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1. Introduction

Stable homotopy theory studies the homotopy category of spectra. This category
has a symmetric monoidal smash product which allows the definition of ring
spectra ‘up to homotopy’. In recent years there was an increasing interestin more
refined notions of ring spectra which are associative (and possibly commutative)
up to coherent homotopy, and a complex machinery developed around this issue.
The coherence questions can be avoided if there is a model for the category of
spectra (not just its homotopy category) which admits a symmetric monoidal
smash product. For a long time no such category was known, and there was even
evidence that it might not exist [Lew91].

Then at approximately the same time, two categories of spectra with nice
smash products were discovered. EImendorf, Kriz, Mandell and May constructed
the category of-module§EKMM], and Jeff Smith introducedymmetric spec-
tra [HSS]. Both categories are Quillen model categories [Q, Hov] and have asso-
ciated notions of ring and module spectra. However these two categories arise in
completely different ways. And even though the homotopy categories are equiv-
alent, it is not a priori clear if both frameworks give rise to the same homotopy
theory of rings and modules. Both categories have their merits, described in de-
tail in the introductions of [EKMM] and [HSS], and it is desirable to be able to
translate results obtained in one category into conclusions valid in the other. The
present paper describes a mechanism which makes such comparisons possible.

Below we define a lax symmetric monoidal functbr: My — Sp* from
the category of-modules to the category of symmetric spectra. The fungtor
preserves homotopy groups and has a strong symmetric monoidal left adjoint.
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We show that the two functors induce inverse equivalences of the homotopy
categories of spectra, ring spectra, commutative ring spectra and module spectra:

Main Theorem. The functor® from the categoryM of S-modules to the
categorySp* of symmetric spectra passes to a symmetric monoidal equivalence
of homotopy categories

Ho(Ms) ——— Ho(Sp®).

Furthermore,® induces equivalences of homotopy categories

Ho (S-algebras N Ho (symmetric ring spectja
Ho (com. S-algebras _=, Ho (com. symmetric ring specira
and Ho (Mp) =, Ho (& (R)-modules

for any S-algebraRr.

All equivalences in the main theorem follow from the fact that the funétor
is the right adjoint of various Quillen equivalences [Hov, 1.3.12]. The precise
statement is in Theorem 5.1, which also deals with some additional cases of
structured spectra.

When using the terms ‘fibrations’ or ‘cofibrations’in the contex§ ehodules,
we refer to the model category structure of [ EKMM, V11 4.6], where those notions
are called ‘g-fibrations’ and ‘g-cofibrations’. In the context of symmetric spec-
tra, we consider different kinds of stable model category structures: the ‘stable’
[HSS, 3.4.4] or [MMSS, 9.2], the ‘positive stable’ [MMSS, 14.2] and tl§& *
model category structure [HSS, 5.3.6]. T$enodel structure is only hinted at in
[HSS], and we will not use the fact that the model category axioms are satisfied.
The weak equivalences are always the same, they arstdbée equivalences
[HSS, 3.1.3] or [MMSS, 8.3]. In particular the different choices of cofibrations
lead to the same stable homotopy category of symmetric spectra. The unit of the
smash product (i.e., the sphere spectrum) is denated both [EKMM] and
[HSS]. In order to distinguish between these two objects we use the nosation
for the symmetric sphere spectrum.

In the preprint version of [HSS], symmetric spectra were treated based on
both simplicial sets and topological spaces. The published version is written
entirely simplicially, but for the comparison witftmodules it is convenient to
use topological spaces. We will refer to [MMSS] for a published treatment of
symmetric spectra of topological spaces; as one expects, the two versions are
Quillen equivalent, see [MMSS, 19.3]. As in [MMSS]spaceis a compactly
generated weak Hausdorff space. One reference is [McC], and a more detailed
treatment is given in the appendix of Lewis’ thesis [Lew78]. We denotg bye
category of pointed spaces.
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The present paper could not have been written without the collaboration with
Mike Mandell, Peter May and Brooke Shipley. It is a spin-off of our joint effort to
understand the relationship between various spectra categories, which ultimately
led to the paper [MMSS]. | learned a lot of what | know abé&tnodules and
symmetric spectra through our extensive discussions. | would also like to thank
Mike Hopkins, Jeff Smith and Charles Rezk for several clarifying conversions
on topics related to this paper.

2. An adjoint functor pair

In order to define the functo® from the categoryM of S-modules to the
categorySp* of symmetric spectra we start by choosing a desuspension of
the sphereS-module. To be specific we 1t be theS-module SA LS ™ =
SrcLX$° 80 defined in [EKMM, 11 1.7]. What matters is not the precise form of
Sc'l, but that it is a cofibrant desuspension of the spl§engodule, i.e., it comes
with a weak equivalencs 11 St — S, whereS? denotes the circle. We use
the notationS, %, as opposed t6;* used in [EKMM], to emphasize that this is
a cofibrant model for the (-1)-sphere. For- 0 we defineS,” to be then-fold
smash power of th§-moduleS !, endowed with the permutation action of the
symmetric group om letters. We ses® = S, the unit of the smash product;
here the notation is slightly misleading sin§®is not cofibrant. The functo®

is then given by

(M), = Ms(S.", M)

where the right hand side is the topological mapping space in the category of
S-modules. The symmetric group acts on the mapping space through the permu-
tation action of the source. The-fold smash power of the desuspension map
S8t — Sinduces a map

Ms(ST" M) —— Mg(S,"AS™ M) = T (8", Ms(S."™, M)
whose adjoint
§" A Ms(S" M) ——> Mg(S]"™, M)

makes® (M) into a symmetric spectrum. Far > 1, the S-moduleS™” is a
cofibrant model of the {)-sphere spectrum. So the functbitakes weak equiv-
alences ofS-modules to maps which are level equivalences above level 0, and
the i-th homotopy group of the spa@(M), is isomorphic to thgi — n)-th
homotopy group of thes-module M by [EKMM, Il 1.8]. In particular there

is a natural isomorphism of stable homotopy groap® (M) = 7.M, and®
takes equivalences 6fmodules to stable homotopy equivalences of symmetric
spectra.
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The functor® is lax symmetric monoidal: smashing maps induces
Ms(S.™, M) A Mg(S", N) ——> Mg(S, ™™, M A N)

which assemble into a natural mégM) A ®(N) —> & (M A N) of symmetric
spectra. The unit mafy — @ (S) comes from the identity map dfwhich is
a point in®(S)o (Sx is our notation for the symmetric sphere spectrum).

Proposition 2.1. The mapSy —> & (S) is a stable equivalence of symmetric
spectra.

Proof. We choose an acyclic cofibration Sy — QS5 to a fibrant object in

the positive stable model structure of symmetric spectra [MMSS, 14.2]. Then
QSy is ang2-spectrum from level one on [MMSS, 14.2]) S5 ), is a model for

the infinite loop spac&> XS, and the map

1: 8t =) —— (0Sx)

is a generator for the infinite cyclic fundamental groug @f5x);.

The symmetric spectrurd (S) is also ans2-spectrum from level one on,
hence fibrant in the positive stable model structure, and so we can choose a map
j: 0Sy —> @(S) which extends the mafy —> @(S). The S-moduleS*
was defined as LS ™ = SA,LX°S° so the spacé (S); can be rewritten as

D)1 = Mg(S7L ) = SIS0, Fe(S, S)) = Fr(S, SH(RY

using the adjunction [EKMM, Il 1.3] and the fact thitis left adjoint to the
forgetful functor fromlL-spectra to spectr&{: (S, S) is the functionL-spectrum
of [EKMM, | 7.1]). By [EKMM, | 8.7] there is a weak equivalence from the
underlyinglL-spectrum ofS to the function spectruri- (S, S); hence the space
@(S)1 is weakly equivalent ta(R'), which is another model for the infinite
loop space”>® XS, Moreover the map

St =(S5)1 —— V()1 = M8 S)

is adjoint to the weak equivalencgs St — S, so it also is a generator for
the infinite cyclic fundamental group @f(S);.

We conclude thaf; : (QS5)1 —> @(S); is an infinite loop map between
two spaces which are each weakly equivalenfs x> S, and thatj; induces
an isomorphism on fundamental groups. Hence the jne@a weak equivalence,
soj : OSs —> @(S) is a level equivalence from level one on, hence a stable
equivalence of symmetric spectra. Thus the original Siap— @(S) is also
a stable equivalence. O
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Since the category ¢f-modulesis enriched over the category of based spaces,
there is a natural isomorphism

DMK = T(K, Ms(S]", M)) = Ms(S,", M®)

for K a based spacd/ an S-module and: > 0. For varyingz these assemble
into an isomorphisn® (M)X = @ (MX). Taking adjoints gives a natural map
Krd(M) — ®(KAM) and the special case of the unit interval induces a
natural transformation

Cong®(f)) — @(Condf)),

where Conéf) = I,X Ui«x Y is the mapping cone of amagp: X — Y of
symmetric spectra of-modules (here the unit intervalis pointed by Oe 7).

Lemma 2.2. For every mapf : X — Y of S-modules the natural map
Cond®(f)) — @(Condy)) is am,-isomorphism of symmetric spectra. For
every family{X;};c; of S-modules the natural may, @(X;) — @ (\/, X;)

is am,-isomorphism of symmetric spectra.

Proof. By [MMSS, 7.4 (vi)] there is along exact sequence relating the homotopy
groups of source, target and mapping cone of a map of symmetric spectra. The
same is true foS-modules by [EKMM, | 6.4] since mapping cones are defined
on underlyingL-spectra.

The functor® preserves homotopy groups, so the statement about wedges
follows once we know that in the categories of symmetric spectra&anddules
the homotopy groups of a wedge coincide with the direct sum of the homotopy
groups of the wedge summands. For symmetric spectra this is shown in [MMSS,
7.4 (ii)]. We were unable to find a reference for the corresponding property in the
category ofS-modules, so we provide the argument: the homotopy groups of an
S-module are the homotopy groups of the underlying coordinate free spectrum,
and wedges are also formed on underlying spectra [EKMM, | 4.4 and Il 1.4].
If {X;}ie; is a family of coordinate free spectra, then their coprodyetX; is
obtained by applying the spectrification funcioof [LMS, | 2.2] to the coproduct
of the underlying prespectra, which in turn is given by spacewise wedge. Even
though the spacewise wedge is not a spectrum (i.e., the adjoints of the structure
maps are usually not homeomorphisms), itis still an inclusion prespectrum in the
sense of [LMS, | 2.1]. Hence its spectrification can be calculated via the formula

(\/ xl-) (V) = colimycy 2%V (\/ Xl-(W))
1 1

(see [LMS, p. 13]), wheré’ is a finite dimensional inner product sub vector
space of the indexing universe and the colimit is over all vector spéloekich
containV. Hence it suffices to show that the homotopy groups of a (spacewise)
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wedge of prespectra are the sum of the homotopy groups, which is shown in
[MMSS, 7.4 (ii)]. o

The functor® has a left adjoint functon : Sp* — M which is strong
symmetric monoidal. The value of on a symmetric spectrum is given by the
coequalizer of two maps &f-modules

\/ S5 a5 S A ST anA) ==\ 5" a5, A
k,0>0 n>0
One ofthe maps is induced from thdold smash power of the desuspension map
St §1 —s S. The other map comes from th&) x X;)-equivariant structure
mapSkr A; —> Ay Of A.
The fact thatA is strong symmetric monoidal now follows formally. The
adjoint of the mapSys — @(S) of Proposition 2.1 is a map(Sy) —> S;
that map is an isomorphism because both sides represent the same functor which
sends arf-moduleM to the mapping spacé1s(S, M) = & (M)o.
Combining the units of the adjunction, an instance of the monoidal map
S (M)rd(N) — & (M ~ N) and the counit of the adjunction yields a natural
map

A(A A B) —— A(P(A(A)) A D(A(B))) —> A(P(A(A) » A(B)))
— 5 A(A)AA(B) .

Since® is symmetric monoidal its adjoimt becomes a symmetrammonoidal
functor with respectto these maps. We claim that moreover thergap B) —
A(A) ~ A(B) isanisomorphism, so thatbecomes a strong symmetric monoidal
functor with respect to the inverse transformation. Every symmetric spectrum is
a colimit of spectra of the forr§ ® W whereW is a pointedX,,-space, viewed
as a symmetric sequence concentrated in kevaind® denotes the tensor prod-
uct of symmetric sequences [HSS, 2.1.3]. Sidcpreserves colimits, we only
have to prove the claim whe# and B are of this special form. Th&-module
A(Sy ® W) is isomorphic taS, "~ 5, W since both represent the functor which
sends ais-moduleM to the space of,,-equivariant maps froi¥’ to @ (M),,. In
particular for a free symmetric spectruf K = S ® (X))~ K) [HSS, 2.2.5]
we obtain an isomorphism(F,,K) = S,"A K. If V is aX,-space, viewed as a
symmetric sequence concentrated in leyghen theS-modules

ASOW)A(S®V)) = AS Q@ (Znin)+45,x5,(W A V))
and
ASQW) A AS® V)= (S g, W) A (815, V)
=57 s s, (WAV)

both represent the same functor, via the instance of the transformation B)
—> A(A) A A(B), and hence they are isomorphic.
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3. Homotopical analysis

The functor® preserves and reflects weak equivalences between arbftrary
modules, so it passes to a functor on homotopy categories. The left adjoint
is only homotopically well-behaved for certain symmetric spectra. In order to
single out a big enough class of symmetric spectra for wHickan be controlled
homotopically, we use the notion of &rcofibrantsymmetric spectrum. In [HSS,
5.3.6], Hovey,Shipley and Smith introduce tt#emodel structure for symmetric
spectra of simplicial sets. However, they defer the verification of the model
category axioms to a future paper of Smith about commutative symmetric ring
spectra. For lack of published reference we will not useStmeodel structure
explicitly, but rather recall and prove those aspects which are relevant for us.

A map X — Y of symmetric spectra is afi-acyclic fibrationif for all
m > 0 its m-th level X,, — Y, is a X,,-acyclic fibration of spaces (i.e., a
Serre fibration and weak equivalence on fixed points for all subgroups of the
symmetric group,,). A map of symmetric spectra is &icofibrationif it has
the left lifting property [Hov, 1.1.2] with respect to &ltacyclic fibrations. Every
stable cofibration (see [HSS, 3.4.1]; stable cofibrations are called ‘g-cofibrations’
in [MMSS, 6.1 (vi)]) is anS-cofibration, but not vice versa.

Theorem 3.1. For every S-cofibrant symmetric spectrum, the unitA —
@ (A(A)) of the adjunction is a stable equivalence of symmetric spectra.

Proof. Forthe proofwe need yet another class of cofibrations: asnap> B of
symmetric spectrais dncofibrationif it has the homotopy extension property in
the classical sense, i.e., if every map frém A U, B can be extended th » B
(1 isthe unitinterval). Equivalently, a map is an h-cofibration if and only if it has
the left lifting property with respect to the evaluation m&p — X (induced
by the inclusior{0} — I) for all symmetric spectrX. Such an evaluation map
is levelwise a¥,,-acyclic fibration, hence eveSrcofibration is an h-cofibration.

For the course of this proof we call a symmetric spectgoundif the unit of
the adjunction is a stable equivalence for this spectrum. We prove a sequence of
claims, the last of which gives the theorem.

(&) A symmetric spectrum is good if and only if its suspension is good.

(b) The mapping cone of any map between good symmetric spectra is good.

(c) If A— B is an h-cofibration of symmetric spectra andiitndB/A are
good, then so i$.

(d) The class of good spectra is closed under wedges.

(e) Given a sequenckE, — X,.1,n > 0, of h-cofibrations of symmetric
spectra such that evepj, is good, then the colimit of the sequence is also
good.

() Letm > 0 and letH be a subgroup of the symmetric groltj,. Then the
symmetric spectrun$ ® (X,,/H), is good, wherer denotes the tensor
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product of symmetric sequences [HSS, 2.1.3] abg/H), is viewed as
symmetric sequence concentrated in lexel
(9) LetIs be the set of maps of symmetric spectra

S® (Zu/H x S" 1y —— S®(Z,,/H x D")4

forn, m > 0 andH a subgroup of the symmetric group,. Every relative
Is-cell complex is good (i.e., every sequential colimit of pushouts of wedges
of maps inlg, see e.g. [MMSS, 5.4]).

(h) EveryS-cofibrant symmetric spectrum is good.

(a) The functorA commutes with suspension, and the nia@ (A(A)) —
D(XA(A) = d(A(XA)) is am,-isomorphism, hence a stable equivalence,
by Lemma 2.2. Claim (a) follows since the unit map— ®(A(A)) is a
stable equivalence if and only if its suspensbAd — XY@ (A(A)) is a stable
equivalence, see [MMSS, 8.12 (i")].

(b) Let f : A — B be a map between good symmetric spectra. The map-
ping cylinder of a map is homotopy equivalent to the target object, hence the
map Cyl /) — Cyl(@(A(f))) is a stable equivalence singeis good. Since
A is good and the source inclusion of a mapping cylinder is an h-cofibration, the
induced map on mapping cones Cofig—> Cond® (A(f))) is a stable equiv-
alence by [MMSS, 8.12 (iv)]. Sincd commutes with taking mapping cones,
the mapping cone of is good by Lemma 2.2.

(c) For an h-cofibration : A — B the map Con€) — B/A from the
mapping cone to the quotient is a homotopy equivalence. We choose a homotopy
inverseB/A — Condi) and letf : B/A — X A be the composite map
B/A — Condi) — X A. By parts (a) and (b) the mapping cone pfis
good. But the mapping cone gfis homotopy equivalent to the suspension of
B, so X' B is good and henc# is good by part (a).

(d) For any family{A;};c; of symmetric spectra the map

V@) —— o(\/ A@A)) = @A\ A))

iel iel iel
is amr,-isomorphism, thus a stable equivalence, by Lemma 2.2. Claim (d) follows
since a wedge of stable equivalences is again a stable equivalence, see [MMSS,
8.12 (ii)].

(e) Since the map¥, —> X, 1 are h-cofibrations, the colimit of the se-
guence is homotopy equivalent to the mapping telescope. The wedge of the spec-
tra X,, includes by an h-cofibration into the mapping telescope, with quotient the
wedge of the suspension of the spedfraHence the mapping telescope is good
by parts (a), (c) and (d). Since bothand® preserve homotopy equivalences,
the colimit of the sequence is also good.

() The casen = 0 is proved in Proposition 2.1, so we may assuing 1.

We consider the commutative diagram
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S® (Bm/H x EXp)y ——— O(A(S® (Sm/H x ESm)4)) s B(S A, (B /H X ESm) )

S® (Bm/H)y ———————— YA @ (Em/H)+)) ———F— (S5, (Bm/H)4)

whereE X, is a free and non-equivariantly contractibig,-CW-complex and
X./H x EX, carries the diagonal action. Sineg,/H x EX,, — X,,/H

is a weak equivalence of underlying spaces, the left vertical map is a levelwise
equivalence, hence a stable equivalence, of symmetric spectraSStisa cell
S-module, the map

SC_mAE,,,(Em/H X Ezm)Jr — Sc_m/\E,,,(Em/H)Jr

is a weak equivalence ¢-modules. Indeed the cagt = X, is established in
[EKMM, IIl 5.1], but the same argument works for a general subgroup. Hence
the right vertical map is a stable equivalence and it suffices to show that the
symmetric spectru§ ® (X,,/H x EX,,), is good.

The skeleton inclusions of,,/H x E X, are h-cofibrations, so by parts (c)
and (e) it suffices to show the claim for the subquotients of the skeleton filtration,
which are wedges af,,-spaces of the formX,,) . » $”. By (a) we may assume
n = 0. Because of the isomorphis$n® (X,,), = F,,S° we only have to verify
that F,,S° is good, or, by (a) again, tha, S™ is good. The map of symmetric
spectraF,, S — Sy whichisthe identity atlevek is a stable equivalence. The
functor A takes this stable equivalence to thefold power of the desuspension
mapsS;ii ST — S, which is a weak equivalence §modules. The symmetric
suspension spectruffy; is good by Proposition 2.1, hence safisS™.

(9) By parts (a) and (f) the cofibers of the mapgjrare good. All maps iy
are h-cofibrations, so parts (¢) and (d) show that good spectra are closed under
pushout along a coproduct of mapslin By part (e) the colimits of a sequence
of such maps is good, so d§-cell complexes are good.

(h) Quillen’s small object argument shows that ev&sgofibrant spectrum is
a retract of arfg-cell complex, so part (g) gives the conclusion. More precisely,
the domains of the maps iy are compact in the sense of [MMSS, 5.6] and
I satisfies the Cofibration Hypothesis of [MMSS, 5.3]. Hence the small object
argument in the formulation of [MMSS, 5.8] provides Brcell complexA© and
amapp : A — A which has the right lifting property for the mapsigf For
our choice oflg this means thap,, : A, — A,, is a X),,-acyclic fibration of
spaces for alln > 0. SinceA is S-cofibrant it has the left lifting property fap,
and soA is indeed a retract of if thés-cell complexA€. SinceA¢ is good, so is
A. O
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4. S-cofibrant symmetric spectra

Because of the good formal properties of the functosnd®, they induce ad-
joint functor pairs between the various categories of rings, modules and algebras
based on symmetric spectra aswinodules. We can control the homotopical be-
havior of A in these cases because cofibrant objects in the respective categories
of rings, modules and algebras are in particSkmofibrant as symmetric spectra;
this allows us to apply Theorem 3.1.

Let R be a symmetric ring spectrum. We call a mapRsmodules anS-
cofibrationif it has the left lifting property with respect to a-module homo-
morphisms which aré-acyclic fibrations of underlying symmetric spectra.

Lemma4.l.Let f : R — P be a map of symmetric ring spectra. Then
extension of scalars alonfjtakesS-cofibrations ofR-modules tes-cofibrations

of P-modules. IfP is S-cofibrant as anR-module, then restriction of scalars
along f takesS-cofibrations ofP-modules taS-cofibrations ofR-modules.

Proof. Since restriction of scalars does not change the underlying symmetric
spectra, its left adjoint extension functor presersrenfibrations. For the second
statement we exploit the fact that restriction of scalars alpradso has aight
adjoint of the form Hom (P, —). If P is S-cofibrant as arR-module, then this
right adjoint preserves the property of beingsaacyclic fibration on underlying
spectra (the proof is similar to [HSS, 5.3.9 (3)], which proves the RaseSy).

So the left adjoint restriction functor preseresofibrations. O

By an unpublished theorem of Jeff Smith the category of commutative sym-
metric ring spectra supports a model structure with the stable equivalences as the
weak equivalences. The model structure is created ipdséivestable model
structure of underlying symmetric spectra. A published account for symmet-
ric spectra based on topological spaces can be found in Sect. 15 of [MMSS].
The key technical property from our present point of view is that commutative
symmetric ring spectra which are cofibrant in this model structure areSalso
cofibrant as symmetric spectra. The proof of the following slightly more general
resultis modeled on, and refers to, [MMSS, 15.9] where it is shown that positive
cofibrations between commutative symmetric ring spectra are h-cofibrations.

Cofibrant commutative symmetric ring spectra are built from free objects, so
in a first step we analyze the ‘free’ or symmetric algebra fun€tdrom sym-
metric spectra to commutative symmetric ring spectra. The symmetric algebra
functor has the form

CX = S;vaSymz(X)v LovSynt(X) v ...

where Sym(X) = X"/ X, is then-th symmetric power functor.
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Lemma 4.2. Let X be a wedge of free symmetric spectra of the farps?
or F,S° for k,q > 0. Then for alln > 0 the symmetric poweBym'(X) is
S-cofibrant.

Proof. The symmetric smash power of a wedge is isomorphic to a wedge of
smash products of smash powers (possibly with smaller exponents) of the sum-
mands. Sincé-cofibrant symmetric spectra are closed under wedges and smash
products [HSS, 5.3.7 (2)], itis enough to show that the symmetric smash power of
every free symmetric spectrum of the fofns? or F, S°is S-cofibrant. The only
relevant property of? ands? is that theim-th smash power&s?)"" = (DL
and(s%" = SO are ¥,-CW-complexes with respect to the permutation action;
so for the rest of the proof we let be any pointed space with this property and
we show that Syrfi(F; A) is S-cofibrant.

Since LA = S ® (X))~ A), the n-th symmetric power off; A is iso-
morphic to the symmetric spectrush® (((Zy);» A)®"/X,), where as before
the tensor product is the tensor product of symmetric seque(Egs, » A is
viewed as a symmetric sequence concentrated in dimekhsiad X, permutes
the tensor powers. Sincg ® — is left adjoint to the forgetful functor from
symmetric spectra to symmetric sequences, it suffices to show that the symmet-
ric sequence(X;). ~ A)®"/ X, has the left lifting property for maps between
symmetric sequences which are levelwise equivariant acyclic fibrations. This
symmetric sequence is concentrated in dimensigrso we are done if we can
show that its only non-trivial space is3,,-CW-complex.

Thenk-th level of (X)) A A)®" isisomorphic ta X,;) . A AN with left X,;-
action on the left factor. Under this identification the permutation actioh,of
becomes the diagonal action, permuting thblocks of lengthk in X, and
permuting the powers od. So the orbit space by the diagongj-action is of
the form(X,x)+ 5, A" with X, still acting through the left factor. So the space
in question is induced from thE,,-CW-complexA”™" along the homomorphism
that injectsY, into X, as the block permutations, and so it is indeed,g CW-
complex, which finishes the proof. O

Lemma 4.3. Leti : R —> P be a cofibration in the positive model structure of
commutative symmetric ring spec{fdMSS, 15.1] Theni is an S-cofibration
when viewed as a map of lgttmodules.

Proof. We proceed in steps. Suppose first that the ihapR — P is the
pushout of a generating cofibrati@hX — CY along some maftX — R
of commutative symmetric ring spectra. HeXe— Y is a wedge of maps
in the generating set ™I of positive stable cofibrations [MMSS, Sect. 14]; in
particular,X is a wedge of symmetric spectra of the forms?.

The pushoutofadiagram «— CX — CY inthe category of commutative
symmetric ring spectra is given by the smash prodRictxCY. By [MMSS,
15.10] the underlyingR-module of RAcxCY can be written as the geometric
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realization of a certain simpliciagt-moduleB,. This simplicial R-module arises
as a two-sided bar constructiad®(R, CX, CT), whereT is a wedge of free
symmetric spectra of the forni, S°. However, all that matters for us is the
following property: for everyk > 0 the map from th&k-module of degenerate
k-simplices of B, to By is isomorphic to the inclusion of a wedge summand
whose complementary summand is a wedg®&-ahodules of the form

R A SYm'(X) A ... » Syml(X) » Sym*+1(T) ;

for k = 0 the degenerate 0-simplices have to be interpret&iaaml the splitting
refers to an inclusion oR into the module of 0-simplices.

By Lemma 4.2 the symmetric spectra Sy(X) and Syni~(T) are S-
cofibrant. Sinces-cofibrant spectra are closed under smash product [HSS, 5.3.7
(2)], all the complementary summands &reofibrant asR-modules. Hence
the inclusions of theR-modules of degenerate simplices imgp (for k > 0)
are S-cofibrations ofR-modules.S-cofibrations are closed under pushouts and
sequential colimits, so by induction over simplicial skeleta the map fRota
|B.| = RacxCY is anS-cofibration of R-modules.

If the mapi : R — P is a finite composition of pushouts along generating
cofibrationsCX — CY, then we factor itag =i’ o p wherep : R — R’is
a single pushout along a generating cofibraticth — CY,andi’ : R* — P
is a finite, but shorter, composition of such pushouts. By induction theifigp
an S-cofibration of R’-modules. By the above the mapis an S-cofibration of
R-modules; in particularR’ is S-cofibrant as amk-module. So by Lemma 4.1
the mapi’, and hence the original map= i’ o p, is also anS-cofibration of
R-modules.

The maps in the sét(F* 1) generate the cofibrations in the positive model
structure for commutative symmetric ring spectra. Hence by Quillen’s small ob-
ject argument (in the formulation of [MMSS, 5.8]) every cofibration of commu-
tative symmetric ring spectra is a retract of a countable composition of pushouts
along maps of the fornrtX — CY for X — Y a wedge of maps in the
setF*1. Sequential colimits over h-cofibrations of commutative symmetric ring
spectra can be calculated on underlying spectra [MMSS, 15.3], so the state-
ment holds for countable compositions of pushouts along generating cofibrations.
Hence the claim holds for retracts of such maps, thus for arbitrary cofibrations
of commutative symmetric ring spectra. O

5. Quillen equivalences

In this final section we show that the adjoint functdrsand A form Quillen
equivalences when considered as functors between various categories of spectra,
ring spectra and module spectra. Quillen equivalences in particular give rise
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to equivalences of the associated homotopy categories, so Theorem 5.1 below
implies our main theorem stated in the introduction.

The most prominent model structure for symmetric spectra isttigestruc-
ture of [HSS, 3.4.4] or [MMSS, 9.2]. However there is no strong symmetric
monoidal functor from the category of symmetric spectra to the category of
S-modules which is also a left Quillen functor with respect to the stable model
category structure. The reason for this is quite simple: any strong monoidal func-
tor has to take the cofibrant symmetric sphgxeto the non-cofibranf-module
sphere. This can be easily remedied by slightly restricting the class of cofibra-
tions of symmetric spectra and work with tpesitivestable model structure
[MMSS, 14.2]. For this one keeps the stable equivalences as weak equivalences,
and thepositive cofibrationsare those stable cofibrations which are a homeo-
morphism at level zero. Thaositive stable fibrationare those maps which have
the right lifting property with respect to all positive cofibrations which are also
stable equivalences. A symmetric spectrumis fibrant in the positive stable model
structure if and only if it is a2 -spectrum from level one upwards. Note that the
symmetric sphere spectrum is no longer cofibrant in the positive stable model
structure. Since the positive and the stable model structure have the same weak
equivalences, then give rise to the same homotopy category. Indeed, the iden-
tity functor is a left Quillen equivalence from the positive to the stable model
structure,

The positive stable model structure generates similar model structures for
modules over a symmetric ring spectrum [MMSS, 14.5 (i)], algebras over a
commutative symmetric ring spectrum [MMSS, 14.5 (iii)], and commutative
algebras over a commutative symmetric ring spectrum [MMSS, 15.2 (i)]. In
each case the weak equivalences and fibrations are the maps which are stable
equivalences or positive stable fibrations respectively on underlying symmetric
spectra.

The categories aP-modules and’-algebras (for commutative) also admit
model structures in which the weak equivalences and fibrations are defined on
underlying symmetric spectra with respect to the stable (as opposed to the pos-
itive) model structure. Whenever this is the case, the stable and positive model
structures have the same homotopy category and are Quillen equivalent. How-
ever, forcommutativealgebras over a commutative symmetric ring spectrum it
is crucial to work relative to the positive model structure. For example the cate-
gory of all commutative symmetric ring spectra doesform a model category
with weak equivalences and fibrations defined in the stable model structure of
underlying spectra [SS, 4.5].

Theorem 5.1. The functorsb and A are a Quillen equivalence when viewed as
functors between any of the following pairs of model categories. (In all the cate-
gories of structured symmetric spectra the model structure under consideration
is the positive stable structure.)
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(i) The category of symmetric spectra and the categoS+wiodules.

(i) The category of symmetric ring spectra and the categosraligebras.

(i) The category of commutative symmetric ring spectra and the category of
commutativeS-algebras.

(iv) The category ofP-modules and the category of(P)-modules for any
symmetric ring spectrum® which isS-cofibrant as a symmetric spectrum.

(v) The category ofP-algebras and the category of (P)-algebras for any
commutative symmetric ring spectruhwhich isS-cofibrant as a symmet-
ric spectrum.

(vi) The category of commutativg-algebras and the category of commutative
A(P)-algebras for any commutative symmetric ring spect®mwhich is
S-cofibrant as a symmetric spectrum.

Let R be anS-algebra and note that then the counit® (R)) — R of the
adjunction is a map of-algebras, or even of commutatisealgebras ifR is
commutative.

(vii) The functors® and R, (k) A are a Quillen equivalence between the
category ofR-modules and the category &f(R)-modules.

(viii) If R is commutative, then the functogs and R, (k) A are a Quillen
equivalence between the categorReélgebras and the category &f(R)-
algebras.

Proof. Parts (i), (ii) and (iii) are special cases of (iv), (v) and (vi) respectively
for P = Sx. The positive cofibrations of symmetric spectra are generated by the
setFI+ of mapsFmel — F, D', for positive integersn andn > 0 (with
St = @), see [MMSS, 14.2]. The left adjoint takes a typical generating map
to S;"A 8%t — S D" which is a cofibration ofs-modules sinces,™ is
cofibrant for positiven. By a similar inspection/A takes the seK ™ [MMSS,
Sect. 14] of generating positive acyclic cofibrations to acyclic cofibrations of
S-modules. Hencet and @ form a Quillen pair [Hov, 2.1.20] with respect to
the positive stable model structure of symmetric spectra. In all other cases of
rings, modules and algebras, the fibrations and weak equivalences are defined on
underlyingS-modules or symmetric spectra respectively. Since the right adjoint
@ preserves weak equivalences and fibratigngnd its respective left adjoints
formin Quillen functor pair in all cases. The right adjoibalso detects all weak
equivalences. So to show parts (iv), (v) and (vi) it suffices to prove [Hov, 1.3.16]
that in each case the adjunction unit is a weak equivalence on the respective
cofibrant objects. We now show that those cofibrant objectssarafibrant as
symmetric spectra. Then Theorem 3.1 shows that the adjunction unit is a weak
equivalence and thus finishes the proof.

Suppose thaP is anycommutativesymmetric ring spectrum. W is a cofi-
brant object in the positive model structurefxfalgebras, theA is also cofibrant
in the absolute stable model structure of [MMSS, 12.1 (iv)]. HeAds stably
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cofibrant as &@-module [MMSS, 12.1 (v)], thus-cofibrant as &-module. IfA

is a cofibrant in the positive model structurecoimmmutativeP-algebras, then the
unitmapP — A is a cofibration of commutative symmetric ring spectra, thus
anS-cofibration ofP-modules by Lemma 4.3. So in cases (v) and (vi) the respec-
tive cofibrant algebras arg-cofibrant asP-modules. IfP is a not necessarily
commutative symmetric ring spectrum, then evBrynodule which is cofibrant

in the positive stable model structure is alsgofibrant as &-module. Lemma

4.1 shows that if the ring spectru is S-cofibrant as a symmetric spectrum,
then everyS-cofibrant P-module isS-cofibrant as a symmetric spectrum. This
takes care of parts (iv), (v) and (vi).

For parts (vii) and (viii) the left adjoint o> is not just given byA any-
more, which takesp (R)-modules ord (R)-algebras taA(® (R))-modules or
A(®(R))-algebras respectively. In addition one has to extend scalars along the
counitA(®(R)) —> R of the adjunction. However the precise form of the left
adjoint is not relevant since we argue by showing that in each case the fdnctor
passes to an equivalence of homotopy categories. For part (vii) we choose a sta-
ble equivalence of symmetric ring specfta— @ (R) with P cofibrantin the
positive stable model structure of symmetric ring spectra. Sinemd A are a
Quillen equivalence for this model structure by part (i), the adjdi(®) — R
is a weak equivalence df-algebras. We consider the commutative diagram of
model categories and right Quillen functors

restr.

Mp ———— Mx(p)

|

®(R)-mod —-— P-mod

in which the horizontal functors are restriction of scalars along the weak equiv-
alences of ring spectra(P) — R andP — @ (R) respectively. Restriction
of scalars along a weak equivalence induces an equivalence of homotopy cate-
gories (see [EKMM, 1l 4.2] forS-algebras and [HSS, 5.4.5] or [MMSS, 12.1
(vi)] for symmetric ring spectra). Furthermore the right vertical functor induces
an equivalence of homotopy categories by the already established part @). So
viewed as a functor fromR-modules tad (R)-modules, passes to an equivalence
of homotopy categories, hence together with its left adjoint it forms a Quillen
equivalence by [Hov, 1.3.13].

For part (viii) we choose a stable equivalencecommutativesymmetric
ring spectraP — @ (R) with P cofibrant as a commutative symmetric ring
spectrum. By part (iii), the adjoint(P) — R is then a weak equivalence
of commutativeS-algebras. We claim that restriction of scalars along a weak
equivalence of commutative algebras passes to an equivalence of the homotopy
categories of the algebras over the commutative algebras; given this, the same
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argument as in the previous paragraph reduces to the already established part (v).
The claimisis shown in [HSS, 5.4.5] and [MMSS, 12.1 (vii)] for symmetric ring
spectra. The corresponding statemenstaigebras does not appear explicitly in
[EKMM], but we argue as follows. Suppoge— P is a weak equivalence of
commutativeS-algebras. IfA is cofibrant in the model category &-algebras,

then by [EKMM, VII 6.2] the unit mapR — A is a cofibration ofR-modules.
Hence the quotiem / R is a cofibrantR-module, so a retract of a cétkmodule,
andthemap\/R = RrgA/R —> PrrA/Risaweakequivalence by [EKMM,

Il 3.8]. For a cofibrations of modules over &ralgebra, the quotient module is
homotopy equivalent to the mapping cone. Since mapping cones are formed on
underlyinglL-spectra, [EKMM, | 6.4] gives a long exact sequences relating the
homotopy groups of source, target and quotient. Hence the five lemma shows that
the mapA —> ParA is a weak equivalence, and so restriction and extension
of scalars form a Quillen equivalence. O
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