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REALIZABILITY OF MODULES OVER TATE COHOMOLOGY

DAVID BENSON, HENNING KRAUSE, AND STEFAN SCHWEDE

Abstract. Let k be a field and let G be a finite group. There is a canon-
ical element in the Hochschild cohomology of the Tate cohomology γG ∈
HH3,−1Ĥ∗(G, k) with the following property. Given a graded Ĥ∗(G, k)-module

X, the image of γG in Ext3,−1

Ĥ∗(G,k)
(X,X) vanishes if and only if X is isomorphic

to a direct summand of Ĥ∗(G,M) for some kG-module M .
The description of the realizability obstruction works in any triangulated

category with direct sums. We show that in the case of the derived category of
a differential graded algebra A, there is also a canonical element of Hochschild
cohomology HH3,−1H∗(A) which is a predecessor for these obstructions.

1. Introduction

This paper begins with a study of the following question. Let k be a field and
let G be a finite group. Given a graded module X over the Tate cohomology
ring Ĥ∗(G, k), how do we decide whether there exists a kG-module M such that
Ĥ∗(G,M) ∼= X?

We do not give a complete answer to this question. However, we do answer the
weaker question of how to decide whether there exists a kG-module M such that
X is isomorphic to a direct summand of the graded Ĥ∗(G, k)-module Ĥ∗(G,M).

Theorem 1.1. Let k be a field, G a finite group, and let Ĥ∗(G) denote the graded
Tate cohomology algebra of G over k. Then there exists a canonical element in
Hochschild cohomology of Ĥ∗(G)

γG ∈ HH3,−1Ĥ∗(G),

such that for any graded Ĥ∗(G)-module X, the following are equivalent:

(i) The image of γG in Ext3,−1

Ĥ∗(G)
(X,X) is zero.

(ii) There exists a kG-module M such that X is a direct summand of the graded
Ĥ∗(G)-module Ĥ∗(G,M).

Theorem 1.1 is really a lot more general; finite groups are irrelevant, except
inasmuch as they allow us to form complete resolutions. Complete resolutions are
defined in general for modules over a self-injective algebra, and this is the context in
which we prove our result; see Theorem 6.9. For further directions of generalization,
see Remark 6.11.
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The program for proving Theorem 1.1 breaks up into two parts:

(A) There is a general obstruction theory for the realization question in trian-
gulated categories. It produces classes of the form κ(f) ∈ Ext3,−1

E (X,Y )
which are the obstructions for a homomorphism f : X → Y of abstract
E-modules to factor through a realizable module.

(B) In certain cases, the realizability obstructions κ(f) are equal to the image
of some Hochschild cohomology class γ ∈ HH3,−1E via the relation κ(f) =
f ∪ γ. The global class γ depends on a ‘model’ for the given triangulated
category. We provide such a global class in two cases, namely for the derived
category of a differential graded algebra and the stable module category of
a self-injective algebra (for example, the group algebra of a finite group).

In more detail, the plan of the paper is as follows.
(A) Let T be a triangulated category with infinite sums; two relevant cases

are T = D(A), the derived category of a differential graded algebra A, and T =
StMod-L, the stable module category of a self-injective k-algebra L. Let N be a
compact object in T , i.e., T (N,−) commutes with sums. Let E = T (N,N)∗ denote
the graded endomorphism ring of N . If M is any object in T , then T (N,M)∗ is
a graded right E-module by composition. We call an E-module realizable if it is
isomorphic to T (N,M)∗ for some object M .

There is a general obstruction theory for deciding which graded E-modules are
realizable. Given a graded E-module X , there is an infinite sequence of classes

κn ∈ Extn,2−nE (X,X)

for n ≥ 3, such that each successive class κn is defined if the previous one κn−1

vanishes, and κn depends on a choice. A graded E-module X is realizable if and
only if successive choices can be made so that all classes κn are trivial. We do
not know of a published source where this obstruction theory is worked out in the
generality of triangulated categories, so for the convenience of the reader we review
it in Appendix A.

In Sections 2 and 3 we explore the very first in the sequence of realizability
obstructions; this class lies in Ext3,−1

E (X,X), it does not depend on any choices,
and we denote it κ(X). In Section 2 we warm up by considering the important
special case of modules over the Tate cohomology algebra of a finite group. In
Section 3 we recall how κ(X) can be defined in a general triangulated category T ;
we examine its naturality properties, and we show that κ(X) vanishes if and only
if X is isomorphic to a direct summand of a realizable E-module. More generally,
we define a map

κ : HomE(X,Y ) −→ Ext3,−1
E (X,Y ),

natural in both variables, with the following property:

Theorem 1.2. The class κ(f) ∈ Ext3,−1
E (X,Y ) vanishes if and only if the homo-

morphism f : X −→ Y factors through a realizable E-module.

This theorem is proved as Theorem 3.7. We do not know if the higher obstruc-
tions κn to realizing a graded E-module also have an explicit interpretation.

(B) The main point of this paper is that in certain cases the realizability obstruc-
tion κ(f) is equal to the image of some Hochschild cohomology class γ ∈ HH3,−1E
via the relation κ(f) = f ∪ γ. We do not believe that such a global class exists for
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an arbitrary triangulated category; the class γ depends on a ‘model’ for the given
triangulated category.

The relevant Hochschild cohomology class of bidegree (3,−1) is defined for any
differential graded algebra A over a field k; we refer to this as the canonical class
of A and denote it

γA ∈ HH3,−1(H∗A) .

The ground field k is usually fixed and omitted from the notation, but Hochschild
cohomology is always relative to the field k. We review the definition of γA in
Section 5. For any graded k-algebra Λ and graded right Λ-modules X and Y , there
is a cup product pairing

∪ : HomΛ(X,Y ) ⊗ HH∗,∗Λ −→ Ext∗,∗Λ (X,Y ) ;

see (4.4). In the context where T = D(A) is the unbounded derived category of a
differential graded algebra A and N is the free dg-A-module of rank one, we have a
canonical isomorphism of graded k-algebras D(A)(A,A)∗ ∼= H∗A. The obstruction
κ(f) of part (A) and the canonical class γA are linked via the cup product pairing
for Λ = H∗A, the cohomology algebra of A:

Theorem 1.3. Let A be a differential graded k-algebra and let γA be its canonical
Hochschild cohomology class. For a morphism f : X −→ Y of graded H∗A-modules,
the realizability obstruction κ(f) ∈ Ext3,−1

H∗(A)(X,Y ), constructed from the derived
category D(A) of differential graded A-modules, is equal to the class f ∪ γA.

This theorem reappears as Theorem 6.2, and we prove it in Section 9. The
second context in which there is a universal predecessor to the obstructions κ(f)
is T = StMod-L, the stable module category of a self-injective k-algebra L (for
example L = kG, the group algebra of a finite group G). We reduce the case of
stable module categories to the previous theorem using the endomorphism dga of
a complete resolution; see Section 6.4. The result is stated as Theorem 6.9, which
has Theorem 1.1 as a special case.

In Sections 7 and 8 we work out some examples involving Tate cohomology of
finite groups. For finite cyclic groups of prime power order, it turns out that the
class γ is equal to zero except in just one case, namely that of the cyclic group of
order 3 in characteristic 3. In this case, the element γ picks up the nontrivial Massey
triple products of nilpotent elements of cohomology. We also discuss the Klein four
group in characteristic two, where elements of Tate cohomology of negative degree
have to be used in order to show that γ is nonzero.

In Section 8, we use transfer and restriction to show how to reduce from a
general finite group G to a Sylow p-subgroup P , where p is the characteristic of k.
Theorem 8.3 gives the explicit formula γG = tr∗(res∗(γP ))/[G : P ]. We then use
this to discuss groups with cyclic Sylow p-subgroups.

The Hochschild cohomology class γA is not at all new, and it has come up
in several other contexts before. The class is the first piece of the A∞-structure
on the cohomology H∗A. The concept of an A∞-algebra was introduced by Stash-
eff [38] while studying higher order associativity conditions on H-spaces; Kadeishvili
showed that the cohomology of any differential graded algebra A has an A∞-
structure, unique up to (non-canonical) isomorphism, which isA∞-quasi-isomorphic
to A [25]. Hence the entire A∞-structure on H∗A recovers the quasi-isomorphism
type of A. Kadeishvili also showed that specifying an A3-structure on an associative
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graded k-algebra Λ amounts to choosing a Hochschild (3,−1)-cocycle of Λ, and that
the isomorphisms classes of such A3-structures are in bijective correspondence with
classes in HH3,−1Λ [26]. The class γA contains the information about Massey triple
products in the cohomology of the dga A; see Remark 5.10. For an introduction to
A∞-algebras we recommend [29].

Berrick and Davydov [11] use the canonical Hochschild class to obtain multiplica-
tive information about the cohomology of the total space in a spherical fibration.
A generalization of the class γA has been studied by Baues and coauthors [2], [3],
[4]; their class, called the ‘universal Toda bracket’, lies in the (3,−1)-cohomology
group of an appropriate homotopy category.

For simplicity we restrict our attention to algebras over a field k. However, the
theory can be generalized to differential graded algebras A over a commutative
ground ring k, as long as the cohomology algebra H∗A is dimensionwise projective
over k. In that situation the construction of the class γA carries over and Theorem
1.3 holds as stated.

1.4. Notations and conventions. Throughout the paper, k is a fixed ground
field, and ⊗ is short for the tensor product over k. Whenever convenient, we shall
write a tensor product λ1 ⊗ · · · ⊗ λn as an n-tuple (λ1, . . . , λn).

When we talk about modules, we always mean right modules. We denote by
Mod-L the category of all (not necessarily finitely generated) right modules over a k-
algebra L. Suppose that L is a Frobenius algebra, i.e., that the classes of projective
and injective L-modules coincide. We write StMod-L for the stable category of L-
modules. The objects in this category are the same as in Mod-L, but the morphisms
are given by

HomL(N,M) = HomL(N,M)/PHomL(N,M),

where PHomL(N,M) is the k-linear subspace consisting of homomorphisms which
factor through some projective module. As usual we denote by ΩM the syzygy
module of an L-module M , i.e., the kernel of an epimorphism P →M with projec-
tive source; Ω becomes a functor on the level of the stable module category. The
category StMod-L is a triangulated category, with shift given by the inverse of Ω
and where the triangles come from short exact sequences in Mod-L (see for example
[24], or [13, Thm. 5.6] in the case of group algebras).

If V is a Z-graded k-module, we write V [n] for the graded k-module with V [n]i =
V n+i. If V supports a differential d : V i −→ V i+1, then the differential on V [n] is
given by (−1)nd. If V and W are graded k-modules, we write

Homn
k (V,W ) = Homk(V,W [n]) =

∏
j

Homk(V j ,Wn+j)

for the space of graded k-module maps of degree n, so that Hom∗k(V,W ) is also a
graded k-module. If V and W support a differential, then the differential

d : Homn
k (V,W ) −→ Homn+1

k (V,W )

is given by
d(f)(v) = d(f(v))− (−1)nf(d(v)).

Similarly, we write (V ⊗W )n for
⊕

i+j=n V
i ⊗W j . So V ⊗W is again a graded

k-module. If V and W support differentials, then the differential

d : (V ⊗W )n −→ (V ⊗W )n+1
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is given by
d(v ⊗ w) = d(v) ⊗ w + (−1)|v|v ⊗ d(w).

Cohomology of graded modules over a graded algebra is bigraded; the first in-
dex gives the cohomological degree and the second gives the internal degree. For
example, given graded modules V and W over a graded algebra Λ,

Exts,tΛ (V,W ) = ExtsΛ(V,W [t]).

So an element in Ext3,−1
Λ (V,W ) is represented by an exact sequence of graded

Λ-modules
0 −→W [−1] −→ X2 −→ X1 −→ X0 −→ V −→ 0.

In a triangulated category T , we write T (N,M)n = T (N,M [n]), where N [n] is
the n-fold shift of N . Then T (N,N)∗ is a graded ring and T (N,M)∗ forms a graded
right T (N,N)∗-module under composition. For general background on derived and
triangulated categories, see SGA4 1

2 [18] (Appendix by Verdier), Gelfand and Manin
[21], Verdier [40], and Weibel [41]. For background on unbounded complexes, see
Spaltenstein [37].

2. A realizability obstruction in stable module categories

We fix a field k and a finite groupG, and we write Ĥ∗(G) for the Tate cohomology
of G with coefficients in k. In this section, given a graded Ĥ∗(G)-module X , we
define an obstruction

κ(X) ∈ Ext3,−1

Ĥ∗(G)
(X,X) = Ext3

Ĥ∗(G)
(X,X [−1]) .

We prove in Theorem 2.3 that κ(X) = 0 if and only if X is isomorphic to a direct
summand of an Ĥ∗(G)-module of the form Ĥ∗(G,M), for some kG-module M . In
Section 6.4 we define the canonical Hochschild cohomology class

γG ∈ HH3,−1 Ĥ∗(G)

and show that κ(X) is the image of γG under the natural map from Hochschild
cohomology to Ext.

Construction 2.1. Let X be a graded Ĥ∗(G)-module, and let

F1
ρ−→ F0 −→ X −→ 0

be the beginning of a free resolution of X over Ĥ∗(G). In other words, each of F0

and F1 is a direct sum of copies of Ĥ∗(G), with degree shifts as necessary to hit
generators and relations for X .

The Tate cohomology functor Ĥ∗(G,−) distributes over direct sums. Since

Ĥ∗(G,Ωnk) ∼= Ĥ∗(G)[−n],

we can find kG-modules R0 and R1, each a direct sum of modules of the form Ωnk,
n ∈ Z, such that Ĥ∗(G,R0) ∼= F0 and Ĥ∗(G,R1) ∼= F1. Furthermore, there is a
map α : R1 −→ R0 of kG-modules such that

Ĥ∗(G,R1)
α∗ //

∼=
��

Ĥ∗(G,R0)

∼=
��

F1 ρ
// F0
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commutes. By adding an injective (= projective) module to R0 if necessary, we can
assume that α is injective. We let B denote the cokernel of α : R1 −→ R0. We get
a long exact sequence in Tate cohomology

· · · −→ Ĥ∗(G,B)[−1] −→ Ĥ∗(G,R1) α∗−−→ Ĥ∗(G,R0) −→ Ĥ∗(G,B) −→ · · · .
Since X is identified with the cokernel of the map α∗, a piece of this long exact
sequence is the exact sequence of Ĥ∗(G)-modules

(2.2) 0 −→ X [−1] −→ Ĥ∗(G,B)[−1] −→ F1
ρ−→ F0 −→ X −→ 0 .

We define κ(X) as the Yoneda-class of this exact sequence in Ext3,−1

Ĥ∗(G)
(X,X). We

will show in Proposition 3.4 (in the more general context of triangulated categories)
that the class κ(X) is independent of the choice of resolution ρ : F1 → F0 and the
choice of the map α realizing it.

Theorem 2.3. The following are equivalent:
(i) κ(X) = 0 in Ext3,−1

Ĥ∗(G)
(X,X).

(ii) The Ĥ∗(G)-module X is isomorphic to a direct summand of Ĥ∗(G,M) for
some kG-module M .

Proof. In the exact sequence (2.2) which represents κ(X), the modules F1 and F0

are projective. So the Yoneda class of the sequence is trivial if and only if the
monomorphism X −→ Ĥ∗(G,B) has a left inverse. So if (i) holds, then X is a
direct summand of the realizable module Ĥ∗(G,B).

Conversely, since the construction of κ(X) is additive in X , we may assume that
X = Ĥ∗(G,M). Then the map F0 −→ X is realized by a map β : R0 −→M whose
composite with α : R1 −→ R0 is trivial in Tate cohomology. Since R1 is a sum of
modules of the form Ωnk, the composite map βα : R1 −→ M is zero in the stable
category of kG-modules. So after subtracting a map factoring through an injective
(= projective) module, if necessary, β : R0 −→M factors through the cokernel of α
and gives a map β̄ : B → M . The induced map β̄∗ : Ĥ∗(G,B) −→ Ĥ∗(G,M) = X

is a retraction to the monomorphism X −→ Ĥ∗(G,B), so the exact sequence (2.2)
represents the trivial element in Ext3,−1

Ĥ∗(G)
(X,X). �

Theorem 2.3 is a special case of a similar theorem which works in a more general
context of triangulated categories, see Theorem 3.7 below.

Example 2.4 (Cyclic modules over cohomology algebras). Let ζ ∈ Ĥn(G) be
a non-trivial Tate cohomology class of dimension n. Then ζ is represented by
a surjective kG-linear map ζ̂ : Ωnk → k. The kernel of ζ̂ is denoted Lζ; it is
independent of the choice of representative ζ̂ up to isomorphism in the stable module
category. The role of the module B in the construction of κ(X) is now played by
Ω−1Lζ. Applying Tate cohomology to the short exact sequence

0 −→ Lζ
ι−→ Ωnk

ζ̂−→ k −→ 0

gives an exact sequence of Tate cohomology modules

0 −→ Ĥ∗(G)/(ζ)[−1] −→ Ĥ∗(G,Lζ)
ι∗−→ Ĥ∗(G)[−n]

·ζ−→ Ĥ∗(G) −→ Ĥ∗(G)/(ζ) −→ 0
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which represents the obstruction class of the cyclic module Ĥ∗(G)/(ζ). Hence a
cyclic Tate cohomology module Ĥ∗(G)/(ζ) is a summand of a realizable module
if and only if Ĥ∗(G)/(ζ)[−1] splits off Ĥ∗(G,Lζ). If ζ is not a zero divisor, then
ι∗ is trivial, the sequence splits, and Ĥ∗(G)/(ζ) is actually realizable, namely by
Ω−1Lζ. For an explicit example where the Tate cohomology of Lζ does not split
off a shifted copy of Ĥ∗(G)/(ζ), one may take G = C3, the cyclic group of order 3
over a field k of characteristic 3. For ζ we take any non-trivial 1-dimensional class
in Ĥ1(C3, k); this example is discussed in more detail in 7.6.

3. A realizability obstruction in triangulated categories

In this section, we generalize the obstruction κ(X) of Section 2 to triangulated
categories and investigate its naturality properties. Let T be a triangulated cate-
gory with arbitrary direct sums and let N be a compact object in T . In other words,
T (N,−) commutes with direct sums. Denote by E = T (N,N)∗ the graded endo-
morphism algebra of N in T . If M is any object in T then T (N,M)∗ is a graded
E-module by composition. We call an E-module realizable if it is isomorphic to
T (N,M)∗ for some object M .

Given two graded right E-modules X and Y , we construct an additive map

κ : HomE(X,Y ) −→ Ext3,−1
E (X,Y )

which measures whether a morphism of graded E-modules factors through a real-
izable module. The map κ is actually a natural transformation of functors of two
variables, see Remark 3.9 (i).

Definition 3.1. A T -presentation of an E-module X consists of a distinguished
triangle

(3.2) B[−1] δ−→ R1
α−→ R0

π−→ B

in T together with an epimorphism of graded E-modules ε : T (N,R0)∗ → X such
that the sequence

T (N,R1)∗ α∗−−→ T (N,R0)∗ ε−→ X −→ 0

is exact. We say that an object R of T is N -free if R is isomorphic to a direct sum
of shifted copies of N . The point of this definition is that whenever R is N -free
and M ∈ T is arbitrary, then the map

T (N,−)∗ : T (R,M) −→ HomE(T (N,R)∗, T (N,M)∗)

is an isomorphism; in other words: E-module homomorphisms from T (N,R)∗ to
T (N,M)∗ are uniquely realizable (this uses the compactness of N). We call a T -
presentation N -special if R0 and R1 are N -free; if N = k, we drop it from the
notation and just refer to a special T -presentation.

Given a T -presentation

(B[−1] δ−→ R1
α−→ R0

π−→ B, ε : T (N,R0)∗ → X)

we can apply the functor T (N,−)∗ to the triangle and get an exact sequence of
graded E-modules

(3.3) 0→ X [−1]
η[−1]−−−→ T (N,B)∗[−1] δ∗−→ T (N,R1)∗ α∗−−→ T (N,R0)∗ ε−→ X → 0 ;
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the monomorphism η : X → T (N,B)∗ is determined by η ◦ ε = π∗. We refer to this
sequence as the associated extension of the T -presentation.

Proposition 3.4. Let X and Y be graded E-modules.
(i) There exists an N -special T -presentation of X.
(ii) The Yoneda-class in Ext3,−1

E (X,X) of the associated extension is indepen-
dent of the T -presentation of X; we denote this class by κ(X).

(iii) Let η : X → T (N,B)∗ be the monomorphism associated to an N -special
T -presentation of X. Then for any object M of T and any homomorphism
of graded E-modules f : X −→ T (N,M)∗ there exists a map β : B −→ M
in T such that f = β∗ ◦ η.

(iv) (Additivity) We have

κ(X ⊕ Y ) = κ(X)⊕ κ(Y ) in Ext3,−1
E (X ⊕ Y,X ⊕ Y ) .

(v) (Naturality) For every n ≥ 0 and every class β ∈ Extn(X,Y ) we have

β ◦ κ(X) = (−1)n κ(Y ) ◦ β
in the group Extn+3,−1

E (X,Y ), where the circle denotes Yoneda composition.
We denote this class by κ(β).

Proof. (i) We start by choosing the beginning of a free resolution of a given E-
module X

F1
ρ−→ F0

ε−→ X −→ 0 .
Every free E-module can be realized in T by a sum of suitable shifts of the object
N , i.e., by an N -free object. Moreover, homomorphisms between N -free objects
can be uniquely realized in T . So we can choose a morphism α : R1 −→ R0 between
N -free objects in T which induces ρ : F1 → F0 after applying the functor T (N,−)∗.
Then we complete α to a distinguished triangle.

(ii) Let

(B[−1] δ−→ R1
α−→ R0

π−→ B, ε : T (N,R0)∗ → X)
be a fixed N -special T -presentation of X , and suppose that

(B′[−1] δ′−→ R′1
α−→ R′0

π′−→ B′, ε′ : T (N,R′0)∗ → X)

is another T -presentation of X . In the commutative diagram of E-modules

T (N,R1)∗
α∗ //

��
�
�
�

T (N,R0)∗ ε //

��
�
�
� X // 0

T (N,R′1)∗
α′∗

// T (N,R′0)∗
ε′

// X // 0

with exact rows, the vertical arrows are constructed using the standard lifting
argument. Since R1 and R0 are N -free, the left square can be uniquely realized
in the triangulated category T , and can then be completed (non-canonically) to a
map of triangles

B[−1] δ //

f2[−1]

��

R1
α //

f1

��

R0
π //

f0

��

B

f2

��

B′[−1]
δ′

// R′1
α′

// R′0
π′

// B′
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This in turn gives rise to a map of extensions

0 // X [−1] // T (N,B)∗[−1]
δ∗ //

��

T (N,R1)∗
α∗ //

��

T (N,R0)∗ ε //

��

X // 0

0 // X [−1] // T (N,B′)∗[−1]
δ′∗

// T (N,R′1)∗
α′∗

// T (N,R′0)∗
ε′

// X // 0

which proves that the associated classes in Ext3,−1
E (X,X) are equal.

(iii) Since R0 is N -free, the composite map

T (N,R0)∗ ε−→ X
f−→ T (N,M)∗

is realized by a unique map h : R0 −→ M in T . The composite hα : R1 −→ M
induces the zero map T (N,−)∗, so it is trivial in T since R1 is N -free. Hence h
can be extended over a map β : B →M such that βπ = h. The formula β∗ ◦ η = f
holds since it holds after composition with the epimorphism ε.

(iv) The functor T (N,−)∗ commutes with direct sums and the direct sum of
two distinguished triangles is again a distinguished triangle. So we obtain a T -
presentation of X ⊕ Y as the direct sum of T -presentations of X and Y . With
these choices, the associated extension of the direct sum T -presentation of X ⊕ Y
is the direct sum of the associated extensions which represent κ(X) and κ(Y ).

(v) The case n = 0 — i.e., naturality for homomorphisms of graded E-modules
— is very similar to part (ii) and is therefore omitted. For n ≥ 2, every class in
ExtnE(X,Y ) is a Yoneda product of Ext-classes of dimension 1, involving possibly
different modules, so it remains to treat the case n = 1. Let

(B[−1] δ−→ R1
α−→ R0

π−→ B, ε : T (N,R0)∗ → X)

be an N -special T -presentation of X , and let ΩX denote the kernel of the epimor-
phism ε. Denote by ω ∈ Ext1

E(X,ΩX) the class of the extension

(3.5) 0 −→ ΩX −→ T (N,R0)∗ ε−→ X −→ 0 .

Since T (N,R0)∗ is a projective E-module, an arbitrary class β ∈ Ext1
E(X,Y ) is

of the form β = f ◦ ω for some homomorphism f : ΩX → Y . Naturality of κ for
homomorphisms is already taken care of, so we are reduced to checking naturality
for the special one-dimensional Ext-class ω.

Denote by λ ∈ Ext2,−1
E (ΩX,X) the class of the extension

(3.6) 0 −→ X [−1] −→ T (N,B)∗[−1] δ∗−→ T (N,R1)∗ ε̄−→ ΩX −→ 0 .

Splicing these two sequences (3.5) and (3.6) gives the associated extension of the
chosen T -presentation of X , so we have κ(X) = λ ◦ ω.

Rotating the triangle gives a T -presentation of ΩX :

(R0[−1]
−π[−1]−−−−−→ B[−1] δ−→ R1

α−→ R0, ε̄ : T (N,R1)∗ → ΩX)

(note the sign change which occurs when rotating a distinguished triangle). The
extension associated to this T -presentation of ΩX has the form

0 −→ ΩX [−1] −→ T (N,R0)∗[−1]
−π∗[−1]−−−−−→

T (N,B)∗[−1] δ∗−→ T (N,R1)∗ ε̄−→ ΩX −→ 0 .
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This is the splice of the sequences (3.5) and (3.6) in the other order, except for the
sign in front of the map π∗[−1]. So we have κ(ΩX) = −ω ◦λ. Combining this with
the previous decomposition of κ(X) we obtain

ω ◦ κ(X) = ω ◦ λ ◦ ω = −κ(ΩX) ◦ ω . �
Theorem 3.7. Let T be a triangulated category with infinite sums, N a compact
object in T and E = T (N,N)∗ the graded endomorphism ring of N . Let

κ : HomE(X,Y ) −→ Ext3,−1
E (X,Y )

be the map defined in part (v) of Proposition 3.4 (for the case n = 0). Then
the kernel of κ consists precisely of those morphisms of graded E-modules which
factor through an E-module of the form T (N,M)∗ for some object M ∈ T . In
particular, an E-module X is isomorphic to a direct summand of a module of the
form T (N,M)∗ if and only if κ(X) = 0.

Proof. Choose an N -special T -presentation

(B[−1] δ−→ R1
α−→ R0

π−→ B, ε : T (N,R0)∗ → X)

of X and let f : X −→ Y be a homomorphism of E-modules. Since the E-modules
T (N,R1)∗ and T (N,R0)∗ are free, the extension f ◦κ(X) represents the trivial class
in Ext3,−1

E (X,Y ) if and only if the map f can be extended over the monomorphism
η : X −→ T (N,B)∗. So if κ(f) = 0, then f factors through a realizable module,
namely T (N,B)∗.

For the converse suppose that there is an object M ∈ T and a factorization

X
i−→ T (N,M)∗

j−→ Y

of f . Part (iii) of Proposition 3.4 shows that i extends over the monomorphism
η : X → T (N,B)∗. Hence the extension i ◦ κ(X) represents the trivial element in
Ext3,−1

E (X, T (N,M)∗) and we conclude that κ(f) = j ◦ (i ◦ κ(X)) is trivial. �
Corollary 3.8. Suppose that the graded ring E is sparse in the following sense:
there exists a number N ≥ 2 such that E is concentrated in dimensions divisible by
N . Then every graded E-module is a direct summand of a realizable module.

Proof. Suppose that E is sparse with period N , and let X be any graded E-module.
For every i ∈ Z, the elements of X in dimensions congruent to i modulo N form an
E-submodule X(i) of X . The module X(i) is concentrated in dimensions congruent
to i modulo N , whereas X(i)[−1] is concentrated in dimensions congruent to i+ 1
modulo N . Since N ≥ 2, every extension, of any length, of X(i) by X(i)[−1] is
trivial. So the class κ(X(i)) is trivial. Since X is the direct sum of the E-modules
X(i) for i = 1, . . . , N , we get κ(X) = 0 by additivity. �
Remarks 3.9. (i) It is a formal consequence of part (v) of Proposition 3.4 that the
map

κ : ExtnE(X,Y ) −→ Extn+3
E (X,Y [−1])

is a natural transformation of functors in two variables, i.e., for β ∈ ExtnE(X,Y )
and γ ∈ ExtmE (Y, Z) we have

γ ◦ κ(β) = κ(γ ◦ β) = κ(γ) ◦ β in Extm+n+3
E (X,Z[−1]) .

(ii) Let X be a graded E-module and denote by ΩX the kernel of any epimor-
phism P → X from a projective E-module, and denote by Ω−1X the cokernel of
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any monomorphism X → I to an injective E-module. We claim that if κ(X) = 0,
then the classes κ(ΩX) and κ(Ω−1X) are also trivial; we expect that the con-
verse does not hold in general. Indeed, assume that κ(X) vanishes and denote by
ω ∈ Ext1

E(X,ΩX) the class of the extension

0 −→ ΩX −→ P −→ X −→ 0 .

Using Proposition 3.4 (v) we have κ(ΩX)◦ω = −ω◦κ(X) = 0. Since P is projective,
the map

− ◦ ω : Ext3,−1
E (ΩX,ΩX) −→ Ext4,−1

E (X,ΩX)
is bijective, so κ(ΩX) = 0 as claimed. The argument for Ω−1X is similar, but dual.

(iii) Part (iii) of Proposition 3.4 shows that the realizable E-modules and the
realizable maps form a covariantly finite subcategory of Mod-E. Recall from [1]
that a subcategory C of Mod-E is covariantly finite if every object X in Mod-E
admits a left C-approximation. This is by definition a map X → C with C ∈ C such
that for every map X → C′ with C′ ∈ C there exists a (not necessarily unique)
map C → C′ in C making the diagram

X //

��

C

~~}}}}}}}

C′

commutative.
(iv) Since injective E-modules and morphisms between them are realizable (see

Proposition A.4), the realizable E-modules and the realizable maps also form a
contravariantly finite subcategory of Mod-E, that is, every graded E-module X
admits a right approximation T (N,Q)∗ → X .

(v) The following line of generalization was suggested to us by Beligiannis. We
consider the obstruction κ based on a single compact object N , but it is also of
interest for a family of compact objects. Let T be a compactly generated trian-
gulated category and denote by C the full subcategory of compact objects. We
view C as a ring with several objects, and the functor T → Mod-C which sends
M to T (−,M)|C plays the role of T (−, N)∗. The question of which C-modules
are realizable is precisely the question of to what extent Brown representability for
homology theories holds; see the paper of Christensen, Keller, and Neeman [15] for
a recent discussion. The analogue of Theorem 3.7 for families of compact objects
provides an answer to this question.

3.10. Relation to (3,−1)-periodicity for coherent functors. The natural
transformation κ is closely related to the (3,−1)-periodicity in the graded abelian
category of coherent functors from a triangulated category to abelian groups ob-
served by Freyd [20, Sec. 8]. This may be described as follows. If C is an additive
category, a functor F : Cop −→ Ab into the category of abelian groups is said to be
coherent if there is an exact sequence

C(−,M) −→ C(−, N) −→ F −→ 0

(the left natural transformation is then induced by a unique morphism M → N ,
by the Yoneda lemma). In particular a coherent functor takes sums to products,
and the natural transformations between two coherent functors form a set, and
the coherent functors Cop −→ Ab form an additive category with cokernels which
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we denote by Ĉ. The category C can be regarded as a subcategory of Ĉ via the
Yoneda functor C −→ Ĉ which sends M to C(−,M). In this context, Yoneda’s
lemma says that the projective objects in Ĉ are the representable functors, namely
those isomorphic to objects in the image of the Yoneda functor. Note that if C
has arbitrary coproducts, then Ĉ is a cocomplete category and the Yoneda functor
preserves coproducts. Moreover, if C is triangulated, then Ĉ is abelian.

Theorem 3.11. Let T be a triangulated category with infinite sums. Let F and G
be coherent functors and let n ≥ 0. Then there is a natural map

(3.12) ν : ExtnT̂ (F,G) −→ Extn+3

T̂ (F,G[−1])

which is an isomorphism for n > 0. For n = 0 the map

ν : HomT̂ (F,G) −→ Ext3
T̂ (F,G[−1])

is an epimorphism with kernel equal to the maps which factor through a repre-
sentable functor.

Proof. Choose a presentation

T (−,M1) −→ T (−,M0) −→ F −→ 0.

Completing M1 −→M0 to a triangle M0[−1] −→M2 −→M1 −→M0 in T gives a
projective resolution P∗

· · · −→ T (−,M2[−1]) −→ T (−,M1[−1]) −→ T (−,M0[−1])

−→ T (−,M2) −→ T (−,M1) −→ T (−,M0)

of F in T̂ . Notice that the shift functor of the triangulated structure induces a
map of complexes from HomT̂ (P∗, G) to HomT̂ (P∗, G[−1]) which shifts degrees by
three, and which is an isomorphism in positive degrees. �

Now let N be a compact object in T ; as before, let E = T (N,N)∗ denote the
graded endomorphism ring of N . Evaluation at the shifts of N gives an exact
functor

T̂ −→ Mod-E , F 7−→ F (N)∗ .
In more detail, for i ∈ Z we set F (N)i = F (N [−i]) and we note that E acts
on F (N)∗ through F since F is an additive functor. The representable coherent
functors (alias the projective objects in T̂ ) evaluate to the realizable E-modules:
for an object M ∈ T we have T (−,M)(N)∗ = T (N,M)∗.

The relationship between Freyd’s map (3.12) and the obstruction κ can now be
illustrated by a commutative diagram: for two coherent functors F and G, the
following diagram commutes, essentially by the definitions of ν and κ:

(3.13) ExtnT̂ (F,G) ν //

��

Extn+3,−1

T̂
(F,G)

��

ExtnE(F (N)∗, G(N)∗) κ
// Extn+3,−1

E (F (N)∗, G(N)∗)

The vertical maps are induced by evaluation at N . Even though in general not
every E-module is isomorphic to an E-module of the form T (N,M)∗, they all arise
from coherent functors. More is true: the evaluation functor has a left adjoint

f : Mod-E −→ T̂
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which admits a natural isomorphism of graded E-modules

ηX : (fX)(N)∗
∼=−→ X.

The coherent functor fX can be calculated from any T -presentation

(B[−1] −→ R1
α−→ R0 −→ B, ε : T (N,R0)∗ → X)

of X as the cokernel of α∗ : T (−, R1) → T (−, R0). It is straightforward to
check that X 7→ fX is actually functorial and independent of the choice of the
T -presentation. The map ε : T (N,R0)∗ → X induces an isomorphism of graded
E-modules (fX)(N)∗ ∼= X , by the defining property of a T -presentation. Com-
bining the commutativity of the diagram (3.13) with the natural isomorphism
ηX : (fX)(N)∗ → X gives the following alternative description of κ.

Corollary 3.14. The realizability obstruction

κ : HomE(X,Y ) −→ Ext3,−1
E (X,Y )

which is defined in Proposition 3.4(v) coincides with the composite

HomE(X,Y )
f−→ HomT̂ (fX, fX) ν−→ Ext3,−1

T̂
(fX, fY )

eval−−→ Ext3,−1
E ((fX)(N)∗, (fY )(N)∗)

η−→ Ext3,−1
E (X,Y ).

4. Review of Hochschild cohomology

Let Λ be a Z-graded algebra over the field k. Suppose further that M is a
graded Λ-Λ-bimodule, with scalars from k acting symmetrically. Then Hochschild
cohomology of Λ with coefficients in M is the cohomology of a certain graded
cochain complex C•,∗(Λ,M) defined by

(4.1) Cn,m(Λ,M) = Homm
k (Λ⊗n,M),

the space of graded k-linear maps from Λ⊗n to M of degree m (as before, tensor
products are taken over k). We index the first grading by a ‘•’ and the second
grading by ‘∗’ since the differential only changes the first of these. So a Hochschild
(n,m)-cochain with coefficients in M is given by a multilinear function from n-
tuples of elements of Λ to M which raise the degree by m. There is a differential
δ : Cn,m(Λ,M)→ Cn+1,m(Λ,M) of bidegree (1, 0) given by

(δϕ)(λ1, . . . , λn+1) = (−1)m|λ1|λ1ϕ(λ2, . . . , λn+1)

+
n∑
i=1

(−1)iϕ(λ1, . . . , λiλi+1, . . . , λn+1) + (−1)n+1ϕ(λ1, . . . , λn)λn+1.

Finally, the Hochschild cohomology groups HH∗,∗(Λ,M) are the cohomology
groups of the complex C•,∗(Λ,M),

HHs,t(Λ,M) = Hs(C•,t(Λ,M)) .

One writes HHs,t(Λ) for HHs,t(Λ,Λ). For example, a class in HH3,−1(Λ) is repre-
sented by a family

m = {mi,j,l : Λi ⊗ Λj ⊗ Λl → Λi+j+l−1}i,j,l∈Z
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of k-linear maps which satisfies the cocycle condition

(−1)|w|w ·m(x, y, z) − m(wx, y,z) + m(w, xy, z)(4.2)

− m(w, x, yz) + m(w, x, y) · z = 0

for all homogenous elements w, x, y, z of Λ. The complex C•,∗(Λ,M) and its coho-
mology groups HH∗,∗(Λ,M) are covariant functors in the Λ-bimodule M . But they
are also contravariant functors in the graded algebra: if α : Γ → Λ is a homomor-
phism of graded k-algebras, we can view a Λ-bimodule M as a Γ-bimodule through
α. Then precomposition with tensor powers of α gives a cochain homomorphism
α∗ : C•,∗(Λ,M)→ C•,∗(Γ,M), hence induced maps in Hochschild cohomology

α∗ : HHs,t(Λ,M)→ HHs,t(Γ,M) .

The second, internal grading in Hochschild cohomology can be traded in for a
shift in the coefficient module, but this shifting involves a possibly unexpected sign.
If Λ and Γ are Z-graded k-algebras and M is a graded Λ-Γ-bimodule, then M [1] is
given by M [1]n = Mn+1 as a graded k-vector space; we use the notation Σm when
we view m ∈ Mn+1 as an element in M [1]n. We make M [1] into a Λ-Γ-bimodule
by setting

(4.3) λ · (Σm) · γ = (−1)|λ|Σ(λmγ) .

Note that the left action of Λ is twisted. With this bimodule structure there is a
natural isomorphism of chain complexes

C•,m(Λ,M) ∼= C•,0(Λ,M [m])

and hence a natural isomorphism of Hochschild cohomology groups

HHs,t(Λ,M) ∼= HHs,0(Λ,M [t]) .

The sign which occurs in (4.3) arises from the identification (i.e., isomorphism
of categories) between right Λ-modules and left modules over the opposite algebra
Λop, where the multiplication in Λop is defined by

λ · λ̄ = (−1)|λ||λ̄| λ̄λ .

A graded right Λ-module M can be viewed as a left Λop-module by setting

m · λ = (−1)|λ||m| λm .

If one defines a shift functor M 7−→ M [1] for right modules by degree-shifting
with action (Σm) · λ = Σ(mλ) (no extra sign), then the sign in (4.3) appears
when translating right Λ-modules into left modules over Λop. The sign can also be
deduced from the Koszul sign convention by assigning the degree 1 to the suspension
symbol Σ.

Next we define the cup product pairing

(4.4) ∪ : HomΛ(X,Y )⊗HH∗,∗Λ −→ Ext∗.∗Λ (X,Y ) .

For the purpose of this paper, elements of Ext groups are represented by exact
sequences, so we describe the cup product pairing from this point of view. To make
the connection, we have to recall the bar complex B(Λ)•, a specific projective Λe-
resolution of Λ; here we write Λe for Λop⊗Λ, so that right Λe-modules are the same
as Λ-Λ-bimodules. The bar complex is given by B(Λ)n = Λ⊗(n+2), with Λe-module
structure given by

(λ0, . . . , λn+1)(µ, µ′) = (−1)|µ||λ0···λn+1| (µλ0, λ1, . . . , λn, λn+1µ
′),
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and with differential defined by

d(λ0, . . . , λn+1) =
n∑
i=0

(−1)i(λ0, . . . , λiλi+1, . . . , λn+1).

For the fact that B(Λ)• is indeed a projective Λe-resolution of Λ, and for other
details, see Cartan and Eilenberg [14], §IX.6. The Hochschild complex C•,0(Λ,M)
is isomorphic to the complex Hom•Λe(B(Λ)•,M); it follows that Hochschild coho-
mology is isomorphic to bimodule Ext-groups,

HHs,t(Λ,M) ∼= ExtsΛe(Λ,M [t]) .

Now suppose that ϕ ∈ Cn,mΛ is a Hochschild cocycle and f : X → Y is a
homomorphism of graded right Λ-modules. Under the identification

C•,m(Λ) ∼= Hom•Λe(B(Λ)•,Λ[m]) ,

the cocycle ϕ corresponds to a bimodule homomorphism ϕ : B(Λ)n → Λ[m] sat-
isfying ϕ ◦ d = 0. We tensor over Λ with the homomorphism f : X → Y and
obtain

f ⊗Λ ϕ : X ⊗ Λ⊗(n+1) ∼= X ⊗Λ B(Λ)n −→ Y ⊗Λ Λ[m] ∼= Y [m] .

This map is part of a diagram of right Λ-modules

0 //
(
X ⊗ Λ⊗(n+1)

) /
Im
(
X ⊗ Λ⊗(n+2)

)
f⊗Λϕ

��

// · · · // X ⊗ Λ // X // 0

Y [m]

in which the upper row is exact. The base change of the upper exact sequence is an
extension of X by Y [m] of length n. The class of this extension in Extn,mΛ (X,Y )
only depends on the cohomology class of the cocycle ϕ, and it defines f ∪ [ϕ].

Remark 4.5. There are other ways to describe the cup product pairing (4.4). The
Hochschild cohomology groups are isomorphic to bimodule Ext-groups, which in
turn can be described as morphisms in the derived category D(Λe) of Λ-bimodules,

HH∗(Λ,M) ∼= Ext∗Λe(Λ,M) ∼= [Λ,M ]∗D(Λe) .

Similarly, Ext groups between two left Λ-modules can be described as morphisms
in the derived category D(Λ) of right Λ-modules. The derived tensor product for
complexes of Λ-modules provides a bi-exact functor

−⊗LΛ − : D(Λ)×D(Λe) −→ D(Λ).

A special case of this is the map

−⊗LΛ − : [X,Y ]∗D(Λ) × [Λ,Λ]∗D(Λe) −→ [X,Y ]∗D(Λ) ,

which is another form of the cup product pairing.
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5. The canonical class of a differential graded algebra

Any differential graded algebra A over a field k gives rise to a canonical class

γA ∈ HH3,−1(H∗A)

in the Hochschild cohomology of the cohomology algebra H∗A. The class in the
Hochschild cohomology of the Tate-cohomology ring Ĥ∗(G, k) is a special case of
this, since the Tate-cohomology has a natural underlying differential graded algebra;
see Section 6.4. For the convenience of the reader, we recall the construction of γA
and we collect some of its properties in this section.

Construction 5.1. Since we are working over a field k, we can choose a quasi-
isomorphism of chain complexes f1 : H∗A −→ A which induces the identity in
cohomology (where we regard H∗A as a complex of k-vector spaces with zero dif-
ferential). This amounts to choosing a representative cocycle for each cohomology
class, in a linear fashion.

Now f1 usually cannot be chosen to commute with multiplication, but at least
it commutes up to coboundaries. So we can choose a k-linear map of degree −1

f2 : H∗A⊗H∗A −→ A

satisfying

(5.2) df2(x, y) = f1(x)f1(y)− f1(xy) .

Then for all homogenous x, y, z ∈ H∗A, the expression

(5.3) f2(x, y)f1(z) − f2(x, yz) + f2(xy, z) − (−1)|x|f1(x)f2(y, z)

is a cocycle in A. We let m : (H∗A)⊗3 −→ H∗A denote the map of degree −1 which
sends x⊗ y ⊗ z to the cohomology class of the expression (5.3).

The above Construction 5.1 depends on some choices, but our next task is to
prove that it determines a Hochschild cohomology class which does not depend on
these choices.

Proposition 5.4. (i) Let A be a differential graded k-algebra and let

fA1 : H∗A −→ A and fA2 : (H∗A)⊗2 −→ A[−1]

be k-linear maps which satisfy (5.2). Then mA as defined by formula (5.3)
is a Hochschild (3,−1)-cocycle of the graded algebra H∗A.

(ii) Let B be another a differential graded k-algebra, let (fB1 , fB2 ) be maps for
B satisfying (5.2) and let mB : (H∗B)⊗3 −→ H∗B[−1] be defined by (5.3)
from (fB1 , f

B
2 ). Suppose that α : H∗A → H∗B is a homomorphism of

graded k-algebras which is induced by some homomorphism of underlying
differential graded k-algebras. Then the Hochschild (3,−1)-cocycles

α ◦mA and mB ◦ α⊗3

are cohomologous in the complex C•,−1(H∗A,H∗B) (where H∗B is a bi-
module over H∗A through α).

Proof. (i) The cocycle condition, i.e., (4.2) for mA, is a straightforward calculation
using (5.2) and (5.3).

(ii) Suppose that ρ : A→ B is a homomorphism of differential graded k-algebras
which induces α = ρ∗ : H∗A→ H∗B on cohomology. The maps fB1 ◦ ρ∗ and ρ ◦ fA1
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are chain maps from H∗A (with trivial differential) to B, which induce the same
map on cohomology; hence there is a k-linear map

s : H∗A −→ B

of degree −1 which satisfies

(5.5) ds = fB1 ◦ ρ∗ − ρ ◦ fA1 .

Another direct calculation shows that the expression

ρ(fA2 (x, y)) − fB2 (ρ∗(x), ρ∗(y)) − s(xy)(5.6)

+ (−1)|x|ρ(fA1 (x))s(y) + s(x)fB1 (ρ∗(y))

is a cocycle in B for all x, y ∈ H∗A. So we can define t ∈ C2,−1(H∗A,H∗B) by
sending x⊗ y ∈ (H∗A)⊗2 to the cohomology class of the expression (5.6). A final,
somewhat lengthy calculation then yields

ρ∗ ◦mA + ∂t = mB ◦ (ρ∗)⊗3

in the Hochschild complex of H∗A with coefficients in H∗B[−1]. �

Corollary 5.7. (i) The Hochschild cohomology class represented by m as in
(5.3) is independent of the choices of the maps f1 and f2. We denote this
Hochschild cohomology class by

γA ∈ HH3,−1(H∗A) .

(ii) Let A and B be differential graded k-algebras, and let α : H∗A→ H∗B be
induced by some homomorphism of underlying differential graded algebras.
Then the canonical classes are related by the formula

α∗(γA) = α∗(γB) in HH3,−1(H∗A,H∗B)

(where H∗B is a bimodule over H∗A through α).
(iii) If ρ : A −→ B is a quasi-isomorphism of differential graded algebras, then

the class γA is mapped to the class γB under the induced isomorphism
between the Hochschild cohomology of H∗A and H∗B.

(iv) Suppose that the differential graded algebra A is formal, i.e., quasi-isomor-
phic to its cohomology algebra with trivial differential. Then the class γA is
trivial.

Proof. Part (i) follows from Proposition 5.4(ii) by taking A = B and letting α be
the identity. Part (ii) is the content of Proposition 5.4(ii). Part (iii) is a special case
of (ii). Part (iv) is a special case of (iii) since the canonical class of a differential
graded algebra with trivial differential vanishes. �

Remark 5.8. According to Corollary 5.7, every differential graded algebra gives rise
to a canonical Hochschild cohomology class. But not every class in the (3,−1)-
Hochschild cohomology of a graded algebra Λ actually arises in this fashion; the
theory of A∞-algebras exhibits a sequence of obstructions. The first in the sequence
of obstructions can be made explicit as follows. First one may check that for any
Hochschild (3,−1)-cocycle m, the cochain

(5.9) m(m⊗ 1⊗ 1 + 1⊗m⊗ 1 + 1⊗ 1⊗m) ∈ C5,−2Λ
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is again a cocycle, and that the cohomology class of (5.9) in HH5,−2Λ only depends
on the class of m; the resulting quadratic map

Sq : HH3,−1Λ −→ HH5,−2Λ

is one of the operations introduced by Gerstenhaber in [22]. We claim that if a
class γ ∈ HH3,−1Λ arises as the canonical class of a differential graded algebra,
then the class Sq(γ) ∈ HH5,−2Λ is trivial.

To prove the claim we use Kadeishvili’s theorem [25] about the A∞-structure
on the cohomology of a differential graded algebra; see also [29, Sec. 3.2]. By
definition, an A∞-structure on a graded algebra Λ consists of Hochschild cochains
mn ∈ Cn,2−nΛ for n ≥ 3, such that the following relations hold:∑

i+j+l=n
i,j≤0, l≥1

(−1)i+jlmi+1+l ◦ (1⊗i ⊗mj ⊗ 1⊗l) = 0 ;

here the understanding is that m1 = 0 and m2 is the product of Λ. Given a
differential graded algebra A, Kadeishvili’s theorem provides such an A∞-structure
on the cohomology H∗A in which m3 is a Hochschild (3,−1)-cocycle representing
the canonical class γA.

Because m1 = 0, the defining relation for n = 3 just says that the product in Λ is
associative. The relation for n = 4 specializes to the Hochschild cocycle condition
for m3. The defining relation for n = 5 specializes to

m3(m3 ⊗ 1⊗ 1 + 1⊗m3 ⊗ 1 + 1⊗ 1⊗m3) = m2(1⊗m4 −m4 ⊗ 1)

− m4(m2 ⊗ 1⊗ 1⊗ 1 + 1⊗m2 ⊗ 1⊗ 1− 1⊗ 1⊗m2 ⊗ 1 + 1⊗ 1⊗ 1⊗m2) .

The left-hand side of this equation represents Sq(γA); the right-hand side is precisely
the Hochschild coboundary ∂(m4) ∈ C5,−2Λ, so the class Sq(γA) is trivial, as
claimed.

Remark 5.10. The Hochschild cohomology class γA contains information about all
triple Massey products in the cohomology of the differential graded algebra A.
We recall how these triple Massey products are defined. Let M be a differential
graded right A-module, for example A as a module over itself. Let x ∈ H∗M and
y, z ∈ H∗A be homogenous cohomology classes which satisfy

(5.11) xy = 0 = yz .

Then the triple Massey product 〈x, y, z〉 is a coset of the group

x · (H |y|+|z|−1A) + (H |x|+|y|−1M) · z
in the group H |x|+|y|+|z|−1M .

To define the Massey product 〈x, y, z〉, choose representing cocycles a ∈ M and
b, c ∈ A for the classes x, y and z, respectively. Because of the relations (5.11),
there exist cochains u ∈ M |x|+|y|−1 and v ∈ A|y|+|z|−1 satisfying d(u) = ab and
d(v) = bc. For any such choices, the cochain

(5.12) uc− (−1)|x|av

is a cocycle, and 〈x, y, z〉 is defined as the set of cohomology classes represented by
the expressions (5.12) for all choices of a, b, c, u and v.

We need one important relation between triple Massey products. Suppose that
in addition to x, y and z as above we have another cohomology class w ∈ H∗A
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which satisfies zw = 0. Then the brackets 〈x, y, z〉 and 〈y, z, w〉 are defined with
appropriate indeterminacies, and the juggling formula

(5.13) x · 〈y, z, w〉 = (−1)|x|+1 〈x, y, z〉 · w
holds as cosets of x · (H∗A) · w. We omit the straightforward proof.

Lemma 5.14. Let A be a differential graded algebra and let m ∈ C3,−1(H∗A) be
a Hochschild cocycle which represents the canonical class γA. Then for all homoge-
nous elements x, y, z ∈ H∗A such that xy = 0 = yz, the class m(x, y, z) is contained
in the triple Massey product 〈x, y, z〉.

Proof. If we change the Hochschild cocycle m by a coboundary, then the value of
m(x, y, z) is changed by an element in x ·H∗A+H∗A · z, the indeterminacy group
of the Massey product. Indeed if t ∈ C2,−1(H∗A) is a Hochschild 2-cochain, then

(δt)(x, y, z) = (−1)|x| x · t(y, z)− t(x, y) · z
because of the relations (5.11). Hence it suffices to prove the claim for a single choice
of cocycle which represents the class γA. We do this verification for a cocycle m
constructed in Construction 5.1.

If we choose f1 and f2 as in Construction 5.1, then f1(x), f1(y) and f1(z) are
representing cocycles for the classes x, y and z, and we have

df2(x, y) = f1(x)f1(y) and df2(y, z) = f1(y)f1(z)

because xy = 0 = yz. So the Massey product 〈x, y, z〉 contains the class

[ f2(x, y)f1(z) − (−1)|x|f1(x)f2(y, z) ] = m(x, y, z) . �

Example 5.15. The obstruction classes κ(X) ∈ Ext3,−1
H∗A(X,X) are defined from

the triangulated structure of the derived category D(A) of differential graded A-
modules. We shall see in the next section (Theorem 6.2) that the classes κ(X) all
arise from the canonical class γA ∈ HH3,−1(H∗A) via the relation κ(X) = idX∪γA.
However, in general there is no hope to recover the Hochschild cohomology class
γA from the triangulated category D(A). To illustrate this we now describe a
differential graded algebra A such that

(i) the class γA is non-trivial, but
(ii) the derived category of D(A) is equivalent, as a triangulated category, to

the derived category of the cohomology algebra H∗A, considered as a dga
with trivial differential.

In the example, the cohomology of A is a Laurent polynomial algebra on a generator
of degree 1, over an inseparable field extension of k. Thus every graded module
over H∗A is free, and all Ext-groups over H∗A in positive dimensions are trivial.

We let k = F2(x) be the function field in one variable x over the field with two
elements. We first define the degree 0 algebra by setting

A0 = k〈u, a〉/(a2, au+ ua+ 1) ,

the free associative k-algebra on two non-commuting variables u and a subject to
the two specified relations. Equivalently, A0 could be defined as the algebra of
2 × 2-matrices over the polynomial algebra k[z], where the generators correspond
to

u =
(

0 z
1 0

)
and a =

(
0 1
0 0

)
.
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As a graded k-algebra, A is the Laurent polynomial algebra over A0 in one inde-
terminate v of degree 1,

A = A0 ⊗ k[v±1] .

Finally, the differential on A is determined by

d(u) = d(v) = 0 and d(a) = (u2 − x) · v
(recall that x ∈ F2(x) = k is the function field variable). Because d(a) is in the
center of A, we have

d(a) · a+ a · d(a) = 0 and d(a) · u+ u · d(a) + d(1) = 0 ,

and so d does indeed extend to a differential satisfying the Leibniz formula on all
of A.

We let ū ∈ H0A denote the cohomology class of the cocycle u ∈ A0, and, by
abuse of notation, v ∈ H1A also denotes the cohomology class of the cocycle v ∈ A1.

Proposition 5.16. The cohomology algebra of A is a Laurent polynomial algebra
in one indeterminate of degree 1 over the field obtained from k by adjoining a square
root of x,

H∗A = k[ū]/(ū2 − x)[v±1] .

The canonical (3,−1)-Hochschild cohomology class γA is non-trivial.

Proof. The Laurent generator v ∈ A1 is a cocycle and it is central in A, so its class
in H1A is a central unit of the cohomology algebra. Hence it suffices to show that
H0A, the cohomology algebra in degree 0, is isomorphic to the quadratic extension
field k[ū]/(ū2 − x).

We note that u generates a polynomial sub-algebra of A0 and as a left module
(and also as a right module) over k[u], the algebra A0 is free of rank two with basis
{1, a}. More generally, An is free of rank two over k[u] with basis {vn, avn} for every
n ∈ Z. Since u is a cocycle, the differential of A is left k[u]-linear. Since d(1) = 0
and d(a) = (u2 − x)v, the kernel of d : A0 → A1 is precisely the polynomial sub-
algebra k[u]. Similarly, the image of d : A−1 → A0 is generated as a k[u]-module
by d(av−1) = u2 − x. Hence we have

H0A = k[ū]/(ū2 − x) ,

as claimed.
In order to describe a representing cocycle for the canonical Hochschild class γA,

we specify f1, f2 and m on the k-basis {vn, ūvn}n∈Z of H∗A and extend k-linearly.
The obvious choice for f1 is

f1(vn) = vn and f1(ūvn) = uvn .

This choice of f1 is multiplicative except for pairs of basis elements of the form
(ūvn, ūvm), where we have

f1(ūvn)f1(ūvm)− f1(ūvn · ūvm) = (u2 − x) · vn+m .

So we define f2 by
f2(uvn, uvm) = avn+m−1

and setting f2 ≡ 0 on all other pairs of basis elements. Then the expression

f2(λ1, λ2)f1(λ3)− f2(λ1, λ2λ3) + f2(λ1λ2, λ3)− (−1)|λ1|f1(λ1)f2(λ2, λ3)
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vanishes for all choices of basis elements λi, except when all three elements are of
the form ūvn. In that latter case we get

m(ūvn, ūvm, ūvl) =
[
f2(ūvn, ūvm)f1(ūvl)− f2(ūvn, ū2vm+l)

+f2(ū2vn+m, ūvl)− (−1)nf1(ūvn)f2(ūvm, ūvl)
]

=
[
(au+ ua)vn+m+l−1

]
= vn+m+l−1

(using for example that f2(ū, ū2) = x · f2(ū, 1) = 0).
It remains to show that this Hochschild 3-cocycle m is not a coboundary. By

inspection, the coboundary of every k-linear map t ∈ C2,−1(H∗A) satisfies

(δt)(ū, ū, ū) = x · (δt)((ū, 1, 1) + (1, 1, ū)) .

Since m(ū, ū, ū) is different from x ·m((ū, 1, 1) + (1, 1, ū)), the cocycle m cannot be
a coboundary. We conclude that the canonical class γA is indeed non-trivial. �

The point of this example depends on the following lemma.

Lemma 5.17. Let A be a differential graded algebra such that H0A is a field and
H1A contains a unit. Then the zeroth cohomology functor

H0 : D(A) −→ Mod-(H0A)

is an equivalence from the derived category of differential graded right A-modules
to the category of vector spaces over H0A.

Proof. Let M be a differential graded A-module. Since H0 is a field, we may choose
a set {mi}i∈I of zero-cocycles in M whose cohomology classes form a basis of H0M
over H0A. These cocycles determine a unique homomorphism

(5.18)
⊕
I

A −→ M

from the free differential graded A-module to M which sends the ith basis element
to mi. This morphism induces an isomorphism in cohomology in dimension zero.
Since H1A contains a unit, the morphism (5.18) is thus a quasi-isomorphism of
differential graded A-modules. In other words, every differential graded A-module
is quasi-isomorphic to a free module.

Now we show that for every pair of differential graded A-modules M and N ,

(5.19) H0 : [M,N ]D(A) → HomH0A(H0M,H0N)

is bijective. This is clear when M = A is the free module of rank one, in which
case both sides identify with H0N . For fixed N , the two functors [−, N ]D(A) and
HomH0A(H0(−), H0N) take arbitrary sums in D(A) to products of k-vector spaces.
So the map (5.19) is bijective whenever M is a free module. By the first part, every
differential graded A-module is isomorphic in D(A) to a free module, so the map
(5.19) is always bijective.

This shows that the functor H0 is fully faithful, and it remains to show that
the image is dense. Since H0 is a field, every H0-module has a basis, and is thus
isomorphic to the zeroth cohomology of the free differential graded A-module on a
basis of the same cardinality. So the functor H0 is an equivalence of categories. �
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Lemma 5.17 is a special case of a more general phenomenon: if A is a differential
graded algebra such that every graded module over the graded cohomology algebra
H∗A is projective, then the functor

H∗ : D(A) −→ Mod-(H∗A)

is an equivalence of categories to the category of graded modules over H∗A. If
H1A contains a unit, then graded modules over H∗A are equivalent to (ordinary)
modules over H0A.

Now we sum up what this example is showing. The cohomology algebra of the
dga A is a Laurent polynomial algebra over a field on a generator of degree 1. So
by Lemma 5.17, the cohomology functor

H0 : D(A) −→ Mod-(H0A)

is a k-linear equivalence from the derived category of differential graded right A-
modules to the category of vector spaces over the field H0A = k[

√
x]. Lemma 5.17

also applies to the derived category of H∗A, with trivial differential; we conclude
that the derived categories of A and H∗A are equivalent as triangulated categories.
Nevertheless, the canonical (3,−1)-Hochschild cohomology class of A is non-trivial
whereas the class of H∗A is trivial (since it has trivial differential).

Example 5.20. Suppose that we are given a graded k-algebra Λ and two integers
s and t. Then for every Hochschild cohomology class γ ∈ HHs,tΛ, the collection
of classes idX ∪ γ ∈ Exts,tΛ (X,X) for all graded Λ-modules X are compatible in the
sense that

β ◦ (idX ∪ γ) = (idY ∪ γ) ◦ β ∈ Extn+s,t
Λ (X,Y )

for every class β ∈ ExtnΛ(X,Y ), where the circle denotes Yoneda composition. The
previous Example 5.15 shows in particular that this map from HHs,tΛ to collections
of compatible classes in Exts,tΛ (X,X) need not be injective. We demonstrate by
another example that in general, this map is also not surjective. Here the algebras
are actually ungraded, so the second (internal) grading is omitted.

Let H be the 9-dimensional k-algebra which is the subalgebra of M5(k) con-
sisting of all matrices (aij) with non-zero entries only if i = j or i = 1. This is
a tame hereditary algebra, and its category of finite-dimensional modules is well-
understood; see Section 3.6 in [36]. We fix an indecomposable module X0 having an
Auslander-Reiten sequence κ0 ∈ Ext1

H(X0, X0). For every direct sum X =
⊕

I X0

of copies of X0, we define

κ(X) =
⊕
I

κ0 ∈ Ext1
H(X,X) .

An arbitrary H-module X has, up to isomorphism, a unique decomposition X =
X ′ ⊕X ′′, where X ′ is isomorphic to a direct sum of copies of X0 and X ′′ has no
direct summand isomorphic to X0. We view κ(X ′) as an element in Ext1

H(X,X)
and define κ(X) = κ(X ′). We have

f ◦ κ(X) = κ(Y ) ◦ f ∈ Ext1
H(X,Y )

for every homomorphism f : X −→ Y since κ0 is an Auslander-Reiten sequence.
More precisely, κ(X) is an element in the socle of Ext1

H(X,X), where Ext1
H(X,X)

is viewed as an EndH(X)-module (acting either from the left or from the right).
It follows that f ◦ κ(X) = 0 except when f is invertible. Thus the computation of
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f ◦ κ(X) reduces to scalar multiplication in the socle of Ext1
H(X0, X0), which is 1-

dimensional. The field k is acting centrally and this shows that f ◦κ(X) = κ(Y )◦f .
Now observe that the algebraH is hereditary. Therefore all Ext groups in dimension
2 and above are trivial. So κ is also natural for Yoneda composition with Ext classes.
However there exists no γ ∈ HH1(H) such that κ(X) = idX ∪ γ for all H-modules
X since HH1(H) = 0.

6. Comparing γA with κ(f) in derived and stable modules categories

In this section we state our main theorems; they say that in the case of the derived
category of a differential graded algebra, and for the stable module category of a self-
injective algebra, the obstruction classes κ(f) constructed in Theorem 3.7 all arise
from a single “global” cohomology class, namely the canonical (3,−1)-Hochschild
cohomology class defined in Corollary 5.7.

6.1. Derived categories. During this section we fix a differential graded k-
algebra A. The free module of rank one is a compact object in the derived category
D(A) of differential graded A-modules, so the theory of Section 3 applies. Moreover,
the graded endomorphism algebra D(A)(A,A)∗ is canonically isomorphic to the
cohomology algebra H∗A, via the evaluation map

D(A)(A,A)∗ → H∗A , f 7−→ H∗(f)(1) .

We use the evaluation to identify the two algebras. Moreover, the analogous eval-
uation map D(A)(A,X)∗ → H∗X is an isomorphism of H∗A-modules if we view
the source as an H∗A-module via the evaluation isomorphism.

Theorem 6.2. Let A be a differential graded k-algebra and let

γA ∈ HH3,−1(H∗A)

be the canonical Hochschild cohomology class. Then for two graded H∗A-modules
X and Y the realizability obstruction

κ : HomH∗A(X,Y ) −→ Ext3,−1
H∗A(X,Y )

of Theorem 3.7 is given by the cup product

κ(f) = f ∪ γA .

This theorem will be proved in Section 9. In the course of the proof we also
construct a functor

Ψ: Mod-(H∗A) −→ D(A)
from the category of graded H∗A-modules to the derived category of differen-
tial graded A-modules together with a natural monomorphism of graded H∗A-
modules ηX : X −→ H∗(ΨX). The module ΨX features in a functorial special
D(A)-presentation of X with further nice properties; see Remark 9.7. It fol-
lows from part (iii) of Proposition 3.4 that for any map of graded H∗A-modules
f : X −→ H∗M there exists a map β : ΨX −→ M in the derived category D(A)
such that f = H∗(β) ◦ ηX .

Altogether this implies

Corollary 6.3. Let A be a differential graded k-algebra and f : X −→ Y a mor-
phism of graded modules over the graded cohomology algebra H∗A. Then the fol-
lowing are equivalent:
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(i) The morphism f factors over a realizable H∗A-module.
(ii) There exists a map of graded H∗A-modules g : H∗(ΨX) −→ Y such that

f = g ◦ ηX .
(iii) The class f ∪ γA in Ext3,−1

H∗A(X,Y ) is trivial.
In particular, a graded H∗A-module X is a direct summand of a realizable module
if and only if the class idX ∪ γA ∈ Ext3,−1

H∗A(X,X) is trivial.

Proof. Theorem 6.2 shows that the realizability obstruction κ(f) of Theorem 3.7
agrees with the class f ∪ γA. Hence conditions (i) and (iii) are equivalent by
Theorem 3.7. Condition (i) is a special case of condition (ii). Conversely, condition
(ii) implies condition (i) by Proposition 3.4(iii). �

6.4. Stable module categories. Now we consider a Frobenius algebra L over
the field k (i.e., an algebra such that the classes of projective and injective left
L-modules coincide), and we work in the stable module category StMod-L of right
L-modules. Moreover we fix an L-module N which is finitely generated — this
ensures that N is compact as an object of the stable module category. We are
interested in realizing graded modules over the Tate Ext-algebra E = Êxt

∗
L(N,N).

For example, L can be the group algebra kG of a finite group G and N can be
the trivial kG-module, in which case E = Êxt

∗
kG(k, k) = Ĥ∗(G, k) is the Tate

cohomology algebra of G.
In this situation we can consider a certain differential graded algebra, namely the

endomorphism dga of a complete resolution P̂∗ of N . In other words, P̂∗ is obtained
by splicing together a projective resolution and an injective resolution of N

. . . // P̂2
// P̂1

// P̂0
//

��
@@@@@ P̂−1

// P̂−2
// . . .

N

""EEEEEE

=={{{{{

0

=={{{{{
0

Denote by A the cochain complex

A = Hom•L(P̂∗, P̂∗)

so that
An =

∏
j

HomL(P̂n+j , P̂j)

with differential d : An −→ An+1 defined by

(6.5) (df)(x) = ∂(f(x))− (−1)nf(∂(x)),

where ∂ denotes the differential of P̂∗. With this definition, the n-cocycles in A
are the chain homomorphisms of degree n (anti-chain homomorphisms for odd n),
and cocycles differ by a coboundary if and only if the corresponding (anti-)chain
maps are homotopic. So A is a differential graded algebra whose cohomology H∗A
is the Tate Ext algebra Êxt

∗
L(N,N). But more is true: by a Theorem of Keller [28,

4.3], there is a triangle equivalence between the localizing subcategory of StMod-L
generated by N and the derived category of differential graded A-modules. We
will not use Keller’s result, but we borrow his method in the proof of Theorem 6.9
below.
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Lemma 6.6. The quasi-isomorphism type of the endomorphism differential graded
algebra Hom•L(P̂∗, P̂∗) does not depend on the choice of the complete resolution P̂∗
of N .

Proof. Suppose Q̂∗ is another complete resolution of N by projective L-modules.
Then P̂∗ and Q̂∗ are chain homotopy equivalent as complexes of L-modules. By
replacing P̂∗ by the mapping cylinder of some homotopy equivalence P̂∗ → Q̂∗ we
can assume that there exists a surjective chain homotopy equivalence f : P̂∗ → Q̂∗.
We let E(f) be the endomorphism differential graded algebra of the homotopy
equivalence f , defined as the pullback in the category of complexes of L-modules

(6.7) E(f)

��

// Hom•L(P̂∗, P̂∗)
f∗

��

Hom•L(Q̂∗, Q̂∗) f∗
// Hom•L(P̂∗, Q̂∗)

In other words, an n-cochain of E(f) consists of two maps of graded L-modules α1 :
P [n]→ P and α2 : Q[n]→ Q such that α1f = f [n]α2. Then E(f) is a differential
graded algebra under composition and the two maps to the endomorphism dgas
of P̂∗ and Q̂∗ are dga-homomorphisms. Since f is a chain homotopy equivalence,
so are the two maps f∗ and f∗ in the defining pullback (6.7) for E(f). Since f is
surjective and P̂∗ consists of projective modules, the right vertical map f∗ is also
surjective. So its base change E(f)→ Hom•L(Q̂∗, Q̂∗) is a quasi-isomorphism, and
so is the fourth map in the square (6.7). �

Definition 6.8. Let L be a Frobenius k-algebra and N a finitely generated L-
module. We denote by

γN/L ∈ HH3,−1
(

Êxt
∗
L(N,N)

)
the canonical Hochschild cohomology class (see Corollary 5.7) of the endomorphism
differential graded algebra of a complete resolution of N over L. By Lemma 6.6
and Corollary 5.7(iii), this class is independent of the choice of complete resolution.

Theorem 6.9. Let L be a self-injective k-algebra, N a finite-dimensional L-module
and let

E = Êxt
∗
L(N,N)

denote the graded Tate Ext algebra of N . Then for two graded E-modules X and
Y the realizability obstruction

κ : HomE(X,Y ) −→ Ext3,−1
E (X,Y )

of Theorem 3.7 defined in the stable module category of L is given by the cup product

κ(f) = f ∪ γN/L .
In particular, a graded E-module X is a direct summand of a realizable module if
and only if the class idX ∪ γN/L ∈ Ext3,−1

E (X,X) is trivial.

Proof. We reduce the problem to the case of derived categories and appeal to Theo-
rem 6.2. The method is the same as in Keller’s paper [28, 4.3], where stable module
categories are interpreted as derived categories over suitable endomorphism dgas.
As in the definition of the class γN/L, we choose a complete resolution P̂∗ of N and
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let A = Hom•L(P̂∗, P̂∗) denote the endomorphism dga of the resolution. Then we
have a functor

Hom•L(P̂∗,−) : Mod-L −→ Mod-A

from right L-modules to differential graded right A-modules. Since P̂∗ consists of
projective modules, the functor Hom•L(P̂∗,−) is exact and it comes equipped with
a natural isomorphism of graded E-modules

(6.10) H∗
(

Hom•L(P̂∗, B)
)
∼= Êxt

∗
L(N,B)

for B ∈ Mod-L. Thus the functor Hom•L(P̂∗,−) takes projective L-modules to
acyclic A-modules, and it passes to a well-defined derived functor

RHomL(P̂∗,−) : StMod-L −→ D(A)

on the level of triangulated categories. We abbreviated this derived functor to

F : StMod-L −→ D(A).

Moreover, there is a chain of quasi-isomorphisms of differential graded A-modules
between

Hom•L(P̂∗,ΩB) and Hom•L(P̂∗, B)[−1] ,

which yields a natural isomorphism

F (ΩB) ∼= F (B)[−1]

in the derived category of A. With respect to this isomorphism, F preserves dis-
tinguished triangles, so it becomes an exact functor of triangulated categories.

Now let X be a graded module over the Tate Ext algebra E. Choose a StMod-L-
presentation

(ΩB δ−→ R1
α−→ R0

π−→ B, ε : Êxt
∗
L(N,R0) −→ X)

(cf. Definition 3.1). Applying the exact functor F yields a D(A)-presentation

(F (B)[−1] ∼= F (ΩB)
F (δ)−−−→ F (R1)

F (α)−−−→ F (R0)
F (π)−−−→ F (B),

ε̄ : H∗F (R0) ∼= Êxt
∗
L(N,R0) ε−→ X) .

The natural isomorphism (6.10) shows that the Yoneda class of the extension

0 −→ X [−1] −→ Êxt
∗
L(N,ΩB) −→ Êxt

∗
L(N,R1) −→ Êxt

∗
L(N,R0) ε−→ X −→ 0

is equal to the Yoneda class of

0 −→ X [−1] −→ H∗F (ΩB) −→ H∗F (R1) −→ H∗F (R0) ε̄−→ X −→ 0 .

So we conclude that the obstruction class associated to X via the stable module
category of L is the same as the class coming from the derived category of the
endomorphism dga A; so using Theorem 6.2 we conclude that

κStMod-L(X) = κD(A)(X) = idX ∪ γN/L .

For a homomorphism f : X → Y of graded E-modules, we get the formal conse-
quence

κ(f) = f ◦ κ(idX) = f ◦ (idX ∪ γN/L) = f ∪ γN/L . �
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Remarks 6.11. (i) One can also apply the theory to the problem of realizing mod-
ules over ordinary cohomology, as opposed to Tate cohomology, but the result is
not quite what one might want. Suppose that L is a k-algebra (not necessarily
Frobenius), and let N be an L-module which has a finite resolution by finitely
generated projective L-modules; this assures that N is compact as an object of
the unbounded derived category D(L) of L. Let E = Ext∗L(N,N) denote the Ext
algebra of N . Then for every L-module M , the Ext groups Ext∗L(N,M) are a
graded E-module by Yoneda composition. But there are more realizable modules
in the sense of Section 3: for every complex C∗ of L-modules, the hyper Ext-groups
Ext∗L(N,C∗) = D(L)(N,C∗)∗ are realizable, graded E-modules.

Given a graded E-module X , Theorem 3.7 provides a necessary and sufficient
homological condition for when X is a summand of an E-module of the form
Ext∗L(N,C∗). The obstruction κ(X) also arises from a Hochschild cohomology
class, namely the canonical class of the endomorphism dga of a projective resolu-
tion of N over L; the proof is very similar to the proof of Theorem 6.9. But one
might want to know when X is a summand of the Ext groups of an individual
module, not just of a complex of modules. Our approach does not give new insight
into this problem.

(ii) There are other models for the differential graded algebra underlying the Tate
Ext algebra. Suppose as before that P̂∗ is a complete resolution of an L-module
N . We say that an n-cochain f ∈ Homn

L(P̂∗, P̂∗), i.e., a graded map of degree n,
is eventually trivial if its components fj : P̂n+j → P̂j are trivial for j � 0. Now
the eventually trivial cochains form a differential graded ideal T in Hom•L(P̂∗, P̂∗).
Moreover, every chain map which is eventually trivial is necessarily null-homotopic;
this just says that the ideal T is acyclic, so the projection map

Hom•L(P̂∗, P̂∗) −→ Hom•L(P̂∗, P̂∗)/T

is a quasi-isomorphism of dgas.
This smaller model is variously attributed to Vogel [23], Mislin [32], Benson and

Carlson [9]. It also receives a homomorphism from the endomorphism dga of an
ordinary resolution P∗ (as opposed to a complete resolution) of N . Indeed, any
graded map f : P [n] → P can be extended trivially to a graded map between
complete resolutions. This gives a map of graded k-algebras

Hom•L(P∗, P∗) −→ Hom•L(P̂∗, P̂∗)

which is not compatible with the differential. However, the deviation from com-
muting with the differential is eventually trivial, so the composite map with the
projection

Hom•L(P∗, P∗) −→ Hom•L(P̂∗, P̂∗)/T

is a homomorphism of dgas. On cohomology, this latter map realizes the k-algebra
homomorphism from ordinary Ext groups to Tate Ext groups.

(iii) Complete resolutions can also be used for Kropholler’s LHF -groups. Com-
plete cohomology can be defined for arbitrary rings by stabilizing Ext with respect
to dimension shifting. This is explained in the context of group rings of arbitrary
groups in Benson and Carlson [9], Mislin [32]. But often it is not clear whether
it can be calculated using complete resolutions. Kropholler [30] shows that in the
context of modules of type FP∞ over group rings of groups in a very large class
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denoted LHF , complete cohomology can be calculated using complete resolutions.
See also Cornick and Kropholler [16], [17], Benson [7], [8].

(iv) A theorem of Rickard [35] shows that any localization of Ĥ∗(G, k) is realiz-
able by an idempotent kG-module. More generally, any localization of a realizable
module is again realizable. Benson and Gnacadja [10] have given an example of
a flat Ĥ∗(G, k)-module which is not realizable. This is related to the existence of
filtered systems in StMod-kG which do not lift to filtered systems in Mod-kG. For
this purpose, it is essential that the field k be uncountable.

7. Examples

We show in some simple cases how to identify the Hochschild class

γG ∈ HH3,−1Ĥ∗(G, k)

and hence how to decide when a module over the Tate cohomology of G is a sum-
mand of a realizable module. Here we write γG for γk/kG, defined as in Definition
6.8 from a complete resolution of the trivial kG-module. In characteristic p we get
complete control over all groups G whose p-Sylow subgroup is cyclic.

We denote by Cn the cyclic group of order n. The calculations of the Tate
cohomology and the Hochschild classes for cyclic groups are all well known, but we
reproduce them for the convenience of the reader. We will first identify the class
γCpm ∈ HH3,−1Ĥ∗(Cpm , k) for p a prime, k a field of characteristic p and m ≥ 1.
The answer comes out differently according to whether pm = 2, pm = 3 or pm ≥ 4.

Theorem 7.1. Let k be a field of positive characteristic p and m ≥ 1. If p = 2
and m = 1, then the Tate cohomology is a ring of Laurent polynomials on a 1-
dimensional class x,

Ĥ∗(C2, k) = k[x±1] .

If pm ≥ 3, then the Tate cohomology Ĥ∗(Cpm , k) is a tensor product of an ex-
terior algebra on a 1-dimensional class x and a Laurent polynomial algebra on a
2-dimensional class y,

Ĥ∗(Cpm , k) = Λ(x)⊗ k[y±1] .

The canonical class
γCpm ∈ HH3,−1 Ĥ(Cpm , k)

is trivial except when p = 3 and m = 1. In the latter case, the class γC3 is
represented by the (3,−1)-cocycle m of Λ(x) ⊗ k[y±1] which satisfies

m(xyi ⊗ xyj ⊗ xyl) = yi+j+l+1

and which vanishes on all other tensor products of monomials in x and y.

The calculation for cyclic groups is really a special case of the calculation for
truncated polynomial algebras. In any characteristic, positive or zero, and for any
n ≥ 1, the truncated polynomial algebra k[z]/zn is self-injective, so our theory
applies, and Definition 6.8 gives the canonical Hochschild cohomology class

(7.2) γk/(k[z]/zn) ∈ HH3,−1
(

Êxt
∗
k[z]/zn(k, k)

)
.

If n is a power of the characteristic of k, then the group algebra kCn and the
truncated polynomial algebra k[z]/zn are isomorphic as augmented k-algebras. So
Theorem 7.1 is a special case of the following theorem.
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Theorem 7.3. Let L = k[z]/zn be the truncated polynomial algebra of height n
over a field k of any characteristic. If n = 2, then the Tate cohomology algebra of
L is a ring of Laurent polynomials on a 1-dimensional class x,

Êxt
∗
L(k, k) = k[x±1] .

If n ≥ 3, then the Tate cohomology algebra is a tensor product of an exterior algebra
on a 1-dimensional class x and a Laurent polynomial algebra on a 2-dimensional
class y

Êxt
∗
L(k, k) = Λ(x) ⊗ k[y±1] .

The canonical class
γk/L ∈ HH3,−1 Êxt

∗
L(k, k)

is trivial unless n = 3. If n = 3, the class γk/L is non-trivial and is represented by
the (3,−1)-cocycle m of Λ(x) ⊗ k[y±1] which satisfies

m(xyi ⊗ xyj ⊗ xyl) = yi+j+l+1

and which vanishes on all other tensor products of monomials in x and y.

Before we prove Theorem 7.3, we illustrate it with a remark and some examples.

Remark 7.4. In the above calculation of the Tate-Ext algebra of a truncated poly-
nomial algebra, the cases n = 2 and n = 3 seem to be exceptional, but that is
just because we do not take into account the higher order information (for example
in terms of an A∞-structure). The “exceptional” behavior is a special case of the
relation

mn(x⊗ · · · ⊗ x︸ ︷︷ ︸
n

) = y in Êxt
2

k[z]/zn(k, k) ,

where mn defines the An-structure on the Tate-Ext groups. The map m2 is just the
ordinary product, whence y = x2 for n = 2; any cocycle representing the canonical
class γk/L can be taken as the map m3, so for n = 3 this is the last statement in
Theorem 7.3.

Example 7.5 (Cyclic group of order 2). If k is a field of characteristic 2, then the
Tate cohomology Ĥ∗(C2, k) is a ring of Laurent polynomials on a 1-dimensional
class x,

Ĥ∗(C2, k) = k[x±1],
and the canonical Hochschild class γC2 is trivial by Theorem 7.1. The fact that
every graded Ĥ∗(C2, k)-module is realizable, not only up to summands, can be seen
directly: the Tate cohomology algebra Ĥ∗(C2, k) is a graded field, i.e., every graded
module over it is free. Hence the Tate cohomology functor

Ĥ0(C2,−) : StMod-kC2 −→ Mod-Ĥ0(C2, k)

is an equivalence of categories, by Lemma 5.17.

By Theorem 7.1, the canonical class γCpm is trivial if the characteristic of the
field k is not 3, or if m ≥ 2. By the general theory, every graded module over
the Tate cohomology algebra Ĥ∗(Cpm , k) is then a direct summand of a realizable
module. The same holds for modules over the truncated polynomial algebra k[z]/zn

in any characteristic, as long as n 6= 3, by Theorem 7.3. We take a closer look at the
remaining case, the truncated polynomial algebra of height 3 in any characteristic.
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Example 7.6. We let k be any field, we set L = k[z]/z3; if k has characteristic 3,
then L is also isomorphic to the group algebra of the cyclic group of order 3. We
let x ∈ Êxt

1

L(k, k) be the generator which satisfies

x2 = 0 and 〈x, x, x〉 = y

(by the relationship between the canonical class and three-fold Massey products;

cf. Remark 5.10). If M is any L-module and if a class w ∈ Êxt
i

L(k,M) satisfies
wx = 0, then there is a Massey product

〈w, x, x〉 ⊆ Êxt
i+1

L (k,M) ;

cf. Remark 5.10. The juggling formula (5.13) gives

wy = w · 〈x, x, x〉 = (−1)i+1〈w, x, x〉 · x in Êxt
i+2

L (k,M) .

So w = (−1)i+1〈w, x, x〉 · y−1x, and we conclude that every class in the Tate coho-
mology of a k[z]/z3-module which is annihilated by x is also divisible by x. This
property is inherited by direct summands and it characterizes the free modules
among all graded modules over Λ(x) ⊗ k[y±1]. So for a graded Êxt

∗
L(k, k)-module

X the following three conditions are equivalent:
(i) X is realizable.
(ii) X is isomorphic to a direct summand of a realizable module.
(iii) X is a free module.

In particular the cyclic Êxt
∗
L(k, k)-module concentrated in even dimensions,

X = Êxt
∗
L(k, k)/(x) ,

is not a direct summand of a realizable module.

Example 7.7 (Products of groups). There does not seem to be an easy way to
calculate the canonical class for Tate-cohomology of a product of groups from the
corresponding classes of the individual groups, in sharp contrast with the situation
for ordinary group cohomology. If G and H are two finite groups and k is a field,
then the Kunneth theorem shows that the cohomology algebra H∗(G × H, k) is
the tensor product of the cohomology algebras of G and H . In fact, the Kunneth-
isomorphism has a precursor on the level of underlying differential graded algebras:
if P∗ is a projective resolution of the trivial module over the group algebra kG, and
if Q∗ is a similar projective resolution over the group algebra kH , then the tensor
product P∗ ⊗ Q∗ is a projective resolution of the trivial module over k[G × H ].
Moreover, the differential graded endomorphism algebras of P∗, Q∗ and P∗ ⊗ Q∗
realize the cohomology algebrasH∗(G, k), H∗(H, k) and H∗(G×H, k), respectively.
The Kunneth-isomorphism is then realized by the quasi-isomorphism of dgas

Hom∗kG(P∗, P∗)⊗Hom∗kH(Q∗, Q∗) −→ Hom∗k[G×H](P∗ ⊗Q∗, P∗ ⊗Q∗)
given by tensoring endomorphisms.

Now there is a general product formula for the canonical class of the tensor
product of two differential graded algebras A and B. Suppose the canonical classes
γA ∈ HH3,−1(H∗A) and γB ∈ HH3,−1(H∗B) are represented by (3,−1)-cocycles
mA and mB, respectively. Then one can show that under the Kunneth-isomorphism
H∗(A⊗B) ∼= H∗A⊗H∗B, the canonical class

γA⊗B ∈ HH3,−1(H∗A⊗H∗B)
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is represented by the cocycle

m(x1 ⊗ y1, x2 ⊗ y2, x3 ⊗ y3)

= ±mA(x1, x2, x3)⊗ y1y2y3 + x1x2x3 ⊗mB(y1, y2, y3),

where the correct sign can be determined from the Koszul sign rule.
The situation for Tate cohomology is quite different. We illustrate this by looking

at the Klein four group Z/2×Z/2, over a field k of characteristic 2. By Theorem 7.1,
the canonical class γZ/2 in the (3,−1)-Hochschild cohomology of the Tate cohomol-
ogy of Z/2 is trivial; nevertheless, the canonical class for the product group (Z/2)2

is non-trivial, which we show by exhibiting a non-trivial triple Massey product in
Ĥ∗((Z/2)2, k), and appealing to Remark 5.10.

Again we find it convenient to move to a characteristic-free context by working
over the self-injective algebra L = k[z, w]/(z2 = w2 = 0). If k has characteristic
2, then L is isomorphic to the group algebra of (Z/2)2. We claim that there exist
non-trivial classes

x, y ∈ Ext1
L(k, k) and φ ∈ Êxt

−1

L (k, k)

satisfying xφ = 0 = φy and having Massey product

(7.8) 〈x, φ, y〉 = 1

in Êxt
0

L(k, k) = Hom(k, k) without indeterminacy. Hence the canonical class

γk/L ∈ HH3,−1Êxt
∗
L(k, k)

is non-trivial. It turns out that Êxt
∗
L(k, k) has no invertible elements except in

dimension 0; so the map Êxt
∗
L(k, k)→ k which projects onto the degree zero part is

a homomorphism of graded k-algebras, and k, concentrated in dimension 0, becomes
a graded module over Êxt

∗
L(k, k). Using the bracket (7.8), a similar argument as in

Example 7.6 shows that k is not a summand of any realizable module.
It remains to describe the classes x, y and φ, and to calculate the bracket 〈x, φ, y〉.

The syzygy module Ωk is the 3-dimensional augmentation ideal

Ωk = (z, w) = kernel [L −→ k] .

We let x ∈ Ext1
L(k, k) = HomL(Ωk, k) be represented by the unique L-homo-

morphism x̄ : Ωk→ k satisfying x̄(z) = 1 and x̄(w) = 0. Similarly, y is represented
by ȳ : Ωk → k satisfying ȳ(w) = 1 and ȳ(z) = 0. Then the (non-negative) Ext
algebra Ext∗L(k, k) is polynomial on the classes x and y, but we will not use this.

We let φ ∈ Êxt
−1

L (k, k) = HomL(k,Ωk) be represented by the L-homomorphism
φ̄ : k → Ωk determined by φ̄(1) = zw ∈ Ωk. We have x̄φ̄ = 0 = ȳφ̄; since the
Tate Ext algebra is graded commutative, this yields xφ = 0 = φy and the Massey
product (7.8) is defined. Since neither x nor y is a unit in the Tate Ext algebra,
the bracket has no indeterminacy.

In order to calculate the bracket, we first have to factor the composite maps
φ̄ȳ : Ωk → Ωk and x̄φ̄ : k → k through projective L-modules. The composite φ̄ȳ
factors as

Ωk incl.−−−→ L
H−→ Ωk,

where H is multiplication by z ∈ Ωk. The other composite x̄φ̄ is trivial, so we can
factor through the trivial module, and so the bracket is represented by the unique
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factorization of x̄H : L → k through the quotient L/Ωk ∼= k. Now x̄H is the
augmentation, so the bracket 〈x, φ, y〉 is indeed represented by the identity of k.

Proof of Theorem 7.3. We assume n ≥ 2 throughout the proof and write L =
k[z]/zn for the truncated polynomial algebra of height n. A complete resolution P̂
of the trivial L-module k, which is moreover 2-periodic and minimal, is given by
P̂i = L, the free module of rank one, with differential di : P̂i → P̂i−1 given by

di =
{

multiplication by −zn−1 if i is even, and
multiplication by z if i is odd.

The complex HomL(P̂ , k) has trivial differential, so the Tate cohomology Êxt
∗
L(k, k)

is one-dimensional in every degree.
We let x̄ ∈ Hom1

L(P̂ , P̂ ) be the anti-chain map P̂ [1]→ P̂ which is the identity in
even degrees and multiplication by zn−2 in odd degrees; we let x ∈ H1Hom∗L(P̂ , P̂ )
∼= Êxt

1

L(k, k) be the class of the anti-chain map x̄. We let ȳ ∈ Hom2
L(P̂ , P̂ ) be the

periodicity isomorphism, i.e., the chain map P̂ [2]→ P̂ which is the identity in every

degree; we let y ∈ H2Hom∗L(P̂ , P̂ ) ∼= Êxt
2

L(k, k) be the class of the chain map ȳ.
Since y is invertible and the Tate cohomology is one-dimensional in every degree,
the monomial xεyi is a generator of Êxt

2i+ε

L (k, k) for all ε ∈ {0, 1} and i ∈ Z.
In order to determine the multiplicative structure of Êxt

∗
L(k, k) it remains to

calculate the square of the 1-dimensional class x. The element x2 ∈ Êxt
2

L(k, k)
is represented by the chain map x̄2 : P̂ [2] → P̂ which is multiplication by zn−2

in every degree. If n = 2, then we have x̄2 = ȳ on the level of chain maps, and
thus x2 = y in Êxt

2

L(k, k). Thus xi 7−→ x̄i defines a multiplicative cycle selection
homomorphism, and the endomorphism dga is actually formal; in particular the
canonical class is trivial.

From now on we assume n ≥ 3; then x̄2 is null-homotopic (for example by
the homotopy which is multiplication by zn−3 in odd degrees and trivial in even
degrees). So for n ≥ 3 we get x2 = 0, and the multiplicative structure of Êxt

∗
L(k, k)

is as claimed.
Now we determine a (3,−1)-cocycle which represents the canonical class in

HH3,−1(Λ(x)⊗ k[y±1]).

We use the cycle selection homomorphism

f1 : Λ(x)⊗ k[y±1] −→ Hom∗L(P̂ , P̂ )

which is given on the monomial basis by

f1(xεyi) = x̄εȳi : P̂ [2j + ε] −→ P̂ .

Since the periodicity isomorphism ȳ commutes with x̄, this cycle selection homo-
morphism is multiplicative, except on two odd-dimensional classes. The product

f1(xyi)f1(xyj) = x̄2ȳi+j : P̂ [2(i+ j + 1)] −→ P̂

is multiplication by zn−2 in every degree, which is only null-homotopic. We define
f2 by

f2(yi, yj) = f2(xyi, yj) = f2(yi, xyj) = 0
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for all i, j ∈ Z. On tensor products of two odd degree elements we let

f2(xyi, xyj) : P̂ [2(i+ j) + 1] −→ P̂

be multiplication by zn−3 in odd degrees, and multiplication by 0 in even degrees.
Then f2(xyi, xyj) is a chain null-homotopy for f1(xyi)f1(xyj), so f1 and f2 satisfy
the condition (5.2), and we can use these maps in the formula (5.3) and obtain
a representing cocycle m for γA. Then the cocycle m defined by (5.3) vanishes
on tensor products in which at least one monomial has even degree. On tensor
products of three odd degree elements,

m(xyi, xyj , xyl) ∈ Êxt
2(i+j+l+1)

L (P̂ , P̂ )

is represented by the chain map

f2(xyi, xyj)f1(xyl) + f1(xyi)f2(xyj , xyl) : P̂ [2(i+ j + l + 1)] −→ P̂

which is multiplication by zn−3 in all degrees. If n ≥ 4, then that chain map is
null-homotopic (for example by the homotopy which is multiplication by zn−4 is
even degrees and trivial in odd degrees). Therefore, for n ≥ 4 the (3,−1)-cocycle
representing γA is trivial, hence so is the class γA itself.

Finally if n = 3, then m(xyi, xyj , xyl) = yi+j+l+1. Hence the class of m in
HH3,−1

(
Λ(x)⊗ k[y±1]

)
is non-trivial since every coboundary of a (2,-1)-cochain

vanishes on the tensor product of three odd degree elements. �

8. Reduction to Sylow subgroups

In this section we show that if G is a finite group and k is a field of characteristic
p > 0, then the canonical class

γG ∈ HH3,−1(Ĥ∗(G, k))

is determined by the corresponding class of the p-Sylow subgroup of G. This allows
us to determine the canonical class γG for all finite groups G with cyclic p-Sylow
subgroup.

Throughout this section, the field k is fixed, so we drop it from the notation
and write Ĥ∗(G) for Ĥ∗(G, k), and similarly for the Tate cohomology of the Sylow
subgroup. If G is a finite group and P is any subgroup of G, then there is a
restriction map

res : Ĥ∗(G) −→ Ĥ∗(P )

which is a homomorphism of graded k-algebras, as well as a transfer map

tr : Ĥ∗(P ) −→ Ĥ∗(G) ;

see for example [14], Chap. XII.8. The composite tr ◦ res is multiplication by the
index [G : P ], so if this index is prime to the characteristic of k, then restriction is
injective. Moreover we have the reciprocity formula

(8.1) tr(x · res(y)) = tr(x) · y

for x ∈ Ĥ∗(P ) and y ∈ Ĥ∗(G).
Because the restriction map is a homomorphism of graded algebras, it makes

Ĥ∗(P ) into a bimodule over Ĥ∗(G) and induces a restriction map

res∗ : HHs,t(Ĥ∗(P )) −→ HHs,t(Ĥ∗(G), Ĥ∗(P ))
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in Hochschild cohomology. The reciprocity formula (8.1) says that the transfer
map is a homomorphism of Ĥ∗(G)-modules if we let Ĥ∗(G) act on Ĥ∗(P ) through
restriction. The Tate-cohomology algebras are graded commutative, so the transfer
map is in fact a homomorphism of Ĥ∗(G)-bimodules, and so it induces another
map in Hochschild cohomology

(8.2) tr∗ : HHs,t(Ĥ∗(G), Ĥ∗(P )) −→ HHs,t(Ĥ∗(P )) .

Theorem 8.3. Let k be a field of characteristic p, G a finite group and P a p-Sylow
subgroup of G. Then the canonical class γG ∈ HH3,−1(Ĥ∗(G)) is determined by
the canonical class γP ∈ HH3,−1(Ĥ∗(P )) of the Sylow subgroup by the formula

γG =
tr∗(res∗(γP ))

[G : P ]
.

Proof. The key point is that the restriction map in Tate cohomology is in fact in-
duced by a homomorphism of differential graded algebras. Indeed, if we let Q̂∗ be a
complete resolution of the trivial module by projective kG-modules, then by neglect
of structure, Q̂∗ is also a complete resolution of the trivial module by projective
kP -modules. So we have an inclusion of differential graded endomorphism algebras

Hom•kG(Q̂∗, Q̂∗) −→ Hom•kP (Q̂∗, Q̂∗)

whose effect on cohomology

Ĥ∗(G) ∼= H∗(Hom•kG(Q̂∗, Q̂∗)) −→ H∗(Hom•kP (Q̂∗, Q̂∗)) ∼= Ĥ∗(P )

is the restriction map. By part (ii) of Corollary 5.7 we have the relation

res∗(γP ) = res∗(γG)

in HH3,−1(Ĥ∗(G), Ĥ∗(P )). Applying the transfer in Hochschild cohomology (8.2)
gives

tr∗(res∗(γP )) = tr∗(res∗(γG)) = [G : P ] · γG .

The result follows since the index of P in G is invertible in k. �

Over a field of positive characteristic p, the canonical Hochschild cohomology
class γCpm of the cyclic group of order pm is trivial if p is different from 3, or if
p = 3 and m ≥ 2 (see Theorem 7.1). Together with Theorem 8.3 this implies:

Corollary 8.4. Let k be a field of positive characteristic p, and suppose that m ≥ 2
if p = 3. Then for any finite group G whose p-Sylow subgroup is cyclic of order pm,
the canonical Hochschild cohomology class γG is trivial. Hence every graded module
over the Tate cohomology algebra Ĥ∗(G, k) is a direct summand of a realizable
module.

We investigate more closely the case which is not taken care of by Corollary
8.4. We recall the following characterization of when the restriction to the Sylow
subgroup induces an isomorphism in ordinary or Tate cohomology.

Proposition 8.5. Let k be a field of characteristic p, and G a finite group, and P
a p-Sylow subgroup of G. Then the following three conditions are equivalent:

(i) The restriction map from the cohomology of G to the cohomology of P is
an isomorphism.

(ii) The restriction map H1(G)→ H1(P ) is an isomorphism in dimension 1.
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(iii) The group G is p-nilpotent, i.e., there exists a normal subgroup U E G such
that the composite

P
incl.−−−→ G

proj.−−−→ G/U

is an isomorphism.

Proof. Condition (ii) is a special case of (i). For the implication (ii) ⇒ (iii) see
[39] or [19, Thm. 7.2.6]. The restriction map from the cohomology of G to the
cohomology of its Sylow subgroup P is always injective. If (iii) holds, then it is also
surjective since the inclusion P → G has a left inverse. �

Now let the field k have characteristic 3 and let G by a finite group whose 3-Sylow
subgroup is cyclic of order 3. The Tate cohomology Ĥ∗(G, k) then comes in two
flavors, but in both cases the canonical class γG is non-trivial. If G is 3-nilpotent,
i.e., if it satisfies the equivalent conditions of Proposition 8.5, then the restriction
is an isomorphism from the Tate cohomology of G to that of its Sylow subgroup
which takes the canonical class γG to the class γP . Otherwise we have:

Theorem 8.6. Let k be a field of characteristic 3 and G a finite group whose 3-
Sylow subgroup is cyclic of order 3, but which is not 3-nilpotent. Then the Tate
cohomology of G is a tensor product of an exterior algebra on a 3-dimensional class
v and a Laurent polynomial algebra on a 4-dimensional class w,

Ĥ∗(G, k) = Λ(v)⊗ k[w±1] .

The canonical class γG is represented by the (3,−1)-cocycle m of Λ(v) ⊗ k[w±1]
which satisfies

m(vwi ⊗ vwj ⊗ vwl) = wi+j+l+2

and which vanishes on all other tensor products of monomials in v and w.

Proof. Since the 3-Sylow subgroup of G has the trivial intersection property, the
Tate cohomology algebra of G restricts isomorphically onto the sub-algebra of W -
invariant elements in the Tate cohomology of the Sylow subgroup P (see for example
[6, Cor. 3.6.19]), where W = NGP/P is the Weyl group of P .

The Tate cohomology algebra of P is a tensor product of an exterior algebra
on a 1-dimensional class x and a Laurent polynomial algebra on a 2-dimensional
class y. By Proposition 8.5, H1(G,F3) is strictly smaller than H1(P,F3) ∼= F3,
so H1(G,F3) is trivial. Every element of W acts by +1 or −1 on H1(P,F3), and
at least one element w ∈ W must act by −1 on the class x ∈ Ĥ1(P,F3). The
action of W arises from automorphisms of the endomorphism dga which underlies
Tate cohomology, so it preserves Massey products. Since y = 〈x, x, x〉, the element
w also acts by −1 on y. Hence a monomial yi is W -invariant if and only if i is
even, and a monomial xyi is W -invariant if and only if i is odd. In other words,
the subalgebra of W -invariant elements is multiplicatively generated by xy and y2.
So if v ∈ Ĥ3(G, k) is the element which restricts to xy and w ∈ Ĥ4(G, k) is the
element which restricts to y2, then the Tate cohomology of G is a tensor product
of an exterior algebra on v and a Laurent polynomial algebra on w.

By Theorem 8.3, a representing Hochschild (3,−1)-cocycle mG for the class γG
can be obtained from a representing cocycle mP for the class of the Sylow subgroup
by composing with transfer and restriction, i.e.,

mG = [G : P ]−1 · tr ◦mP ◦ res⊗3 .
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If we use the cocycle for γP which is given in Theorem 7.1, then we get

[G : P ] ·mG(vwi ⊗ vwj ⊗ vwl) = tr
(
mP (res(vwi)⊗ res(vwj)⊗ res(vwl))

)
= tr

(
mP (xy2i+1 ⊗ xy2j+1 ⊗ xy2l+1)

)
= tr

(
y2(i+j+l)+4

)
= [G : P ] · wi+j+l+2 ,

and [G : P ] ·mG vanishes on all other tensor products of monomials in v and w.
Dividing by the index [G : P ] gives the result. �

Example 8.7. Let k be a field of characteristic 3, G a finite group with a 3-Sylow
subgroup of order 3 which is not 3-nilpotent. The smallest example of such a group
is the symmetric group on three letters. By Theorem 8.6 the Tate cohomology has
the form

Ĥ∗(G, k) = Λ(v)⊗ k[w±1]
with |v| = 3 and |w| = 4, and we have the Massey product relation 〈v, v, v〉 =
w2 which holds without indeterminacy. By the same Massey product argument
as in Example 7.6, every class in the Tate cohomology of a kG-module which is
annihilated by v is also divisible by v. So all realizable Ĥ∗(G, k)-modules, and
all summands of those, are actually free. In particular the cyclic Ĥ∗(G, k)-module
Ĥ∗(G, k)/(v) is not a direct summand of a realizable module.

9. An approximation functor for derived categories

In this section we prove Theorem 6.2 which relates the canonical Hochschild
cohomology class of a differential graded algebra A to the realizability obstruction
in the derived category of A. We also give a functor

Ψ : Mod-(H∗A) −→ D(A)

from the category of graded H∗A-modules to the derived category of differential
graded A-modules, together with a natural monomorphism of graded H∗A-modules
ηX : X −→ H∗(ΨX). The module H∗(ΨX) is, in a sense, the best possible approxi-
mation of X by a realizable module, and it is part of a functorial D(A)-presentation
of X . The construction is as follows. For brevity, we write H for H∗A.

A graded k-vector space V freely generates a differential graded A-module V ⊗A.
Note that H∗(V ⊗A) ∼= V ⊗H as right H-modules. Let f1 : H∗A→ A be a cycle
selection homomorphism as in Construction 5.1, the construction of the class γA.
Let X be a graded H-module. We define a map of differential graded A-modules

D : X ⊗H⊗n ⊗A −→ X ⊗H⊗(n−1) ⊗A
by the formula

D(x, ζ1, . . . , ζn, a) = (xζ1, ζ2, . . . , ζn, a)

(9.1)

+
n−1∑
i=1

(−1)i(x,ζ1, . . . , ζiζi+1, . . . , ζn, a) + (−1)n(x, ζ1, . . . , ζn−1, f1(ζn)a) .

Then D induces the bar complex differential d on cohomology. So for example we
have

D : X ⊗H ⊗A −→ X ⊗A , D(x, ζ, a) = xζ ⊗ a − x⊗ f1(ζ)a ,
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and H∗(D) = d : X ⊗H ⊗H −→ X ⊗H sends x⊗ ζ1 ⊗ ζ2 to xζ1 ⊗ ζ2 − x⊗ ζ1ζ2.
We define ΨX as the mapping cone of D : X ⊗H ⊗A −→ X ⊗A. In other words,
we set

ΨX = (X ⊗A)⊕ (X ⊗H ⊗A)[1]

as graded A-modules, with differential given by

dΨX =
(
d −D
0 −d

)
(recall that the differential on (X ⊗H ⊗A)[1] is −d[1]). Therefore,

dΨX

(
x′ ⊗ a′
x⊗ ζ ⊗ a

)
=
(

(−1)|x
′|x′ ⊗ da′ − xζ ⊗ a+ x⊗ f1(ζ)a
−(−1)|xζ|x⊗ ζ ⊗ da

)
.

There is a distinguished triangle in the derived category D(A)

(9.2) (ΨX)[−1] δ−→ X ⊗H ⊗A D−→ X ⊗A i−→ ΨX,

where i is the inclusion and δ is the projection. The triangle (9.2) and the epimor-
phism

ε : H∗(X ⊗A) ∼= X ⊗H → X , x⊗ ζ 7−→ xζ

form a special D(A)-presentation of X , in the sense of Definition 3.1.
Taking cohomology yields the associated extension of graded H-modules

0 −→ X [−1]
ηX [−1]−−−−→H∗(ΨX)[−1](9.3)

H∗(δ)−−−−→ X ⊗H ⊗H d−→ X ⊗H ε−→ X −→ 0

which represents the class κ(X). The monomorphism ηX : X −→ H∗(ΨX) is given
by

ηX(x) =
[
x⊗ 1

0

]
.

Now we are ready to prove Theorem 6.2. For a homomorphism f : X → Y of
graded H-modules we have

κ(f) = f ◦ κ(idX) and f ∪ γA = f ◦ (idX ∪ γA) .

Therefore, it suffices to check the case f = idX , the identity map of a graded H-
module X . The canonical class γA of the differential graded algebraA is represented
by the Hochschild cocycle m : H⊗3 → H [−1] defined in Construction 5.1. An H-
linear map idX ·m : X ⊗H⊗4 −→ X [−1] is defined by the formula

(idX ·m)(x, ζ1, ζ2, ζ3, ζ4) = (−1)|x|x ·m(ζ1, ζ2, ζ3) · ζ4 .

Recall from (4.4) how the cup product pairing between Hochschild cohomology and
Ext groups was defined; the following result identifies idX ∪ γA with the Yoneda
class of the extension (9.3) which represents κ(X). Hence it finishes the proof of
Theorem 6.2.

Theorem 9.4. Let A be a differential graded algebra and let m be the Hochschild
cocycle of H = H∗A as described in Construction 5.1. There exists a commutative



3658 DAVID BENSON, HENNING KRAUSE, AND STEFAN SCHWEDE

diagram of graded H-modules

X ⊗H⊗4 d //

idX ·m
��

X ⊗H⊗3

��

d // X ⊗H⊗2 d // X ⊗H ε // X // 0

0 // X [−1]
ηX [−1]

// H∗(ΨX)[−1]
H∗(δ)

// X ⊗H⊗2
d

// X ⊗H ε
// X // 0

whose rows are exact. Here all maps labeled ‘d’ are the differentials in the bar
complex of X. Hence the Yoneda class of the bottom row represents the class idX ∪
[m] in Ext3,−1

H (X,X)

Proof. We choose f1 and f2 as in Construction 5.1, where the Hochschild cocycle
m is defined. In (9.1) we have defined homomorphisms of A-modules

D : X ⊗H⊗n ⊗A −→ X ⊗H⊗(n−1) ⊗A
which realize the bar complex differential in cohomology. Hence each composite
DD : X ⊗ H⊗n ⊗ A −→ X ⊗H⊗n−2 ⊗ A induces the trivial map in cohomology,
and so it is null-homotopic; an explicit null-homotopy is given by the degree 1 map
of graded A-modules

φ : X ⊗H⊗n ⊗A −→ X ⊗H⊗n−2 ⊗A,
φ(x, ζ1, ζ2, . . . , ζn, a) = −(−1)|xζ1...ζn−2|(x, ζ1, . . . , ζn−2, f2(ζn−1, ζn)x) .

Indeed, we have

(9.5) DD = d ◦ φ+ φ ◦ d
by direct verification. Using these maps we define a homomorphism of differential
graded A-modules

λ =
(
φ
D

)
: X ⊗H⊗2 ⊗A −→ ΨX [−1]

so that

λ(x, ζ1, ζ2, a) =
(

−(−1)|x|x⊗ f2(ζ1, ζ2)a
xζ1 ⊗ ζ2 ⊗ a− x⊗ ζ1ζ2 ⊗ a+ x⊗ ζ1 ⊗ f1(ζ2)a

)
.

Using relation (9.5) we have

dΨX[−1] ◦ λ =
(
−d D
0 d

)(
φ
D

)
=
(
−dφ+DD

dD

)
=
(
φd
Dd

)
= λ ◦ d .

Hence λ commutes with the differential (recall the the differential on ΨX [−1] is
−dΨX).

We claim that the diagram of graded H-modules

(9.6) X ⊗H⊗4 d //

idX ·m
��

X ⊗H⊗3

λ∗
��

d

''OOOOOOOOOOO

X [−1]
ηX [−1]

// H∗(ΨX)[−1]
H∗(δ)

// X ⊗H⊗2

commutes. Since H∗(δ) : H∗(ΨX)[−1]→ X ⊗H⊗2 is induced by the projection of
ΨX to (X⊗H⊗A)[1], the right-hand triangle commutes since the second component
of λ induces the bar differential on cohomology.
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Commutativity of the left square is seen as follows. Using relations (9.5), we
have

λD =
(
φD
DD

)
=
(
−d D
0 d

)(
0
φ

)
+
(
−Dφ+ φD

φd

)
= dΨX[−1] ◦

(
0
φ

)
+
(
φD −Dφ

φd

)
as maps of graded A-modules from X⊗H⊗3⊗A to ΨX [−1]. Passing to cohomology,
the first summand does not contribute, so we have

λ∗ ◦ d = (λD)∗ =
[
φD −Dφ

0

]
.

Since ηX is H-linear, we have

ηX((idX ·m)(x, ζ1, ζ2, ζ3, 1)) = (−1)|x| ηX(x) ·m(ζ1, ζ2, ζ3)

= (−1)|x|

x⊗ ( f2(ζ1, ζ2)f1(ζ3)− f2(ζ1, ζ2ζ3)
+f2(ζ1ζ2, ζ3)− (−1)|ζ1|f1(ζ1)f2(ζ2, ζ3)

)
0


=
[
φD −Dφ

0

]
(x, ζ1, ζ2, ζ3, 1) .

Here the last equality comes from substituting the definitions of D and φ. Since
both ways around the left square in (9.6) are H-linear maps, this completes the
proof. �

Remark 9.7. For the derived category of a differential graded algebra A, we were
able to construct a functorial special D(A)-presentation

((ΨX)[−1] δ−→ X ⊗ (H∗A)⊗X D−→X ⊗A i−→ ΨX,(9.8)

ε : H∗(X ⊗A)→ X) ,

in the sense of Definition 3.1, of an H∗A-module X . Furthermore, this D(A)-
presentation is additive in the module X , and it consists of homological functors
in the following sense: there is a natural isomorphism Ψ(X [1]) ∼= (ΨX)[1] and for
a short exact sequence of H∗A-modules

(9.9) 0 −→ X −→ Y −→ Z −→ 0

there is a natural morphism ΨZ → (ΨX)[1] in D(A) such that the sequence

ΨX −→ ΨY −→ ΨZ −→ (ΨX)[1]

is a distinguished triangle. Indeed, the way we set things up, Ψ takes the short exact
sequence (9.9) to a short exact sequence of differential gradedA-modules. The other
two terms in the presentation (9.8) are homological functors by the same argument.
In the situation of Section 3 in a general triangulated category T one cannot hope
for T -presentations with such special properties. The construction of (9.8) relies
heavily on the underlying abelian category of differential graded A-modules which
models the derived category D(A).
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Appendix A. An obstruction theory for realizability

We are in the same context as in Section 3: T is a triangulated category with
arbitrary coproducts, N is a compact object in T , and we denote by E = T (N,N)∗

its graded endomorphism algebra. Given a graded E-module X , we describe an
infinite sequence of classes

κn ∈ Extn,2−nE (X,X)

for n ≥ 3, such that each successive class κn is defined if the previous one, κn−1,
vanishes, and κn depends on a choice. The class κ3 coincides with κ(X) as in-
troduced in Proposition 3.4. If successive choices can be made so that all classes
κn are trivial, then X is realizable, i.e., isomorphic to an E-module of the form
T (N,M)∗.

The material in this appendix is, to some extent, folklore in stable homotopy
theory, or at least “well-known to the experts”. Since we do not know of a published
source where this obstruction theory is worked out in the generality of triangulated
categories, we give a self-contained account here. However, at least two cases appear
in the literature: in [31, Ch. 16 §3], these obstructions are discussed for the problem
of realizing a module over the mod-p Steenrod algebra as the cohomology of a
spectrum. If A is a differential graded k-algebra, then the theory of A∞-structures
shows that a graded module X over the cohomology algebra H∗A is realizable
by a differential graded A-module if and only if the action of H∗A on X can be
extended to the structure of an A∞-module over the A∞-algebra H∗A (see for
example [29, Sec. 4]). The obstruction for extending a given An−1-structure on X

to an An-structure is (equivalent to) a class in Extn,2−nE (X,X).

Construction A.1. For the constructions in this section we need the mapping
telescope (homotopy colimit) construction; compare [12, 2.1] or [34, 1.6.4]. Suppose
we are given a sequence of morphisms in T ,

(A.2) B0
α1−→ B1

α2−→ · · · Bn
αn+1−−−→ · · · .

Then the mapping telescope Tel(Bn) of the sequence is defined by a choice of
distinguished triangle

(A.3) Tel(Bn)[−1] −→
∞⊕
n=0

Bn
id−shift−−−−−→

∞⊕
n=0

Bn −→ Tel(Bn) .

The map denoted ‘shift’ takes the summand Bn to Bn+1 via αn+1. Since the object
N is compact, applying T (N,−)∗ to the triangle gives a short exact sequence of
E-modules

0 −→
∞⊕
n=0

T (N,Bn)∗ id−shift−−−−−→
∞⊕
n=0

T (N,Bn)∗ −→ T (N,Tel(Bn))∗ −→ 0

which shows that T (N,Tel(Bn))∗ is the colimit of the sequence of E-modules which
is realized by (A.2). One should note that the mapping telescope is only well-
defined up to non-canonical isomorphism, and that its construction is not functorial,
because of the lack of naturality of mapping cones in a triangulated category.

A corollary of the obstruction theory we are about to present is that every
graded E-module which has projective dimension or injective dimension at most
two is actually realizable. Since this corollary has a relatively straightforward proof,
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we present this argument first, even though it is redundant from a strictly logical
point of view.

Proposition A.4. Let X be a graded E-module which has projective dimension at
most two or injective dimension at most two. Then X is realizable.

Proof. We realize projective modules first. Every projective E-module P is iso-
morphic to the image of an idempotent endomorphism of a graded free mod-
ule. We choose an N -free object R and a morphism e : R → R in T such that
e∗ : T (N,R)∗ → T (N,R)∗ realizes the given idempotent. We define Re as the
mapping telescope of the sequence

R
e−→ R

e−→ · · · R e−→ · · · .
Then R decomposes as R ∼= Re⊕R(1−e) (see [12, 3.3] or [34, 1.6.8]), and T (N,Re)∗

is isomorphic to the image of e∗ in T (N,R)∗, i.e., Re realizes the projective E-
module P . Since Re is a direct summand of an N -free object (a sum of shifted
copies of N), the map

T (N,−)∗ : T (Re,M) −→ HomE(P, T (N,M)∗)

is an isomorphism for every object M ∈ T . In other words: E-homomorphisms
from P are uniquely realizable.

Now suppose that X is a graded E-module which has projective dimension at
most two. Then we have an exact sequence

(A.5) 0→ P2
d2−→ P1

d1−→ P0 → X → 0

of graded E-modules where P2, P1 and P0 are projective (possibly trivial). By the
previous paragraph we can find a sequence

R2
α2−→ R1

α1−→ R0

of maps in T such that each Ri is a summand of an N -free object and T (N,αi)∗

is isomorphic to the map Pi → Pi−1 for i = 1, 2. Note that α1α2 = 0 since
this composite induces the trivial map after applying T (N,−)∗ and since R2 is a
summand of an N -free object.

We complete α2 to a distinguished triangle

M1[−1] −→ R2
α2−→ R1

β1−→M1 .

Since (α2)∗ = d2 is injective we obtain a short exact sequence of graded E-modules

0 −→ P2
d2−→ P1 −→ T (N,M1)∗ −→ 0.

Since α1α2 = 0 we can choose a map γ : M1 → R0 satisfying α1 = γβ1. We
complete γ to a distinguished triangle

M0[−1] −→M1
γ−→ R0

β0−→M0 .

Since the kernel of (α1)∗ = d1 is equal to the image of (α2)∗ = d2, the map

γ∗ : T (N,M1)∗ → T (N,R0)∗

is injective and we obtain another short exact sequence of graded E-modules

0 −→ T (N,M1)∗ −→ P0 −→ T (N,M0)∗ −→ 0 .

Splicing these sequences together, we obtain the projective presentation (A.5) of
X , and therefore T (N,M0)∗ ∼= X as graded E-modules.
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The fact that every injective E-module is realizable follows from Brown’s Rep-
resentability Theorem in triangulated categories [33]. More precisely, we consider
the localizing subcategory 〈N〉 of T generated by N ; this triangulated category
is compactly generated since N is compact. If I is an injective E-module, then
the contravariant functor HomE(T (N,−)∗, I) from 〈N〉 to the category of abelian
groups takes distinguished triangles to long exact sequences and it takes sums to
products. So by [33, Thm. 3.1] or [34, 8.4.2] there is a representing object TI of
〈N〉 and a natural isomorphism

HomE(T (N,M)∗, I) ∼= T (M,TI)

for M ∈ 〈N〉. In particular, the graded E-module T (N,TI)∗ is isomorphic to I.
Similarly, E-homomorphisms between injective modules are uniquely realizable by
morphisms in 〈N〉. Given this, the above argument for small projective dimension
dualizes to show that modules of injective dimension at most two can be realized.
We omit the details. �

After this warming up we start with the general obstruction theory for realizing
a graded E-module. The crucial concept is that of a Postnikov system; see the
following definition. The strategy for realizing a given graded E-module X is to
build an N -exact Postnikov system for which the cokernel of (d1)∗ : T (N,R1)∗ −→
T (N,R0)∗ is isomorphic to X . Then Proposition A.19 below guarantees that X
is realizable, namely by a suitable mapping telescope. In an attempt to build an
N -exact Postnikov system for X stage by stage, we will run into obstructions

κn ∈ Extn,2−nE (X,X) .

If all the obstructions are trivial, then we can build the desired Postnikov system
and X is realizable.

Definition A.6. Let T be a triangulated category. A k-Postnikov system, for
k ≥ 1, is a collection of morphisms in T
(A.7)

Yk−1

πk−1

��

Yk−2

πk−2

��

αk−1
+oo Yk−3

αk−2
+oo

...

Y2

π2

��

Y1
α2
+oo

π1

��

Y0 = R0
α1
+oo

Rk

ik

<<zzzzzzzzzz
Rk−1

ik−1

4
;;wwwwwwwwww
Rk−2

ik−2

4
;;xxxxxxxxxx

R2

i2

4
>>}}}}}}}}}
R1

i1

4
;;wwwwwwwwww

where arrows of the form +oo denote morphisms of degree 1, and where every
triangle labeled 4 is distinguished. For a Postnikov system we define boundary
maps dj : Rj → Rj−1, for 2 ≤ j ≤ k, as the composite dj = πj−1ij . Moreover,
d1 = i1 : R1 → R0. A k-Postnikov system is N -exact, for an object N of T , if

(i) the object Ri is N -free, i.e., a sum of shifted copies of N , for i = 0, . . . , k,
(ii) and the sequence

T (N,Rk)∗
(dk)∗−−−→ T (N,Rk−1)∗

(dk−1)∗−−−−−→ · · · T (N,R1)∗
(d1)∗−−−→ T (N,R0)∗

is exact.
A Postnikov system is an “∞-Postnikov system”, i.e., a collection of distinguished
triangles of the form (A.7) which extends infinitely to the left. A Postnikov system
is N -exact if the corresponding sequence which extends infinitely to the left is exact.
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Example A.8. The name ‘Postnikov system’ stems from stable homotopy the-
ory, and we use it because the Postnikov system of a spectrum X is a natural
Postnikov system (in the technical sense of Definition A.6) in the stable homotopy
category. More generally, suppose the triangulated category T is endowed with
a t-structure [5]. Then the truncations give a Postnikov system, infinite in both
directions, of the form
(A.9)

X [−1,∞)[−1]

��

X [0,∞)+oo

��

X [1,∞)[1]

��

+oo X [2,∞)[2]+oo

......

R−1

4
77ooooooooooo
R0

4
88qqqqqqqqqqq
R1

4
77oooooooooooo

Here X [i,∞) is the truncation of X below dimension i, and where Ri is the i-fold
shift of an object belonging to the heart of the t-structure.

Postnikov systems also arise from filtered objects. For a specific example, con-
sider a differential graded algebra A and a differential graded right A-module M
together with a filtration by dg-A-submodules

F0 ⊆ F1 ⊆ · · · ⊆ Fn ⊆ · · · ⊆ M.

Then in the derived category D(A), we obtain a Postnikov system of the form

(A.10) F3[−3]

��

F2[−2]

��

+oo F1[−1]+oo

��

F0+oo

...

(F3/F2)[−3]
δ

4
77nnnnnnnnnnn

(F2/F1)[−2]
δ

4
77nnnnnnnnnnn

(F1/F0)[−1]
δ

4
99tttttttttt

Remark A.11. In every Postnikov system we have djdj+1 = 0 for j ≥ 1 since this
composition involves two consecutive maps in a distinguished triangle. Thus we
have a chain complex

· · · Rn
dn−→ · · · R2

d2−→ R1
d1−→ R0

in the triangulated category T . However, not every complex can be extended to
a Postnikov system. Topologists refer to the obstructions to building a Postnikov
system as Toda brackets. For more details on this point of view see for example [42,
VI.1] (where a Postnikov system is called a T -system) or [31, Ch. 16 §4]. Postnikov
systems in a general triangulated category are used for example in [27, §1].

The next lemma collects properties of the system of graded E-modules arising
from an N -exact Postnikov system; the lemma is proved by various diagram chases.

Lemma A.12. Consider an N -exact k-Postnikov system as in (A.7), with k ≥ 2.
(i) The given Postnikov system can be extended to an N -exact (k+1)-Postnikov

system if and only if the kernel of (ik)∗ : T (N,Rk)∗ → T (N,Yk−1)∗ is equal
to the kernel of (dk)∗ : T (N,Rk)∗ → T (N,Rk−1)∗.

(ii) The morphism of graded E-modules

T (N,Yi−1)∗

Im(T (N,Ri)∗)
−→ T (N,Yi)∗

Im(T (N,Ri+1)∗)
[1]

induced by the morphism αi : Yi−1 → Yi[1] is an isomorphism for 1 ≤ i <
k − 1 and an epimorphism for i = k − 1.
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(iii) The 5-term sequence of graded E-modules

T (N,R1)∗[1− k]
(d1)∗−−−→ T (N,R0)∗[1− k] α∗−−→ T (N,Yk−1)∗(A.13)

(πk−1)∗−−−−−→ T (N,Rk−1)∗
(dk−1)∗−−−−−→ T (N,Rk−2)∗

is exact. Here α : R0[1−k]=Y0[1−k]→ Yk−1 is the composition αk−1 · · ·α1.

Proof. (i) Since dk = πk−1ik, the kernel of (ik)∗ : T (N,Rk)∗ → T (N,Yk−1)∗ is
always contained in the kernel of (dk)∗ : T (N,Rk)∗ → T (N,Rk−1)∗. If the Post-
nikov system extends to an N -exact (k + 1)-Postnikov system, then the composite
ikdk+1 : Rk+1 → Yk−1 is trivial, and so we have

ker ((dk)∗) = Im ((dk+1)∗) ⊆ ker ((ik)∗) .

Hence the two kernels are equal.
For the converse suppose that the kernels of (ik)∗ and (dk)∗ coincide. We

choose an N -free object Rk+1 and a morphism dk+1 : Rk+1 → Rk such that the
image of (dk+1)∗ in T (N,Rk)∗ coincides with the kernel of (dk)∗ : T (N,Rk)∗ →
T (N,Rk−1)∗. By construction, the composite map dkdk+1 : Rk+1 → Rk−1 induces
the trivial map after applying T (N,−)∗; since ker ((dk)∗) = ker ((ik)∗), we know
that (ikdk+1)∗ : T (N,Rk+1)∗ → T (N,Yk−1)∗ is also trivial. So ikdk+1 = 0 since
Rk+1 is N -free. So if we choose a distinguished triangle

Yk
πk−→ Rk

ik−→ Yk−1
αk−−→ Yk[1] ,

then dk+1 can be lifted to a morphism ik+1 : Rk+1 → Yk satisfying dk+1 = πkik+1,
and we have constructed an N -exact (k + 1)-Postnikov system.

Part (ii) is proved by a diagram chase which we omit.
For the proof of (iii) we start with the sequence

(A.14) T (N,R1)∗
(d1)∗−−−→ T (N,R0)∗

(αk−2···α1)∗−−−−−−−−→ T (N,Yk−2)∗

Im(T (N,Rk−1)∗)
[k − 2] −→ 0

which is exact by part (ii), applied k − 2 times. If we apply T (N,−)∗ to the
distinguished triangle

Rk−1[−1]
ik−1−−−→ Yk−2[−1]

αk−1−−−→ Yk−1
πk−1−−−→ Rk−1

we get a long exact sequence of graded E-modules, a part of which is

(A.15) 0 −→ T (N,Yk−2)∗

Im(T (N,Rk−1)∗)
[−1]

(αk−1)∗−−−−−→ T (N,Yk−1)∗
(πk−1)∗−−−−−→ T (N,Rk−1)∗ .

Splicing the (1− k)th shift of (A.14) with the exact sequence (A.15) gives the first
four terms of the exact sequence we are after. For the last spot we exploit that the
kernel of (dk−1)∗ coincides with the image of (dk)∗ : T (N,Rk)∗ → T (N,Rk−1)∗ by
N -exactness. Since dk factors through Yk−1 as dk = πk−1ik, the image of (dk)∗
coincides with the image of T (N,Yk−1)∗. �

Now we give the definition of the obstruction class κk+1:

Definition A.16. Consider an N -exact k-Postnikov system as in (A.7) and let X
denote the cokernel of the homomorphism

(d1)∗ : T (N,R1)∗ −→ T (N,R0)∗ .
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By part (iii) of Lemma A.12, the sequence of graded E-modules

0 −→ X [1− k] A−→ T (N,Yk−1)∗
(πk−1)∗−−−−−→ T (N,Rk−1)∗

(dk−1)∗−−−−−→(A.17)

· · · T (N,R1)∗
(d1)∗−−−→ T (N,R0)∗ −→ X −→ 0

is exact. Here the map A is induced by the composition αk−1 · · ·α1 : R0 = Y0 →
Yk−1[k− 1]. We denote by κk+1 ∈ Extk+1,1−k

E (X,X) the Yoneda class of this exact
sequence.

The classes κn generalize the obstruction class κ(X) which was defined in Section
3. To see this, pick a special presentation T -presentation (cf. Definition 3.1)

(B[−1] δ−→ R1
α−→ R0

π−→ B, ε : T (N,R0)∗ → X)

of a graded E-module X . We can choose an N -free object R2 and a morphism
d2 : R2 → R1 such that the image of (d2)∗ in T (N,R1)∗ coincides with the kernel
of α∗ : T (N,R1)∗ → T (N,R0)∗. The composite αd2 : R2 → R0 induces the trivial
map after applying T (N,−)∗, so αd2 = 0 since R2 is N -free. Therefore, d2 can
be lifted to a morphism i2 : R2 → B[−1]. This data yields an N -exact 2-Postnikov
system

B[−1]

δ
��

R0
π
+oo

R2

i2

<<yyyyyyyyyy
R1

α

4
<<yyyyyyyyyy

The exact sequence (A.17) which defines the obstruction class κ3 ∈ Ext3,−1
E (X,X)

is the associated extension of the T -presentation. So κ3 coincides with κ(X) as
defined in Proposition 3.4.

Lemma A.18. If the obstruction class κk+1 of an N -exact k-Postnikov system
is trivial, then there exists an N -exact (k + 1)-Postnikov system whose (k − 1)-
Postnikov system agrees with that of the given k-Postnikov system.

Proof. In the exact sequence (A.17) which defines κk+1, the E-modules T (N,Ri)∗

are free for i = 0, . . . , k − 1. Hence the class κk+1 is trivial if and only if the
monomorphism A : X [1− k]→ T (N,Yk−1)∗ admits a retraction r : T (N,Yk−1)∗ →
X [1 − k]. Since Rk is N -free, the E-homomorphism A ◦ r ◦ (ik)∗ : T (N,Rk)∗ →
T (N,Yk−1)∗ is realized by a unique morphism β : Rk → Yk−1 in T . The composite
πk−1β : Rk → Rk−1 is trivial after applying T (N,−)∗, so πk−1β = 0, again since
Rk is N -free.

If we replace the map ik : Rk → Yk−1 by īk = ik − β, then the modified k-
Postnikov system

Yk−1

πk−1

��

Yk−2+oo

···

Y2

π2

��

Y1+oo

π1

��

Y0 = R0+oo

Rk

īk

<<zzzzzzzzzz
Rk−1

4
;;xxxxxxxxxx

R2

4
>>}}}}}}}}}
R1

4
;;wwwwwwwwww

is again N -exact since πk−1 īk = πk−1ik = dk.
What we have gained now is that the kernel of (̄ik)∗ : T (N,Rk)∗ → T (N,Yk−1)∗

is equal to the kernel of (dk)∗ : T (N,Rk)∗ → T (N,Rk−1)∗: suppose that x ∈
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T (N,Rk)∗ is annihilated by (dk)∗. Then (πk−1)∗(ik)∗(x) = (dk)∗(x) = 0, so
(ik)∗(x) = A(y) for some y ∈ X [1− k]. But then

(̄ik)∗(x) = (ik − β)∗(x) = (id−A ◦ r)((ik)∗(x)) = (id−A ◦ r)(A(y)) = 0 .

So by Lemma A.12(i), the modified k-Postnikov system can be extended to an
N -exact (k + 1)-Postnikov system. �

Proposition A.19. Let N be a compact object of the triangulated category T . For
every N -exact Postnikov system, the cokernel of the homomorphism

(d1)∗ : T (N,R1)∗ −→ T (N,R0)∗

is a realizable E-module.

Proof. We claim that the cokernel of (d1)∗ is isomorphic to the colimit of the
sequence of graded E-modules

(A.20) T (N,Y0)∗
(α1)∗−−−→ T (N,Y1[1])∗

(α2)∗−−−→ · · · T (N,Yn[n])∗
(αn+1)∗−−−−−→ · · · .

This implies the result since the colimit is realizable, namely by the mapping tele-
scope of the sequence of morphisms αk : Yk−1[k − 1]→ Yk[k]; compare A.1.

Since αnin = 0, the composite map

T (N,Rn)∗
(in)∗−−−→ T (N,Yn−1)∗

(αn)∗−−−−→ T (N,Yn[1])∗

is trivial for all n ≥ 1. So the colimit does not change if we factor out the image of
T (N,Rn+1)∗ in T (N,Yn)∗. In other words, the colimit of (A.20) maps isomorphi-
cally to the colimit of the sequence

coker ((d1)∗) =
T (N,Y0)∗

Im(T (N,R1)∗)
−−→ T (N,Y1)∗

Im(T (N,R2)∗)
[1]

−−→ · · · −−→ T (N,Yn)∗

Im(T (N,Rn+1)∗)
[n] −−→ · · · .

By part (ii) of Lemma A.12 the latter sequence consists of isomorphisms, so the
cokernel of (d1)∗ is indeed isomorphic, as a graded E-module, to the colimit of the
sequence (A.20). �

Conclusion. If we are given a graded E-module X , we can always find an N -
exact 2-Postnikov system for which the cokernel of (d1)∗ : T (N,R1)∗ → T (N,R0)∗

is isomorphic to X (see the discussion preceding Lemma A.18). For k ≥ 2, an
N -exact k-Postnikov system defines an obstruction class κk+1 ∈ Extk+1,1−k

E (X,X)
(Definition A.16). Lemma A.18 says that if κk+1 = 0, then after perturbing the last
morphism ik : Rk → Yk−1 if necessary, the k-Postnikov system can be extended to
an N -exact (k+1)-Postnikov system. The extension is not unique, but every choice
of extension defines a new obstruction class κk+2. If we can make inductive choices
so that all classes κk are trivial, then we have constructed an N -exact Postnikov
system. Proposition A.19 then implies that the E-module X is realizable.
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MR 95e:18010

http://www.ams.org/mathscinet-getitem?mr=91d:18008
http://www.ams.org/mathscinet-getitem?mr=98k:18010
http://www.ams.org/mathscinet-getitem?mr=86g:32015
http://www.ams.org/mathscinet-getitem?mr=92m:20005
http://www.ams.org/mathscinet-getitem?mr=99a:20054
http://www.ams.org/mathscinet-getitem?mr=99a:20054
http://www.ams.org/mathscinet-getitem?mr=93i:20058
http://www.ams.org/mathscinet-getitem?mr=2002j:20017
http://www.ams.org/mathscinet-getitem?mr=2003a:55021
http://www.ams.org/mathscinet-getitem?mr=94f:18008
http://www.ams.org/mathscinet-getitem?mr=97c:20013
http://www.ams.org/mathscinet-getitem?mr=17:1040e
http://www.ams.org/mathscinet-getitem?mr=96m:16009
http://www.ams.org/mathscinet-getitem?mr=99k:20105
http://www.ams.org/mathscinet-getitem?mr=57:3132
http://www.ams.org/mathscinet-getitem?mr=93i:20059
http://www.ams.org/mathscinet-getitem?mr=35:2280
http://www.ams.org/mathscinet-getitem?mr=97j:18001
http://www.ams.org/mathscinet-getitem?mr=28:5102
http://www.ams.org/mathscinet-getitem?mr=94d:55014
http://www.ams.org/mathscinet-getitem?mr=89c:16029
http://www.ams.org/mathscinet-getitem?mr=84k:55009
http://www.ams.org/mathscinet-getitem?mr=91a:18016
http://www.ams.org/mathscinet-getitem?mr=89g:18018
http://www.ams.org/mathscinet-getitem?mr=95e:18010


3668 DAVID BENSON, HENNING KRAUSE, AND STEFAN SCHWEDE

[29] , Introduction to A-infinity algebras and modules, Homology, Homotopy and Appli-
cations 3 (2001), 1–35.

[30] P. H. Kropholler, Hierarchical decompositions, generalized Tate cohomology, and groups of
type FP∞, Proc. Edin. Conf. Geometric Group Theory 1993 (A. Duncan, N. Gilbert, and
J. Howie, eds.), Cambridge University Press, 1994. MR 96c:20097

[31] H. R. Margolis, Spectra and the Steenrod algebra, North Holland, Amsterdam, 1983. MR
86j:55001

[32] G. Mislin, Tate cohomology for arbitrary groups via satellites, Topology and its Applications
56 (1994), 293–300. MR 95c:20072

[33] A. Neeman, The Grothendieck duality theorem via Bousfield’s techniques and Brown repre-
sentability, J. Amer. Math. Soc. 9 (1996), no. 1, 205–236. MR 96c:18006

[34] , Triangulated categories, Princeton University Press, Princeton, NJ, 2001. MR
2001k:18010

[35] J. Rickard, Idempotent modules in the stable category, J. London Math. Soc. 178 (1997),
149–170. MR 98d:20058

[36] C. M. Ringel, Tame algebras and integral quadratic forms, Lecture Notes in Mathematics,
vol. 1099, Springer-Verlag, Berlin/New York, 1984. MR 87f:16027

[37] N. Spaltenstein, Resolutions of unbounded complexes, Compositio Math. 65 (1988), 121–154.
MR 89m:18013

[38] J. D. Stasheff, Homotopy associativity of H-spaces. II, Trans. Amer. Math. Soc. 108 (1963),
293–312. MR 28:1623

[39] J. Tate, Nilpotent quotient groups, Topology 3 (1964), 109–111, suppl. 1. MR 28:4032
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