
THE SPECIAL FIBER OF A PARAHORIC SUBGROUP

DAVID SCHWEIN

Abstract. These are notes for the fifth lecture in the Bruhat–Tits masters’ student seminar
at the University of Bonn in Fall 2022. In previous lectures, we constructed the integral
models of parahoric subgroup. In this lecture we reap the fruits of this construction, studying
the special fibers of these integral models. The maximal reductive quotients of such are finite
reductive groups that play an important role in representation theory. After reviewing the
relative identity component, a notion that has been used in the seminar but not adequately
explained, we show how to compute the root data of these finite reductive groups when
the ambient group is quasi-split. This calculation is a beautiful application of affine root
systems. In rank two one can draw nice pictures, some of which we reproduce in these notes.

Notation

Let K be a complete discretely valued field with algebraically closed residue field f. The
assumption on f is not essential; it accommodates our failure to discuss unramified descent.
The next two talks will rectify this failure.

For brevity, we write “the book” to refer to the May 2022 draft of Kaletha and Prasad’s
book on Bruhat–Tits theory, the standard reference for our seminar.

1. Relative identity component

1.1. Generalities. Recall that the identity component G0 of a K-group scheme G locally
of finite type (for K is an arbitrary field) is the connected component of the underlying
topological space of G that contains the identity. Since G0 is an open subgroup of G, it
inherits a scheme structure. If in addition G is quasi-compact, in other words, of finite type,
then G0 has finite index in G.

In the theory of integral models of group schemes, one could define the identity component
of a group scheme locally of finite type in the same way, as the connected component of the
identity in the underlying topological space. It turns out to be more useful to work with a
relative version of this subgroup, where one requires all fibers to be connected, not just the
generic fiber.

Example 1. Let π be a uniformizer of K, suppose p 6= 2, and let G be the norm-one torus
defined by the equation x2 + πy2 = 1, which we saw earlier in the seminar. Then G and GK
are connected but Gf ' µ2 ×Ga is disconnected.

Definition 2. Let G be an O-group scheme. The relative identity component of G is the
O-group G 0 : Schop

/O → Set defined by

G 0(S) =
{
u ∈ G (S) : u(SK) ⊆ G 0

K and u(Sf) ⊆ G 0
f

}
.

Proposition 3. Let G be a O-group scheme.
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(1) If G is smooth then G 0
K t G 0

f is an open subscheme of G representing G 0.
(2) If, in addition, G is affine then G 0 is affine.

Proof. The first part is proved in SGA 3 [DG70, VIB.3.10]. Once one knows that this subset
is open, it is relatively easy to see that it represents G 0. The proof of openness is not so
obvious, though it is clear when GK is connected and Gf is affine: then the complement of
G 0
f in G 0

f is closed in Gf, hence in G .
The second part follows from a more general result of Raynaud, which states that a flat
O-group scheme of finite type with affine generic fiber is affine if and only if it is separated
[PY06, 3.1]. Since G 0 is an open subscheme of a separated scheme by the first part, G 0 is
itself separated, hence affine by Raynaud’s criterion. �

1.2. Application to parahoric groups. We begin with an illuminating example that nat-
urally arises in Bruhat-Tits theory.

Example 4. Consider the lft-Néron model Glft
m,K of Gm,K . From the universal mapping

property, it is easy to see that
Glft

m (O) = K×.

This is much larger than we would expect for an O-scheme, since Gm,O(O) = O×. In fact,
Glft

m,K(O) admits the following description: it is obtained from the disjoint union of countably
many copies of Gm,O by gluing them together along their generic fibers. In other words, Gm,O
is the pushout of the diagram

Gm,K →
∐
i∈Z

Gm,O

given by inclusion of generic fibers in each integral torus. This is a rather strange O-group
scheme: its generic fiber is Gm,K but its special fiber is Z×Gm,f. In particular, Glft

m is not of
finite type. However, the relative identity component is what one would expect:(

Glft
m,K

)0
= Gm,O.

Our main application of the relative identity component is to the construction of parahoric
integral models. Let x ∈ B(G). In the previous lecture, we constructed a smooth integral
model G 1

x of G such that
G 1
x (O) = G(O)1

x.

Definition 5. The parahoric integral model of G at x is the O-group scheme G 0
x .

Fact 6. Let F be a facet of B(G) and let x, y ∈ F . Then G 0
x ' G 0

y as integral models of G.

However, the stabilizers of x and y in G(K) are not always the same when x and y lie in
the same facet: the stabilizer can grow when x is the barycenter, for instance. We write G 0

F
for the parahoric integral model of Fact 6.

2. The affine root system of a quasi-split group

2.1. Affine root systems. In this subsection we recall some facts about affine root systems
that will later inform our understanding of special fibers of parahorics.

Let V be a finite-dimensional real vector space and let A be an affine space under V
(in other words, a V -torsor). Recall that A∗ denotes the vector space of affine functionals
on A. Let Ψ ⊆ A∗ be an affine root system in A with spherical root system Φ. The
vanishing hyperplanes of Φ partition A into facets. The facets of maximal dimension are
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Type A2 Type B2 Type G2

Figure 1. Split rank-two affine root systems

called chambers. We write F ≤ F ′ if F is contained in the closure of F ′. See Figure 1 for a
drawing of the hyperplane systems of split rank-two affine root systems.

For x ∈ A, let Ψx := {α ∈ Ψ : α(x) = 0}. The set Ψx is a root system in the vector space
obtained from A by basing 0 at x. Moreover, Ψx depends only on the facet F containing x,
so we may define ΨF := Ψx. Alternatively, ΨF = {α ∈ Ψ : α|F = 0}. The restriction of ∇ to
ΨF is injective; let ΦF ⊆ Φ denote its image, a root system.

Warning 7. If Φ is nonreduced then ΦF need not be a closed subsystem of Φ. This stems
ultimately from the fact that Bn is not a closed subsystem of BCn.

Let C be a chamber and let Ψ0(C) be the set of indivisible affine roots that are positive
on C and whose vanishing hyperplanes bound C. The set Ψ0(C) is a basis of Φ.

Remark 8. There is a general definition of a basis of an affine root system that we omit.
The set Ψ0(C) satisfies the definition. In fact, C 7→ Ψ0(C) is a bijection between chambers of
A and bases of Ψ.

Proposition 9. Let F be a facet and let C be a chamber with F ≤ C.
(1) Then Ψ0(C) ∩ΨF is a basis of ΨF .
(2) The assignment C 7→ Ψ0(C) ∩ΨF is a bijection

{chambers C : F ≤ C} ' {bases of ΨF}.
(3) Dyn(ΨF) is the subdiagram of Dyn(Ψ) spanned by the nodes in Ψ0

F(C).

Finally, let’s describe the parabolic subsets of ΨF . Recall that a subset P of a root
system Φ is parabolic if it is closed in Φ and Φ = P ∪ (−P ). Given facets F ≤ F ′, let

ΨF(F ′)+ := {α ∈ ΨF : α(F ′) ≥ 0}.

Proposition 10. Let F be a facet. The assignment F ′ 7→ ΨF(F ′)+ is a bijection

{facets F ′ ⊆ A : F ≤ F ′} ' {parabolic subsets of ΨF}.

2.2. Relative root systems. Since dim(K) ≤ 1, the group G is quasi-split. Let S denote
a split maximal torus of G and let T be the centralizer of S in G. Although many of the
constructions of this lecture are independent of this choice of S, it helps us to “coordinatize”
the problem using the root system and root groups.

From S one can construct the relative root system Φ = Φ(G,S) ⊆ X∗(S), and from T

the absolute root system Φ̃ = Φ(G, T ) ⊆ X∗(T ). The absolute Galois group acts on these
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Figure 2. Local hyperplane arrangements for G2

objects, trivially in the case of S, and the restriction map X∗(T )→ X∗(S) induces a Galois-
equivariant surjection π : Φ̃ → Φ. More simply, relative roots of G may be identified with
Galois orbits of absolute roots of G.

Remark 11. The theory of folding gives a recipe for the Dynkin diagram of Φ in terms
of the Dynkin diagram of Φ̃: take the quotient by the Galois action. The recipe is more
complicated, however, when the Galois action stabilizes an edge. One can see by a quick
glance at the table of Dynkin diagrams that among the irreducible root systems, the only one
where this complication occurs is in type A2n. Not coincidentally, it is the only irreducible
absolute root system whose relative root system is nonreduced.

On the group level, the only simply-connected absolutely simple group of this type are
odd special unitary groups for a ramified quadratic extension. Although one must add many
words to handle the nonreduced case, this extra layer of complexity can be ignored much of
the time.

Since G is quasi-split, the Galois action on X∗(T ) preserves a set of positive roots. Such
an automorphism is said to be pinned. A pinned automorphism induces an automorphism
of the (absolute) Dynkin diagram, and this assignment is a bijection between pinned au-
tomorphisms (up to Weyl conjugacy) and Dynkin-diagram automorphisms. The group G
is completely classified by its root datum together with this pinned Galois action. In fact,
there is an equivalence of categories between pinned root data equipped with a Galois action
and pinned quasi-split k-groups. The takeaway is that one can combinatorially enumerate
and understand quasi-split groups through the Galois action on the roots.

Remark 12. In contrast, over an arbitrary field one cannot hope to classify non-quasi-split
reductive groups combinatorially. The inner twists of GLn, for instance, are in bijection with
degree-n central simple algebras over the base field, and such objects are classified by Galois
cohomology, which is very sensitive to the arithmetic of the base field.

However, we will see later that in the setting of Bruhat-Tits theory, it is possible to classify
even the non-quasi-split groups using combinatorics.

We also have the root groups (Ua)a∈Φ. Recall that a root a is divisible if a/2 ∈ Φ and is
multipliable if 2a ∈ Φ. These concepts are relevant only when Φ is nonreduced.
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Root groups come in two kinds.1 Let ã ∈ π−1(a) and let Kã be a field extension of K
corresponding to ã. In other words, Kã is the fixed field in some separable closure of K for
the stabilizer of ã in the absolute Galois group.

First, suppose a is not multipliable (“cases R1 and R3”). Then

Ua ' ResKã/K Uã ' ResKã/K Ga,Kã
' G[Kã:K]

a .

In particular, dimUa = [Kã : K] = |π−1(a)|. Second, suppose that a is multipliable (“case
R2”) so that 2a is divisible. In this case, one has a certain separable quadratic extension
Kb̃/Kã and a three-dimensional unipotent Kã-group scheme UKb̃/Kb̃

such that

Ua ' ResKã/K UKb̃/Kã
.

In particular, dimUa = 3[Kα̃/K] = 3|π−1(a)|.
This unipotent group in the second case is defined as follows. To simply the notation, we

replace the quadratic extension Kb̃/Kã by a quadratic L/K. Let u 7→ ū denote the nontrivial
K-automorphism of L. The functor of points for UL/K is

UL/K(R) = {u, v ∈ R⊗k ` : v + v̄ = uū}
and the group law is (u, v) · (u′, v′) = (u+ u′, v + v′ + uū). The central subgroup Res0

L/K Ga
where u = 0 is the group of trace-zero elements in this quadratic extension, a group non-
canonically isomorphic to Ga. All in all, we can describe UL/K as a central extension

1→ Res0
L/K Ga → UL/K → ResL/K Ga → 1.

The definition of UL/K is a bit mysterious the way we presented it, but one can work out
the definition from first principles by analyzing the root groups of SU3.

Remark 13. When p = 2, there is a very subtle issue with the indexing of the filtration
on the group UL/K , described in Section 3.2(e) of the book, and which propagates to the
definition of the valuation of the relative root datum (Section 6.1). The definition of UL/K
gives an indication as to the problem. If K has characteristic zero (for simplicity) and
L = K(

√
a) then trL/K(x + y

√
a) = 2y

√
a. When in addition val(2) > 0, the imaginary

elements of L are smaller than expected.

Exercise 14. Let G be a split K-group and L/K a finite separable extension. Describe the
relative root system of ResL/K GL.

2.3. Root systems in the apartment. Let A = A(G,S) be the apartment of B(G)
corresponding to S. In brief, one defines A as a certain collection of “valuations of a root
datum”, certain filtrations of the K-points of the root groups whose precise definition we
will elide. Of particular importance are the Chevalley valuations, which arise from a choice
of Chevalley–Steinberg pinning of G with respect to S. The Euclidean cocharacter lattice
V := X∗(S)⊗Z R acts on the set of valuations for its root groups, and one defines A as the
unique equivalence class under this action that contains a Chevalley valuation.

In particular, the apartment A is an affine space – in other words, a torsor – for the vector
space V . This affine space is an important ingredient in the definition of the affine root
system Ψ = Ψ(G,S). Specifically, for any ψ ∈ A∗ with ∇ψ = a ∈ Φ, one uses the valuation
to define

Ua(K)ψ := Ua(K)x,ψ(x)

1Arguably case R3 is slightly different from case R1, though we elide the difference in these notes.
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for any x ∈ A; the definition is independent of the choice of x. Then

Ψ := {ψ ∈ A∗ : U(K)ψ ( U(K)ψ+ · U2∇ψ(K)}.
Here we define U2∇ψ = 1 whenever 2∇ψ /∈ Φ. The factor U2∇ψ(K) in the definition of Ψ is
irrelevant when Ψ is reduced.

Example 15. Suppose G is split and the valuation onK is normalized to have value group Z.
Then there is an identification Ψ = {a + n : a ∈ Φ, n ∈ Z}. Identifying A with V , we can
describe the root-group filtration as Ua(K)0,r = {c ∈ K : val(c) ≥ r}.

3. Special fibers of parahoric groups

3.1. Structure. Given a facet F , let
GF := GF/Ru

(
GF
)

denote the maximal reductive quotient of the special fiber of the parahoric GF . By definition,
the group GF is reductive, and since we assumed f to be algebraically closed, this group is
in fact split. Hence GF is completely determined by its root datum, which we now describe.

Exercise 16. Typically GF is much smaller than the full special fiber GF . Indeed, when F
is a chamber, dimGF = dimS but dim GF = dimG. When G = SL2 and F is a chamber,
show explicitly that the special fiber of the corresponding Iwahori subgroup is

GF ' G2
a oGm.

What is the action of Gm? (Hint: describe the Iwahori subgroup by its functor of points.)

Since S is split its special fiber S is already reductive: S = S. Moreover, the inclusion
S ↪→ G extends to a homomorphism S ↪→ GF of integral models. Passage to special fibers
induces a homomorphism S → GF . In other words, S is a split torus of GF . In fact, S is
a maximal torus, as one can show using the smoothness of the moduli space of tori in the
special fiber. Since X∗(S) is canonically isomorphic to X∗(S), we can naturally interpret ΦF
as a subset of X∗(S).

Theorem 17. (1) The root datum of GF with respect to S is (X∗(S),ΦF , X∗(S),Φ∨F).
(2) The root group for a ∈ ΦF is the quotient U a,x,0/U a,x,0+.

We can deduce the following corollary from a dimension count.

Corollary 18. G 0
F is reductive if and only if F is a (hyper)special vertex.2

3.2. Comparing special fibers. Let F and F ′ be facets. When F ≤ F ′, we have an
obvious inclusion G(K)F ⊆ G(K)F ′ . By properties of smooth integral models that we
reviewed in the first lecture, the inclusion gives rise to a map GF → GF ′ of O-groups, and
thus a map G 0

F → G 0
F ′ of parahoric groups by functoriality of the relative identity component.

Passing to special fibers yields a map

ρ̄F ,F ′ : G
0

F → G
0

F ′

Example 19. When F = C is a chamber, the map GF → GF ′ is the inclusion of the split
maximal torus S→ GF ′ that we used to describe the root datum of GF ′ .

2A vertex is hyperspecial if it remans special after every unramified extension. But since we assumed
k = K, every special vertex is automatically hyperspecial.
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Warning 20. It is tempting to proceed one step further and say that ρF ,F ′ induces a map
GF → GF ′ on maximal reductive quotients. However, this deduction is incorrect: formation
of the maximal reductive quotient is not functorial with respect to all homomorphisms, only
homomorphisms with normal image. The map ρF ,F ′ does not usually have this property.
Indeed, as we will see shortly, the image of ρF ,F ′ is a parabolic subgroup.

Let pF(F ′) denote the image of ρF ,F ′ in GF .3

Theorem 21. (1) pF(F ′) is a parabolic subgroup of GF containing S.
(2) Φ(pF(F ′), S) = ∇

(
ΨF(F ′)

)
⊆ ΦF .

(3) The assignment F ′ 7→ pF(F ′) is a bijection

{facets F ′ ⊆ B(G) : F ≤ F ′} ' {parabolic subgroups of GF}.

Although we have fixed a maximal split torus S throughout the discussion, in the last part
of the theorem we can finally remove it.
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