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One of the main goals of representation theory is to understand the unitary dual of a
topological group, that is, the set of irreducible unitary representations. Much of modern
number theory, for instance, is concerned with describing the unitary duals of various reduc-
tive groups over a local field or the adeles, and here our understanding of the representation
theory is far from complete.

For a different class of groups, the nilpotent Lie groups, A. A. Kirillov gave in the mid-
nineteenth century [Kir62] a simple and transparent description of the unitary dual: it is
the orbit space under the coadjoint action of the Lie group on the dual of its Lie algebra.
The goal of this article, notes for a talk, is to explain Kirillov’s result and illustrate it with
the Heisenberg group, following Kirillov’s excellent and approachable book on the subject
[Kir04]. We begin with an introductory section on the unitary dual of a C∗-algebra, the
proper setting (currently) for unitary representations of locally compact groups, following
Dixmier’s exhaustive monograph on C∗-algebras [Dix77].

1. C∗-algebras and the unitary dual

The theory of unitary representations of locally compact topological groups, for instance,
reductive p-adic groups, is a special case of the more general theory of representations of
C∗-algebras. In this section we review the representation theory of C∗-algebras and see how
it specializes to that of topological groups.

1.1. Definitions and examples. A Banach algebra is a Banach space A equipped with an
algebra structure with respect to which the norm is sub-multiplicative:

‖a · b‖ ≤ ‖a‖ · ‖b‖, a, b ∈ A.
We do note require Banach algebras to be unital, and in fact, we will see shortly that there
are many natural examples that are not unital.

Definition 1. A C∗-algebra is a Banach algebra A equipped with a conjugate-linear anti-
involution ∗ satisfying the C∗-identity: for all a ∈ A,

‖a∗a‖ = ‖a‖2.

A morphism of C∗-algebras is a continuous algebra map commuting with ∗.

Example 2. Let H be a Hilbert space.1 Let B(H) denote the algebra of bounded operators
on H, The operator norm

‖T‖ := sup
‖v‖=1

‖T (v)‖

makes B(H) into a Banach space, though not a Hilbert space if dimH = ∞. The algebra
operations on B(H) are obvious, and the Hermitian transpose makes B(H) into a C∗-algebra.
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1For simplicity, we assume in this article that all Hilbert spaces are separable.
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The C∗-identity is surprisingly powerful. For instance, it implies that the norm is uniquely
determined by the algebra structure, via the spectral radius formula

‖a∗a‖ = sup{|λ| : a∗a− λ is not invertible}.
(More generally, if b is Hermitian then ‖b‖ equals the spectral radius of b.) The identity also
implies that any morphism of C∗-algebras is a contraction and that any injective morphism
is an isometry.

Definition 3. Let A be a C∗-algebra. A representation of A is a pair (H, π) consisting of a
Hilbert space H and a morphism π : A→ B(H) of C∗-algebras.

The set Â of isomorphism classes of unitary representations of A is called the spectrum or
unitary dual of A.

In this article we assume for simplicity that all representations are nondegenerate, meaning
that no vector is annihilated by all elements of the algebra.

There is a canonical topology on Â called the Fell topology, named after J. M. G. Fell for
a 1960 paper [Fel60] in which he studied this topology, though it appears to me that the
definition is the work of several authors. Properly defining the Fell topology is beyond the

scope of this article, and we have little to say about it. But from now on we will think of Â
as not just a set, but a topological space.

To start with, let’s try to understand what a commutative C∗-algebra looks like. The
short answer is that all such algebras come from topological spaces.

Example 4. Let X be a locally compact Hausdorff space. A continuous function f : X →
C vanishes at infinity if for every ε > 0, there is a compact subset K ⊆ X such that
supx∈X\K |f(x)| < ε. Let C0(X) denote the space of complex functions on X that vanish
at infinity. It is a C∗-algebra with L∞-norm and complex conjugation of functions. The
algebra C0(X) is unital if and only if X is compact. Every point x ∈ X gives rise to a
character evx : C0(X) → C, evaluation at x. The assignment x 7→ evx is a continuous map

X → Ĉ0(X), which turns out to be a homeomorphism.

In the opposite direction, starting from a commutative C∗-algebra A, there is a natural

evaluation map A→ C0(Â) sending f to the function ξ 7→ ξ(f).

Theorem 5 (Gelfand). For every commutative C∗-algebra A, the evaluation map A→ C0(Â)

is an isomorphism of C∗-algebras. Moreover, the functors X 7→ C0(X) and A 7→ Â define an
equivalence between the category of compact Hausdorff spaces and the category of commutative
unital C∗-algebras with unital morphisms.

Gelfand’s theorem is extraordinarily important. For one, it inspired the definition of the
prime spectrum in algebraic geometry, formulated by Grothendieck and collaborators. For
another, since the theorem implies that locally compact Hausdorff spaces are more or less
equivalent to a special class of C∗-algebras, it suggests thinking of noncommutative C∗-
algebras as noncommutative topological spaces. This perspective motivated Alain Connes’s
profound theory of noncommutative geometry.

Remark 6. The theorem extends to an equivalence between the categories of locally com-
pact Hausdorff spaces with proper maps and the category of commutative C∗-algebras with
nondegenerate morphisms. Here a morphism is nondegenerate if it sends approximate iden-
tities to approximate identities. The basic example this property is meant to exclude is the
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zero map C0(Y ) → C0(X), which does not correspond to any map of topological spaces
X → Y .

Alternatively, the theorem generalizes to an equivalence between the categories of pointed
compact Hausdorff spaces and the category of augmented C∗-algebras. The connection
between the two generalizations is the one-point compactification functor on the topological
side and the unitalization functor on the C∗-algebra side.

Example 7. There is a construction, which we will discuss soon in more detail, that assigns
to any locally compact topological group G a C∗-algebra C∗(G). This construction has the
property that the representations of G are the same as the representations of C∗(G). When G
is a finite group, however, there are no complications and C∗(G) = C[G], the usual complex
group algebra of G.

More generally, given a locally compact topological group G acting on a locally compact
Hausdorff space X, one can form a C∗-algebra C∗(G y X) which morally represents the
functions on the “noncommutative space” G\X. This C∗-algebra carries much more infor-
mation than the topological quotient G\X, which is often non-Hausdorff. More generally,
one can form a C∗-algebra from any groupoid [Wil19].

1.2. Representations of locally compact groups. In this subsection we specialize the
theory of C∗-algebras to study the (unitary) representation theory of locally compact groupsG.
For clarity of exposition we assume that G is unimodular. Given a Hilbert space H, let
U(H) ⊆ Aut(H) denote the group of (bounded) unitary linear operators on H.

Definition 8. A (unitary) representation (π,H) of G is a Hilbert space H together with a
homomorphism π : G→ U(H) such that the induced map G×H → H is continuous.

To apply the theory of C∗-algebras to G, we need to construct a C∗-algebra out of it. The
natural candidate is a space of functions on G where multiplication is given by convolution.
In order for this space of functions to be a Banach algebra, we must equip it with a norm that
behaves well with respect to convolution. The simplest possibility is an Lp-norm. Moreover,
the generalized Young’s inequality

‖f1‖p · ‖f2‖q ≤ ‖f1 ∗ f2‖r,
1

p
+

1

q
= 1 +

1

r
,

shows that the space L1(G) is closed under convolution. We further endow this space with
the anti-involution

f ∗(x) := f̄(x−1).

Our first candidate for C∗(G) is therefore L1(G). This is a very good candidate because
its representation theory reflects very well the representation theory of G. The only problem
is that L1(G) is not a C∗-algebra due to the failure of the C∗-identity, but this turns out to
be not so great of a difficulty.

Remark 9. To avoid the choice of a Haar measure, one can replace L1(G) with a certain
space of complex measures on G. This is surely the better choice, but we have avoided
discussing it in detail for simplicity.

Theorem 10. There is a canonical bijection between representations of G and representa-
tions of L1(G).
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Proof sketch. The rough idea is that the representation (π,H) of G should correspond to the
representation of L1(G) on H for which the function f acts on v ∈ H by

π(f)(v) =

∫
G

f(x)π(x)(v) dx.

This is only a rough idea because the integrand takes values in a Hilbert space, so the integral
must be interpreted carefully. �

Example 11. The group G acts on L2(G) by multiplication:

ρ(g)(v) : x 7→ v(g−1x), v ∈ L2(G).

The extension of this action to L1(G) is convolution, which is defined by Young’s inequality:

ρ(f)(v) = f ∗ v.

Let’s give an example of this correspondence, while simultaneously explaining (abstractly)
the failure of L1(G) to be a C∗-algebra.

Example 12. Suppose G is abelian and consider the representation (ρ, L2(G)) of the previ-
ous example. We can use the Fourier transform to describe it in a different way. Recall that
for f ∈ L1(G), the Fourier transform f̂ : G→ C is defined by

f̂(ξ) := ξ(f).

The theory of Pontryagin duality shows that the Fourier transform gives an isomorphism

between L2(G) and L2(Ĝ), and that this isomorphism is G-equivariant if we endow L2(Ĝ)
with the action

ρ̂(f)(v) := f̂v.

It follows that ‖ρ(f)‖ = ‖ρ̂(f)‖ = ‖f̂‖∞.
We can now show abstractly, by contradiction, that L1(G) does not satisfy the C∗-identity.

Consider the representation as a morphism ρ : L1(G)→ B(L2(G)). It can be shown that ρ is
injective, in other words, faithful. So if L1(G) were a C∗-algebra then ρ, like every injective

morphism of C∗-algebras, would be an isometry. But generally ‖f̂‖∞ 6= ‖f‖1.

Even though L1(G) is not a C∗-algebra, there is a general and universal construction that
transforms an algebra like L1(G) (specifically, a Banach ∗-algebra that admits an approx-
imation to the identity) into a C∗-algebra. The previous example suggests that we should
modify the norm on L1(G) by taking into account the norms in the irreducible represen-
tations of G. If the new norm ‖ · ‖C∗ satisfies the C∗-identity then we can complete with
respect to the norm to produce a C∗-algebra. So define the norm ‖ · ‖C∗ on L1(G) by

‖f‖C∗ := sup
π∈Ĝ
‖π(f)‖,

as in the previous example, and let C∗(G) be the completion of L1(G) with respect to ‖ ·‖C∗ .
General properties of this construction ensure that it has no effect on the representation
theory. That is, there is a canonical equivalence of categories between the representations
of L1(G) and the representations of C∗(G).

Example 13. Let’s see how the construction of C∗(G) works for G = Z. Since the dual
group of Z is the circle S1 = {c ∈ C : |c| = 1}, we expect that C∗(Z) = C(S1).
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The space L1(Z) can be identified with the algebra of Laurent series f(z) =
∑

n∈Z anz
n

such that
∑

n |an| <∞. In this notation, the ∗-operator acts by

f ∗(z) = f̄(z−1).

In this description, it is easy to cook up examples showing that L1(Z) is not a C∗-algebra:
for instance, the function f(z) = 1 + i(z + z−1) has ‖f 2‖ = 7 while ‖f ∗f‖ = 3.2 Every
Laurent series represents a continuous function on the circle, giving a natural inclusion
L1(Z) ⊂ C(S1). However, this inclusion is not an equality: there are examples of continuous
periodic functions whose Fourier coefficients do not lie in L1(Z) [Kat04, 2.4]. Apparently
there is no simple characterization of the Fourier coefficients of continuous functions.

Let χc denote the character of Z corresponding to c ∈ S1. Then χcf = f(c), so that
‖f‖C∗ = ‖f‖L∞(S1). That is, the C∗-norm on L1(Z) is just the sup norm. Since L1(Z),
thought of a space of functions on S1, contains all polynomial functions, and these are dense
in C(S1), the completion of L1(Z) with respect to this norm is C(S1), as expected.

1.3. Plancherel measure. In the theory of Pontryagin duality, where the group G is

abelian, a choice of Haar measure on G yields a canonical measure on Ĝ. This subsec-
tion explains how the unitary dual admits a similar measure, the Plancherel measure, when
G is nonabelian.

Before discussing the Plancherel measure, let’s consider the more general problem of im-
posing a measure on the unitary dual of a C∗-algebra, and the relationship of the measure
to representation theory.

Remark 14. The theory that follows works best when the C∗-algebra is postliminal, a
technical condition that we will not define, but that includes commutative C∗-algebras and
the C∗-algebras of the groups of interest to us later. So we assume from now on that the C∗-
algebras under consideration are postliminal, and that the groups under consideration have
postliminal C∗-algebras. This assumption does not include every locally compact group G,
but it does include nilpotent Lie groups [Kir62, Theorem 7.3], reductive Lie groups [HC53,
Theorem 7], and reductive p-adic groups [HC70, Theorem 4].

The key technical tool in this area is the direct integral, whose rough idea is as follows.
Suppose we have a measurable space X and for each x ∈ X, a Hilbert space Hx. For each
measure µ on X, we can construct the direct integral∫ ⊕

X

Hx dµ(x).

It is defined as the set of measurable sections v = (vx)x∈X ∈
∏

x∈X Hx that are square-
integrable with respect to µ, meaning that

‖v‖2
µ :=

∫
X

‖vx‖2 dµ(x) <∞.

If f : X → R≥0 is a nonnegative function whose vanishing set has measure zero then the
direct integral will be the same whether we form it with respect to the measure µ or the
measure fµ. So the direct integral depends only weakly on the measure.

2We can also compute that ‖f̂‖∞ =
√
5 < 3 = ‖f‖1.
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Example 15. Let X be a locally compact Hausdorff space with C∗-algebra C0(X) and let µ
be a Borel measure on X. Recall that X is isomorphic to the spectrum of C0(X), the point
x ∈ X corresponding to the evaluation character evx : C0(X)→ C sending f to f(x). Then∫ ⊕

X

evx dµ(x) = L2(X,µ).

This example suggests that the direct integral of irreducible representations of a noncommu-

tative C∗-algebra can be interpreted as the L2-space of the noncommutative space Â. How,

then, could we interpret the Lp-space of Â for p 6= 2?

Here is the general theorem on measures.

Theorem 16 ([Dix77, 8.6.6]). Let A be a postliminal C∗-algebra. For each representation π

of A, there are mutually singular measures µ1, µ2, . . . , µ∞ on Â such that

π '
∫
Â

ξ dµ1(ξ)⊕ 2

∫
Â

ξ dµ2(ξ)⊕ · · · ⊕ N
∫
Â

ξ dµ∞(ξ).

The measures µi in the theorem are not uniquely determined by A, but they are uniquely

determined up to equivalence of measures: for each i, the collection of subsets of Â that
have µi-measure zero is uniquely determined. Moreover, giving each of the measures µi is
the same as giving their sum µ := µ1 + µ2 + · · ·+ µ∞.

To summarize, every representation of a postliminal C∗-algebra A gives rise to a class

of measures on the spectrum Â, and conversely, every measure on Â gives rise to a repre-
sentation. So there is a weak correspondence between representations of A and measures

on Â.
The rough idea of the Plancherel measure is that it should decompose the regular rep-

resentation L2(G). Although this condition turn out to be true, it does not uniquely pin
down the measure, since the disintegration theory of representations yields a huge class of

measures on Ĝ corresponding to a representation∫ ⊕
Ĝ

ξ dµ(ξ).

To circumvent this difficulty, we use the Plancherel formula.
Recall that when G is abelian, the Plancherel formula states that the Fourier transform is

an L2-isometry: for any f ∈ L1(G) ∩ L2(G),∫
G

|f(x)|2 dx =

∫
Ĝ

|f̂(ξ)|2 dξ,

where f̂ is the Fourier transform of f . To generalize the formula to noncommutative G, we
need some notion of the Fourier transform.

Definition 17. The Fourier transform f̂ of f ∈ L1(G) is the “function” f̂ defined by

f̂(π) := π(f) =

∫
G

f(x)π(x) dx ∈ B(Hπ).

This is the same formula as in the commutative case, but now f̂ is not a function in the
usual sense because the space in which the operator f(π) lives depends on π.
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Theorem 18. For each Haar measure µ on G there exists a unique measure µ̂ on Ĝ, the
Plancherel measure, such that for all f ∈ L1(G) ∩ L2(G),∫

G

|f(x)|2 dµ(x) =

∫
Ĝ

Tr(f̂(ξ)f̂(ξ)∗) dµ̂(ξ).

Moreover, the Plancherel measure disintegrates L2(G):

L2(G) =

∫ ⊕
Ĝ

ξ ⊗ ξ∗ dµ̂(ξ).

In general, the Plancherel measure on Ĝ may not be supported on all of Ĝ. For example,
the unitary dual of SL2(R) contains an interval of irreducible representations, the comple-
mentary series, whose measure is zero. The support of the Plancherel measure is called the

reduced dual Ĝr. Typically the reduced dual is much easier to understand than the entire
unitary dual. For one, a modified construction the C∗-algebra yields a C∗-algebra C∗r (G),

the reduced C∗-algebra of G, whose spectrum is Ĝr: we define C∗r (G) as the completion of
L1(G) with respect to the norm

‖f‖C∗r := ‖ρ(f)‖
where ρ is the regular representation of G on L2(G).

2. Coadjoint orbit method

In this section we describe the coadjoint orbit method, paying special attention to the
case of the Heisenberg group. Although the method is a general philosophy that applies to
many classes of groups, we restrict attention to the (simply-connected) nilpotent Lie groups,
a class for which the method works particularly well.

2.1. Motivation: p-groups. Before thinking about Lie groups, we consider a simpler toy
model in finite groups that illustrates many of the phenomena to come. Recall that a finite
group is a p-group if its order is a power of p. The following example is most relevant to us.

Example 19. Let U be a unipotent algebraic group over the finite field Fq of characteristic p.
Then U(Fq) is a p-group.

The structure theory of p-groups is extraordinarily complicated. Its complexity has ob-
structed all attempts to classify such groups or their unitary duals. We can say something
weaker, though. Recall that a representation is monomial if it is induced from a character.

Theorem 20. Every irreducible representation of a p-group is monomial.

The key property used in the proof is that the center of a p-group is nontrivial. We can
therefore leverage the center to prove the theorem by induction on the cardinality of the
group.

Proof. Let G be the p-group and (π, V ) an irreducible representation of it. When G is abelian
the result is clear, so without loss of generality we may take π to be faithful and G to be
nonabelian. Let A be a normal abelian subgroup of G which is not contained in the center.
(That such a subgroup exists follows from the fact that all groups of order p2 are abelian.)
Consider the isotypic decomposition of ρ restricted to A:

V =
⊕
i∈I

Vi.
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Since the representation is faithful, there must be at least two isotypic components: otherwise
A would act as scalars on V , hence centralize GL(V ), hence centralize G. Choose some
isotypic component V0 and let H be the stabilizer of V0, so that π is induced from the H-
representation (π|H , V0). We are now finished by induction because H is a proper subgroup
of G, as |I| > 1. �

Remark 21. The conclusion of the theorem holds more generally for supersolvable groups,
the smallest nontrivial class of finite groups closed under cyclic extensions [Ser77, Section 8.5].

To describe the unitary dual further, one would need a good handle on the subgroups of G,
and this is generally possible only in special cases, since the structure theory of p-groups is so
complicated. The goal of this section is to describe an analogue of this theory for connected
Lie groups. In that setting, we can use the exponential map to describe the subgroups, and
in addition to showing that all representations are monomial, we can describe the unitary
dual explicitly.

2.2. Nilpotent Lie groups. The class of nilpotent Lie groups is the smallest class of Lie
groups that contains real vector spaces and is closed under connected central extensions.

Definition 22. A Lie group G is nilpotent if it admits a filtration

1 = G0 ( G1 ( · · · ( Gn = G

of connected normal subgroups such that for all i, the quotient Gi+1/Gi is central in G/Gi.

Example 23. Let U be a unipotent algebraic group over R. Then U(R) is a nilpotent
simply-connected Lie group. Of particular importance is the unipotent group Un of upper
triangular matrices. One can use Ado’s theorem to show that any simply-connected nilpotent
Lie group embeds in Un. (This does not seem to immediately imply that every such Lie group
is the group of R-points of a unipotent group, and I don’t know if this stronger statement is
true.)

Not all nilpotent groups are simply connected: the easiest example is the circle group
R/Z.

Our understanding of the representation theory of nilpotent Lie groups traces to the
exponential map.

Theorem 24. Let G be a simply-connected nilpotent Lie group. Then the exponential map
exp : g→ G is a diffeomorphism establishing a bijection between sub-Lie algebras h ⊆ g and
closed connected subgroups H ⊆ G.

In order to use the theorem we must therefore restrict our attention to simply-connected
nilpotent groups, a class of group works which the orbit method works perfectly.

For this article our motivating important example of a nilpotent Lie group is the Heisenberg
group, whose definition we now recall.

A symplectic space is a (real, finite-dimensional) vector space V endowed with a nondegen-
erate symplectic form. Symplectic spaces are classified by their dimension, an even number.
In general, the (central) extensions of a group G by an abelian group A are classified by the
two-cocycles G×G→ A, taken up to coboundaries. It turns out that every symplectic space
gives rise to such a cocycle, namely, the symplectic form: bilinearity implies that the form
is a cocycle. This construction produces the Heisenberg group, though for normalization
reasons, we halve the form.
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Definition 25. The Heisenberg group H(V ) of the symplectic space (V, 〈−,−〉) is the central
extension 1→ R→ H(V )→ V → 1 classified by the symplectic form 1

2
〈−,−〉 : V ×V → R.

In other words, the Heisenberg group H(V ) has underlying set V ×R with multiplication

(v, t) · (v′, t′) = (v + v′, t+ t′ + 1
2
〈v, v′〉).

The center of the Heisenberg group is the factor R: hence H(V ) is nilpotent.
Since H(V ) is nilpotent, we should be able to express its elements in coordinates as

upper-triangular matrices. One way to do this is as follows. A polarization of the symplectic
space V is an orthogonal decomposition V = W ⊕W ′ such that W⊥ = W and (W ′)⊥ = W ′.
(There is no canonical polarization: indeed, the space of polarizations is in bijection with a
certain conjugacy class of parabolic subgroups of Sp(V ).) The symplectic form identifies W ′

with the dual space of W , and we can use the polarization to interpret elements of H(V ) as
3× 3 block matrices 1 w u

1 w∨

1

 , w ∈ W, w∨ ∈ W∨, t ∈ R.

If you like, the group can be fully coordinatized by further choosing a basis for W , which
then gives a basis for W ′. The two descriptions of H(V ) are related by the equations

v = w + w∨, t = u− 1
2
〈w,w∨〉.

The Lie algebra h(V ) of the Heisenberg group H(V ) has underlying vector space V ⊕ R
with bracket

[(x, s), (x′, s′)] = (0, 〈x, x′〉).
(This formula explains the appearance of the factor 1

2
in our formula for multiplication in

the Heisenberg group; if we had omitted the 1
2

there, then the symplectic form here would
have to be doubled to compensate.) In this way we can recover the symplectic structure
on V from the group structure on H(V ). The coordinate description of H(V ) shows that
the exponential map exp : h(V )→ H(V ) is given by the simple formula

exp(x, s) = (x, s).

2.3. Coadjoint orbits. Our next goal is to define the space of coadjoint orbits of a nilpotent
Lie group G, illustrating the construction with the Heisenberg group. The key construction
is the coadjoint representation of G, the action of G on its dual Lie algebra g∨.

Example 26. When G = G(R) is the group of R-points of a reductive algebraic group G,
the adjoint representation g is self-dual. When G is semisimple duality follows from the
observation that the representation preserves the Killing form, and in general, the adjoint
representation factors through the adjoint quotient of G.

In particular, the coadjoint representation of GL(V ) is just the vector space End(V ) with
conjugation action. The coadjoint orbit space End(V )/GL(V ) can be described explicitly
using eigenvalues and (some weak generalization of) the Jordan normal form. We can also
use the example of GL(V ) to compute the coadjoint representation of nilpotent Lie groups
by embedding them into GL(V ), with the caveat that the adjoint representation of such a
group may not be self-dual.
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For the Heisenberg group, the adjoint action of H(V ) on h(V ) is given by the formula

Ad(v, t)(x, s) = (x, 〈v, x〉+ s).

The symplectic form on V gives a canonical identification of V with its dual V ∨, hence an
identification of h(V ) with h(V )∨, provided we make the standard identification R = R∨ via
the multiplication pairing. With respect to this pairing, the coadjoint action must satisfy

〈Ad∨(v, t)(x, s), (x′, s′)〉 = 〈(x, s),Ad(−v,−t)(x′, s′)〉.
The righthand side of this expression is

〈x, x′〉+ s(s′ − 〈v, x′〉) = 〈x− sv, x′〉+ ss′

Hence the coadjoint action is given by the formula

Ad∨(v, t)(x, s) = (x− sv, s).
Unlike the general linear group, the Heisenberg group’s adjoint representation is not self-dual.

V

R×
We can now describe the space H(V )\h(V )∨ of coad-

joint orbits. There are two cases. If (x, s) ∈ h(V )∨ has
s = 0 then it lies in its own orbit. Otherwise, if s 6= 0,
all elements of the form (x, s), for varying x ∈ V , lie
in the same orbit, the affine hyperplane (V, s). It fol-
lows that as a set, the orbit space is the disjoint union
H(V )\h(V )∨ = V t R×, depicted at right. The topology
on the quotient is not the coproduct topology however:
the quotient is non-Hausdorff because any sequence of elements in the copy of the reals that
converges to zero converges to every other element of V ∨ as well.

In the case of the Heisenberg group, the coadjoint have dimension either zero or dimV ,
and in particular are even. Further, the orbits carry a canonical symplectic structure. This
is a general feature of coadjoint orbits of nilpotent groups.

Theorem 27. Let G be a simply-connected nilpotent group. and let Ω be a coadjoint orbit
of G. Then Ω carries a canonical G-invariant symplectic form. In particular, dim Ω is even.

Proof sketch. Since the symplectic form we are searching for is G-invariant, it is enough to
define it at a single point x∨ ∈ Ω. Let H be the stabilizer of x∨ in G and let h be its Lie
algebra. The choice of basepoint x∨ yields an identification Tx∨(Ω) ' g/h. Now define the
bilinear form Bx∨ on g by

Bx∨(x, y) = 〈x∨, [x, y]〉.
It is an easy exercise to check that (1) the form Bx∨ is alternating, (2) the kernel of Bx∨ is
h, and (3) the form Bx∨ is H-invariant. Hence Bx∨ defines a nondegenerate 2-form.

These conditions are already enough to imply that dim Ω is even. However, a symplectic
form is required to satisfy an additional condition, namely, that it be a closed 2-form.
Checking this additional condition requires more work, and one needs it to access tools from
symplectic topology. �

2.4. Unitary dual: Heisenberg group. It turns out that for nilpotent groups, the con-
struction of the previous subsection exactly describes the unitary dual.

Theorem 28. Let G be a simply-connected nilpotent Lie group. Then there is a canonical
homeomorphism

G\g∨ → Ĝ, Ω 7→ πΩ.
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As we will see, the homeomorphism preserves much more structure than the topology.

Remark 29. The description of the unitary dual in terms of the space of coadjoint orbits is
visibly false when the group is not simply connected, as we can see already for the nilpotent
group S1 = R/Z: its unitary dual is Z but its coadjoint orbit space is R.

Before explaining the bijection between the unitary dual and the space of coadjoint or-
bits, let’s see what happens for the Heisenberg group. To classify the irreducible unitary
representations (π,H) of H(V ) we examine their central character, recalling that the center
of H(V ) is R.

There is a dichotomy here: either the central character is trivial or it is nontrivial. If
the central character is trivial then π is inflated from a representation of the quotient
H(V )/R = V ; these are classified by Pontryagin duality, and are all one-dimensional. If the
central character is nontrivial then the Stone–von Neumann theorem states that it uniquely
determines the representation up to isomorphism.

Theorem 30 (Stone–von Neumann). The assignment (π,H) 7→ π|R yields a bijection be-
tween the nontrivial characters of R and the irreducible unitary representations of H(V ) with
nontrivial central character.

This analysis gives the bijection Ĥ(V ) ' H(V )\h(V )∨ = V t R×: the elements of V
correspond to the representations inflated from characters of V , and the elements of R
correspond to the Stone–von Neumann representations.

The construction of the Stone–von Neumann representations illustrates the general de-
scription of the unitary dual in terms of the coadjoint space. Given a real number a ∈ R,
the corresponding Stone–von Neumann representation πa depends on a choice of polariza-
tion V = W ⊕ W ′, though any two choices yield isomorphic representations. Define the
representation (πa,L

2(W )) of H(V ) by

(πa(w + w′, t)f)(x) = e(at+ 〈x,w′〉)f(x+ w), w ∈ W,w′ ∈ W ′

where e(t) := exp(2πit) for t ∈ R. More intrinsically, the representation (πa,L
2(W )) can

be described as the representation induced from the inflation of t 7→ e(at) to the subgroup
W × R of H(V ). The fact that W⊥ = W implies that W × R is abelian.

2.5. Unitary dual: nilpotent groups. How does the bijection of the Stone–von Neumann
theorem generalize to other nilpotent groups? We start by describing the characters.

Lemma 31. Every character of a simply-connected nilpotent Lie group G has the form

ρx∨(expx) = e(〈x∨, x〉)

for some linear function x∨ ∈ g∨ such that [g, g] ⊆ kerx∨.

Proof. Since G is simply-connected, any character G→ S1 lifts to a homomorphism G→ R.
And because of the tight connection between nilpotent Lie groups and their Lie algebras,
via the exponential map, giving such a homomorphism amounts to giving a Lie algebra
morphism g→ R. �

The characters of the lemma are precisely the characters whose inductions fill out the
unitary dual. But in order for the induced representation to be irreducible, we must impose
a maximality condition.
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Definition 32. Let g be a Lie algebra, h ⊆ g a subalgebra, and x∨ ∈ g∨ a functional. The
subalgebra h is subordinate to x∨ if [h, h] ⊆ kerx∨, and is maximally subordinate to x∨ if, in
addition, it has maximal dimension among all such subalgebras.

Theorem 33. Let G be a simply-connected nilpotent Lie group.

(1) IndGH ρx∨,H is irreducible if and only if h is maximally subordinate to x∨.
(2) Every irreducible representation is of the form IndGH ρx∨,H for some H and x∨.
(3) Two representations IndGH ρx∨,H and IndGK ρy∨,K are isomorphic if and only if x∨ and

y∨ lie in the same coadjoint orbit.

Write πΩ for the irreducible representation of G corresponding to the coadjoint orbit Ω.

Proof sketch. The proof proceeds by induction on the dimension of G. Without loss of gener-
ality we may assume the center Z of G has dimension one. Kirillov uses as a crucial technical
tool a particular structure in G which he calls a canonical decomposition: a decomposition

g = Rx+ Ry + Rz +W, x, y ∈ g, z ∈ z, W ⊂ g.

such that [x, y] = z and [y,W ] = 0. In spite of the name, such a decomposition is far
from canonical. It is not hard to see that canonical decompositions always exist. The span
of {x, y, z} is a three-dimensional Heisenberg Lie algebra, and Kirillov uses its integrated
Heisenberg group to study the representation theory of G. �

It is a priori very difficult to compute maximal subordinate subalgebras: how does one
know when the maximum dimension has been attained? Fortunately, there is a simple
formula for the dimension.

Theorem 34. Let Ω be a coadjoint orbit of a simply-connected nilpotent group G, let x∨ ∈ Ω,
and let h ⊆ g be a subalgebra maximally subordinate to x∨. Then

dim h = dimG− 1
2

dim Ω.

Example 35. Returning to the Heisenberg group, let Ω be a coadjoint orbit isomorphic
to V ∨. Then h = W ⊕ R where V = W ⊕W∨ is a polarization, and the equation above
becomes (dimW + 1) = (dimV + 1)− 1

2
(dimV ).

Remark 36. There is a strong formal analogy between Kirillov’s description of the unitary
dual of a nilpotent Lie group N and Harish-Chandra’s description of the tempered dual of
a reductive group G. In both cases, the duals are constructed from smaller subgroups by
inflating, then inducting. The inflation-induction procedure relies on an auxiliary choice that
is ultimately irrelevant up to isomorphism: for N , a maximally subordinate subalgebra, and
for G, a parabolic subgroup. It would be very interesting to explore this analogy further.

2.6. Further results. We claimed earlier that the homeomorphism between the coadjoint
orbit space and the unitary dual preserves much more structure than just the topology. In
this subsection we justify this claim by explaining several additional structures preserved by
the correspondence. The simplest condition is for duality: it is easy to see that π∨Ω ' π−Ω.

Next is the Plancherel measure. Since the exponential map gives a homeomorphism be-
tween g and G, to describe the Haar measure on G we can describe the Haar measure on g
in local coordinates. It turns out that this measure is the usual Lebesgue measure on g: in
other words, the exponential map is compatible with Haar measures. So fix a Haar measure

µ on g with dual measure µ∨ on g∨. Then the Plancherel measure on Ĝ with respect to
expµ is exactly the pushforward of µ∨ along the projection g∨ → G\g∨.
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For restriction and induction, let H ⊆ G be a nilpotent subgroup of G. There is a natural
equivariant restriction map p : g∨ → h∨. For restriction, if Ω is a coadjoint orbit of G then

ResGH πΩ =

∫ ⊕
ω⊆p(Ω)

m(ω,Ω)πω dω;

for induction, if ω is a coadjoint orbit of H then

IndGH πω =

∫ ⊕
Ω⊆p−1(ω)

m(ω,Ω)πΩ dω;

I will not describe the multiplicity function m(ω,Ω) explicitly, except to say that it takes
values in {1,∞} and is the same for both restriction and induction.

As for the tensor product, let Ω and Ω′ be coadjoint orbits of G. Their arithmetic sum is
defined to be Ω + Ω′ = {a+ a′ : a ∈ Ω, a′ ∈ Ω′}. Then

πΩ+Ω′ =

∫ ⊕
ω⊆Ω+Ω′

m(ω,Ω,Ω′)πω dω,

where m(ω,Ω,Ω′) ∈ {1,∞} is a certain multiplicity that I won’t specify. In fact, this result
can be deduced from the decomposition for restriction because

πΩ ⊗ πΩ′ = ResG×GG (πΩ � πΩ′).

Example 37. Let’s return to the case of the Heisenberg group H(V ). For a ∈ R×, let
(πa,L

2(W )) denote the Stone–von Neumann representation for a, where V = W ⊕W∨ is a
polarization. Consider the subgroup W of H(V ). The coadjoint orbit corresponding to πa
is the affine space a+ V ∨. It surjects onto W∨ under the restriction map. Then the theory
of the Fourier transform gives the Hilbert space decomposition

Res
H(V )
W πa =

∫ ⊕
W∨

χw∨ dw∨,

where χw∨ is the unitary character of W corresponding to w∨ ∈ W∨.
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