Background on the Gan-Gross-Prasad Conjecture Automorphic Project Seminar

David Schwein

University of Michigan

5 March 2020

Overview

Let G be a semisimple algebraic group (over a local field k, or sometimes a global field K).

Our goals are to (1) learn something about the words

tempered, generic, L-packets, A-packets,

and to (2) learn something about "restriction problems", one of which is the GGP conjecture.

This will help us to (3) understand Gan's talk next week.

Ramanujan-Petersson conjecture: statement

Conjecture (Ramanujan 1916) *Let*

$$\Delta(z) = q \prod_{n \ge 1} (1 - q^n)^{24} = \sum_{n \ge 1} \tau(n) q^n \qquad (q = \exp(2\pi i z))$$

be the discriminant modular form, a cusp form of weight 12. Then

$$|\tau(p)| \le 2p^{(12-1)/2}.$$

The Ramanujan-Petersson conjecture (Petersson 1930) generalizes the conjecture to cover Maass forms as well.

Satake reformulated the Ramanujan-Petersson conjecture in the language of automorphic representations.

Ramanujan-Petersson conjecture: Satake's reformulation

Recall that every admissible irrep π of $G(\mathbb{A}_{\mathcal{K}})$ is a product of irreps π_{ν} of the group $G(\mathcal{K}_{\nu})$:

$$\pi = \bigotimes_{\nu} {}^{\prime} \pi_{\nu}.$$

 π is automorphic if it is a subquotient of $L^2(G(K) \setminus G(\mathbb{A}_K))$, and cuspidal (automorphic) if it is a subrep of $L^2_{cusp}(G(K) \setminus G(\mathbb{A}_K))$.

Conjecture (Satake 1965)

The local components of a cuspidal automorphic representation of $GL_2(\mathbb{A}_{\mathbb{Q}})$ are tempered.

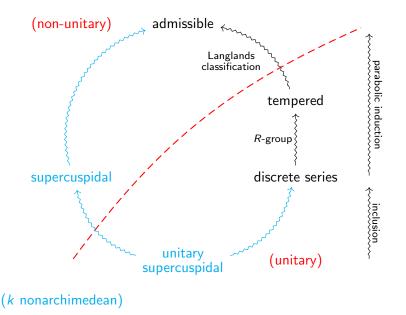
Tempered representations: definition

An irreducible admissible rep π of a semisimple group G(k) is tempered if one of the following equivalent conditions holds.

- 1. Its character is a tempered distribution (extends to Schwartz).
- 2. Its matrix coefficients lie in $L^{2+\varepsilon}(G)$ for every $\varepsilon > 0$.
- 3. Its exponents are nonnegative (for every parabolic).
- 4. It is unitary and lies in the support of the Plancherel measure.
- 5. It is a subrep of a parabolic induction of a discrete series.

Tempered representations are also the building blocks of (irreducible) admissible representations, via parabolic induction.

Tempered representations: hierarchy



Howe and Piatetski-Shapiro's counterexample

Satake's conjecture has an obvious naive generalization.

Naive Conjecture (Wrong!)

For any G, the local components of a cuspidal automorphic representation of $G(\mathbb{A}_K)$ are tempered.

However, the naive generalization is false already for Sp₄!

Theorem (Howe and Piatetski-Shapiro 1977)

There is a cuspidal automorphic representation of $Sp_4(\mathbb{A}_K)$ that is nontempered almost everywhere.

Questions:

- 1. Can the naive conjecture be salvaged?
- 2. What are the local components of automorphic reps?

Ramanujan-Petersson conjecture: salvage

Some of the local components of Howe and Piatetski-Shapiro's counterexample are θ_{10} reps constructed by Srinivasan (1968).

 θ_{10} fails to admit a Whittaker model.

On the other hand, the local components of cuspidal automorphic representations of $GL_2(\mathbb{A}_\mathbb{Q})$ do have Whittaker models.

We can generalize Satake's conjecture by adding a Whittaker model hypothesis.

Whittaker models: generic characters

Assume that G is quasi-split, that is, has a Borel B = TU.

A character ψ of U(k) is generic if it is nontrivial on every simple root group.

Whittaker datum: a pair $\mathfrak{w} = (B, \psi : U(k) \to \mathbb{C}^{\times})$ with ψ generic.

Example

Let $G = \mathsf{SL}_n$ and let $\psi_0 : k \to \mathbb{C}^{ imes}$ be a character. The character

$$\begin{bmatrix} 1 & a_{12} & a_{13} & \dots \\ & 1 & a_{23} & \dots \\ & & \ddots & \vdots \\ & & & & 1 \end{bmatrix} \mapsto \psi_0(b_1a_{12} + b_2a_{23} + \dots + b_{n-1}a_{n-1,n})$$

is generic if and only if each b_i is nonzero.

Whittaker models: definition

Let $\mathfrak{w} = (B, \psi : U(k) \to \mathbb{C}^{\times})$ be a Whittaker datum.

A (\mathfrak{w} -)Whittaker model of an admissible irrep (π , V) of G(k) is the image of an injective intertwiner

$$\pi \hookrightarrow \operatorname{Ind}_{U(k)}^{G(k)} \psi \qquad \left(\begin{array}{c} \operatorname{Gelfand-Graev} \\ \operatorname{representation} \end{array} \right).$$

Alternatively, a (\mathfrak{w} -)Whittaker functional is a (nonzero) continuous linear functional $\lambda : V \to \mathbb{C}$ such that

$$\lambda(\pi(u)v) = \psi(u)\lambda(v), \qquad u \in U(k), v \in V.$$

The two notions correspond under Frobenius reciprocity:

$$\operatorname{Hom}_{U(k)}(\pi|_{U(k)},\psi) = \operatorname{Hom}_{G(k)}\left(\pi, \operatorname{Ind}_{U(k)}^{G(k)}\psi\right).$$

Whittaker models: existence and uniqueness

Broadly speaking, Whittaker models are useful because they realize representations concretely, in a space of functions on the group.

Theorem (Shalika 1974)

A \mathfrak{w} -Whittaker model of π is unique, if it exists.

 π is (\mathfrak{w} -)generic if it admits a (\mathfrak{w} -)Whittaker model.

Theorem Every local component of a cuspidal automorphic representation of $GL_n(\mathbb{A}_K)$ is generic.

On the other hand, the irrep θ_{10} of $\text{Sp}_4(k)$ is not generic.

Whittaker models: applications

Conjecture (Generalized Ramanujan)

If a cuspidal automorphic representation is globally generic then each of its local components is tempered.

The Langlands-Shahidi method constructs (analytically!) *L*-functions of certain generic cuspidal automorphic representations.

Generic representations are expected to pin down the parameterization of tempered *L*-packets.

On to A-packets

Recall our two questions, the first of which is now answered:

- 1. Can the naive generalization of the conjecture be salvaged?
- 2. What are the local components of automorphic reps?

Arthur's conjectural answer to the second question uses the local Langlands correspondence.

So we'll learn about *L*-packets, then *A*-packets.

For simplicity, assume $k \neq \mathbb{R}, \mathbb{C}$.

L-parameters: source (Weil-Deligne group)

An *L*-parameter is a generalization of a complex Galois representation $\Gamma_k \to \operatorname{GL}_n(\mathbb{C})$.

Galois group:
$$\Gamma_k = I_k \rtimes \widehat{\mathbb{Z}}$$

Weil group: $W_k = I_k \rtimes \mathbb{Z} \xrightarrow{|\cdot|} q^{\mathbb{Z}} \subset \mathbb{R}^{\times}$

Weil-Deligne group: $WD_k = W_k \times \overbrace{SL_2(\mathbb{C})}^{\text{Deligne } SL_2}$ (variant: $W_k \ltimes \mathbb{C}$)

Groups:
$$WD_k \longrightarrow W_k \xleftarrow{\text{dense}} \Gamma_k$$

Reps: Weil-Deligne \longleftrightarrow Weil \longleftrightarrow Galois

L-parameters: Weil-Deligne representations

A(n admissible) Weil-Deligne rep $WD_k = W_k \times SL_2(\mathbb{C}) \rightarrow GL(V)$ has the form

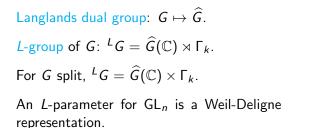
$$V = igoplus_{d \ge 0} V_d oxtimes \operatorname{\mathsf{Sym}}^d$$

where V_d is a semisimple rep of W_k and Sym^d is the unique irrep of $\text{SL}_2(\mathbb{C})$ of dim d + 1.

Say V admits a WD_k -invariant bilinear form B, that is, an isomorphism $f: V \to V^{\vee}$. Then $f^{\vee} = \pm f: V^{\vee \vee} = V \to V^{\vee}$.

- V is orthogonal $\iff f = +f$.
- V is symplectic $\iff f = -f$.

L-parameters: target (L-group) and definition



G	Ĝ	
GL _n	GL _n	
SL _n	PGL _n	
Sp_{2n}	SO_{2n+1}	
SO _{2n}	SO _{2n}	

L-parameter for *G*: a continuous hom $\varphi : WD_k \to {}^LG$ such that

- 1. φ commutes with the maps to Γ_k ,
- 2. $\varphi(W_k)$ is semisimple, and
- 3. $\varphi|_{\mathsf{SL}_2(\mathbb{C})}$ is algebraic. (variant: $\varphi(\mathbb{C})$ is unipotent)

Two *L*-parameters are equivalent if they are $\widehat{G}(\mathbb{C})$ -conjugate.

L-parameters: classical groups

G	V	dim V	
SL _n	projective	п	
Sp_{2n}	orthogonal	2n + 1	$(\det V = 1)$
SO_{2n+1}	symplectic	2 <i>n</i>	
SO _{2n}	orthogonal	2 <i>n</i>	$(\det V = \operatorname{disc} V)$
U_{2n+1}	conjugate-orthogonal	2n + 1	
U_{2n}	conjugate-symplectic	2 <i>n</i>	

 $WD_k \rightarrow {}^LG \quad \longleftrightarrow \quad WD_k \frown V$

In the orthogonal case it can happen that inequivalent parameters produce isomorphic orthogonal reps.

L-packets: "definition"

Conjecture (Langlands)

There is a surjective map

$$\frac{\{\text{admissible irreps of } G(k)\}}{\text{isomorphism}} \longrightarrow \frac{\{L\text{-parameters } WD_k \to {}^LG\}}{\text{equivalence}}$$

satisfying many nice properties. The fibers of this map, called *L*-packets, are finite.

L-packets are singletons if G is a torus or GL_n (so that the LLC is a bijection), but are generally not singletons otherwise.

Write $\Pi(\varphi)$ for the *L*-packet of $\varphi : WD_k \to {}^LG$.

L-packets: properties

It is expected that properties of a parameter are reflected in properties of the representations in its *L*-packet.

Representations π	Parameters φ	
unramified supercuspidal (essentially) discrete tempered	$\begin{split} \varphi(I_k \times SL_2(\mathbb{C})) &= 1\\ (\text{Aubert, Moussaoui, Solleveld 2017})\\ \text{centralizer of } \varphi \text{ is finite}\\ \text{im}_{\widehat{G}}(\varphi(W_k)) \text{ is bounded} \end{split}$	
unitary	?? (ATLAS)	

A tempered L-parameter ought to know the Plancherel measure of the representations in its L-packet (Hiraga, Ichino, Ikeda 2008).

L-packets: parameterization (tempered case)

Assume for simplicity that G is quasi-split.

Let S_{φ} be the centralizer of φ in $\widehat{G}(\mathbb{C})$.

Conjecture

Let φ be a tempered parameter.

- 1. (Shahidi) For each Whittaker datum \mathfrak{w} , the L-packet $\Pi(\varphi)$ contains a unique \mathfrak{w} -generic representation $\pi_{\mathfrak{w}}$.
- 2. There is an injection (bijection if k is nonarchimedean)

$$i_{\mathfrak{w}}: \Pi(\varphi) \to \operatorname{Irr}\left(\pi_0\left(S_{\varphi}/Z(\widehat{G})^{\mathsf{\Gamma}}\right)\right)$$

sending $\pi_{\mathfrak{w}}$ to triv.

A-parameters: motivation

Tempered L-packets and params are well understood conjecturally.

But not all arithmetically interesting reps are tempered, e.g. θ_{10} .

If we are interested in arithmetically interesting reps then

- tempered L-parameters describe too few reps but
- arbitrary L-parameters describe too many reps (e.g. the nonunitary ones).

Arthur proposed an intermediate parameter whose packets conjecturally capture the arithmetically interesting reps.

tempered \longrightarrow *A*-parameters \longrightarrow *L*-parameters \longrightarrow *L*-parameters

A-parameters: definitions

An A-parameter for G is a homomorphism

$$\psi: WD_k \times \underbrace{SL_2(\mathbb{C})}_{\text{Arthur } SL_2} \to {}^LG$$

such that $\psi|_{WD_k}$ is a tempered *L*-parameter and $\psi|_{SL_2}$ is algebraic.

Equivalence of parameters is $\widehat{G}(\mathbb{C})$ -conjugacy.

An A-parameter ψ gives rise to an L-parameter φ_ψ by

$$arphi_{\psi}(w,g) = \psiigg(w,g,igg(ert wert^{1/2} \quad 0 \ 0 \quad ert wert^{-1/2}igg)igg).$$

A-parameters: classical groups

An A-parameter for GL_n is an *n*-dimensional representation of $W_k \times SL_2(\mathbb{C}) \times SL_2(\mathbb{C})$:

$$V = \bigoplus_{d,e \ge 0} V_{d,e} \boxtimes \operatorname{Sym}^d \boxtimes \operatorname{Sym}^e.$$

Here $V_{d,e}$ is a semisimple rep of W_k and Sym^d is the unique irrep of $\text{SL}_2(\mathbb{C})$ of dim d + 1.

There are also concrete descriptions for *A*-parameters of other classical groups, as for *L*-parameters.

(Local) A-packets

Conjecturally, one can attach to each A-parameter ψ a (multi)set $\Pi(\psi)$ of irreps of G(k), the A-packet of ψ .

We expect that

- if G is quasi-split then $\Pi(\varphi_{\psi}) \subseteq \Pi(\psi)$,
- every local component of an automorphic representation lies in some A-packet, and
- every member of $\Pi(\psi)$ is unitary.

Warning: A-packets need not be disjoint!

Restriction problem: statement

Problem

Given a group G, a subgroup H, and a rep π of G, what is $\pi|_H$?

Often π is irreducible and it is enough to know the irreducible subreps (or quotients) of $\pi|_{H}$.

Problem

Given groups $H \subseteq G$, an irrep π of G, and an irrep ρ of H, what is

dim Hom_H($\pi|_H, \rho$)?

Variant: a rep π of G is *H*-distinguished if $\pi^H \neq 0$. Then

 $\dim \operatorname{Hom}_{H}(\pi|_{H}, \rho) > 0 \iff \pi \boxtimes \rho^{\vee} \text{ is dist wrt } H \xrightarrow{\operatorname{diag}} G \times H.$

Restriction problem: unitary group

Highest weight theory shows that the irreps of (compact, real) U_n are in bijection with integer sequences

$$a = (a_1 \ge a_2 \ge \cdots \ge a_n).$$

Let V_a be the corresponding irrep.

For
$$b = (b_1 \geq \cdots \geq b_{n-1})$$
 let $d(a, b) = \dim \operatorname{Hom}_{U_{n-1}}(V_a|_{U_{n-1}}, V_b)$

Theorem

- 1. $d(a, b) \le 1$. (multiplicity at most one)
- 2. d(a, b) = 1 if and only if b interlaces a:

$$a_1 \geq b_1 \geq a_2 \geq \cdots \geq b_{n-1} \geq a_n.$$

Multiplicity (at most) one

The case of GL_n is understood through work of [Aizenbud, Gourevitch, Rallis, and Schiffmann] (nonarchimedean case) and [Aizenbud and Gourevitch] and [Sun and Zhu] (archimedean case).

Theorem

Let k be a characteristic zero local field and let π (resp. ρ) be an irreducible admissible representation of GL_n (resp. GL_{n-1}). Then

$$\dim \operatorname{Hom}_{\operatorname{\mathsf{GL}}_n}(\pi|_{\operatorname{\mathsf{GL}}_{n-1}},\rho) \leq 1.$$

Multiplicity at most one is expected to hold for other classical groups, and this is proved in many cases.

The Gan-Gross-Prasad conjecture predicts exactly when the multiplicity is one.

Multiplicity one: generic representations of GL_n

The following result is a folk theorem whose proof was written down by Prasad.

Theorem

Let k be a p-adic field and let (π, V) (resp. (ρ, W)) be an irreducible admissible representation of GL_n (resp. GL_{n-1}). If π and ρ are generic then

dim Hom_{GL_n}
$$(\pi|_{\text{GL}_{n-1}}, \rho) = 1.$$

The proof uses Jacquet, Piatetskii-Shapiro, and Shalika's theory of Rankin-Selberg convolutions to construct a nonzero, GL_{n-1} -invariant form $B: V \otimes W^{\vee} \to \mathbb{C}$.

Multiplicity one: proof sketch

Let $i: V \to \operatorname{Ind}_{U_n}^{\operatorname{GL}_n} \psi_n$ and $j: W \to \operatorname{Ind}_{U_{n-1}}^{\operatorname{GL}_{n-1}} \overline{\psi}_{n-1}$ be Whittaker models, where

$$\overline{\psi}_{n-1} \cdot \psi_n |_{U_{n-1}} = 1.$$

For
$$s \in \mathbb{C}$$
, let $B_s(v, w^{\vee}) = \int_{\operatorname{GL}_{n-1}/U_{n-1}} i_v(x \oplus e_{nn}) j_{w^{\vee}}(x) |\det x|^s dx.$

JP-SS show that

• B_s converges if Re $s \gg 0$,

• $s \mapsto B_s$ admits a meromorphic continuation to all of \mathbb{C} , and

▶ there are $v_0 \in V$ and $w_0^{\vee} \in W^{\vee}$ such that $B_0(v_0, w_0^{\vee}) = 1$.

Use B_0 (or possibly the residue at s = 0) to prove the theorem.

Thank you for your attention!