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1. Cohomology operations

Definition 1.1. Let A and B be abelian groups and n,m natural numbers. A cohomology operation of
type (A,n,B,m) is a natural transformation of set valued functors on the category of topological spaces

τ : Hn(−, A) −→ Hm(−, B) .

Note that we do not demand that τX : Hn(X,A) −→ Hm(X,B) be additive. However, two cohomology
operations of the same type can be added pointwise, so the set of all cohomology operations of a fixed type
forms an abelian group, which we denote Oper(A,n,B,m).

As before, K(A,n) denotes an Eilenberg–MacLane space of type (A,n), i.e., a based space equipped
with an isomorphism φ : πn(K(A,n), ∗) ∼= A and such that the group πi(K(A,n), ∗) is trivial for i ̸= n. We
also assume that K(A,n) is a CW-complex. The fundamental class ιn,A ∈ Hn(K(A,n), A) is the unique
element such that the composite

πn(K(A,n), ∗) Hurewicz−−−−−−→ Hn(K(A,n);Z) Φ(ι)−−−→ A

is the isomorphism φ : πn(K(A,n), ∗) ∼= A. Here Φ: Hn(X;A) −→ Hom(Hn(X;Z), A) is from the universal
coefficient theorem. For n = 0 we make the convention that K(A, 0) is the group A with the discrete
topology, and ι is the cohomology class represented by the identity 0-cocycle.

Lemma 1.2. The map

Oper(A,n,B,m) −→ Hm(K(A,n), B)

which takes a cohomology operation τ : Hn(−;A) −→ Hm(−;B) to the image of the fundamental class
τ(ιn,A) ∈ Hm(K(A,n), B) is an isomorphism from the group of cohomology operations of type (A,n,B,m)
and the m-th cohomology group of K(A,n) with coefficients in B.
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Proof. On the homotopy category of CW-complexes, the cohomology functor Hn(−;A) is representable by
the Eilenberg-MacLane space K(A,n), i.e., Hn(−;A) is naturally isomorphic to [−,K(A,n)], by evaluation
at the fundamental class.

If F is any functor from the homotopy category of CW-complexes to the category of sets, then the
Yoneda lemma says that the natural transformations from the representable functor [−,K(A,n)] to F are
in bijective correspondence with the set F (K(A,n)), by evaluation at (K(A,n), Id). Taking F = Hm(−;B)
shows that there is a unique natural transformation

τ = {τX : Hn(X,A) −→ Hm(X,B)}X : CW

of functors on the homotopy category of CW-complexes with the property of the lemma.
Every space Y has a CW-approximation f : X

∼−→ Y , i.e., a weak homotopy equivalence from a CW-
complex. Moreover, the CW-approximation is unique up to preferred isomorphism in the homotopy cate-
gory. Singular cohomology takes weak homotopy equivalences to isomorphisms. So there is a unique way
to extend the natural transformation from CW-complexes to arbitrary spaces: we must define τY as the
unique map that makes the following diagram commute:

Hn(Y,A)
τY //

f∗ ∼=
��

Hm(Y,B)

f∗∼=
��

Hn(X,A)
τX
// Hm(X,B)

□

Example 1.3. (i) The space K(A,n) is (n − 1)-connected, so we have H0(K(A,n), B) ∼= B and
Hm(K(A,n), B) ∼= 0 for 1 ≤ m ≤ n − 1. So the only cohomology operations of type (A,n,B, 0)
are the constant operations associated to the elements of B, and there are no non-trivial operations
of type (A,n,B,m) for 1 ≤ m ≤ n− 1.

(ii) Any homomorphism of coefficient groups f : A −→ B induces a cohomology operation of type
(A,n,B, n) for every n. Since a K(A,n) is (n − 1)-connected and Hn(K(A,n);Z) ∼= πn(A, ∗) ∼= A,
the universal coefficient theorem yields an isomorphism

Hn(K(A,n), B) ∼= Hom(A,B) ,

which shows that the cohomology operations of type (A,n,B, n) all arise from coefficient homomor-
phisms.

(iii) The Bockstein homomorphism δ : Hn(X;A) −→ Hn+1(X;B) associated to a short exact sequence of
abelian groups

0 −→ B −→ E −→ A −→ 0

is a cohomology operation of type (A,n,B, n+ 1) for every n. This gives a map

Ext(A,B) −→ Oper(A,n,B, n+ 1) .

The universal coefficient theorem yields a short exact sequence

0 −→ Ext(A,B) −→ Hn+1(K(A,n), B) −→ Hom(Hn+1(K(A,n);Z), B) −→ 0 ,

so this map is injective. Moreover, for n ≥ 2, the homology group Hn+1(K(A,n);Z) is trivial (see e.g.
[EM, Thm. 20.5]), so in that case every cohomology operation of type (A,n,B, n+1) is the Bockstein
homomorphism of an abelian group extension.

(iv) The group H2(K(A, 1);Z) is not generally trivial, so there are cohomology operations of type
(A, 1, B, 2) which do not come from short exact sequences of coefficient groups. Indeed, for any group
G, not necessarily abelian, H2(K(G, 1);B) classifies equivalence classes of central group extension of
G by B, i.e., short exact sequences of groups

(1.4) 0 −→ B −→ E −→ G −→ 1
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such that B is contained in the center of E. Exercise 1.6 below explains how to construct a non-
abelian Bockstein operation from such a central extension. A proof of the correspondence between
H2(K(G, 1);B) and classes of central extensions can be found in [McL, IV Thm. 6.2] (in the special
case of trivial coefficient modules). If G is abelian, then the image of Ext(G,B) in H2(K(G, 1);B)
corresponds to those central extensions for which E is abelian.

As a specific example we look at the quaternion group Q, i.e., the finite subgroup of the unit group
of the quaternion numbers H, consisting of the elements

Q = {±1,±i,±j,±k} .
The relations in this group are

i2 = j2 = k2 = −1, ij = k, jk = i and ki = j ,

which forces other relations such as ji = −k. The center of Q consists of the elements ±1, and modulo
its center, every element of Q has order 2, so Q/{±1} is isomorphic to (Z/2)2. Since the group Q is
not commutative, the operation of type ((Z/2)2, 1,Z/2, 2) associated to the central extension

0 −→ {±1} −→ Q −→ (Z/2)2 −→ 1

via Exercise 1.6 is not in the image of the (ordinary) Bockstein homomorphisms.
(v) Let R be any ring and k ≥ 0. Then the cup product power operation

Hn(X;R) −→ Hkn(X;R) , x 7−→ xk

is a cohomology operation of type (R,n,R, kn). In some cases the cup powers give all operations of
a certain type. For example, RP∞ is a K(F2, 1), and the group Hn(RP∞;F2) is cyclic of order 2,
generated by the n-th power of the fundamental class. So by the representability Lemma 1.2 the n-th
cup-power operation is the only non-trivial cohomology operation of type (F2, 1,F2, n). Similarly, CP∞

is a K(Z, 2), and the integral cohomology algebra of CP∞ is polynomial on the fundamental class,
so there is only the trivial operation of type (Z, 2,Z, n) for odd n, and all cohomology operations
of type (Z, 2,Z, 2k) are multiples of the k-th cup power operation. Rationally, there are no other
cohomology operations whatsoever, besides multiples of cup powers. Indeed we shall see below that
the cohomology algebra H∗(K(Q, n);Q) is polynomial on the fundamental class for even n, and is an
exterior algebra on the fundamental class for odd n.

(v) Let R be a commutative ring. Some time ago in the proof of the homotopy-commutativity of the
chain level cup product, we introduced the ∪1-product

∪1 : Cn(X,R)⊗ Cm(X,R) −→ Cn+m−1(X,R) .

The ∪1-product satisfies the coboundary formula

δ(f ∪1 g) = (δf) ∪1 g + (−1)nf ∪1 (δg) − (−1)n+mf ∪ g − (−1)(n+1)(m+1)(g ∪ f)
which implies that if f ∈ Cn(X,R) is a cocycle and n is even, then the ∪1-square f ∪1 f is a cocycle
whose cohomology class only depends on the class of f . If n is odd, then f∪1f is a mod-2 cocycle whose
mod-2 cohomology class only depends on the class of f . In other words, the formula Sq1[f ] = [f ∪1 f ]
defines cohomology operations

Sq1 : Hn(X;R) −→ H2n−1(X;R) if n is even, and

Sq1 : Hn(X;R) −→ H2n−1(X;R/2R) if n is odd.

The ∪1-square is the first in a sequence of cohomology operation which were introduced by Steenrod
in the paper [St]. and which are called the divided squaring operations.

Cohomology groups are abelian groups, so operations that are additive are easier to deal with. The
following proposition translated the additivity property of a cohomology operation into a property of the
‘characteristic class’ that determines the whole operation in the sense of Lemma 1.2.

Proposition 1.5. Let τ be a cohomology operation of type (A,n,B,m), and let u = τK(A,n)(ιA,n) be the
classifying cohomology class in Hm(K(A,n);B). Then the following two conditions are equivalent.
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(i) The operation τ is additive.
(ii) The relation

µ∗(u) = p∗1(u) + p∗2(u)

holds in Hm(K(A,n)×K(A,n);B), where µ, p1, p2 : K(A,n)×K(A,n) −→ K(A,n) are the homotopy
addition and the two projections, respectively.

Proof. We abbreviate ι = ιA,n. In the proof of the representability of cohomology by Eilenberg–MacLane
spaces we showed the relation

µ∗(ι) = p∗1(ι) + p∗2(ι)

holds in Hn(K(A,n)×K(A,n);A). So if the operation τ is additive, then

µ∗(u) = µ∗(τ(ι)) = τ(µ∗(ι))

= τ(p∗1(ι) + p∗2(ι))

= τ(p∗1(ι)) + τ(p∗2(ι))

= p∗1(τ(ι)) + p∗2(τ(ι)) = p∗1(u) + p∗2(u) .

For the converse we now suppose that the relation (ii) holds. We let X be a CW-complex, and x, y ∈
Hn(X;A). Then by representability there are continuous maps f, g : X −→ K(A,n) such that x = f∗(ι)
and y = g∗(ι). Moreover,

x+ y = ([f ] + [g])∗(ι) = (µ ◦ (f, g))∗(ι) .
So we obtain

τ(x+ y) = τ((µ ◦ (f, g))∗(ι))
= (µ ◦ (f, g))∗(u)
= (f, g)∗(µ∗(u))

(ii) = (f, g)∗(p∗1(u) + p∗2(u))

= (f, g)∗(p∗1(u)) + (f, g)∗(p∗2(u))

= f∗(u) + g∗(u)

= τ(f∗(ι)) + τ(g∗(ι)) = τ(x) + τ(y) .

Hence the operation τ is additive. □

Exercise 1.6. Given a central group extension

0 −→ B −→ E −→ G −→ 1

with G and B abelian, we define an operation

H1(X;G) −→ H2(X;B)

generalizing the Bockstein homomorphism for abelian extensions, where X is any simplicial set. Suppose
f : X1 −→ G is a 1-cocycle, choose a lift f̄ : X1 −→ E. Show that for every x ∈ X2 the expression

(δf̄)(x) = f̄(d0x) · f̄(d1x)−1 · f̄(d2x)
is contained in the subgroup B of E, and that it defines a 2-cocycle of X with values in B. Then show
that the cohomology class of δf̄ is independent of the choice of lift, and of the choice of cocycle f within
its cohomology class.

Exercise 1.7. LetQ = {±1,±i,±j,±k} denote the quaternion group. Exercise 1.6 associates a cohomology
operation

Q∗ : H1(X; (Z/2)2) −→ H2(X;Z/2)
of type ((Z/2)2, 1,Z/2, 2) to the central extension

0 −→ {±1} −→ Q −→ Q/{±1} −→ 1 .
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Show that under a suitable identification Q/{±1} ∼= (Z/2)2, this cohomology operation is given by the
formula

Q∗(x) = Π1
∗(x) ∪Π2

∗(x)

where Π1,Π2 : (Z/2)2 −→ Z/2 are the two projections.

Exercise 1.8. Show that the operation

Sq1 : H3(BZ/2;F2) −→ H5(BZ/2;F2)

is non-trivial. (Hint: the group Hn(BZ/2;F2) is generated by the class ιn1 , and ι1 is represented by the
identity 1-cochain I ∈ C1(BZ/2,F2). Work out the formula for I∪3 ∪1 I

∪3 ∈ C5(BZ/2,F2) and compare it
to I∪5.)

2. Stable cohomology operations

Definition 2.1. A reduced cohomology operation of type (A,n,B,m) is a natural transformation

τ : H̃n(−;A) −→ H̃m(−;B)

of reduced cohomology functors from the category of pointed spaces to the category of sets.

The set of reduced cohomology operations of a fixed type forms an abelian group. There is only a minor
difference between reduced and (non-reduced) cohomology operations. Indeed as in Lemma 1.2, the Yoneda
lemma implies that the map

redOper(A,n,B,m) −→ H̃m(K(A,n);B)

which takes a reduced cohomology operation τ : H̃n(−;A) −→ H̃m(−;B) to the image of the fundamental

class τ(ιn,A) ∈ H̃m(K(A,n), B) is an isomorphism. So the only difference is that the non-trivial constant
operations of type (A,n,B, 0) cannot be extended to reduced cohomology operations.

Construction 2.2. In the following we will often consider two Eilenberg–MacLane spaces for the same
group in adjacent dimensions. As we shall now explain, these are related by specific maps. For n ≥ 1, we
let (X,φ) and (Y, ϕ) be two Eilenberg-MacLane spaces of type K(A,n) and K(A,n+ 1), respectively. By
an earlier theorem about realizability of homomorphisms of homotopy groups, there is a based continuous
map

(2.3) ρ : X −→ ΩY ,

unique up to based homotopy, such that ρ∗ : πn(X, ∗) −→ πn(ΩY, ∗) equals the composite

πn(X, ∗)
φ−−→∼= A

ϕ−1

−−→ πn+1(Y, ∗) ∼= πn(ΩY, ∗) .

The unnamed isomorphism takes the homotopy class of f : Sn+1 −→ Y to the homotopy class of the adjoint
f ♭ : Sn −→ map∗(S

1, Y ) under the adjunction (− ∧ S1,Ω). In other words:

f ♭(x)(y) = f(x ∧ y) ,
for x ∈ Sn and y ∈ S1. Since X and Y are path connected and ρ induces isomorphisms of all homotopy
groups, so ρ is a weak homotopy equivalence.

The definition of the fundamental class of an Eilenberg–MacLane space refers to the Hurewicz homomor-
phism, which in turn uses an orientation [Sn] ∈ Hn(S

n;Z) of the n-sphere. When comparing Eilenberg–
MacLane spaces of different dimensions we insists that these orientations are chosen consistently, in the
sense that the composite

Hn(S
n;Z) Σ−→∼= Hn+1(ΣS

n;Z)
∼=−−→ Hn+1(S

n+1;Z)

takes the chosen orientation of Sn to the chosen orientation of Sn+1. The unnamed isomorphism is induced
by the preferred homeomorphism

ΣSn = Sn ∧ S1 ∼=−−→ Sn+1 , (x1, . . . , xn) ∧ y 7−→ (x1, . . . , xn, y) .
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Lemma 2.4. Let (X,φ) and (Y, ϕ) be two Eilenberg-MacLane spaces of type K(A,n) and K(A,n + 1),
respectively, and let ϵ : ΣX −→ Y be adjoint to the preferred weak homotopy equivalence ρ from (2.3).

(i) The following diagram commutes:

πn(X, ∗)
Σ //

∼=
φ //

πn+1(ΣX, ∗)
ϵ∗ // πn+1(Y, ∗)

ϕ∼=
��

A

(ii) The fundamental classes ιA,n ∈ Hn(X;A) and ιA,n+1 ∈ Hn+1(Y ;A) satisfy the relation

Σ(ιA,n) = ϵ∗(ιA,n+1)

in Hn+1(ΣX;A), where Σ is the suspension isomorphism in the cohomology of X.

Proof. (i) The rectangle in the following diagram commutes because ϵ : ΣX −→ Y was defined as the adjoint
of ρ : X −→ ΩY :

πn(X, ∗)
Σ //

ρ∗

��

∼=
φ

))

πn+1(ΣX, ∗)

ϵ∗

��

πn(ΩY, ∗) ∼=
// πn+1(Y, ∗)

ϕ

∼=
ooA

The other part commutes by the defining property of the map ρ.
(ii) We show that the class

Σ−1(ϵ∗(ιA,n+1)) ∈ Hn(X;A)

has the defining property of the fundamental class ιA,n. In other words, we show that the composite

πn(X, ∗)
Hurewicz−−−−−−→ Hn(X;Z)

Φ(Σ−1(ϵ∗(ιA,n+1)))−−−−−−−−−−−−−→ A

is the isomorphism φ : πn(X, ∗) ∼= A, where

Φ : Hn(X;A) −→ Hom(Hn(X;Z), A)

is the map from the universal coefficient theorem.
We let f : Sn −→ X be a based continuous map that represents a class in πn(X, ∗). Naturality of the

maps Φ from the universal coefficient theorem means that the following diagram commutes:

(2.5)

Hn(X;A)
Φ //

f∗

��

Hom(Hn(X;Z), A)

Hom(f∗;A)

��

Hn(Sn;A)
Φ
// Hom(Hn(S

n;Z), A)

Moreover, the maps Φ in adjacent dimensions are compatible with the suspension isomorphisms in homology
and cohomology, i.e., the following diagram commutes:

(2.6)

Hn+1(ΣX;A)
Φ //

Σ−1

��

Hom(Hn+1(ΣX;Z), A)

Hom(Σ;A)

��

Hn(X;A)
Φ

// Hom(Hn(X;Z), A)
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So

Φ(Σ−1(ϵ∗(ιA,n+1)))(Hurewicz[f ]) = Φ(Σ−1(ϵ∗(ιA,n+1)))(f∗[S
n])

(2.5) = Φ(f∗(Σ−1(ϵ∗(ιA,n+1))))[S
n]

= Φ(Σ−1((ϵ ◦ (Σf))∗(ιA,n+1)))[S
n]

(2.6) = Φ((ϵ ◦ (Σf))∗(ιA,n+1))(Σ[S
n])

(2.5) = Φ(ιA,n+1)((ϵ ◦ (Σf))∗[Sn+1])

= Φ(ιA,n+1)(Hurewicz(ϵ ◦ (Σf)))
= ϕ[ϵ ◦ (Σf)] =(i) φ[f ] .

This verifies the desired property for the class Σ−1(ϵ∗(ιA,n+1)). □

Lemma 2.7. Let τ and τ̄ be two reduced cohomology operations of type (A,n,B,m) and type (A,n +
1, B,m+ 1) respectively. Then the following four conditions are equivalent.

(a) For every pair of based spaces (X,Y ) with the homotopy extension property, the diagram

H̃n(Y ;A)
δ //

τ

��

H̃n+1(X/Y ;A)

τ̄

��

H̃m(Y ;B)
δ
// H̃m+1(X/Y ;B)

commutes, where the horizontal maps δ are the connecting homomorphisms.
(b) For every non-degenerately based space X the diagram

H̃n(X;A)
Σ //

τ

��

H̃n+1(ΣX;A)

τ̄

��

H̃m(X;B)
Σ
// H̃m+1(ΣX;B)

commutes, where the horizontal maps Σ are the suspension isomorphisms of X.

(c) For every non-degenerately based space X and every reduced cohomology class x ∈ H̃n(X;A) we have

τ(x)× ι = τ̄(x× ι) in H̃m+1(ΣX;B)

where ι ∈ H̃1(S1;Z) is the fundamental class.
(d) Let K(A,n) and K(A,n+1) be Eilenberg-MacLane spaces of type (A,n) and (A,n+1) respectively, and

let ϵ : ΣK(A,n) −→ K(A,n+1) be a based continuous map whose adjoint is in the preferred homotopy
class (2.3) of weak homotopy equivalence. Then the relation

Σ(τ(ιA,n)) = ϵ∗(τ̄(ιA,n+1))

among the fundamental classes holds in Hm+1(ΣK(A,n);B), where Σ is the suspension isomorphism
of K(A,n).

Proof. Condition (b) is a special case of (a) for the inclusion of X into its reduced cone, with quotient the
suspension of X. Conditions (b) and (c) are equivalent since the suspension isomorphism coincides with

exterior product by the fundamental class ι ∈ H̃1(S1;Z).
To see that condition (b) implies condition (a) we use that fact that the connecting homomorphism for

the pair (X,Y ) factors as a composite

H̃n(Y ;A)
Σ−−→ H̃n+1(ΣY ;A)

Π∗

−−→ H̃n+1(X/Y ;A)
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of the suspension isomorphism and a map induced from the geometric connecting homomorphism Π ∈
[X/Y,ΣY ] which features in the Puppe sequence of the pair (X,Y ). In more detail: we have a commutative
diagram of cofiber sequences

Y // // X // Y/X

Y //
incl0 // Y × [0, 1] ∪Y×1 X

∼

OO

collapse X

��

// CY ∪Y×1 X

∼

OO

collapse X

��

Y // // Y × [0, 1] ∪Y×1 ∗ // ΣY

Since the boundary map in cohomology is functorial for maps of pairs, we obtain a commutative diagram
of cohomology groups

H̃n(Y ;A)
δ //

δ

((
Σ
��

H̃n+1(X/Y ;A)

∼=
��

H̃n+1(ΣY ;A) // H̃n+1(CY ∪Y X;A)

in which the right vertical map is an isomorphism. Since the operations τ and τ̄ are natural for maps
of pointed spaces, compatibility with the suspension isomorphism implies compatibility with arbitrary
connecting homomorphisms.

For the equivalence of conditions (b) and (d) we consider the two reduced operations Σ ◦ τ and τ̄ ◦Σ of
type (A,n,B,m + 1). By the representability lemma for cohomology operations (Lemma 1.2), these two
operations agree if and only if they agree on the fundamental class ιA,n. By Lemma 2.4 we obtain

τ̄(Σ(ιA,n)) = τ̄(ϵ∗(ιA,n+1)) = ϵ∗(τ̄(ιA,n+1)).

So condition (b) holds if and only if we have Σ(τ(ιA,n)) = ϵ∗(τ̄(ιA,n+1)). □

Definition 2.8. Let A and B be abelian groups and n a natural number. A stable cohomology operation
of type (A,B) and of degree n is a family {τi}i≥0 of reduced cohomology operations of type (A, i,B, n+ i)
which are compatible with suspension isomorphisms, i.e., for every based space X and every i ≥ 0 and

every x ∈ H̃i(X;A) we have

τi(x)× ι = τi+1(x× ι) in Hn+i+1(ΣX;B)

where ι ∈ H̃1(S1;Z) is the fundamental class. We denote by StOp(A,B, n) the abelian group of stable
cohomology operations of type (A,B) and degree n.

If τ = {τi}i≥0 is a stable cohomology operation of degree n and type (A,B) and λ = {λi}i≥0 is a
stable cohomology operation of degree m and type (B,C), then they compose to yield a stable cohomology
operation

λ ◦ τ = {λn+i ◦ τi}i≥0

of degree n+m and type (A,C).
As an immediate consequence of the definition and of Lemma 2.7 we get the following representability

result for stable cohomology operations. We choose a family of Eilenberg-MacLane spaces {K(A, i)}i≥0;

then there are preferred homotopy classes (2.3) of weak homotopy equivalences K(A, i)
∼−→ ΩK(A, i+ 1),

whose adjoints are continuous based maps ϵi : ΣK(A, i) −→ K(A, i+ 1).

Corollary 2.9. A family {τi}i≥0 of cohomology operations of type (A, i,B, n+ i) forms a stable cohomology
operation if and only if for all i ≥ 0 the relation

ϵ∗i (τi+1(ιA,i+1)) = Σ(τi(ιA,i))
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holds in Hn+i+1(ΣK(A, i);B). Hence the assignment

StOp(A,B, n) −→ lim
i

Hn+i(K(A, i);B) ,

τ = {τi} 7−→ {τi(ιA,i)}
is an isomorphism between the group of stable cohomology operations of degree n and type (A,B) and the
sequences {xi}i≥0 of cohomology classes such that xi ∈ Hn+i(K(A, i);B) and

ϵ∗i (xi+1) = Σ(xi) .

More specifically, the limit of the cohomology groups is taken along the homomorphisms

Hn+i+1(K(A, i+ 1);B)
ϵ∗i−→ Hn+i+1(ΣK(A, i);B)

Σ−1

−−−→∼= Hn+i(K(A, i);B) .

Lemma 2.10. (i) If τ is any reduced cohomology operation and X a based space, then the value of τ at
the suspension ΣX is an additive map.

(ii) Let τ = {τi}i≥0 be a stable cohomology operation of degree n and type (A,B). Then each individual
cohomology operation τi : H

i(−, A) −→ Hn+i(−, B) is additive, and hence the class ui = τi(ιA,i) in
Hn+i(K(A, i), B) satisfies

µ∗(ui) = p∗1(ui) + p∗2(ui)

in Hn+i(K(A, i), B)2.
(iii) Composition of stable cohomology operations is bi-additive.

Proof. (i) Suppose that τ is an operation of type (A,n,B,m). We start by lettingX be any non-degenerately

based space, and we choose two elements x, y ∈ H̃n(X;A). We consider the class

(2.11) τ(p∗1(x) + p∗2(y)) − p∗1(τ(x)) − p∗2(τ(y))

in H̃m(X ×X;B). If we restrict the class (2.11) along the first inclusions j : X −→ X ×X, j(z) = (z, ∗),
then we get

j∗(τ(p∗1(x) + p∗2(y))− p∗1(τ(x))− p∗2(τ(y))) = τ(j∗(p∗1(x)) + j∗(p∗2(y)))− j∗(p∗1(τ(x)))− j∗(p∗2(τ(y)))

= τ(x)− τ(x) = 0 ,

and similarly for the second inclusion. We exploited that p1 ◦ j is the identity, and that the operation
j∗ ◦ p∗2 = (p2 ◦ j)∗ vanishes on reduced cohomology classes because the map p2 ◦ j is constant. This means
that the restriction of the element (2.11) to the wedge X∨X ⊆ X ×X is trivial, so the element (2.11) is in
the image of the map

Π∗ : H̃m(X ∧X;B) −→ H̃m(X ×X;B)

from the reduced cohomology of the smash product X ∧X = (X ×X)/(X∨X), where

Π : X ×X −→ X ∧X
denotes the quotient projection. If X = ΣY is a suspension, then the composite map (reduced diagonal)

∆̄ : X
∆−−→ X ×X

Π−−→ X ∧X
equals the composite

Y ∧ S1 ∆̄∧∆̄−−−→ Y ∧ Y ∧ S1 ∧ S1 shuffle−−−−→∼=
(Y ∧ S1) ∧ (Y ∧ S1) .

Since the reduced diagonal ∆̄ : S1 −→ S1 ∧ S1 = S2 is null-homotopic, so is the reduced diagonal of
Y ∧ S1 = X.

Since the reduced diagonal ∆̄ = Π ◦∆ is X is null-homotopic and the class (2.11) is in the image of Π∗,
the class (2.11) restricts to zero along the diagonal. This gives

0 = ∆∗(τ(p∗1(x) + p∗2(y))− p∗1(τ(x))− p∗2(τ(y)))

= τ(∆∗(p∗1(x)) + ∆∗(p∗2(y)))−∆∗(p∗1(τ(x)))−∆∗(p∗2(τ(y)))

= τ(x+ y)− τ(x)− τ(y) .
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We have exploited that p1 ◦∆ = p2 ◦∆ = IdX .
(ii) We let X be a non-degenerately based spaces. The horizontal suspension isomorphism in the com-

mutative square

H̃n(X;A)
Σ
∼=
//

τi

��

H̃n+1(ΣX;A)

τi+1

��

H̃m(X;B)
Σ

∼= // H̃m+1(ΣX;B)

are additive. Part (i) says that the operation τi+1 is additive on ΣX. So the left vertical map in the diagram
is also additive. The final property of the class ui then follows from Proposition 1.5.

(iii) Since addition of cohomology operations is pointwise, it is clear from the definition that the assign-
ment (λ, τ) 7−→ λ ◦ τ is additive in λ. That composition is also additive in τ follows from the fact that all
the individual operations λi are additive by part (ii). □

Example 2.12. (i) By Example 1.3 (i) there are no stable cohomology operations of negative degree. If
f : A −→ B is a homomorphism of coefficient groups, then the associated cohomology operations of
type (A,m,B,m) for every m ≥ 0 form a stable cohomology operation. Indeed, the group all stable
cohomology operations of type (A,B) of degree 0 is naturally isomorphic to Hom(A,B),

StOp(A,B, 0) ∼= Hom(A,B) .

(ii) The Bockstein homomorphisms δ : Hn(X;A) −→ Hn+1(X;B) associated to a short exact sequence of
abelian groups

0 −→ B −→ E −→ A −→ 0 .

for n ≥ 0 form a stable cohomology operation of type (A,B) of degree 1. For n ≥ 2, the homology
group Hn+1(K(A,n);Z) is trivial (see e.g. [EM, Theorem 20.5]), so the universal coefficient theorem
implies that this construction gives all stable operations of type (A,B) of degree 1,

StOp(A,B, 1) ∼= Ext(A,B) .

(iii) If R is a ring, then the cup product power operation x 7−→ xk is usually not additive, and whenever
it fails to be so, then as an operation of type (R,n,R, kn) is does not extend to a stable operation
of degree (k − 1)n (by part (ii) of Lemma 2.10). However, if p is a prime number and R is an Fp-
algebra, then the p-th power operation x 7−→ xp is additive. As we shall see in Example 3.6 below,
the cup-square

Hi(X;F2) −→ H2i(X;F2) , x 7−→ x2

indeed extends to a unique stable mod-2 cohomology operation of degree i. This operation is denoted
Sqi and is called the i-th Steenrod divided square operation. If p is an odd prime, then in even
dimensions, the p-th cup power

H2i(X;Fp) −→ H2ip(X;Fp) , x 7−→ xp

extends to a stable mod-p cohomology operation of degree 2i(p− 1), called the i-divided power oper-
ation and denoted P i.

Definition 2.13. Let A be an abelian group. Then we denote by

A(A)n = StOp(A,A, n)

the group of stable cohomology operations of degree n and type (A,A). By Lemma 2.10 (iii) the groups
A(A)∗ form a graded ring under composition, which is called the Steenrod algebra for the group A.

Since the components of a stable cohomology operation are always additive (Lemma 2.10 (ii)), the

reduced cohomology H̃∗(X,A) of a based space X with coefficients in an abelian group A is tautologically
a graded left module over the Steenrod algebra A(A)∗ via

τ · x = τi(x) ∈ H̃n+i(X;A)
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for τ = {τi}i≥0 ∈ A(A)n and x ∈ H̃i(X;A). So cohomology with coefficients in A can be viewed as a
functor

H̃∗(−;A) : Ho(Top∗) −→ A(A)∗-mod .

Moreover, the suspension isomorphism

Σ : H̃∗(X;A)[1] −→ H̃∗(ΣX;A)

is an isomorphism of graded A(A)∗-modules, by the compatibility condition in the definition of a stable
cohomology operation. Here the square brackets [1] denote the shift of a graded module. Similarly, if
Y ⊂ X is a subspace containing the basepoint, and such that (X,Y ) has the homotopy extension property,
then the boundary map of the pair

δ : H̃∗(Y ;A)[1] −→ H̃∗(X/Y ;A)

is a homomorphism of graded A(A)∗-modules (by part (i) of Lemma 2.7).
If A is a ring, then sending an element a ∈ A to the map λa : A −→ A given by left multiplication by a

gives a ring homomorphism
A −→ Hom(A,A) ∼= A(A)0 .

If A is commutative, then the image of λ is central in the Steenrod-algebra A(A)∗ so in this case A(A)∗ is
naturally an A-algebra.

All this is particularly useful when the structure of the Steenrod algebra A(A)∗ is explicitly known. The
aim of the next section is to describe the mod-p Steenrod algebra A∗

p = A(Fp)∗ by generators (Steenrod’s
divided power operations) and relations (the Adem relations). Alongside we use this new algebraic structure
to answer some geometric questions.

Remark 2.14. We have shown in Lemma 1.2 that unstable cohomology operations Oper(A,n,B,m) are
in bijective correspondence with cohomology classes in Hm(K(A,n), B), hence with homotopy classes of
maps from the Eilenberg-Mac Lane space K(A,n) to the Eilenberg-Mac Lane space K(B,m). Something
similar is true for stable operations, but only when we replace spaces by spectra: the stable operations
StOp(A,B, n) are in bijective correspondence with homotopy classes of morphisms from the Eilenberg-Mac
Lane spectrum HA to the shifted Eilenberg-Mac Lane spectrum HB[n].

3. Cohomology in the stable range

Theorem 3.1. Let X be an n-connected based space, for n ≥ 1. Let ϵ : Σ(ΩX) −→ X be the unit of the
adjunction (Σ,Ω). Then for every abelian group B, the map

ϵ∗ : Hi(X;B) −→ Hi(Σ(ΩX);B)

is an isomorphism for all 0 ≤ i ≤ 2n and injective for i = 2n+ 1.

Proof. Since X is n-connected, the loop space ΩX is (n − 1)-connected. By the Freudenthal suspension
theorem, the suspension homomorphism

Σ : πi(ΩX, ∗) −→ πi+1(Σ(ΩX), ∗)
is an isomorphism for 1 ≤ i ≤ 2n− 2, and surjective for i = 2n− 1. The composite

πi(ΩX, ∗)
Σ−−→ πi+1(Σ(ΩX), ∗) ϵ∗−→ πi+1(X, ∗)

implements the dimension-shifting isomorphism given by adjoining; it is thus bijective for all i ≥ 1. In
particular the suspension homomorphism is also injective, and hence bijective, for i = 2n − 1. Hence also
the homomorphism

ϵ∗ : πi+1(Σ(ΩX), ∗) −→ πi+1(X, ∗)
is bijective for 1 ≤ i ≤ 2n− 1, and also surjective for i ≥ 2n. Setting j = i+ 1 this shows that

ϵ∗ : πj(Σ(ΩX), ∗) −→ πj(X, ∗)
is bijective for 1 ≤ j ≤ 2n and surjective for j = 2n + 1. Relative CW-approximation thus provides a
relative CW-complex (Z,Σ(ΩX)) with all relative cells of dimensions ≥ 2n + 2, and a weak equivalence
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f : Z
∼−→ X that extends ϵ. The relative cohomology groups Hi(Z,Σ(ΩX);A) then vanish for all i ≤ 2n+1,

and the long exact sequence of this pair shows that the restriction map

Hi(Z;A) −→ Hi(Σ(ΩX);A)

is an isomorphism for i ≤ 2n, and it yields an exact sequence

0 −→ H2n+1(Z;A)
incl∗−−−→ H2n+1(Σ(ΩX);A)

∂−−→ H2n+2(Z,Σ(ΩX);A)

Since f : Z
∼−→ X is a weak equivalence that extends ϵ, this proves the claim for the map ϵ. □

We apply the previous Theorem 3.1 to X = K(A,n + 1) for some n ≥ 1. Then ΩX = ΩK(A,n + 1)
is an Eilenberg–MacLane space of type (A,n). More precisely: if we have chosen some K(A,n), there is
a preferred homotopy class (2.3) of weak homotopy equivalence K(A,n) ∼ ΩK(A,n + 1). The previous
theorem then specializes to:

Corollary 3.2. Let n ≥ 1, and let A and B be abelian groups. Let ϵ : ΣK(A,n) −→ K(A,n+1) be adjoint
to the preferred homotopy class (2.3) of weak homotopy equivalence K(A,n) ∼ ΩK(A,n + 1). Then the
map

ϵ∗ : Hi(K(A,n+ 1);B) −→ Hi(ΣK(A,n);B)

is an isomorphism for all 0 ≤ i ≤ 2n and injective for i = 2n+ 1.

By Corollary 3.2, all the cohomology suspensions morphisms in the sequence

· · · σ−−→∼= H2n+k(K(A,n+ k);B)
σ−−→∼= · · · σ−−→∼= H2n+1(K(A,n+ 1);B)

σ−−→ H2n(K(A,n);B)

up to the group H2n+1(K(A,n + 1);B) are isomorphisms. Moreover, the final cohomology suspension is
injective. Since the group of stable operations of type (A,B, n) is isomorphic to the inverse limit of this
sequence, we conclude that the map

StOp(A,B, n) −→ H2n(K(A,n);B) , τ 7−→ τn(ιA,n)

defined by evaluation at the fundamental class ιA,n ∈ Hn(K(A,n);A) is injective. Moreover, by Lemma
2.10 (ii) the class u = τn(ιA,n) ∈ H2n(K(A,n);B) satisfies

µ∗(u) = p∗1(u) + p∗2(u) .

We shall use without proof:

Theorem 3.3. Let n ≥ 1, and let A and B be abelian groups. Then the image of the monomorphism

StOp(A,B, n) −→ H2n(K(A,n);B) , τ 7−→ τn(ιA,n)

equals the set of element u ∈ H2n(K(A,n);B) that satisfy

µ∗(u) = p∗1(u) + p∗2(u) .

Remark 3.4. We let R be a ring. Then the exterior product

× : Hm(X;R)×Hn(Y ;R) −→ Hm+n(X × Y ;R)

was defined by

x× y = p∗1(x) ∪ p∗2(x) .
So for coefficients in a ring, the relation µ∗(x) = p∗1(x) + p∗2(x) from Theorem 3.3 can equivalently be
formulated as

µ∗(x) = x× 1 + 1× x

We showed in Proposition 1.5 that a cohomology operation τ is additive if and only if its characteristic
class u = τ(ιA,n) satisfies the relation

µ∗(u) = p∗1(u) + p∗2(u) .

So Theorem 3.3 is equivalent to:
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Corollary 3.5. Let n ≥ 1, and let A and B be abelian groups. For every additive cohomology operation σ
of type (A,n,B, 2n) there is a unique stable cohomology operations τ of type (A,B, n) such that τn = σ.

Example 3.6 (Steenrod squares). The cup product with coefficients in a ring R satisfies the relation

(x+ y)2 = (x+ y) ∪ (x+ y) = (x ∪ y) + (x ∪ y) + (y ∪ x) + (y ∪ y)
= x2 + (1 + (−1)n) · (x ∪ y) + y2 ,

for x, y ∈ Hn(X;R). So if n is odd or 2 = 0 in the ring R, then the cup square is an additive operation.
By Corollary 3.5, the cup square then extends to a stable cohomology operations.

Particularly important is the special case R = F2, in which case Corollary 3.5 provides a unique stable
mod-2 cohomology operation

Sqn : Hi(X;F2) −→ Hn+i(X;F2)

of degree n satisfying Sqn(x) = x2 for every n-dimensional cohomology class. This operation is called the
n-th Steenrod square.

The zeroth Steenrod operation

Sq0 : Hi(X;F2) −→ Hi(X;F2)

is the identity operation, because ι20 = ι0 in H0(F2;F2).
The family of Bockstein operations

β : Hi(X;F2) −→ Hi+1(X;F2)

associated to the short exact sequence

0 −→ F2
·2−−→ Z/4 proj−−→ F2 −→ 0

form a stable mod-2 cohomology operation. We have seen earlier that the Bockstein operation

β : H1(X;F2) −→ H2(X;F2)

originating in dimension 1 equals the cup square, i.e., β(x) = x2 for 1-dimensional cohomology classes x.
So the first Steenrod square equal the Bockstein:

Sq1 = β : Hi(X;F2) −→ Hi+1(X;F2) .

We shall see later that the operations Sqi for i ≥ 1 generated the algebra mod stable mod-2 cohomology
operations.

4. Steenrod’s divided squaring operations

We saw in Example 3.6 that for every i ≥ 0 there is a unique stable mod-2 cohomology operation Sqi of
degree i with the property that Sqi(x) = x∪ x for every cohomology class x of dimension i. This operation
is called the i-th Steenrod square. In this section we begin a more detailed study of the operations Sqi.
Eventually we will see that the Sqi’s generate the mod-2 Steenrod algebra A2, and we will give a complete
list of relations between these operations, the Adem relations.

Theorem 4.1. For each i ≥ 0 there is a unique stable mod-2 cohomology operation Sqi of degree i with the
property that Sqi(x) = x∪x for every cohomology class x of dimension i. Moreover, these operations enjoy
the following properties:

(i) The operation Sq0 is the identity and Sq1 coincides with the mod-2 Bockstein operation.
(ii) (Unstability condition) For x ∈ Hn(X,F2) and i > n we have Sqi(x) = 0.
(iii) (Cartan formula) For x, y ∈ H∗(X,F2) and i ≥ 0 we have

Sqi(x ∪ y) =
∑
a+b=i

Sqa(x) ∪ Sqb(y) .
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Proof. Existence and uniqueness of Sqi was established in Example 3.6, along with property (i).
For part (ii) we consider the iterated suspension isomorphism Σi−n : Hn(X;F2) −→ Hi(Σi−nX;F2).

Since Sqi is a stable operation, we have

Σi−n(Sqi(x)) = Sqi(Σi−n(x)) = (Σi−n(x))2 = 0

since cup products are trivial in the cohomology of a suspension. Since Σi−n is an isomorphism, this proves
the relation Sqi(x) = 0.

The Cartan formula follows from the external Cartan formula which we prove as a separately in Theorem
4.2 below. To get from the external to the internal form, one simply takes X = Y and applies the map
∆∗ : H∗(X ×X,F2) −→ H∗(X,F2) induced by the diagonal ∆: X −→ X ×X. □

Theorem 4.2. (External Cartan formula) For all spaces X and Y , all cohomology classes x ∈
Hn(X,F2) and y ∈ Hm(Y,F2) and all i ≥ 0 we have

Sqi(x× y) =
∑
a+b=i

Sqa(x)× Sqb(y)

in Hn+m(X × Y,F2).

Proof. In the proof we abbreviate K(n,F2) to K(n). For i > n+m, both sides of the Cartan formula are
trivial since the squaring operations vanish on cohomology classes of lower dimensions (part (ii) of Theorem
4.1). For i = n+m, the same argument gives

Sqn+m(x× y) = (x× y) ∪ (x× y) = x2 × y2 = Sqn(x)× Sqm(y) =
∑
a+b=i

Sqa(x)× Sqb(y)

where we also used the defining property of the squaring operations and the fact that (x× y) ∪ (x′ × y′) =
(x ∪ x′)× (y ∪ y′).

So it remains to treat the case where i < n +m and here we use induction on n +m. By naturality it
is enough to verify the formula for the fundamental classes, i.e., for x = ιn ∈ Hn(K(n);F2) and y = ιm ∈
Hm(K(m);F2). There is nothing to show for n +m = 0, so we assume n +m ≥ 1. For p ≤ 2n − 1, the
restriction map

ϵ∗ : Hp(K(n);F2) −→ Hp(ΣK(n− 1);F2)

induced by the map ϵ : ΣK(n − 1) −→ K(n) is injective by Corollary 3.2. Similarly, the map
ϵ∗ : Hq(K(m);F2) −→ Hq(ΣK(m − 1);F2) is injective for q ≤ 2m − 1. So by the Künneth theorem,
the map

Hk(K(n)×K(m);F2) ∼=
⊕
p+q=k

Hp(K(n);F2)⊗Hq(K(m);F2)
(ϵ∗⊗1, 1⊗ϵ∗)−−−−−−−−→

⊕
p+q=∗

(Hp(ΣK(n− 1);F2)⊗Hq(K(m);F2)⊕ (Hp(K(n);F2)⊗Hq(ΣK(m− 1);F2))

is injective in dimensions k ≤ 2n+ 2m− 1. This means that the Cartan formula holds if we can verifying
it after applying the maps (ϵ× 1)∗ and (1× ϵ)∗ to both sides. In the first case we calculate

(ϵ× 1)∗(Sqi(ιn × ιm)) = Sqi((ϵ× 1)∗(ιn × ιm)) = Sqi(ϵ∗(ιn)× ιm)) = Sqi(Σ(ιn−1)× ιm))

= Σ
(
Sqi(ιn−1 × ιm)

)
= Σ

( ∑
a+b=i

Sqa(ιn−1)× Sqb(ιm))

)
=

∑
a+b=i

Σ(Sqa(ιn−1))× Sqb(ιm) =
∑
a+b=i

Sqa(Σ(ιn−1))× Sqb(ιm)

=
∑
a+b=i

Sqa(ϵ∗(ιn))× Sqb(ιm) = (ϵ× 1)∗

( ∑
a+b=i

Sqa(ιn)× Sqb(ιm)

)
.
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We have used that ϵ∗(ιn) = Σιn−1 and that Sqi is a stable cohomology operation. The fourth equality uses
the induction hypothesis, which applies since the dimension of ιn−1 is smaller than n. The second case is
similar. □

Exercise 4.3. Show that for every 1-dimensional cohomology class x the following formula holds:

Sqi(xn) =

(
n

i

)
xi+n .

5. Examples and applications

An important problem in homotopy theory is the find ways of telling when a continuous map f : X −→ Y
is null-homotopic. A map which is not null-homotopic is called essential.

Sometimes a map can be shown to be essential by checking that it induces a non-trivial map on co-
homology with suitable coefficients. If this does not help, then one can use the mapping cone C(f) of a
continuous map f : X −→ Y . The mapping cone is defined by

C(f) = ∗ ∪X×0 X × [0, 1] ∪X×1 Y ,

and it comes with an injection i : Y −→ C(f) and a projection C(f) −→ C(f)/Y ∼= ΣX. The mapping
cone is designed so that the map f is null-homotopic if and only if i has a retraction, i.e., there is a map
σ : C(f) −→ Y such that the composite σ ◦ i is the identity of Y .

Now suppose that f is trivial in cohomology with coefficients in an abelian group A; then the long exact
mod-p cohomology sequence yields an epimorphism

H∗(C(f),Fp)
i∗−→ H∗(Y,Fp) ,

where i : Y −→ C(f) is the inclusion. If f is null-homotopic, then a choice of retraction σ : C(f) −→ Y
induces a map of graded abelian groups σ∗ : H∗(Y,Fp) −→ H∗(C(f),Fp) which is a section to the map i∗.

But such a section σ∗ is induced by a geometric map, so it also respects all additional structure which
is natural for continuous maps. For example, if A is a ring, then σ∗ is compatible with the cup-product.
In many cases, the original map f can be seen to be essential because there is no section to i∗ which is
multiplicative with respect to the cup-product.

Example 5.1. The Hopf maps η : S3 −→ S2, ν : S7 −→ S4 and σ : S15 −→ S8 are essential. The
mapping cones of the Hopf maps η, ν and σ are isomorphic to the projective planes CP2,HP2 and OP2 over
the complex numbers, the quaternions and the Cayley octaves respectively. The integral cohomology rings
of these spaces are all of the form Z[x]/x3 where the dimension of the generator is 2, 4 or 8 respectively.
Hence if i : S2 ∼= CP1 −→ CP2 is the inclusion, then there is no multiplicative section to the map

i∗ : H∗(CP2;Z) −→ H∗(CP1;Z) ,

and so the Hopf map η is essential. The same argument with HP2 and OP2 shows that the Hopf maps ν
and σ are essential.

The cup-product is useless for telling whether a map is stably essential, i.e., whether or not it becomes
null-homotopic after some number of suspensions. This is because the cup-product is trivial on the reduced
cohomology of any suspension. Indeed, if f : X −→ Y is a map of spaces which is trivial in reduced mod-p
cohomology, then we have C(Σf) ∼= ΣC(f), and the map

H∗(ΣC(f);Fp) ∼= H∗(C(Σf);Fp)
i∗−→ H∗(ΣY ;Fp)

always has a multiplicative section.
In general, the more highly structured and calculable homotopy functors we find, the better chances we

have to show that such a section cannot exist. For the problem at hand, instead of the cup-product we
can use stable cohomology operations, which are still non-trivial after suspension. So if some suspension
of Σnf : ΣnX −→ ΣnY is null-homotopic, then the cohomology H̃∗(C(Σnf);A) is the direct sum, as a
module over the Steenrod algebra A(A), of the cohomology groups of Σn+1X and ΣnY with coefficients
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in A. The mapping cone of a suspension is isomorphic to the suspension of the mapping cone. Since the
Steenrod-algebra consists of stable operations, suspension amounts to reindexing the cohomology of a space,
including the action of the Steenrod-algebra. In other words, if a map f : X −→ Y becomes null-homotopic
after some number of suspensions, then f is trivial on H∗(−;A) and the map

i∗ : H̃∗(C(f);A)
i∗−→ H̃∗(Y ;A)

has a section which is A(A)-linear. We apply this strategy to the Hopf maps.

Example 5.2. The Hopf maps η : S3 −→ S2, ν : S7 −→ S4 and σ : S15 −→ S8 are stably essential.
The mapping cones of the Hopf maps η, ν and σ are isomorphic to the projective planes CP2,HP2 and OP2

over the complex numbers, the quaternions and the Cayley octaves respectively. The mod-2 cohomology
algebras of these spaces are all of the form F2[x]/x

3 where the dimension of the generator is 2, 4 or 8
respectively. Hence we have the relation

Sq2(x2) = x22 ̸= 0 ∈ H4(CP2,F2) ,

and similarly the classes Sq4(x4) ∈ H8(HP2,F2) and Sq8(x8) ∈ H16(OP2,F2) are non-zero. So the mod-2
cohomologies of the mapping cones of η, ν and σ do not split as modules over the mod-2 Steenrod-algebra,
hence these maps are stably essential.

Example 5.3. The degree 2 map of the mod-2 Moore space is stably essential. Let p be a prime
and let

M(p) = S1 ∪p D2

denote the mod-p Moore space of dimension 2, obtained by attaching a 2-cell to the circle along the degree
p map S1 −→ S1. Note that M(2) is homeomorphic to RP2. Denote by ×p : ΣM(p) −→ ΣM(p) the
smash product of M(p) with the degree p map of the circle. The degree p map induces multiplication by
p in cohomology with any kind of coefficients, but the cohomology of M(p), with any kind of coefficients,
is annihilated by p. So ×p induces the trivial map in cohomology, and we may ask whether this map is
null-homotopic. The answer is different for the prime 2 and the odd primes: for odd p, the degree p map
on M(p) is stably nullhomotopic.

In contrast, for the prime 2 the degree 2 map of ΣM(2) is stably essential. Since the degree 2 map
of ΣM(2) is obtained by smashing the M(2) with the degree 2 map of S1, its mapping cone of C(×2) is
isomorphic to the smash product of two copies of the Moore space,

C(×2: ΣM(2) −→ ΣM(2)) ∼= M(2) ∧M(2)

in such a way that the inclusion ΣM(2) −→ C(×2) corresponds to the smash product of the inclusion
i : S1 −→ M(2) with M(2). Now the mod-2 cohomology of M(2) has an F2-basis given by a class x ∈
H̃1(M(2);F2) and its square x2 ∈ H̃2(M(2);F2). By the Künneth theorem, the cohomology of the smash
product M(2) ∧M(2) is four-dimensional with basis given by the classes x⊗ x in dimension 2, x2 ⊗ x and
x2 ⊗ x in dimension 3, and x2 ⊗ x2 in dimension 4. Also by the Künneth theorem, the map

(i ∧M(2))∗ : H̃∗(M(2) ∧M(2);F2) −→ H̃1(S1 ∧M(2);F2)

is given by

(i ∧M(2))∗(x⊗ x) = Σx , and (i ∧M(2))∗(x⊗ x2) = Σ(x2) ,

and it vanishes on the classes x2 ⊗ x and x2 ⊗ x2. All cup products are trivial in the reduced cohomology
of S1 ∧M(2), but in the cohomology of M(2)∧M(2), the cup-square of the two-dimensional class x⊗ x in
non-trivial. This shows that there is now section to (i∧M(2))∗ which is compatible with the cup-product,
so the degree 2 map on M(2) is essential.

However, after a single suspension, the cup products of both sides are trivial, so this argument does
not give any hint as to whether the suspension of the degree 2 map on M(2) is null-homotopic or not.
However, we can calculate the action of the Steenrod-squares in the cohomology ofM(2)∧M(2). Note that
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the operation Sq2(x) acts trivially on the cohomology of S1 ∧M(2) for dimensional reasons. On the other
hand, the Cartan-formula gives

Sq2(x⊗ x) = Sq2(x)⊗ x+ Sq1(x)⊗ Sq1(x) + x⊗ Sq2(x) = x2 ⊗ x2

in H̃4(M(2) ∧M(2);F2). So there does not exist a section to (i ∧M(2))∗ which is compatible with the
action of the Steenrod-algebra. Hence we conclude that the degree 2 map of the mod-2 Moore space is
stably essential.

6. The extended power construction

Usually the squaring operations Sqi are introduced in a more geometric fashion using the symmetric
square construction for spaces and the mod-2 cohomology of the real projective space RP∞. We show in
this section that our definition of the Sqis agrees with the more traditional one, using the uniqueness part
of Theorem 4.1. We also construct the reduced power operations P i in mod-p cohomology for an odd prime
p.

In this section we will define and study the total power operation

Pp : Hn(X,Fp) −→ Hnp(X × L(p),Fp)
for a prime p and n ≥ 0, where L(p) is an infinite-dimensional lens space.

Construction 6.1. We write S∞ =
⋃
n≥0 S(Cn) for the infinite dimensional complex unit sphere, with

the weak topology by the filtration by the subspaces S(Cn) = {v ∈ Cn : |v| = 1}. We write

Cp = {z ∈ C : zp = 1}
for the multiplicative group of p-th roots of unity in C, a cyclic group of order p. The group Cp acts freely
on S∞ by scalar multiplication. For p = 2, the generator of C2 acts by the antipodal map, and the quotient
space is

L(2) = S∞/(v ∼ −v) = RP∞ .

When p is odd, the quotient space is L(p) = S∞/Cp is an infinite-dimensional lens space. Since S∞ is
contractible and the Cp-action is free, the quotient map S∞ −→ S∞/Cp is a universal covering, and so
S∞/Cp is an Eilenberg–MacLane space of type (Z/p, 1).

The sphere S∞ admits a CW-structure for which the Cp-action is cellular. The odd skeleta of this CW-
structure are given by S∞

2k−1 = S(Ck). The even skeleton S∞
2k is the join inside S(Ck+1) of the previous

skeleton S(Ck ⊕ 0) and the free Cp-orbit {(0, . . . , 0, ζip) : 1 ≤ i ≤ p}. This CW-structure has p cells in each
dimension, and these cells are freely permuted by the group Cp.

For p = 2 we have calculated the mod-2 cohomology ring of L(2) = RP∞ a long time ago. The calculation
of H∗(L(p);Fp) can be done along similar lines, as follows. We have

Cp ∼= π1(L(p), ∗) ∼= H1(L(p);Z)
by Poincaré’s theorem. And thus

H1(L(p);Fp) ∼= Hom(H1(L(p);Z),Fp) ∼= Hom(Cp,Fp)
by the universal coefficient theorem. We let x ∈ H1(L(p);Fp) be the generator that corresponds to the
isomorphism Cp ∼= Fp that sends the generator ζp ∈ Cp to 1 ∈ Fp. We set

y = β(x) ∈ H2(L(p);Fp) .
We record that x2 = β(x) = y for p = 2, but x2 = 0 for odd primes p, by graded-commutativity of the cup
product.

Proposition 6.2. For every prime p, the mod-p cohomology algebra of L(p) is given by

H∗(L(p);Fp) =

{
F2[x] for p = 2; and

Fp[y]⊗ Λ(x) = Fp[x, y]/(x2) for p odd.
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Proof. The case p = 2 was done a while ago, so we not treat the case of odd primes.
The cellular Cp-action makes the cellular chain complex Ccell

∗ (S∞) into a complex of Z[Cp]-modules.
Since there are p freely permuted cells in each dimension, Ccell

∗ (S∞) is free of rank 1 as a Z[Cp]-module for
each k ≥ 0. After suitable choices of characteristic maps, we obtain additive generators

e0k , . . . , e
p−1
k

of Ccell
∗ (S∞) such that ζp ·eik = ei+1

k , with superscript ‘i+1’ interpreted cyclically modulo p. The boundary
map in the cellular chain complex satisfies

∂(e0k) =

{
e0k−1 − e1k−1 for k odd, and

e0k−1 + · · ·+ ep−1
k−1 for k ≥ 2 even.

Indeed, in the 1-skeleton, each 1-cell connects two adjacent 0-cells. And in higher dimensions, the boundary
is forced up to a unit in Z[Cp] by the fact that the complex Ccell

∗ (S∞) is acyclic because S∞ is contractible.
The cellular chain complex of L(p) = S∞/Cp is obtained from that of S∞ by equalizing the Cp-action,

i.e.,

Ccell
∗ (L(p)) = Ccell

∗ (S∞/Cp) ∼= Ccell
∗ (S∞)⊗Z[Cp] Z .

So Ccell
∗ (L(p)) is free of rank 1 in every dimension, generated by ek = [e0k], with boundary map

∂(ek) =

{
0 for k odd, and

p · ek−1 for k ≥ 2 even.

We conclude that both the mod-p homology groups, and the mod-p cohomology groups, are 1-dimensional
over Fp in every dimension. In particular, the additive structure of H∗(L(p);Fp) is as claimed.

Now we determine the multiplicative structure of H∗(L(p);Fp). We write L(p)l = S∞
l /Cp for the l-

skeleton. We show by induction on k that

H∗(L(p)2k−1;Fp) = Fp[x, y]/(x2, yk) .

The induction starts with k = 1: the 1-skeleton L(p)1 is a circle, and hence H∗(L(p)1;Fp) = Fp[x]/(x2), as
claimed.

The space L(p)2k−1 = S(Ck)/Cp is the quotient of a free and orientation-preserving action of a finite
group on an closed, connected and orientable (2k − 1)-manifold. So L(p)2k−1 is also a closed, connected
and orientable (2k− 1)-manifold, and thus satisfies Poincaré duality. Moreover, we know the multiplicative
structure of its cohomology up to dimension 2k− 3 by induction. For the whole multiplicative structure to
satisfy Poincaré duality, the multiplication

∪ : Hi(L(p)2k−1;Fp)⊗H2k−1−i(L(p)2k−1;Fp) −→ H2k−1(L(p)2k−1;Fp)

is a perfect pairing. In particular, multiplication by y ∈ H2(L(p)2k−1;Fp) is an isomorphism

y· : Fp{xyk−2} = H2k−3(L(p)2k−1;Fp)
∼=−−→ H2k−1(L(p)2k−1;Fp) ;

so the class xyk−1 generates H2k−1(L(p)2k−1;Fp). This in particular implies that yk−1 is non-zero, and
hence it generates H2k−2(L(p)2k−1;Fp). □

The p-th extended power of a space X is

Dp(X) = Xp ×Cp
S∞ ,

the quotient space of Xp × S∞ by the equivalence relation generated by

(x1, . . . , xp; v) ∼ (x2, . . . , xp, x1; ζp · v) ,

where ζp = e2πi/p generates the group Cp. If X is pointed, then the reduced extended power is

D̃p(X) =
(
X∧p ∧ S∞

+

)
/Cp ,
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the quotient space by the analogous equivalence relation. If X is unpointed, then there is a natural
homeomorphism

D̃p(X+) ∼= Dp(X)+ .

Proposition 6.3. Let Y be a pointed (n−1)-connected CW-complex equipped with a continuous Cp-action,
and let A be an abelian coefficient group. Then the space

Y ∧Cp
S∞
+ = (Y ∧ S∞

+ )/Cp = (Y ∧ S∞
+ )/(y ∧ v ∼ (ζp · y) ∧ (ζp · v))

is (n− 1)-connected and the map

j : Y −→ Y ∧Cp S
∞
+ , y 7−→ [y ∧ (1, 0, . . . )]

induces an isomorphism

j∗ : H̃n(Y ;A)/Cp
∼=−→ H̃n(Y ∧Cp

S∞
+ ;A)

from the quotient of the group H̃n(Y ;A) by the induced Cp-action. And the previous map induces an
isomorphism

j∗ : H̃n(Y ∧Cp S
∞
+ ;A)

∼=−→ H̃n(Y ;A)Cp

to the subgroup of fixed elements under the induced Cp-action on H̃n(Y ;A).

Proof. The subquotients of the skeleton filtration are isomorphic to

S∞
k /S

∞
k−1

∼= (Cp)+ ∧ Sk ,
where the Cp-action is by translation on the left factor. The induced filtration of Y ∧Cp

S∞
+ by the subspaces

Y ∧Cp
(S∞
k )+ has subquotients isomorphic to

Y ∧Cp
(S∞
k /S

∞
k−1)

∼= Y ∧Cp
((Cp)+ ∧ Sk) ∼= Y ∧ Sk .

This shows that the subquotient Y ∧Cp (S∞
k /S

∞
k−1) is (k + n− 1)-connected.

In particular, the quotient Y ∧Cp (S∞/S∞
2 ) is (n+ 1)-connected, so the inclusion of the first filtration

Y ∧ S(C)+ = Y ∧Cp (S∞
1 )+ −→ Y ∧Cp S

∞
+

induces an isomorphism on (co-)homology in dimension n. The cofiber sequence of spaces

Y ∼= Y ∧Cp (Cp)+ −→ Y ∧Cp S(C)+ −→ Y ∧Cp (S(C)/Cp) ∼= Y ∧ S1

gives rise to an exact sequence of reduced homology groups

(6.4) H̃n(Y ;A) ∼= H̃n+1(Y ∧ S1;A)
δ−−→ H̃n(Y ;A) −→ H̃n(Y ∧Cp

S(C)+;A) −→ 0

Indeed, the last map is surjective since Y ∧S1 is n-connected. The two boundary points of the fundamental
1-cell in the CW-structure in S(C) are attached to 1 and ζp, respectively. So the boundary homomorphism
δ in the sequence (6.4) becomes the map

H̃n(Y ;A) −→ H̃n(Y ;A) , y 7−→ y − (ζp)∗(y) .

So the exact sequence (6.4) shows that the group H̃n(Y ∧Cp
S∞
+ ;A) ∼= H̃n(Y ∧Cp

S(C)+;A) is isomorphic

to the quotient of H̃n(Y ;A) by the Cp-action.
Since Y is (n− 1)-connected, the universal coefficient theorem provides an isomorphism

H̃n(Y ;A)
∼=−−→ Hom(H̃n(Y ;Z), A) .

This isomorphism is natural, so it restricts to an isomorphism of the fixed points of the Cp-action:(
H̃n(Y ;A)

)Cp ∼=−−→ Hom(H̃n(Y ;Z), A)Cp ∼= Hom(H̃n(Y ;Z)/Cp, A) .

Since Y ∧Cp
S∞
+ is (n− 1)-connected, the universal coefficient theorem provides an isomorphism

H̃n(Y ∧Cp
S∞
+ ;A)

∼=−−→ Hom(H̃n(Y ∧Cp
S∞
+ ;Z), A) .
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All these data participates in a commutative diagram:

H̃n(Y ∧Cp
S∞
+ ;A)

∼= //

j∗

��

Hom(H̃n(Y ∧Cp
S∞
+ ;Z), A)

Hom(j∗,A)∼=
��

H̃n(Y ;A)Cp
∼=

// Hom(H̃n(Y ;Z), A)Cp
∼=

// Hom(H̃n(Y ;Z)/Cp, A)

in which the right vertical map is an isomorphism by the first part. Hence the left vertical map is also an
isomorphism. □

Part (ii) of the next proposition refers to the continuous map

j : X∧p −→ X∧p ∧Cp
S∞
+ = D̃p(X) , j(x1 ∧ . . . ∧ xp) = [x1 ∧ . . . ∧ xp ∧ (1, 0, . . . )] .

Proposition 6.5. Let p be a prime, and let n ≥ 1.

(i) For every based space X and every reduced cohomology class x ∈ H̃n(X;Fp), the class

x ∧ . . . ∧ x ∈ H̃np(X∧p,Fp)

is invariant under the automorphism induced by the cyclic permutation of smash factors in X∧p.
(ii) There is a unique class

ι̃n,p ∈ Hnp(D̃p(K(Fp, n)),Fp)
such that

j∗(ι̃n,p) = ιn ∧ . . . ∧ ιn ∈ Hnp(K(Fp, n)∧p,Fp) .

Proof. (i) We recall that for based spaces X and Y and cohomology classes x ∈ H̃k(X;Fp) and y ∈
H̃ l(Y ;Fp), the relation

(6.6) x ∧ y = (−1)k·l · τ∗X,Y (y ∧ x)

holds in H̃k+l(X ∧ Y ;Fp), where τX,Y : X ∧ Y −→ Y ∧X is swapping the smash factors.
Now we consider m ≥ 2 and based spaces X1, . . . , Xm. We write

cm : X1 ∧X2 ∧ . . . ∧Xm −→ X2 ∧ . . . ∧Xm ∧X1

for the cyclic permutation of smash factors. We claim that

c∗m(x2 ∧ . . . ∧ xm ∧ x1) = (−1)k1·(k2+···+km)x1 ∧ x2 ∧ . . . ∧ xm ,

where ki is the degree of the class xi, i.e., xi ∈ Hki(Xi;Fp). We prove this claim by induction on m, the
case m = 2 being (6.6). For m ≥ 3 we have

cm = (X2 ∧ . . . ∧Xm−2 ∧ τX1,Xm
) ◦ (cm−1 ∧Xm) ,

and so

c∗m(x2 ∧ . . . ∧ xm ∧ x1) = (cm−1 ∧Xm)∗((X2 ∧ . . . ∧Xm−2 ∧ τX1,Xm)∗(x2 ∧ . . . ∧ xm ∧ x1)

= (−1)k1km · (cm−1 ∧Xm)∗((x2 ∧ . . . ∧ xm−1 ∧ x1 ∧ xm)

= (−1)k1km · c∗m−1(x2 ∧ . . . ∧ xm−1 ∧ x1) ∧ xm
= (−1)k1km · (−1)k1·(k2+···+km−1) · (x1 ∧ x2 ∧ . . . ∧ xm−1) ∧ xm
= (−1)k1·(k2+···+km−1+km) · x1 ∧ x2 ∧ . . . ∧ xm−1 ∧ xm .

Now we specialize to the case where m = p is a prime, X1 = X2 = · · · = Xp = X, and where x1 = x2 =
· · · = xp = x, of degree n. Then the formula becomes

c∗p(x ∧ . . . ∧ x) = (−1)(p−1)n2

· x ∧ . . . ∧ x .

If p = 2, then −1 = 1. If p is odd, then p− 1 is even, and (−1)(p−1)n2

= 1. This proves claim (i).



21

(ii) Because K(Fp, n) is (n − 1)-connected, its p-th smash power K(Fp, n)∧p is (np − 1)-connected.
Proposition 6.3 thus shows that the map

j : K(Fp, n)∧p −→ K(Fp, n)∧p ∧Cp
S∞
+ = D̃p(K(Fp, n))

induces an isomorphism

j∗ : Hnp(D̃p(K(Fp, n)),Fp)
∼=−−→ (Hnp(K(Fp, n)∧p,Fp))

Cp .

The class ιn ∧ . . . ∧ ιn in the target is invariant under the Cp-action by (i). So there is a unique class ι̃n,p
in the source that maps to ιn ∧ . . . ∧ ιn. □

Construction 6.7. We let Π: Dp(K(Fp, n)) −→ D̃p(K(Fp, n)) denote the projection from the unreduced
to the reduced extended power. We set

(6.8) ιn,p = Π∗(ι̃n,p) ∈ Hnp(Dp(K(Fp, n));Fp) .
The following square commutes:

K(Fp, n)p
proj

//

j

��

K(Fp, n)∧p

j

��

Dp(K(Fp, n))
Π
// D̃p(K(Fp, n))

So we deduce the relation

(6.9) j∗(ιn,p) = j∗(Π∗(ι̃n,p)) = proj∗(j∗(ι̃n,p)) = proj∗(ιn ∧ . . . ∧ ιn) = ιn × · · · × ιn .

Now we let X be a CW-complex. The diagonal map

∆ : X −→ Xp , ∆(x) = (x, . . . , x) ,

is Cp-equivariant with respect to the trivial action on the source and the permutation action on the target.
So the diagonal induces a map

∆X : X × L(p) ∼= X ×Cp S
∞ ∆×CpS

∞

−−−−−−→ Xp ×Cp S
∞ = Dp(X) , (x, [v]) 7−→ [x, . . . , x, v] .

The p-th total power operation

(6.10) Pp : Hn(X,Fp) −→ Hnp(X × L(p),Fp)
is then defined by

Pp(x) = Pp(f∗(ιn)) = ∆∗
X(Dp(f)

∗(ιn,p)) .

In other words, if x ∈ Hn(X,Fp) is represented by a continuous based map f : X −→ K(Fp, n), then
Pp(x) is defined as the restriction of the class ιn,p ∈ Hnp(Dp(K(Fp, n));Fp) constructed in (6.8) along the
composite map

X × L(p)
∆X−−→ Dp(X)

Dp(f)−−−−→ Dp(K(Fp, n)) .
Said yet another way: Pp is the unique natural transformation such that Pp(ιn) = ∆∗

K(Fp,n)
(ιn,p).

In the following lemma we use the natural map

j : X −→ X × L(p) , x 7−→ (x, [1, 0, . . . ]) .

Because the space L(p) is path-connected, any point other than [1, 0, . . . ] ∈ L(p) would yield a homotopic
map.

Lemma 6.11.

(i) The composite map

Hn(X;Fp)
Pp−−→ Hnp(X × L(p);Fp)

j∗−−−→ Hnp(X;Fp)
sends a cohomology class to its p-th cup power.
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(ii) The total power operation and the exterior product are related by the formula

Pp(x× y) = ∆∗(Pp(x)× Pp(y))

in H∗(X × Y × L(p);Fp) for cohomology classes x ∈ H∗(X;Fp) and y ∈ H∗(Y ;Fp), where

∆ : X × Y × L(p) −→ (X × L(p))× (Y × L(p))

is given by ∆(x, y, z) = ((x, z), (y, z)).

Proof. (i) By naturality it suffices to check the universal example, i.e., we may take X = K(Fp, n)
and evaluate on the fundamental class ιn. In this case Pp(ιn) is the restriction of the class ιn,p ∈
Hnp(Dp(K(Fp, n));Fp) along the lower map in the following commutative diagram:

K(Fp, n)
∆ //

j

��

K(Fp, n)p

j

��

K(Fp, n)× L(p)
∆K(Fp,n)

// K(Fp, n)p ×Cp S
∞ = Dp(K(Fp, n))

So we deduce that

j∗(Pp(ιn)) = j∗(∆∗
K(Fp,n)

(ιn,p)) = ∆∗(j∗(ιn,p))

(6.9) = ∆∗(ιn × · · · × ιn) = ιn ∪ · · · ∪ ιn = ιpn .

(ii) By naturality it suffices to check the universal example, i.e., we may take X = K(Fp, n), Y =
K(Fp,m), x = ιn and y = ιm, We simplify the notation by writing K(n) for K(Fp, n) and K(m) for
K(Fp,m). We consider the map

(6.12) ∆̃ : D̃p(X ∧ Y ) −→ D̃p(X) ∧ D̃p(Y ) , [x, y; v] 7−→ ([x, v], [y, v])

that arises from the diagonal map S∞ −→ S∞ × S∞. It makes the following square commute:

(6.13)

(X ∧ Y )∧p

j

��

shuffle
∼=

// X∧p ∧ Y ∧p

j∧j
��

D̃p(X ∧ Y )
∆̃

// D̃p(X) ∧ D̃p(Y )

We define

c̃ : K(n) ∧K(m) −→ K(n+m)

as the based map, unique up to homotopy, such that

c̃∗(ιn+m) = ιn ∧ ιm

in the group Hn+m(K(n) ∧K(m);Fp). It induces a based continuous map

D̃p(c̃) : D̃p(K(n) ∧K(m)) −→ D̃p(K(n+m))

on reduced extended powers. We claim that for X = K(n) and Y = K(m), the diagonal (6.12) satisfies

(6.14) ∆̃∗(ι̃n,p ∧ ι̃m,p) = (D̃p(c̃))
∗(ι̃n+m,p)

in the group H(n+m)p(D̃p(K(n) ∧K(m));Fp). Because K(n) is (n − 1)-connected and K(m) is (m − 1)-
connected, the smash product K(n) ∧K(m) is (n+m− 1)-connected. Hence the space (K(n) ∧K(m))∧p

is ((n+m)p− 1)-connected. Proposition 6.3 shows that the map

j : (K(n) ∧K(m))∧p −→ D̃p(K(n) ∧K(m))
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induces an injection on H(n+m)p(−;Fp). Commutativity of the square (6.13) yields

j∗(∆̃∗(ι̃n,p ∧ ι̃m,p)) = shuffle∗((j ∧ j)∗(ι̃n,p ∧ ι̃m,p))
= shuffle∗(j∗(ι̃n,p) ∧ j∗(ι̃m,p))
= shuffle∗((ιn ∧ . . . ∧ ιn) ∧ (ιm ∧ . . . ∧ ιm))

= (ιn ∧ ιm) ∧ . . . ∧ (ιn ∧ ιm)

= c̃∗(ιn+m) ∧ . . . ∧ c̃∗(ιn+m)

= (c̃ ∧ . . . ∧ c̃)∗(ιn+m ∧ . . . ∧ ιn+m)

= (c̃ ∧ . . . ∧ c̃)∗(j∗(ι̃n+m,p))

= j∗((D̃p(c̃))
∗(ι̃n+m,p)) .

Since j∗ is injective in this particular cohomological dimension, this proves relation (6.14).
We we turn the relation (6.14) from a reduced into an unreduced form. We abuse notation and also write

∆ : Dp(X × Y ) −→ Dp(X)×Dp(Y ) , [x, y; v] 7−→ ([x; v], [y; v])

for yet another diagonal map, now for the unreduced extended powers. We write

c = c̃ ◦Π : K(n)×K(m) −→ K(n+m) ,

which satisfies

c∗(ιn+m) = Π∗(c̃∗(ιn+m)) = Π∗(ιn ∧ ιm) = ιn × ιm .

If X and Y are based, then the following diagram commutes by inspection:

X × Y × L(p)
∆ //

∆X×Y

��

(X × L(p))× (Y × L(p))

∆X×∆Y

��

Dp(X × Y )
∆ //

Π
��

Dp(X)×Dp(Y )

Π
��

D̃p(X ∧ Y )
∆̃

// D̃p(X) ∧ D̃p(Y )

Then

∆∗(ιn,p × ιm,p) = ∆∗(Π∗(ιn,p ∧ ιm,p)) = Π∗(∆̃∗(ιn,p ∧ ιm,p))(6.15)

(6.14) = Π∗(D̃p(c)
∗(ι̃n+m,p)) = Dp(c)

∗(Π∗(ι̃n+m,p)) = Dp(c)
∗(ιn+m,p)

in the group H(n+m)p(Dp(K(n)×K(m))). Thus

Pp(ιn × ιm) = Pp((c ◦Π)∗(ιn+m))

= ∆∗
K(n)×K(m)(Dp(c ◦Π)∗(ιn+m,p))

(6.15) = ∆∗
K(n)×K(m)(∆

∗(ιn,p × ιm,p))

= ∆∗((∆K(n) ×∆K(m))
∗(ιn,p × ιm,p))

= ∆∗(∆∗
K(n)(ιn,p)×∆∗

K(m)(ιm,p))

= ∆∗(Pp(ιn)× Pp(ιm)) □

We base L(2) = RP∞ at the point [1, 0, 0 . . . ].

Proposition 6.16. There is a homeomorphism

h : D̃2(S
1)

∼=−−→ S1 ∧ RP∞
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with the property that the composite

S1 ∧ RP∞
+

∆̃S1−−−→ D̃2(S
1)

h−−→∼= S1 ∧ RP∞

is homotopic to S1∧q : S1∧RP∞
+ −→ S1∧RP∞, where q : RP∞

+ −→ RP∞ identifies the external basepoint
with the internal basepoint.

Proof. We write S1
sgn = R ∪ {∞} for the onepoint compactification of R with the sign involution, sending

x to −x; the basepoint is the point at infinity. In a first step we exhibit a homeomorphism

(6.17) k : S1
sgn ∧C2

S∞
+

∼=−−→ RP∞ .

We fix m ≥ 0 and consider the continuous map

R× S(Rm) −→ RPm , (x; v1, v2, . . . , vm) 7−→ [x : v1 : v2 : · · · : vm] .

For x ̸= 0, we have

[x : v1 : v2 : · · · : vm] = [1 : v1/x : v2/x : · · · : vm/x] .
So the map extends continuously to

S1 × S(Rm) −→ RPm by (∞; v1, v2, . . . , vm) 7−→ [1 : 0 : · · · : 0] .

Since {∞} × S(Rm) is taken to the single point [1 : 0 : · · · : 0], this map factors through a continuous map

S1 ∧ S(Rm)+ = (S1 × S(Rm))/({∞} × S(Rm)) −→ RPm .

This maps is surjective, but not injective: because

[−x : −v1 : −v2 : · · · : −vm] = [x : v1 : v2 : · · · : vm] ,

the pairs (x, v) and (−x,−v) have the same image. So the previous map factors through a continuous
surjective map

km : S1
sgn ∧C2

S(Rm)+ −→ RPm

on the quotient space. This map is also injective, and hence a continuous bijection from a quasi-compact
space to a Hausdorff space. So this map is a homeomorphism. The homeomorphisms km are compatible
for different values of m, in the sense that the following diagram commutes:

S1
sgn ∧C2

S(Rm)+

km ∼=
��

[x,v1,...,vn]7→[x,v1,...,vn,0]
// S1

sgn ∧C2
S(Rm+1)+

km+1∼=
��

RPm
[y0:y1:···:ym]7→[y0:y1:···:ym:0]

// RPm+1

So we can pass to the colimit over k in the horizontal directions, and obtain the homeomorphism (6.17).
The composite

RP∞ [v] 7→[0∧v]−−−−−−→ (S1
sgn ∧C2

S∞
+ )

k−−→∼= RP∞

is given by

[y0 : y1 : . . . ] 7−→ [0 : y0 : y1 : . . . ] .

This map is homotopic to the identity, as witnessed by the homotopy

[0, π/2]× RP∞ −→ RP∞

(t, [y0 : y1 : . . . ]) 7−→ [sin(t)y0 : cos(t)y0 + sin(t)y1 : cos(t)y1 + sin(t)y2 : . . . ] .

Now we consider the invertible matrix A = 1
2

(
1 1
−1 1

)
. Since A has positive determinant, the induced

homeomorphism on onepoint compactification

A : S2 −→ S2
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is based homotopic to the identity. This homeomorphism is equivariant for two different involutions on
source and target, namely for the twist involution x ∧ y 7→ y ∧ x on the source, and for the involution

S2 −→ S2 , x ∧ y 7−→ (x,−y)

on the target. We shall use the suggestive notation S1 ∧ S1
sgn for S2 with this second involution. So A

induces another homeomorphism

A ∧C2 S
∞
+ : D̃2(S

1) = (S1 ∧ S1) ∧C2 S
∞
+ −→ S1 ∧ (S1

sgn ∧C2 S
∞
+ ) .

Since A · (x, x) = (x, 0), the left triangle in the following diagram commutes:

S1 ∧ RP∞
+

S1∧[0,−]

��

S1∧q

$$

∆̃S1

zz

D̃2(S
1)

∼=
A∧C2

S∞
+

// S1 ∧ (S1
sgn ∧C2

S∞
+ )

S1∧k

∼= // S1 ∧ RP∞

So (S1 ∧ k) ◦ (A ∧C2
S∞
+ ) : D̃2(S

1) −→ S1 ∧ RP∞ is the desired homeomorphism. □

Let ι ∈ H̃1(S1;Z) be the generator of the first cohomology group of the circle such that −∧ ι implements
the suspension isomorphism. We use the same name for the image of this class which generates the mod-p
cohomology group H1(S1;Fp).

Proposition 6.18. The relation P2(ι) = ι× u holds in the group H2(S1 × L(2);F2).

Proof. We let g : S1 −→ RP∞ be a based map that represents the nontrivial element of π1(RP∞, ∗). Then

g∗(u) = ι

in H1(S1;F2). We use the homeomorphism

h : D̃2(S
1)

∼=−−→ S1 ∧ RP∞

provided by Proposition 6.16. The space S1 ∧ RP∞ is simply connected and has

H2(S
1 ∧ RP∞;Z) ∼= H1(RP∞;Z) ∼= Z/2 .

So π2(S
1 ∧ RP∞, ∗) ∼= Z/2 by the Hurewicz theorem. The composite map

S1 ∧ g : S1 ∧ S1 −→ S1 ∧ RP∞

is nontrivial on H2(−;F2), and hence not nullhomotopic. The composite

S1 ∧ S1 j−−→ (S1 ∧ S1) ∧C S∞
+ = D̃2(S

1)
h−−→∼= S1 ∧ RP∞

is nontrivial on H2(−;F2) by Proposition 6.5, and hence not nullhomotopic. So

S1 ∧ g ∼ h ◦ j : S1 ∧ S1 −→ S1 ∧ RP∞ .

Hence also

j∗(h∗(ι ∧ u)) = (h ◦ j)∗(ι ∧ u) = (S1 ∧ g)∗(ι ∧ u) = ι ∧ g∗(u) = ι ∧ ι

in H2(S1 ∧ S1;F2).
The space RP∞ is also a K(F2, 1), and in this role u = ι1 is the fundamental class. The class ι̃1,2 ∈

H2(D̃2(RP∞);F2) was defined in Proposition 6.5 by the property

j∗(ι̃1,2) = ι1 ∧ ι1 = u ∧ u .
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The following diagram commutes:

S1 ∧ S1 g∧g
//

j
��

RP∞ ∧ RP∞

j
��

D̃2(S
1)

D̃2(g)

// D̃2(RP∞)

So we obtain the relation

j∗(D̃2(g)
∗(ι̃1,2)) = (g ∧ g)∗(j∗(ι̃1,2)) = (g ∧ g)∗(u ∧ u) = ι ∧ ι .

Since S1 ∧ S1 is simply connected, the map

j∗ : H2(D̃2(S
1);F2) −→ H2(S1 ∧ S1;F2)

is injective by Proposition 6.3. So we conclude that

D̃2(g)
∗(ι̃1,2) = h∗(ι ∧ u)

in the group H2(D̃2(S
1);F2).

Now we exploit the following homotopy commutative diagram:

S1 × RP∞ Π //

∆S1

��

S1 ∧ RP∞
+ S1∧q

��

∆̃S1

��

D2(S
1)

Π
//

D2(g)

��

D̃2(S
1)

D̃2(g)

��

h

∼= // S1 ∧ RP∞

D2(RP∞)
Π
// D̃2(RP∞)

The commutativity (up to homotopy) of the triangle is part of Proposition 6.16. This yields

P2(ι) = ∆∗
S1(D2(g)

∗(ι1,2))

= ∆∗
S1(D2(g)

∗(Π∗(ι̃1,2)))

= Π∗(∆̃∗
S1(D̃2(g)

∗(ι̃1,2)))

= Π∗(∆̃∗
S1(h∗(ι ∧ u)))

= Π∗((S1 ∧ q)∗(ι ∧ u))
= Π∗(ι ∧ u) = ι× u . □

The next theorem shows that the total power operation P2 encodes all the Steenrod operations in one
class. The Künneth theorem tells us that the mod-2 cohomology of the product X ×L(2) can be expanded
as the tensor product of the cohomology of X and the cohomology of L(2). We recall that the mod-2
cohomology of L(2) = RP∞ is a polynomial algebra generated by the non-trivial one-dimensional class (the
fundamental class).

Theorem 6.19. For p = 2, the total squaring operation P2 and the operations Sqi are related by the formula

P2(x) =
∑
i≥0

Sqi(x)× un−i

for x ∈ Hn(X;F2), where u ∈ H1(L(2);F2) is the generator.

Proof. As an auxiliary notation we let

T in : Hn(X;F2) −→ Hn+i(X × L(2);F2)
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be the cohomology operations defined by the formula

P2(x) =
∑
i≥0

T in(x)× un−i .

We then have to show that T in = Sqi.
In a first step we note that Tnn (x) = x2 when x has dimension n. By Lemma 6.11 (i), the restriction of

the class P2(x) ∈ H2n(X × L(2);F2) along the inclusion j : X −→ X × L(2) coincides with the cup-power
x2 ∈ H2n(X;F2). Moreover, for y ∈ H∗(X;F2) we have

j∗(y × ui) =

{
y if i = 0, and
0 if i ≥ 1.

So we deduce x2 = j∗(P2(x)) = Tnn (x), as claimed.
Now we show that the operations T in satisfy the Cartan formula

(6.20) T ik+l(x× y) =
∑
a+b=i

T ak (x)× T bl (y)

for x ∈ Hk(X;F2) and y ∈ H l(Y ;F2). Indeed, Lemma 6.11 (ii) gives

P2(x× y) = ∆∗(P2(x)× P2(y)) = ∆∗

∑
a,b≥0

(T ak (x)× uk−a)× (T bl (y)× ul−b)


=

∑
i≥0

( ∑
a+b=i

T ak (x)× T bl (y)

)
× uk+l−i

where we used the relation ∆∗((α× ui)× (β × uj)) = α× β × ui+j . The Cartan formula (6.20) follows by
comparing coefficients of uk+l−i.

Proposition 6.18 provides the relation P2(ι) = ι× u, where ι ∈ H1(S1;F2) is the generator. This means
that T 0

1 (ι) = ι, and T i1(ι) = 0 for i ̸= 0.
Now we verify that the collection of operations {T in}n≥0 form a stable cohomology operation. This is

actually a formal consequence of the Cartan formula. Indeed, the suspension isomorphism

Σ : Hn(X;F2)
∼=−→ Hn+1(ΣX;F2) = Hn+1(X ∧ S1;F2)

is given by exterior smash product with the fundamental class ι ∈ H̃1(S1;F2). So we get

T in+1(x ∧ ι) =

i∑
j=0

T jn(x) ∧ T
i−j
1 (ι) = T in(x) ∧ ι .

The second equation uses that T 0
1 (ι) = ι and T i1(ι) = 0 for i > 0.

We conclude that {T in}n≥0 form a stable mod-2 cohomology operation such that Tnn (x) = x2 for all

n-dimensional classes x. By the uniqueness property of the squaring operation Sqi (Theorem 4.1), we thus
have {T in}n≥0 = Sqi. □

The Steenrod squares are usually defined by the relation

P2(x) =
∑
i≥0

Sqi(x)× un−i

for x ∈ Hn(X,F2), where u ∈ H1(L(2);F2) is the generator. If this is taken as the definition of the Steenrod
squares, then the content of Theorem 6.19 is the proof that Sqi(x) = x2 whenever x has degree i, and that
the Cartan formula holds.
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7. Steenrod operations for odd primes

Theorem 6.19 explains how the Steenrod squares Sqi can be defined from the total squaring operation P2.
Total power operation encodes all the Steenrod operations in one class. For odd primes p we use the total
power operation Pp to define certain mod-p cohomology operations P i, called reduced power operations. I
will only sketch the main steps, but not give full proofs.

Throughout the following discussion, p is an odd prime. We have shown in Proposition 6.2 that

H∗(L(p);Fp) = Fp[y]⊗ Λ(x) = Fp[x, y]/(x2) ,
for a specific element x ∈ H1(L(p);Fp), and with y = β(x).

We set
u = x · yp−2 ∈ H2p−3(L(p);Fp)

and
v = yp−1 ∈ H2p−2(L(p);Fp) .

Then u2 = 0 and β(u) = v.
The secret reason for considering the elements u and v is as follows. The multiplicative group F×

p =

Fp \{0} acts on the additive group Fp by multiplication, and this action witnesses F×
p as the automorphism

group of Fp. The action of F×
p on Fp induces an action, up to homotopy, on L(p) = K(Fp, 1): for every

λ ∈ F×
p , there is a unique homotopy class of based map tλ : L(p) −→ L(p) that induces multiplication by λ

on π1, and hence also on H1(−;Fp). Then also

t∗λ(x) = λ · x
by the universal coefficient theorem, and hence

t∗λ(y) = t∗λ(β(x)) = β(t∗λ(x)) = β(λ · x) = λ · β(x) = λ · y .
So the classes x and y are not invariant under the induced F×

p -action on H∗(L(p);Fp). However,

t∗λ(u) = t∗λ(xy
p−2) = t∗λ(x) · (t∗λ(y))p−2 = (λ · x) · (λ · y)p−2 = λp−1 · xyp−2 = u

because λp−1 = 1 for all λ ∈ F×
p . Similarly,

t∗λ(v) = t∗λ(y
p−1) = (t∗λ(y))

p−1 = λp−1 · yp−2 = v .

In other words: the classes u and v are invariant under the action of F×
p . In in fact, they generate the entire

subalgebra of H∗(L(p);F) of F×
p -invariant classes:

(H∗(L(p);Fp))F
×
p = Fp[u, v]/(u2) .

One can then show:

Proposition 7.1. For every prime p, every space X and all even numbers n ≥ 0, the image of the total
power operation

Pp : Hn(X;Fp) −→ Hnp(X × L(p);Fp)
is invariant under the action of the group F×

p , induced by the F×
p -action on L(p).

The standard proof of this proposition uses that the symmetric group Σp acts on on Xp by permuting the
factors; this action extends the action of the cyclic group Cp, which we identify with the cyclic subgroup
of Σp generated by the transposition (1, 2, . . . , p). Then one exploits the analog of the extended power
construction for the action of this larger group.

For p = 3 there is a direct proof of Proposition 7.1, as follows.

Proof of Proposition 7.1 for p = 3. We consider the involution

ψ : S∞ −→ S∞ , ψ(v1, v2, . . . ) = (v̄1, v̄2, . . . )

that is complex conjugation in each of the complex coordinates. The third root of unity ζ3 = e2πi/3 satisfies
ζ̄3 = ζ23 , so this map satisfies

ψ(ζ3 · v) = ζ̄3 · ψ(v) = ζ23 · ψ(v) .



29

This means that ψ descends to a continuous involution

ψ̄ : L(p) = S∞/Cp −→ S∞/Cp = L(p) .

The restriction of ψ to the 1-skeleton S(C) is complex conjugation, which reverses the orientation of the
circle. So the induced homomorphism of fundamental groups

π1(ψ̄) : π1(L(p), ∗) −→ π1(L(p), ∗)

is the inverse map, and thus the unique non-identity automorphism of the cyclic group of order 3. So in
the earlier notation, ψ̄ = t−1, the automorphism associated to −1 ∈ F×

3 .
We now define an involution of D3(X) = X3 ×C3

S∞ by

ψ̄X : X3 ×C3
S∞ −→ X3 ×C3

S∞ , [x, y, z; v] 7−→ [y, x, z;ψ(v)] .

Note that the coordinates x and y switch places, which is needed to make the map well-defined on equivalence
classes: (x, y, z; v) and (y, z, x; ζ3v) define the same element in D3(X), and

(y, x, z;ψ(v)) ∼ (x, z, y; ζ3ψ(v)) ∼ (z, y, x; ζ23ψ(v)) = (z, y, x;ψ(ζ3v)) .

The following square also commutes:

K(F3, n)
∧3 j

//

τ∧Id

��

D̃3(K(F3, n))

ψ̃K(F3,n)

��

K(F3, n)
∧3

j
// D̃3(K(F3, n))

Here τ switches the first two smash factors of K(F3, n)
∧3. So

j∗(ψ̃∗
K(F3,n)

(ι̃n,3)) = (τ ∧ Id)∗(j∗(ι̃n,3))

= (τ ∧ Id)∗(ιn ∧ ιn ∧ ιn)
= ιn ∧ ιn ∧ ιn = j∗(ι̃n,3) .

The third equation uses that n is even, for else a sign would appear. The map j∗ : H3n(D̃3(K(F3, n));F3) −→
H3n(K(F3, n)

∧3;F3) is injective by Proposition 6.3, so we deduce that

ψ̃∗
K(F3,n)

(ι̃n,3) = ι̃n,3 .

The following square commutes:

D3(K(F3, n))
Π //

ψ̄K(F3,n)

��

D̃3(K(F3, n))

ψ̃K(F3,n)

��

D3(K(F3, n))
Π
// D̃3(K(F3, n))

So

ψ̄∗
K(F3,n)

(ιn,3) = ψ̄∗
K(F3,n)

(Π∗(ι̃n,3)) = Π∗(ψ̃∗
K(F3,n)

(ι̃n,3)) = Π∗(ι̃n,3) = ιn,3 .

Finally, the following square commutes:

X × L(3)
∆X //

X×ψ̄
��

D3(X)

ψ̄X

��

X × L(3)
∆X

// D3(X)
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For X = K(F3, n), this yields

(Id×ψ̄)∗(P3(ιn)) = (Id×ψ̄)∗(∆∗
K(F3,n)

(ιn,3)) = ∆∗
K(F3,n)

((ψ̄K(F3,n))
∗(ιn,3))

= ∆∗
K(F3,n)

(ιn,3) = P3(ιn) .

This is the universal example of the relation we wish to show, so the general case follows by naturality. □

The Künneth theorem says that the exterior product map

H∗(X;Fp)⊗ Fp[x, y]/(x2) = H∗(X;Fp)⊗H∗(L(p);Fp) −→ H∗(X × L(p);Fp)
is an isomorphism of graded-commutative Fp-algebras. So we can expand the total power class Pp(x) ∈
Hnp(X×L(p);Fp) in terms of the Fp-basis {xyi, yi} of Fp[x, y]/(x2). By the invariance under the F×

p -action,

only terms with coefficients u = xyp−2 and v = yp−1 will show up.
We first work with even-dimensional cohomology classes, and consider the p-th total power operation

introduced in (6.10)

Pp : H2k(X;Fp) −→ H2pk(X × L(p);Fp) .
By the previous discussion, we can expand this operations as

(7.2) Pp(x) =

k∑
i=0

(
P ik(x)× vk−i + Rik(x)× uvk−i−1

)
for x ∈ H2k(X;Fp), for well-defined operations

P ik : H2k(X;Fp) −→ H2k+2i(p−1)(X;Fp) and

Rik : H2k(X;Fp) −→ H2k+2i(p−1)+1(X;Fp) .

Beware the indexing convention: the subscript of P ik and Rik is half of the cohomology degree of the
argument. Since the total power operation is natural in X, the operations P ik and Rik are also natural in
X.

The next step is to show an odd-primary analog of Proposition 6.18, which takes the form

(7.3) Pp(ι ∧ ι) = (ι ∧ ι)× v in H2p(S2 × L(p);Fp) .
Here ι ∧ ι ∈ H2(S2;Fp) is the generator that implements the twofold suspension isomorphism. In terms of
the recently introduced operations, this means that

(7.4) P i1(ι ∧ ι) =

{
ι ∧ ι if i = 0, and

0 else.

and Ri1(ι ∧ ι) = 0 for all i ≥ 0.
At this stage, we have only defined the operations for even-dimensional classes. Once we have verified

that they are compatible with double suspension, we will extend this to odd-dimensional classes in Definition
7.6. A similar argument as in the proof of Theorem 6.19 for p = 2 then shows the following result:

Theorem 7.5. Let p be an odd prime and let P ik be the cohomology operation of degree i(2p − 2) defined
on classes of dimension 2k by the formula (7.2).

(i) We have P kk (x) = xp and P ik(x) = 0 for i > k.
(ii) The operations P ik satisfy the external Cartan formula

P ik+l(x× y) =
∑
a+b=i

P ak (x) × P bl (y)

for all classes x ∈ H2k(X;Fp) and y ∈ H2l(Y ;Fp).
(iii) For fixed i, the operations P ik commute with the double suspension isomorphism in the sense that

P ik+1(x ∧ ι ∧ ι) = P ik(x) ∧ ι ∧ ι ∈ H2k+2i(p−1)+2(X ∧ S2;Fp)

for every class x ∈ H2k(X;Fp).
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Proof. (i) As before we let j : H∗(X × L(p);Fp) −→ H∗(X;Fp) be the map induced by the embedding
(−, [1, 0, . . . ]) : X −→ X × L(p). Then for z ∈ H∗(X;Fp) we have

j∗(z × xεyi) =

{
z if ε = 0 and i = 0, and
0 else.

The restriction of Pp(x) is the cup power xp by Lemma 6.11 (i); so restriction of defining formula (7.2)
gives

xp = j∗(Pp(x)) = P kk (x) .

(ii) Lemma 6.11 (ii) gives

Pp(x× y) = ∆∗(Pp(x)× Pp(y))

= ∆∗

∑
a,b≥0

(
P ak (x)× vk−a + Rak(x)× uvk−a−1

)
×
(
P bl (y)× vl−b + Rbl (y)× uvl−b−1

)
=

∑
i≥0

∑
a+b=i

(
P ak (x)× P bl (y)× vk+l−i + (P ak (x)×Rbl (y) +Rak(x)× P bl (y))× uvk+l−i−1

)
where we used the relations ∆∗((α× uεvi)× (β × uε

′
vj)) = α× β × uε+ε

′
vi+j and u2 = 0. We obtain the

external Cartan formula by comparing coefficients of vk+l−i.
(iii) As in Theorem 6.19, this part is a formal consequence of the Cartan formula. The suspension

isomorphism

Σ : Hn(X;Fp)
∼=−→ Hn+1(X ∧ S1;Fp)

is given by exterior smash product with the fundamental class ι ∈ H̃1(S1;Fp). So we get

P ik+1 (x ∧ ι ∧ ι) =

i∑
j=0

P i−jk (x) ∧ P j1 (ι ∧ ι) = P ik(x) ∧ ι ∧ ι .

The second equation holds since P 0
1 is the identity operation on the fundamental class ι ∧ ι, and all other

operations vanish on this class, see (7.4). □

Definition 7.6. Let p be an odd prime, let X be a space, and let n ≥ 0. We define the stable mod-p
cohomology operation

P i : Hn(X;Fp) −→ Hn+2i(p−1)(X;Fp)
of type (Fp, 2i(p− 1),Fp) by the formula

P i(x) =

{
P in/2(x) for even n, and

Σ−1P i(n+1)/2(Σ(x)) for odd n.

By part (iii) of Theorem 7.5, this definition indeed satisfies the stability condition.

We summarize the main properties of the reduced power operations in the next theorem.

Theorem 7.7. Let p be an odd prime and let P i be the stable mod-p cohomology operations of degree
2i(p− 1) defined in 7.6.

(i) The operation P 0 is the identity operation.
(ii) (Unstability condition) We have P i(x) = xp if |x| = 2i and P i(x) = 0 if |x| < 2i.
(iii) (Cartan formulas) Let X and Y be spaces and let x ∈ H∗(X;Fp) and y ∈ H∗(Y ;Fp) be cohomology

classes. Then we have

P i(x ∪ y) =
∑
a+b=i

P a(x) ∪ P b(y) and P i(x× y) =
∑
a+b=i

P a(x)× P b(y) .



32 STEFAN SCHWEDE

8. Adem relations

The Adem relations are relations that express the composite of two Steenrod operations as a sum of
composites of other operations. The Adem relations generate all relations between the Steenrod operations.
In (6.10) we have defined the total power operations

Pp : Hn(X;Fp) −→ Hnp(X × L(p);Fk) .
The Adem relations ultimately arise from a symmetry of the iterated total power operations Pp ◦ Pp. We
use the following result without proof.

Theorem 8.1. Let p be any prime, and let n be a number which is even in case p is odd. Then image of
the iterated total power operation

Pp ◦ Pp : Hn(X;Fp) −→ Hnp2(X × L(p)× L(p);Fp)
is invariant under the involution induced by the automorphism of X × L(p)× L(p) which interchanges the
two factors of L(p).

To deduce the Adem relations for p = 2 from the symmetry property in Theorem 8.1, we follow the
elegant method of Bullet and Macdonald [BM]. We denote by P (t) ∈ A2JtK the formal power series with
coefficients in the mod-2 Steenrod algebra A2 given by

P (t) =

∞∑
i=0

Sqi ·ti .

Proposition 8.2. The formal power series P (t) with coefficients in A2 satisfies the identity

P (1 + t) · P (t2) = P (t+ t2) · P (1) .

Proof. Since the cohomology algebra H∗(L(2);F2) is polynomial on the 1-dimensional class u, the Künneth
isomorphism

× : H∗(X;F2)⊗H∗(L(2);F2) ∼= H∗(X × L(2);F2)

gives an identification
H∗(X × L(2);F2) = H∗(X;F2)[v] ,

where v = 1 × u. In the same fashion we identify the cohomology algebra H∗(X × L(2) × L(2);F2) with
H∗(X;F2)[s, t] where s = 1× 1× u and t = 1× u× 1 are polynomial generators of H∗(L(2)× L(2);F2).

Under this identification Theorem 6.19 yields

P2(x) =

∞∑
i=0

Sqi(x) · vn−i ∈ H2n(X × L(2);F2)

for every n-dimensional cohomology class x. The Cartan formula shows that the total squaring operation
is multiplicative, i.e., we have Sq(xy) = Sq(x) Sq(y) for x, y ∈ H∗(X;F2). Moreover, the value of the total
square on v = 1× u ∈ H1(X × L(2);F2) is given by

P2(v) =
∑
i≥0

Sqi(1× u)× u1−i = (1× u× u) + (1× u2 × 1) = ts+ t2

in H2(X × L(2)× L(2);F2). For the iterated total squaring operation we thus get the formula

P2(P2(x)) = P2

∑
j≥0

Sqj(x) · vn−j
 =

∑
j≥0

P2(Sq
j(x)) · (P2(v))

n−j

=
∑
j≥0

(
∑
i≥0

Sqi(Sqj(x)) · sn+j−i) · (ts+ t2)n−j

= sn(s+ t)ntn
∑
i,j≥0

Sqi(Sqj(x))s−i(t+ t2s−1)−j .
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The second equation is the fact that P2 is additive and multiplicative, the latter by Lemma 6.11. By
Theorem 8.1, this expression is symmetric in s and t, hence so is the expression∑

i,j≥0

Sqi(Sqj(x)) · s−i(t+ t2s−1)−j = P (s−1)P ((t+ t2s−1)−1)(x) .

Since this holds for all spaces X and for all cohomology classes x, we get the equality of (formal Laurent
power series of) stable cohomology operations, i.e., we have

(8.3) P (s−1)P ((t+ t2s−1)−1) = P (t−1)P ((s+ s2t−1)−1) .

If we substitute s = (1 + v)−1 and t = (v + v2)−1, then

t+ s−1t2 =
1

v + v2
+

1 + v

(v + v2)2
=

1 + v2

(v + v2)2
=

1

v2
and s+ t−1s2 = 1

where we exploited characteristic 2. So substituting into (8.3) gives P (1 + v)P (v2) = P (v + v2)P (1). □

Example 8.4. We expand the relation of Proposition 8.2 modulo t3 to obtain the Adem relations for
Sq1 Sqj and for Sq2 Sqj :

P (1 + t) · P (t2) = (
∑
i≥0

Sqi ·(1 + t)i) · (
∑
j≥0

Sqj ·t2j)

≡ (
∑
i≥0

Sqi ·(1 + it+

(
i

2

)
t2)) · (1 + Sq1 ·t2)

≡ (
∑
i≥0

Sqi) + (
∑
i≥0

Sqi ·i) · t+ (
∑
i≥0

Sqi ·
(
i

2

)
+ Sqi Sq1) · t2

P (t+ t2) · P (1) = (
∑
i≥0

Sqi ·(t+ t2)i) · (
∑
j≥0

Sqj)

≡ (1 + Sq1 ·(t+ t2) + Sq2 ·t2) · (
∑
j≥0

Sqj)

= (
∑
j≥0

Sqj) + (
∑
j≥0

Sq1 Sqj ·(t+ t2)) + (
∑
j≥0

Sq2 Sqj ·t2)

= (
∑
j≥0

Sqj) + (
∑
j≥0

Sq1 Sqj) · t+ (
∑
j≥0

Sq1 Sqj +Sq2 Sqj) · t2

Comparing coefficients of t yields ∑
i≥0

Sqi ·i =
∑
j≥0

Sq1 Sqj ;

in cohomology degree j + 1 this yields the relation

Sq1 Sqj = Sqj+1 ·(j + 1) =

{
Sqj+1 for j even, and

0 for j odd.

For example Sq1 Sq1 = 0, which we already knew because the composite of two Bockstein operations is
zero. And Sq1 Sq2 = Sq3, Sq1 Sq3 = 0, etc.

Comparing coefficients of t2 yields∑
i≥0

Sqi ·
(
i

2

)
+ Sqi Sq1 =

∑
j≥0

Sq1 Sqj +Sq2 Sqj ;
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in cohomology degree j + 2 this yields the relation(
j + 2

2

)
Sqj+2 +Sqj+1 Sq1 = Sq1 Sqj+1 +Sq2 Sqj ,

or equivalently

Sq2 Sqj =

(
j + 2

2

)
Sqj+2 + Sqj+1 Sq1 + Sq1 Sqj+1

=


Sqj+2 + Sqj+1 Sq1 for j ≡ 0 modulo 4

Sqj+2 + Sqj+1 Sq1 + Sqj+2 for j ≡ 1 modulo 4

Sqj+1 Sq1 for j ≡ 2 modulo 4

Sqj+1 Sq1 + Sqj+2 for j ≡ 3 modulo 4

=

{
Sqj+2 + Sqj+1 Sq1 for j ≡ 0, 3 modulo 4

Sqj+1 Sq1 for j ≡ 1, 2 modulo 4

The first Adem relations explicitly look as follows:

Sq1 Sq1 = 0

Sq1 Sq2 = Sq3

Sq2 Sq2 = Sq3 Sq1

Sq1 Sq3 = 0

Sq2 Sq3 = Sq5 +Sq4 Sq1

From these one can deduce some other relations, for example

Sq3 Sq2 = Sq1 Sq2 Sq2 = Sq1 Sq3 Sq2 = 0 .

Now we derive all the Adem relations in their usual form, still following Bullet and Macdonald [BM].
We will use the residue calculus which we briefly recall. Let R be any ring, and denote by R((t)) the ring of
Laurent power series over R, i.e., the collection of formal sums

f(t) =

∞∑
i>>−∞

fi · ti

where fi ∈ R and fi = 0 for almost all negative values of i. The residue of a Laurent power series
f(t) ∈ R((t)) is defined as the coefficient of t−1,

Res(f) = f−1 ∈ R .

The notation Resf(t) dt is also used. Now suppose that τ(t) ∈ Z[t] is a polynomial with integer coefficients
without constant term and with linear term equal to t, i.e. τ(t) ≡ t mod (t2). Then τ is invertible in the
ring R((t)), and hence we can substitute τ into any Laurent power series f(t) to get a new Laurent power
series f(τ(t)). We are interested in this for τ(t) = t + t2. In this situation we have the following ‘residue
formula’:

Proposition 8.5. Let R be a ring, and let f(t) ∈ R((t)) be a Laurent power series over R. Then

Res(f) = Res
[
f(t+ t2) · (1 + 2t)

]
.

Proof. Both sides of the equation are R-linear in the Laurent power series f . Moreover, if f is a power
series (as opposed to Laurent power series), i.e., if the coefficients fi of f are trivial for negative values
of i, then both sides of the equation are trivial. A general Laurent power series has only finitely many
non-zero coefficients of negative powers of the indeterminate, so by R-linearity it is enough to check the
desired equation for R = Z and f(t) = t−j with j ≥ 1. In other words, we must show that

Res
[
(t+ t2)−j · (1 + 2t)

]
=

{
1 for j = 1, and

0 for j ≥ 2.
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For j = 1 we have

(t+ t2)−1 = t−1(1 + t)−1 = t−1 · (1− t+ t2 − t3 + . . . )

= t−1 − 1 + t− t2 + t3 + . . . ,

so indeed Res
[
(t+ t2)−1

]
= 1.

The formal derivative of a Laurent power series f(t) =
∑
ai · ti ∈ Z((t)) is

f ′(t) =
df

dt
=
∑
i

i · ai · ti−1 .

For all m ∈ Z we have

d

dt
(fm) = m · df

dt
· fm−1 .

So

d

dt
((t+ t2)1−j) = (1− j) · (1 + 2t) · (t+ t2)−j .

Because the residue of every formal derivative is trivial, we conclude that

0 = Res

[
d

dt
((t+ t2)1−j)

]
= (1− j) · Res

[
(1 + 2t) · (t+ t2)−j

]
.

Because Z is torsion free, for j ̸= 1 we can conclude

Res
[
(1 + 2t) · (t+ t2)−j

]
= 0 . □

Theorem 8.6. (Adem relations) The Steenrod squaring operations satisfy the following relations

Sqa Sqb =

[a/2]∑
i=0

(
b− i− 1

a− 2i

)
Sqa+b−i Sqi

for all a, b ≥ 0.
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Proof. We fix non-negative integers a and b. Then we have

Sqa Sqb = Coeffta


a+b∑
j=0

Sqj Sqa+b−j tj


= Res


a+b∑
j=0

Sqj Sqa+b−j tj−a−1


= Res


a+b∑
j=0

Sqj Sqa+b−j ·(t+ t2)j−a−1

(8.7)

= Res


a+b∑
j=0

Sqj Sqa+b−j ·(t+ t2)j · (t+ t2)−a−1


= Res


a+b∑
j=0

Sqj Sqa+b−j(1 + t)j · t2(a+b−j) · (t+ t2)−a−1

(8.8)

i=a+b−j = Res

{
a+b∑
i=0

Sqa+b−i Sqi(1 + t)a+b−i · t2i · (t+ t2)−a−1

}

= Res

{
a+b∑
i=0

Sqa+b−i Sqi(1 + t)b−i−1 · t2i−a−1

}

= Coeffta

{
a+b∑
i=0

Sqa+b−i Sqi(1 + t)b−i−1t2i

}

=

a+b∑
i=0

(
b− i− 1

a− 2i

)
Sqa+b−i Sqi .

Equation (8.7) is the residue formula (8.5), which simplifies to Res(f) = Res
[
f(t+ t2)

]
because 2 = 0 in

the mod-2 Steenrod algebra. Equation (8.8) uses the power series identity P (t + t2)P (1) = P (1 + t)P (t2)
of Theorem 8.2, namely the part which has dimension a + b with respect to the grading coming from the
Steenrod algebra A2. The Adem relation as stated in the theorem now follow since the binomial coefficient(
b−j−1
a−2j

)
vanishes for j > a/2. □

Remark 8.9. With respect to binomial coefficients
(
n
m

)
for integers n and m, possibly negative, we recall

that (
n

m

)
=


n·(n−1)···(n−m+1)

m·(m−1)···1 if m ≥ 1,

1 if m = 0,
0 if m < 0.

With these conventions, the formula

(1 + t)n =

∞∑
i=0

(
n

i

)
· ti

holds for all integers n, positive or negative, in the power series ring Z[[t]].
The Adem relations 8.6 are often stated under the condition that a < 2b. In that case i ≤ a/2 implies

that b − i − 1 is non-negative. However, the relations hold for all non-negative a and b, just that some of
the binomial coefficients which arise when a ≥ 2b may have negative numerators.
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The Adem relations allow us to write some of the Steenrod squares as sum of products of Steenrod square
of smaller degrees:

Sq3 = Sq1 Sq2

Sq5 = Sq1 Sq4 = Sq2 Sq3 +Sq4 Sq1

Sq6 = Sq2 Sq4 +Sq5 Sq1

Sq7 = Sq1 Sq6 .

These particular Steenrod operations are thus decomposable in the Steenrod algebra A2. The next corollary

shows how this fits into a general pattern. The operations Sq2
i

for i ≥ 0 are indecomposable, i.e., they
cannot be written as sums of products of cohomology operations of smaller degrees.

Corollary 8.10. Let n be a positive integer which is not a power of 2. Then the Steenrod operation Sqn is
decomposable in the Steenrod algebra A2, i.e., in the square of the ideal generated by the positive dimensional
elements of A2.

Proof. By hypothesis we can write n = 2i(2k + 1) with i ≥ 0 and k ≥ 1. We have the Adem relation

Sq2
i

Sqn−2i =

2i−1∑
j=0

(
n− 2i − j − 1

2i − 2j

)
Sqn−j Sqj .

The summand indexed by j = 0 contributes the term
(
n−2i−1

2i

)
Sqn. We claim that the binomial coefficient(

n−2i−1
2i

)
=
(
2i+1k−1

2i

)
is odd. This implies that

Sqn = Sq2
i

Sqn−2i +

2i−1∑
j=1

(
n− 2i − j − 1

2i − 2j

)
Sqn−j Sqj ,

so we conclude that Sqn is decomposable in the mod-2 Steenrod algebra if n is not a power of 2. To evaluate

the binomial coefficient we use that
(
2i+1k−1

2i

)
is the coefficient of t2

i

in the polynomial (1 + t)2
i+1k−1. In

characteristic 2, that polynomial evaluates to

(1 + t)2
i+1k−1 = ((1 + t)2

i+1

)k · (1 + t)−1 = (1 + t2
i+1

)k · (1 + t+ t2 + · · · ) .

Since (1 + t2
i+1

)k is congruent to 1 modulo t2
i+1, the coefficient of t2

i

in (1 + t)2
i+1k−1 is indeed congruent

to 1 mod 2. □

Construction 8.11. The Adem relations can be used to show that certain composite of Hopf maps are
stably essential. We need the following observation: suppose that

α : Sm −→ Sk and β : Sn −→ Sm

are continous pointed maps between spheres. Suppose that the composite αβ : Sn −→ Sk is null-homotopic,
and let

H : Sn × [0, 1] −→ Sk

be a pointed homotopy from αβ to the constant map. Since H ends in the constant map, it factors over a
map

H̄ : CSn = (Sn × [0, 1])/(Sn × {1}) −→ Sk

from the cone of Sn. The maps H̄ and α glue together to give a map

α ∪ H̄ : C(β) = Sm ∪β CSn −→ Sk

from the mapping cone of β. We let C(α, β,H) be the mapping cone of α ∪ H̄ : C(β) −→ Sk. This space
has a CW-structure with 4 cells in dimensions 0, k, m + 1 and n + 2. Moreover, it contains the mapping
cone of α as its (m+ 1)-skeleton, and the quotient of C(α, β,H) by its k-skeleton (which is the sphere Sk)
is homeomorphic to a certain suspension of the mapping cone of β.
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Example 8.12. Now we show how Construction 8.11 and the Adem relation Sq2 Sq2 = Sq3 Sq1 can be
used to show that the composite η2 is stably essential. Suppose that for some n the composite

Sn+2 η−→ Sn+1 η−→ Sn

is null-homotopic. After choosing a null-homotopy H we can form the space C(η, η,H) with cells in
dimension 0, n, n + 2 and n + 4. The reduced mod-2 cohomology of this space is one-dimensional in
dimensions n, n+ 2 and n+ 4, and trivial in all other dimensions. Since the (n+ 2)-cell is attached to the
n-cell by η, the Steenrod operation Sq2 is an isomorphism from Hn(C(η, η,H);F2) to H

n+2(C(η, η,H);F2),
and similarly from there to Hn+4(C(η, η,H);F2). But since the group Hn+1(C(η, η,H);F2) vanishes, we
get that

Sq2 Sq2 = Sq3 Sq1 : Hn(C(η, η,H);F2) −→ Hn+4(C(η, η,H);F2)

is trivial, a contradiction. Hence no suspension of η2 is ever null-homotopic.
The same kind of reasoning yields other non-triviality results for certain composites of Hopf maps, using

that 2ι, η, ν and σ are detected in mod-2 cohomology by the Steenrod operations Sq1, Sq2, Sq4 and Sq8,
respectively. In the following table we list some Adem relations and the composite which are non-trivial by
the above argument.

relation stably essential product

Sq1 Sq4 = Sq4 Sq1 +Sq2 Sq3 2ν
Sq1 Sq8 = Sq8 Sq1 +Sq2 Sq7 2σ
Sq2 Sq2 = Sq3 Sq1 ηη
Sq2 Sq8 = Sq9 Sq1 +Sq8 Sq2 +Sq4 Sq6 ησ
Sq4 Sq4 = Sq7 Sq1 +Sq6 Sq2 νν
Sq8 Sq8 = Sq15 Sq1 +Sq14 Sq2 +Sq12 Sq4 σσ

Some products of Hopf maps do not occur in the table: 2η, ην and νσ. These products are in fact stably
null-homotopic.

We conclude by stating, without proof, the Adem relations for the odd-primary Steenrod algebra.

Theorem 8.13. (Odd-primary Adem relations) Let p be an odd prime. Then the power operations P i

satisfy the relations

P aP b =

[a/p]∑
j=0

(−1)a+j
(
(p− 1)(b− j)− 1

a− pj

)
P a+b−jP j

for all 0 < a < pb. Moreover, the power operations and the mod-p Bockstein β satisfy the relations

P aβP b =

[a/p]∑
j=0

(−1)a+j
(
(p− 1)(b− j)

a− pj

)
βP a+b−jP j

+

[(a−1)/p]∑
j=0

(−1)a+j−1

(
(p− 1)(b− j)− 1

a− pj − 1

)
P a+b−jβP j

for all 0 < a ≤ pb.
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