
THE PRINCIPAL BLOCK

DAVID SCHWEIN

Abstract. In this talk for winter 2022/2023 Arithmetische Geometrie Oberseminar in
Bonn, we review the representation theory of the principal block of a reductive group over a
nonarchimedean local field. This block is equivalent to the module category for the so-called
Iwahori-Hecke algebra, whose algebraic structure we recall.

Notation

Let F be a nonarchimedean local field with ring of integers O and residue field Fq. In these
notes, the coefficient field for all representations and modules is C. Starting from Section 2,
G denotes a split reductive O-group, B a Borel subgroup, U the unipotent radical, and T a
maximal split torus of B.

1. Basics of smooth representation theory

In this section only, let G be a locally profinite group. Let V be a representation of G. A
vector v ∈ V is smooth if it is fixed by a compact-open subgroup of G, and the representation
V is smooth if each of its elements is smooth. In topological language, V is smooth if and
only if the action map G×V → V is continuous for the discrete topology on V . Let Mod(G)
denote the category of smooth G-modules.

The usual operations of representation theory—contragredient, tensor product, inflation,
restriction, induction, and so on—all carry over to the smooth category. We highlight two
important differences.

First, the definitions of some of these operations, such as induction and contragredient,
must be modified from their naive definitions by restricting to the smooth vectors. For
example, the contragredient in the smooth category is defined to be

V ∨ := HomG(V,C)∞,

where W∞ denotes the smooth vectors in a representation W of G.
Second, in the smooth category there are two kinds of induction. Let H be a closed

subgroup of G and ρ : H → GL(W ) a smooth representation.
• Smooth induction IndGH(W ), defined as the smooth functions f : G → W such that
f(hx) = ρ(h)f(x) for all x ∈ G and h ∈ H. The group G acts in the usual way, by
right translation. In other words, as an exemplar of the previous point,

IndGH(W ) :=
(
IndGdisc

Hdisc
(W )

)∞
where the subscript “disc” denotes the discrete topology.
• Compact induction c-IndGH(W ), the subspace of IndGH(W ) consisting of those func-
tions f such that supp(f), which is a union of right H-cosets, is compact in H\G.
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When G is discrete, the functors IndGH and ResGH are adjoint to each other in both ways. But
in the smooth settings, the two adjunctions separate: here the adjoint pairs are (ResGH , IndGH)
and (c-IndGH ,ResGH).

When G is discrete, in particular, finite, representations of G are the same as C[G]-
modules. This equivalence has an analogue for locally profinite groups in which the group
ring C[G] is shrunk to account for the topology on G.

Definition 1. The Hecke algebra H(G) of G is the algebra C∞c (G) of smooth, compactly-
supported, complex-valued functions, and in which multiplication is defined by convolution:

(f1 ∗ f2)(x) :=

∫
G

f1(y)f2(y
−1x) dy.

Remark 2. To avoid the choice of Haar measure in the definition of the Hecke algebra,
one can instead define the Hecke algebra as the convolution algebra of smooth compactly-
supported distributions. A choice of Haar measure identifies this version of the Hecke algebra
with our version.

The Hecke algebra is noncommutative if G is, but even worse, it is unital only when G is
discrete. Indeed, the unit should be the Dirac delta distribution, but this distribution is not
a function unless G is discrete. There is an adequate replacement, however: a rich supply of
idempotents. For us, the most important are the weighted indicator functions

eK :=
1K

vol(K)

of compact-open subgroups K, where 1X denotes the indicator function of X. We will use
them to show that nondegenerate H(G)-modules are the same as smooth G-modules.

Lemma 3. Let V be a smooth representation of G. There is a unique action of H(G) on V
such that

〈fv, v∨〉 =

∫
G

f(x)〈xv, v∨〉 dx

for all f ∈ H(G) and smooth linear functionals v∨ : V → C.

Proof. The test function f is a finite sum of indicator functions of left cosets of compact-open
subgroups of G. Refining the decomposition if necessary, we can assume that these sets are
all cosets for the same subgroup K, which fixes V . Now define

1gK ∗ v := vol(K)gv. (1)
We omit the necessary check that the resulting definition is independent of all choices. �

The module of Lemma 3 has a special property: it is nondegenerate in the sense that
each of its elements is fixed by some idempotent. Using (1) again, we can recover a smooth
representation of G from such an H(G)-module.

Corollary 4. There is a canonical equivalence of categories between smooth representations
of G and nondegenerate C∞c (G)-modules.

We will henceforth pass freely between smooth representations of G and nondegenerate
H(G)-modules.

Let K be a compact open subgroup of G. We now restrict our attention to smooth
representations V of G that are generated by their K-fixed vectors V K . Let ModK(G)
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denote the category of such representations. The algebra that controls ModK(G) is the
K-spherical Hecke algebra

H(G,K) := eKH(G)eK = C∞c (K\G/K).

Unlike the full Hecke algebra, the K-spherical Hecke algebra is unital: the unit is eK .
However, the relationship between ModK(G) and Mod

(
H(G,K)

)
is not so straightforward

as one might first think. In one direction, given a H(G,K)-module E, one forms the smooth
G-representation

H(G)⊗H(G,K) E =: MK(E).

In the other direction, given a smooth representation V of G, the fixed-points space
V K = eKV =: mK(V ).

is a H(G,K)-module. All in all, we have an adjoint pair (MK ,mK) of functors

Mod
(
H(G,K)

)
ModK(G).

MK

mK

Furthermore, the fixed-points functor mK is exact because
V = eKV ⊕ (1− eK)V, (2)

and this functor is a left quasi-inverse to MK :

id ∼−→ mK ◦MK , that is, E
∼−→
(
H(G)⊗H(G,K) E

)K
.

It follows formally that MK is fully faithful [Sta22, Tag 0FWV].
So mK and MK are very close to being quasi-inverses. It can even be shown, using Zorn’s

Lemma, that mK and MK induce a bijection on irreducible objects. Nevertheless, these
functors are not equivalences in general.

Example 5. Let G be the F -points of a reductive F -group and let B be a Borel subgroup.
Consider the short exact sequence

0 C C∞(B\G) V 0

of representations of G, in which the first map is inclusion of constant functions. Let K be
a maximal compact subgroup of G satisfying the Iwasawa decomposition G = BK. Then
clearly C∞(B\G)K = C, so that V K = 0 by exactness of K-fixed points. Now consider the
dual sequence

0 V ∨ C∞(B\G)∨ C 0.

Let W be the G-subspace of C∞(B\G)∨ generated by the K-fixed vectors. Since K-fixed
points commutes with the contragredient, (V ∨)K = 0 and W 6= 0. The morphism

W → C (3)
in ModK(G) becomes an isomorphism after applying me, so if me were an equivalence then
(3) would have to be an isomorphism, meaning that W ' C. On the other hand, using
Frobenius reciprocity and the fact that

C∞(B\G)∨ ' IndGB(δ−1B ),

where δB : B → C is the modulus character, it can be shown that C does not embed into
C∞(B\G)∨, a contradiction.
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This example simplifies quite a bit when G = GL2(F ), in which case V is an irreducible
representation called the Steinberg representation which we discuss in Section 3.

Proposition 6. The following are equivalent.
(1) The functors MK and mK are quasi-inverses, so that ModK(G) ' Mod

(
H(G,K)

)
.

(2) ModK(G) is closed in Mod(G) under subobjects.
(3) ModK(G) is a Serre subcategory of Mod(G).

Proof. Given (1), let V ∈ ModK(G) and let W be a G-stable subspace of V . Replacing W
by H(G)eKW , we may assume that WK = 0. Now the projection map V → V/W becomes
an isomorphism after applying mK , and since mK is an equivalence by assumption, W = 0
after all.

Conversely, given (2), showing (1) amounts to showing that the co-unit
(MK ◦mK)(V )→ V,

which is surjective because V ∈ ModK(G), is also injective. Indeed, its kernel has trivial
K-fixed points, so by (2), the kernel is trivial.

The equivalence of (2) and (3) is an easy exercise. �

Remark 7. In our application to the principal block, an even stronger conclusion holds: the
functor MK realizes ModK(G) as a direct summand of Mod(G). It seems that this stronger
conclusion does not hold in the generality of Proposition 6, and it would be interesting to
construct a counterexample.

2. The principal block

We now return to the setting of reductive groups over a local field, specializing the discus-
sion of the previous section to a particularly important compact-open subgroup of G(F ).1

Definition 8. The standard Iwahori subgroup I of G(F ) is the pre-image of B(Fq) in G(O):

I G(O)

B(Fq) G(F )

y

An Iwahori subgroup of G(F ) is any G(F )-conjugate of the standard Iwahori.

Remark 9. Our choice of standard Iwahori depends on the choice of Borel subgroup B and
integral model G of GF . But for our purposes it is enough to work with a single Iwahori,
and we will suppress the adjective “standard”.

Example 10. One Iwahori subgroup of GL2(Qp) is the set of matrices in GL2(Zp) of the
form [

a b
pc d

]
, a, b, c, d ∈ Zp.

More generally, one Iwahori subgroup of GLn(Qp) is the set of matrices in GLn(Zp) all of
whose entries below the diagonal are divisible by p.

1In the rest of the article, we abuse notation by writing Mod(G) for Mod(G(F )) and H(G) for H(G(F )).
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The goal of this section is to prove that the Iwahori subgroup satisfies the equivalent
properties of Proposition 6. To make the proof more elementary, we will actually prove
something a bit weaker by restricting our attention to admissible representations. Although
the stronger statement holds for all smooth representations, I’m not sure how to prove it
without using the theory of the Bernstein decomposition, which felt to me like too large of
a black box. We will use a superscript “adm” to denote the admissible representations of G
or finite-dimensional H(G, I)-modules.

The key to the proof is the following lemma.

Lemma 11. Let V ∈ Modadm
I (G). Suppose that

every nonzero smooth subrepresentation of V has an I-fixed vector. (∗)

Then any exact sequence of smooth admissible representations

1 V V V ′′ 1

with V ′′I = 0 splits.

Before discussing the proof of Lemma 11, we explain the main consequence of this lemma.
In the proof, we construct a cousin of the functor MI which is related to MI in roughly the
same way as the functor c-Ind is relatd to Ind. We use duality and admissibility to pass
between the functors, both of which have their own advantages.

Corollary 12. The functor MI realizes Modadm
I (G) as a direct summand of Modadm(G).

We call ModI(G) the principal block of Mod(G).

Proof that Lemma 11 implies Corollary 12. There are several steps.
First, we claim that if V ∈ Modadm

I (G) satisfies (∗) then each of its subrepresentations W
lies in ModI(G). This follows by applying the conclusion of the lemma to the exact sequence
obtained from inclusion into W of the subrepresentation generated by W I .

Second, given E ∈ Mod
(
H(G, I)

)
, consider the space

M ′
I(E) := {smooth φ : G(F )/I → E : φ ∗ f = f · φ},

where f · φ denotes the action of f on E. Then M ′
I(E) is a representation of G by left

translation. We claim that M ′
I(E) satisfies (∗). Indeed, any subrepresentation V contains a

function φ such that φ(1) 6= 0, and then a direct computation shows that (eI ∗ φ)(1) 6= 0, so
that 0 6= eI ∗ φ ∈ V I .

Third, since

MI(E) := H⊗H(G,I) E = HeI ⊗H(G,I) E = Cc(G(F )/I)⊗H(G,I) E,

there is a natural map
MI(E)→M ′

I(E), (4)
which becomes the identity on E after taking I-fixed points. A priori (4) is neither injective
nor surjective, we claim that it is an isomorphism when dimE < ∞. Lemma 11 shows
that (4) is surjective, in other words, that M ′

I(E) is generated by its I-fixed vectors. For
injectivity, use the fact that M ′

I(E
∨) is isomorphic to MI(E)∨.

Fourth, combining the previous steps, we see that when dimE < ∞, every subrepresen-
tation of MI(E) lies in ModI(G).
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Finally, let V ∈ Modadm
I (G) be arbitrary. The action map MI(V

I) → V is surjective by
assumption. Any subrepresentation of V is a quotient of a subrepresentation of MI(E), and
ModI(G) is closed in Mod(G) under quotients. So we are done. �

The proof of Lemma 11 is of a similar flavor to the proof given above. In the interest of
brevity, we will not repeat it. Instead, we merely isolate one notable input to the proof.

As a preliminary step, let’s recall two important operations in the smooth representation
theory of reductive groups: parabolic induction and the Jacquet functor.

First, given a character χ of T (F ), the parabolic induction of χ to G is the induced repre-
sentation IndGB χ, where we inflate χ to B(F ) via the surjection B → T . Second, the Jacquet
module of a representation V of G is the space VU of coinvariants of the unipotent radical U .
By Frobenius reciprocity, ((−)U , IndGB(−)) is an adjoint pair.

Lemma 13. The canonical map V I → (VU)T (O) is an isomorphism.

This map is induced by the projection V → VU .

Proof sketch. Both parts of the proof are classical results of harmonic analysis. In the interest
of brevity, we sketch the proof of surjectivity. A proof of injectivity may be found in [Blo97].

Let Ū be the opposite parabolic of U with respect to T , let U0 = I ∩ U(F ) = U(O), and
let Ū0 = I ∩ Ū(F ), the pre-image of 1 in Ū(O) under the reduction map U(O) → U(Fq).
The key input to surjectivity is that I decomposes as a set-theoretic product

I ' Ū0 × T (O)× U0.

More precisely, the multiplication map from the righthand side to the lefthand side is a
homeomorphism. Such a decomposition holds for many other compact-open subgroups, and
is called a Iwahori factorization in that generality.

to do!!!! �

Remark 14. We know from Example 5 that some part of the proof of Corollary 12 must
break down if I is replaced with a maximal special compact subgroup K. Every step of our
proof of Corollary 12 (modulo Lemma 11) would work just as well for K in place of I. But
Lemma 13 is one place where the proof would fail for K, since K does not admit an Iwahori
factorization.

Corollary 15. A smooth irreducible representation V of G lies in the principal block if and
only if it is a subquotient of IndGB(χ) for some unramified character χ of T (F ).

Proof. By Frobenius reciprocity,

HomG(V, IndGB(χ)) ' HomT (VU , χ) ' HomT

(
(VU)T (O), χ

)
.

It follows from (2) that the canonical map V I → VI is an isomorphism, so that (VU)T (O) ' V I

by Lemma 13. Hence
HomT (VU , χ) ' HomT

(
V I , χ).

Since V is irreducible, it lies in the principal block if and only if V I 6= 0, and the left hom
set above has dimension 0 or 1. If it has dimension 1 for some χ, meaning that V embeds in
IndGB(χ), then V I 6= 0. Conversely, if V I 6= 0 then there is some χ such that the right hom
set above is nonzero, so that V embeds in IndGB(χ). �
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3. Example: GL2

In this section we list, without proof, the irreducible representations in the principal block
of GL2. Here the torus T is the diagonal matrices, the Borel B is the upper-triangular
matrices, and the modulus character δB is[

a
b

]
7→ |a/b|.

We start with a preliminary observation. In general, the group of characters χ of F× acts
on representations of GL2(F ) by determinantal twisting:

π 7→ (χ ◦ det)⊗ π := χπ

This action restricts to an action on the principal block of the unramified characters of F×.
So the representations in our list can be freely twisted by unramified characters.

The construction of the list proceeds, via Corollary 15, by analyzing parabolic inductions
of unramified characters of the maximal torus of diagonal matrices. Most of the time the
parabolic inductions are irreducible, but on occasion they decompose into two pieces.

A more specific statement is supplied by the following proposition. Let w =
[

1
−1

]
be the

Weyl element. Given a character χ of T (F ) with

χ :
[
a
b

]
7→ χ1(a)χ2(b),

the Weyl conjugate wχ is the character
wχ :

[
a
b

]
7→ χ2(a)χ1(b).

The Steinberg representation of GL2(F ) is the quotient

St := C∞(B(F )\G(F ))/C,

where C is realized as constant functions. This representation is discrete series, but not
supercuspidal.

Proposition 16.
(1) Two parabolic inductions iGBχ and iGBσ share an irreducible subquotient if and only if

χ = σ or χ = wσ, in which case they have the same composition factors.2
(2) iGBχ is reducible if and only if χ = δ

±1/2
B (φ◦det) for some character φ of F×, in which

case it has length two and its composition factors are φ and φ · St.

In fact, we can do a bit better and draw a picture of the situation. The unramified
characters of T (F ) are of the form

χs,t :
[
a
b

]
7→ sord(a) · tord(b)

where s, t ∈ C×. The Weyl element acts on χs,t by swapping s and t. The determinantal
characters lie on the diagonal s = t, the modulus character is δB = χq1/2,q−1/2 , and its
unramified twists form the locus st−1 = q±1. Once we identify χ with its parameter, part (1)
of Proposition 16 shows that the irreducible representations of the principal block are fibered
over the variety (C×)2/S2, depicted in Figure 1. Over most of this variety, the gray locus
in the picture, the fibers are singletons. But over the red lines s = q±1t the fibers are two
elements, twists of {id, St}.

2Here we abuse notation by writing iGB for iG(F )
B(F ).
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The set Irr
(
ModK(G)

)
of irreducible representations in the principal block admits a topol-

ogy called the Jacobson topology. The resulting space is non-Hausdorff: its universal Haus-
dorff quotient is (C×)2/S2, and the locus where the space fails to be Hausdorff is precisely
the locus where the fibration fails to be one-to-one.

s

t S2

S2

s = q±1tIrr
(
ModI(G)

)

(C×)2/S2

Figure 1. The space of principal supercuspidal supports for GL2(F )

4. Iwahori-Hecke algebras

Our goal in this section is to understand the algebraic structure of the ring that controls
the principal block, namely H(G, I).

The first observation is that this ring has as a basis the set of indicator functions 1IgI of
double cosets of I in G. These double cosets are conveniently parameterized, and we can
describe (generators for) the relations between them.

The parameterization of double cosets is called the (affine) Bruhat decomposition. In this
decomposition, a certain group called the affine Weyl group plays a starring role.
Definition 17. The affine Weyl group Wa of G is the quotient

Wa := NG(T )(F )/T (O),

where NG(T ) is the normalizer of T in G.
The Bruhat decomposition asserts that the double cosets of I in G are parameterized

by Wa. In more detail, given w ∈ Wa and a lift ẇ of w to NG(T )(F ), the resulting double
coset IẇI is independent of the choice of ẇ, and we write IwI := IẇI.
Theorem 18 (Bruhat decomposition). The assignment w 7→ IwI defines a bijection

Wa ' I\G/I.
We may therefore index a basis of H(G, I) by Wa, via the indicator functions 1IwI . Our

next step is to describe some relations between these basis elements. For this, we must first
recall more information about the structure of affine Weyl groups.
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The coarse structure is simple: the affine Weyl group is a split extension of the ordinary
Weyl group by a lattice.

Proposition 19. Wa ' X∗(T ) oW .

Proof sketch. The affine Weyl group fits into the short exact sequence

1 T (F )/T (O) Wa W 1.

X∗(T )

val'

In fact, this short exact sequence splits. The splitting follows from the theory of the Tits
lift [Tit66]: in brief, the failure of the projection NG(T )(F ) → W to split is measured by a
two-cocycle of W valued in the order-two elements of T (F ). Since these all lie in T (O), this
projection splits after we mod out by T (O). �

Remark 20. The isomorphism of Proposition 19 is not canonical: in the language of Bruhat-
Tits theory, it depends on a choice of special point in the apartment of T .

An important feature of ordinary Weyl groups is that they are Coxeter groups. This
feature is almost shared by affine Weyl groups, but there is a small complication that arises
when G is not simply-connected.

Our choice of Borel subgroup B produces a set S of simple reflections in W making the
pair (W,S) a Coxeter system. Let I be the set of irreducible components of the root system
of G. For i ∈ I, let α̃i be the longest root of the ith component, let

s̃i = (−α̃∨i , sα̃i
)

in the semidirect product description of Wa, and let Sa := S ∪ {s̃i | i ∈ I}.

Fact 21. If G is simply connected then the pair (Wa, Sa) is a Coxeter system with Coxeter
diagram the extended Coxeter diagram of G.

When G is not simply-connected, we gather information about Wa by comparing it to
the affine Weyl group W sc

a of the simply-connected cover Gsc of the derived subgroup of G.
Recall that when G is simply connected, X∗(T ) is the coroot lattice ZR∨. Let

π1(G) := X∗(T )/ZR∨,

the algebraic fundamental group of G.

Proposition 22. Wa ' W sc
a o π1(G).

Proof. W sc
a is a normal subgroup of Wa since the Weyl group normalizes the root lattice. �

Example 23. When G = GL2,
• Wa ' Z2 o S2, where S2 acts on Z2 by permutation, and
• the Coxeter generators of Wa are s = (0, σ) and t = (e2 − e1, σ).

Although Wa is not quite a Coxeter group, we can nonetheless equip it with a length
function by stipulating that the non-Coxeter elements have length zero.
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Definition 24. The length function ` : Wa → N is defined by
`(w, σ) := `sc(w)

where w ∈ W sc
a and σ ∈ π1(G), we use the identification of Proposition 22, and `sc : W sc

a → N
is the length function of the Coxeter system (W sc

a , Sa).

We can now state the fundamental relations between the basis elements 1IwI of H(G, I).

Definition 25. The universal Hecke algebra H for G is the C[z, z−1]-algebra generated by
the symbols {ew : w ∈ Wa} satisfying the relations

esew =

{
esw if `(sw) > `(w)

zesw + (z − 1)ew if `(sw) < `(w).
(5)

Let Hq be the algebra obtained from H by specializing z to q.

Proposition 26. Normalize the Haar measure on G so that vol(I) = 1. Then the assignment
ew 7→ 1IwI extends to an algebra isomorphism

Hq ' H(G, I).

Proof. Let φw := 1IwI for brevity. The exchange condition for Coxeter groups [Bou68,
IV§1.5] implies that if `(sw) < `(w) then there is some reduced decomposition for w starting
with s. From this, it suffices by induction on the length of w to show that

(1) φs ∗ φs = (q − 1)φs + φ1.
(2) if `(sw) > `(w) then φs ∗ φw = φsw

The first of these is an easy calculation. As for the second, it is easy to see that φs∗φw = cφsw
for some integer c ≥ 1. To show that c = 1, use that integration over G is a homomorphism
ε : H → C. Letting

qw := vol(IwI) = [I : wIw−1],

we see that c = qsqw/qsw.3 But one can show by a calculation with cosets that qsw ≤ qsqw.
Hence c = 1. �

Earlier we saw two semidirect product decompositions of the affine Weyl group, Proposi-
tions 19 and 22. Each decomposition gives rise to a related decomposition of the Iwahori-
Hecke algebra: roughly speaking, we replace abelian groups by their group rings, Weyl groups
by their Hecke algebras, and semidirect product by twisted tensor product.

In what follows, the notation A ⊗̃ B denotes a twisted tensor product of C-algebras in
which A and B embed as subalgebras but the relations between A and B must be further
specified.

From Proposition 26, we immediately deduce the first decomposition.

Proposition 27. Let Hsc denote the universal Hecke algebra of Gsc. Then there is an algebra
isomorphism

H ' Hsc ⊗̃ C[π1(G)]

where multiplication in the algebra on the righthand side is defined by
eweσ = eσ(w)ew (w ∈ W sc

a , σ ∈ π1(G)).

3In fact, qw = q`(w). This reflects the nature of the cells IwI as the Fq-points of an affine variety.
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The second decomposition, arising from the description Wa ' X∗(T ) oW , will permit us
to compute the center of H. To start with, we explain how C[X∗(T )] is a subalgebra of H.

Direct computation shows that `(λ) = 2〈λ, ρ〉 for λ ∈ X∗(T ) dominant. Now given an
arbitrary λ ∈ X∗(T ), choose a decomposition λ = µ− ν with µ and ν dominant. The length
formula above implies that the element

xλ := q−〈λ,ρ〉eµe
−1
ν

is independent of the choices of µ and ν. The same formula also shows that
xλxµ = xλ+µ.

Hence the assignment λ 7→ xλ defines an injective ring map C[X∗(T )]→ H.

Fact 28. Let Hfin denote the Hecke algebra of the finite Weyl group W .4 Then
H ' C[X∗(T )] ⊗̃ Hfin

where the algebra on the righthand side admits C[X∗(T )] and Hfin as subalgebras and satisfies
the additional relations

xλes − esxs(λ) = (q − 1)
xλ − xs(λ)

1− x−α∨s
(s ∈ S, λ ∈ X∗(T ))

with α∨s is the simple coroot corresponding to s.

From Fact 28 one can deduce the structure of the center of the Hecke algebra.

Corollary 29. Z(H) ' C[z, z−1]
[
X∗(T )

]W .

We can now conclude that the principal block is a true block in the sense that it cannot
be further subdivided.

Corollary 30. The principal block is indecomposable.

Proof. The center of the principal block is the center ofH(G,K), which is an indecomposable
ring. But if the principal block decomposed as a direct sum of two subcategories then its
center would decompose into the centers of the factors. �

Guide to the literature

In this section we point the curious reader to places in the literature where the ideas of
this article are discussed more fully.

Basic facts about smooth representation theory are reviewed in many places, including
Cartier’s Corvallis article [Car79], Bernstein’s lecture notes [BR92], and Ngô Bảo Châu’s
lecture notes [NB16]. Renard’s beautiful book [Ren10] provides exhaustive details. Our
discussion of the relationship between ModK(G) and Mod

(
H(G,K)

)
draws on the influential

article of Bushnell and Kutzko on type theory [BK98], of which the theory of the principal
block is a special case.

The Iwahori subgroup is named after Nagayoshi Iwahori, who studied it in an important
article with Matsumoto [IM65]. Its basic theory has been explained in many places, among
them Tits’s Corvallis article [Tit79] and the forthcoming book of Kaletha and Prasad. The
observation that the category of smooth representations generated by their Iwahori-fixed

4In other words, Hfin is the subalgebra of H generated by {es : s ∈ S}.
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vectors constitutes a block in the full category of smooth representations is originally due to
Borel [Bor76], and our proof sketch draws on Section 4 of his article.

The standard source for the representation theory of GL2 is the book of Bushnell and
Henniart [BH06], which carefully describes in a famous exercise of Bourbaki [Bou68, Ex. 24
to IV§2].

The decomposition of Fact 28 is due to Lusztig, but I read about it in a nice article of
Heckman and Opdam on Hecke algebras [HO97].
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