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1. COHOMOLOGY OPERATIONS

Definition 1.1. Let A and B be abelian groups and n, m natural numbers. A cohomology operation of
type (4,n, B,m) is a natural transformation of set valued functors on the category of topological spaces

T : H'(—-,A) — H™(—,B).

Note that we do not demand that 7x: H™"(X, A) — H™(X, B) be additive. However, two cohomology
operations of the same type can be added pointwise, so the set of all cohomology operations of a fixed type
forms an abelian group, which we denote Oper(A4,n, B,m).

As before, K(A,n) denotes an Eilenberg—MacLane space of type (A,n), i.e., a based space equipped
with an isomorphism ¢: 7, (K (A4,n),*) = A and such that the group m;(K(A4,n),*) is trivial for i # n. We
also assume that K(A4,n) is a CW-complex. The fundamental class t, 4 € H"(K(A,n), A) is the unique
element such that the composite

(K (Ayn), %) wevies g ge(An)z) 29 4
is the isomorphism ¢: 7, (K (A, n), ) =2 A. Here ®: H"(X; A) — Hom(H, (X;Z), A) is from the universal
coefficient theorem. For n = 0 we make the convention that K(A,0) is the group A with the discrete
topology, and ¢ is the cohomology class represented by the identity 0-cocycle.

Lemma 1.2. The map
Oper(A,n,B,m) — H™(K(A,n),B)

which takes a cohomology operation 7: H"(—; A) — H™(—; B) to the image of the fundamental class
T(tn,a) € H"(K(A,n), B) is an isomorphism from the group of cohomology operations of type (A, n, B,m)
and the m-th cohomology group of K(A,n) with coefficients in B.
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Proof. On the homotopy category of CW-complexes, the cohomology functor H"(—; A) is representable by
the Eilenberg-MacLane space K(A,n), i.e., H"(—; A) is naturally isomorphic to [—, K(A, n)], by evaluation
at the fundamental class.

If F is any functor from the homotopy category of CW-complexes to the category of sets, then the
Yoneda lemma says that the natural transformations from the representable functor [—, K (A, n)] to F are
in bijective correspondence with the set F(K(A,n)), by evaluation at (K(A4,n),Id). Taking FF = H™(—; B)
shows that there is a unique natural transformation

T = {Txl Hn(X7A) — Hm(X,B)}X CwW

of functors on the homotopy category of CW-complexes with the property of the lemma.

Every space Y has a CW-approximation f: X — Y, i.e., a weak homotopy equivalence from a CW-
complex. Moreover, the CW-approximation is unique up to preferred isomorphism in the homotopy cate-
gory. Singular cohomology takes weak homotopy equivalences to isomorphisms. So there is a unique way
to extend the natural transformation from CW-complexes to arbitrary spaces: we must define 7y as the
unique map that makes the following diagram commute:

H™(Y,A) —— H™(Y, B)

s |

H"(X, A) —— H™(X, B)

IR

O

Example 1.3. (i) The space K(A,n) is (n — 1)-connected, so we have H°(K(A,n),B) = B and
H™(K(A,n),B) 20 for 1 <m < n—1. So the only cohomology operations of type (4,n,B,0)
are the constant operations associated to the elements of B, and there are no non-trivial operations
of type (A,n,B,m) for 1 <m <mn—1.

(ii) Any homomorphism of coefficient groups f: A — B induces a cohomology operation of type
(A,n,B,n) for every n. Since a K(A,n) is (n — 1)-connected and H, (K (A,n);Z) = m,(A,x) = A,
the universal coefficient theorem yields an isomorphism

H"(K(A,n),B) =~ Hom(A,B),

which shows that the cohomology operations of type (A, n, B,n) all arise from coefficient homomor-
phisms.
(ili) The Bockstein homomorphism §: H"(X; A) — H"T(X; B) associated to a short exact sequence of
abelian groups
0 —B — F — A —0

is a cohomology operation of type (A,n, B,n + 1) for every n. This gives a map
Ext(A,B) — Oper(4,n,B,n+1).
The universal coefficient theorem yields a short exact sequence
0 — Ext(A,B) — H"™Y(K(A,n),B) — Hom(H,(K(A,n);Z),B) — 0,

so this map is injective. Moreover, for n > 2, the homology group H,,11(K (A, n);Z) is trivial (see e.g.
[EM, Thm. 20.5]), so in that case every cohomology operation of type (A, n, B,n+ 1) is the Bockstein
homomorphism of an abelian group extension.

(iv) The group H3(K(A,1);Z) is not generally trivial, so there are cohomology operations of type
(4,1, B,2) which do not come from short exact sequences of coefficient groups. Indeed, for any group
G, not necessarily abelian, H?(K (G, 1); B) classifies equivalence classes of central group extension of
G by B, i.e., short exact sequences of groups

(1.4) 0 — B — EFE — G —1



such that B is contained in the center of E. Exercise 1.6 below explains how to construct a non-
abelian Bockstein operation from such a central extension. A proof of the correspondence between
H?(K(G,1); B) and classes of central extensions can be found in [McL, IV Thm. 6.2] (in the special
case of trivial coefficient modules). If G is abelian, then the image of Ext(G, B) in H?(K(G,1); B)
corresponds to those central extensions for which F is abelian.

As a specific example we look at the quaternion group @, i.e., the finite subgroup of the unit group
of the quaternion numbers H, consisting of the elements

Q = {£1,+44, 15, £k} .
The relations in this group are
P=2=k>=-1,ij=k, jk=i and ki=j,
which forces other relations such as ji = —k. The center of () consists of the elements +1, and modulo

its center, every element of Q has order 2, so Q/{41} is isomorphic to (Z/2)2. Since the group Q is
not commutative, the operation of type ((Z/2)?,1,7/2,2) associated to the central extension

0 — {1} — Q@ — (Z/2)* — 1

via Exercise 1.6 is not in the image of the (ordinary) Bockstein homomorphisms.
(v) Let R be any ring and k > 0. Then the cup product power operation

H"(X;R) — H"(X;R), z+—aF

is a cohomology operation of type (R,n, R, kn). In some cases the cup powers give all operations of
a certain type. For example, RP* is a K (Fq, 1), and the group H"(RP>;F5) is cyclic of order 2,
generated by the n-th power of the fundamental class. So by the representability Lemma 1.2 the n-th
cup-power operation is the only non-trivial cohomology operation of type (Fa, 1, Fo, n). Similarly, CP>
is a K(Z,2), and the integral cohomology algebra of CP> is polynomial on the fundamental class,
so there is only the trivial operation of type (Z,2,Z,n) for odd n, and all cohomology operations
of type (Z,2,Z,2k) are multiples of the k-th cup power operation. Rationally, there are no other
cohomology operations whatsoever, besides multiples of cup powers. Indeed we shall see below that
the cohomology algebra H*(K(Q,n); Q) is polynomial on the fundamental class for even n, and is an
exterior algebra on the fundamental class for odd n.

(v) Let R be a commutative ring. Some time ago in the proof of the homotopy-commutativity of the
chain level cup product, we introduced the U;-product

U @ C"(X,R)®C™(X,R) — C"™ YX,R).
The Uj-product satisfies the coboundary formula

5(furg) = (Bf)Uig + (=1)"f Ui (dg) — (=" "fug — (~HTTD(GU )
which implies that if f € C™(X, R) is a cocycle and n is even, then the Uj-square f U; f is a cocycle
whose cohomology class only depends on the class of f. If n is odd, then fU; f is a mod-2 cocycle whose
mod-2 cohomology class only depends on the class of f. In other words, the formula Sq,[f] = [f U1 f]
defines cohomology operations

Sq, : H'(X;R) — H*"Y(X;R) if n is even, and
Sq; : H"(X;R) — H?""Y(X;R/2R) ifn is odd.
The U;-square is the first in a sequence of cohomology operation which were introduced by Steenrod

in the paper [St]. and which are called the divided squaring operations.

Cohomology groups are abelian groups, so operations that are additive are easier to deal with. The
following proposition translated the additivity property of a cohomology operation into a property of the
‘characteristic class’ that determines the whole operation in the sense of Lemma 1.2.

Proposition 1.5. Let 7 be a cohomology operation of type (A,n, B,m), and let w = Tg(an)(tan) be the
classifying cohomology class in H™(K(A,n); B). Then the following two conditions are equivalent.
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(i) The operation T is additive.
(ii) The relation
pr(u) = pi(u) +p3(u)
holds in H™(K(A,n)x K(A,n); B), where p,p1,p2: K(A,n)x K(A,n) — K(A,n) are the homotopy
addition and the two projections, respectively.

Proof. We abbreviate + = 14,,. In the proof of the representability of cohomology by Eilenberg-MacLane
spaces we showed the relation

pr() = pr() +p2(0)
holds in H"(K(A,n) x K(A,n); A). So if the operation 7 is additive, then
pr(u) = pi(r() = 7(p ()
=7(p1() + p2(2))
=7(P1(0) + 7(p2())
=p1(7(1) +p3(7(1)) = pi(w) +pa(u) .

For the converse we now suppose that the relation (ii) holds. We let X be a CW-complex, and z,y €
H™(X; A). Then by representability there are continuous maps f,g: X — K(A,n) such that z = f*(:)
and y = g*(¢). Moreover,

ety = ([[1+19D"() = (wo(f,9)"() -

So we obtain

(@ +y) = 7((no(f,9)" (1)

9)
ay = (f,9)" (01 (w) + p3(u))
9)

Hence the operation 7 is additive. 0

Exercise 1.6. Given a central group extension
0 — B — F — G —1
with G and B abelian, we define an operation
HY(X;G) — H*(X;B)

generalizing the Bockstein homomorphism for abelian extensions, where X is any simplicial set. Suppose
f: X1 — G is a 1-cocycle, choose a lift f: X3 — E. Show that for every x € X5 the expression

(6f)(z) = f(doz)- f(diz)™" - f(daz)
is contained in the subgroup B of F, and that it defines a 2-cocycle of X with values in B. Then show

that the cohomology class of §f is independent of the choice of lift, and of the choice of cocycle f within
its cohomology class.

Exercise 1.7. Let Q = {£1, £4, +j, =k} denote the quaternion group. Exercise 1.6 associates a cohomology
operation

Q.+ H'(X:(2/2)?) — HA(X;Z/2)
of type ((Z/2)?,1,7Z/2,2) to the central extension

0 — {£1} — Q@ — Q/{£1} — 1.
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Show that under a suitable identification Q/{%1} = (Z/2)?, this cohomology operation is given by the
formula
Q.(z) = () UIE(z)
where I1;,Ily: (Z/2)? — Z/2 are the two projections.
Exercise 1.8. Show that the operation
Sq, : H*(BZ/2;Fy) — H°(BZ/2;TFy)

is non-trivial. (Hint: the group H™(BZ/2;Fs) is generated by the class (', and i1 is represented by the
identity 1-cochain I € C*(BZ/2,F3). Work out the formula for IY3 U, IY3 € C3(BZ/2,F3) and compare it
to IV5.)

2. STABLE COHOMOLOGY OPERATIONS

Definition 2.1. A reduced cohomology operation of type (4,n, B,m) is a natural transformation
T H'(—A) — H™(=B)
of reduced cohomology functors from the category of pointed spaces to the category of sets.
The set of reduced cohomology operations of a fixed type forms an abelian group. There is only a minor

difference between reduced and (non-reduced) cohomology operations. Indeed as in Lemma 1.2, the Yoneda
lemma implies that the map

redOper(A,n, B,m) — H™(K(A,n); B)

which takes a reduced cohomology operation 7: H"(—; A) —s H™(—; B) to the image of the fundamental
class 7(tn,a) € H™(K(A,n), B) is an isomorphism. So the only difference is that the non-trivial constant
operations of type (A,n, B,0) cannot be extended to reduced cohomology operations.

Construction 2.2. In the following we will often consider two Eilenberg—MacLane spaces for the same
group in adjacent dimensions. As we shall now explain, these are related by specific maps. For n > 1, we
let (X, ) and (Y, ¢) be two Eilenberg-MacLane spaces of type K(A,n) and K(A,n + 1), respectively. By
an earlier theorem about realizability of homomorphisms of homotopy groups, there is a based continuous
map

(2.3) p: X — QY
unique up to based homotopy, such that p.: m, (X, *) — 7, (QY, *) equals the composite

—1
T (X, %) % Al 1 (Y, %) =2 7, (Y, %) .

The unnamed isomorphism takes the homotopy class of f: S"t! — Y to the homotopy class of the adjoint
f?: 8™ — map,(S',Y) under the adjunction (— A S*, Q). In other words:

Pa)y) = flziy),
for x € S™ and y € S'. Since X and Y are path connected and p induces isomorphisms of all homotopy
groups, so p is a weak homotopy equivalence.

The definition of the fundamental class of an Eilenberg—MacLane space refers to the Hurewicz homomor-
phism, which in turn uses an orientation [S™] € H,,(S™;Z) of the n-sphere. When comparing Eilenberg—
MacLane spaces of different dimensions we insists that these orientations are chosen consistently, in the
sense that the composite

Ho(S™Z) 2 Hop1(SS™2) =5 Hyar(S™32)

takes the chosen orientation of S™ to the chosen orientation of S”*!. The unnamed isomorphism is induced
by the preferred homeomorphism

ner = graSt = STL (2, ) Ay — (T1,. . T, Y)
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Lemma 2.4. Let (X,¢) and (Y,¢) be two Eilenberg-MacLane spaces of type K(A,n) and K(A,n + 1),
respectively, and let e: XX — Y be adjoint to the preferred weak homotopy equivalence p from (2.3).

(i) The following diagram commutes:

T (X, ) =2 g1 (BX, %) — 41 (Y, %)

\; y

(ii) The fundamental classes ta,, € H"(X; A) and tanr1 € H"H(Y; A) satisfy the relation

SR

E(tan) = € (tan+1)
in H"W1(XX; A), where ¥ is the suspension isomorphism in the cohomology of X .

Proof. (i) The rectangle in the following diagram commutes because e: X — Y was defined as the adjoint
of p: X — QY

T (X, %) N Tnt1(ZX, %)

The other part commutes by the defining property of the map p.
(ii) We show that the class

STHE (Lanr) € HM(X;A)
has the defining property of the fundamental class ¢4 ,. In other words, we show that the composite

Hurewicz @(271(6*(@4)”_',1)))

(X, %) ——— H,(X;7Z) A

is the isomorphism ¢: m, (X, %) = A, where
¢ : H'(X;A) — Hom(H,(X;Z),A)

is the map from the universal coefficient theorem.
We let f: S™ — X be a based continuous map that represents a class in 7, (X, *). Naturality of the
maps ¢ from the universal coefficient theorem means that the following diagram commutes:

H™(X; A) —2— Hom(H,(X;Z), A)
(2.5) f*J{ JHom(ng)
H™(S™; A) — Hom(H, (5™ Z), A)

Moreover, the maps ® in adjacent dimensions are compatible with the suspension isomorphisms in homology
and cohomology, i.e., the following diagram commutes:

H™ 1 (SX; A) —2 Hom(H, 41 (2X; Z), A)

(2.6) 2{ lHom(Z;A)

H™"(X;A) — Hom(H,(X;Z), A)



So
(ST (Lam+1))) (Hurewicz[f]) = S(E71 (€ (ban+1))) (fx[S"])
25 = (" (E7He (Lanr1))))[S"]
= (X7 ((eo (Bf) (tamn+1)))[S"]
@6 = P((eo (1)) (tant1))(E[S"])
25) = P(tant1)((eo (Tf))[S"T)
= ®(1ap+1)(Hurewicz(e o (2f)))
= dleo ()] =q) ¢lf]-
This verifies the desired property for the class X7 (¢* (1A n41))- O

Lemma 2.7. Let 7 and 7 be two reduced cohomology operations of type (A,n,B,m) and type (A,n +
1, B,m + 1) respectively. Then the following four conditions are equivalent.

(a) For every pair of based spaces (X,Y') with the homotopy extension property, the diagram

H™(Y; A) —2— H™1(X/Y; A)

H™(Y; B) —— H™*(X/Y; B)

commutes, where the horizontal maps § are the connecting homomorphisms.
(b) For every non-degenerately based space X the diagram

H"(X; A) —— H"($X; A)

H™(X; B) —— H™'(2X; B)

commutes, where the horizontal maps ¥ are the suspension isomorphisms of X.
(¢c) For every non-degenerately based space X and every reduced cohomology class x € H™(X; A) we have

T(x) Xt = T(x x1) in H™Y(LX;B)

where © € H'(SYZ) is the fundamental class.

(d) Let K(A,n) and K(A,n+1) be Filenberg-MacLane spaces of type (A,n) and (A, n+1) respectively, and
lete: XK(A,n) — K(A,n+1) be a based continuous map whose adjoint is in the preferred homotopy
class (2.3) of weak homotopy equivalence. Then the relation

N(r(ean) = €(Tant1))

among the fundamental classes holds in H™ T (LK (A,n); B), where X is the suspension isomorphism
of K(A,n).

Proof. Condition (b) is a special case of (a) for the inclusion of X into its reduced cone, with quotient the
suspension of X. Conditions (b) and (c) are equivalent since the suspension isomorphism coincides with
exterior product by the fundamental class . € H'(S';Z).

To see that condition (b) implies condition (a) we use that fact that the connecting homomorphism for
the pair (X,Y) factors as a composite

H(Y;A) =5 HH (Y 4) 5 BH(X/Y; A)
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of the suspension isomorphism and a map induced from the geometric connecting homomorphism II €
[X/Y, XY] which features in the Puppe sequence of the pair (X,Y’). In more detail: we have a commutative
diagram of cofiber sequences

Y X Y/X
Y &Y X [071] Uyx1 X —— CY Uyy1 X

collapse X Jcollapse X
Y YV x [0,1] Uyyy # ————— 3V

Since the boundary map in cohomology is functorial for maps of pairs, we obtain a commutative diagram
of cohomology groups

HY(Y; A) — 5 H"L(X/Y; A)

by =
H" (Y A) —— H"H(CY Uy X; A)

in which the right vertical map is an isomorphism. Since the operations 7 and 7 are natural for maps
of pointed spaces, compatibility with the suspension isomorphism implies compatibility with arbitrary
connecting homomorphisms.

For the equivalence of conditions (b) and (d) we consider the two reduced operations ¥ o 7 and 7o 3 of
type (A,n, B,m + 1). By the representability lemma for cohomology operations (Lemma 1.2), these two
operations agree if and only if they agree on the fundamental class ¢4 ,. By Lemma 2.4 we obtain

FS(an) = 7€ (anst) = € Fans).
So condition (b) holds if and only if we have 3(7(ta,)) = € (T(tan+1)). O

Definition 2.8. Let A and B be abelian groups and n a natural number. A stable cohomology operation
of type (A, B) and of degree n is a family {7;};>0 of reduced cohomology operations of type (A, i, B,n + i)
which are compatible with suspension isomorphisms, i.e., for every based space X and every ¢ > 0 and
every z € H'(X; A) we have

Ti(x) x v = Tip1(x X 0) in H"™(2X;B)

where « € H' (S1;Z) is the fundamental class. We denote by StOp(4, B,n) the abelian group of stable
cohomology operations of type (A, B) and degree n.

If 7 = {7m}i>0 is a stable cohomology operation of degree n and type (A4,B) and A = {\;};>0 is a
stable cohomology operation of degree m and type (B, C), then they compose to yield a stable cohomology
operation

AoT = {ApqioTitizo
of degree n +m and type (A4, C).

As an immediate consequence of the definition and of Lemma 2.7 we get the following representability
result for stable cohomology operations. We choose a family of Eilenberg-MacLane spaces {K(A,)}i>o;
then there are preferred homotopy classes (2.3) of weak homotopy equivalences K(A,i) — QK (A, i+ 1),
whose adjoints are continuous based maps €;: 3K (A,1) — K(A, i+ 1).

Corollary 2.9. A family {7;}i>0 of cohomology operations of type (A, i, B,n+1i) forms a stable cohomology
operation if and only if for all i > 0 the relation

€ (Tit1(taiv1)) = E(ri(taq))



holds in H" Y (XK (A,i); B). Hence the assignment
StOp(A, B,n) — lim H""(K(A,i);B) ,

T={n} — {7}
is an isomorphism between the group of stable cohomology operations of degree n and type (A, B) and the
sequences {x;}i>o of cohomology classes such that z; € H"" (K (A,4); B) and

6 (@ip1) = (i) .
More specifically, the limit of the cohomology groups is taken along the homomorphisms

H™ L (K(A,i +1); B) s, H" " YSK(A,i); B) % H" "' (K(A,i);B) .

Lemma 2.10. (i) If 7 is any reduced cohomology operation and X a based space, then the value of T at
the suspension XX is an additive map.

(ii) Let 7 = {7;}i>0 be a stable cohomology operation of degree n and type (A, B). Then each individual
cohomology operation 7;: H'(—, A) — H"""(—, B) is additive, and hence the class u; = 7i(ta,;) in
H" (K (A,i), B) satisfies

p(ui) = pi(uwi) + py(ui)

in H" (K (A, i), B)?.

(iii) Composition of stable cohomology operations is bi-additive.

Proof. (1) Suppose that 7 is an operation of type (A, n, B, m). We start by letting X be any non-degenerately
based space, and we choose two elements x,y € H"(X; A). We consider the class

(2.11) 7(pi(x) +p5(y)) — pi(r(x)) — p5(T(y))

in H™(X x X;B). If we restrict the class (2.11) along the first inclusions j: X — X x X, j(2) = (2, %),
then we get

7 (r(pi(x) + P2 (y)) — pi(7(2) —pa(7(y)) = 7" (p1(2) + 7" (P2())) — 5" (P1(7(2))) — 5" (p2(7(y)))
= 7(@)—-7(®) =0,
and similarly for the second inclusion. We exploited that p; o j is the identity, and that the operation
j* op3 = (p207)* vanishes on reduced cohomology classes because the map ps o j is constant. This means
that the restriction of the element (2.11) to the wedge XvX C X x X is trivial, so the element (2.11) is in
the image of the map ~ }
" : A™(X AX;B) — H™(X x X;B)
from the reduced cohomology of the smash product X A X = (X x X)/(XvX), where
II:XxX — XAX

denotes the quotient projection. If X = ¥Y is a suspension, then the composite map (reduced diagonal)

A:Xx 25 xxx X xax

equals the composite

ANA

YASh 228 vy Ay astast Sufe

(Y ASHA Y ASY .

Since the reduced diagonal A: S' — S' A S' = $2 is null-homotopic, so is the reduced diagonal of
Y AS=X. )
Since the reduced diagonal A =TTo A is X is null-homotopic and the class (2.11) is in the image of IT*,
the class (2.11) restricts to zero along the diagonal. This gives
0 = A'(r(pi(z) +p3(y) — pi(7(x)) — p3(7(y)))
T(A(pi(x)) + A%(p3(y))) — A% (pi(7(2))) — A" (p3(7(y)))
= 7ty —7(@)—7(y) -
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We have exploited that p; o A = py 0o A = Idy.
(ii) We let X be a non-degenerately based spaces. The horizontal suspension isomorphism in the com-
mutative square

H™(X; A) —— H™(SX; A)

o

nJ( J{T’i"’l

H™(X; B) —— H"(2X; B)

are additive. Part (i) says that the operation 7,11 is additive on X . So the left vertical map in the diagram
is also additive. The final property of the class u; then follows from Proposition 1.5.

(iii) Since addition of cohomology operations is pointwise, it is clear from the definition that the assign-
ment (A, 7) —> Ao 7 is additive in A\. That composition is also additive in 7 follows from the fact that all
the individual operations \; are additive by part (ii). O

Example 2.12. (i) By Example 1.3 (i) there are no stable cohomology operations of negative degree. If
f: A — B is a homomorphism of coefficient groups, then the associated cohomology operations of
type (A, m, B, m) for every m > 0 form a stable cohomology operation. Indeed, the group all stable
cohomology operations of type (A, B) of degree 0 is naturally isomorphic to Hom(A, B),

StOp(4, B,0) = Hom(A,B) .
(ii) The Bockstein homomorphisms §: H"(X; A) — H"*1(X; B) associated to a short exact sequence of
abelian groups
0 — B — E — A — 0.
for n > 0 form a stable cohomology operation of type (A, B) of degree 1. For n > 2, the homology

group H,11(K(A,n);Z) is trivial (see e.g. [EM, Theorem 20.5]), so the universal coefficient theorem
implies that this construction gives all stable operations of type (A, B) of degree 1,

StOp(4, B,1) = Ext(A4,B) .

(iii) If R is a ring, then the cup product power operation z — ¥ is usually not additive, and whenever
it fails to be so, then as an operation of type (R,n, R, kn) is does not extend to a stable operation
of degree (k — 1)n (by part (ii) of Lemma 2.10). However, if p is a prime number and R is an F-
algebra, then the p-th power operation x — zP is additive. As we shall see in Example 3.6 below,
the cup-square

HY(X;Fy) — H*(X;Fy), z+— 2°

indeed extends to a unique stable mod-2 cohomology operation of degree i. This operation is denoted
Sq" and is called the i-th Steenrod divided square operation. If p is an odd prime, then in even
dimensions, the p-th cup power

H*(X;F,) — H*P(X;F,), v+

extends to a stable mod-p cohomology operation of degree 2i(p — 1), called the i-divided power oper-
ation and denoted P?.

Definition 2.13. Let A be an abelian group. Then we denote by
A(A)" = StOp(A4, A, n)

the group of stable cohomology operations of degree n and type (A4, A). By Lemma 2.10 (iii) the groups
A(A)* form a graded ring under composition, which is called the Steenrod algebra for the group A.

Since the components of a stable cohomology operation are always additive (Lemma 2.10 (ii)), the
reduced cohomology H*(X, A) of a based space X with coefficients in an abelian group A is tautologically
a graded left module over the Steenrod algebra A(A)* via

oz = 7(x) € H(X;A)
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for 7 = {Ti}i>0 € A(A)" and z € H'(X;A). So cohomology with coefficients in A can be viewed as a
functor _
H*(—;A) : Ho(Top,) — A(A)"-mod .
Moreover, the suspension isomorphism
S HY(X;A)[1] — H*(ZX;A)

is an isomorphism of graded A(A)*-modules, by the compatibility condition in the definition of a stable
cohomology operation. Here the square brackets [1] denote the shift of a graded module. Similarly, if
Y C X is a subspace containing the basepoint, and such that (X,Y") has the homotopy extension property,
then the boundary map of the pair

5+ H(Y;A)l] — H*(X/Y;A)
is a homomorphism of graded A(A)*-modules (by part (i) of Lemma 2.7).

If A is a ring, then sending an element a € A to the map \,: A — A given by left multiplication by a

gives a ring homomorphism

A — Hom(A,A) = A(A).
If A is commutative, then the image of A is central in the Steenrod-algebra A(A)* so in this case A(A)* is
naturally an A-algebra.

All this is particularly useful when the structure of the Steenrod algebra A(A)* is explicitly known. The
aim of the next section is to describe the mod-p Steenrod algebra Aj; = A(F,)* by generators (Steenrod’s
divided power operations) and relations (the Adem relations). Alongside we use this new algebraic structure
to answer some geometric questions.

*

Remark 2.14. We have shown in Lemma 1.2 that unstable cohomology operations Oper(A,n, B, m) are
in bijective correspondence with cohomology classes in H™ (K (A, n), B), hence with homotopy classes of
maps from the Eilenberg-Mac Lane space K(A,n) to the Eilenberg-Mac Lane space K (B, m). Something
similar is true for stable operations, but only when we replace spaces by spectra: the stable operations
StOp(A, B,n) are in bijective correspondence with homotopy classes of morphisms from the Eilenberg-Mac
Lane spectrum HA to the shifted Eilenberg-Mac Lane spectrum H B[n).

3. COHOMOLOGY IN THE STABLE RANGE

Theorem 3.1. Let X be an n-connected based space, for n > 1. Let €: X(QX) — X be the unit of the
adjunction (X,). Then for every abelian group B, the map

¢ H'(X;B) — H'(X(QX);B)

is an isomorphism for all 0 < i < 2n and injective for i = 2n + 1.
Proof. Since X is n-connected, the loop space QX is (n — 1)-connected. By the Freudenthal suspension
theorem, the suspension homomorphism

Yoo m(X, %) — w1 (B(0RX), %)
is an isomorphism for 1 <14 < 2n — 2, and surjective for ¢ = 2n — 1. The composite

(X, %) = w1 (S(QX), %) <5 ma (X, %)

implements the dimension-shifting isomorphism given by adjoining; it is thus bijective for all 4 > 1. In
particular the suspension homomorphism is also injective, and hence bijective, for ¢ = 2n — 1. Hence also
the homomorphism

€ T (Z(QX), %) — w1 (X, %)
is bijective for 1 <4 < 2n — 1, and also surjective for i > 2n. Setting 7 =i + 1 this shows that

€x - WJ(E(QX)v *) — Wj(Xv *)

is bijective for 1 < j < 2n and surjective for j = 2n + 1. Relative CW-approximation thus provides a
relative CW-complex (Z,3(QX)) with all relative cells of dimensions > 2n + 2, and a weak equivalence
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f:Z = X that extends e. The relative cohomology groups H'(Z, %(Q2X); A) then vanish for all i < 2n+1,
and the long exact sequence of this pair shows that the restriction map

HY(Z;A) — H'(X(QX); A)
is an isomorphism for i < 2n, and it yields an exact sequence
0— H2H(Z,4) 24 giinx)A) -5 H22(Z,%(0X); A)
Since f: Z = X is a weak equivalence that extends e, this proves the claim for the map e. O

We apply the previous Theorem 3.1 to X = K(A,n + 1) for some n > 1. Then QX = QK(A,n+ 1)
is an Eilenberg-MacLane space of type (A,n). More precisely: if we have chosen some K(A,n), there is
a preferred homotopy class (2.3) of weak homotopy equivalence K(A,n) ~ QK(A,n + 1). The previous
theorem then specializes to:

Corollary 3.2. Letn > 1, and let A and B be abelian groups. Let e: XK (A,n) — K(A,n+1) be adjoint
to the preferred homotopy class (2.3) of weak homotopy equivalence K(A,n) ~ QK(A,n+ 1). Then the
map
€ H(K(A,n+1);B) — H'(XK(A,n);B)
is an isomorphism for all 0 < i < 2n and injective for i = 2n + 1.
By Corollary 3.2, all the cohomology suspensions morphisms in the sequence
o2 PR (K(An+ k) B) = -« —» H*™ N (K(A,n+1);B) = H*"(K(A,n);B)

up to the group H?"*1(K(A,n + 1); B) are isomorphisms. Moreover, the final cohomology suspension is

injective. Since the group of stable operations of type (A4, B,n) is isomorphic to the inverse limit of this
sequence, we conclude that the map

StOp(A, B,n) — H*"(K(A,n);B), T > To(tan)
defined by evaluation at the fundamental class 14, € H"(K(A,n); A) is injective. Moreover, by Lemma
2.10 (i) the class u = 7,(ta,n) € H*"(K(A,n); B) satisfies
p(u) = pi(u) +py(u) .
We shall use without proof:
Theorem 3.3. Let n > 1, and let A and B be abelian groups. Then the image of the monomorphism
StOp(A, B,n) — H*™(K(A,n);B), 7 — 7u(tan)
equals the set of element u € H*"(K (A, n); B) that satisfy
pi(u) = pi(u) +pa(u) .
Remark 3.4. We let R be a ring. Then the exterior product
x : H"(X;R) x H"(Y;R) — H™™(X xY;R)
was defined by

zxy = pi(r) Upy(z) .
So for coefficients in a ring, the relation p*(z) = pj
formulated as

(z) + p3(x) from Theorem 3.3 can equivalently be

prx) =xx1l + 1xz

We showed in Proposition 1.5 that a cohomology operation 7 is additive if and only if its characteristic
class u = 7(t4,y) satisfies the relation

p(u) = pi(u) +ps(u) .

So Theorem 3.3 is equivalent to:
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Corollary 3.5. Let n > 1, and let A and B be abelian groups. For every additive cohomology operation o
of type (A,n, B,2n) there is a unique stable cohomology operations T of type (A, B,n) such that 1, = 0.

Example 3.6 (Steenrod squares). The cup product with coefficients in a ring R satisfies the relation

(+y)? = @+y Ule+y) = (zUy) +(@Uy) +(yUz)+(yUy)
=2 + (1+(=1)")-(zUy) + ¥,
for z,y € H™"(X; R). So if n is odd or 2 = 0 in the ring R, then the cup square is an additive operation.
By Corollary 3.5, the cup square then extends to a stable cohomology operations.

Particularly important is the special case R = Fo, in which case Corollary 3.5 provides a unique stable
mod-2 cohomology operation

Sq" : HY(X;Fy) — H"'(X;Fy)
of degree n satisfying Sq"(z) = 22 for every n-dimensional cohomology class. This operation is called the

n-th Steenrod square.
The zeroth Steenrod operation

Sq" @ HY(X;Fy) — H'Y(X;Fy)

is the identity operation, because 13 = 1 in HY(Fg;Fa).

The family of Bockstein operations

B H(X;F2) — H(X;F,)

associated to the short exact sequence

0 — F, -5 7/4 2% F, — 0

form a stable mod-2 cohomology operation. We have seen earlier that the Bockstein operation

81 HY(X;F2) — H*(X;F2)

originating in dimension 1 equals the cup square, i.e., 8(z) = 22 for 1-dimensional cohomology classes .
So the first Steenrod square equal the Bockstein:

Sq' =6 : HY(X;Fy) — HTYX;F,).

We shall see later that the operations Sq’ for i > 1 generated the algebra mod stable mod-2 cohomology
operations.

4. STEENROD’S DIVIDED SQUARING OPERATIONS

We saw in Example 3.6 that for every i > 0 there is a unique stable mod-2 cohomology operation Sq* of
degree i with the property that Sq’ (z) = z Uz for every cohomology class x of dimension i. This operation
is called the i-th Steenrod square. In this section we begin a more detailed study of the operations Sq'.
Eventually we will see that the Sq'’s generate the mod-2 Steenrod algebra A, and we will give a complete
list of relations between these operations, the Adem relations.

Theorem 4.1. For each i > 0 there is a unique stable mod-2 cohomology operation Sq" of degree i with the
property that Sq'(z) = xUx for every cohomology class x of dimension i. Moreover, these operations enjoy
the following properties:

(i) The operation Sq° is the identity and Sq* coincides with the mod-2 Bockstein operation.
(ii) (Unstability condition) For x € H™(X,Fs) and i > n we have Sq*(x) = 0.
(iii) (Cartan formula) For x,y € H*(X,F2) and i > 0 we have

Sa'(xUy) = > Sq*(x) USq’(y) -
a+b=1
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Proof. Existence and uniqueness of Sq° was established in Example 3.6, along with property (i).
For part (ii) we consider the iterated suspension isomorphism Yimr: HY(X;Fy) — HY(DTX;Fy).
Since Sq" is a stable operation, we have
MSE'(2) = Sq(ET(e) = ()2 = 0
since cup products are trivial in the cohomology of a suspension. Since Y¥=" is an isomorphism, this proves
the relation Sq'(z) = 0.
The Cartan formula follows from the external Cartan formula which we prove as a separately in Theorem

4.2 below. To get from the external to the internal form, one simply takes X = Y and applies the map
A*: H*(X x X,Fy) — H*(X,F3) induced by the diagonal A: X — X x X. O

Theorem 4.2. (External Cartan formula) For all spaces X and Y, all cohomology classes x €
H"(X,F3) andy € H™(Y,F3) and all i > 0 we have

Sq'(z x y) = Z Sq*(z) x Sq°(v)
a+b=1

in H"m(X x Y, Fy).

Proof. In the proof we abbreviate K (n,[F3) to K(n). For i > n + m, both sides of the Cartan formula are
trivial since the squaring operations vanish on cohomology classes of lower dimensions (part (ii) of Theorem
4.1). For i = n + m, the same argument gives

Sq"tM(x xy) = (@xy)U(zxy) = 2" xy® = Sq"(x) xSq"(y) = Y Sq*(z) x Sq’(y)
a-+b=1

where we also used the defining property of the squaring operations and the fact that (z x y) U (2’ x ¢/) =
(zUz) x (yUy').

So it remains to treat the case where ¢ < n + m and here we use induction on n 4+ m. By naturality it
is enough to verify the formula for the fundamental classes, i.e., for x = ¢, € H"(K(n);F3) and y = ¢,, €
H™(K(m);Fs). There is nothing to show for n +m = 0, so we assume n+m > 1. For p < 2n — 1, the
restriction map

e HP(K(n);Fy) — HP(ZK(n—1);F,)
induced by the map e¢: ¥XK(n — 1) — K(n) is injective by Corollary 3.2.  Similarly, the map
¢ HY(K(m);Fy) — HY(XK(m — 1);Fs) is injective for ¢ < 2m — 1. So by the Kiinneth theorem,
the map

HE(K(n) x K(m)iF2) = @) H(K(n):Fa) © HY(K (m); Fy) <222

p+q=k
P (H(EK(n—1);F,y) @ HY(K (m); F2) & (HP (K (n); F2) @ HI(SK(m — 1);Fy))
ptg=*
is injective in dimensions k < 2n + 2m — 1. This means that the Cartan formula holds if we can verifying
it after applying the maps (e x 1)* and (1 x €)* to both sides. In the first case we calculate

(€ X 1)*(Sq’(tn X tm)) = Sa'((e x D)*(tn X tm)) = Sq" (" (1) X tm)) = Sq'(E(tn—1) X tm))
= X (Sqi(LnA X Lm)) =3 ( Z Sq*(tn—1) X qu(Lm))>
a+b=i
= Z E(Sqa(Ln_1)) X Sq Lm - Z Sq Ln 1 ) X qu(Lm)
a+b=i a+b=1i
= Z Sq X Sq (Lm) = (6 X 1 ( Z Sq* Ln) X Sq (Lm)> :
a+b=1 a+b=i
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We have used that €*(¢,,) = Xt,,—1 and that Sq' is a stable cohomology operation. The fourth equality uses
the induction hypothesis, which applies since the dimension of ¢,,_; is smaller than n. The second case is
similar. (]

Exercise 4.3. Show that for every 1-dimensional cohomology class x the following formula holds:

5. EXAMPLES AND APPLICATIONS

An important problem in homotopy theory is the find ways of telling when a continuous map f: X — Y
is null-homotopic. A map which is not null-homotopic is called essential.

Sometimes a map can be shown to be essential by checking that it induces a non-trivial map on co-
homology with suitable coefficients. If this does not help, then one can use the mapping cone C(f) of a
continuous map f: X — Y. The mapping cone is defined by

C(f) = % Uxxo X X [071] Uxx1 Y,

and it comes with an injection i: Y — C(f) and a projection C(f) — C(f)/Y = XX. The mapping
cone is designed so that the map f is null-homotopic if and only if ¢ has a retraction, i.e., there is a map
o: C(f) — Y such that the composite o o is the identity of Y.

Now suppose that f is trivial in cohomology with coefficients in an abelian group A; then the long exact
mod-p cohomology sequence yields an epimorphism

H*(C(f),F,) % H*(Y,F,),

where i: Y — C(f) is the inclusion. If f is null-homotopic, then a choice of retraction o: C(f) — YV
induces a map of graded abelian groups o*: H*(Y,F,) — H*(C(f),F,) which is a section to the map i*.

But such a section ¢* is induced by a geometric map, so it also respects all additional structure which
is natural for continuous maps. For example, if A is a ring, then o* is compatible with the cup-product.
In many cases, the original map f can be seen to be essential because there is no section to ¢* which is
multiplicative with respect to the cup-product.

Example 5.1. The Hopf maps 7: S — 5%, v: 7 — §% and o: S — S® are essential. The
mapping cones of the Hopf maps 7, v and ¢ are isomorphic to the projective planes CP?, HP? and QP2 over
the complex numbers, the quaternions and the Cayley octaves respectively. The integral cohomology rings
of these spaces are all of the form Z[z]/x® where the dimension of the generator is 2, 4 or 8 respectively.
Hence if i: S? 2 CP' — CP? is the inclusion, then there is no multiplicative section to the map

i* : H*(CP*7Z) — H*(CP4;Z),

and so the Hopf map 7 is essential. The same argument with HP? and OP? shows that the Hopf maps v
and o are essential.

The cup-product is useless for telling whether a map is stably essential, i.e., whether or not it becomes
null-homotopic after some number of suspensions. This is because the cup-product is trivial on the reduced
cohomology of any suspension. Indeed, if f: X — Y is a map of spaces which is trivial in reduced mod-p
cohomology, then we have C(Xf) = XC(f), and the map

H*(SC(f);F,) = H*(C(Sf);F,) 5 H*(SY;F,)

always has a multiplicative section.

In general, the more highly structured and calculable homotopy functors we find, the better chances we
have to show that such a section cannot exist. For the problem at hand, instead of the cup-product we
can use stable cohomology operations, which are still non-trivial after suspension. So if some suspension
of ¥"f: ¥"X — X"Y is null-homotopic, then the cohomology H*(C(X"f); A) is the direct sum, as a
module over the Steenrod algebra A(A), of the cohomology groups of "1 X and ¥"Y with coefficients
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in A. The mapping cone of a suspension is isomorphic to the suspension of the mapping cone. Since the
Steenrod-algebra consists of stable operations, suspension amounts to reindexing the cohomology of a space,
including the action of the Steenrod-algebra. In other words, if a map f: X — Y becomes null-homotopic
after some number of suspensions, then f is trivial on H*(—; A) and the map

i HY(C(f); A) S H*(Y; A)
has a section which is A(A)-linear. We apply this strategy to the Hopf maps.

Example 5.2. The Hopf maps 7: 52 — 52, v: S7 — 5% and o: S'® — S® are stably essential.
The mapping cones of the Hopf maps 7, v and ¢ are isomorphic to the projective planes CP?, HP? and QP2
over the complex numbers, the quaternions and the Cayley octaves respectively. The mod-2 cohomology
algebras of these spaces are all of the form Fy[z]/2® where the dimension of the generator is 2, 4 or 8
respectively. Hence we have the relation

Sq?(zy) = x2 # 0 € H*(CP? ),

and similarly the classes Sq*(z4) € H®(HP?,Fy) and Sq®(xg) € H'6(OP?,Fy) are non-zero. So the mod-2
cohomologies of the mapping cones of 7, v and ¢ do not split as modules over the mod-2 Steenrod-algebra,
hence these maps are stably essential.

Example 5.3. The degree 2 map of the mod-2 Moore space is stably essential. Let p be a prime
and let
M(p) = S'u, D?

denote the mod-p Moore space of dimension 2, obtained by attaching a 2-cell to the circle along the degree
p map S' — S'. Note that M(2) is homeomorphic to RP?. Denote by xp: SM(p) — LM (p) the
smash product of M (p) with the degree p map of the circle. The degree p map induces multiplication by
p in cohomology with any kind of coefficients, but the cohomology of M (p), with any kind of coefficients,
is annihilated by p. So xp induces the trivial map in cohomology, and we may ask whether this map is
null-homotopic. The answer is different for the prime 2 and the odd primes: for odd p, the degree p map
on M (p) is stably nullhomotopic.

In contrast, for the prime 2 the degree 2 map of XM (2) is stably essential. Since the degree 2 map
of XM (2) is obtained by smashing the M (2) with the degree 2 map of S*, its mapping cone of C(x2) is
isomorphic to the smash product of two copies of the Moore space,

C(x2: SM(2) — SM(2)) = M(2) A M(2)

in such a way that the inclusion ¥M(2) — C(x2) corresponds to the smash product of the inclusion
i: ST — M(2) with M(2). Now the mod-2 cohomology of M(2) has an Fa-basis given by a class x €
H'(M(2);F) and its square 22 € H?(M(2);Fy). By the Kiinneth theorem, the cohomology of the smash
product M (2) A M(2) is four-dimensional with basis given by the classes # ® z in dimension 2, 22 ® x and
2?2 ® x in dimension 3, and 22 ® 22 in dimension 4. Also by the Kiinneth theorem, the map

(i AM2))* « H*(M(2) AM(2);Fy) — HY(S'AM(2);Fy)

is given by
(AM2)(z®z) = Bz, and (iAM2) (zz?) = 2(z?),

and it vanishes on the classes 22 ® x and 22 ® 2. All cup products are trivial in the reduced cohomology
of SY A M(2), but in the cohomology of M (2) A M(2), the cup-square of the two-dimensional class z ® x in
non-trivial. This shows that there is now section to (¢ A M (2))* which is compatible with the cup-product,
so the degree 2 map on M (2) is essential.

However, after a single suspension, the cup products of both sides are trivial, so this argument does
not give any hint as to whether the suspension of the degree 2 map on M(2) is null-homotopic or not.
However, we can calculate the action of the Steenrod-squares in the cohomology of M (2) A M (2). Note that
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the operation Sq*(x) acts trivially on the cohomology of S* A M(2) for dimensional reasons. On the other
hand, the Cartan-formula gives
Sq®(z @) = Sq*(z) @ +Sq'(2) @ Sq'(2) + 2 ® S¢*(z) = % @a?

in H*(M(2) A M(2);Fy). So there does not exist a section to (i A M(2))* which is compatible with the
action of the Steenrod-algebra. Hence we conclude that the degree 2 map of the mod-2 Moore space is
stably essential.

6. THE EXTENDED POWER CONSTRUCTION

Usually the squaring operations Sq’ are introduced in a more geometric fashion using the symmetric
square construction for spaces and the mod-2 cohomology of the real projective space RP*. We show in
this section that our definition of the Sq's agrees with the more traditional one, using the uniqueness part
of Theorem 4.1. We also construct the reduced power operations P* in mod-p cohomology for an odd prime

p.
In this section we will define and study the total power operation

P, : HY(X,F,) — H"P(X x L(p),F,)

for a prime p and n > 0, where L(p) is an infinite-dimensional lens space.

Construction 6.1. We write S* = |J,,5, S(C") for the infinite dimensional complex unit sphere, with
the weak topology by the filtration by the subspaces S(C") = {v € C": |v| = 1}. We write
C, = {zeC: 2" =1}

for the multiplicative group of p-th roots of unity in C, a cyclic group of order p. The group C,, acts freely
on S by scalar multiplication. For p = 2, the generator of Cy acts by the antipodal map, and the quotient
space is

L(2) = S*°/(v~—v) = RP>.
When p is odd, the quotient space is L(p) = S°°/C,, is an infinite-dimensional lens space. Since S* is
contractible and the Cjp-action is free, the quotient map S>*° — §°°/C, is a universal covering, and so
5% /C, is an Eilenberg-MacLane space of type (Z/p,1).

The sphere S*° admits a CW-structure for which the Cp-action is cellular. The odd skeleta of this CW-
structure are given by S5 ; = S(C*). The even skeleton S5 is the join inside S(C**+1) of the previous
skeleton S(C* & 0) and the free Cp-orbit {(0,...,0,¢1): 1 < i < p}. This CW-structure has p cells in each
dimension, and these cells are freely permuted by the group C,.

For p = 2 we have calculated the mod-2 cohomology ring of L(2) = RP* a long time ago. The calculation
of H*(L(p);F,) can be done along similar lines, as follows. We have

Cp = m(L(p),*) = Hi(L(p);Z)
by Poincaré’s theorem. And thus
H'(L(p);F,) 2= Hom(H(L(p); Z),F,) = Hom(C,,F,)

by the universal coefficient theorem. We let z € H'(L(p);F,) be the generator that corresponds to the
isomorphism C, = F, that sends the generator ¢, € C, to 1 € F,,. We set

y = Blx) € HL(p):F,) .
We record that 22 = B(x) = y for p = 2, but 22 = 0 for odd primes p, by graded-commutativity of the cup
product.

Proposition 6.2. For every prime p, the mod-p cohomology algebra of L(p) is given by

{IFQ [z] for p=2; and
Ryl @ A(@) = Fylz.9]/(2?) forp odd
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Proof. The case p = 2 was done a while ago, so we not treat the case of odd primes.

The cellular Cp-action makes the cellular chain complex C¢!(5>) into a complex of Z[Cp]-modules.
Since there are p freely permuted cells in each dimension, CS!(S°°) is free of rank 1 as a Z[C]-module for
each k > 0. After suitable choices of characteristic maps, we obtain additive generators

0 1

e
€f r--s€p

of C¢(5°°) such that (- el = efjl, with superscript ‘¢ + 1’ interpreted cyclically modulo p. The boundary
map in the cellular chain complex satisfies

o e —et for k odd, and
dex) = 0 p—1
ep_1+--+e_; fork>2even.

Indeed, in the 1-skeleton, each 1-cell connects two adjacent O-cells. And in higher dimensions, the boundary
is forced up to a unit in Z[C,] by the fact that the complex C¢!(5>) is acyclic because S is contractible.

The cellular chain complex of L(p) = §°°/C, is obtained from that of S by equalizing the Cp-action,
ie.,

C:ell(L(p)) _ C:ell(soo/cp) o~ C:ell(SOO) ®Z[Cp] Z .

So C¢U(L(p)) is free of rank 1 in every dimension, generated by e, = [¢?], with boundary map

d(ex) =

0 for k£ odd, and
p-ex_1 for k> 2 even.

We conclude that both the mod-p homology groups, and the mod-p cohomology groups, are 1-dimensional
over IF,, in every dimension. In particular, the additive structure of H*(L(p);F,) is as claimed.
Now we determine the multiplicative structure of H*(L(p);F,). We write L(p); = S5°/C, for the I-
skeleton. We show by induction on k that
H* (L(p)ar-15F,) = Fplo,yl/(2?,4%) .

The induction starts with k = 1: the 1-skeleton L(p); is a circle, and hence H*(L(p)1;F,) = Fplz]/(2?), as
claimed.

The space L(p)ar—1 = S(CF)/C, is the quotient of a free and orientation-preserving action of a finite
group on an closed, connected and orientable (2k — 1)-manifold. So L(p)2i—1 is also a closed, connected
and orientable (2k — 1)-manifold, and thus satisfies Poincaré duality. Moreover, we know the multiplicative
structure of its cohomology up to dimension 2k — 3 by induction. For the whole multiplicative structure to
satisfy Poincaré duality, the multiplication

U o HY(L(p)og—1;Fp) @ H* 17U L(p)ag—1;Fp) — H* HL(p)ag—1;Fp)
is a perfect pairing. In particular, multiplication by y € H2(L(p)ak—1;F,) is an isomorphism
y : Fp{oy" 2} = B3 (L(p)ak-1;Fp) — H* HL(p)ak—1;Fp) ;

so the class zy*~! generates H?*~1(L(p)ax_1;F,). This in particular implies that y*~1 is non-zero, and

hence it generates H2*~2(L(p)ar_1;F,). O
The p-th extended power of a space X is
Dy(X) = XP x¢g, S,
the quotient space of XP x S°° by the equivalence relation generated by
(1, .., xp;v) ~ (T2,...,Tp,T15Cp V) ,
where (, = e2™/P generates the group Cp. If X is pointed, then the reduced extended power is

Dy(X) = (X" AST) /O, ,
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the quotient space by the analogous equivalence relation. If X is unpointed, then there is a natural
homeomorphism

D,(X1) = Dy(X)s .
Proposition 6.3. Let Y be a pointed (n—1)-connected CW-complex equipped with a continuous Cp-action,
and let A be an abelian coefficient group. Then the space

Y Ag, ST = (YASY)/Cp = (YASE)/(yAv~(G-y) NG v))
is (n — 1)-connected and the map
J:Y — YA, ST, y —[yn(1,0,...)]
induces an isomorphism
e o Ho(Y3A)/Cp = Hy(Y Ac, S5 A)

from the quotient of the group ﬁIn(Y;A) by the induced Cp-action. And the previous map induces an
isomorphism

o

§* . H™(Y Ao, ST A) — H™(Y; A)Cr
to the subgroup of fized elements under the induced Cp-action on ﬁ"(Y;A).
Proof. The subquotients of the skeleton filtration are isomorphic to
S/SREy 2 (Cp)s NS,

where the Cj-action is by translation on the left factor. The induced filtration of Y A¢, S$° by the subspaces
Y Ac, (S7°)4 has subquotients isomorphic to

Y Ac, (SP/Sp21) 2 Y Ac, ((Cp)s ASF) = Y ASH.

This shows that the subquotient Y Ac, (S3°/S2 ) is (k 4+ n — 1)-connected.
In particular, the quotient Y A¢, (5°°/55°) is (n + 1)-connected, so the inclusion of the first filtration

YANSC)y =Y A, (5T7°)+ — Y Ag, ST
induces an isomorphism on (co-)homology in dimension n. The cofiber sequence of spaces
Y=Y Ag, (Cp)y — Y Ag, S(C)y — Y A¢, (S(C)/Cp) =Y A st
gives rise to an exact sequence of reduced homology groups
(6.4) H,(Y;A) = Hypy (Y A S5 A) 25 Hy(Y;A) — Ha(Y Ao, S(C)154) — 0

Indeed, the last map is surjective since Y A S! is n-connected. The two boundary points of the fundamental
1-cell in the CW-structure in S(C) are attached to 1 and (,, respectively. So the boundary homomorphism
J in the sequence (6.4) becomes the map

H,(Y;A) — Hy(Y;A), y — y—(G)(y) -

So the exact sequence (6.4) shows that the group H, (Y N, ST A) = H,(Y A, S(C)4; A) is isomorphic
to the quotient of ﬂn(Y; A) by the Cp-action.
Since Y is (n — 1)-connected, the universal coefficient theorem provides an isomorphism

H™(Y; A) —> Hom(H,(Y;Z),A) .

This isomorphism is natural, so it restricts to an isomorphism of the fixed points of the C)-action:

- Cr o -
(H”(Y; A)) = Hom(H,(Y;7Z), A)° = Hom(H,(Y;Z)/C,, A) .
Since Y A¢, ST° is (n — 1)-connected, the universal coefficient theorem provides an isomorphism

H™(Y Ao, ST A) — Hom(H, (Y Ac, S 2Z), A) .
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All these data participates in a commutative diagram:

~ o

H™(Y Ac, S A) Hom(H, (Y Ac, S;Z), A)

j*J/ "—VJ/Hom(j*,A)

H™(Y; A)Cr — Hom(H,,(Y;Z), A)Cr — Hom(H,,(Y;Z)/C,, A)

in which the right vertical map is an isomorphism by the first part. Hence the left vertical map is also an
isomorphism. O

Part (ii) of the next proposition refers to the continuous map
jo X" — XM Ae ST =Dy(X), j@mi A Azp) = [ A Axy A(LO,. )]
Proposition 6.5. Let p be a prime, and let n > 1.
(i) For every based space X and every reduced cohomology class x € fI"(X; F,), the class
cA.. ANz € H(X TF,)

1s invariant under the automorphism induced by the cyclic permutation of smash factors in X"P.
(ii) There is a unique class

Inp € an(Dp(K(an))va)
such that

3 (np) = tn Ao Aty € H™(K(Fp,n) P F,) .
Proof. (i) We recall that for based spaces X and Y and cohomology classes © € HF(X ;Fp) and y €
HY(Y;F,), the relation
(6.6) ehy = (D)X y(yAa)
holds in ﬁk+l(X NY;Fp), where 7xy: X ANY — Y A X is swapping the smash factors.

Now we consider m > 2 and based spaces X1,...,X,,. We write

Cm  XiANXoN...NX,, — XoA...ANXWNXy

for the cyclic permutation of smash factors. We claim that
(@A ANy Ay) = (=1)FvCetthm) g Ao AL AT,

where k; is the degree of the class z;, i.e., x; € H*(X;;F,). We prove this claim by induction on m, the
case m = 2 being (6.6). For m > 3 we have

Cm = (X2/\-~-/\Xm—2/\TXl,Xm)O(Cm—l /\Xm)7
and so

(e Ao ANep ANxp) =

_1)k51km . C:;L_l(l'Q A... N\ Tm—1 A xl) A Tm

—1)krkm ()Rt R (o Az AL A 1) AT,
(_1)k1-(k2+'“+km—1+km)

I NTIN N Tpy—1 N Ty -

Now we specialize to the case where m = p is a prime, X; = Xy = --- = X, = X, and where 1 = 22 =
.-+ =x, = x, of degree n. Then the formula becomes

cplxn...Nx) = (—1)(1’_1)"2-96/\.../\:5.

If p=2, then —1 =1. If p is odd, then p — 1 is even, and (71)(”’1)"2 = 1. This proves claim (i).
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(ii) Because K(F,,n) is (n — 1)-connected, its p-th smash power K(F,,n)"? is (np — 1)-connected.
Proposition 6.3 thus shows that the map
i KEp,n)"? — K(F,,n)" Ac, S° = Dy(K(Fp,n))
induces an isomorphism
§*  H'(Dyp(K (B, ) Fy) —— (H'™(K(F,.n)"7 Fy) ™
The class ¢, A ... Aty in the target is invariant under the Cp-action by (i). So there is a unique class i, ,

in the source that maps to t,, A ... Aty O

Construction 6.7. We let I1: D, (K (F,,n)) — D,(K(F,,n)) denote the projection from the unreduced
to the reduced extended power. We set

(6.8) inp = M(inp) € H™(Dp(K(Fp,n));Fp) .
The following square commutes:

proj

K(FP7 n)p K(Fpa n)/\p

| I

Dy (K (Fy.n)) —— D,(K (F,, )
So we deduce the relation

(6.9) 3 (tnp) = J (I (Inp)) = Proj*(j*(inp)) = Proj*(tn A...Atn) = tn X -+ X ip .
Now we let X be a CW-complex. The diagonal map
A: X — XP, Alx) = (z,...,2),
is Cp-equivariant with respect to the trivial action on the source and the permutation action on the target.
So the diagonal induces a map

Ach

Ax : XxL(p) = X x¢, §° 205 xv 0§ =Dy(X), (a,[0]) — [e....2,0].

The p-th total power operation
(6.10) P, : HY(X,F,) — H"P(X x L(p),F,)
is then defined by
Pp(x) = Pp(f*(tn)) = AX(Dp(f)*(tnp)) -
In other words, if + € H"(X,F,) is represented by a continuous based map f: X — K(F,,n), then
Pp(x) is defined as the restriction of the class ¢, , € H™(D,(K(F,,n));F,) constructed in (6.8) along the
composite map
Ax Dy (f)

X x L(p) == Dp(X) —— Du(K(Fp,n)) .

Said yet another way: P, is the unique natural transformation such that Pp(¢,) = A*K(lb‘p,n)(bnﬁp)'

In the following lemma we use the natural map
j: X — XxL(p), zv+—(z,[1,0,...]).
Because the space L(p) is path-connected, any point other than [1,0,...] € L(p) would yield a homotopic
map.
Lemma 6.11.
(i) The composite map

H™(X;F,) 2% H"(X x L(p);F,) —— H"(X;F,)

sends a cohomology class to its p-th cup power.
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(ii) The total power operation and the exterior product are related by the formula
Pplexy) = A%(Py(x) x Pp(y))
in H*(X xY x L(p);F,) for cohomology classes x € H*(X;F,) andy € H*(Y;F,), where
A XxY xLp) — (X xLp)) x (Y x L(p))
is given by A(z,y, z) = ((z, 2), (y, 2)).

Proof. (i) By naturality it suffices to check the universal example, i.e., we may take X = K(F,,n)
and evaluate on the fundamental class ¢,. In this case Pp(t,) is the restriction of the class t,, €
H"(D,(K(F,,n));F,) along the lower map in the following commutative diagram:

K(F,,n) = K(Fp,n)?

| |

K(Fp,,n) x L(p) —— K(Fp, n)? Xc, 8% = D,(K(F,,n))

K(Fp,n)

So we deduce that
j*(Pp(bn)) = J'*(A*K(Fp,n)(%’p)) = A*(j*(%’p))
6.9 =A%ty X - Xtp) = L U---Uty = 0.

(ii) By naturality it suffices to check the universal example, i.e., we may take X = K(F,,n), ¥ =
K(Fp,,m), x = tp and y = i, We simplify the notation by writing K(n) for K(F,,n) and K(m) for
K (F,,m). We consider the map

(6.12) At Dy(XAY) — Dy(X)AD(Y), [z,y30] — ([z,v],[y,v])
that arises from the diagonal map S — S x S°°. It makes the following square commute:

(X AY)p —shufle o xap Ay e

(6.13) ji JjAj

We define

¢ : Kn)ANK(m) — K(n+m)
as the based map, unique up to homotopy, such that

(tngm) = tn Aim
in the group H" ™ (K (n) A K(m);F,). It induces a based continuous map
D:ﬂ(é) : DP(K(n) ANK(m)) — DP(K(n +m))

on reduced extended powers. We claim that for X = K(n) and Y = K(m), the diagonal (6.12) satisfies
(6.14) A*(zmp A Zm,p) = (Dp(é))*(zn-i-m,p)

in the group H™*™?(D,(K(n) A K(m));F,). Because K(n) is (n — 1)-connected and K (m) is (m — 1)-
connected, the smash product K(n) A K(m) is (n + m — 1)-connected. Hence the space (K (n) A K(m))"?
is ((n + m)p — 1)-connected. Proposition 6.3 shows that the map

i (K@) AK(m)"Y — Dy(K(n) A K(m))
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induces an injection on H(™*™P(—:F,). Commutativity of the square (6.13) yields

J (A (Tnp Nlim,p)) = shufle™((J A7) (Tnp A Tmp))
= shuffle”(j*(Zn,p) A 3" (Tm,p))
= shuffle” ((tn Ao Atp) A (b A v oo A))
= (n Atm) Ao Altn A )
= & (tnam) Ao - ANE (tntm)
= ENA... AN (bntm Ao  Alngm)
= (N A (I ([Tntmp))
= j*(<Dp(6))*(Zn+m7p)) :

Since j* is injective in this particular cohomological dimension, this proves relation (6.14).
We we turn the relation (6.14) from a reduced into an unreduced form. We abuse notation and also write

A Dy(X xY) — Dyp(X) x Dp(Y),  [z,y30] — ([z;0], [y;0])
for yet another diagonal map, now for the unreduced extended powers. We write
¢ = ¢oll : K(n)x K(m) — K(n+m),
which satisfies
(tngm) = (€ (tnem)) = T (n Atm) = tn X b -

If X and Y are based, then the following diagram commutes by inspection:

X xY x L(p) —2— (X x L(p)) x (Y x L(p))

AXXYJ le XAy

Dy(X xY)—2 5 D,(X) x D,(Y)

| [

Dy(X AY) ————— Dy(X) A Dy(Y)

Then
(6.15) A (tnp X tmp) = AT (tnp Atmp)) = H*(A*(bn’p Atlmp))
(6.14) = H*(Dp(c)*(zn+m,p)) = DP(C)*(H*(Zn+m,p)) = Dp(c)*(Lner,p)
in the group H™*t™P?(D,(K(n) x K(m))). Thus
Pylin % tm) = Pol(c0T)* (b))
= Ak myxsic(m)(Dp(co )" (tngm,p))
(6.15) = A?{(n)xK(m)(A*(Ln,p X tm.p))
= A"((Ax(n) X Ak (m)) (tnp X tmp))

= A*( ;((n)(L%p) X A;((m) (Lmﬁf)))
= A" (Pp(tn) X Pp(tm)) 0

We base L(2) = RP° at the point [1,0,0...].
Proposition 6.16. There is a homeomorphism

h @ Dy(SY) —» S'ARP®
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with the property that the composite
A ~
S'ARP® 2 Dy(s') Ly S§UARP®

is homotopic to S* Aq: S* ARPYX — STARP>, where q: RP{® — RP® identifies the external basepoint
with the internal basepoint.

Proof. We write Sslgn = R U {oo} for the onepoint compactification of R with the sign involution, sending

x to —x; the basepoint is the point at infinity. In a first step we exhibit a homeomorphism

(6.17) ko SLiAc, ST — RP™.

sgn
We fix m > 0 and consider the continuous map
Rx S(R™) — RP™ | (z;v1,V2,...,0m) —> [@:01:02: 10y .
For x # 0, we have
[x:ivy v iuy] = [Liv/zivg/a: -t oy /2] .
So the map extends continuously to
St x S(R™) — RP™ by (00;v1,V2,...,0m) — [1:0:---:0].
Since {oo} x S(R™) is taken to the single point [1: 0 : --- : 0], this map factors through a continuous map
SYASR™), = (S* x S(R™))/({oo} x S(R™)) — RP™ .
This maps is surjective, but not injective: because
[—z:—vi:—vg i i —vp] = [@ivpivgic U],

the pairs (z,v) and (—z,—v) have the same image. So the previous map factors through a continuous
surjective map

km : Sl Ac, SR™); — RP™
on the quotient space. This map is also injective, and hence a continuous bijection from a quasi-compact
space to a Hausdorff space. So this map is a homeomorphism. The homeomorphisms k,, are compatible

for different values of m, in the sense that the following diagram commutes:

[#,v1,.vn]= [z,01,.00,00,0]

Sslgn NCy S(Rm>+ Sslgn NC, S(Rm+1)+

kml§ Elkarl

RP™ RpP™H!

[yO:y13"'3y7n]’_)[y0:y1:"':y7n30]

So we can pass to the colimit over k in the horizontal directions, and obtain the homeomorphism (6.17).
The composite

rpe 20N g1 ng, 5°) L RP
is given by
o:yr:...] — [O:yo:yr:...].

This map is homotopic to the identity, as witnessed by the homotopy
[0,7/2] x RP*® — RP*
(tyo:yr:...]) — [sin(t)yo : cos(t)yo + sin(t)yy : cos(t)yr + sin(t)yz : ...] .
Now we consider the invertible matrix A = % (}1 }) Since A has positive determinant, the induced
homeomorphism on onepoint compactification

A: S — 52
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is based homotopic to the identity. This homeomorphism is equivariant for two different involutions on
source and target, namely for the twist involution « A y — y A x on the source, and for the involution

S — S?, Ay — (z,—y)

on the target. We shall use the suggestive notation S' A Sslgn for S? with this second involution. So A
induces another homeomorphism

AN, 8T 1 Da(S) = (S'ASY) Ae, ST — ST A(Shn Ac, ST) -
Since A - (z,z) = (x,0), the left triangle in the following diagram commutes:

St ARP

A SAq
/ J%A[Oa\

Dy(8") — o 81 A (Sl A ) —r - ST ARP
2

So (S Ak)o(ANAc, ST): Da(S*) — S* ARP is the desired homeomorphism. O

Let 1 € H 1(S1;Z) be the generator of the first cohomology group of the circle such that — A ¢ implements
the suspension isomorphism. We use the same name for the image of this class which generates the mod-p
cohomology group H!(S1;F,).

Proposition 6.18. The relation Pa(1) = ¢ X u holds in the group H?(S* x L(2);F).
Proof. We let g: S1 — RP> be a based map that represents the nontrivial element of 71 (RP>°, x). Then
9 (u) =
in H'(S*;Fy). We use the homeomorphism
h : Dy(S') —» S'ARP>™

provided by Proposition 6.16. The space S' A RP> is simply connected and has

Hy(S'ARP>®;Z) = H(RP>®;Z) = 7/2 .
So ma (ST ARP®, %) = Z/2 by the Hurewicz theorem. The composite map

S'Ang : S'ASY — S'ARP™
is nontrivial on H?(—;[Fy), and hence not nullhomotopic. The composite
STAST Lo (SYASY) A ST = Da(SY) L ST ARP®

is nontrivial on H2(—;Fy) by Proposition 6.5, and hence not nullhomotopic. So

StAg~hoj : StAST — SLARP™.
Hence also

F¥(h*(eAu)) = (hof)*(bAu) = (SPAQ* (LAu) = tAgH(u) = tAL

in H2(S* A SY; o).

The space RP> is also a K (Fs,1), and in this role u = ¢7 is the fundamental class. The class i1 2 €
H?(Dy(RP>);Fy) was defined in Proposition 6.5 by the property

j*(zl,Q) = 11 ANLt; = ulhu.
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The following diagram commutes:

SLA St 2L, Rp ARP

i |
Dy(S') ——— Dy(RP>)
D2(g)
So we obtain the relation
7*(D2(9)*(112)) = (9N 9)" (7" (012)) = (A9 (wAu) = tAe.
Since S' A S! is simply connected, the map
§* 1 H?(Do(SY);Fa) — H*(S'ASY;TFy)
is injective by Proposition 6.3. So we conclude that
Da(g)*(ir2) = h*(tAw)

in the group H?(Dy(S');Fy).
Now we exploit the following homotopy commutative diagram:
S x RP® — ST ARP®

StAg
As1l Asll ‘\\\\\\\&

Dy(S") ——— Da(S") —— ' ARP™

Dz(g)J Dz(g)i

Dy(RP>®) —— Dy(RP>)

R

>

The commutativity (up to homotopy) of the triangle is part of Proposition 6.16. This yields

Pa(e) = Agi(D2(g)"(t1,2))
= A (D2(9)" (1" (i1,2)))
= II"(A% (Da(g)"(i1.2)))
= I (A% (A" (v A w)))

= I ((S* A g)* (L Aw))

= II"tAu) = txu. O

1
1

The next theorem shows that the total power operation P, encodes all the Steenrod operations in one
class. The Kiinneth theorem tells us that the mod-2 cohomology of the product X x L(2) can be expanded
as the tensor product of the cohomology of X and the cohomology of L(2). We recall that the mod-2
cohomology of L(2) = RP is a polynomial algebra generated by the non-trivial one-dimensional class (the
fundamental class).

Theorem 6.19. Forp = 2, the total squaring operation Py and the operations Sq' are related by the formula

Pa(z) = Z Sqt(z) x u™~!

>0
for x € H"(X;Fy), where u € H'(L(2);F3) is the generator.
Proof. As an auxiliary notation we let

T! : H"(X;Fy) — H"™(X x L(2);Fy)
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be the cohomology operations defined by the formula
Palx) = Y Ti(a)xu"".
i>0

We then have to show that T = Sq'.

In a first step we note that 77" (x) = 2% when x has dimension n. By Lemma 6.11 (i), the restriction of
the class Pa(x) € H?"(X x L(2);F3) along the inclusion j: X — X x L(2) coincides with the cup-power
2? € H*"(X;F3). Moreover, for y € H*(X;F3) we have

. N y ifi=0, and
Ilyxu) = { 0 ifi>1.
So we deduce x? = j*(Pa(x)) = T*(z), as claimed.
Now we show that the operations T satisfy the Cartan formula
(6.20) Tia(zxy) = Y Ti@) xT(y)
a+b=1

for x € H*(X;Fy) and y € H'(Y;F3). Indeed, Lemma 6.11 (ii) gives

Polexy) = A'(Pa(a) x Pa(y) = A" | 3 (Tf(@) x ub~*) x (T (y) x o)

a,b>0

5 ( S 10(0) x Tny)) i

i>0 \a+b=i

where we used the relation A*((a x u?) x (8 x u?)) = a x B x u**7. The Cartan formula (6.20) follows by
comparing coefficients of uF+!=7,

Proposition 6.18 provides the relation P (1) = ¢ x u, where ¢ € H'(S*;Fy) is the generator. This means
that TP(1) = ¢, and T (1) = 0 for i # 0.

Now we verify that the collection of operations {7} },>¢ form a stable cohomology operation. This is
actually a formal consequence of the Cartan formula. Indeed, the suspension isomorphism

S . HM(X;Fy) = H"WY(SX;Fy) = H"(X A SYTF,)

is given by exterior smash product with the fundamental class ¢ € H'(S;F5). So we get
Ti(wne) = > Tia) ATy () = Ti(a)Ae.
3=0

The second equation uses that T7(¢) = ¢ and T}(:) = 0 for i > 0.
We conclude that {T7},>0 form a stable mod-2 cohomology operation such that 77" (z) = z? for all

n-dimensional classes z. By the uniqueness property of the squaring operation Sq’ (Theorem 4.1), we thus
have {T},>0 = Sq". O

The Steenrod squares are usually defined by the relation
Pa(z) = Z Sq'(z) x u™"
i>0

for z € H"(X,Fy), where u € H'(L(2); F2) is the generator. If this is taken as the definition of the Steenrod
squares, then the content of Theorem 6.19 is the proof that Sq"(z) = 22 whenever z has degree i, and that
the Cartan formula holds.
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7. STEENROD OPERATIONS FOR ODD PRIMES

Theorem 6.19 explains how the Steenrod squares Sq’ can be defined from the total squaring operation Ps.
Total power operation encodes all the Steenrod operations in one class. For odd primes p we use the total
power operation P, to define certain mod-p cohomology operations P, called reduced power operations. 1
will only sketch the main steps, but not give full proofs.

Throughout the following discussion, p is an odd prime. We have shown in Proposition 6.2 that

H*(L(p);Fp) = Fplyl @ Alz) = Fplz,y]/(2?)
for a specific element = € H*(L(p); F,), and with y = ().

We set

u=x-y'? € H7(L(p);Fp)
and

v =yt e H*2(L(p);F,) .
Then u? = 0 and B(u) = v.

The secret reason for considering the elements u and v is as follows. The multiplicative group F) =
I, \ {0} acts on the additive group F,, by multiplication, and this action witnesses F as the automorphism
group of ). The action of F,\ on F, induces an action, up to homotopy, on L(p) = K(Fy,1): for every
A € FX, there is a unique homotopy class of based map ¢: L(p) — L(p) that induces multiplication by A
on 71, and hence also on Hy(—;F,). Then also

thz) = Az
by the universal coefficient theorem, and hence

t(y) = ta(Bx) = B(tA(x) = BA-z) = X-B(z) = A-y.
So the classes x and y are not invariant under the induced IS -action on H*(L(p);F,). However,
B) = By’ = ) GBEP? = (o) (e = Wy =
because A\P~! =1 for all X € F¢. Similarly,
) = GO = @EPT = Ny =
In other words: the classes u and v are invariant under the action of F)’. In in fact, they generate the entire
subalgebra of H*(L(p);F) of F f-invariant classes:

(H*(L(p); Fp)"> = Fplu,v]/(u?) .
One can then show:

Proposition 7.1. For every prime p, every space X and all even numbers n > 0, the image of the total
power operation
P, : HY(X;F,) — H" (X x L(p);F,)

is invariant under the action of the group ¥, induced by the F -action on L(p).

The standard proof of this proposition uses that the symmetric group ¥, acts on on X? by permuting the
factors; this action extends the action of the cyclic group C}, which we identify with the cyclic subgroup
of ¥, generated by the transposition (1,2,...,p). Then one exploits the analog of the extended power
construction for the action of this larger group.

For p = 3 there is a direct proof of Proposition 7.1, as follows.

Proof of Proposition 7.1 for p = 3. We consider the involution
d) 5 — SOO, 1/)(1)1,1}2,...) = (1_)1,172,...)

that is complex conjugation in each of the complex coordinates. The third root of unity (3 = e
(3 = (2, so this map satisfies

2mi/3 gatisfies

Y(C3v) = Gr(v) = G -v(v) .
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This means that ¢ descends to a continuous involution
Y L(p)=S>°/C, — S*/C, = L(p) .

The restriction of ¥ to the 1-skeleton S(C) is complex conjugation, which reverses the orientation of the
circle. So the induced homomorphism of fundamental groups

m () m(L(p),*) — m(L(p);*)

is the inverse map, and thus the unique non-identity automorphism of the cyclic group of order 3. So in
the earlier notation, ¢ = t_, the automorphism associated to —1 € FJ.
We now define an involution of D3(X) = X3 x¢, S* by

&X : XS XCg Soo — X3 XC3 SOO? [ZL’,y,Z;U] L [y,x,z,d)(v)] .

Note that the coordinates x and y switch places, which is needed to make the map well-defined on equivalence
classes: (z,y,z;v) and (y, z,x; (3v) define the same element in D3(X), and

(Y, 239(0) ~ (@, 2,43 G (v) ~ (2,5, G(0)) = (2,9, 239(Gsv)) -

The following square also commutes:

K(Fs,n)"* —— Dy(K (F3,n))

T/\IdJ( J(’(Z)K(F(Sr")

K(Fg,n)/\?’ T D3(K(F3vn))

Here 7 switches the first two smash factors of K (F3,n)"3. So
T Wk ey (Tna) = (1 A1) (" (Tn3))
= (T AI) (bn Aty A L)

= inNtn Nl = ]*(Zn,3)

The third equation uses that n is even, for else a sign would appear. The map j*: H3”(ﬁ3(K(F3, n));F3) —
H3"(K (F3,n)"3;F3) is injective by Proposition 6.3, so we deduce that

&}(FS,n)(ZnB) = Zn,3 :
The following square commutes:

Ds(K (F3,n)) — Ds(K (F3,n))

¢K(u«‘3,n)l J"LK(]}‘a,n)

D3 (K (F3,n)) —— D3 (K (Fs,n))

So
ism) (tn8) = Ve my T (ns)) = T @y my (n3) = T (ins) = tns -

Finally, the following square commutes:

X x L(3) =255 Dy(X)

vl s

X x L(3) —— Da(X)
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For X = K(F3,n), this yields

(Id x9)"(P3(tn)) = (1d X9)* (Aferym) (tn3)) = Dy (P (a,n) (tn,3))
= A*K(Fg,n)(Ln,B) = Ps(tn) -

This is the universal example of the relation we wish to show, so the general case follows by naturality. [

The Kiinneth theorem says that the exterior product map
H*(X;Fp) @ Fyla,y)/(2%) = H*(X;Fp) @ H*(L(p);Fp) — H*(X x L(p);Fp)

is an isomorphism of graded-commutative Fp-algebras. So we can expand the total power class Pp(z) €
H"™ (X x L(p); Fp) in terms of the F-basis {xy*, '} of Fp[z,y]/(«*). By the invariance under the F-action,
only terms with coefficients u = zy?~2 and v = y?~! will show up.

We first work with even-dimensional cohomology classes, and consider the p-th total power operation
introduced in (6.10)

P, : H*(X;F,) — H**(X x L(p);F,) .
By the previous discussion, we can expand this operations as
E
(7.2) Pp(x) = (Pi(z) x v"" + Rj(z) x w*"1)
i=0

for x € H?*(X;F,), for well-defined operations

Pl . H**(X;F,) — H**t?0-U(X:F,) and
Rj : HM(X;F,) — H*0-UYN(X:F,) .

Beware the indexing convention: the subscript of P} and RY is half of the cohomology degree of the
argument. Since the total power operation is natural in X, the operations P,i and R}c are also natural in
X.

The next step is to show an odd-primary analog of Proposition 6.18, which takes the form
(7.3) Po(tAt) = (LAY xv in H?(S? x L(p);F,) .

Here ¢ A v € H?(S?;F,) is the generator that implements the twofold suspension isomorphism. In terms of
the recently introduced operations, this means that

tAv if i =0, and
0 else.

(7.4) Pi(tAl) = {

and Ri(1 A1) =0 for all i > 0.

At this stage, we have only defined the operations for even-dimensional classes. Once we have verified
that they are compatible with double suspension, we will extend this to odd-dimensional classes in Definition
7.6. A similar argument as in the proof of Theorem 6.19 for p = 2 then shows the following result:

Theorem 7.5. Let p be an odd prime and let P} be the cohomology operation of degree i(2p — 2) defined
on classes of dimension 2k by the formula (7.2).

(i) We have PF(z) = 2P and Pj(z) =0 fori > k.
(ii) The operations P} satisfy the external Cartan formula
Pig(xxy) = Y Pix) x Py)
a+b=1

for all classes v € H**(X;F,) and y € H*(Y;F,).

(iii) For fived i, the operations P{ commute with the double suspension isomorphism in the sense that
Pi(xAitAt) = Pia)AeAe € HPH2@-DI2(x A G2 )
for every class x € H**(X;F,).



31

Proof. (i) As before we let j: H*(X x L(p);F,) — H*(X;F,) be the map induced by the embedding
(—,[1,0,...]): X — X x L(p). Then for z € H*(X;F,) we have

(2 x 2%y') = z ife=0andi=0, and
JUEXTYT =10 else.

The restriction of P,(x) is the cup power zP by Lemma 6.11 (i); so restriction of defining formula (7.2)
gives

(ii) Lemma 6.11 (ii) gives
Pplz xy) = AY(Pp(x) x Pp(y))

=& Z (P () = VT R(@) x wt ) (Plb(y) x o' + RI(y) x uvl_b_l)

a,b>0
= D> > (Bi@) x PPy) x o1 4 (PE(x) x R (y) + Riy(x) x P (y)) x w1771
i>0 a+b=1i

where we used the relations A*((o x ufv?) x (8 x uf v7)) = a x B x ust vit7 and u? = 0. We obtain the
external Cartan formula by comparing coefficients of v¥+!—1,
(iii) As in Theorem 6.19, this part is a formal consequence of the Cartan formula. The suspension

isomorphism

Y . HY(X;F,) — H""H X ASYTF,)

is given by exterior smash product with the fundamental class ¢ € H L(SY;F,). So we get
Pl (@AuAL) ZPZJ YAPI(LAL) = Pi(z)ALAe.

The second equation holds since Py is the identity operation on the fundamental class ¢ A ¢, and all other
operations vanish on this class, see (7.4). O

Definition 7.6. Let p be an odd prime, let X be a space, and let n > 0. We define the stable mod-p
cohomology operation

P' . HY(X;F,) — H"™0P-D(X;F,)
of type (F,,2i(p — 1),F,) by the formula

. P () for even n, and
Pz(x) — n/2
- P(n+1)/2(2(m)) for odd n.

By part (iii) of Theorem 7.5, this definition indeed satisfies the stability condition.
We summarize the main properties of the reduced power operations in the next theorem.
Theorem 7.7. Let p be an odd prime and let P* be the stable mod-p cohomology operations of degree

2i(p — 1) defined in 7.6.
(i) The operation P° is the identity operation.
(ii) (Unstability condition) We have P'(z) = aP if |x| = 2i and P'(x) = 0 if |z| < 2i.
(i) (Cartan formulas) Let X andY be spaces and let v € H*(X;F,) andy € H*(Y;F,) be cohomology
classes. Then we have
Pi(zUy) = Z PYz)UP’(y) and Pizxy) = Z P%(z) x P’(y) .
a+b=1 a+b=1
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8. ADEM RELATIONS

The Adem relations are relations that express the composite of two Steenrod operations as a sum of
composites of other operations. The Adem relations generate all relations between the Steenrod operations.
In (6.10) we have defined the total power operations

P, + H*"(X;Fp) — H" (X x L(p);Fy) .
The Adem relations ultimately arise from a symmetry of the iterated total power operations P, o P,. We

use the following result without proof.

Theorem 8.1. Let p be any prime, and let n be a number which is even in case p is odd. Then image of
the iterated total power operation

P,oP, : H'X;F,) — H" (X x L(p) x L(p);F,)
is invariant under the involution induced by the automorphism of X x L(p) x L(p) which interchanges the
two factors of L(p).

To deduce the Adem relations for p = 2 from the symmetry property in Theorem 8.1, we follow the
elegant method of Bullet and Macdonald [BM]. We denote by P(t) € As[t] the formal power series with
coefficients in the mod-2 Steenrod algebra A, given by

P(t) = i Sq’ -t .
1=0

Proposition 8.2. The formal power series P(t) with coefficients in Ay satisfies the identity
P(1+1t)-P(t*) = P(t+t*)-P(1) .

Proof. Since the cohomology algebra H*(L(2);F3) is polynomial on the 1-dimensional class u, the Kiinneth
isomorphism
x  H*(X;F9) @ H*(L(2);F2) =2 H*(X x L(2);F2)
gives an identification
H*(X x L(2);F2) = H*(X;F2)[v]
where v = 1 X u. In the same fashion we identify the cohomology algebra H*(X x L(2) x L(2);F3) with
H*(X;TFy)[s,t] where s=1x1xwuand t =1 X u x 1 are polynomial generators of H*(L(2) x L(2);Fs).
Under this identification Theorem 6.19 yields

Po(z) = i Sq'(x) - vt € H?™(X x L(2);Fy)
i=0

for every n-dimensional cohomology class x. The Cartan formula shows that the total squaring operation
is multiplicative, i.e., we have Sq(zy) = Sq(z) Sq(y) for xz,y € H*(X;F2). Moreover, the value of the total
square on v = 1 x u € H*(X x L(2);F3) is given by

Po(v) = ZSqi(IXu)xulfi:(lxuxu)+(1><u2><1) = ts+t?
i>0

in H2(X x L(2) x L(2);Fy). For the iterated total squaring operation we thus get the formula

Po(Pale)) = P [ 32 Sa¥(@)- 0" | = 3 Pa(Se? (@) - (Po(w))™

>0 §>0
= Z(Z Sq' (S’ (x)) - ") - (ts + 7)Y
§>0 i>0

= s"(s+t)"t" Z Sq* (S (z))sH(t + t2s™H) 77 .
,j>0



33

The second equation is the fact that P is additive and multiplicative, the latter by Lemma 6.11. By
Theorem 8.1, this expression is symmetric in s and ¢, hence so is the expression

> Sd(Sd (@) st 12T = P(sTOP((t+ 257 (@)

1,520
Since this holds for all spaces X and for all cohomology classes x, we get the equality of (formal Laurent
power series of) stable cohomology operations, i.e., we have

(8.3) P(sHP((t+t2s )™ = Pt HP((s+ 2171
If we substitute s = (1 +v)~! and ¢ = (v + v?)~, then
1 1 1 2 1
t4 s = + tv o a = — and s+t s =1

v4+0v2  (v+0?)? (v+v?)2 v
where we exploited characteristic 2. So substituting into (8.3) gives P(1 4+ v)P(v?) = P(v +v?)P(1). O

Example 8.4. We expand the relation of Proposition 8.2 modulo 3 to obtain the Adem relations for
Sq'Sq’ and for Sq? Sq¢’:

P+1t)-P(#?) = O Sq"-(1+t)")- () Sd’ %)

i>0 >0
_ i . VN 1,2
= (ZSq (1—|—zt—|—<2)t )) - (1+Sq" -t%)
>0
= (ZSq ZSq “t4( ZSq (>+Sq Sq') -t
i>0 i>0 i>0
P(t +1?) - = O_sq-t+t))- O sa)
>0 >0
= (1+Sq"-(t+ %) +Sq* 1?) - ZSq
7>0
= (ZSq ZSq S’ -(t +12)) ZSq S’ %)
>0 >0 >0
= O Sa)+ (Y sa'Sd’) - t+ (Y Sa' Sa’ +Sq” S¢) - 1
j=0 j=0 j>0

Comparing coefficients of ¢ yields
> Sqti = > Sq'Sq’;
i>0 §>0

in cohomology degree j + 1 this yields the relation

S’ for j even, and

Sa'Sa’ = Sa’™-(j+1) = {0 for j odd

For example Sq' Sq' = 0, which we already knew because the composite of two Bockstein operations is
zero. And Sq' Sq® = Sq?, Sq' Sq® = 0, etc.
Comparing coefficients of ¢2 yields

ZSq <>+Sq Sq ZSqlsququQqu;

i>0 >0
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in cohomology degree j + 2 this yields the relation

(j ; 2) ST+ 8¢t 8¢t = Sq St 4SS
or equivalently

Sq%Sq’ = (J +2) S? ™ + S¢P Tt Sqt + Sqt St

2
qu+2 + qu+1 Sql for 7 = 0 modulo 4
S¢? ™ + S’ Sq' + S¢’™?  for j =1 modulo 4
= St 8q for j = 2 modulo 4
STt Sqt + S¢’*?  for j = 3 modulo 4
S’ 4+ Sq’t1Sqt  for j = 0,3 modulo 4
- { S’ TtSq!  for j =1,2 modulo 4
The first Adem relations explicitly look as follows:
Sq'Sq' = 0
Sql Sq2 _ Sq3
Sa*Sqa® = Sq*Sq'
S¢'S® = 0
Sq®Sq® = Sq¢”+Sq*Sq’

From these one can deduce some other relations, for example
Sq®Sa? = Sq'Sq?Sq* = Sq'Sq*Sq® = 0.
Now we derive all the Adem relations in their usual form, still following Bullet and Macdonald [BM].

We will use the residue calculus which we briefly recall. Let R be any ring, and denote by R((¢)) the ring of
Laurent power series over R, i.e., the collection of formal sums

f&y = > fiet
i>>—00
where f; € R and f; = 0 for almost all negative values of i. The residue of a Laurent power series
f(t) € R((t)) is defined as the coefficient of t~1,

Res(f) = f-1 € R.

The notation Resf(t) dt is also used. Now suppose that 7(¢) € Z[t] is a polynomial with integer coefficients
without constant term and with linear term equal to ¢, i.e. 7(¢) =t mod (t2). Then 7 is invertible in the
ring R((t)), and hence we can substitute 7 into any Laurent power series f(¢) to get a new Laurent power
series f(7(t)). We are interested in this for 7(t) = ¢ + 2. In this situation we have the following ‘residue
formula’:

Proposition 8.5. Let R be a ring, and let f(t) € R((t)) be a Laurent power series over R. Then
Res(f) = Res[f(t+t*) - (1+2t)] .

Proof. Both sides of the equation are R-linear in the Laurent power series f. Moreover, if f is a power
series (as opposed to Laurent power series), i.e., if the coefficients f; of f are trivial for negative values
of i, then both sides of the equation are trivial. A general Laurent power series has only finitely many
non-zero coefficients of negative powers of the indeterminate, so by R-linearity it is enough to check the
desired equation for R = Z and f(t) =t~/ with j > 1. In other words, we must show that

1 for j=1, and

Res [(t +1%)77 - (1+2t)] = {0 for j > 2.



For j =1 we have

t+t)t =t A+t =t A=t - )
=t 14 t—t2 434+,

so indeed Res [(t + %)~ = 1.
The formal derivative of a Laurent power series f(t) = Y a; - t* € Z((t)) is

For all m € Z we have

d m _ df m—1

%(f ) = m'%'f :

So

%((Ht?)l—j) = (1—j)-(142t)-(t+t3)77 .

Because the residue of every formal derivative is trivial, we conclude that
0 = Res {jt((t + t2)1_j)} = (1—j) - Res[(1+2t)- (t+¢*)77] .
Because Z is torsion free, for j # 1 we can conclude
Res[(1+2t)- (t+t*)77] = 0.

Theorem 8.6. (Adem relations) The Steenrod squaring operations satisfy the following relations

& i1 o
Sqasqb — Z < ) Sqa-‘rb—zsql

4 a—2i
=0

for all a,b > 0.

35



36 STEFAN SCHWEDE

Proof. We fix non-negative integers @ and b. Then we have

a+b . )
Coeffa Z Sq’ Sq@ I ¢

Jj=0

Sq®Sq’

a+b

= Res{ Y Sq/Sq 07 ¢ime!
7=0
a+b

(87) = Res Z Sq] Sqa"l‘b_j (t + t2)j_a_1

Jj=0

j=0

a-+b

(8.8) = ResQ Y Sq/Sq*T I (1 41)7 - 42(eH070) (¢ 4 42) 70!

a+b

= Res {Z Sa’ Sq" Tt 4 42) - (E %)

i=atb—j = Res {Z SqPtbE S (1 + ¢) P L g2 (¢ tz)al}
a+b ‘ . ‘ ‘

= Res {Z Sqrtt—i Sqi(1 +t)b7171 'thal}

=0

a+b
= Coeffa {Z Sq?tt=iSqi(1 + t)b“t%}

=0
a+b .
b—i—1 .
_ Z < 1 . > Sqa+b71 Sql .
= a— 29

Equation (8.7) is the residue formula (8.5), which simplifies to Res(f) = Res [f(¢ + t*)] because 2 = 0 in
the mod-2 Steenrod algebra. Equation (8.8) uses the power series identity P(t + t?)P(1) = P(1 + t)P(t?)
of Theorem 8.2, namely the part which has dimension a + b with respect to the grading coming from the
Steenrod algebra A2. The Adem relation as stated in the theorem now follow since the binomial coefficient
(ba_j;jl) vanishes for j > a/2. O
Remark 8.9. With respect to binomial coefficients (:1) for integers n and m, possibly negative, we recall

that
n-(n—1)---(n—m+1)

n T mmn1 - dm=1
<m) =191 if m =0,
0 if m <0.

With these conventions, the formula

1+t = i (?) o

=0

holds for all integers n, positive or negative, in the power series ring Z[[t]].

The Adem relations 8.6 are often stated under the condition that a < 2b. In that case i < a/2 implies
that b — i — 1 is non-negative. However, the relations hold for all non-negative a and b, just that some of
the binomial coefficients which arise when a > 2b may have negative numerators.
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The Adem relations allow us to write some of the Steenrod squares as sum of products of Steenrod square
of smaller degrees:

Sq3 = Sqt Sq2

S¢® = Sq'Sqt = Sq%Sq® +Sq*Sqt
Sq® = Sq*Sq*+Sq’Sq!

Sq" = Sq'sq’ .

These particular Steenrod operations are thus decomposable in the Steenrod algebra Az. The next corollary
shows how this fits into a general pattern. The operations Sq? for i > 0 are indecomposable, i.e., they
cannot be written as sums of products of cohomology operations of smaller degrees.

Corollary 8.10. Let n be a positive integer which is not a power of 2. Then the Steenrod operation Sq™* is
decomposable in the Steenrod algebra As, i.e., in the square of the ideal generated by the positive dimensional
elements of As.

Proof. By hypothesis we can write n = 2¢(2k + 1) with i > 0 and k > 1. We have the Adem relation

2i—1 ; .
i n—2ot n7217‘]71 n—qj i
Sq* Sq" % = Z( Y >Sq 7Sq’ .
Jj=0

n—2t—1

The summand indexed by j = 0 contributes the term ( b ) Sq™. We claim that the binomial coefficient

("73271) = (2#;“71) is odd. This implies that

2i—1 ; .
i i n—2"—j5—1
Sqn _ SqZ Sqn72 + ( J

, Sq" 7S¢’
9 _ 9 ) q a,

j=1

so we conclude that Sq™ is decomposable in the mod-2 Steenrod algebra if n is not a power of 2. To evaluate
i+1 i i

the binomial coefficient we use that (* ,¥7') is the coefficient of 2" in the polynomial (1 + )2 BRLEE

characteristic 2, that polynomial evaluates to

e (VR e L S R e L e A
Since (142" )* is congruent to 1 modulo ¢+, the coefficient of 2 in (1+¢)2"" *~1 is indeed congruent

to 1 mod 2. 0O

Construction 8.11. The Adem relations can be used to show that certain composite of Hopf maps are
stably essential. We need the following observation: suppose that

a: S™ — ¥ and B: 8" — S™
are continous pointed maps between spheres. Suppose that the composite o3: S™ — S* is null-homotopic,
and let

H:S8"x[0,1] — S*
be a pointed homotopy from «/f to the constant map. Since H ends in the constant map, it factors over a
map
H: CS™=(S"x[0,1])/(S™ x {1}) — S*

from the cone of S™. The maps H and «a glue together to give a map

QUH : C(B)=8S"UzCS™ — S*

from the mapping cone of 3. We let C(a, 3, H) be the mapping cone of a U H: C(8) — S*. This space
has a CW-structure with 4 cells in dimensions 0, k, m + 1 and n + 2. Moreover, it contains the mapping
cone of « as its (m 4+ 1)-skeleton, and the quotient of C(«, 3, H) by its k-skeleton (which is the sphere S*)
is homeomorphic to a certain suspension of the mapping cone of 3.
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Example 8.12. Now we show how Construction 8.11 and the Adem relation Sq? Sq* = Sq® Sq' can be
used to show that the composite 1? is stably essential. Suppose that for some n the composite
gt L gttt 4 gn

is null-homotopic. After choosing a null-homotopy H we can form the space C(n,n, H) with cells in
dimension 0, n, n + 2 and n + 4. The reduced mod-2 cohomology of this space is one-dimensional in
dimensions n, n + 2 and n + 4, and trivial in all other dimensions. Since the (n + 2)-cell is attached to the
n-cell by 7, the Steenrod operation Sq? is an isomorphism from H™(C/(n,n, H);Fs) to H"2(C(n,n, H); Fy),
and similarly from there to H"™*(C(n,n, H);F2). But since the group H""(C(n,n, H);F3) vanishes, we
get that

Sq*Sq” = Sq*Sq' + H"(C(n.n, H);F2) — H""H(C (.1, H); F2)
is trivial, a contradiction. Hence no suspension of n? is ever null-homotopic.

The same kind of reasoning yields other non-triviality results for certain composites of Hopf maps, using
that 2¢, n, v and ¢ are detected in mod-2 cohomology by the Steenrod operations Sq', Sq?, Sq* and Sq®,
respectively. In the following table we list some Adem relations and the composite which are non-trivial by
the above argument.

relation stably essential product
Sq' Sq® = Sq*Sq +Sq? S 2u
Sq'Sq® = Sq®Sq! +Sq¢%Sq” 20
Sq* Sq* = Sq” Sq' U
Sq?Sq® = Sq”Sq' +Sq® Sq? + Sq* Sq° no
Sq* Sq* = Sq” Sq' +Sq° Sq? vy
Sq® Sq® = Sq'° Sq* + Sq* Sq? + Sq'2 Sq* oo

Some products of Hopf maps do not occur in the table: 2n, nv and vo. These products are in fact stably
null-homotopic.

We conclude by stating, without proof, the Adem relations for the odd-primary Steenrod algebra.

Theorem 8.13. (Odd-primary Adem relations) Let p be an odd prime. Then the power operations P*
satisfy the relations

[a/p] .
PePb = Y (—1)0 ((P — D) - 1) pa+b—i pj
j=0 a —pj

for all 0 < a < pb. Moreover, the power operations and the mod-p Bockstein 3 satisfy the relations

P*BP’ = [az/f] (_1)a+j<(P—1)(b—j)) g patb=ipi

= a—pj
[(a—1)/p] .
+ Z (_1)a+j—1 (p—1O—-j)—-1 Pa—&-b—jBPj
= a—pj—1
for all 0 < a < pb.
REFERENCES

[BM] S. R. Bullett, I. G. Macdonald, On the Adem relations. Topology 21 (1982), 329-332.

[EM] S. Eilenberg, S. Mac Lane, On the groups H(II,n). II. Methods of computation, Ann. of Math. 60 (1954), 49-139.

[McL] S. Mac Lane, Homology. Die Grundlehren der mathematischen Wissenschaften, Bd. 114 Academic Press, Inc.,
Publishers, New York; Springer-Verlag, Berlin-Gottingen-Heidelberg 1963 x+422 pp

[St] N. E. Steenrod, Products of cocycles and extensions of mappings. Ann. of Math. (2) 48 (1947), 290-320.

MATHEMATISCHES INSTITUT, UNIVERSITAT BONN
Email address: schwede@math.uni-bonn.de



	1. Cohomology operations
	2. Stable cohomology operations
	3. Cohomology in the stable range
	4. Steenrod's divided squaring operations
	5. Examples and applications
	6. The extended power construction
	7. Steenrod operations for odd primes
	8. Adem relations
	References

