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DAVID SCHWEIN

Abstract. In this talk for the Oberwolfach Arbeitsgemeinschaft “Geometric representation
theory”, we discuss the Borel-Weil-Bott theorem, the linkage principle, and the translation
functors, following Chapters 5, 6, and 7 of Jantzen’s book on representations of algebraic
groups.

Notation

k algebraically closed field
G reductive algebraic k-group
T maximal torus of G
W Weyl group of (G, T )

R root system of (G, T )
R+ set of positive roots
X character lattice of T
X+ dominant weights

1. The dot action and the affine Weyl group

The affine Weyl group of G is the semidirect product

Waff
def
= W n ZR

where W acts in the usual way on the root lattice ZR. The two factors of the affine Weyl
group act on X: the ordinary Weyl group in the usual way and ZR by translation. These
two actions are compatible and give rise to an action of Waff on X. For our application,
however, a slight modification of this action is needed.

Let

ρ
def
=

1

2

∑
α∈R+

α

be the half-sum of the positive weights, or equivalently, the sum of the fundamental coweights.
Let ` be a positive integer. The dot action of Waff on X with parameter ` is obtained from
the usual action of Waff by shifting the origin to −ρ and scaling the action of ZR by `:

(wtλ) •` µ
def
= w(µ+ `λ+ ρ)− ρ,

where tλ denotes translation by λ ∈ ZR. The dot action of the ordinary Weyl group is
independent of ` and we will therefore suppress it from the notation in that case.

One fundamental domain for the (induced) dot action on X ⊗ R is the alcove C = C`
consisting of the λ ∈ X ⊗ R such that for all α ∈ R+,

0 ≤ 〈λ+ ρ, α∨〉 ≤ `.

Let C`,Z = CZ
def
= C ∩X.
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More generally, the facets of X ⊗ R with respect to the dot action are the subsets F
consisting of the λ such that{

nα` < 〈λ+ ρ, α∨〉 < (nα + 1)` if α ∈ R+
0

nα` = 〈λ+ ρ, α∨〉 if α ∈ R+
1

where R+ = R+
0 t R+

1 is a partition of the positive roots and the nα’s are integers. The
(topological) closure F of F is the set of points satisfying the above constraints but with

all <’s replaced by ≤’s. We similarly define the upper closure F̂ by replacing only the
righthand <’s with ≤’s. Unlike the topological closure, the upper closure depends on the
choice of positive roots; in the picture below, the arrow indicates the direction of the positive
Weyl chamber.

F F F̂

Example 1. For G = PGL2 we have X = Z, R = {±1}, X∨ = 2Z, R∨ = {±2}, ρ = 1
2
, and

C = (−1/2, (p− 1)/2), C = [−1/2, (p− 1)/2], Ĉ = (−1/2, (p− 1)/2],

where we form the upper closure with respect to the Weyl chamber [0,∞), that is, the
positive root +1.

For G = Sp4 we have X = Z2, the simple roots are e1−e2 and 2e2, the other positive roots
are e1 + e2 and 2e1, ρ = 2e1 + e2, and the positive Weyl chamber is a cone with apex the
origin and walls the x-axis and the line x = y. The chamber C is an isosceles right-angled
triangle, pointing up with horizontal hypotenuse of length p and leftmost vertex at (−2,−1).
In the picture below, p = 5.

CZ
−ρ

X+

p

These examples show that not every facet of (Waff, •p) need intersect X. In particular, if p
is very small then a facet of maximal dimension need not intersect X; this happens in the
previous example if p = 2 or 3.
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2. Borel-Weil-Bott

We have seen that a weight λ ∈ X is dominant if and only if H0(λ) 6= 0, and that in this
case, H>0(λ) = 0. What can be said about the cohomologies of the line bundles associated
to a general weight, not necessarily dominant? The Borel-Weil-Bott theorem states roughly
that the dot action of a simple reflection increments cohomology by one degree.

In what follows, if char k = p > 0 then let CZ = Cp,Z and if char k = 0 then let

CZ
def
=
{
λ ∈ X | 〈λ+ ρ, α∨〉 > 0 for all α ∈ R+

}
= −ρ+ (X ⊗ R)+.

Theorem 2 (Borel-Weil-Bott). Let λ ∈ CZ.

(1) If λ /∈ X+ then Hi(w • λ) = 0 for all i ≥ 0 and w ∈ W .
(2) If λ ∈ X+ then Hi(w • λ) = H0(λ) for i = `(w) and 0 otherwise.

If char k = 0 then every element of X is of the form w•λ for some w ∈ W and λ ∈ X+ and
the Borel-Weil-Bott theorem therefore computes completely the cohomologies in this case.

Classically, in characteristic zero, it was an important part of the statement that H0(λ) is
simple for λ dominant. We can deduce this in all characteristics using Serre duality.

Corollary 3. If λ ∈ CZ then H0(λ) is simple.

Proof. The proof of the corollary rests on Serre duality, which we quickly review. The
dualizing sheaf on G/B is L(−2ρ), and L(λ)∗ ' L(−λ). So in this setting, Serre duality
gives an isomorphism

Hi(λ)∗ ' H|R
+|−i(−λ− 2ρ).

In particular, letting w0 denote the longest element of the Weyl group, since −w0 preserves
the positive Weyl chamber, w0ρ = −ρ, and it follows that

w0 • (−w0λ) = −λ− 2ρ.

These facts imply that

H0(λ)∗ ' H|R
+|(w0 • (−w0λ)).

Since −w0CZ = CZ, we can apply Borel-Weil-Bott to show that

H0(λ)∗ ' H0(−w0λ).

Combining this isomorphism with the Weyl-module description of simple modules yields

socG H0(λ)
def
= L(λ) ' V (λ)/ radG V (λ) ' H0(λ)/ radG H0(λ).

If radG H0(λ) were nonzero then it would have to contain some L(µ), and the only possibility
is L(λ), the maximal semisimple submodule of H0(λ). But since L(λ) has multiplicity one
in H0(λ) this is impossible and radG H0(λ) = 0. �

Remark 4. The ρ-shift arises in many places in the representation theory of reductive
groups. In a slightly different setting, p-adic reductive groups, one defines the normalized
parabolic induction (say, from a Borel subgroup with split maximal torus) of a represen-
tation as the twist of the parabolic induction by the square root of the modulus character
of B(Qp). This correction term is precisely the inflation of the unramified character of T (Qp)
corresponding to ρ.
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Remark 5. We cannot improve on the Borel-Weil-Bott theorem in characteristic p by re-
laxing the hypothesis that λ ∈ CZ. It is known [Jan03, II.5.18] that for any simple root α,

H1(−pnα) 6= 0.

On the other hand, as soon as the Dynkin diagram of G has a connected component with
two or more vertices, −pnα does not lie in s • X+ for any simple reflection s. Indeed, the
only simple reflection that could move −pnα to be dominant is sα, and

sα • (−pnα) = (pn − 1)α

since sαρ = ρ − α. But this element is not dominant: we can find simple roots α and β so
that 〈α, β∨〉 < 0 by our hypothesis on G.

3. Linkage principle

Let Rep(G) be the category of finite-dimensional1 algebraic representations of G. When
char k = 0, this category decomposes as a direct sum over X+:

Rep(G) =
∑
λ∈X+

Repλ(G),

where Repλ(G) is the category of L(λ)-isotypic modules. In this section we’ll give a related

decomposition of G-Mod when p
def
= char k > 0, which we assume from now on. The decom-

position is a consequence of the following theorem, of which we will prove a special case in
Section 5.

Theorem 6 (Linkage principle). Let λ, µ ∈ X+. If Ext1(L(λ), L(µ)) 6= 0 then λ ∈ Waff •p µ.

Consequently,

Rep(G) =
⊕

γ∈X/(Waff,•p)

Repγ(G) (1)

where Repγ(G) is the Serre subcategory generated by the simple modules L(µ) with µ ∈
γ ∩ X+. In other words, V ∈ Repγ(G) if and only if every composition factor of V has
highest weight in µ ∈ γ ∩X+.

Remark 7. It is tempting to call each subcategory Repγ(G) a block of Rep(G). However, this
terminology is not strictly correct because it can happen that Repγ(G) decomposes further.
Here is the general result, due to Donkin [Don80]. As a block is uniquely determined, and
in fact generated by, the simple modules it contains, we can identify blocks with subsets of
X+. The subsets of X+ corresponding to blocks are of the following form [Jan03, II.7.2].
Given λ ∈ X+, let

r
def
= min

α∈R
ordp〈λ+ ρ, α∨〉

and make the subset Waff •pr λ ∩X+. (Since 〈λ+ ρ, α∨〉 > 0, the constant r is finite.)

1The assumption of finite-dimensionality is not essential here.
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4. Translation functors

As before, assume that p
def
= char k > 0. The decomposition (1) reduces the study of

Rep(G) to the study of the finitely-many categories Repγ(G), which, however, may be quite
complicated. In this section we will see that these categories are related to each other by
so-called translation functors.

The decomposition (1) gives rise to functors

prλ : Rep(G)→ Repλ(G)
def
= Repγ(G),

where λ ∈ X+ and γ
def
= Waff •p λ. Namely, we define prλV to be the sum of the submodules

of V all of whose composition factors have highest weight in γ.

Definition 8. Let λ, µ ∈ CZ and let X+ ∩W (µ − λ) = {ν}. Define the translation functor
T µλ from λ to µ as

T µλ V
def
= prµ(L(ν)⊗ prλV ).

In many cases, translation functors are equivalences of categories.

Theorem 9. If λ, µ ∈ CZ belong to the same facet then T µλ : Repλ(G) → Repµ(G) is an
equivalence of categories.

Although weights in different facets need not yield isomorphic categories, we can compare
their categories if one facet is in the closure of another: translation functors propagate
information from facets of larger dimension.

Proposition 10. Let λ, µ ∈ CZ and let F be the facet of (Waff, •p) containing λ. Say µ ∈ F .
(1) For all w ∈ Waff and i ∈ N,

T µλ
(
Hi(w •p λ)

)
' Hi(w •p µ).

(2) For all w ∈ Waff such that w •p λ ∈ X+,

T µλL(w •p λ) =

{
L(w •p µ) if w • µ ∈ F̂ ′ (where F ′

def
= w • F )

0 if not.

Finally, we finish with a discussion of characters. Recall that the Euler characteristics

χ(λ)
def
=
∑
i

(−1)i ch Hi(λ)

with λ ∈ X+ form a basis for the space Z[X]W in which formal characters live. In particular,
every formal character is a linear combination of such χ(λ).

Proposition 11. Let λ, µ ∈ CZ and let w ∈ Waff such that w •p λ ∈ X+ and w •p µ is in the
upper closure of the facet containing w •p λ. If

chL(w •p λ) =
∑

w′∈Waff

aw,w′χ(w′ •p λ)

then

chL(w •p µ) =
∑

w′∈Waff

aw,w′χ(w′ •p µ).
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Remark 12. We call any subcategory Repλ(G) with λ in a facet F of maximal dimension a
principal block. The results above reduce some problems to the principal block. This strategy
is not entirely successful, however, both because the upper closure of F is smaller than its
topological closure, and because if p is very small then F ∩X can sometimes be empty, as
we saw in Example 1.

5. Proof of linkage principle

In this section we’ll prove the linkage principle in the special case where the derived
subgroup of G is simply connected2 and X/ZR has no p-torsion, following Riche [Ric, §2.4].
The proof consists of analyzing separately two kinds of central characters, infinitesimal and
global.

The rough idea is quite simple. If L(λ) and L(µ) had different central characters then
any extension of one by the other would split. But since Ext1(L(λ), L(µ)) 6= 0, the central
characters must agree. This agreement forces λ and µ to be linked.

Start with the infinitesimal character. Let U(−) denote the universal enveloping algebra.
The decomposition g = b⊕ t⊕ b+ together with the Poincaré-Birkhoff-Witt theorem gives a
linear projection φ : U(g)→ U(t) with kernel bU(g) +U(g)b+. The restriction of φ to U(g)G

is an isomorphism

U(g)G → U(t)(W,•)

called the Harish-Chandra isomorphism.3 Here the superscript (W, •) denotes the dot-action
invariants of the Weyl group. Every G-module V inherits, by differentiation, the structure
of a U(g)-module, and the actions are compatible in the sense that

π(g) dπ(X)(v) = π
(
ad(g)(X)

)
(v)

for all g ∈ G, X ∈ g, and v ∈ V , where π : G → GL(V ) denotes the G-action and dπ : g →
gl(V ) its differential. It follows that the restriction of dπ to U(g)G maps to the G-equivariant
endomorphisms of V . In particular, if V is simple then this restriction is a character of U(g)G,
which by the Harish-Chandra isomorphism can be identified with a character of U(t)(W,•).
We call this restriction the infinitesimal central character of V . A character of U(t)(W,•) is
just a point of the quotient t∗/(W, •), which we can identify with (X ⊗ k)/(W, •) via the
differential map. When V = L(λ), it should not come as a surprise that the infinitesimal
central character is the class of (the differential of) λ. It follows that λ and µ have the same
image in (X ⊗ k)/(W, •). In other words, there is w ∈ W such that

λ− w • µ ∈ pX.

The global central character is simpler: restrict L(λ) to Z(G). The resulting character is
an element of the dual group of Z(G), namely X/ZR. Since λ and µ agree in this group,

λ− µ ∈ ZR.

We can now complete the proof. Since µ− w • µ ∈ ZR for any µ ∈ X and w ∈ W ,

λ− w • µ ∈ ZR ∩ pX

2The case of general G can probably be reduced to the simply-connected case, so the second hypothesis
is the essential one.

3It seems that this map is an isomorphism only when the derived subgroup of G is simply connected; I
don’t understand why this assumption is needed, however. [?]
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for some w ∈ W . But since X/ZR has no p-torsion, ZR ∩ pX = pZR. Hence λ = w •p µ for
some w ∈ Waff. �

Remark 13. In the classical statement of the Harish-Chandra isomorphism, the algebra
U(g)G is replaced by the center Z(U(g)). In positive characteristic, however, the center is
too large. Here g has an additional structure of a restricted Lie algebra: an operation x 7→ x[p]

satisfying certain axioms, but which can be defined as the usual pth power in a fixed linear
representation of g. It turns out that for all x ∈ g,

ξ(x)
def
= xp − x[p] ∈ Z(U(g)),

and that furthermore, the image under ξ : g → Z(U(g)) of a linearly independent set is
algebraically independent [Jan98, 2.3]. Hence Z(U(g)) contains at least dim(G) algebraically
independent elements, so it is much larger than U(t)(W,•).
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