irreducible representations. Classifying the (finite-
dimensional, complex) semisimple representations of WR, amounts to classifying the irre-
ducible representations. We have already implicitly discussed the characters of WR. They
are the same as the characters of R×, hence of the form

z 7→ |z|t, j 7→ ±1 (type (±, t))
for t ∈ C.

As for the two-dimensional irreducible representations of WR, they are all induced from
characters of the subgroup C×. Recall that every character of C× is of the form

z 7→ z`|z|t (type (`, t))

for t ∈ C and ` ∈ Z. The representation of WR induced from this character is irreducible as
long as ` 6= 0, and it depends only on |`| and t up to isomorphism, so we may assume that
` ≥ 1.

Finally, every irreducible representation of WR is one- or two-dimensional. So the two-
dimensional irreducible representations of WR are

(1) type (ε1, t1)⊕ (ε2, t2) with t ∈ C and εi = ±, or
(2) type (`, t) with ` ∈ Z and t ∈ C.

A.2. Representations of GL2(R). Let’s match up the two-dimensional representations of
WR with the irreducible admissible representations of GL2(R).

Start with the irreducible two-dimensional representations of type (`, t). These correspond
to certain discrete series representations. Specifically, let SL2(R)± be the two-by-two matrices
of determinant ±1, so that

GL2(R) = SL2(R)± · R>0.

For each integer ` ≥ 1 there is a representation D+
` of SL2(R). The underlying vector space

of D+
` is the space of analytic functions f : H→ C such that

‖f‖` :=

∫
H
|f(z)|2y`−1 dx dy <∞.

The group action on D+
` is

D+
` (g)f(z) = (bz + d)−(`+1)f

(
az+c
bz+a

)
where g =

(
a b
c d

)
.1 It should not come as a surprise that this representation is closely related

to holomorphic modular forms! Now form the induced representation D` of D+
` to SL2(R)±.

The representation

D` ⊗ | det(·)|t

of GL2(R) corresponds to the representation of WR of type (t, `).
As for the reducible representations of type (t1, ε1) ⊕ (t2, ε2), we can match each of the

factors with a character χi of R× using the local Langlands correspondence for GL1. To
complete the process, we need to transform these two characters into a representation of
GL2(R). The procedure to do so is known as parabolic induction. The characters χi define a

1The formula for the action of the group of Möbius transformations differs from the usual one here because
have to take the transpose to ensure that the group acts on the right on the upper half plane, and hence on
the left on functions.
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character of the (Borel) subgroup B ⊂ GL2(R) of matrices that vanish below the diagonal,
by the formula

(χ1 ⊗ χ2)
(
a b
0 d

)
= χ1(a)χ2(d).

Now form the representation I(χ1, χ2) of GL2(R) induced from the character χ1⊗χ2 of B.2 It
turns out that if Re t1 ≥ Re t2 then the representation I(χ1, χ2) has a unique irreducible quo-
tient, denoted by J(χ1, χ2). This quotient is the representation of GL2(R) that corresponds
to the representation of WR of type (t1, ε1)⊕ (t2, ε2).
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