
Correction to:

The p-order of topological triangulated categories

Journal of Topology 6 (2013), 868–914
Stefan Schwede

Zhi-Wei Li has pointed out a gap in the proof of Proposition A.4 and a missing argument in
Proposition A.14. Vincent Gajda has pointed out an embarrassing omission in my formulation of
axioms of a triangulated category. The purpose of this note is to fix these issues. All statements
in the paper are correct as they stand, so none of the results are affected. The omissions already
occur in the earlier preprint version of the paper that appeared on the arXiv as under the title
‘Topological triangulated categories’.

We start with the correction to axiom (T1). In the formulation of the axioms of a triangulated
category (page 908), I forgot to include the requirement that every morphism participates in a
distinguished triangle. So axiom (T1) should be amended to:

(T1) For every object X the triangle 0 −→ X
Id−→ X −→ 0 is distinguished. For every mor-

phism f there exists a distinguished triangle (f, g, h) starting with f .

While this omission in the formulation of (T1) is embarrassing, the verification of the extra
requirement is straightforward for the homotopy category of a stable cofibration category. The
following arguments should simply be added to the proof of Theorem A.12 in the paragraph
on (T1):

We let f : A −→ B be a morphism in Ho(C). Theorem A.1 (i) lets us choose C-morphisms
ϕ : A −→ B′ and s : B −→ B′ such that s is an acyclic cofibration and f = γ(s)−1 ◦γ(ϕ), where
γ : C −→ Ho(C) is the localization functor. We factor ϕ = t ◦ j as a cofibration j : A −→ B̄
followed by a weak equivalence t : B̄ −→ B′. Then the following diagram commutes in Ho(C):

A
f // B

γ(q)◦γ(t)−1◦γ(s) //

γ(t)−1◦γ(s) ∼=
��

B̄/A
δ(j) // ΣA

A
γ(j)

// B̄
γ(q)

// B̄/A
δ(j)

// ΣA

The triangle (f, γ(q) ◦ γ(t)−1 ◦ γ(s), δ(j)) is thus isomorphic to the elementary distinguished
triangle of the cofibration j, and hence itself distinguished.

Now we turn to corrections of the proofs of Propositions A.4 and Proposition A.14. Proposi-
tion 1 below patches the argument in the proof of Proposition A.4. Proposition 2 provides the
missing argument in Proposition A.14, namely that the preferred isomorphism τF,A : F (ΣA) −→
Σ(FA) that comes with any exact functor between pointed cofibration categories is natural.

We quickly recall the setup and the definition of the suspension construction. We consider a
pointed cofibration category C and denote by γ : C −→ Ho(C) the localization functor. An object
of C is weakly contractible if the unique morphism to a zero object is a weak equivalence. We
choose a cone for every object A of C, i.e., a cofibration iA : A −→ CA with weakly contractible
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target. The suspension ΣA of A is then a cokernel of the chosen cone inclusion, i.e., a pushout:

A
iA //

��

CA

p

��
∗ // ΣA

Lemma A.3 guarantees the existence of cone extensions: Let i : A −→ C be any cofibration
with weakly contractible target, and α : A −→ B a morphism in C. Then there exists a cone
extension of α, i.e., a pair (ᾱ, s) consisting of a morphism ᾱ : C −→ C̄ and an acyclic cofibration
s : CB −→ C̄ such that ᾱi = siBα and such that the induced morphism ᾱ∪ s : C ∪A CB −→ C̄
is a cofibration, where the source is a pushout of i and iBα. Moreover, the composite morphism
in Ho(C)

C/A
γ(ᾱ/α)−−−−→ C̄/B

γ(s/B)−1

−−−−−−→ CB/B = ΣB

is independent of the cone extension (ᾱ, s). Given a C-morphism α : A −→ B, we choose a cone
extension (ᾱ, s) with respect to the chosen cone iA : A −→ CA. We define Σα as the composite
in Ho(C)

ΣA = CA/A
γ(ᾱ/α)−−−−→ C̄/B

γ(s/B)−1

−−−−−−→ CB/B = ΣB .

Lemma A.3 guarantees that this definition is independent of the cone extension.
The following proposition says that for calculating the suspension of a C-morphism, we can use

something slightly weaker than a cone extension: the requirement that the induced morphism
ᾱ ∪ s : C ∪A CB −→ C̄ is a cofibration is not necessary for calculating Σα.

Proposition 1. Let α : A −→ B, α̂ : CA −→ Ĉ and t : CB −→ Ĉ be morphisms in C such
that t is an acyclic cofibration and

α̂ ◦ iA = t ◦ iB ◦ α : A −→ Ĉ .

Then

γ(t/B)−1 ◦ γ(α̂/α) = Σα : ΣA −→ ΣB

as morphisms in the homotopy category Ho(C).

Proof. We factor the morphism

α̂ ∪ t : CA ∪A CB −→ Ĉ

as a cofibration followed by a weak equivalence

CA ∪A CB
ᾱ∪s−−→ C̄

q−−→ Ĉ .

Since iA : A −→ CA is a cofibration, so is its cobase change, the canonical morphism from CB
to CA ∪A CB. So the morphism s : CB −→ C̄ is a cofibration; since source and target of s
are weakly contractible, s is even an acyclic cofibration. Altogether, we have obtained a cone
extension (ᾱ, s) of α.

We have

γ(α̂/α) = γ((qᾱ)/α) = γ(q/B) ◦ γ(ᾱ/α) : ΣA = CA/A −→ Ĉ/B ,

and similarly

γ(t/B) = γ((qs)/B) = γ(q/B) ◦ γ(s/B) : ΣB = CB/B −→ Ĉ/B .

Combining these two formulas gives the desired relation

γ(t/B)−1 ◦ γ(α̂/α) = γ(t/B)−1 ◦ γ(q/B) ◦ γ(ᾱ/α) = γ(s/B)−1 ◦ γ(ᾱ/α) = Σα . �
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Proposition 1 now allows for quick correction of the proof of Proposition A.4:

Proposition A.4. The suspension construction is a functor Σ : C −→ Ho(C). The suspen-
sion functor takes weak equivalences to isomorphisms and preserves coproducts.

Proof. The problem in the published proof is in the verification that Σ takes the identity of A
in C to the identity of ΣA in Ho(C); contrary to what I claim, the pair (IdCA, IdCA) is typically
not a cone extension of the identity of A, because the fold map Id∪ Id : CA ∪A CA −→ CA
will usually not be a cofibration. Proposition 1 exactly fixes this problem: we can take α = IdA
and α̂ = t = IdCA, and conclude that

IdΣA = γ(IdCA /A)−1 ◦ γ(IdCA / IdA) = Σ IdA .

For compatibility with composition we consider two composable morphisms

α : A −→ B and β : B −→ D

in C. We choose a cone extension (ᾱ : CA −→ C̄, s : CB −→ C̄) of α and a cone extension
(β̄ : CB −→ C̄ ′, t : CD −→ C̄ ′) of β. Then we choose a pushout:

CB
s //

β̄
��

C̄

β̄′

��
C̄ ′

s̄
// Ĉ

The morphism s̄ is an acyclic cofibration since s is. We apply Proposition 1 to the triple of
morphisms βα : A −→ D,

β̄′ᾱ : CA −→ Ĉ and s̄t : CD −→ Ĉ

and conclude that
γ(s̄t/D)−1 ◦ γ(β̄′ᾱ/βα) = Σ(βα) .

The relation

γ(β̄′/β) ◦ γ(s/B) = γ(β̄′s/β) = γ(s̄β̄/β) = γ(s̄/D) ◦ γ(β̄/β)

is equivalent to
γ(s̄/D)−1 ◦ γ(β̄′/β) = γ(β̄/β) ◦ γ(s/B)−1

because both γ(s̄/D) : C̄ ′/D −→ Ĉ/D and γ(s/B) : CB/B −→ C̄/B are invertible in Ho(C).
So we get

Σ(βα) = γ(s̄t/D)−1 ◦ γ(β̄′ᾱ/βα) = γ(t/D)−1 ◦ γ(s̄/D)−1 ◦ γ(β̄′/β) ◦ γ(ᾱ/α)

= γ(t/D)−1 ◦ γ(β̄/β) ◦ γ(s/B)−1 ◦ γ(ᾱ/α) = (Σβ) ◦ (Σα) .

So the suspension construction is functorial. The remaining parts of the proposition work as in
the published proof. �

Since the suspension functor takes weak equivalences to isomorphisms, it descends to a unique
functor

Σ : Ho(C) −→ Ho(C)
such that Σ ◦ γ = Σ. Since coproducts in C are coproducts in Ho(C), this induced suspension
functor again preserves coproducts.

Now we recall how exact functors between cofibration categories give rise to exact functors
between the triangulated homotopy categories. A functor F : C −→ D between cofibration
categories is exact if it preserves initial objects, cofibrations, weak equivalences and the partic-
ular pushouts along cofibrations that are guaranteed by axiom (C3). Since F preserves weak
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equivalences, the composite functor γD ◦ F : C −→ Ho(D) takes weak equivalences to isomor-
phisms and the universal property of the homotopy category provides a unique derived functor
Ho(F ) : Ho(C) −→ Ho(D) such that Ho(F ) ◦ γC = γD ◦ F .

We will now explain that for pointed cofibration categories C and D the derived functor Ho(F )
commutes with suspension up to a preferred natural isomorphism

τF : Ho(F ) ◦ Σ
∼=−−→ Σ ◦Ho(F )

of functors from Ho(C) to Ho(D). If A is any object of C, then the cofibration F (iA) : FA −→
F (CA) is a cone since F is exact. Lemma A.3 provides a cone extension of the identity of FA,
i.e., a morphism ᾱ : F (CA) −→ C̄, necessarily a weak equivalence, and an acyclic cofibration
s : C(FA) −→ C̄ such that siFA = ᾱF (iA). The composite in Ho(D)

τF,A : F (ΣA) = F (CA)/(FA)
γ(ᾱ/(FA))−−−−−−−−→ C̄/(FA)

γ(s/(FA))−1

−−−−−−−−−→ Σ(FA)

is then an isomorphism, and independent (by Lemma A.3) of the cone extension (ᾱ, s).
The next proposition supplies the missing justification in Proposition A.14 for why the iso-

morphism τF,A is natural.

Proposition 2. Let F : C −→ D be an exact functor between pointed cofibration categories.
Then the isomorphism τF,A : F (ΣA) −→ Σ(FA) is natural in A.

Proof. Every morphism in Ho(C) is a fraction, i.e., a composite γ(s)−1 ◦γ(α) for two morphisms
α, s in C with common target, and such that s is a weak equivalence. Naturality of the isomor-
phism τF for γ(s) implies naturality for the inverse γ(s)−1, so it suffices to show naturality for
morphisms in the image of the localization functor. In other words, we need to show that the
following square commutes in Ho(C) for every C-morphism α : A −→ B:

F (ΣA)
Ho(F )(Σα) //

τF,A

��

F (ΣB)

τF,B

��
Σ(FA)

ΣHo(F )(γ(α))
// Σ(FB)

To attack this we go back to the definitions. We choose a cone extension

(ᾱ : CA −→ C̄, s : CB −→ C̄)

for α. Then

Ho(F )(Σα) = Ho(F )(γ(s/B)−1 ◦ γ(ᾱ/α))(3)

= Ho(F )(γ(s/B))−1 ◦Ho(F )(γ(ᾱ/α))

= γ((Fs)/(FB))−1 ◦ γ((Fᾱ)/(Fα)) : F (ΣA) −→ F (ΣB) .

Now we choose cone extensions for the identity of FA and for the identity of FB. In particular,
this provides commutative diagrams

FA
iFA //

F (iA)

��

C(FA)

t
��

FB
iFB //

F (iB)

��

C(FB)

u

��
F (CA)

IA

// C̃ F (CB)
IB

// C ′

in D such that t and u are acyclic cofibrations and the morphism

IA ∪ t : F (CA) ∪FA C(FA) −→ C̃
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is a cofibration. Since iFA is a cofibration, so is its cobase change, the canonical morphism from
F (CA) to F (CA) ∪FA C(FA). Hence the morphism IA : F (CA) −→ C̃ is a cofibration.

Since F is exact the morphism Fs : F (CB) −→ F (C̄) is an acyclic cofibration in D. So we
can choose a pushout square in D:

(4)

F (CB)
IB //

Fs ∼
��

C ′

g

��
F (C̄)

J
// D

and the cobase change g is again an acyclic cofibration. Since IA is a cofibration, we can choose
another pushout square in D

(5)

F (CA)
J◦(Fᾱ) //

IA
��

D

h

��
C̃

K
// E

and h is a cofibration as a cobase change of a cofibration. We choose a cone of E, i.e., an acyclic
cofibration µ : E −→ Ĉ with weakly contractible target.

Applying Proposition 1 to the triple of morphisms Fα : FA −→ FB,

µKt : C(FA) −→ Ĉ and µhgu : C(FB) −→ Ĉ

yields the relation

Σ(Fα) = γ((µhgu)/(FB))−1 ◦ γ((µKt)/(Fα))(6)

= γ((gu)/(FB))−1 ◦ γ((µh)/(FB))−1 ◦ γ((µK)/(Fα)) ◦ γ(t/(FA)) .

So we conclude that

τF,B ◦ (Ho(F )(Σα)) (3) = γ(u/(FB))−1 ◦ γ(IB/(FB)) ◦ γ((Fs)/(FB))−1 ◦ γ((Fᾱ)/(Fα))

(4) = γ(u/(FB))−1 ◦ γ(g/(FB))−1 ◦ γ(J/(FB)) ◦ γ((Fᾱ)/(Fα))

= γ((gu)/(FB))−1 ◦ γ((µh)/(FB))−1 ◦ γ((µh)/(FB)) ◦ γ((J(Fᾱ))/(Fα))

(5) = γ((gu)/(FB))−1 ◦ γ((µh)/(FB))−1 ◦ γ((µK)/(Fα)) ◦ γ(IA/(FA))

(6) = Σ(Fα) ◦ γ(t/(FA))−1 ◦ γ(IA/(FA))

= Σ(Ho(F )(γ(α))) ◦ τF,A
as morphisms

F (ΣA) = F (CA/A) −→ C(FB)/(FB) = Σ(FB)

in the homotopy category of D. �


