
ON THE p-ADIC COHOMOLOGY OF THE LUBIN-TATE TOWER

PETER SCHOLZE

Abstract. We prove a finiteness result for the p-adic cohomology of the Lubin-Tate
tower. For any n ≥ 1 and p-adic field F , this provides a canonical functor from
admissible p-adic representations of GLn(F ) towards admissible p-adic representations
of GalF ×D×, where GalF is the absolute Galois group of F , and D/F is the central
division algebra of invariant 1/n.

Moreover, we verify a local-global-compatibility statement for this correspondence,
and compatibility with the patching construction of Caraiani-Emerton-Gee-Geraghty-
Paskunas-Shin.

Contents

1. Introduction 2
2. Some equivariant sites 5
3. Finiteness 10
4. Admissible representations: General base rings 18
5. Shimura curves 21
6. Local-global compatibility 24
7. Consequences 27
8. Patching: The key geometric input 30
9. Patching 35

Appendix: Accessible and weakly accessible period domains, by M. Rapoport 40

References 38

Date: June 12, 2015.

1



2 PETER SCHOLZE

1. Introduction

The goal of this paper is to provide further evidence for the existence of a p-adic
local Langlands correspondence, as was first envisioned by Breuil, [2], and established
for GL2(Qp) by Colmez, [12], Paskunas, [25], and others. So far, little is known beyond
GL2(Qp), and work of Breuil-Paskunas, [3], shows that already for GL2(F ), F 6= Qp,
the situation is very difficult. There is recent work of Caraiani-Emerton-Gee-Geraghty-
Paskunas-Shin, [5], that construct some p-adic GLn(F )-representation starting from an
n-dimensional representation of the absolute Galois group of a p-adic field F , for general
n and F . Their construction is based on the patching construction of Taylor-Wiles, and
is thus global in nature. Unfortunately, it is not clear that their construction gives a
representation independent of the global situation.

In this paper, we work in the opposite direction. Namely, starting from a p-adic
GLn(F )-representation π, we produce a representation F (π) of the absolute Galois group
GalF , for any n and F , in a purely local way. Corollary 9.3 ensures that (for n = 2),
composing the patching construction with our functor gives back the original Galois
representation.

Actually, F (π) also carries an admissible D×-action, where D/F is the central division
algebra of invariant 1/n. Thus, simultaneously, this indicates the existence of a p-
adic Jacquet-Langlands correspondence relating p-adic GLn(F ) and D×-representations.
Such a correspondence is not known already for GL2(Qp), and its formalization remains
mysterious, as the D×-representations are necessarily (modulo p) of infinite length.
However, we do not pursue these questions here.

Let us now describe our results in more detail. Let n ≥ 1 be an integer and F/Qp a
finite extension. Let O ⊂ F be the ring of integers, $ ∈ O a uniformizer, and let q be
the cardinality of the residue field of F , which we identify with Fq. Fix an algebraically

closed extension k of Fq, e.g. Fq. Let F̆ = F ⊗W (Fq) W (k) be the completion of the

unramified extension of F with residue field k. Let Ŏ ⊂ F̆ be the ring of integers.
In this situation, one has the Lubin-Tate tower (MLT,K)K⊂GLn(F ), which is a tower of

smooth rigid-analytic varietiesMLT,K over F̆ parametrized by compact open subgroups
K of GLn(F ), with finite étale transition maps. There is a compatible continuous action
of D× on all MLT,K , as well as an action of GLn(F ) on the tower, i.e. g ∈ GLn(F )
induces an isomorphism between MLT,K and MLT,g−1Kg. There is the Gross-Hopkins
period map, [22],

πGH :MLT,K → Pn−1

F̆
,

compatible for varying K, which is an étale covering map of rigid-analytic varieties with
fibres GLn(F )/K. It is also D×-equivariant if the right-hand side is correctly identified

with the Brauer-Severi variety for D/F (which splits over F̆ ). Moreover, there is a Weil
descent datum on MLT,K , under which πGH is equivariant for the above identification

of Pn−1

F̆
with the Brauer-Severi variety of D/F .

It was first observed by Weinstein, cf. [31], that the inverse limit

MLT,∞ = lim←−
K⊂GLn(F )

MLT,K

exists as a perfectoid space. The induced map

πGH :MLT,∞ → Pn−1

F̆
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is in a suitable sense a GLn(F )-torsor; however, it takes a little bit of effort to make
this statement precise, and we do not do so here. However, for any smooth GLn(F )-
representation π on an Fp-vector space,1 one can construct a Weil-equivariant sheaf Fπ
on the étale site of the rigid space Pn−1

F̆
. Our main theorem is the following.

Theorem 1.1. Let π be an admissible smooth GLn(F )-representation on an Fp-vector
space. The cohomology group

H i
ét(P

n−1
C ,Fπ)

is independent of the choice of an algebraically closed complete extension C of F̆ , and
vanishes for i > 2(n− 1). For all i ≥ 0,

H i
ét(P

n−1
Cp ,Fπ)

is an admissible D×-representation, and the action of the Weil group WF extends con-
tinuously to an action of the absolute Galois group GalF of F .

The proof of this theorem follows closely the proof of finiteness of Fp-cohomology of
proper (smooth) rigid spaces, [29]. In particular, it depends crucially on properness of
Pn−1, or more precisely, on properness of the image of πGH. Unfortunately, it turns out
that the Lubin-Tate case is essentially (up to products and changing the center) the
only example of a Rapoport-Zink space with surjective period map. We refer to the
Appendix by M. Rapoport for further discussion of this point. Thus, the methods of
this paper do not shed light on other groups.

Remark 1.2. Intuitively, H∗ét(P
n−1
C ,Fπ) is the π-isotypic component of the cohomology

of the Lubin-Tate tower, but the formulation is different for several reasons. First,
the (usual or compactly supported) cohomology groups of MLT,0,C or MLT,∞,C itself
are not well-behaved, e.g. not admissible and not invariant under change of C, cf.
work of Chojecki, [11]. Using lifts of Artin-Schreier covers one can check that already
H1

ét(BC ,Fp) is infinite-dimensional and depends on C, where BC denotes the closed unit
disc over C. Second, taking the π-isotypic component is not an exact operation for
Fp-representations.

For the local-global-compatibility results, we have decided to work only with GL2, as
this leads to many technical simplifications; it is to be expected that many arguments
can be adapted to GLn if one uses Harris-Taylor type Shimura varieties, [21]. Fix a
totally real field F and a place p dividing p such that Fp is the p-adic field considered
previously. Moreover, fix an infinite place ∞F of F . Let D0 be a division algebra
over F which is split at p and is ramified at all infinite places. Let G = D×0 be the
algebraic group of units in D0. Let D be the inner form of G which is split at ∞F

and ramified at p (and unchanged at all other places), and denote by D× the algebraic
group of units of D. Fix a compact open subgroup Up ⊂ G(Ap

F,f ) ∼= D×(Ap
F,f ). For each

K ⊂ GL2(Fp) ∼= G(Fp), one has the space of algebraic automorphic forms

S(KUp,Fp) = C0(G(F )\G(AF,f )/KUp,Qp/Zp) ,

as well as the cohomology

H1(ShK′Up,C,Qp/Zp)
of the Shimura curve ShK′Up/F for D/F , for varying K ′ ⊂ D×p = D×(Fp). These

H0-, resp. H1-, groups are respectively the middle cohomology groups of the relevant
Shimura varieties. Let

π = lim−→
K

S(KUp,Qp/Zp)

1One can also handle more general base rings, and we do so in the paper.
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and
ρ = lim−→

K′
H1(ShK′Up,C,Qp/Zp) ,

which are admissible GL2(Fp)-, resp. D×p -representations over Zp. Moreover, ρ carries
a representation of GalF , and thus of GalFp . The following theorem is an easy conse-
quence of Cerednik’s p-adic uniformization, cf. [8], [13], [26], [1], along with the duality
isomorphism between the Lubin-Tate and the Drinfeld tower, cf. [18], [19], [31].

Theorem 1.3. There is a canonical GalFp ×D×p -equivariant isomorphism

H1
ét(P1

Cp ,Fπ) ∼= ρ .

This is a form of a p-adic local-global-compatibility result, and we deduce the following
more precise results. Fix an absolutely irreducible (odd) 2-dimensional representation
σ of GalF over a finite extension Fq of Fp; this gives rise to a maximal ideal m of the
abstract Hecke algebra T (coming from unramified places), and we assume that the
localization πm 6= 0, i.e. σ is modular. There is a corresponding Hecke algebra T(Up)m
(a complete local noetherian ring with residue field Fq) acting faithfully on πm. There
is a 2-dimensional Galois representation

σm : GalF → GL2(T(Up)m)

characterized by the Eichler-Shimura relations expressing the characteristic polynomials
of Frobenius elements in terms of Hecke operators. The next result says that one can
recover σm|GalFp

from πm.

Theorem 1.4. There is a T(Up)m[GalFp ×D×p ]-equivariant isomorphism

H1
ét(P1

Cp ,Fπm) ∼= σm|GalFp
⊗T(Up)m ρm[σm] ,

for some faithful T(Up)m[D×p ]-module ρm[σm] carrying the trivial GalFp-action. If σ|GalFp

is irreducible, this determines the T(Up)m[GalFp ]-representation σm|GalFp
uniquely.

Moreover, there is a version for the m-torsion.

Theorem 1.5. The 2-dimensional GalFp-representation σ|GalFp
is determined by the

admissible GL2(Fp)-representation π[m]. More precisely, σ|GalFp
can be read off from

the GalFp-representation

H1
ét(P1

Cp ,Fπ[m]) ,

which is an infinite-dimensional admissible GalFp ×D×p -representation. Any indecom-

posable GalFp-subrepresentation of H1
ét(P1

Cp ,Fπ[m]) is of dimension ≤ 2, and σ|GalFp
is

determined in the following way.

Case (i) If there is a 2-dimensional indecomposable GalFp-representation

σ′ ⊂ H1
ét(P1

Cp ,Fπ[m]) ,

then σ|GalFp
= σ′.

Case (ii) Otherwise, H1
ét(P1

Cp ,Fπ[m]) is a direct sum of characters of GalFp, and at most

two different characters χ1, χ2 of GalFp appear; if only one appears, let χ2 = χ1 be the
only character appearing. Then σ|GalFp

= χ1 ⊕ χ2.

Acknowledgments. The results of this paper were found during the conference
in honour of Henri Carayol and Jean-Pierre Wintenberger in Strasbourg in January
2014, and the author wishes to thank Arthur-César le Bras for useful discussions during
that conference. The compatibility with patching was proved following questions of
Ana Caraiani, whom the author wishes to thank. The results of this paper were first
announced in February 2014 (during a snowstorm in Princeton). The author wants to
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2. Some equivariant sites

In the proof of our main result, we need to consider cohomology groups of some
objects like Pn−1/K for a compact open subgroup K ⊂ D×. There are several possible
definitions of these cohomology groups. One might define them in terms of the simplicial
adic space (Pn−1 ×EK)/K with terms Pn−1 ×Ki, or in terms of some stacky diamond
(Pn−1)�/K, using diamonds as in [30]. The technically simplest solution seems to be to
directly define a site (Pn−1/K)ét that gives rise to these cohomology groups.

In the following, let X be either a locally noetherian analytic adic space, in the sense
that X is locally of the form Spa(A,A+) for some strongly noetherian Tate ring A and
a ring of integral elements A+ ⊂ A, or a perfectoid space.2 If X is a perfectoid space, all
affinoid subsets below are assumed to be of the form Spa(A,A+), where A is perfectoid.
For simplicity, we will spell out only the case of locally noetherian analytic adic spaces.

Definition 2.1. Let G be a locally profinite group. An action of G on X is said to
be continuous if X admits a cover by open affinoid Spa(A,A+) ⊂ X stabilized by open
subgroups H ⊂ G such that the action morphism H ×A→ A is continuous.

Lemma 2.2. Assume that a locally profinite group G acts continuously on the locally
noetherian analytic adic space X. For any quasicompact open subset U ⊂ X, the sta-
bilizer GU ⊂ G of U in G is open. If U = Spa(A,A+) is affinoid, then the action
morphism GU ×A→ A is continuous.

Proof. First, we check that there is a basis of affinoid open subsets Spa(A,A+) ⊂ X
which have an open stabilizer H in G, and for which the action morphism on A is
continuous. It is enough to check that this property passes to rational subsets. Fix a
ring of definition A0 ⊂ A and a pseudouniformizer $ ∈ A0, i.e. a topologically nilpotent
unit of A. If U ⊂ Spa(A,A+) is the rational subset defined by

U = {∀i = 1, . . . , n : |fi(x)| ≤ |g(x)| 6= 0}

for some f1, . . . , fn, g ∈ A such that the ideal (f1, . . . , fn) is all of A, then V = $(A+f1 +
. . .+A+fn) ⊂ A is an open neighborhood of 0 such that for all f ′i ∈ fi + V , g′ ∈ g + V ,
the rational subset defined by f ′1, . . . , f

′
n, g
′ agrees with U . From this and the continuity

of the action morphism H ×A→ A, it follows that the stabilizer HU of U in H is open.
To check that the action of HU on OX(U) is continuous, we deal with two cases

separately. First, assume that all fi = 1. Then OX(U) is the completion of A[1/g] with
respect to the topology making $mA0[1/g] a basis of open neighborhoods of 0. The
action of h ∈ HU sends g−1 to h(g)−1 = g−1(1+ahg

−1+a2
hg
−2+. . .) in case h(g) = g−ah

for some element ah ∈ $A0; this happens in an open subgroup h ∈ H ′ ⊂ HU . Moreover,
ah varies continuously with h, which implies that also

h(g)−1 = g−1(1 + ahg
−1 + a2

hg
−2 + . . .) ∈ OX(U)

varies continuously with h. Going through the definitions, this implies that the action
of H ′ on OX(U) is continuous, and as H ′ ⊂ HU is open, this implies the same for the
action of HU on OX(U).

2Everything works for analytic adic spaces which have a well-behaved étale site.
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Now assume that g = 1. In that case, OX(U) is the completion of A with respect
to the topology making $mA0[f1, . . . , fn] a basis of open neighborhoods of 0. In this
case, continuity is immediately verified. In general, as A is Tate, any rational subset is
a rational subset of the second form inside a rational subset of the first form, verifying
continuity of HU ×OX(U)→ OX(U).

Thus, any quasicompact open U ⊂ X is covered by finitely many Ui ⊂ U whose
stabilizer Gi ⊂ G is open. The intersection ∩iGi ⊂ G is still open and stabilizes U ,
proving the first claim. For the second claim, if U = Spa(A,A+), one can choose all
Ui = Spa(Ai, A

+
i ) ⊂ U affinoid such that the action of Gi on Ai is continuous. Then the

action of ∩iGi on the closed subspace A ⊂
∏
iAi is continuous, giving the result. �

We will also need a result about extending group actions to finite étale covers.

Lemma 2.3. Let X = Spa(A,A+) with A a strongly noetherian Tate ring. Let G be a
profinite group acting continuously on X, and let B be a finite étale A-algebra, B+ ⊂ B
the integral closure of A+, and Y = Spa(B,B+). Assume that there is some closed
subgroup H0 ⊂ G such that the H0-action on X lifts to an H0-action on Y , and fix such
an action. Then there is an open subgroup H ⊂ G containing H0 and a continouous
action of H on Y compatible with the action of X, and the H0-action on Y . Given
two such continuous actions of open subgroups H, H ′ on Y , there is an open subgroup
H ′′ ⊂ H ∩H ′ containing H0 on which they agree.

Note that in particular, one can apply the lemma in the case that H0 is trivial, or in
the case G = H0 ×G0 of two commuting actions.

Proof. Everything can be translated into actions on A resp. B. Let C0(G,A) be the
ring of continuous functions G → A with pointwise addition and multiplication; this is
again a complete Tate ring, intuitively corresponding to the space X × G. There is a
natural map m : A → C0(G,A) sending f ∈ A to the map g 7→ g(f); this corresponds
to the action map X×G→ X. There is also the diagonal embedding p : A→ C0(G,A)
corresponding to the projection X ×G→ X.

One checks that giving a continuous action of H on B is equivalent to giving an
isomorphism of finite étale C0(H,A)-algebras

B ⊗A,m C0(H,A) ∼= B ⊗A,p C0(H,A)

satisfying the obvious cocycle condition over C0(H × H,A). Now recall the following
result of Elkik, [14], and Gabber-Ramero, [20, Proposition 5.4.53], cf. also [27, Lemma
7.5 (i)].

Theorem 2.4. Let Ri be a filtered inductive system of complete Tate rings with com-
patible rings of definition Ri,0 ⊂ Ri. Pick a pseudouniformizer $ ∈ Ri,0 for some i,
which we assume is minimal, thus giving compatible pseudouniformizers $ ∈ Ri,0 for
all i. Let R0 be the $-adic completion of lim−→i

Ri,0, and R = R0[$−1]. Then

Rfét
∼= 2-lim−→i

(Ri)fét .

Applying this to the system Ri = C0(Hi, A) for a basis of open subgroups Hi ⊂ G
containing H0, with Ri,0 = C0(Hi, A0), we get R = C0(H0, A) as the completed direct
limit. As we are given an isomorphism

B ⊗A,m C0(H0, A) ∼= B ⊗A,p C0(H0, A)

of finite étale C0(H0, A)-algebras satisfying the cocycle condition, the theorem of Elkik-
Gabber-Ramero shows that this spreads in an essentially unique way into an isomor-
phism

B ⊗A,m C0(H,A) ∼= B ⊗A,p C0(H,A)
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for an open subgroup H ×G containing H0. Moreover, the cocycle condition is satisfied
for H sufficiently small, by applying the same reasoning for the system of the C0(Hi ×
Hi, A). �

This implies the same result for étale maps.

Corollary 2.5. Let X be a locally noetherian analytic adic space equipped with a con-
tinuous action by a profinite group G. Let Y → X be an étale map, and assume that
Y is qcqs, and carries a compatible action of a closed subgroup H0 ⊂ G. Then there
is an open subgroup H of G containing H0 which acts continuously on Y extending the
H0-action, compatibly with the action on X, and two such actions agree after shrinking
H. Any morphism Y → Y ′ of qcqs étale adic spaces equipped with H0-actions over X
is equivariant for the H-action if H is small enough.

Proof. We have already verified this result for finite étale maps and open subsets. In
general Y → X has an open cover by finitely many subsets which are compositions of
open subsets and finite étale maps. Thus, we can get such actions over a quasicompact
open cover {Yi → Y }; to glue them to all of Y , we need to make them compatible
on Yi ×Y Yj . As Y is quasiseparated, the fibre products Yi ×Y Yj are quasicompact.
Using that any two actions of open subgroups H, H ′ on Yi ×Y Yj agree on an open
neighborhood then gives the action on Y . Similarly, one checks that this action is
equivariant for morphisms. �

Now we can define the equivariant étale site.

Definition 2.6. Let X be a locally noetherian analytic adic space with a continuous
action by a locally profinite group G. Let (X/G)ét be the site whose objects are (locally
noetherian analytic) adic spaces Y equipped with a continuous action of G, and a G-
equivariant étale morphism Y → X. Morphisms are G-equivariant maps over X, and a
family of morphisms {fi : Yi → Y } is a cover if |Y | =

⋃
i fi(|Yi|).

Let (X/G)∼ét denote the associated topos.

It is directly verified that (X/G)ét has good properties, e.g. all finite limits exist. If
G is profinite, there is also a good notion of quasicompact and quasiseparated objects.

Lemma 2.7. Let X be a locally noetherian analytic adic space with a continuous action
by a profinite group G.

(i) An object Y ∈ (X/G)ét is quasicompact if and only if |Y | is quasicompact.

(ii) An object Y ∈ (X/G)ét is quasiseparated if and only if |Y | is quasiseparated.

(iii) A morphism f : Y → Y ′ in (X/G)ét is quasiseparated (resp. quasicompact) if and
only if |f | : |Y | → |Y ′| is quasiseparated (resp. quasicompact).

(iv) Consider the set of U ∈ (X/G)ét for which U is affinoid; this forms a basis for the
topology consisting of qcqs objects which are stable under fibre products.

(v) The site (X/G)ét is algebraic, in particular locally coherent.

Proof. As étale maps are open, it follows that if |Y | is quasicompact, then so is Y ∈
(X/G)ét: If {fi : Yi → Y } is a cover, so that |Y | =

⋃
i fi(|Yi|), then finitely many of the

open subsets fi(|Yi|) already cover, giving a finite subcover in (X/G)ét.
Next, we show that the set of affinoid U ∈ (X/G)ét forms a basis for the topology. For

any Y ∈ (X/G)ét, pick an open affinoid subset V ⊂ Y . This is stabilized by some open
subgroup H ⊂ G, and then U = V ×H G is an affinoid space (as it is non-equivariantly
isomorphic to V × G/H). One gets a G-equivariant map U → Y , and these cover Y .
Obviously, the set of affinoid U ∈ (X/G)ét is stable under fibre products, proving (iv).

Now let Y ∈ (X/G)ét be quasicompact. Then we can cover Y by finitely many affinoid
Ui ∈ (X/G)ét. The resulting surjection from a quasicompact space

⊔
i |Ui| to |Y | shows

that |Y | is quasicompact, proving (i). All other properties are readily established. �
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Moreover, we need the following property.

Proposition 2.8. Let X be a qcqs locally noetherian analytic adic space with a contin-
uous action by a profinite group G. The association mapping Y ∈ (X/G)ét to Y ∈ Xét

defines a morphism of sites Xét → (X/G)ét under which X∼ét is a projective limit of the
fibred topos ((X/H)∼ét)H , where (X/H)∼ét is considered as a fibred topos over the category
of open subgroups H ⊂ G in an obvious way. More generally, whenever H0 ⊂ G is a
closed subgroup, (X/H0)∼ét is a projective limit of the fibred topos (X/H)∼ét for H ⊃ H0

open subgroups of G. In particular, for any sheaf F ∈ (X/G)∼ét,

H i((X/H0)ét,F) = lim−→
H0⊂H⊂G

H i((X/H)ét,F) ,

where we write F also for its pullback to (X/H0)ét, resp. (X/H)ét.

Proof. We can replace (X/G)ét by the site (X/G)qcqs
ét of qcqs Y ∈ (X/G)ét, which gives

rise to the same topos. Then, by Lemma 2.5 and the previous identification of qcqs
objects, we have an identification of categories

(X/H0)qcqs
ét
∼= 2-lim−→H0⊂H⊂G

(X/H)qcqs
ét ,

where H runs over open subgroups. Moreover, (X/H0)qcqs
ét is equipped with the weakest

induced topology. Thus, by SGA 4 VI Théorème 8.2.3, we get the result. �

It is useful to combine this result with the observation that (X/H)ét → (X/G)ét is a
slice, if H ⊂ G is open.

Proposition 2.9. Let X be a locally noetherian analytic adic space with a continuous
action by a locally profinite group G. Let H ⊂ G be an open subgroup, and consider
X ×H G ∈ (X/G)ét. Then the functor U 7→ U ×H G induces an equivalence between
(X/H)ét and the slice site (X/G)ét/(X ×H G).

Proof. It is enough to prove that one gets an equivalence of categories (X/H)ét
∼=

(X/G)ét/(X×H G), as the notion of covers corresponds. The inverse functor is given by
sending a G-equivariant map U → X ×H G to the fibre over X = X ×H H → X ×H G,
and the functors are clearly inverse. �

Assume now that X lives over Spa(K,OK) for some nonarchimedean field K; fix a
pseudouniformizer $ ∈ OK . Let O+

X/$ be the sheaf on Xét which is the sheafication of

U 7→ O+
X(U)/$.

Lemma 2.10. Let X be a locally noetherian analytic adic space over Spa(K,OK) with
a continuous action by a locally profinite group G (compatible with the trivial action on
Spa(K,OK)). The association O+

X/G/$ mapping U ∈ (X/G)ét to ((O+
X/$)(U))G is a

sheaf on (X/G)ét. The pullback of O+
X/G/$ to Xét is equal to O+

X/$.

We warn the reader that there is no sheaf O+
X/G in general whose reduction modulo

$ is O+
X/G/$, so that we are doing some abuse of notation here. The problem is that

O+
X may not have enough sections invariant under G, but continuity of the action of G

implies that there are many sections which are invariant modulo $.

Proof. The sheaf property of O+
X/G/$ follows by taking G-invariants in the sheaf prop-

erty of O+
X/$. To check the pullback, one first checks from the definition that the

definition of O+
X/G/$ is compatible with pullback to (X/H)ét for an open subgroup

H ⊂ G, and then one uses Proposition 2.8 along with the observation that by continuity
of the G-action, any section of (O+

X/$)(U) is invariant under some open H ⊂ G if U is
qcqs. �
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We will need the following “conservativity” property.

Lemma 2.11. Let X be a locally noetherian analytic adic space with a continuous action
by a locally profinite group G. Then a pointed sheaf F on (X/G)ét is trivial if and only
if its pullback to Xét is trivial.

Proof. Assume that the pullback of F to Xét is trivial, and let s ∈ F(U), U ∈ (X/G)ét,
be a section. Assume first that s becomes trivial after pullback to (X/H)ét for some
open H ⊂ G. Then s becomes trivial over U ∈ (X/H)ét, which corresponds to U×HG ∈
(X/G)ét, which is a cover U ×H G→ U of U in (X/G)ét, so that s is already trivial in
(X/G)ét.

Thus, it is enough to check that s becomes trivial after pullback to (X/H)ét for some
open H ⊂ G. In particular, we may assume that G is profinite, and then that U is
qcqs. By assumption the pullback of s to U ∈ Xét is trivial. On the other hand, by
Proposition 2.8, we have

H0(Uét,F) = lim−→
H⊂G

H0((U/H)ét,F) ,

so s becomes trivial on U ∈ (X/H)ét for some open H ⊂ G, finishing the proof. �

Now assume that X is a locally noetherian adic space over Spa(Qp,Zp), and that
(XH)H → X is a G-torsor for some profinite group G, in the sense that for all open
normal subgroups H ⊂ G, XH → X is a finite étale G/H-torsor, compatibly in H.
Moreover, assume that there is a perfectoid space X∞ → X such that

X∞ ∼ lim←−
H

XH

in the sense that there is a covering of X∞ by affinoid perfectoid U∞ = Spa(R∞, R
+
∞)

coming as pullback of affinoid UH = Spa(RH , R
+
H) ⊂ XH for all sufficiently small H,

with R+
∞ the p-adic completion of lim−→H

R+
H . In that case, one has |X∞| ∼= lim←−H |XH |.

(Cf. [31, Definition 2.4.1].)
Note that there is a natural morphism of sites (X∞/G)ét → Xét, as any étale U → Xét

pulls back to an étale U∞ → X∞ equipped with a continuous action of G. Assume
moreover that a locally profinite group J acts continuously and compatibly on X and
all XH , commuting with the G-action. Then J acts continuously on X∞.

Proposition 2.12. The natural morphism (X∞/G× J)ét → (X/J)ét is an equivalence
of sites.

Proof. Let us sketch the argument. It is enough to check that there is an equivalence
of categories (X∞/G × J)ét

∼= (X/J)ét, as the notions of covers correspond. For this,
we can replace J by an open subgroup, in particular we can assume that J is compact.
Also we can argue locally on X, and assume that X, and thus all XH , X∞, are qcqs.

Now it is enough to prove (X∞/G × J)qcqs
ét
∼= (X/J)qcqs

ét by covering general objects
by qcqs objects. We claim that there is an equivalence of categories

(X∞/J)qcqs
ét = 2-lim−→H⊂G(XH/J)qcqs

ét .

As usual, such a statement can be reduced to quasicompact open embeddings and fi-
nite étale covers individually. For quasicompact open embeddings, it follows from the
identification |X∞| ∼= lim←−H |XH | of topological spaces. For finite étale covers, it follows
from the theorem of Elkik-Gabber-Ramero, Theorem 2.4, along with the assumption
X∞ ∼ lim←−H XH .

Now, if U → X∞ is étale and qcqs and admits a compatible continuous G×J-action,
then J-equivariantly U → X∞ comes via pullback from some étale qcqs UH → XH for
H small enough. Then the identification U = UH ×XH X∞ → X∞ endows U with a
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second H × J-action, agreeing on J . As in the proof of Proposition 2.8, we have an
equivalence of categories

(X∞/J)qcqs
ét
∼= 2-lim−→H

(X∞/H × J)qcqs
ét ,

which shows that the two H × J-actions on U are compatible after shrinking H. This
gives an H × J-equivariant identification U = UH ×XH X∞, and then the G× J-action
on U endows UH with a G/H × J-action. By finite étale descent, this descends UH
to U0 → X, a qcqs étale J-equivariant map. One checks that this gives the desired
equivalence of categories. �

Lemma 2.13. Under the identification of topoi (X∞/G)∼ét
∼= X∼ét, the sheaves O+

X∞/G
/p

and O+
X/p correspond.

Proof. By Lemma 2.11, this can be checked after pullback to (X∞)ét. By Lemma 2.10,
the sheaf O+

X∞/G
/p pulls back to O+

X∞
/p. The same can be verified for O+

X/p by using

the local structure of X∞ ∼ lim←−H XH and [27, Theorem 7.17] to compute the pullback

along (X∞)ét → Xét. �

3. Finiteness

Let us use the notation from the introduction, so n ≥ 1 is an integer and F/Qp a
finite extension with ring of integers O ⊂ F and $ ∈ O. Let q be the cardinality of the
residue field of F , which we identify with Fq. Fix an algebraically closed extension k of

Fq, e.g. Fq. Let F̆ = F ⊗W (Fq) W (k) be the completion of the unramified extension of

F with residue field k. Let Ŏ ⊂ F̆ be the ring of integers.
In this situation, one has the Lubin-Tate tower (MLT,K)K⊂GLn(F ), which is a tower of

smooth rigid-analytic varietiesMLT,K over F̆ parametrized by compact open subgroups
K of GLn(F ), with finite étale transition maps, cf. [22]. There is a compatible continuous
action of D× on allMLT,K , as well as an action of GLn(F ) on the tower, i.e. g ∈ GLn(F )
induces an isomorphism between MLT,K and MLT,g−1Kg. There is the Gross-Hopkins
period map, [22],

πGH :MLT,K → Pn−1

F̆
,

compatible for varying K, which is an étale covering map of rigid-analytic varieties with
fibres GLn(F )/K. It is also D×-equivariant if the right-hand side is correctly identified

with the Brauer-Severi variety for D/F (which splits over F̆ ). Moreover, there is a Weil
descent datum on MLT,K (cf. [26, 3.48]), under which πGH is equivariant, under this

identification of Pn−1

F̆
with the Brauer-Severi variety for D/F .

Moreover, denote byMLT,∞ over F̆ (which lives over the completion of the maximal
abelian extension of F , which is a perfectoid field) the perfectoid space constructed in
[31], so that

MLT,∞ ∼ lim←−
K

MLT,K .

Fix an admissible Fp-representation π of GLn(F ). We want to construct a sheaf Fπ
on (Pn−1

F̆
/D×)ét, which is also equivariant for the Weil descent datum. The idea is to

descend the trivial sheaf π along the map

πGH :MLT,∞ → Pn−1

F̆
,

which can be considered as a GLn(F )-torsor.

Proposition 3.1. The association mapping a D×-equivariant étale map U → Pn−1

F̆
to

the Fp-vector space

Mapcont,GLn(F )×D×(|U ×Pn−1

F̆

MLT,∞|, π)
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of continuous GLn(F ) × D×-equivariant maps defines a Weil-equivariant sheaf Fπ on
(Pn−1

F̆
/D×)ét. The association π 7→ Fπ is exact, and all geometric fibres of Fπ are

isomorphic to π, i.e. for any x = Spa(C,C+)→ Pn−1

F̆
with C/F̆ complete algebraically

closed and C+ ⊂ C an open bounded valuation subring, the pullback of Fπ to x̄,

Fπ,x̄ = lim−→
x̄∈U∈(Pn−1

F̆
/D×)ét

Fπ(U) ,

is isomorphic to π; the isomorphism is canonical after fixing a lift of x̄ to MLT,∞.

Proof. As étale covers induce (by definition) surjections on topological spaces, and are
open, it follows that Fπ is a sheaf; Weil equivariance follows from Weil equivariance
of all other objects involved. By exactness of pullback and Lemma 2.11, exactness of
π 7→ Fπ can be checked after pullback to (Pn−1

F̆
)ét. The pullback of Fπ to (Pn−1

F̆
)ét is the

sheaf assigning to an étale U → Pn−1

F̆
the set of continuous GLn(F )-equivariant maps

|U ×Pn−1

F̆

MLT,∞| → π ,

as if U is qcqs, any such map is automatically equivariant for some open H ⊂ D×; here,
we use Proposition 2.8 to compute the pullback of Fπ. To check exactness over (Pn−1

F̆
)ét,

we check at geometric points; it is enough to prove that the stalk of Fπ on any geometric
point is equal to π. Thus, fix some geometric point x̄ = Spa(C,C+) → Pn−1

F̆
, and let

{Ui → X} be the cofiltered inverse system of affinoid étale neighborhoods of x̄; we may
assume that they are all connected. Then

Fπ,x̄ = lim−→
i

Mapcont,GLn(F )(|Ui ×Pn−1

F̆

MLT,∞|, π) .

Observe that as Ui is connected, GLn(F ) acts transitively on the connected components
of |Ui ×Pn−1

F̆

MLT,∞|. It follows that the map Fπ,x̄ → π given by evaluation at a fixed

point of x̄ ×Pn−1

F̆

MLT,∞ is injective. To check surjectivity, note that by smoothness of

π, any element f ∈ π is invariant under some open subgroup 1 +$mMn(O) of GLn(F ).
On the other hand, for any m, one can choose Ui so that Ui → Pn−1

F̆
factors over

Ui →MLT,m =MLT,1+$mMn(O) .

In that case, there is a GLn(F )-equivariant continuous surjection

|Ui ×Pn−1

F̆

MLT,∞| → GLn(F )/(1 +$mMn(O)) .

Composing with the action map GLn(F )/(1 + $mMn(O)) → π given by acting on f
then shows surjectivity of Fπ,x̄ → π. �

Let C/F̆ be an algebraically closed complete extension with ring of integers OC . By
a subscript C , we denote the base change to Spa(C,OC). The goal of this section is to
prove the following theorem.

Theorem 3.2. For any i ≥ 0, the D×-representation H i
ét(P

n−1
C ,Fπ) is admissible, and

vanishes for i > 2(n − 1). If π is injective as GLn(O)-representation, then it vanishes
for i > n− 1. Moreover, the natural map

H i
ét(P

n−1
C ,Fπ)⊗Fp OC/p→ H i

ét(P
n−1
C ,Fπ ⊗O+

X/p)

is an almost isomorphism, and H i
ét(P

n−1
C ,Fπ) is independent of C (i.e., the natural map

for an inclusion C ↪→ C ′ is an isomorphism).
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The almost isomorphism with O+
X/p-cohomology is an analogue of a result of Faltings,

[17, §3, Theorem 8], cf. also [29, Theorem 1.3]. One may hope that it allows one to
understand the p-adic Hodge-theoretic properties of the Galois representations appearing
in H i

ét(P
n−1
C ,Fπ) for Banach space representations π, following e.g. [29].

Our proof of Theorem 3.2 follows closely the proof [29, Theorem 1.3]. It starts by
proving finiteness of the O+

X/p-twisted cohomology groups, and there it starts with a
local finiteness result. Let us first recall the form of this result in [29, Lemma 5.6 (ii)].
For the formulation, we need two definitions.

Definition 3.3. Let V be a smooth affinoid adic space over Spa(C,OC). A map

V → Tn := Spa(C〈T±1
1 , . . . , T±1

n 〉,OC〈T±1
1 , . . . , T±1

n 〉)
is a set of good coordinates if it can be written as a composite of finite étale maps and
rational embeddings.

Definition 3.4. Let V be a separated analytic adic space, and U ⊂ V a subset. Then
U is said to be strictly contained in V if for any maximal point x = Spa(K,OK) ∈ U
and any open bounded valuation subring K+ ⊂ K, there is a map Spa(K,K+) → V
extending Spa(K,OK)→ U .

Lemma 3.5 ([29, Lemma 5.6 (ii)]). Let V be a smooth affinoid adic space over Spa(C,OC)
with good coordinates, and let U ⊂ V be a strict rational subset. Then the image of

H i(Vét,O+/p)→ H i(Uét,O+/p)

is almost finitely generated for all i ≥ 0.

In order to facilitate applications, let us note that this result is true without the “good
coordinates” assumption.

Corollary 3.6. Let V be a separated smooth quasicompact adic space over Spa(C,OC),
and let U ⊂ V be a strict quasicompact open subset. Then the image of

H i(Vét,O+/p)→ H i(Uét,O+/p)

is almost finitely generated for all i ≥ 0.

Proof. Our strategy is to compute both sides via compatible Cech spectral sequences
associated to coverings of V and U by subsets V ′, U ′ to which the previous result applies.
By [29, Lemma 5.4], for this strategy to work in cohomological degree i, we actually need
to run via N spectral sequences, where N ≥ i+ 2. Thus, fix some i and N ≥ i+ 2.

In a first step, assume that V is affinoid. Below, we will construct a finite index set
J along with a cover U =

⋃
j∈J Uj and rational subsets Vj ⊂ V , such that for all j ∈ J ,

Vj is an affinoid with good coordinates, and Uj ⊂ Vj is a strict rational subset. Given

this data, we can find intermediate strict rational subsets Uj = U
(N)
j ⊂ . . . ⊂ U (1)

j = Vj .

For any subset S ⊂ J , let U
(k)
S =

⋂
j∈S U

(k)
j . Then VS := U

(1)
S ⊂ Vj is a rational

subset, so that VS has good coordinates; moreover, U
(k)
S ⊂ VS is a rational subset. This

means that Lemma 3.5 applies to U
(k+1)
S ⊂ U

(k)
S for all S 6= ∅, k = 1, . . . , N − 1. Let

U (k) =
⋃
j∈J U

(k)
j ⊂ V . For each k = 1, . . . , N , there is a Cech spectral sequence⊕
S⊂J,|S|=m1+1

Hm2(U
(k)
S ,O+/p)⇒ Hm1+m2(U (k),O+/p) ,

together with maps between these spectral sequences. Applying Lemma 3.5 and [29,
Lemma 5.4] gives the result in the case that V is affinoid.

To handle the general case, let us again take a finite index set J along with a cover
U =

⋃
j∈J Uj and rational subsets Vj ⊂ V , such that for all j ∈ J , Vj is an affinoid,
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and Uj ⊂ Vj is a strict rational subset. Given this data, we can find intermediate

strict rational subsets Uj = U
(N)
j ⊂ . . . ⊂ U

(1)
j = Vj . For any subset S ⊂ J , let

U
(k)
S =

⋂
j∈S U

(k)
j . Then VS := U

(1)
S ⊂ Vj is affinoid (as V is separated); moreover,

U
(k)
S ⊂ VS is a strict subset. This means that the affinoid case already handled applies

to U
(k+1)
S ⊂ U

(k)
S for all S 6= ∅, k = 1, . . . , N − 1. Let U (k) =

⋃
j∈J U

(k)
j ⊂ V . For each

k = 1, . . . , N , there is a Cech spectral sequence⊕
S⊂J,|S|=m1+1

Hm2(U
(k)
S ,O+/p)⇒ Hm1+m2(U (k),O+/p) ,

together with maps between these spectral sequences. Applying the affinoid case already
handled and [29, Lemma 5.4] gives the result.

It remains to construct the cover U =
⋃
j∈J Uj and Vj ⊂ V such that for all j ∈ J ,

Vj is an affinoid with good coordinates and Uj ⊂ Vj is a strict rational subset. This
is similar, but easier, than [29, Lemma 5.3]. Pick a point maximal point x ∈ U , with

closure {x} ⊂ V in V . We claim that there is an affinoid subset Vx ⊂ V containing {x}.
For this, we use a result of Temkin, [37, Theorem 3.1]. This requires some translation,
as he works with Berkovich spaces there. As V is a qcqs adic space, it is equivalent
to a qcqs rigid space, or to a compact Hausdorff strictly C-analytic Berkovich space.
The question whether the germ Vx is good is precisely the question whether there is
an affinoid neighborhood Vx of {x}. The criterion of Temkin answers this question in

terms of the closure {x} in the adic space, cf. [37, Remark 2.6]. As V is separated, this
closure embeds into the Riemann-Zariski space of the completed residue field K(x) at
x, by the valuative criterion for separatedness, cf. [23, §1.3]. On the other hand, by

the assumption that U is strictly contained in V , {x} surjects onto the Riemann-Zariski

space of K(x). This identifies {x} with the Riemann-Zariski space of K(x), which is
affinoid in the sense of [37, §1]. This verifies the existence of Vx. By [29, Lemma 5.2],
we may assume that Vx has good coordinates. We may then find a strict rational subset
Ux ⊂ Vx contained in U , and containing U ∩ {x}. The union of all Ux is equal to U ;
by quasicompacity, we can find a finite subcover U =

⋃
j∈J Uj , along with Vj ⊂ V such

that Uj is strictly contained in Vj . This produces the desired cover. �

To formulate the local finiteness result in the current setup, recall that one has the
Gross-Hopkins period map at level 0

πGH :MLT,0 → Pn−1

F̆
,

which admits local sections as a map of adic spaces. Here and in the following, we write
MLT,0 =MLT,GLn(O) for the space at level 0. Pick some affinoid open subset V ⊂ Pn−1

F̆

such that MLT,0 → Pn−1

F̆
admits a section V →MLT,0 on V , which we fix. Recall that

Fπ is built from the GLn(F )-torsorMLT,∞ → Pn−1

F̆
, which factors over a GLn(O)-torsor

MLT,∞ →MLT,0. Therefore, the pullback of Fπ toMLT,0 (and thus to V ) depends only
on the GLn(O)-representation π|GLn(O). More precisely, for any GLn(O)-representation

π0, one can define the sheaf Fπ0 on (MLT,0/D
×)ét by setting

Fπ0(U) = Mapcont,GLn(O)×D×(|U ×MLT,0
MLT,∞|, π0)

for U ∈ (MLT,0/D
×)ét. The obvious analogue of Proposition 3.1 holds true in this

setup.
Pick a rational subset U ⊂ V which is strictly contained in V .

Lemma 3.7. For any m ≥ 0, there is a compact open K0 ⊂ D× stabilizing V , U and the
section V →MLT,0 such that for all K ⊂ K0 and any admissible smooth representation
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π0 of GLn(O), the image of the natural map

H i((VC/K)ét,Fπ0 ⊗O+/p)→ H i((UC/K)ét,Fπ0 ⊗O+/p)

is almost finitely generated for all i = 0, . . . ,m.

Proof. Let πreg = C0(GLn(O),Fp) be the regular representation of GLn(O). There is a
resolution

0→ π0 → (πreg)n1 → (πreg)n2 → . . .

for some integers ni ∈ Z. This follows from the anti-equivalence of admissible smooth
GLn(O)-representations and finitely generated Fp[[GLn(O)]]-modules, and Lazard’s the-
orem that Fp[[GLn(O)]] is noetherian, cf. e.g. [15, Theorem 2.1.2, Equation 2.2.12]. Us-
ing exactness of π0 7→ Fπ0 , this induces an E1-spectral sequence computingH i((V/K)ét,Fπ0)
in terms of H i((V/K)ét,Fπreg), and similarly for U . Filtering U ⊂ V by N strict in-
clusions of rational subsets and using [29, Lemma 5.4] reduces the lemma to the case
π0 = πreg.3

Let V∞ → MLT,∞ be the pullback of V → MLT,0; then K still acts on V∞ ∈
(MLT,∞)ét. Recall that there is the isomorphism between Lubin-Tate and Drinfeld
tower at infinite level

MLT,∞ ∼=MDr,∞ ,

cf. [18], [19], which is an isomorphism of perfectoid spaces by [31, Theorem 7.2.3]. Also
recall that the Drinfeld tower is a tower of smooth adic spaces

MDr,K

over Spa(F̆ , Ŏ), parametrized by compact open subgroups K ⊂ D×. By [31, Theorem
6.5.4], one has

MDr,∞ ∼ lim←−
K

MDr,K .

In particular, by Proposition 2.12, one has an equivalence of sites

(MDr,∞/K)ét
∼= (MDr,K)ét ,

under which V∞ with its continuous K-action descends to some VK ∈MDr,K . Then VK
is a quasicompact separated smooth adic space over Spa(F̆ , Ŏ). Applying Proposition
2.12 to VK then shows that there is an equivalence of sites

(V∞/K)ét
∼= (VK)ét .

Lemma 3.8. Let α : (V∞/K)ét → (V/K)ét denote the projection. There is a quasi-
isomorphism of complexes of sheaves on (V/K)ét

Rα∗O+
V∞/K

/p ∼= Fπreg ⊗O+
V/K/p .

Proof. Let αm : (Vm/K)ét → (V/K)ét denote the projection from the preimage Vm ⊂
MLT,m, where MLT,m =MLT,1+$mMn(O). Then (Vm/K)ét is equivalent to the slice of
(V/K)ét over Vm ∈ (V/K)ét with its natural K-action. As Vm is finite étale over V , one
has an isomorphism

Rαm∗O+
Vm/K

/p ∼= FC(GLn(O)/(1+$mMn(O)),Fp) ⊗O+
V/K/p .

Indeed, this can be checked locally on (V/K)ét, and after pullback to the slice of (V/K)ét

over Vm, everything decomposes into a direct sum, as Vm ×V Vm ∼= Vm ×GLn(O)/(1 +
$mMn(O)).

3In this step, we need to take K small enough to also stabilize all intermediate rational subsets. As
the number of intermediate rational subsets depends on the cohomological degree i, we need to take K
dependent on i. A more careful argument would certainly avoid this.
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Also note that O+
V∞/K

/p = α∗O+
V/K/p, as can be checked after pullback to (V∞)ét by

Lemma 2.11, where it follows from V∞ ∼ lim←−m Vm. As

Fπreg = lim−→FC(GLn(O)/(1+$mMn(O)),Fp) ,

the statement of the lemma translates into the equality

Rα∗α
∗G = lim−→

m

Rαm∗α
∗
mG

for the sheaf G = O+
V/K/p on (V/K)ét. In fact, this is true for any sheaf G on (V/K)ét,

and follows from SGA 4 VI Corollaire 8.7.5 and the identification of (V∞/K)∼ét as a
projective limit of the fibred topos

(Vm/K)∼ét
∼= (V∞/(1 +$mMn(O))×K)ét ,

cf. Proposition 2.8, Proposition 2.12. �

Thus, we can rewrite

H i((VC/K)ét,Fπreg ⊗O+
VC/K

/p) = H i((V∞,C/K)ét,O+
V∞,C/K

/p) ,

which in turn, by Lemma 2.13, can be rewritten as H i((VK,C)ét,O+
VK,C

/p). Similarly,

we have
H i((UC/K)ét,Fπreg ⊗O+

UC/K
/p) = H i((UK,C)ét,O+

UK,C
/p) ,

where UK ⊂ MDr,K is defined like VK , so that UK is a strict open subset of VK . By
Corollary 3.6, the image of

H i((VK,C)ét,O+
VK,C

/p)→ H i((UK,C)ét,O+
UK,C

/p)

is almost finitely generated, which is what we wanted to prove. �

Corollary 3.9. Fix some j ≥ 0. Then there is some compact open K0 ⊂ D× such
that for all open K ⊂ K0 and admissible smooth representations π of GLn(F ), the
cohomology group

H i((Pn−1
C /K)ét,Fπ ⊗O+/p)

is almost finitely generated for all i = 0, . . . , j.

Proof. This follows from the local statement by picking sufficiently many open affinoid
covers of Pn−1 satisfying the hypothesis of Lemma 3.7 and using [29, Lemma 5.4], cf.
proof of [29, Lemma 5.8]. �

Corollary 3.10. For any compact open subgroup K ⊂ D× and admissible smooth rep-
resentation π of GLn(F ), the cohomology group

H i((Pn−1
C /K)ét,Fπ ⊗O+/p)

is almost finitely generated for all i ≥ 0.

Proof. It is enough to prove this for i ≤ j for any fixed j. Then the previous corol-
lary shows that the statement is true after replacing K by some open normal K ′ ⊂
K. But H i((Pn−1

C /K)ét,G) is computed by a Hochschild-Serre spectral sequence from

H i1(K/K ′, H i2((Pn−1
C /K ′)ét,G)) for any sheaf G, giving the result in general. �

Corollary 3.11. For any compact open subgroup K ⊂ D× and admissible smooth rep-
resentation π of GLn(F ), the cohomology group

H i((Pn−1
C /K)ét,Fπ)

is finite for all i ≥ 0, and the map

H i((Pn−1
C /K)ét,Fπ)⊗OC/p→ H i((Pn−1

C /K)ét,Fπ ⊗O+/p)

is an almost isomorphism.
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Proof. The proof is the same as that of [29, Theorem 5.1] (which in turn is modelled on
that of [17, §3, Theorem 8]). Note that the argument there is written in terms of the
pro-étale site which we have not introduced for Pn−1

C /K. One can rewrite the argument

entirely in terms of the étale site as follows. On the pro-étale site of Pn−1
C , one can look

at the sheaf O[− which is the quotient of O[ by the subsheaf of topologically nilpotent
elements. It is a simple exercise to present O[− as a colimit of the sheaf O+/p along
suitable transition maps. Namely, first define

O++/p = O+/p⊗OC mC

(which can be written as a colimit according to mC =
⋃
p1/nOC). There is an isomor-

phism x 7→ xp−p(p−1)/px from O++/p1/p to O++/p (this can be checked on the pro-étale
site of Pn−1

C ); let

Φ̃−1 : O++/p ∼= O++/p1/p ∼= p(p−1)/pO++/p ⊂ O++/p

be the inverse of this isomorphism composed with multiplication by p(p−1)/p. Then

O[− = lim−→
Φ̃−1

O++/p .

This implies that O[− comes via pullback from the étale site of Pn−1
C , and in fact from

(Pn−1
C /D×)ét. One can check that O[− is a sheaf of O[C-modules; let O[−[(p[)k] ⊂ O[−

denote the subsheaf of elements killed by (p[)k. Then there are short exact sequences

0→ O[−[(p[)k1 ]→ O[−[(p[)k1+k2 ]→ O[−[(p[)k2 ]→ 0 ,

as well as Frobenius isomorphisms

O[−[(p[)k] ∼= O[−[(p[)pk] ,

and O[−[p[] ∼= O++/p is almost isomorphic to O+/p. All of these statements can be
checked on the pro-étale site of Pn−1

C . This implies that the cohomology groups

Mk = H i((Pn−1
C /K)ét,Fπ ⊗O[−[(p[)k])

satisfy the assumptions of [29, Lemma 2.12]. In particular, there is an almost isomor-
phism

H i((Pn−1
C /K)ét,Fπ ⊗O+/p)a ∼= (OaC/p)r

for some integer r ≥ 0, compatible with Frobenius. By tensoring with the maximal
ideal, this gives an actual isomorphism

H i((Pn−1
C /K)ét,Fπ ⊗O++/p) ∼= (mC/p)

r ,

compatible with Frobenius, which in turn induces an isomorphism

H i((Pn−1
C /K)ét,Fπ ⊗O[−) ∼= (C[/mC[)

r

compatible with Frobenius, by passing through the colimit defining O[−. But there is
an Artin-Schreier sequence

0→ Fπ → Fπ ⊗O[− → Fπ ⊗O[− → 0 ;

exactness can be checked over the pro-étale site of Pn−1
C , where Fπ is locally trivial,

and the result follows from the Artin-Schreier sequence for O[−. Now the long exact
cohomology sequence

. . .→ H i((Pn−1
C /K)ét,Fπ)→ H i((Pn−1

C /K)ét,Fπ⊗O[−)→ H i((Pn−1
C /K)ét,Fπ⊗O[−)→ . . .

implies that
H i((Pn−1

C /K)ét,Fπ) ∼= Frp ,
as ϕ− 1 is surjective on C[/mC[ with kernel Fp. �
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Lemma 3.12. For any compact open subgroup K ⊂ D× and any sheaf G on (Pn−1
C /K)ét,

there is a Hochschild-Serre spectral sequence

H i1
cont(K,H

i2(Pn−1
C ,G))⇒ H i1+i2((Pn−1

C /K)ét,G) .

Here, all K-modules are considered as discrete.

Proof. One gets the spectral sequence as a direct limit over K ′ of spectral sequences

H i1(K/K ′, H i2((Pn−1
C /K ′)ét,G))⇒ H i1+i2((Pn−1

C /K)ét,G) ,

which one gets as Cartan-Leray spectral sequences for the covering Pn−1
C ×K′K → Pn−1

C

in (Pn−1
C /K)ét, under the identification of (Pn−1

C /K ′)ét with a slice of (Pn−1
C /K)ét. �

Also recall the following lemma about continuous group cohomology of p-adic Lie
groups.

Lemma 3.13. Let G be a compact p-adic Lie group, and let π be an admissible smooth
Fp-representation of G. Then H i

cont(G, π) is finite-dimensional for all i ≥ 0.

Proof. Under the identification of continuous group cohomology with the derived functor
of G-invariants in case G is compact, cf. [16, Proposition 2.2.6], this follows from
the anti-equivalence of admissible smooth representations of G with finitely generated
Fp[[G]]-modules, cf. [15, 2.2.12], and Lazard’s theorem that Fp[[G]] is noetherian, cf.
e.g. [15, Theorem 2.1.2]. �

Corollary 3.14. For any admissible smooth representation π of GLn(F ), the cohomol-
ogy group

H i
ét(P

n−1
C ,Fπ)

is an admissible D×-representation invariant under change of C. The map

H i
ét(P

n−1
C ,Fπ)⊗Fp OC/p→ H i

ét(P
n−1
C ,Fπ ⊗O+/p)

is an almost isomorphism.

Proof. The almost isomorphism follows by passing to the direct limit over K in Corollary
3.11, using Lemma 2.8. E.g. by computing the right-hand side using the pro-étale site,
and a simplicial affinoid perfectoid cover over which Fπ is free, one sees that enlarging
C ↪→ C ′, the map

H i
ét(P

n−1
C ,Fπ ⊗O+/p)⊗OC/p OC′/p→ H i

ét(P
n−1
C′ ,Fπ ⊗O

+/p)

is an almost isomorphism. Here, use that if X = Spa(R,R+) is an affinoid perfectoid
space over Spa(C,OC) with base-change X ′ = Spa(R′, R′+) to Spa(C ′,OC′), then R′+/p
is almost isomorphic to R+/p ⊗OC/p OC′/p, cf. proof of [27, Proposition 6.18]. This

implies that H i
ét(P

n−1
C ,Fπ) is invariant under change of C.

To check that H i
ét(P

n−1
C ,Fπ) is an admissible D×-representation, we argue by induc-

tion on i; thus, assume the result is known for i′ < i. We need to show that for any
compact open subgroup K ⊂ D×, the space

H i
ét(P

n−1
C ,Fπ)K

is finite-dimensional. Consider the Hochschild-Serre spectral sequence

H i1
cont(K,H

i2
ét (Pn−1

C ,Fπ))⇒ H i1+i2((Pn−1
C /K)ét,Fπ)

from Lemma 3.12. In particular, consider the contributions on the diagonal i1 + i2 = i.
For i2 < i, the group H i2

ét (Pn−1
C ,Fπ) is admissible as K-representation by induction,

which by Lemma 3.13 implies that

H i1
cont(K,H

i2
ét (Pn−1

C ,Fπ))



18 PETER SCHOLZE

is finite-dimensional if i2 < i. The only other contribution to the diagonal i1 + i2 = i
comes from

H i
ét(P

n−1
C ,Fπ)K .

Assume it was infinite-dimensional. In the spectral sequence, it only interacts with terms
where i2 < i, and only finitely many such. This gives only a finite-dimensional space,
so an infinite-dimensional space survives to the E∞-page, which contributes an infinite-
dimensional space toH i((Pn−1

C /K)ét,Fπ). However, this space is finite by Corollary 3.11.

Thus, we see that H i
ét(P

n−1
C ,Fπ) is an admissible D×-representation, as desired. �

To complete the proof of Theorem 3.2, it remains to verify the vanishing statements
in large degrees. We claim that

H i
ét(P

n−1
C ,Fπ ⊗O+/p)

is almost zero for i > 2(n − 1) in general, and i > n − 1 if π is injective as GLn(O)-
representation. As the cohomological dimension of |Pn−1

C | is n− 1, it is enough to prove

that under the projection λ : (Pn−1
C )ét → |Pn−1

C |,

Riλ∗(Fπ ⊗O+/p)

is almost for i > n − 1, and for i > 0 if π is injective as GLn(O)-representation. It
is enough to prove this after pullback to MLT,0,C , as MLT,0,C → Pn−1

C admits local
sections. After this pullback, Fπ can be written as the inductive limit of the FπH
over all open subgroups H ⊂ GLn(O), all of which are Fp-local systems. Thus, almost
vanishing for i > n− 1 follows from [29, Lemma 5.6].

Now assume π is injective as GLn(O)-representation. Then we may write π as
GLn(O)-representation as a direct summand of a power of πreg. Thus, we can reduce to
the case that π = πreg. In that case, we have to compute

Rif∗O+/p

for the projection f : (MLT,∞,C)ét → |MLT,0,C |. But by [39, Lemma 2.10.1] (and
its proof), the space |MLT,0,C | is covered by open affinoid U whose preimage U∞ ⊂
MLT,∞,C is affinoid perfectoid, so that by [27, Proposition 7.13], the higher cohomology
groups H i((U∞)ét,O+/p) are almost zero for i > 0.

4. Admissible representations: General base rings

In this section, we want to extend the finiteness results from the previous section to
admissible representations of GLn(F ) over more general base rings.

Definition 4.1 ([15, §2]). Let (A,m) be a complete noetherian local ring with finite
residue field of characteristic p, and G a p-adic analytic group. An A[G]-module V is
called smooth if for all v ∈ V , there is some open subgroup H ⊂ G and i ≥ 1 such that
v is H-invariant and miv = 0.

A smooth A[G]-module V is called admissible if for all i ≥ 1 and H ⊂ G open, the
A/mi-module V H [mi] is finitely generated (equivalently, of finite length).

Remark 4.2. In case A = Zp, the representations live on p-torsion modules like Qp/Zp.
In geometric settings, one gets such representations by considering the cohomology with
Qp/Zp-coefficients (which carries essentially the same information as completed coho-
mology with Zp-coefficients).

We recall that the category of admissible A[G]-modules is well-behaved.

Theorem 4.3 ([15, Proposition 2.2.13]). The category of admissible A[G]-modules is
abelian, and a Serre subcategory of the category of smooth A[G]-modules.

In this section, we prove the following generalization of Theorem 3.2.
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Theorem 4.4. Let (A,m) be a complete noetherian local ring with finite residue field
of characteristic p. Let V be an admissible A[GLn(F )]-module, and let FV be the corre-
sponding sheaf on (Pn−1

C /D×)ét. For all i ≥ 0, the D×-representation

H i
ét(P

n−1
C ,FV )

is admissible, independent of C, and vanishes for i > 2(n− 1). The natural map

H i
ét(P

n−1
C ,FV )⊗Zp OC → H i

ét(P
n−1
C ,FV ⊗O+)

is an almost isomorphism.

Remark 4.5. Emerton also introduces the notion of p-adically admissible representations
in [15, Definition 2.4.7], making it possible to say that completed cohomology (which is
a p-adically complete Zp-module) itself is admissible. An obvious variant holds for this
notion of admissibility as well.

Proof. Note first that by Proposition 2.8, we have

H i
ét(P

n−1
C ,FV ) = lim−→

K⊂D×
H i((Pn−1

C /K)ét,FV ) ,

where K ⊂ D× acts trivially on H i
ét((P

n−1
C /K),FV ). Moreover, each site (Pn−1

C /K)ét is

coherent, so as V = lim−→V [mj ], we have

H i((Pn−1
C /K)ét,FV ) = lim−→H i((Pn−1

C /K)ét,FV [mj ]) ,

where mj annihilates H i((Pn−1
C /K)ét,FV [mj ]). It follows that H i

ét(P
n−1
C ,FV ) is smooth.

To prove admissibility, we now have Theorem 4.3 available.
Assume first that V is killed by mj . We induct on the minimal such j; for j = 1, the

result is given by Theorem 3.2. Now look at the exact sequence

0→ V [m]→ V → V → 0 ,

where V = V/V [m]. It induces a long exact sequence

. . .→ H i
ét(P

n−1
C ,FV [m])→ H i

ét(P
n−1
C ,FV )→ H i

ét(P
n−1
C ,FV )→ . . . .

The outer two terms are admissible by induction. This implies, by Theorem 4.3, that
the middle term is admissible as well. Using the 5-lemma, one also proves the almost
isomorphism by induction.

In general, the almost isomorphism follows by writing

H i
ét(P

n−1
C ,FV ) = lim−→H i

ét(P
n−1
C ,FV [mj ]) ,

and similarly for the O+/p-twisted cohomology groups. For admissibility, we induct on

i, so assume that for all admissible A[GLn(F )]-modules V , H i′
ét(P

n−1
C ,FV ) is admissible

for i′ < i. Fix some j and V , and generators (f1, . . . , fn) = mj . There is an exact
sequence

0→ V [mj ]→ V
(f1,...,fn)−→ V n .

Let V = V/V [mj ] and W = coker(V
(f1,...,fn)−→ V n) = V n/V , both of which are admissible

A[GLn(F )]-modules. Now

H i
ét(P

n−1
C ,FV )[mj ] = ker

(
H i

ét(P
n−1
C ,FV )→ H i

ét(P
n−1
C ,FV n)

)
[mj ] ,

and there is an exact sequence

0→ ker
(
H i

ét(P
n−1
C ,FV )→ H i

ét(P
n−1
C ,FV )

)
[mj ]

→ ker
(
H i

ét(P
n−1
C ,FV )→ H i

ét(P
n−1
C ,FV n)

)
[mj ]

→ ker
(
H i

ét(P
n−1
C ,FV )→ H i

ét(P
n−1
C ,FV n)

)
[mj ] .
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Therefore, it is enough to show that the two outer terms

ker
(
H i

ét(P
n−1
C ,FV )→ H i

ét(P
n−1
C ,FV )

)
, ker

(
H i

ét(P
n−1
C ,FV )→ H i

ét(P
n−1
C ,FV n)

)
are admissible A[D×]-modules. But the first admits a surjection from the admissible
A[D×]-module

H i
ét(P

n−1
C ,FV [mj ]) ,

and the second from the A[D×]-module

H i−1
ét (Pn−1

C ,FW ) ,

which is admissible by induction. �

We end this section with two results of general nature. First, we observe that the Weil
group action extends to a Galois group action. Let IF ⊂ WF ⊂ GalF be the inertia,
Weil, and Galois group of F , respectively.

Proposition 4.6. Let (A,m) be a complete noetherian local ring with finite residue
field of characteristic p. Let V be an admissible A[GLn(F )]-module, and let FV be the
corresponding sheaf on (Pn−1

C /D×)ét, where C = Cp (and k = F̄p). Then the natural
WF -action on

H i
ét(P

n−1
C ,FV ) ,

coming from the IF -action on C = Cp and the Weil descent datum, is continuous and
extends (necessarily uniquely) to a continuous action of GalF .

Proof. Writing V as the union of V [mj ], we may assume that mj = 0 for some j, so that
A is finite. Continuity of the WF -action reduces to continuity of the IF -action, which
follows from writing

H i
ét(P

n−1
Cp ,FV ) = lim−→

M/F̆

H i
ét(P

n−1
M ,FV )

as a direct limit over finite extensions M of F̆ contained in Cp. Now for all compact
open subgroups K ⊂ D×, the group

H i
ét(P

n−1
Cp ,FV )K

is finite. But any continuous action of WF on a finite set extends continuously to GalF .
Namely, an open subgroup I0 ⊂ IF acts trivially, and it remains to extend the WF /I0-
action to a GalF /I0-action. This follows by observing that some power of any fixed
Frobenius element acts trivially, as any element of a finite group is of finite order. �

Moreover, one can always compute H0.

Proposition 4.7. Let (A,m) be a complete noetherian local ring with finite residue
field of characteristic p. Let V be an admissible A[GLn(F )]-module, and let FV be the
corresponding sheaf on (Pn−1

C /D×)ét. Then the natural map

H0
ét(P

n−1
C ,FV SLn(F )) ↪→ H0

ét(P
n−1
C ,FV )

is an isomorphism. It acquires an action of GLn(F )/SLn(F ) = F× (via the determinant
map), and the group WF ×D× acts via the map WF ×D× → F× given by the inverse
of the product of the Artin reciprocity map (sending geometric Frobenii to uniformizers)
and the reduced norm.

Proof. This follows from the identification of the geometric connected components

π0MLT,∞,C = F×

and the identification of the GLn(F )×WF ×D×-action given by Strauch, [33]. �



ON THE p-ADIC COHOMOLOGY OF THE LUBIN-TATE TOWER 21

5. Shimura curves

For the global situation, we change notation slightly. Let now F be totally real
number field with a fixed place p above p and fixed infinite place ∞F , and D0/F a
quaternion algebra which is definite at all infinite places, and split at p. Let G = D×0
be the algebraic group of units of D0, and let D×/F be the nontrivial inner form of G
which is isomorphic to G away from p and ∞F . Then, as notation suggests, D× is the
algebraic group of units of a quaternion algebra D/F ; it is a division algebra at p, and
split at ∞F . Fix an identification

G(Ap
F,f ) ∼= D(Ap

F,f ) .

Our previous local objects are given by Fp, G(Fp) ∼= GL2(Fp) and D×p = D×(Fp).
Associated with D×/F (or rather ResF/QD

×) and the conjugacy class of

h : S = ResC/RGm → (ResF/QD
×)R =

∏
τ :F ↪→R

D× ⊗F,τ R

which is trivial in all components different from ∞F , and equal to

a+ ib ∈ S(R) = C× 7→
(

a b
−b a

)
∈ (D× ⊗F,∞F

R)(R) ∼= GL2(R)

in the component of ∞F , one has (a tower of) Shimura curves ShU/F parametrized by
(sufficiently small) compact open U ⊂ D×(AF,f ).

Fix some tame level, i.e. a compact open subgroup Up ⊂ G(Ap
F,f ). Then Up is of the

form Up = Up
SU

S , where S is a finite set of finite places of F containing all places above

p, Up
S ⊂ G(Ap

F,S) is compact open, and US =
∏
v 6∈S GL2(OFv) ⊂ GL2(ASF,f ) ∼= G(ASF,f )

is a product of hyperspecial maximal compact open subgroups. We consider the Hecke
algebra

T = TS = Z[GL2(ASF,f )//US ] =
∏
v 6∈S

Tv ,

where

Tv = Z[GL2(Fv)//GL2(OFv)] ∼= Z[Tv, S
±1
v ] .

Here, as usual, Tv is the Hecke operator corresponding to the double coset

GL2(OFv)
(
$v 0
0 1

)
GL2(OFv) ,

and Sv is the one corresponding to

GL2(OFv)
(
$v 0
0 $v

)
GL2(OFv) ,

where $v is a local uniformizer at v. Moreover, let us fix an absolutely irreducible
representation

σ : GalF,S → GL2(Fq) ,
where GalF,S is the Galois group of the maximal extension of F unramified outside S
and q is a power of p. This gives rise to a maximal ideal m = mσ of T, given as the
kernel of the map T → Fq sending Tv to tr(σ(Frobv)) and Sv to qv det(σ(Frobv)) for
v 6∈ S, where Frobv ∈ GalF,S is a Frobenius element, and qv is the cardinality of the
residue field at v.

The Hecke algebra T acts on H i(ShKUp,C,Zp) for all compact open K ⊂ D×p . Observe
that, as σ is absolutely irreducible, the localization

H i(ShKUp,C,Zp)m = 0
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at m vanishes for i 6= 1. Indeed, in degree 0, the action of D×(AF,f ) factors through the

determinant (i.e., reduced norm) det : D×(AF,f )→ A×F,f , so that in particular the asso-

ciated Galois representations are reducible. By Poincaré duality (with Fp-coefficients),
the same applies to i = 2, leaving only i = 1. Also note that this implies that

H1(ShKUp,C,Zp)m

is torsion-free. To avoid trivialities, we assume that it is nonzero, i.e. σ is modular.
Let T(KUp) be the image of T in End(H1(ShKUp,C,Z)), and let T(KUp)m be its

m-adic completion. Then T(KUp)m acts faithfully on

H1(ShKUp,C,Zp)m .

There is an associated Galois representation.

Theorem 5.1 ([6], [7]). There is a unique (up to conjugation) continuous 2-dimensional
Galois representation

σ = σm : GalF,S → GL2(T(KUp)m)

unramified outside S, such that for all v 6∈ S,

tr(σ(Frobv)) = Tv , det(σ(Frobv)) = qvSv .

Proof. From [6], one gets the existence of Galois representations for the Qp-cohomology
of ShKUp , which in particular (as T(KUp) is reduced) gives a representation

GalF,S → GL2(T(KUp)m[1/p]) .

On the other hand, all characteristic polynomials of Frobenii take values in T(KUp)m,
so one gets a determinant with values in T(KUp)m, cf. [9, Example 2.32]. But σ is
absolutely irreducible by assumption, so there is a representation σ as desired by [9,
Theorem 2.22].4 �

Note that in particular, σ = σ mod m. In fact, one sees σ in H1(ShKUp,F ,Zp)m: We
want to prove that

H1(ShKUp,F ,Zp)m = σ ⊗T(KUp)m ρ

for some T(KUp)m-module ρ on which GalF acts trivially. It turns out that there are
some useful general lemmas about such situations.

Definition 5.2. Let (R,mR) be a noetherian local ring, G some group, and

σR : G→ GLn(R)

an n-dimensional representation such that σR = σR mod mR is absolutely irreducible.
Let M be an R[G]-module. Then M is said to be σR-typic if one can write M as a
tensor product

M = σR ⊗RM0 ,

where M0 is an R-module, and G acts only through its action on σR.

Proposition 5.3. In the situation of Definition 5.2, if M is σR-typic, then

M0 = HomR[G](σR,M) .

The functors M0 7→ σR ⊗R M0, M 7→ HomR[G](σR,M) induce an equivalence of cate-
gories between the category of σR-typic R[G]-modules and the category of R-modules.

4Carayol in [7] gives a different argument for this gluing. For p 6= 2, one can use the theory of
pseudorepresentations in place of determinants.
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Proof. It is enough to prove that for any R-module M0, the natural map

M0 → HomR[G](σR, σR ⊗RM0)

is an isomorphism. As both sides commute with filtered colimits, we may assume that
M0 is finitely generated. Filtering by modules generated by one element, one can reduce
to the case that M0 = R/I for some ideal I ⊂ R. Replacing R by R/I, we can assume
that M0 = R. In that case, we have to prove that

EndR[G](σR) = R .

But this follows from the assumption that σR is absolutely irreducible. �

Proposition 5.4. In the situation of Definition 5.2, assume that M is σR-typic, and
N ⊂M is an R[G]-submodule. Then N is σR-typic.

Proof. Write M = σR⊗RM0 as usual. We may assume that M0 is finitely generated, by
writing M0 as a filtered colimit of finitely generated modules M0,i and N as the filtered
colimit of N ∩ (σR ⊗R M0,i) (noting that the category of σR-typic modules is closed
under filtered colimits).

We may further replace M0 by the image of

σ∨R ⊗R N ↪→ σ∨R ⊗R σR ⊗RM0 →M0 .

After this reduction, we claim that N = M . If N 6= M , then by Nakayama N →
M/mRM is not surjective. The image of N in M/mRM = σR ⊗R/mR M0/mR is equal

to σR ⊗R/mR N for some R/mR-vector space N , as σR is absolutely irreducible, and N

is G-stable. Let M ′0 be the kernel of the composite map M0 →M0/mR → (M0/mR)/N ,
which is a proper submodule of M0. On the other hand, the image of σ∨R ⊗R N → M0

is contained in M ′0, as N is contained in the σR-typic module σR ⊗R M ′0. This is a
contradiction, finishing the proof. �

For later use, we record the following lemma.

Lemma 5.5. Let M be an R[G]-module which is faithful as R-module (i.e., the map R→
End(M) is injective). Assume that M is σR-typic and σ′R-typic, for two representations
σR, σ′R as above. Moreover, assume that R is henselian. Then σR ∼= σ′R.

Proof. By checking over R/mR, one sees that σR ∼= σ′R; in particular, σR and σ′R are of
the same dimension. By [9, Theorem 2.22], it is enough to prove that the determinants
associated with σR and σ′R agree, i.e. for all g ∈ G, the characteristic polynomials of
σ(g) and σ′(g) agree. For this, it is enough to find ideals Ii ⊂ R with empty intersection,
such that the determinants agree modulo Ii for all i. Write M = σR ⊗R M0 for some
R-module M0, which is necessarily faithful. For each element m ∈ M0, one has the
annihilator Im = Ann(m) ⊂ R. By faithfulness, the intersection of all Im is trivial.
Thus, we may work modulo Im. Note that σR ⊗R R/Im ↪→ M sending x ⊗ 1 to x ⊗m
is an R[G]-submodule. By Proposition 5.4, σR ⊗R R/Im is still σ′R-typic, so

σR ⊗R R/Im ∼= (σ′R ⊗R R/Im)⊗R/Im A

for some R/Im-module A. The isomorphism implies that AdimσR ∼= (R/Im)dimσR , which
implies that A is finite projective of rank 1 as R/Im-module, i.e. a line bundle. As R/Im
is local, it follows that A ∼= R/Im is free. Thus, σR and σ′R are isomorphic after reduction
to R/Im, which finishes the proof. �

Now one has the following theorem, due to Carayol: In [6], he gives a description of
the Qp-cohomology, and in [7], he explains how to get an integral statement.

Theorem 5.6. The T(KUp)m[GalF,S ]-module H1(ShKUp,F ,Zp)m is σ-typic.
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Proof. By Proposition 5.4, it is enough to prove that

H1(ShKUp,F ,Zp)m[1/p]

is σ-typic. But this follows from the description of the Qp-cohomology of ShKUp,F by

Carayol, [6]. �

At this point, we can also pass to completed cohomology. Let

Ĥ1(Up,Zp) = lim←−
m

lim−→
K

H1(ShKUp,F ,Z/p
mZ) ,

and

Ĥ1(Up,Zp)m = lim←−
m

lim−→
K

H1(ShKUp,F ,Z/p
mZ)m ,

Then the inverse limit

T(Up)m := lim←−
K

T(KUp)m

acts faithfully and continuously on Ĥ1(Up,Zp)m.

Proposition 5.7. There is a unique (up to conjugation) continuous 2-dimensional Ga-
lois representation

σ = σm : GalF,S → GL2(T(Up)m)

unramified outside S, such that for all v 6∈ S,

tr(σ(Frobv)) = Tv , det(σ(Frobv)) = qvSv .

The ring T(Up)m is a complete noetherian local ring with finite residue field.

Proof. One gets a 2-dimensional determinant with values in T(Up)m by [9, Example
2.32]. This gives rise to a representation as σ is absolutely irreducible, by [9, Theorem
2.22 (i)].

For the final assertion, note that the existence of the Galois representation σ gives a
map from the Galois deformation ring Rσ,S to T(Up)m. This map is necessarily surjec-
tive, as Tv and Sv can be recovered from the image of Frobenius elements Frobv. As
Rσ,S is a complete noetherian local ring with finite residue field, so is T(Up)m. �

Proposition 5.8. The T(Up)m[GalF,S ]-module

Ĥ1(ShUp,F ,Zp)m
is σ-typic.

Proof. This follows from Theorem 5.6 (noting that the σ’s are compatible), and the
observation that all operations in the definition of

Ĥ1(ShUp,F ,Zp)m = lim←−
m

lim−→
K

H1(ShKUp,F ,Z/p
mZ)m

preserve σ-typic modules. �

6. Local-global compatibility

In this section, we prove a local-global compatibility result for the functor constructed
above. This turns out to be mostly a straightforward consequence of p-adic uniformiza-
tion, originally due to Cerednik, [8], and in moduli-theoretic terms to Drinfeld, [13], and
generalized by Rapoport-Zink, [26], and Varshavsky, [38].

We continue to consider the Shimura curves ShU associated to a division algebra D
over a totally real field F as in the previous section.
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Definition 6.1. Let ρiUp be the admissible Zp-representation of GalF,S ×D×p given by

ρiUp = H i(Up,Qp/Zp) = lim−→
K

H i(ShKUp,F ,Qp/Zp) .

Let πUp be the admissible Zp-representation of GL2(Fp) = G(Fp) given by the space of
continuous functions

πUp = C0(G(F )\G(AF,f )/Up,Qp/Zp) .

We note that one would usually consider the space

πcomp
Up = C0(G(F )\G(AF,f )/Up,Zp) ,

but this carries the same information as πUp : One can write πUp = πcomp
Up ⊗Zp Qp/Zp

and conversely
πcomp
Up = TpπUp = lim

p
πUp [pn] .

A similar discussion applies to ρiUp (at least if everything is interpreted in the derived
sense, or if everything is concentrated in only one cohomological degree). We will be
mostly interested in ρUp := ρ1

Up .

Theorem 6.2. There is a natural isomorphism of admissible GalFp ×D×p -representations
over Zp,

H i
ét(P1

Cp ,FπUp ) ∼= ρiUp .

In fact, the statement is true on the derived level. The key tool to proving Theorem
6.2 is the p-adic uniformization theorem.

Theorem 6.3 (Cerednik). Let U = KUp ⊂ D×(AF,f ) = D×p × G(Ap
F,f ). There is an

isomorphism of adic spaces over Cp,

(ShU ⊗F Cp)ad ∼= G(F )\[MDr,K,Cp ×G(Ap
F,f )/Up] ,

compatible for varying U , and with the Weil descent datum to F .

A proof relying on Rapoport-Zink’s book has been given by Boutot-Zink, [1]. Let

ShUp,Cp = G(F )\[MDr,∞,Cp ×G(Ap
F,f )/Up] ,

which is a perfectoid space over Cp (equipped with a Weil descent datum to F ), such
that

ShUp,Cp ∼ lim←−
K

(ShKUp ⊗F Cp)ad .

These properties follow from the similar properties ofMDr,∞,Cp , cf. [31, Theorem 6.5.4].
In particular, we find that

H i(ShUp,Cp ,Qp/Zp) = lim−→
K

H i(ShKUp,Cp ,Qp/Zp) = H i(Up,Qp/Zp) (1)

as WFp ×D×p -representations; here WFp ⊂ GalFp ⊂ GalF denotes the (local) Weil group
of Fp.

On the other hand, by [31, Proposition 7.1.1], there is the Hodge-Tate period map

πHT :MDr,∞,Cp → P1
Cp ,

compatible with Weil descent data, where the right-hand side is the Brauer-Severi variety
for D/F . Under the duality isomorphism

MDr,∞,Cp
∼=MLT,∞,Cp ,

this is identified with the Grothendieck-Messing period map, cf. [31, Theorem 7.2.3].
The GL2(Fp)-equivariance of the Hodge-Tate period map ensures that it gives a map

πSh
HT : ShUp,Cp = G(F )\[MDr,∞,Cp ×G(Ap

F,f )/Up]→ P1
Cp .
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Note that πHT is WFp ×D×p -equivariant.

Remark 6.4. Here, we construct a global Hodge-Tate period map directly from the local
Hodge-Tate period map. As the Shimura curves under consideration are not of Hodge
type, one cannot formally use the construction of a global Hodge-Tate period map in
[28] to get one in this setup. In cases of overlap, it is to be expected that these period
maps are compatible, but we do not discuss this here.

Proposition 6.5. There is a WFp×D×p -equivariant isomorphism of sheaves on the étale

site of (the adic space) P1
Cp,

RπSh
HTét∗Qp/Zp ∼= FπUp .

Proof. First, we check that the higher direct images vanish. It is enough to check this
at stalks, so let x̄ = Spa(C,C+) → P1

Cp be any geometric point, i.e. C/F̆ is complete

algebraically closed and C+ ⊂ C is an open and bounded valuation subring. We may
assume that C is the completion of the algebraic closure of the residue field of P1

Cp at

the image of x̄. Let x̄→ Ui → P1
Cp be a cofinal system of étale neighborhoods of x̄; then

x̄ ∼ lim←−i Ui. Write

USh
i → ShUp,Cp

for the pullback of Ui, so that USh
i is a perfectoid space étale over ShUp,Cp . One can form

the inverse limit USh
x̄ = lim←−U

Sh
i in the category of perfectoid spaces (over Cp). Now

(RjπSh
HTét∗Qp/Zp)x̄ = lim−→

i

Hj
ét(U

Sh
i ,Qp/Zp) = Hj

ét(U
Sh
x̄ ,Qp/Zp) .

On the other hand, the fibre USh
x̄ is given by profinitely many copies of x̄,

USh
x̄ = Spa(C0(G(F )\GL2(Fp)×G(Ap

F,f )/Up, C), C0(G(F )\GL2(Fp)×G(Ap
F,f )/Up, C+)) .

This implies that

Hj
ét(U

Sh
x̄ ,Qp/Zp)

vanishes for j > 0, and equals C0(G(F )\GL2(Fp)×G(Ap
F,f )/Up,Qp/Zp) in degree 0, e.g.

by writing USh
x̄ as an inverse limit of finitely many copies of x̄ and using [27, Corollary

7.18].
It remains to identify πSh

HTét∗Qp/Zp. The previous computation already showed that
the fibres are isomorphic to πUp . Let U → P1

Cp be any étale map. We have to construct
a map

H0(U ×P1
Cp
G(F )\[MDr,∞,Cp ×G(Ap

F,f )/Up],Qp/Zp)

→Mapcont,GL2(Fp)(|U ×P1
Cp
MDr,∞,Cp |, C0(G(F )\GL2(Fp)×G(Ap

F,f )/Up,Qp/Zp)) .

But the left hand side is the same as

C0(|U ×P1
Cp
G(F )\[MDr,∞,Cp ×G(Ap

F,f )/Up]|,Qp/Zp)

and it remains to observe that there is a natural GL2(Fp)-equivariant map

(U ×P1
Cp
MDr,∞,Cp)× (G(F )\GL2(Fp)×G(Ap

F,f )/Up)

→ U ×P1
Cp
G(F )\[MDr,∞,Cp ×G(Ap

F,f )/Up] .

�
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From Proposition 6.5, we see that

H i(ShUp,Cp ,Qp/Zp) = H i
ét(P1

Cp ,FπUp ) .

Together with (1), this gives Theorem 6.2 (noting that WFp-equivariance implies GalFp-
equivariance by continuity).

7. Consequences

In this section, we continue the setup of Section 5. Again, we fix an absolutely
irreducible (odd) 2-dimensional representation σ of GalF over a finite extension Fq of
Fp. We assume that the associated maximal ideal m of the abstract Hecke algebra T
satisfies

πUp,m 6= 0

for some Up. We fix a finite set S of finite places containing all places above p, such
that σ is unramified outside S, and Up = Up

S × US , where US =
∏
v 6∈S GL2(OFv) ⊂

GL2(ASF,f ) ∼= G(ASF,f ). We want to see that if πUp,m 6= 0, then also ρUp,m 6= 0. Note that

an automorphic representation of G transfers to D× if and only if it is discrete series
at p, by the Jacquet-Langlands correspondence. We will construct some cuspidal types
which will allow us to construct congruences to representations which are discrete series
(even cuspidal) at p, and thus transfer all torsion classes from G to D×.

Proposition 7.1. Let m ≥ 0 be an integer. Consider the compact open subgroup

Um =

{(
1 +$m+1OFp $mOFp

$m+1OFp 1 +$m+1OFp

)}
⊂ GL2(Fp) .

There is a homomorphism

αm : Um → OFp/$
mOFp :

(
1 +$m+1a $mb
$m+1c 1 +$m+1d

)
7→ b+ c .

For each nontrivial character ψ : OFp/$
mOFp → C×, if π is an irreducible smooth

representation of GL2(Fp) such that π|Um contains the character ψ ◦ αm, then π is
cuspidal.

Proof. Assume that ψ is trivial on $kOFp with k minimal, so 0 < k ≤ m. Let ψ′ :

OFp/$OFp → C× be the restriction of ψ to $k−1OFp/$
kOFp . Then π|Um+k−1

contains
the character ψ′◦αm+k−1. But this corresponds to a ramified simple stratum in the sense
of [4, Definition 13.1], and so any representation π containing the character ψ′ ◦αm+k−1

of Um+k−1 is cuspidal. Namely, `(π) > 0 by [4, 12.9 Theorem] and π cannot contain
an essentially scalar stratum by [4, 13.2 Proposition (1), 11.1 Proposition 1], thus is
cuspidal by [4, 14.5 Theorem, 13.3 Theorem]. �

Let e be the ramification index of [Fp : Qp], and fix a surjection βm : OFp/$
me →

Z/pmZ. In particular, we get the following corollary.

Corollary 7.2. Let Am = Zp[T ]/
(
(T p

m − 1)/(T − 1)
)
. Define a character ψm : Ume →

A×m by composing

βm ◦ αme : Ume → OFp/$
me → Z/pmZ

with the map sending 1 ∈ Z/pmZ to T ∈ A×m. Any automorphic representation of G
appearing in

C0(G(F )\G(AF,f )/Ume × Up, ψm)[1/p]

is cuspidal at p. �
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Corollary 7.3. Let T(Up)m be defined as in Section 5, so that it acts faithfully on
H1(Up,Qp/Zp)m. The natural action of T on

πUp,m = C0(G(F )\G(AF,f )/Up,Qp/Zp)m
extends to a continuous action of T(Up)m.

Remark 7.4. One can deduce from this Corollary the existence of Galois representations
for Hilbert modular forms which are nowhere discrete series, assuming only its existence
for forms which are discrete series at p. Thus, this provides an alternative argument for
Taylor’s construction of these Galois representations, [34], and it seems reasonable to
expect that one could do a similar argument in the compact unitary case, providing an
alternative to the construction of Galois representations of Shin, [32], and Chenevier-
Harris, [10], by reducing directly to the representations constructed by Harris-Taylor,
[21].

Proof. It is enough to check this for each group

C0(G(F )\[G(AF,f )/K ′Up],Z/pmZ)m .

We may assume that K ′ = Ume is of the form in Corollary 7.2, as these groups are
cofinal. (As we use only one m, we may have to increase simulateneously m in the
coefficients Z/pmZ for this.) In that case, Z/pmZ ∼= Am/(T − 1), and ψm mod (T − 1)
is trivial. Thus, there is a T-equivariant surjection

C0(G(F )\[G(AF,f )/UmeU
p], ψm)m → C0(G(F )\[G(AF,f )/UmeU

p],Z/pmZ)m .

We see that it suffices to show that the action of T on

M = C0(G(F )\[G(AF,f )/UmeU
p], ψm)m

extends to a continuous action of T(Up)m. But M is p-torsion free, so it suffices to
check in characteristic 0. There, the result follows by observing that by Corollary 7.2,
all automorphic representations of G appearing in M [1/p] are cuspidal at p, and thus
transfer to D×, where they show up in the cohomology group

H1(ShKmUp,C,Zp)m
for Km sufficiently small. As T(Up)m � T(KmU

p)m acts by definition continuously on
H1(ShKmUp,C,Zp)m, the result follows. �

Recall that there is a 2-dimensional Galois representation

σ : GalF,S → GL2(T(Up)m) ,

and that by Proposition 5.8, ρUp,m is σ-typic, so

ρUp,m = σ ⊗T(Up)m ρUp [σ]

for some T(Up)m[D×p ]-module ρUp [σ].
Summing up, we have the following result.

Corollary 7.5. There is a canonical T(Up)m[GalFp ×D×p ]-equivariant isomorphism

H1
ét(P1

Cp ,FπUp,m
) ∼= σ|GalFp

⊗T(Up)m ρUp [σ] .

The T(Up)m-module ρUp [σ] is faithful. �

In particular this implies that the localization πUp,m determines the representation

σ|GalFp
: GalFp → GL2(T(Up)m) ,

at least if σ|GalFp
is absolutely irreducible.
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Theorem 7.6. Assume that σ|GalFp
is absolutely irreducible.5 Then

σ|GalFp
: GalFp → GL2(T(Up)m)

is determined by πUp,m. More precisely, the T(Up)m[GalFp ]-module

H1
ét(P1

Cp ,FπUp,m
)

is σ|GalFp
-typic, and faithful as T(Up)m-module; this determines σ|GalFp

by Lemma 5.5

above. �

We want to pass from information about the localization πUp at m to the m-torsion
πUp [m]. For this, observe the following.

Proposition 7.7. For any ideal I ⊂ T(Up)m, the natural map

H1
ét(P1

Cp ,FπUp,m[I])→ H1
ét(P1

Cp ,FπUp,m
)[I]

is injective, and the action of (O×D)1 on the cokernel is trivial, where (O×D)1 ⊂ O×D
denotes the subgroup of elements of reduced norm 1.

Proof. The group

H0(P1
Cp ,FπUp,m

) = H0(ShUp,Cp ,Qp/Zp)m
is trivial, as σ is absolutely irreducible (as global GalF -representation). Now note that
if I = (f1, . . . , fm) is a sequence of generators, then they give an embedding

πUp,m/πUp,m[I] ↪→
m∏
i=1

πUp,m ;

let π be its cokernel. The displayed injection implies that

H0(P1
Cp ,FπUp,m/πUp,m[I]) = 0 ,

from which one gets injectivity of the map in the proposition.
To see that (O×D)1 acts trivially on the cokernel, note that the cokernel injects into

the kernel of

H1
ét(P1

Cp ,FπUp,m/πUp,m[I])→ H1
ét(P1

Cp ,F∏m
i=1 πUp,m

) .

But this kernel admits a surjection from H0(P1
Cp ,Fπ). On such groups, (O×D)1 acts

trivially by Proposition 4.7. �

Theorem 7.8. The 2-dimensional GalFp-representation σ|GalFp
is determined (up to

isomorphism) by the admissible GL2(Fp)-representation

πUp [m] = C0(G(F )\G(AF,f )/Up,Fq)[m] .

More precisely, σ|GalFp
can be read off from the GalFp-representation

H1
ét(P1

Cp ,FπUp [m]) ,

which is an infinite-dimensional admissible GalFp ×D×p -representation. Any indecom-

posable GalFp-subrepresentation of H1
ét(P1

Cp ,FπUp [m]) is of dimension ≤ 2, and σ|GalFp
is

determined in the following way.

Case (i) If there is a 2-dimensional indecomposable GalFp-representation

σ′ ⊂ H1
ét(P1

Cp ,FπUp [m]) ,

then σ|GalFp
= σ′.

5By Theorem 7.8 below, this can be determined in terms of πUp [m].
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Case (ii) Otherwise, H1
ét(P1

Cp ,FπUp [m]) is a direct sum of characters of GalFp, and at most

two different characters χ1, χ2 of GalFp appear; if only one appears, let χ2 = χ1 be the
only character appearing. Then σ|GalFp

= χ1 ⊕ χ2.

Proof. Recall that

H1
ét(P1

Cp ,FπUp [m]) ⊂ σ|GalFp
⊗ ρUp [m] ,

with (O×D)1 acting trivially on the cokernel. Thus, the cokernel is an admissible repre-

sentation of D×/(O×D)1 = F×; an argument identifying the central character of ρUp [m]
in terms of the determinant of σ then shows that the cokernel is finite-dimensional.
Thus, to prove that H1

ét(P1
Cp ,FπUp [m]) is infinite-dimensional, it is enough to prove that

ρUp [m] is infinite-dimensional.
Assume it was finite-dimensional. Pick a minimal prime ideal m̃ ⊂ T(KUp)m, corre-

sponding to some cuspidal automorphic representation π contributing toH1(ShKUp ,Zp)m.
Let L/Qp be the finite extension which is the residue field of T(KUp)m at m̃, and let
$L ∈ OL ⊂ L be a uniformizer and its ring of integers. Let m̃L ⊂ OL ⊗Zq T(KUp)m be

the kernel of the induced multiplication map to OL. Then H1(ShKUp,C, L/OL)[m̃L] is a
divisible torsion OL-module whose $L-torsion is contained in ρUp [m]⊗Fq OL/$L. It fol-

lows that the π-part of H1(ShKUp,C, L) is of bounded dimension over L, independently

of K and π. This implies that the D×p -representation appearing in π is of bounded

dimension. On the other hand, by using suitable cuspidal types one can make this D×p -
representation arbitrarily ramified, which makes its dimension arbitrarily big, e.g. by
[4, 54.4 Proposition].

Any indecomposable GalFp-subrepresentation of

H1(P1
Cp ,FπUp [m]) ⊂ σ|GalFp

⊗ ρUp [m]

is isomorphic to a subrepresentation of σ|GalFp
, and in particular of dimension ≤ 2. If

σ|GalFp
is indecomposable, then it occurs as a subrepresentation of H1

ét(P1
Cp ,FπUp [m]), as

the cokernel of the displayed inclusion is finite-dimensional. This deals with Case (i).
If σ|GalFp

= χ1 ⊕ χ2 is decomposable, then the displayed inclusion shows that

H1
ét(P1

Cp ,FπUp [m])

is a direct sum of characters χ1 and χ2. Moreover, both of them appear (if they are
distinct), by finiteness of the cokernel. This deals with Case (ii). �

8. Patching: The key geometric input

In this section, we will prove a refinement of Theorem 3.2 that will allow us to prove
compatibility with patching. The argument is closely related to the notion of ultraprod-
ucts, but we will take a very algebraic approach.

Fix an infinite set {πi}i∈I of admissible smooth Fp-representations of GLn(F ). Assume
that for all compact open H ⊂ GLn(O), the dimension of πHi (for varying i) is bounded.

Let Π be the subset of smooth vectors in
∏
i∈I πi, i.e.

Π =
⋃
H

∏
i∈I

πHi .

This is a representation of GLn(F ) on an R =
∏
i∈I Fp-module. Before going on, it is

helpful to recall some properties of R.

Lemma 8.1. The inclusion

I ↪→ SpecR ,
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sending i ∈ I to the the kernel of the projection R→ Fp to the i-th coordinate, identifies
SpecR with the Stone-Cech compactification of I. For each x ∈ SpecR, the local ring
Rx is Fp. There is an identification

R = C0(SpecR,Fp)
of R with continuous maps SpecR→ Fp. The ring R is coherent.

Proof. The identification of SpecR with the Stone-Cech compactification of I is stan-
dard.6 For each maximal ideal m ⊂ R, the corresponding ultrafilter Fm on I is given by
those subsets I ′ ⊂ I such that the idempotent element eI′ which is 1 at i ∈ I ′ and 0
otherwise, is not in m.

First, we check that all local rings are isomorphic to Fp. Take a prime ideal p ⊂ R.
For any x ∈ R, the equation

p−1∏
a=0

(x− a) = 0

holds true (by checking in each factor). Modulo p, it follows that x = a for some
a ∈ Fp, as desired. It follows that all points of SpecR are closed, and thus that SpecR
is profinite. It follows that the structure sheaf on SpecR is the constant sheaf Fp, which
implies the equality R = C0(SpecR,Fp). As SpecR is profinite, this can be written as
a filtered colimit of finite products of Fp; this is a filtered colimit of noetherian algebras
along flat transition maps, showing that R is coherent. �

Fix a point x ∈ SpecR \ I; this corresponds to a nonprincipal ultrafilter F on I under
the identification with the Stone-Cech compactification. It follows that

πpatch := Π⊗R Rx
is an admissible smooth Rx = Fp-representation of GLn(F ), which we will call the
patched representation. Here, the word “patched” is used in the sense of Taylor-Wiles
patching, where one builds a new object Xpatch from an infinite set {Xi}i∈I of objects
such that each “finite piece” of X looks like a corresponding “finite piece” of Xi for
infinitely many i. In our setup, we have for instance the following simple observation.

Lemma 8.2. For each compact open normal subgroup H ⊂ GLn(O), there are infinitely
many i ∈ I (more precisely, for all i ∈ I ′ with I ′ ∈ F) such that

(πpatch)H ∼= πHi

as GLn(O)/H-representations.

Proof. There are only finitely many isomorphism classes of GLn(O)/H-representations
of bounded dimension; recall that the dimension of πHi was assumed to be bounded. As
F is an ultrafilter, it follows that for i ∈ I ′ with I ′ ∈ F, all πHi

∼= π0 are isomorphic. But
then

ΠH ⊗R
∏
i∈I′

Fp ∼= π0 ⊗Fp
∏
i∈I′

Fp ,

and thus also (πpatch)H ∼= π0. �

In the patching construction of [5], one chooses some representation of GLn(O)/H
which occurs infinitely often, and then chooses them compatibly for all H. After that,
one wants to extend the resulting GLn(O)-representation to all of GLn(F ) by allowing
extra Hecke operators. This is possible only if the previous choices were made carefully;
in our setup, everything works automatically. We leave it to the reader to verify that
the representation constructed in [5] can be obtained as πpatch for a suitably chosen

6Contrary to some other statements of the lemma, it does not use that Fp is finite.
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x ∈ SpecR \ I; this amounts to going through their construction, and with every choice
made one has to shrink the filter accordingly.

As before, one can attach to Π a sheaf FΠ of R-modules on (Pn−1

F̆
/D×)ét by sending

a D×-equivariant étale U → Pn−1

F̆
to the set of D× × GLn(F )-equivariant continuous

maps
|U ×Pn−1

F̆

MLT,∞| → Π .

The result of this section is the following.

Theorem 8.3. Assume that all πi are injective as H-representations for some compact
open subgroup H ⊂ GLn(F ) (independent of i).7 For all j ≥ 0 and compact open
K ⊂ D×, the cohomology group

Hj((Pn−1
C /K)ét,FΠ)

is a finitely presented R-module.

To explain the meaning of this result, we need the following classification of finitely
presented R-modules.

Lemma 8.4. Let Vi, i ∈ I, be a sequence of Fp-vector spaces of bounded dimension.
Then

M =
∏
i∈I

Vi

is a finitely presented R-module. Conversely, if M is a finitely presented R-module with
specialization Vi over Fp at i ∈ I ⊂ SpecR, then the Vi are of bounded dimension, and
the natural map

M →
∏
i∈I

Vi

is an isomorphism.

Proof. For the first part, we may find a finite decomposition I =
⊔D
d=0 Id such that

Vi ∼= Fdp for i ∈ Id. Then Md =
∏
i∈Id F

d
p
∼= Rdd is a finite free Rd =

∏
i∈Id Fp-module,

and

M =

D∏
d=0

Md

is a finitely presented R =
∏D
d=0Rd-module.

Assume now that M is finitely presented. Then we may find a presentation

RN → RD →M → 0 .

The map RN → RD is given by a matrix A = (Ai)i∈I ∈ MN×D(R) =
∏
i∈IMN×D(Fp).

There are only finitely many possibilities for each Ai, so after a finite decomposition
of I (corresponding to a clopen decomposition of SpecR), we may assume that A is
constant. In that case, M ∼= Rd is constant, so that the claim is clear. �

In particular, the following follows directly from Theorem 8.3, using that taking co-
homology commutes with localization on R.

Corollary 8.5. Assume that all πi are injective as H-representations for some compact
open subgroup H ⊂ GLn(F ). For all j ≥ 0 and compact open K ⊂ D×, one has

Hj((Pn−1
C /K)ét,FΠ) =

∏
i∈I

Hj((Pn−1
C /K)ét,Fπi) ,

7It would be enough to assume that they have perfect resolutions by injective H-representations
which are of “bounded complexity” in a suitable sense. As in our application, they will actually be
injective, we restrict to this simpler setup.
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and thus

Hj((Pn−1
C /K)ét,Fπpatch) =

(∏
i∈I

Hj((Pn−1
C /K)ét,Fπi)

)
⊗R Rx .

Intuitively, the last statement says that patching commutes with the functor π 7→
Hj((Pn−1

C /K)ét,Fπ).
To prove Theorem 8.3, we follow the proof of Theorem 3.2. In doing so, we need to

establish some properties of R⊗Fp OC/p first.

Lemma 8.6. The ring R⊗Fp OC/p is coherent.

Proof. Recall that R = C0(SpecR,Fp) can be written as R = lim−→Rj where each Rj is

a finite product of Fp’s. Then also R ⊗Fp OC/p = lim−→Rj ⊗Fp OC/p can be written as
a filtered colimit of coherent algebras along flat transition maps, and thus is coherent
itself. Here, we use that OC/p is coherent, namely any finitely generated ideal J ⊂ OC/p
is in fact principal, J = OC/p · x, and those are finitely presented, J ∼= OC/(p/x). �

Corollary 8.7. The ring R⊗Fp OC/p is almost coherent in the sense that the category
of almost finitely presented R ⊗Fp OC/p is abelian, and closed under kernels, cokernels
and extensions.

Proof. By the previous lemma, the category of finitely presented R⊗Fp OC/p has these
properties. The corollary follows by approximating almost finitely presented modules
(and maps between them) by finitely presented modules. �

Now, we first prove the analogue of the local finiteness result. As in the previous
section, choose some affinoid V ⊂ Pn−1

F̆
which lifts toMLT,0, and fix such a lift; moreover

fix some strict quasicompact open subset U ⊂ V .

Lemma 8.8. Assume that all πi are injective as H-representations for some compact
open subgroup H ⊂ GLn(F ). For any m ≥ 0, there is a compact open K0 ⊂ D×

stabilizing V , U and the section V →MLT,0,C such that for all K ⊂ K0, the image of
the natural map

Hj((V/K)ét,FΠ ⊗O+/p)→ Hj((U/K)ét,FΠ ⊗O+/p)

is an almost finitely presented R⊗Fp OC/p-module for all j = 0, . . . ,m.

Proof. As before, this statement depends only on Π as a GLn(O)-representation. We
assumed that all πi are injective as H-representations for some open subgroup H ⊂
GLn(O); fix such an H which is pro-p and normal in GLn(O). As Fp[[H]] is local, it
follows that πi is isomorphic to dimπHi many copies of the regular representation πreg

H

of H. As dimπHi is bounded, it follows that Π|H can be written as a direct summand
of (πreg

H )n ⊗Fp R for some n.
Let VH , UH ⊂MLT,H be the preimages of V,U ⊂MLT,0. There is a Hochschild-Serre

spectral sequence

Hj1(GLn(O)/H,Hj2((VH/K)ét,FΠ ⊗O+/p))⇒ Hj1+j2((V/K)ét,FΠ ⊗O+/p) ,

and similarly for U . Filtering the inclusion U ⊂ V by sufficiently many strict rational
subsets and using the obvious analogue of [29, Lemma 5.4] which holds for almost finitely
presented R⊗Fp OC/p by using Corollary 8.7, this reduces us to proving that the image
of

Hj((VH/K)ét,FΠ ⊗O+/p)→ Hj((UH/K)ét,FΠ ⊗O+/p)

is an almost finitely presented R ⊗Fp O/p-module. As Π|H is a direct summand of
(πreg
H )n⊗Fp R, this image is a direct summand of n copies of the base extension Fp → R

of the image of

Hj((VH/K)ét,Fπreg
H
⊗O+/p)→ Hj((UH/K)ét,Fπreg

H
⊗O+/p) .
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But the latter is almost finitely generated over OC/p by Lemma 3.7, thus almost finitely
presented as OC/p is almost noetherian, cf. [29, Proposition 2.6]. �

Corollary 8.9. Assume that all πi are injective as H-representations for some compact
open subgroup H ⊂ GLn(F ). For any j ≥ 0 and any compact open K ⊂ D×, the
R⊗Fp OC/p-module

Hj((Pn−1
C /K)ét,FΠ ⊗O+/p)

is almost finitely presented.

Proof. By a Hochschild-Serre spectral sequence (cf. proof of Corollary 3.10), we may
assume that K is sufficiently small (depending on j). In that case, the same argument
as for Corollary 3.9 applies, noting as before that the analogue of [29, Lemma 5.4] holds
for almost finitely presented R⊗Fp OC/p-modules. �

Now we can finish the proof of Theorem 8.3. Note that one has an almost isomorphism

Hj((Pn−1
C /K)ét,FΠ)⊗OC/p→ Hj((Pn−1

C /K)ét,FΠ ⊗O+/p) .

Indeed, after each localization R → Ry = Fp for y ∈ SpecR, this follows by applying
Theorem 3.2 to the admissible smooth Ry = Fp-representation Π ⊗R Ry. Globally, the
result follows from the following simple observation applied to the kernel and cokernel
of the displayed map.

Lemma 8.10. Let M be an R ⊗Fp OC/p-module. Assume that for all y ∈ SpecR,
M ⊗R Ry is almost zero. Then M is almost zero.

Proof. Take any m ∈ M and nilpotent ε ∈ OC/p. Then εm = 0 ∈ M ⊗R Ry for all
y ∈ SpecR, as M ⊗R Ry is almost zero. But then εm = 0 ∈ M , showing that m is
almost zero. �

Finally, Theorem 8.3 follows from Corollary 8.9 and the following lemma.

Lemma 8.11. Let M be an R-module such that M ⊗Fp OC/p is an almost finitely
presented R⊗Fp OC/p-module. Then M is finitely presented.

Proof. Any almost finitely presented R⊗Fp OC/p-module N has elementary divisors in
the sense of [29, Proposition 2.11] at each y ∈ SpecR. By approximating N with finitely
presented modules, one checks that these assemble into a continuous map

γN : SpecR→ `∞≥ (N)0

using notation employed there. Applying this to N = M ⊗Fp OC/p shows that the
function sending y ∈ SpecR to the dimension of My is locally constant. Thus, after
passing to a clopen decomposition of SpecR, we can assume that for all y ∈ SpecR,
My is of dimension d. We claim that in this case, M is locally free of rank d. Pick any

y ∈ SpecR, and choose a map Rd →M that becomes an isomorphism after localization
at y, and let M ′ be the cokernel. This induces a map

(R⊗Fp OC/p)d →M ⊗Fp OC/p
that becomes an isomorphism after localization at y. Its cokernel M ′ ⊗Fp OC/p is then
an almost finitely presented R⊗Fp OC/p-module whose localization at y is almost zero.
Repeating for M ′ what we know about M then shows that after replacing SpecR by
an open neighborhood of y, we have M ′ = 0. This means that Rd → M is surjective.
Checking at all local rings implies that Rd →M is an isomorphism, as all localizations
of M are of rank d. Thus, M ∼= Rd is free, as desired. �

Remark 8.12. The results of this section imply similar results over a finite base ring A
over Z/pnZ if all πHi are free A-modules.
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9. Patching

In this section, we do the analogue of the patching construction from [5], in the
simplest possible situation. Our setup here is more restrictive than it should be (in
particular, it forces [Fp : Qp] to be even), but we hope that the simplicity of the discussion
gives some justification.

We assume that p is the only place above p in F , and that G is split at all finite
places.8 Let

σ : GalF → GL2(Fq)
be absolutely irreducible, and unramified outside p. Let Up =

∏
v 6=p GL2(OFv) ⊂

GL2(Ap
F,f ) ∼= G(Ap

F,f ). Let m ⊂ T be the maximal ideal corresponding to σ. More-

over, we fix a character ψ : GalF,p → O×L unramified outside p, for some finite extension
L of Qp with residue field Fq and uniformizer $L, such that detσ = ψχcycl mod $L.
We assume that

πUp,m = C0(G(F )\[G(AF,f )/Up],Qp/Zp)m 6= 0 .

Comparing central characters and determinants of associated Galois representations, we
see that this implies that also

C0(G(F )\[G(AF,f )/Up], L/OL)[ψ]m 6= 0 .

There are framed and unframed Galois deformation rings R�,ψ
σ and Rψσ , parametrizing

(framed) deformations of σ unramified outside p and with determinant ψχcycl, and a

local framed Galois deformation ring R�,ψ
p parametrizing framed deformations of σ|GalF

with determinant ψχcycl. There is a natural map R�,ψ
p → R�,ψ

σ .
To apply the Taylor-Wiles patching technique [36], adapted to the case of totally real

fields in [35], we impose some usual hypothesis, cf. [24, §2.2].

Hypothesis 9.1. In this section, assume that the following conditions are satisfied.

(i) The prime p ≥ 5.
(ii) The representation σ|GalF (ζp)

is absolutely irreducible.

(iii) If p = 5 and σ has projective image PGL2(F5), then the kernel of projσ does not
fix F (ζ5).

Under these hypothesis, we have the existence of Taylor-Wiles primes.

Proposition 9.2 ([24, Proposition 2.2.4]). The integer g = dimFq H
1(GalF,p, ad0σ(1))−

[F : Q] is nonnegative. For each positive integer n, there exists a finite set Qn of
g + [F : Q] primes of F such that qv ≡ 1 mod pn for all v ∈ Qn and Frobv has dis-

tinct eigenvalues, and with the following property. The framed deformation ring R�,ψ
σ,Qn

parametrizing framed deformations of σ unramified outside p and Qn and with determi-

nant ψχcycl is topologically generated by g elements over R�,ψ
p .

In the following, we fix such a set Qn for each n ≥ 1, as well as a non-principal
ultrafilter F on {n ≥ 1}. This choice accounts for all choices needed to make the
patching construction, and in a precise sense it amounts to the choice of g + [F : Q]
“infinite primes” v of F such that qv ≡ 1 mod p∞.

We continue to follow the discussion in [24, §2.2.5]. For each n ≥ 1, let UQn(1) ⊂
UQn(0) ⊂ G(Ap

F,f ) ∼= GL2(Ap
F,f ) be the compact open subgroups given by

UQn(1) =
∏
v 6∈Qn

GL2(OFv)×
∏
v∈Qn

Uv(1) ⊂ UQn(0) =
∏
v 6∈Qn

GL2(OFv)×
∏
v∈Qn

Uv(0) ,

8The latter hypothesis is only imposed to be able to use the references below without further
justification.
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where

Uv(1) = {
(
a b
c d

)
| c ≡ 0 mod v, a/d 7→ 1 ∈ ∆v}

⊂ Uv(0) = {
(
a b
c d

)
| c ≡ 0 mod v} ⊂ GL2(OFv) ,

where ∆v
∼= Z/pnZ is the unique quotient of order pn of the units k×v of the residue

field kv at v. Thus, UQn(1) ⊂ UQn(0) is a normal subgroup with quotient ∆Qn :=

UQn(0)/UQn(1) ∼= (Z/pnZ)g+[F :Q].
If necessary, we replace once Fq by Fq2 in the following step. Doing so, we can fix a

root αv of the polynomial X2 − TvX + qvSv in Fq for all v ∈ Qn. For each sufficiently
small compact open subgroup K ⊂ GL2(F ), let

Sψ(KUQn(i),OL) = C0(G(F )\G(AF,f )/KUQn(i),OL)[ψ]

for i = 0, 1 be the space of functions with central character ψ. On these spaces, there
is an action by the Hecke algebra T(UQn(i)) generated by the usual elements Tv and
Sv for v 6∈ Qn, v 6= p, as well as operators Uv for v ∈ Qn given by the action of the
Uv(i)-double coset of diag(πv, 1). Let mQn(i) ⊂ T(UQn(i)) denote the (maximal) ideal
generated by m∩T(UQn(i)) and Uv −αv for v ∈ Qn. By [24, Lemma 2.1.7], the natural
map

Sψ(K,OL)m → Sψ(KUQn(0),OL)mQn (0)

is an isomorphism. Moreover, [24, Lemma 2.1.4] implies that

Sψ(KUQn(1),OL)mQn (1)

is a finite free OL[∆Qn ]-module with

Sψ(KUQn(1),OL)mQn (1) ⊗OL[∆Qn ] OL ∼= Sψ(KUQn(0),OL)mQn (0) .

By the existence of Galois representations, there is an action of the unframed defor-

mation ring Rψσ,Qn on Sψ(KUQn(1),OL)mQn (1). Moreover, using local deformation rings

at places v ∈ Qn, there is a map OL[[y1, . . . , yg+[F :Q]]] → Rψσ,Qn such that the action

of OL[[y1, . . . , yg+[F :Q]]] on Sψ(KUQn(1),OL)mQn (1) comes from the ∆Qn-action via the
fixed surjection

OL[[y1, . . . , yg+[F :Q]]]→ OL[(Z/pnZ)g+[F :Q]] ∼= OL[∆Qn ] .

The map Rψσ,Qn → R�,ψ
σ,Qn

is formally smooth of dimension 3, so we can fix

yg+[F :Q]+1, . . . , yg+[F :Q]+3

such that

R�,ψ
σ,Qn

∼= Rψσ,Qn [[yg+[F :Q]+1, . . . , yg+[F :Q]+3]] .

Finally, we fix surjections

R�,ψ
p [[x1, . . . , xg]]→ R�,ψ

σ,Qn

and a lifting

OL[[yi]]→ R�,ψ
p [[x1, . . . , xg]] ,

where we abbreviate OL[[yi]] = OL[[y1, . . . , yg+[F :Q]+3]] here and in the following.
Set

Sn(K) = R�,ψ
σ,Qn

⊗
Rψσ,Qn

Sψ(KUQn(1),OL)mQn (1) ,

which becomes a R�,ψ
p [[x1, . . . , xg]]-module via the chosen surjection

R�,ψ
p [[x1, . . . , xg]]→ R�,ψ

σ,Qn
.
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Finally, we can do the patching. Fix an open ideal I ⊂ OL[[yi]]. Let

πn(I) = lim−→
K

Sn(K)⊗OL[[yi]] OL[[yi]]/I .

Then, for all sufficiently large n so that I contains the kernel of

OL[[yi]]→ OL[∆Qn ][[yg+[F :Q]+1, . . . , yg+[F :Q]+3]] ,

πn(I) is an admissible GL2(Fp)-representation over the finite ring OL[[yi]]/I such that
πn(I)K is finite free for all sufficiently small compact open subgroups K ⊂ GL2(F ).
Moreover,

πn(I)⊗OL[[yi]]/I OL/$L = C0(G(F )\G(Ap
F,f )/

∏
v 6=p

GLn(OFv),OL/$L)

is independent of n, so that in particular the ranks of πn(I)K are bounded uniformly in
n. Thus, we may take an ultraproduct as in Section 8:

For any I, we have the map∏
n≥1

OL[[yi]]/I → OL[[yi]]/I ,

which is the localization at the maximal ideal of the product corresponding to the fixed
non-principal ultrafilter F. Define

π∞(I) = lim−→
K

(
∏
n≥1

πn(I)K)⊗∏
n≥1OL[[yi]]/I OL[[yi]]/I .

Then π(I) is an admissible GL2(Fp)-representation over OL[[yi]]/I such that

π∞(I)K = (
∏
n≥1

πn(I)K)⊗∏
n≥1OL[[yi]]/I OL[[yi]]/I .

is finite free. Finally, we can pass to the inverse limit

πcomp
∞ = lim←−

I

π∞(I)

to get what one may call a ($L, y1, . . . , yg+[F :Q]+3)-adically admissible OL[[yi]][GL2(Fp)]-
representation. Using the freeness properties of the situation, one may also pass to

π∞ = πcomp
∞ ⊗OL[[yi]] ω ,

where ω is the injective hull of OL/$L as OL[[yi]]-module. This is an admissible
GL2(Fp)-representation over OL[[yi]].

Note that R�,ψ
p [[x1, . . . , xg]] acts on all objects considered, in particular on πcomp

∞ and
π∞. Using the exact same arguments (and the same ultrafilter F), one also produces a
patched admissible D×p -representation ρ∞ over OL[[yi]] from the cohomology groups

H1(ShKUQn (1),OL)[ψ]mQn (1) .

As all these groups carry continuous GalFp-actions, so does ρ∞. Actually, ρ∞ is also

an R�,ψ
p [[x1, . . . , xg]]-module, and if σ|GalFp

is absolutely irreducible, then ρ∞ is σ-typic,

where σ denotes the universal (framed) deformation of σ|GalFp
.

Corollary 9.3. There is a canonical GalFp ×D×p -equivariant isomorphism

H1
ét(P1

Cp ,Fπ∞) ∼= ρ∞

of R�,ψ
p [[x1, . . . , xg]]-modules.
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Proof. By passing to a colimit afterwards, it is enough to prove that for an open ideal
I ⊂ OL[[yi]],

H1
ét(P1

Cp ,Fπ∞(I)) ∼= ρ∞(I) .

By Theorem 6.2, we know that for each big enough n,

H1
ét(P1

Cp ,Fπn(I)) ∼= ρn(I) ,

and the relevant H0 vanishes. In particular, we get

H1((P1
Cp/K)ét,Fπn(I)) ∼= ρn(I)K

for any compact open subgroup K ⊂ D×p . Let Π =
⋃
H⊂GL2(F )

∏
n πn(I)H , the product

running over sufficiently big n. We have the natural map

H1((P1
Cp/K)ét,FΠ)→

∏
n

ρn(I)K .

This map is an isomorphism by Corollary 8.5 (or its version for finite base rings). Base
extension along the fixed map∏

n

OL[[yi]]/I → OL[[yi]]/I

corresponding to F shows that

H1((P1
Cp/K)ét,Fπ∞(I)) ∼= ρ∞(I)K .

Finally, passage to the direct limit over K gives the result. �
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Appendix A. Accessible and weakly accessible period domains

By Michael Rapoport

A.1. Introduction. The goal of this appendix is to investigate in which situations the
period maps from RZ spaces towards partial flag varieties are surjective. This question
can be posed in two variants: One can either ask that the map is surjective on classical
points, or surjective on all (adic, or equivalently, Berkovich) points. These questions can
be translated into the question whether the weakly admissible, resp. admissible, locus
inside the partial flag variety is the whole partial flag variety. We answer both of these
questions below. It turns out that asking surjectivity for all points is significantly more
restrictive, and occurs essentially only in the Lubin-Tate case.

Most of the material presented in this appendix was explained to the author by
P. Scholze. Moreover, we thank S. Orlik for helpful conversations.

A.2. Recollections on period domains. Let (G, b, {µ}) be a PD-triple1 over the p-

adic field F . This means that G is a reductive algebraic group over F , that b ∈ G(F̆ ), and
that {µ} is a conjugacy class of cocharacters of G. We will assume throughout that {µ}
is minuscule. Two PD-triples (G, b, {µ}) and (G′, b′, {µ′}) are called equivalent if there
is an isomorphism G ' G′ which takes {µ} into {µ′} and b into a σ-conjugate of b′. All
concepts below depend only on the equivalence class of PD-triples. Let E = E(G, {µ})
be the corresponding reflex field. We denote by F(G, {µ}) the corresponding partial

flag variety defined over E, and by F̆(G, {µ}) its base change to Ĕ. We denote by
F(G, {µ})wa the period domain associated to the PD-triple (G, b, {µ}), i.e., the weakly

admissible subset of F̆(G, {µ}), which we consider as an open adic subset. It is defined
by the weak admissibility condition of Fontaine on the Lie algebra of G (semi-stability,
cf. [4, Def. 9.2.14]) and the triviality of the degree in π1(G)Γ,Q.

Definition A.1. A PD-triple (G, b, {µ}) is weakly accessible if F(G, b, {µ})wa = F̆(G, {µ}),
i.e., the period domain associated to (G, b, {µ}) is the whole partial flag variety.

A.3. The admissible set. Let XF be the Fargues-Fontaine curve relative to F (and
some fixed algebraically closed perfectoid field of characteristic p). By Fargues, [5], there
is a bijection

B(G)→
{
G-bundles on XF

}
/ ', b 7→ Eb. (1)

Restricted to basic elements, this yields even an equivalence of groupoids,

G(F̆ )basic →
{

semi-stable G-bundles on XF

}
.

Here the LHS becomes a groupoid via the action by σ-conjugacy of G(F̆ ). Also, a G-
bundle E is called semi-stable if for all ρ ∈ RepG mapping the center of G into the center
of GLn, the vector bundle ρ∗(E) on XF is semi-stable in the sense of Mumford (recall
that deg and rank are well-defined for vector bundles on XF ). It is enough to check this
for ρ the adjoint representation of G.

Definition A.2. Fix a PD-triple (G, b, {µ}) over F . Let C be an algebraically closed

non-archimedean field extension of F̆ , and use the tilt C[ of C to build XF ; denote by
∞ ∈ XF (C) the corresponding distinguished point of XF .

1In [4, Ex. 9.1.22], to (G, b) is associated an augmented affine group scheme G over the category of
F -isocrystals, and in [4, Def. 9.5.1] one considers the PD-pair associated to (G, {µ}), rather than the
triple (G, b, {µ}).
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To any point x ∈ F(G, {µ})(C), there is associated a G-bundle Eb,x on XF which is
called the modification of Eb at ∞ along x.

Remark A.3. If E is a vector bundle of rank n on XF , and {µ} is a minuscule cocharacter
class of GLn, then it is clear how to define the modification Ex for x ∈ F(GLn, {µ})(C).
On the other hand, for non-minuscule {µ}, or general G (and then even for minuscule
cocharacters), it is nontrivial to define the modification Eb,x. Indeed, the definition

involves the BdR-Grassmannian Gr
B+

dR
G . One uses the Bialynicki-Birula morphism, valid

for any {µ},
Gr

B+
dR

G,{µ} → F̆(G, {µ}),
which is an isomorphism if {µ} is minuscule. We refer to [2] for a precise discussion

of this point. We note however that on points defined over a finite extension of F̆ , the
Bialynicki-Birula morphism is a bijection (for all {µ}).

Definition A.4. A point x ∈ F(G, {µ})(C) is called admissible with respect to b if the
associated G-bundle Eb,x is semi-stable. Equivalently, the image of Eb,x under the map

in Corollary A.10 is the unique basic class [b∗] with κ([b∗]) = κ([b])− µ\.

Remarks A.5. (i) An admissible point x ∈ F(G, {µ})(C) is automatically weakly ad-

missible. If x is defined over a finite extension of F̆ , the converse is true. For points
defined over finite extensions of F̆ , these assertions can be reduced to the case of GLn
by using the adjoint representation, for which see [3]. Now the admissible locus is an
open subset of F(G, {mu}) (cf. below) which on classical points agrees with the weakly
admissible locus. As the weakly admissible locus is maximal among open subsets with
given classical points, it follows that the admissible locus is contained in the weakly
admissible locus.

(ii) Assume that (G, {µ}) ⊂ (GLn, {µ(1(r),0(n−r))}), i.e., the PD-triple (G, b, {µ}) is of

Hodge type. Then Faltings and Hartl have defined the notion of admissibility of a point
in F(G, {µ})(C), cf. [4, ch. XI, §4] (Faltings’ definition uses base change to Bcris(C);

Hartl’s definition uses the Robba ring B̃†rig(C); Hartl has shown that these definitions

coincide, comp. [4, Thm. 11.4.11]). The definition of admissibility above specializes in
this case to their definition.

Definition A.6. Fix a PD-triple (G, b, {µ}) over F . The admissible locus F(G, b, {µ})a

is the unique open adic subset of F̆(G, {µ}) whose C-valued points are the admissible
points of F(G, {µ})(C), for any algebraically closed non-archimedean field extension of

F̆ .

It follows from [12] that the admissible set is indeed an open adic subset of F̆(G, {µ}),
again using the adjoint representation of G to reduce to the case G = GLn.

Remarks A.7. Whereas we have a fairly accurate picture of what the weakly admissible
locus looks like (and one of the main attractions of the corresponding theory is to
determine explicitly this locus in specific cases, cf. [18, Ch. I]), the admissible locus
seems quite amorphous, and is explicitly known in only very few cases. Here are two
examples.

(i) Let (G, b, {µ}) = (GLn, b, {µ(1(1),0(n−1))}), where [b] is the unique basic element of

B(G, {µ}). This case is called the Lubin-Tate case. In this case, all points of F̆(G, {µ})
are admissible. This follows by Gross/Hopkins [11] from Theorem A.17 below. Another,
more direct, proof is due to Hartl, comp. [4, Prop. 11.4.14]. The same holds for
(GLn, b, {µ(1(n−1),0(1))}), where again [b] is the unique basic element of B(G, {µ}).

(ii) Let (G, b, {µ}) = (D 1
n
, b, {µ(1(1),0(n−1))}), where [b] is the unique basic element of

B(G, {µ}). This case is called the Drinfeld case. In this case, all weakly admissible
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points of F̆(G, {µ}) are admissible. They form the Drinfeld halfspace inside Pn−1. This
follows by Faltings’ theorem [18, ch. 5] from Theorem A.17 below, but has also been
shown by Hartl, comp. [4, Prop. 11.4.14]. The same holds for (D− 1

n
, b, {µ(1(n−1),0(1))}),

where again [b] is the unique basic element of B(G, {µ}).

Definition A.8. A PD-triple (G, b, {µ}) is accessible if F(G, b, {µ})a = F̆(G, b, {µ}),
i.e., the admissible set associated to (G, b, {µ}) is the whole partial flag variety.

From Remarks A.5, (i) it follows that an accessible PD-triple is weakly accessible.

Proposition A.9. Associating to a G-bundle its isomorphism class, we obtain from (1)
a bijection{

iso-classes of G-bundles of the form E1,x | x ∈ F(G, {µ−1})
}
→ B(G, {µ}).

Proof. Let b ∈ G(F̆ ). If [b] lies in the image of the map, it follows from the construction
of E1,x that κ([b]) = µ\ in π1(G)Γ. Now b represents an element of the image of the map
if and only if Eb is of the form E1,x; equivalently, if and only if Eb,x∗ is the trivial G-bundle
for some x∗ ∈ F(G, {µ}). In other words, this holds if and only if there exists x∗ such
that Eb,x∗ is a semi-stable G-bundle. Hence this is equivalent to F(G, b, {µ})a 6= ∅. This
in turn is equivalent to the condition that F(G, b, {µ})wa 6= ∅, as these are two open sets
with the same classical points. By [4, Thm. 9.5.10] this is equivalent to [b] ∈ A(G, {µ}).
Since we saw already the equality κ(b) = µ\, this is equivalent to [b] ∈ B(G, {µ}). �

Corollary A.10. Let b ∈ G(F̆ ) be basic. Then there is a bijection{
iso-classes of G-bundles of the form Eb,x | x ∈ F(G, {µ−1})

}
→ B(Jb, {µ}+ νb).

Here νb is the central cocharacter associated to the basic element b.

Proof. This follows by translation with b from the previous proposition, cf. [14, 4.18].
Alternatively, one can apply the functor Hom(Eb, ) to the assertion of the corollary, to
reduce to the previous proposition. �

A.4. Weakly accessible PD-triples. Our first aim is to determine all weakly acces-
sible PD-Pairs. The following lemma reduces this problem to the core cases. We always
make the assumption that the period domain associated to any PD-triple considered
below is non-empty.

Lemma A.11. (i) (G, b, {µ}) is weakly accessible if and only if (Gad, bad, {µad}) is weakly
accessible.

(ii)
(
G1 × G2, (b1, b2), {(µ1, µ2}

)
is weakly accessible if and only if (G1, b1, {µ1}) and

(G2, b2, {µ2}) are both weakly accessible.

(iii) If {µ} is central, then (G, b, {µ}) is weakly accessible.

Proof. (i) Let π : F̆(G, {µ}) → F̆(Gad, {µad}) denote the natural morphism. Then the
assertion follows from

F(G, {µ})wa = π−1
(
F(Gad, {µad})wa

)
(recall that we are assuming both period domains to be non-empty).

Finally, (ii) and (iii) are obvious. �

After the previous reduction steps, the following proposition gives the complete clas-
sification of all weakly accessible PD-triples.

Proposition A.12. Let (G, b, {µ}) be a PD-triple defining a non-empty period domain,
where G is F -simple adjoint and {µ} is non-trivial. Then the PD-triple (G, b, {µ}) is
weakly accessible if and only if the F -group Jb is anisotropic, in which case [b] is basic.
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Proof. We note that, G being of adjoint type, weak admissibility is equivalent to semi-
stability in the sense of [4], i.e, F(G, b, {µ})wa = F(G, b, {µ})ss, cf. [4, top of p.272].
We also note that the last sentence follows because if J is anisotropic, then b is basic.
Indeed, if b is not basic, then the slope vector νb is a non-trivial cocharacter of J defined
over F , cf. [14, after (3.4.1)].

Assume that there exists a point x ∈ F(G, {µ}) \ F(G, b, {µ})ss. Then, applying [4,
Thm. 9.7.3], we obtain a 1-PS λ of Jb defined over F which violates the Hilbert-Mumford
inequality. In particular, λ is non-trivial, and Jb is not anisotropic.

Conversely, assume that F(G, b, {µ})ss = F(G, {µ}). We claim that then Jb is
anisotropic. To prove this, we may change b within its σ-conjugacy class [b], since
this leaves the isomorphism class of Jb unchanged. We argue by contradiction. So, let
us assume that T is a maximal torus of Jb such that X∗(T )Γ 6= (0). Here Γ = Gal(F̄ /F ).

Then T ⊗F F̆ is also a maximal torus of G ⊗F F̆ . By assumption, for any µ ∈ X∗(T )
defining an element x ∈ F(G, {µ}), the pair (b,Fx) is semi-stable. To apply the Hilbert-
Mumford inequality, we fix an invariant inner product ( , ) on G, cf. [4, Def. 6.2.1].
Hence by the Hilbert-Mumford inequality [4, Thm. 9.7.3], we obtain

(λ, µ− νb) ≥ 0, ∀λ ∈ X∗(T )Γ,

where νb ∈ X∗(T )Q denotes the slope vector of b. Indeed, the LHS is equal to µL(x, λ),
by [4, Lemma 11.1.3] (in loc. cit., the situation over a finite field is considered; but the
lemma holds in the present situation mutatis mutandum). Replacing λ by its negative,
we see that (λ, µ − νb) = 0. Hence (λ, µ) is independent of µ ∈ X∗(T ) in its geometric
conjugacy class. It follows that for any w,w′ in the geometric Weyl group W of T in G,

(λ,wµ− w′µ) = 0. (2)

We wish to show that this implies that λ = 0, which would yield the desired contradic-
tion. We write G = ResF ′/F (G′), where G′ is an absolutely simple adjoint group over
the extension field F ′ of F . Let F ′0 be the maximal unramified subextension of F ′/F .
Then

G(F̆ ) =
∏

i∈Z/fZ

G′(F̆ ′), (3)

where Z/fZ denotes the Galois group of F ′0/F , and where F̆ , resp. F̆ ′, denotes the
completion of the maximal unramified extension of F , resp. F ′. Furthermore, it is easy
to see that any b ∈ G(F̆ ) is σ-conjugate to an element in the product on the RHS of (3)
of the form (b′0, 1, . . . , 1), and that then

Jb = ResF ′/FJ
′
b′0
.

Correspondingly, T = ResF ′/F (T ′), where T ′ is a maximal torus of J ′b′0
defined over F ′.

Hence

X∗(T )Q =
∏

τ∈HomF (F ′,F̄ )

X∗(T
′)Q, (4)

with its action by Γ induced by the action of Γ′ = Gal(F̄ /F ′) on X∗(T
′)Q. Since

0 6= λ ∈ X∗(T )Γ, all components λτ of λ in the product decomposition (4) are non-zero,

and are determined by any one of them. Now T ′⊗F ′ F̆ ′ is a maximal torus of G′⊗F ′ F̆ ′
and, since G′ is absolutely simple, its geometric Weyl group W ′ acts irreducibly on
X∗(T

′)Q, cf. [1, Cor. of Prop. 5 in VI, §1.2]. Furthermore, the geometric Weyl group of
T is the product of copies of W ′ over the same index set as in (4). Hence the identity (2)
implies that any time the component µτ of µ is non-trivial, the component λτ is zero.
Hence the assumption λ ∈ X∗(T )Γ implies λ = 0, since the assumption µ 6= 0 implies
that µτ 6= 0 for some τ . This yields the desired contradiction. �
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Corollary A.13. In Proposition A.12, assume that G is absolutely simple adjoint and
that {µ} is non-trivial. Then (G, b, {µ}) satisfies the condition of Proposition A.12 if
and only if G is the algebraic group associated to a simple central algebra D of some
rank n2 over F , [b] is basic, and the difference between the Hasse invariant of D in
Z/nZ ' π1(G)Γ and the class κ([b]) lies in (Z/n)×. �

Remark A.14. Note that the class {µ} does not intervene in Proposition A.12. It does,
however, enter in the condition that the period domain F(G, b, {µ})wa be non-empty.
Indeed, this condition is equivalent to the condition that [b] ∈ A(G, {µ}), cf. [4, Thm.
9.5.10], i.e., that [b] be acceptable with respect to {µ} in the sense of [17].

A.5. Accessible PD-triples. Here the classification is much more narrow.

Proposition A.15. A PD-triple (G, b, {µ}) is accessible if and only if b is basic, and
the pair (Jb, {µ}) is uniform in the sense of [14, §6], i.e. B(Jb, {µ}) contains precisely
one element.

Proof. The accessibility of (G, b, {µ}) implies its weak accessibility, cf. Remark A.5,
(i); hence b is basic by Proposition A.12. The assumption that (G, b, {µ}) is accessible
is equivalent to saying that any modification Eb,x for x ∈ F(G, {µ}) is semi-stable.
Hence, by Corollary A.10, the set B(Jb, {µ−1} + νb) contains only one element, i.e.,
(Jb, {µ−1}+νb) is uniform. The assertion follows since (Jb, {µ−1}+νb) is uniform if and
only if (Jb, {µ−1}) is uniform, if and only if (Jb, {µ}) is uniform. �

Kottwitz [14, §6] has given a complete classification of uniform pairs (G, {µ}). Ap-
plying his result, we obtain the following corollary.

Corollary A.16. Let (G, b, {µ}) be a PD-triple. Assume that G is absolutely simple
adjoint, that {µ} is non-trivial, and that [b] ∈ B(G, {µ}). Then (G, b, {µ}) is accessible
if and only if G ' PGLn, and {µ} corresponds to (1, 0, . . . , 0) or (1, 1, . . . , 1, 0). �

A.6. An application to the crystalline period map. Let (G, b, {µ}) be a local
Shimura datum over F , cf. [17], i.e., a PD-triple such that {µ} is minuscule and such
that [b] ∈ B(G, {µ}). Conjecturally, there is an associated local Shimura variety, i.e., a

tower of rigid-analytic spaces over Ĕ, with members enumerated by the open compact
subgroups of G(Qp),

{MK}K = {M(G, b, {µ})K}K , (5)

on which G(Qp) acts as Hecke correspondences. The tower comes with a compatible
system of morphisms

φK : MK → F̆(G, {µ}). (6)

The morphism φK is called the crystalline period morphism at level K of the local
Shimura variety attached to (G, b, {µ}).

Theorem A.17. Assume that the local Shimura variety associated to (G, b, {µ}) comes
from an RZ-space of type EL or PEL, in which case the local Shimura variety exists.
Then the image of the crystalline period morphisms coincides with the admissible locus
F(G, b, {µ})a.

Proof. See [7] (which uses [6]) and [19]. �

Example A.18. (i) In the Lubin-Tate case (see Remarks A.7, (i)), Gross and Hopkins [11]
have shown that the image of the crystalline period morphism is the whole projective
space F(G, {µ}).

(ii) In the Drinfeld case (see Remarks A.7, (ii)), the image of the crystalline period
map is the Drinfeld half-space, cf. [18, ch. 5].
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Corollary A.19. Assume that the local Shimura variety associated to (G, b, {µ}) comes
from an RZ-space of type EL or PEL, in which case the local Shimura variety exists.
Also, assume that G is absolutely simple. Then the crystalline period morphisms are
surjective if and only if the local Shimura variety is of Lubin-Tate type. �

A.7. Open questions. Here we list some open questions.

Question A.20. When is F(G, b, {µ})a = F(G, b, {µ})wa?

This question was answered by Hartl in the case when G = GLn. Besides the Lubin-
Tate case and the Drinfeld case, there is one essentially new case related to GL4. B.
Gross asks whether the PD-triples formed by an adjoint orthogonal group G, its natural
minuscule coweight {µ} (the one attached to a Shimura variety for SO(n − 2, 2)) and
the unique basic element in B(G, {µ}) give further examples.

For the next question, recall that for any standard parabolic P ∗ in the quasi-split
form G∗ of G, there is a subset B(G)P ∗ defined in terms of the Newton map on B(G).
If P ∗ = G∗, then B(G)G∗ = B(G)basic. We call the inverse image of B(G)P ∗ under
the map in Corollary A.10 the HN-stratum F(G, b, {µ})P ∗ attached to P ∗. Hence for
P ∗ = G∗ the corresponding HN-stratum is the admissible set.

Question A.21. For which P ∗ is the HN-stratum non-empty? Does the decomposition
into disjoint sets F(G, b, {µ})P ∗ of F̆(G, {µ}) have the stratification property? Which
strata F(G, b, {µ})P ∗ have classical points?

The first question is non-empty, as is shown by the Lubin-Tate case, in which only
F(G, b, {µ})G∗ is non-empty. There are examples of strata F(G, b, {µ})P ∗ without clas-
sical points: One gets these by looking at cases of weakly accessible, but non-accessible,
PD-triples, in which case all strata with P ∗ 6= G∗ have no classical points, but some of
them are nonempty.

There is also a HN-decomposition of F̆(G, {µ}) in the sense of [4]. It does not have the
stratification property. Here we have an understanding of the structure of the individual
strata, in terms of period domains of PD-triples of smaller dimension. However, even for
these simpler strata, the question of the non-emptiness of strata is only partially solved
(by Orlik).

Question A.22. What is the relation between the two stratifications?
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