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ABSTRACT. We prove that the Witt vector affine Grassmannian, which parametrizesW (k)-lattices inW (k)[ 1
p
]n

for a perfect field k of charactristic p, is representable by an ind-(perfect scheme) over k. This improves on
previous results of Zhu by constructing a natural ample line bundle. Along the way, we establish various
foundational results on perfect schemes, notably h-descent results for vector bundles.

1. INTRODUCTION

1.1. Motivation and goals. Fix a perfect field k of characteristic p, and letW (k) be the ring of Witt vectors
of k. This paper deals with the question of putting an algebro-geometric structure (over k) on the set

GLn
(
W (k)[

1

p
]
)
/GLn(W (k)),

or, equivalently, on the set ofW (k)-lattices inW (k)[1
p ]n. This is a mixed-characteristic version of the affine

Grassmannian, which (for the group GLn) parametrizes k[[t]]-lattices in k((t))n. For the introduction, let
us call the usual affine Grassmannian Graff , and the Witt vector affine Grassmannian GrWaff .

Some of the interest in GrWaff comes from its relation with the special fibers of Rapoport-Zink spaces.
These are, via Dieudonné theory, naturally described by affine Deligne-Lusztig varieties in the Witt vector
affine Grassmannian1. However, as the Witt vector affine Grassmannian was only known as a set, the affine
Deligne-Lusztig varieties were also only known as sets; this was a hindrance to talking systematically about
notions like connected components or dimensions (though ad hoc definitions could be given in such cases,
cf. e.g. [CKV13], [Ham13, §10]). Another motivation is that in the context of forthcoming work of the
second author, GrWaff is supposed to appear as the special fibre of an object over Zp whose generic fibre
is an affine Grassmannian related to Fontaine’s ring B+

dR, which is only defined on perfectoid algebras. In
fact, the results in this paper show that some strange features of perfectoid spaces have more elementary
analogues for perfect schemes. Notably, the v-topology on perfect schemes introduced in this paper is an
analogue of a similar topology in the context of perfectoid spaces.

1.2. Results. We first recall the relevant structure on Graff that we intend to transport to GrWaff . The
usual affine Grassmannian Graff is known to be represented by an ind-projective ind-scheme, and was first
considered in an algebraic-geometric context by Beauville-Laszlo, [BL94]; earlier work, motivated by the
Korteweg-de-Vries equation, includes [SS83] and [SW85]. More precisely, for integers a ≤ b, one has
closed subfunctors Graff,[a,b] ⊂ Graff parametrizing lattices M ⊂ k((t))n lying between tak[[t]]n and
tbk[[t]]n; varying the parameters gives a filtering system that exhausts Graff , i.e.,

Graff ' lim−→Graff,[a,b].

Now each Graff,[a,b] admits a closed embedding into a (finite disjoint union of) classical Grassmannian(s)
Gr(d, tak[[t]]n/tbk[[t]]n) as those k-subvectorspaces V ⊂ tak[[t]]n/tbk[[t]]n which are stable under multi-
plication by t. As such, they are projective k-schemes, and all transition maps are closed embeddings; this

1For example, if β : G → G0 is an isogeny of p-divisible groups over k, and a trivialization W (k)[ 1
p
]n ' D(G0)[ 1

p
] of the

Dieudonné module of G0 has been fixed, then the induced map D(β) on Dieudonné modules defines a point of GrWaff . In the
equal characteristic case, the relation has been obtained by Hartl and Viehmann, [HV11, Theorem 6.3].
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proves that Graff is an ind-(projective scheme). In fact, there is a natural line bundle L on Graff , given by

L = detk(t
ak[[t]]n/M)

on Graff,[a,b]. As this line bundle is already ample on the classical Grassmannian Gr(d, tak[[t]]n/tbk[[t]]n),
it stays so on each Graff,[a,b].

Our aim here is to establish similar results in the Witt vector case, GrWaff . This question has been
considered previously, notably by Haboush, [Hab05], Kreidl, [Kre14], and Zhu, [Zhu14]. The primary issue
is that for a general Fp-algebra R, its ring of Witt vectors W (R) is pathological: it may contain p-torsion,
and the natural map W (R)/p→ R may not be an isomorphism. However, if R is perfect, i.e. the Frobenius
map Φ : R→ R is an isomorphism, then

W (R) = {
∑
n≥0

[an]pn | an ∈ R}

is well-behaved. In fact, W (R) may be characterized as the unique (up to unique isomorphism) p-adically
complete flat Zp-algebra lifting R. As already observed by Kreidl, [Kre14, Theorem 5], if one restricts to
perfect rings R, then the set of W (R)-lattices M in W (R)[1

p ]n is a reasonable object, e.g. one has faithfully
flat descent. Kreidl’s work also shows that it is difficult to get representability results if one does not restrict
to perfect rings.

Zhu, [Zhu14], then proved a representability result for GrWaff restricted to perfect rings. There is still
a similar presentation of GrWaff as an increasing union of GrWaff,[a,b] parametrizing lattices M between
paW (R)n and pbW (R)n. Zhu’s result is that each GrWaff,[a,b] can be represented by the perfection of a
proper algebraic space over Fp. Our main theorem improves on this result of Zhu.

Theorem 1.1. The functor GrWaff,[a,b] on perfect rings R, parametrizing W (R)-lattices M ⊂ W (R)[1
p ]n

lying between paW (R)n and pbW (R)n, is representable by the perfection of a projective algebraic variety
over Fp. Consequently, GrWaff is representable by an inductive limit of perfections of projective varieties.

Our proof is independent of the work of Zhu. The crucial step is the construction of a natural line bundle
L on GrWaff,[a,b], analogous to the line bundle

L = detR(taR[[t]]n/M)

on Graff,[a,b].2 However, as paW (R)n/M does not carry the structure of an R-module, it is not clear how to
make sense of detR(paW (R)n/M).

We give two solutions to this problem. Both make use of strong non-flat descent properties for line
bundles on perfect schemes. In fact, it turns out that Voevodsky’s h-topology is subcanonical on the category
of perfect schemes, and supports the “correct” bundle theory (see §4 for precise statements):

Theorem 1.2. Any vector bundle E on a perfect Fp-scheme X gives a sheaf for the h-topology on perfect
schemes over X via pullback, and one has H i

h(X,E) ' H i(X,E) for all i. Moreover, one has effective
descent for vector bundles along h-covers of perfect schemes.

The first part of this theorem is due to Gabber, cf. [BST13, §3]; the second part, in fact, extends to the
full derived category (see §11). Using this descent result, we can informally describe our first construction
of L, which is K-theoretic. The idea here is simply that one can often (e.g., when R is a field, or always
after an h-cover) filter paW (R)n/M in such a way that all gradeds Qi are finite projective R-modules, and
then define

L =
⊗
i

detR(Qi) .

2The existence of this line bundle was already conjectured by Zhu.
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The problem is then showing that this construction is independent of the choice of filtration; once L is
canonically independent of the choices, one can use h-descent (i.e., Theorem 1.2) to define it in general. In
K-theoretic language, this amounts to constructing a natural map

d̃et : K(W (R) onR)→ PicZ(R)

from a K-theory spectrum3 to the groupoid of graded line bundles PicZ(R); here the K-theory spec-
trum parametrizes perfect complexes on W (R) that are acyclic after inverting p (the relevant example is
paW (R)n/M in the above notation), while the Z-grading on the target keeps track of the fibral rank (and
can be largely ignored at first pass). As we recall in the Appendix, taking determinants of projective modules
defines a natural map

det : K(R)→ PicZ(R) ,

so our problem can be reformulated as that of extending the map det along the forgetful map α : K(R) →
K(W (R) onR). When R is the perfection of a regular Fp-algebra, this problem is easy to solve: α is an
equivalence, thanks essentially to Quillen’s dévissage theorem. In general, we use de Jong’s alterations and
h-descent for line bundles to reduce the problem to the previous case.

Our second construction is more geometric. Here, we observe that on a suitable Demazure resolution

G̃r
Waff,[a,b]

→ GrWaff,[a,b]

parametrizing filtrations of paW (R)n/M with gradeds being finite projective R-modules, there is a line
bundle L̃ as above by definition. The problem becomes that of descending L̃. To handle such descent
questions, we give the following criterion (see Theorem 6.8, Remark 6.12):

Theorem 1.3. Let f : X → Y be the perfection of a proper surjective map of Fp-schemes. Assume that
all geometric fibres of f are connected. Then a vector bundle E on X descends (necessarily uniquely) to a
vector bundle on Y if and only if E is trivial on all geometric fibres of f .

Remark 1.4. In a previous version this theorem was stated under the stronger hypothesis Rf∗OX = OY .

In finite type situations, such a theorem implies descent of vector bundles after some finite purely insep-
arable map, which may have interesting applications.

Having constructed the line bundle L, we prove that it is ample by using a fundamental result of Keel,
[Kee99], on semiample line bundles in positive characteristic. Unfortunately, contrary to the situation in
equal characteristic, we are not able to give a direct construction of enough sections of L which would give
a projective embedding.

We remark that it is a very interesting question whether there is a natural “finite-type” structure on the
Witt vector affine Grassmannian. For example, all minuscule Schubert cells, which parametrize lattices
M ⊂ W (k)[1

p ]n that differ from the standard lattice by (strict) p-torsion, are canonically the perfections
of classical Grassmannians; it is natural to wonder if such a story extends deeper into the stratification.
Nevertheless, for all questions of a “topological” nature (such as connected components, dimensions, or
étale cohomology), it suffices understand the perfection: the functor X 7→ Xperf preserves this information.

1.3. Outline. We begin in §2 by collecting some basic notions surrounding Voevodsky’s h-topology on
the category of schemes (and its non-noetherian analogue, the v-topology, which relies on results of Rydh
[Ryd10]); the main result is a criterion for an fppf sheaf to be an h-sheaf in terms of “abstract blowup
squares,” see Theorem 2.9. Next, in §3, we study perfect schemes and the perfection functor, and record
some surprising vanishing and base change results that will be useful later. All this material is put to use in §4
to prove Theorem 1.2. Using the results of §3 and §4, in §5 and §6, we give the two promised constructions of
line bundles; we stress that the results in §6, which include Theorem 1.3 above, go beyond the construction

3We are ultimately only interested in the statement at the level of π0. However, the language of spectra, or at least Picard
groupoids, is critical to carry out the descent.
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of line bundles, and will be used later. Specializing to the problem at hand, in §7, we collect some geometric
observations about certain universal families parametrizing finite torsion Zp-modules filtered in a certain
way; these are exploited to prove Theorem 1.1 in §8. We briefly discuss the extension of Theorem 1.1 to
general groups G in §9. The special case of G = SLn is then studied in §10: we identify a central extension
of SLn(Qp) resulting from our construction of the line bundle in classical terms, and raise several related
questions, mostly motivated by the corresponding equicharacteristic story.

In §11, which is not used in the rest of the paper, we extend Theorem 1.2 to the derived category of
quasi-coherent sheaves; here we use the language of∞-categories, and rely on a notion recently introduced
by Mathew in [Mat14]. This section also contains some other results of independent interest: h-descent for
Witt vector cohomology after inverting Frobenius (in §11.5) extending [BBE07, §3], a conceptual proof of
Kunz’s theorem on regular noetherian rings (in Corollary 11.35), a characterization of h-covers of noetherian
schemes in terms of the derived category (in Theorem 11.26), and derived h-descent for the full quasi-
coherent derived category of noetherian schemes (in Theorem 11.12) extending [HLP14].

Finally, in the Appendix §12, we briefly review the construction of the determinant map det mentioned
above in the language of ∞-categories and spectra; our goal here is to give an intuitive picture of the
construction, and detailed proofs are not given.

Acknowledgments. This work started after the authors listened to a talk of Xinwen Zhu on his work at
the MSRI, and the authors would like to thank him for asking the question on the existence of L. They
would also like to thank Akhil Mathew for enlightening conversations related to §11.2. Moreover, they
wish to thank all the participants of the ARGOS seminar in Bonn in the summer term 2015 for their careful
reading of the manuscript, and the many suggestions for improvements and additions. The first version of
this preprint contained an error in the proof of Lemma 4.6, tracing back to an error in [GD61, Corollary
3.3.2]; we thank Christopher Hacon, and Linquan Ma (via Karl Schwede) and the anonymous referee for
pointing this out. The authors are also indebted to the referee for providing numerous other comments that
improved the readability of this paper. Finally, they would like to thank the Clay Mathematics Institute, the
University of California (Berkeley), and the MSRI for their support and hospitality. This work was done
while B. Bhatt was partially supported by NSF grant DMS 1340424 and P. Scholze was a Clay Research
Fellow.

2. h-SHEAVES

In this section, we recall some general facts about sheaves on the h-topology defined by Voevodsky,
[Voe96, §3]. We use results of Rydh, [Ryd10], in the non-noetherian case. In the following, all schemes are
assumed to be qcqs for simplicity. Let us start by recalling the notion of universally subtrusive morphisms.

Definition 2.1. A morphism f : X → Y of qcqs schemes is called universally subtrusive or a v-cover if
for any map Spec(V )→ Y , with V a valuation ring, there is an extension V ↪→W of valuation rings and a
commutative diagram

Spec(W )

����

// X

f

��
Spec(V ) // Y.

We say that f ′ : X ′ → Y is a refinement of f if f ′ is still universally subtrusive, and factors through f .

By [Ryd10, Corollary 2.9], this agrees with [Ryd10, Definition 2.2]. We also remark that any v-cover is
submersive (and thus universally submersive), meaning that the map |X| → |Y | is a quotient map. If Y is
noetherian, universally submersive maps are v-covers, cf. [Ryd10, Theorem 2.8].

Remark 2.2. The name v-cover, besides the similarity with the existing notion of h-covers, is meant to
suggest surjectivity at the level of valuations. In fact, this can be made precise as follows. Recall that
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there is a fully faithful functor X 7→ Xad from schemes to adic spaces sending Spec(R) to Spa(R,R), the
space of (equivalence classes of) valuations on R which only take values ≤ 1, cf. [Hub94]. Then a map
f : X → Y is a v-cover if and only if |fad| : |Xad| → |Y ad| is surjective.

Before going on, let us discuss several examples.

Example 2.3 ([Ryd10, Remark 2.5]). Let f : X → Y be a map of qcqs schemes. Then f is a v-cover in
any of the following cases.

(i) The map f is faithfully flat.
(ii) The map f is proper and surjective.

(iii) The map f is an h-cover in the sense of Voevodsky.
Indeed, for (i), one can first lift the special point of the valuation ring, and then lift generalizations. For (ii),
one can first lift the generic point of the valuation ring, and then use the valuative criterion of properness.
Finally, (iii) follows from (i) and (ii) (as h-covers are generated by proper surjective maps and fppf maps).
As an example of a surjective map f : X → Y that is not a v-cover, consider the following example, also
given by Voevodsky: Let Y = A2

k over some field k, let X̃ → Y be the blow-up of Y at the origin (0, 0),
and let X ⊂ X̃ be the complement of a point in the exceptional locus. Any valuation on Y that specializes
from the generic point to (0, 0) in the direction corresponding to the missing point of X does not admit a
lift to X̃ .

We need the following structural result about v-covers.

Theorem 2.4 ([Ryd10, Theorem 3.12]). Let f : X → Y be a finitely presented v-cover, where Y is affine.
Then there is a refinement f ′ : X ′ → Y of f which factors as a quasi-compact open covering X ′ → Y ′ and
a proper surjective map Y ′ → Y of finite presentation.

It follows from the flattening techniques of Raynaud-Gruson, [RG71], that, up to refinements, one can
break up general proper surjective maps into blow-ups, and finitely presented flat maps. This is formalized
in the following definition.

Definition 2.5. Let f : X → Y be a proper surjective map of finite presentation between qcqs schemes. We
say that f is of inductive level 0 if it can be refined into a composition of a proper fppf map f ′ : X ′ → Y ′

and a finitely presented nilimmersion Y ′ ↪→ Y . For n > 0, we say that f is of inductive level ≤ n if f
admits a refinement f ′ : X ′ → Y which has a factorization X ′ → X0 → Y0 → Y , where

(o) the map Y0 → Y is a finitely presented nilimmersion,
(i) the map X0 → Y0 is proper surjective of finite presentation, and an isomorphism outside a finitely

presented closed subset Z ⊂ Y0 such that X0 ×Y0 Z → Z is of inductive level ≤ n− 1, and
(ii) the map X ′ → X0 is a proper fppf cover.

These notions are preserved under base change. The following lemma ensures that every relevant map is
of inductive level ≤ n for some n.

Lemma 2.6. Let f : X → Y be a proper surjective map of finite presentation between qcqs schemes. Then
f is of inductive level ≤ n, for some n ≥ 0.

Proof. By noetherian approximation, we can assume that Y is of finite type over Z, cf. [TT90, App. C,
Theorem C.9]. We now prove the more precise result that f : X → Y is of inductive level ≤ dimY , by
induction on dimY . We can assume that Y is reduced, as we allowed base-changes by nilimmersions. If
dimY = 0, then Y is a disjoint union of spectra of finite fields; then X → Y admits a point over a finite
étale extension of Y , which shows that X → Y is of inductive level 0.

Now assume that dimY > 0. By generic flatness and [RG71, Théorème 5.2.2] (cf. [Ryd10, Proposition
3.6]), one can refine X → Y by X ′ → X0 → Y , where X ′ → X0 is a proper fppf cover, and X0 → Y
is a blow-up which is an isomorphism outside a closed subset Z ⊂ Y of dimZ ≤ n − 1. By induction,
X0 ×Y Z → Z is of inductive level ≤ n− 1, as desired. �
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Now fix a qcqs base scheme S, and consider the category Schfp
/S of finitely presented S-schemes.

Definition 2.7. The h-topology on Schfp
/S is generated by finitely presented v-covers.

We will refer to finitely presented v-covers as h-covers in the sequel; in cases of overlap, this agrees with
Voevodsky’s definition. Our next goal is to characterize h-sheaves amongst all presheaves in terms of some
easily geometrically testable properties.

Proposition 2.8. Let F be a presheaf (of sets) on Schfp
/S . Then F is an h-sheaf if and only if the following

conditions are satisfied.
(i) The presheaf F is a sheaf for the fppf topology.

(ii) Let Y = Spec(A) ∈ Schfp
/S be an affine scheme, and X → Y a proper surjective map of finite pre-

sentation, which is an isomorphism outside a finitely presented closed subset Z ⊂ Y with preimage
E ⊂ X . Then the diagram

F (Y ) //

��

F (X)

��
F (Z) // F (E)

is a pullback square.

Note in particular that if X ↪→ Y is a finitely presented nilimmersion of affine schemes of finite presen-
tation over S, then taking Z = X in (ii) (with preimage E = X), one sees that F (Y ) = F (X).

Proof. Clearly, if F is an h-sheaf, then (i) is satisfied. To verify (ii), note that X → Y is an h-cover. The
sheaf axiom implies that F (Y ) is the equalizer of F (X) ⇒ F (X ×Y X). But X t E ×Z E → X ×Y X
is a further h-cover, so that F (Y ) is the equalizer of F (X) ⇒ F (X t E ×Z E) = F (X) × F (E ×Z E).
They clearly agree in the first component, so F (Y ) is the equalizer of F (X) ⇒ F (E ×Z E). Now, given
elements aX ∈ F (X) and aZ ∈ F (Z) which agree on E, the two pullbacks of aX to E ×Z E are both
given by the pullback of aZ along E ×Z E → Z, giving an element aY ∈ F (Y ) restricting to aX on X . As
F (Z) ↪→ F (E), E → Z being an h-cover, it follows that aY also restricts to aZ , as desired.

For the converse, we first check that F is separated. Thus, take an h-cover f : X → Y in Schfp
/S and two

sections a, b ∈ F (Y ) that become equal on X . As F is an fppf sheaf (and in particular, a Zariski sheaf),
we may assume that Y = Spec(A) is affine by (i). Applying Theorem 2.4, we may then assume that X is
a quasicompact open cover of a proper surjective map Y ′ → Y . Using (i) again, we can reduce to the case
that X → Y is proper surjective. By Lemma 2.6, X → Y is of inductive level ≤ n for some n. We argue
by induction on n. If n = 0, then, after further refinement, X → Y is a composition of an fppf cover and
a nilimmersion; using (i) and (ii), we see a = b. If n > 0, then after further refinement, X → Y factors as
a composition of nilimmersions, fppf covers, and a map X ′ → Y ′ which is an isomorphism outside some
finitely presented Z ⊂ Y ′, for which X ′×Y ′ Z → Z is of inductive level≤ n− 1. Using (ii) and induction,
one again finds that a = b, as desired.

Now we check that F is a sheaf. Thus, take an h-cover f : X → Y in Schfp
/S and a section a ∈ F (X)

whose two pullbacks to F (X ×Y X) agree. By (i), we may assume that Y is affine. As we already proved
that F is separated, we are also free to replace f by a refinement. Thus, by Theorem 2.4, we may assume
that X factors as a composite of an fppf cover, and a proper surjective map; using (i) again, we may then
assume that X → Y is a proper surjective map. By Lemma 2.6, X → Y is of inductive level ≤ n for
some n. Using induction on n and properties (i) and (ii) once more, we can assume that X → Y is an
isomorphism outside some finitely presented Z ⊂ Y with preimage E ⊂ X , and that a ∈ F (X) induces a
section of F (E) that comes via pullback from aZ ∈ F (Z). Property (ii) gives us an element aY ∈ F (Y )
whose pullback to X is a, as desired. �
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In fact, the same result holds true for sheaves of spaces, and in particular for stacks. In the following,
all limits and colimits are taken in the ∞-categorical sense (i.e., they are homotopy limits and homotopy
colimits). The reader unfamiliar with the language of sheaves of spaces as developed by Lurie in [Lur09]
may assume that F is a prestack in the following theorem; this is the most important case for the sequel. For
ease of reference, we prefer to state the theorem in its natural generality.

Theorem 2.9. Let F be a presheaf of spaces on Schfp
/S . Then F is an h-sheaf if and only if it satisfies the

following properties.

(i) The presheaf F is a sheaf for the fppf topology.
(ii) Let Y = Spec(A) ∈ Schfp

/S be an affine scheme of finite presentation over S, and X → Y a proper
surjective map of finite presentation, which is an isomorphism outside a finitely presented closed
subset Z ⊂ Y with preimage E ⊂ X . Then the diagram

F (Y ) //

��

F (X)

��
F (Z) // F (E)

is a (homotopy) pullback square.

Proof. Assume first that F is a sheaf. Clearly, (i) is then satisfied. For (ii), we follow the proof of [Voe00,
Lemma 3.6]. Let FX be the sheaf associated with X for any X ∈ Schfp

/S ; this is a sheaf of sets.4 As
F (X) = Hom(FX , F ) is the space of maps in the ∞-category of sheaves of spaces in the h-topology,
it is enough to prove that FY is the pushout of FX and FZ along FE in the ∞-category of sheaves of
spaces in the h-topology. From the previous proposition, we know that this is true as sheaves of sets. But
FE(U) ↪→ FX(U) is injective for all U ∈ Schfp

/S (i.e., cofibrant as a map of simplicial sets), so the set-
theoretic pushout

FZ(U)
⊔

FE(U)

FX(U)

is also a homotopy pushout. This shows that the pushout of FX and FZ along FE in the ∞-category of
presheaves of spaces on Schfp

/S is still discrete; thus, its sheafification is also discrete, and then agrees with
the pushout FY in the category of sheaves of sets.

For the converse, we have to show that for any h-cover f : X → Y in Schfp
/S with Cech nerveX•/Y → Y

given by the n-fold fibre products Xn/Y of X over Y , the map

F (Y )→ limF (X•/Y )

is a weak equivalence. If this condition is satisfied, we say that f is of F -descent; if this condition is also
satisfied for any base change of f , we say that f is of universal F -descent. We need the following very
general dévissage lemma.

Lemma 2.10 ([LZ12, Lemma 3.1.2]). Let f : X → Y and g : Y → Z be morphisms in Schfp
/S with

composition h = g ◦ f : X → Z.

(a) If h is of universal F -descent, then g is of universal F -descent.
(b) If f is of universal F -descent and g is of F -descent, then h is of F -descent. In particular, if f and

g are of universal F -descent, then h is of universal F -descent.

4The h-topology is not subcanonical (as e.g. nilimmersions are covers), so one needs to sheafify.
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First, we prove that all proper surjective maps f : X → Y in Schfp
/S with Y affine are of universal F -

descent, by induction on the inductive level. If f : X → Y is of inductive level 0, then it can be refined by
a composition of a finitely presented nilimmersion and a proper fppf cover; using assumptions (i) and (ii)
along with Lemma 2.10 (a) shows that f is of universal F -descent. If f : X → Y is of inductive level ≤ n,
then after refinement it is of the form X → X0 → Y0 → Y as in the definition. Here, X → X0 is proper
fppf, and thus of universal F -descent by assumption (i), and Y0 → Y is a finitely presented nilimmersion,
and thus of universal F -descent by (ii). Using Lemma 2.10 (b), it is enough to prove that X0 → Y0 is of
universal F -descent. Recall that X0 → Y0 is an isomorphism outside a finitely presented closed subset
Z ⊂ Y0 such that X0 ×Y0 Z → Z is of inductive level ≤ n− 1.

For convenience, let us rename X0 → Y0 as X → Y . Let Xn/Y be the n-fold fibre product of X over Y .
Applying (ii) to Xn/Y → Y , we get a pullback square

F (Y ) //

��

F (Xn/Y )

��
F (Z) // F (En/Z).

By induction, E → Z is of (universal) F -descent, and so F (Z) → limF (E•/Z) is a weak equivalence.
Taking the limit of the pullback squares gives a pullback square

F (Y ) //

��

limF (X•/Y )

��
F (Z) // limF (E•/Z).

As the lower map is a weak equivalence, it follows that the upper map is a weak equivalence, showing that
X → Y is of F -descent. By the same argument, it is of universal F -descent, as desired.

Now, given a general h-cover f : X → Y in Schfp
/S , we want to prove that f is of universal F -descent.

Take an open affine cover Y ′ → Y , and let X ′ = X ×Y Y ′. Using Lemma 2.10, it is enough to prove that
X ′ → Y ′ is of universal F -descent, in other words, we may assume that Y is affine. Then, using Theorem
2.4, f : X → Y can be refined by a composition of an fppf cover and a proper surjective map. Both of these
are of universal F -descent (by (i), resp. the above), finally proving that f is of universal F -descent, using
Lemma 2.10 once more. �

This yields the following criterion for detecting h-cohomological descent of abelian fppf sheaves:

Corollary 2.11. Let F be a sheaf of abelian groups on Schfp
/S . Assume that for any affine scheme Y =

Spec(A) ∈ Schfp
/S of finite presentation over S, and X → Y a proper surjective map of finite presentation,

which is an isomorphism outside a finitely presented closed subset Z ⊂ Y with preimage E ⊂ X , the
triangle

RΓfppf(Y, F )→ RΓfppf(X,F )⊕RΓfppf(Z,F )→ RΓfppf(E,F )

in the derived category of abelian groups is distinguished. Then, for all X ∈ Schfp
/S , RΓh(X,F ) =

RΓfppf(X,F ).

Proof. For any n ≥ 0, apply the previous theorem to the presheaf of spaces sendingX to τ≥0RΓfppf(X,F )[n]
(or rather the simplicial set corresponding to it under the Dold-Kan correspondence). Then (i) is satisfied by
definition, and (ii) by assumption. �

Moreover, if the sheaves are finitely presented, one can remove finite presentation constraints on the
schemes. For this, we record the following simple observation.
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Lemma 2.12. Let f : X = Spec(A) → Y = Spec(B) be a v-cover in Sch/S . Then one can write f as a
cofiltered limit of h-covers fi : Xi = Spec(Ai)→ Yi = Spec(Bi) of finitely presented Xi, Yi ∈ Schfp

/S .

Proof. One can write A as a filtered colimit of finitely presented B-algebras Ai. As Spec(A) → Spec(B)
factors over Spec(Ai), it follows that Spec(Ai) → Spec(B) is still a v-cover. This reduces us to the case
that X → Y is finitely presented. In that case, it comes as a base-change of some finitely presented map
X ′ = Spec(A′)→ Y ′ = Spec(B′) of finitely presented X ′, Y ′ ∈ Schfp

/S . From Theorem 2.4, it follows that
X ′ → Y ′ is also a v-cover, possibly after changing Y ′. �

In order to work with perfect schemes, we need the following variant of the h-topology, which doesn’t
impose any finiteness constraints:

Definition 2.13. For a qcqs base scheme S as above, the v-topology on the category Sch/S of qcqs schemes
over S is the topology generated by v-covers.

Then we get the following version of Theorem 2.9.

Corollary 2.14. Let F be a presheaf of n-truncated spaces on Sch/S for some n ≥ 0. Assume that the
following conditions are satisfied.

(i) The presheaf F is a sheaf for the fppf topology.
(ii) Let Y = Spec(A) ∈ Sch/S be an affine scheme of finite presentation over S, and X → Y a proper

surjective map of finite presentation, which is an isomorphism outside a finitely presented closed
subset Z ⊂ Y with preimage E ⊂ X . Then the diagram

F (Y ) //

��

F (X)

��
F (Z) // F (E)

is a homotopy pullback square.
(iii) If Y = Spec(A) ∈ Sch/S is a cofiltered limit of finitely presented Yi = Spec(Ai) ∈ Schfp

/S , then

colimF (Yi)→ F (Y )

is a weak equivalence.
Then F is a sheaf for the v-topology.

Proof. By (i) and (ii), the restriction of F to Schfp
/S is an h-sheaf by Theorem 2.9. In general, by fppf descent,

it is enough to prove that if f : X = Spec(A) → Y = Spec(B) is a v-cover, then f is of F -descent. By
Lemma 2.12, we can write f as a cofiltered limit of h-covers fi : Xi = Spec(Ai) → Yi = Spec(Bi)
between finitely presented S-schemes. Then, for each i,

F (Yi)→ limF (X
•/Yi
i )

is a weak equivalence. Passing to the filtered colimit over i gives a weak equivalence

F (Y ) ' colim
i

F (Yi) ' colim
i

(limF (X
•/Yi
i )) .

As F is n-truncated for some n, one can commute the filtered colimit with the limit (see [Lur14a, Corollary
4.3.7] for a proof in the context of spectra, which is the only relevant case for the sequel). This gives

F (Y ) ' lim(colim
i

F (X
•/Yi
i )) ,

where each
colim

i
F (X

n/Yi
i ) ' F (Xn/Y ) ,

proving the claim. �
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In particular, this applies to usual sheaves (of sets) and stacks. Similarly, we also have an analogue of
Corollary 2.11.

Corollary 2.15. Let F be a sheaf of abelian groups on Sch/S . Assume that for any affine scheme Y =

Spec(A) ∈ Schfp
/S of finite presentation over S, and X → Y a proper surjective map of finite presentation,

which is an isomorphism outside a finitely presented closed subset Z ⊂ Y with preimage E ⊂ X , the
triangle

RΓfppf(Y, F )→ RΓfppf(X,F )⊕RΓfppf(Z,F )→ RΓfppf(E,F )

in the derived category of abelian groups is distinguished. Moreover, assume that if Y = Spec(A) ∈ Sch/S

is a cofiltered limit of finitely presented Yi = Spec(Ai) ∈ Schfp
/S , then F (Y ) = colimF (Yi).

Then, for all X ∈ Sch/S , RΓv(X,F ) = RΓfppf(X,F ). �

3. PERFECT SCHEMES

In this section, we collect some results on perfect schemes and the perfection functor. Notably, we
prove that base change for quasi-coherent complexes holds true in the perfect setting without any flatness
assumptions (see Lemma 3.18).

Definition 3.1. A scheme X over Fp is perfect if the Frobenius map FrobX : X → X is an isomorphism.

For any scheme X/Fp, write Xperf for its perfection, i.e., Xperf := limX , with transition maps being
Frobenius.

Definition 3.2. Let Perf be the category of perfect qcqs schemes over Fp endowed with the v-topology,
generated by v-covers.

Remark 3.3. To avoid set-theoretic issues in the following (in particular, in defining v-cohomology), choose
an uncountable strong limit cardinal κ, i.e. for all cardinals λ < κ, also 2λ < κ. Then replace Perf by the
category of perfect qcqs schemes covered by Spec(A) with |A| < κ. Then Perf is essentially small, and all
arguments will go through in this truncated version of Perf .5

In order to pass between the usual and perfect world, observe the following.

Lemma 3.4. Let f : X → Y be a morphism of (not necessarily qcqs) schemes over Fp. The following
properties hold for f if and only if they hold for fperf .

(i) quasicompact,
(ii) quasiseparated,

(iii) affine,
(iv) separated,
(v) integral,

(vi) universally closed,
(vii) a universal homeomorphism.

Moreover, if one of the following properties holds for f , then it also holds for fperf .
(viii) a closed immersion,

(ix) an open immersion,
(x) an immersion,

(xi) étale,
(xii) (faithfully) flat.

5In Lemma 6.2 below, we do a “big” construction, which however works in this truncated version of Perf as κ is a strong limit
cardinal. One can also do a more careful construction in Lemma 6.2 to keep the rings smaller, and allow more general κ.

10



Proof. Note that |X| = |Xperf |. In particular, all topological conditions are invariant, dealing with (i), (ii),
(vi), (vii) (using that base-changes are also compatible), and the faithfully flat case in (xii) follows from
the flat case. Moreover, (viii), (ix) and (thus) (x) are clear. For (xii), say A → B is a flat map of Fp-
algebras. Write An := A, and form the inductive system {An} with transition maps given by Frobenius,
so colimAn = Aperf , and similarly on B. Then we can identify Bperf ' colimAperf ⊗An Bn as a filtered
colimit of flat Aperf -modules, which shows that Bperf is flat over Aperf .

For (iii), we can assume that Y is affine, and we need to prove that X ∈ Sch/Fp is affine if and only
if Xperf is affine. Clearly, if X is affine, then so is Xperf . The converse follows from [TT90, App. C,
Proposition C.6].

If f is separated, then fperf is separated by (viii). Conversely, if fperf is separated, then the diagonal
morphism ∆f is universally closed by (vi). But a morphism of schemes is separated if and only if ∆f (X) ⊂
X ×Y X is a closed subset.

Now, for (v), we can assume f : X = Spec(A) → Y = Spec(B) is affine. It is clear that if B → A is
integral, then so is Bperf → Aperf . Conversely, if x ∈ A satisfies a monic polynomial equation over Bperf

inside Aperf , then some pn-th power of x satisfies a monic polynomial equation over B inside A.
Finally, for (xi), it is enough to prove that if f : X → Y is étale, then the natural map g : Xperf →

X ×Y Yperf is an isomorphism. But for this, it is enough to observe that the relative Frobenius map X →
X ×Y,FrobY Y is an isomorphism, as it is a universal homeomorphism between étale Y -schemes. �

Next, we relate line bundles on X and Xperf . First, we record that perfection is not too lossy:

Lemma 3.5. For any qcqs Fp-scheme X , pullback along Xperf → X induces Pic(X)[1
p ] ' Pic(Xperf).

Proof. SinceXperf := limX is a limit of copies ofX along Frobenius, we have colim Pic(X) ' Pic(Xperf),
where the colimit is indexed by pullback along Frobenius on X; the latter raises a line bundle to its p-th
power, giving the claim. �

Recall that ifX is a qcqs scheme, and L a line bundle onX , then L is called ample if for any x ∈ X , there
exists a section s ∈ Γ(X,L⊗n) for some n, such that Xs = {y ∈ X | s(y) 6= 0} is an affine neighborhood
of x. (Cf. e.g. [Sta15, Tag 01PR].)

Lemma 3.6. If X ∈ Sch/Fp and L is a line bundle on X , then L is ample if and only if the pullback of L to
Xperf is ample.

Proof. Using the identification

Γ(Xperf ,L
⊗n) = lim−→

f 7→fp
Γ(X,L⊗np

m
) ,

this follows from |X| = |Xperf | and the affine part of Lemma 3.4. �

Topological invariance of the étale site (cf. e.g. [Sta15, Tag 04DY]) implies that X and Xperf have the
same étale site.

Theorem 3.7. Let X be any Fp-scheme with perfection Xperf . Then Y ∈ Xét 7→ Yperf ∈ (Xperf)ét is an
equivalence of sites. �

In characteristic p, the perfection is a canonical representative in its universal homeomorphism class.

Lemma 3.8. If f : X → Y is a universal homeomorphism of perfect schemes, then f is an isomorphism.
In particular, if f : X → Y is a morphism of Fp-schemes, then f is a universal homeomorphism if and only
if fperf is an isomorphism.

Proof. This is an easy consequence of [Yan83, Theorem 1]. Note that necessarily f is integral (cf. [Sta15,
Tag 04DC]), so we may assume Y = Spec(A), X = Spec(B), where B is integral over A. As A is
reduced, necessarily A→ B is injective. Then the condition that X → Y is a universal homeomorphism is
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the condition that B is weakly subintegral over A in the language of [Yan83]. On the other hand, [Yan83,
Theorem 1] implies that A is weakly normal in B: To check this, it is enough to see that if b ∈ B is an
element such that either both b2, b3 ∈ A or bp, pb ∈ A, then b ∈ A. But in characteristic p, either condition
implies bp ∈ A, which by perfectness implies that b ∈ A. Thus, the weakly subintegral closure of A in B is
equal to both A and B, i.e. A = B. �

Remark 3.9. In the context of this paper, a different proof of Lemma 3.8 can be given as follows. Say
A→ B is a map of perfect rings inducing a universal homeomorphism on spectra. By v-descent (Theorem
4.1), it is enough to prove that A → B is an isomorphism after a v-localization. Thus, by Lemma 6.2, we
can reduce to the case that A is w-local, with all local rings valuation rings. As one can check whether
a map is an isomorphism on local rings, this reduces us to a valuation ring. But then there is a (unique)
section over the generic point, which by integrality extends to the valuation ring. But the section B → A
is surjective, and still a universal homeomorphism on spectra, and therefore (as B is reduced) injective, i.e.
bijective. Therefore, A = B, as desired.

We will use the following terminology in the world of perfect schemes.

Definition 3.10. Let g : B → A a map of perfect rings. The map g is called perfectly finitely presented if
A = (A0)perf for some finitely presented B-algebra A0.

Any such B-algebra A0 is called a model for the B-algebra A. Note that any two models differ by finite
purely inseparable morphisms.

Proposition 3.11. Let f : X → Y be a morphism in Perf .6 The following conditions are equivalent.
(i) There is a covering of X by open affine Spec(Ai) ⊂ X mapping into open affine Spec(Bi) ⊂ Y

such that Bi → Ai is perfectly finitely presented.
(ii) For any open affine Spec(A) ⊂ X mapping into an open affine Spec(B)→ Y , the map B → A is

perfectly finitely presented.
(iii) For any cofiltered system {Zi} ∈ Perf/Y with affine transition maps and limit Z = limZi ∈

Perf/Y , the natural map

colim Hom/Y (Zi, X)→ Hom/Y (Z,X)

is a bijection.
If these equivalent conditions are satisfied, then f is called perfectly finitely presented.

Proof. Clearly, (ii) implies (i). It is a standard exercise to deduce (iii) from (i), as in [GD66, §8.8]. Finally,
to see that (iii) implies (ii), one reduces to the caseX = Spec(A)→ Y = Spec(B) is a map of affines. One
can write B → A as a filtered colimit of perfectly finitely presented B-algebras Ai. Applying condition
(iii) with Zi = Spec(Ai) gives a map A → Ai of B-algebras such that A → Ai → A is the identity.
This implies that Ai → A is surjective, so replacing B by Ai we may assume that B → A is surjective,
i.e. X ⊂ Y is a closed subscheme. In that case, X ⊂ Y is a cofiltered intersection of closed subschemes
Xi = Spec(Ai) ⊂ Y with B → Ai perfectly finitely presented. Applying condition (iii) with Zi = Xi (and
limit Z = X) shows that Xi ⊂ X for some i. But X ⊂ Xi, so X = Xi and A = Ai is perfectly finitely
presented. �

Moreover, one has the usual approximation properties for perfectly finitely presented morphisms. For
any X ∈ Perf , let Perf fp

/X ⊂ Perf/X be the full subcategory of perfectly finitely presented Y → X .

Proposition 3.12. Let Xi be a cofiltered inverse system in Perf with affine transition maps.7 Then the limit
X = limXi exists in Perf , and agrees with the limit taken in schemes.

6Recall that this includes the assumption that X and Y are qcqs.
7We recall that all objects of Perf are assumed to be qcqs.
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The natural pullback functor
2- lim−→

i

Perf fp
/Xi
→ Perf fp

/X

is an equivalence.

Proof. The standard argument as in [GD66, §8.8] works. �

All the perfectly finitely presented morphisms encountered in this paper will by their definitions be per-
fections of finitely presented morphisms. However, this is a general statement, cf. also [Zhu14, Proposition
A.13] for a more geometric proof of a similar statement.

Proposition 3.13. Let f : X → Y be a perfectly finitely presented morphism in Perf . Then there exists a
finitely presented morphism f0 : X0 → Y of schemes such that f = (f0)perf .

Any such f0 : X0 → Y will be called a model for f . Again, any two models differ by finite purely
inseparable morphisms.

Proof. First, we deal with the absolute case Y = Spec(Fp). Using [TT90, Theorem C.9], we can writeX as
a cofiltered limit of Xi,0 ∈ Schfp

/Fp
with affine transition maps. Let i0 be any chosen index, and replace the

indexing category by the set of indices i ≥ i0. Let Xi be the perfection of Xi,0. Then X = limXi, and we
write fi : X → Xi for the projection maps. Proposition 3.11 (iii) implies that the map X = limXi → X
of perfect Xi0-schemes factors through a map g : Xi → X for some i ≥ i0, i.e. the composite

X
fi−→ Xi

g−→ X ,

is the identity, where all maps are maps over Xi0 . We claim that fi is a closed immersion. As everything
is affine over Xi0 , we can assume that Xi = Spec(Ai) and X = Spec(A) are affine, by pulling back to an
open affine of Xi0 . But then there are maps A → Ai → A whose composite is the identity. Thus, Ai → A
is surjective, meaning that fi is a closed immersion.

In other words, we can assume that X ↪→ X ′ is a closed subscheme of some X ′ which is the perfection
of a finitely presented X ′0 ∈ Schfp

/Fp
. Then |X| ⊂ |X ′| = |X ′0| is a closed subset, defining a reduced

subscheme X0 ⊂ X ′0, with X0 ∈ Schfp
/Fp

. Moreover, there is a map X → (X0)perf , which is a universal
homeomorphism, and therefore an isomorphism by Lemma 3.8.

In general, using [TT90, Theorem C.9] again, we can write Y as a limit of Yi,0 ∈ Schfp
/Fp

with affine

transition maps. Letting Yi be the perfection of Yi,0, we see that we can write Y as a limit of Yi ∈ Perf fp
/Fp

.

Using Proposition 3.12, we can assume that Y = Yi is the perfection of some Y0 = Yi,0 ∈ Schfp
/Fp

.
Therefore, X is also perfectly finitely presented over Fp. By the case already handled, X is the perfection
of some X ′0 ∈ Schfp

/Fp
. Now as Y0 is finitely presented (as a scheme), the composite map X = (X ′0)perf →

Y → Y0 factors through a map X ′0 → Y0, up to a power of Frobenius, which we can forget. Taking
X0 = X ′0 ×Y0 Y gives the desired model. �

Definition 3.14. Let f : X → Y be a perfectly finitely presented map in Perf . Then f is called proper if it
is separated and universally closed.

Corollary 3.15. Let f : X → Y be a perfectly finitely presented map in Perf , with a model f0 : X0 → Y .
Then f is proper if and only if f0 is proper.

Proof. This follows from Lemma 3.4. �

The following somewhat miraculous vanishing result for Tor-groups is responsible for many of the re-
markable properties of the v-topology on perfect schemes.
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Lemma 3.16. Let C ← A→ B be a diagram of perfect rings. Then

TorAi (B,C) = 0

for all i > 0.

In the language of derived algebraic geometry, this says that the simplicial Fp-algebraB
L
⊗A C is discrete.

But B
L
⊗A C is still perfect, and one can show that any perfect simplicial Fp-algebra is discrete, see

Proposition 11.6. We give a more direct proof below.

Proof. We may write A → B as the composition of the perfection of a free algebra and a quotient map.
Clearly, Tor-terms vanish for the free algebra, so we may assume that A → B is surjective. Let I =

ker(A→ B). By a filtered colimit argument, we may assume that I = (f
1
p∞

1 , . . . , f
1
p∞
n ) is perfectly finitely

generated. By induction, we may assume that n = 1, so I = f
1
p∞A. We claim that in this case

I = lim−→
f

1
pn
− 1
pn+1

A

is the direct limit of A with transition maps given by multiplication by f
1
pn
− 1
pn+1 . Here, the map

γ : lim−→
f

1
pn
− 1
pn+1

A→ I

is given by A → I , a 7→ f
1
pn a, in the n-spot. Clearly, γ is surjective. To check that γ is injective, assume

that a ∈ A with f
1
pn a = 0. By perfectness of A, we get f

1
pn+1 a

1
p = 0, so in particular f

1
pn+1 a = 0. But

then a is killed under the transition map, which is multiplication by f
1
pn
− 1
pn+1 .

Applying the same argument for IC = f
1
p∞C ⊂ C shows that

IC = lim−→
f

1
pn
− 1
pn+1

C = I
L
⊗A C .

Thus, B
L
⊗A C, which is the cone of I

L
⊗A C → C, is equal to the cokernel of IC → C, i.e. B ⊗A C,

showing that all higher Tor-terms vanish. �

Remark 3.17. The proof of Lemma 3.16 shows, in particular, that any quotient R/I of a perfect ring R by
the radical I of a finitely generated ideal I0 has finite Tor-dimension as an R-module. In Proposition 11.31,
this statement will be extended to non-reduced quotients under a mild finite presentation constraint.

The previous lemma implies the promised base-change result:

Lemma 3.18. Let

X ′
g′ //

f ′

��

X

f
��

Y ′ g
// Y

be a pullback diagram in Perf . Then, for any K ∈ Dqc(X), the base-change morphism

Lg∗Rf∗K → Rf ′∗Lg
′∗K

is a quasi-isomorphism.
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Here as usual Dqc(X) denotes the full subcategory of the derived category of OX -modules consisting of
those complexes of OX -modules whose cohomology sheaves are quasicoherent.

Proof. This reduces immediately to the case where all schemes are affine; let X = Spec(A), Y = Spec(B)
etc., and let K ∈ Dqc(X) = Dqc(A). In that case, one has to prove that

K
L
⊗A A′ ∼= K

L
⊗B B′ ,

for which it is enough to see that

B
L
⊗A A′ = B′ .

But this is the statement of Lemma 3.16. �

4. h-DESCENT FOR VECTOR BUNDLES ON PERFECT SCHEMES

Our goal is to prove v-descent for vector bundles on perfect schemes, as well as certain related bundles
defined using the Witt vectors. So, for any perfect scheme X and n ≥ 1, we write Wn(X) for the scheme
obtained by applying the Witt vector functor Wn(−) locally on X; let W (X) := colimWn(X) be the
corresponding p-adic formal scheme. Let Vect(X) denote the groupoid of vector bundles on X , and let
Pic(X) be the groupoid of line bundles.

Theorem 4.1. (i) If X = Spec(A) ∈ Perf is an affine scheme and E ∈ Vect(Wn(X)) (resp. E ∈
Vect(W (X))) corresponding to some finite projective Wn(A)-module (resp. W (A)-module) M ,
then

M = RΓv(X,E) .

(ii) For each n, the functor X 7→ Vect(Wn(X)) on Perf is a v-stack and, consequently, the functor
X 7→ Vect(W (X)) is a v-stack.

Remark 4.2. This theorem implies in particular that the v-topology on Perf is subcanonical. Given the
vast generality of v-covers, one might be tempted to believe that the v-topology is the canonical topology
on Perf; however, Lemma 6.3 provides additional covers in the canonical topology that are not v-covers. It
may be an interesting problem to describe the canonical topology on Perf .

Remark 4.3. We warn the reader that Theorem 4.1 does not imply descent for standard properties of mor-
phisms in the h-topology. For example, the inclusion j : U := (A2−{0})perf ↪→ X := A2

perf is not affine,
but becomes affine after base change to the blowup π : Y := (Bl0(X))perf → X of X at 0. The main
issue, say in comparison with the fpqc topology, is that pullback along π∗ is not exact. For the same reason,
h-descent data for flat quasi-coherent sheaves need not be effective: the pullback of the complex Rj∗OU
along the blowup π is a flat quasi-coherent sheaf on Y equipped with descent data along π that does not
arise as the pullback of a flat quasi-coherent sheaf on X .

Part (i) of this theorem (for the h-topology) is a result of Gabber, cf. [BST13, §3]. Note that the analog of
this result without perfections is manifestly false: there is no descent for vector bundles along the inclusion of
the reduced subscheme of a non-reduced subscheme. By passing to Hom-bundles, we obtain the following.

Corollary 4.4. Fix some perfect qcqs scheme X , and E1,E2 ∈ Vect(W (X)). Then the functor (f : Y →
X) 7→ Hom(f∗E1, f

∗E2) is a v-sheaf on Perf/X .

Here we write f∗Ei ∈ Vect(W (Y )) for the pullback of Ei under the map W (Y ) → W (X) induced by
f via functoriality. Our strategy for proving Theorem 4.1 is to apply Corollary 2.14 to the presheaves on
Sch/Fp obtained from the presheaves on Perf via X 7→ Xperf . In this respect, we observe the following.

Proposition 4.5. Let F be a presheaf of spaces on Perf . Let F ′ be the presheaf of spaces on Sch/Fp defined
by F ′(X) = F (Xperf). Then F is a v-sheaf if and only if F ′ is a v-sheaf.
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Proof. If F ′ is a sheaf, then for any v-cover f : X → Y between X,Y ∈ Perf ⊂ Sch/Fp , one has Cech
descent for X → Y in Sch/Fp , saying that

F ′(Y )→ limF ′(X•/Y )

is a weak equivalence. But the inclusion Perf ⊂ Sch/Fp preserves fibre products, so each Xn/Y is perfect,
and F ′(Y ) = F (Y ) and F ′(Xn/Y ) = F (Xn/Y ), so in particular

F (Y )→ limF (X•/Y )

is a weak equivalence, proving that F is a sheaf.
Conversely, assume F is a sheaf and let f : X → Y be a v-cover in Sch/Fp . Then fperf : Xperf → Yperf

is a v-cover, and Cech descent for Xperf → Yperf says that

F (Yperf)→ limF (X
•/Yperf

perf )

is a weak equivalence. But Xn/Yperf

perf = (Xn/Y )perf , so this translates into a weak equivalence

F ′(Y )→ limF ′(X•/Y ) ,

showing that F ′ is a sheaf. �

The following special case is the heart of the proof.

Lemma 4.6. Let f : X → Y be a proper map of noetherian Fp-schemes that is an isomorphism outside
some closed subset Z ⊂ Y with preimage E ⊂ X .

(i) If E ∈ Vect(Yperf), then the triangle

RΓfppf(Y,E)→ RΓfppf(X,E)⊕RΓfppf(Z,E)→ RΓfppf(E,E)

is distinguished.
(ii) Pullback gives an equivalence

Vect(Yperf) ' Vect(Xperf)×Vect(Eperf) Vect(Zperf)

of groupoids.

In other words, part (ii) of the lemma asserts that specifying a vector bundle on Yperf is equivalent to
specifying its pullbacks on Xperf and Zperf , together with an identification of the two over Eperf : no higher
order isomorphisms, infinitesimal extensions, or coherence data need be specified.

Proof. By faithful flatness of completions and Zariski descent, we may assume Y = Spec(A), and Z =
Spec(A/I), where A is a noetherian ring, and I ⊂ A is an ideal such that A is I-adically complete. By
abuse of notation, we will also write I ⊂ OX for the pullback of I ⊂ A as an ideal sheaf. For part (i),
fix some E ∈ Vect(Yperf) corresponding to some finite projective Aperf -module M . Writing M as a direct
summand of a free module reduces us to the case that E = OXperf

is trivial. In that case, the result is [BST13,
Lemma 3.9].

By passing to Hom-bundles, fully faithfulness of the functor

Vect(Yperf)→ Vect(Xperf)×Vect(Eperf) Vect(Zperf)

follows from (H0 of) part (i).
For essential surjectivity, we must check: given(

E ∈ Vect(Xperf),F ∈ Vect(Zperf), φ : E|Eperf
' f∗F

)
∈ Vect(Xperf)×Vect(Eperf) Vect(Zperf),

there is a unique G ∈ Vect(Yperf) inducing this data. We need some preliminary reductions first.
First, we reduce to the case where X is the blowup of Y along Z. By Raynaud-Gruson [RG71, Corollary

5.7.12] and a 2-out-of-3 property for fibre squares, we may assume that X is a blowup of Y along some
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closed subscheme Z ′ ⊂ Y that does not meet Y − Z. After replacing Z by a larger infinitesimal neigh-
bourhood if necessary (as this does not change the perfection), we may assume Z ′ ⊂ Z as schemes. Let E′

denote the preimage of Z ′ in X . By the full faithfulness we have already shown, it is enough to show that
the induced triple (E,F|Z′perf

, φ|E′perf
) comes from G ∈ Vect(Yperf). Thus, after replacing Z with Z ′ and E

with E′, we may assume that X is the blowup of Y along Z. In particular, E ⊂ X is an effective Cartier
divisor whose ideal sheaf is exactly I ⊂ OX , and this ideal sheaf is relatively ample for the map X → Y by
the construction of blowups. In particular, as the base is affine, I/I2 is an ample line bundle on E. By Serre
vanishing, there exists some n such that H i(X, Ik/Ik+1) = 0 for i > 0 and k ≥ n.

We can now begin the proof. By approximation, the triple (E,F, φ) arises from a similar triple (E0,F0, φ0) ∈
Vect(X)×Vect(E) Vect(Z), at least after Frobenius twisting. Now Vect(Y )→ Vect(Z) is bijective on iso-
morphism classes by affineness of Y and deformation theory. Thus, there is a unique G0 ∈ Vect(Y ) lifting
F0. In particular, using φ0, we have a natural identification ψ0 : f∗(G0)|E ' E0|E . Write G ∈ Vect(Yperf)
for its pullback to the perfection. Then ψ0 induces an isomorphism ψ : f∗(G)|Eperf

' E|Eperf
. It is enough to

check that the latter lifts to an identification f∗G ' E. We will check that ψ0 itself admits such an extension
to X , at least after replacing all objects by their pullbacks along a fixed (finite) power of Frobenius.

After replacing ψ0 by a large enough Frobenius pullback (depending on n), we may assume: there exists
an isomorphism ψn : f∗(G0)|nE ' E0|nE lifting ψ0; here we write mE ⊂ X for the scheme defined
by Im+1. The formal existence theorem shows that Vect(X) ' limVect(mE), so it is enough to show
that ψn deforms compatible to mE for m ≥ n. The obstruction to extending across nE ⊂ (n + 1)E
lies in H1(X, In/In+1 ⊗ Hom(f∗G0,E0)). As In/In+1 is an OE-module, this simplifies to showing
H1(X, In/In+1) = 0; here we use the projection formula, as well as ψ0 to identify Hom(f∗G0,E0)|E '
f∗
(
End(G0)|Z

)
. The vanishing now follows from the assumption on n, so we have such an extension.

Inductively, one extends ψn compatibly to all mE for m ≥ n, proving the theorem. �

Proof of Theorem 4.1. Part (i) reduces by induction and the 5-lemma to the case n = 1. In that case, after
the translation given by Proposition 4.5, we verify the conditions of Corollary 2.14, cf. Corollary 2.11.
Condition (i) of Proposition 4.5 follows from Lemma 3.4 and faithfully flat descent. Condition (ii) follows
from Lemma 4.6 (i), while condition (iii) is clear.

Write Fn for the prestack X 7→ Vect(Wn(Xperf)), and F∞ = limFn. We will show that Fn is a v-
stack for each n by induction on n; this formally implies F∞ is a v-stack by passage to limits. For n = 1,
the result follows from Corollary 2.14 using Lemma 3.4 and Lemma 4.6 (ii). Assume inductively that
Fn−1 is a v-stack. It is enough to prove that if f : X → Y is a v-cover of Y = Spec(A) ∈ Perf , and
E ∈ Vect(Wn(X)) is a vector bundle equipped with descent data to Y , then E descends to Y . Now E

defines a v-sheaf on Perf/X which using the descent datum descends to a v-sheaf EY of Wn(O)-modules
on Perf/Y . It is filtered as

0→ EY /p
pn−1

−→ EY → EY /p
n−1 → 0 .

By induction, both EY /p and EY /p
n−1 are the sheaves associated with a finite projective A-module M1,

resp. a finite projective Wn−1(A)-module Mn−1, with M1 = Mn−1/p. By part (i) of the theorem, we have

RΓv(Y,EY /p) = M1 , RΓv(Y,EY /p
n−1) = Mn−1 .

But then M = RΓv(Y,EY ) is an extension of Mn−1 by M1 which is flat over Z/pnZ; any such extension
is easily seen to be a finite projective Wn(A)-module M . One then verifies that EY is the sheaf associated
with M ∈ Vect(Wn(Y )). �

5. CONSTRUCTION OF LINE BUNDLES: K-THEORETIC APPROACH

Our goal is to attach “determinant” line bundles to certain complexes of sheaves that are not linear over
the structure sheaf in the setting of perfect schemes. The main technical tool will be the h-descent (or, rather,
v-descent) result proven earlier. For the construction, we first recall the following notion (cf. §12).
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Construction 5.1. For any scheme X , let PicZ(X) be the groupoid of graded line bundles on X , i.e., an
object is given by a pair (L, f) where L is a line bundle onX , and f : X → Z is a locally constant function;
the set Isom((L, f), (M, g)) is empty if f 6= g, and given by Isom(L,M) otherwise. This groupoid is
endowed with a symmetric monoidal structure ⊗ where (L, f) ⊗ (M, g) := (L ⊗ M,f + g), and the
commutativity constraint

(L⊗M,f + g) =: (L, f)⊗ (M, g) ' (M, g)⊗ (L, f) := (M ⊗ L, g + f)

determined by the rule
`⊗m 7→ (−1)f ·gm⊗ `.

The endows PicZ(X) with the structure of a (not strictly commutative) Picard groupoid such that

π0(PicZ(X)) = Pic(X)×H0(Xét,Z) and π1(PicZ(X)) = O(X)×.

We view the associationX 7→ PicZ(X) as a sheaf of connective spectra for the étale topology. We also write
Pic(X) for the usual (strictly commutative) Picard groupoid of line bundles, so L 7→ (L, 0) establishes a
fully faithful embedding Pic(X) ⊂ PicZ(X) compatible with the symmetric monoidal structures. Likewise,
the association (L, f) 7→ f gives a symmetric monoidal functor PicZ(X) → H0(Xét,Z). This data fits
together into a fibre sequence

Pic(X)→ PicZ(X)→ H0(Xét,Z),

of spectra. As X varies, this gives a fibre sequence of sheaves of connective spectra in the étale topology.
The projection (L, f) 7→ L gives a (non-symmetric!) monoidal functor η : PicZ(X) → Pic(X), and thus
splits the sequence as spaces (in fact, as E1-spaces). This allows us to extract honest line bundles from
graded ones.

The v-descent result in the previous section implies:

Proposition 5.2. The functor X 7→ PicZ(X) is a stack in the v-topology of Perf .

Proof. We have a fibre sequence

Pic(X)→ PicZ(X)→ H0(Xét,Z)

of groupoids. It is elementary to check that X 7→ H0(Xét,Z) is a v-sheaf. Using the preceding fibre
sequence, the claim now follows from Theorem 4.1 (ii). �

To connectK-theory with line bundles, recall the determinant map. Here, for any qcqs schemeX , K(X)
is defined as by Thomason-Trobaugh, [TT90, Definition 3.1], using the∞-category of perfect8 complexes
Perf(X).9 In particular, there is natural map of spaces Perf(X)' → K(X), where Perf(X)' ⊂ Perf(X)
denotes the subcategory with all objects, and only isomorphisms as morphisms. Then Perf(X)' is an∞-
category (i.e., weak Kan complex) with only invertible morphisms, which is the same thing as a space (i.e.,
Kan complex). Under the map Perf(X)' → K(X), any perfect complex C ∈ Perf(X) defines a point
[C] ∈ K(X). For any distinguished triangle

C ′ → C → C ′′ ,

one has an identity [C] = [C ′] + [C ′′] (up to homotopy) in K(X), under the interpretation of K(X) as
a space equipped with an invertible coherently commutative and associative group law, cf. Theorem 12.9.
These are, in some sense, the defining properties of K(X).

Proposition 5.3. There exists a natural functorial map det : K(X)→ PicZ(X) of connective spectra.

8We apologize for the two very different uses of the word “perfect”.
9In [TT90], the language of Waldhausen categories was used. See [Bar12, Notation 12.11] for a definition of the K-theory

spectrum in terms of the stable∞-category Perf(X).
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Concretely, this means that there is a functor Perf(X)' → PicZ(X), C 7→ det(C) such that for any
distinguished triangle as above, det(C) ' det(C ′)⊗ det(C ′′). In this language, this was first discussed by
Knudsen-Mumford, [KM76].

Proof. By Zariski descent for PicZ, we need only construct a functorial map for affine schemes X =
Spec(A). But for affine schemes X = Spec(A), there is a natural equivalence K(X) ' K(A), where
K(A) is defined as in §12, which comes equipped with det : K(A)→ PicZ(A). �

Remark 5.4. The determinant map K(X)→ PicZ(X) does not factor through Pic(X) ⊂ PicZ(X), and is
the reason we use PicZ(X).

Assume now that X is a perfect scheme. Let Perf(W (X) onX) be the∞-category of perfect complexes
on W (X) which are acyclic after inverting p; if X = Spec(A), then this simply the∞-category of perfect
W (A)-complexes which are acyclic after base change to W (A)[1

p ]. Using v-descent of line bundles, we
will construct a “determinant” for objects in Perf(W (X) onX), extending the map from Proposition 5.3.
To this end, we use K-theory spectra, so let K(W (X) onX) be the K-theory spectrum associated with
Perf(W (X) onX) as in [TT90, Definition 3.1]. The functor Perf(X) → Perf(W (X) onX) induces a
map of connective spectra K(X) → K(W (X) onX). It is known that such maps are equivalences if X
and W (X) are regular; this is essentially Quillen’s dévissage theorem [Qui73, Theorem 4]:

Theorem 5.5. Let Y be a regular scheme, and Z ⊂ Y a closed subscheme such that Z is regular. Then the
natural map

K(Z)→ K(Y onZ)

of spaces is a weak equivalence.

Concretely, this means that any C ∈ Perf(Y onZ) can be filtered in such a way that all associated
gradeds are in Perf(Z); moreover, the choice of this filtration is essentially irrelevant.

Proof. LetU = Y \Z. Then Y , U andZ are regular, soK(Y ) = G(Y ),K(U) = G(U) andK(Z) = G(Z)
agree withG = K ′-theory, cf. [TT90, Theorem 3.21]. Now the result follows by comparing the localization
sequences of [TT90, Theorem 5.1] and [Qui73, Proposition 3.2]. �

A similar result holds true in the perfect case.

Corollary 5.6. Assume X = Spec(R) for the perfection R of a regular Fp-algebra R0. Then K(X) '
K(W (X) onX).

Proof. Choose a p-adically complete flat Zp-algebra A0 deforming R0, and a map φ : A0 → A0 lifting
Frobenius on R0; this is possible as all obstructions live in (positive degree) coherent cohomology groups
on Spec(R0), and thus vanish. Let A∞ = colimA0, where the colimit is computed along φ, so A∞ is a flat
Zp-algebra deforming R, and Â∞ ' W (R): the right hand side is the unique p-adically complete Zp-flat
lifting of the perfect ring R, and the left hand side provides one such lifting. Let Y = Spec(A∞).

We claim that Perf(Y onX) → Perf(W (X) onX) is an equivalence. Unwinding definitions, we must
check that base change along the natural map A∞ → Â∞ identifies the∞-categories of perfect complexes
on either ring which are acyclic after inverting p. This is a standard argument found in derived analogues
of the Beauville-Laszlo theorem (see [Bha14, Lemma 5.12] for example), and we sketch a proof here for
convenience. It suffices to check that K ' K ⊗A∞ Â∞ where K is an A∞-perfect complex (resp. an
Â∞-perfect complex) with K[1

p ] = 0. But observe that any such K admits an A∞/pn-structure (resp. an

Â∞/p
n-structure): the colimit of the system

K
p−→ K

p−→ K
p−→ K → ...
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is 0, so multiplication by pn on K must be 0 for n � 0 by the compactness of K. The claim now follows
from the observation that A∞/pn ' Â∞/p

n, and that the same is true in the derived sense since both A∞
and Â∞ are p-torsionfree.

The equivalence from the previous paragraph givesK(W (X) onX) ' K(Y onX) ' colimK(Y0 onX0),
where X0 = Spec(R0), and Y0 = Spec(A0), and the last isomorphism comes from [TT90, Proposition
3.20]. We also have a compatible descriptionK(X) ' colimK(X0) for theK-theory ofX . Now the result
follows from the equivalence K(X0) ' K(Y0 onX0) of Theorem 5.5. �

Combining the previous corollary with v-descent gives the promised extension of the determinant map:

Theorem 5.7. There is a natural functorial (in X ∈ Perf) map d̃et : K(W (X) onX) → PicZ(X) of
connective spectra extending the determinant map K(X) → PicZ(X); it is unique up to a contractible
space of choices.

Intuitively, this map is constructed as follows. If X = Spec(A), where A is the perfection of a regular
Fp-algebra, then any C ∈ Perf(W (X) onX) can be filtered in a way that all associated gradeds Ci lie in
Perf(X). Then, one defines

d̃et(C) =
⊗
i

det(Ci) .

Here, Corollary 5.6 ensures that this expression is well-defined up to unique isomorphism. The general
case follows by v-descent, using v-descent of line bundles and de Jong’s alterations. However, to do the
descent, one needs to remember higher homotopies, which is the main reason that we have to work with the
∞-category of (connective) spectra, and cannot work with its homotopy category.10

Proof. Consider the maps of presheaves of groupoids on Perf ,

τ≤1K(W (X) onX)
f←− τ≤1K(X)

g−→ PicZ(X) .

Passing to the v-sheafification (in fact, h-sheafification is enough), both f and g become equivalences.
Indeed, it is enough to check this on perfections of finitely presented schemes. For f , this follows from de
Jong’s alterations, [dJ96], and Corollary 5.6. For g, this follows from Proposition 12.18. Thus, PicZ agrees
with the v-sheafification of τ≤1K(W (X) onX). But there is a natural map from K(W (X) onX) to its
1-truncation, and then to the sheafification. �

6. CONSTRUCTION OF LINE BUNDLES: GEOMETRIC APPROACH

In this section, we record some geometric observations, which can also be used to construct line bundles11.
We begin by giving a criterion for pullback of line bundles along a proper map to be lossless:

Proposition 6.1. Let f : X → Y be a proper surjective perfectly finitely presented map in Perf . Assume
that all geometric fibres of f are connected. Then the pullback functor Vect(Y )→ Vect(X) is fully faithful.

A similar result holds true for Vect(Wn(X)) and Vect(W (X)).

Proof. For full faithfulness, by passing to Hom-bundles, it is enough to prove that for E ∈ Vect(X), the
adjunction map

E→ f∗f
∗E

is an isomorphism. This is a local statement, so we can assume that E = OY is trivial, and Y is affine.
Choose a model f0 : X0 → Y of X . We need to see that the map of OY -algebras

OY → f∗OX0

10One could, however, truncate all spectra in degrees > 1, i.e. apply τ≤1, and work in the 2-category of groupoids.
11In fact, even if the line bundle is constructed using the K-theoretic approach, some of the geometric lemmas of this section

are used.
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is an isomorphism after perfection. But A → H0(Y, f∗OX0) is a universal homeomorphism (on spectra),
thus an isomorphism after perfection by Lemma 3.8. �

Next, we want to give criteria for when a vector bundle descends along a proper map. The following
lemma breaks arbitrary rings into valuation rings v-locally, and will help simplify the base of the morphism:

Lemma 6.2. Let X be a qcqs scheme. Then there is a v-cover Spec(A)→ X such that:
(1) Each connected component of Spec(A) is the spectrum of a valuation ring.
(2) The subset of closed points in Spec(A) is closed.

In particular, A is w-local in the sense of [BS13, §2].

Proof. We may assume that X = Spec(S) is affine. Pick a set V of representatives for all equivalence
classes of valuations, and a map Spec(Ri) → Spec(S) from a valuation ring Ri for each i ∈ V , realizing
this valuation. Let A =

∏
i∈V Ri. Clearly, Spec(A) → Spec(S) is a v-cover. We first check (2). For

this, note that the formation of Jacobson radicals commutes with products of rings. Hence, the Jacobson
radical of A is given by m :=

∏
i∈V mi, where mi ⊂ Ri is the maximal ideal. If we set ki := Ri/mi to

be the corresponding residue field, then A/m '
∏
i ki =: B. The closed immersion Spec(B) ⊂ Spec(A)

induces a homeomorphism on π0: for this, it is enough to note that any idempotent of B lifts uniquely to an
idempotent of A (as can be checked in each factor). Moreover, the ring B is absolutely flat by [Sta15, Tag
092G], and hence Spec(B) is Hausdorff by [Sta15, Tag 092F]. Now any closed point of Spec(A) comes
from Spec(B) (as the kernel of A→ B is the Jacobson radical), and every point of Spec(B) gives a closed
point (since Spec(B) is Hausdorff). Thus, the subset of closed points of Spec(A) coincides with the closed
subset Spec(B) ⊂ Spec(A), giving (2).

To proceed further, let T be the Stone-Cech compactification of the discrete set V . Recall that elements of
T are ultrafilters on V , i.e. collections P of subsets U ⊂ V satisfying: (a) stability under finite intersections,
(b) if U ∈ P and U ⊂ U ′, then U ′ ∈ P, and (c) for each W ⊂ V , exactly one of W and V \W lies in
P. For each subset W ⊂ V , there is a clopen decomposition of T = TW t TV \W according to whether the
ultrafilter P ∈ T containsW or V \W . It is a classical fact that Spec(B) ' T (see [Kru12, §3] for example);
explicitly, an ultrafilter P corresponds to the prime ideal {(bi) ∈

∏
i∈V ki | {i ∈ V | bi = 0} ∈ P} ⊂ B.

Now, as shown above in the proof of (2), the inclusion Spec(B) → Spec(A) identifies Spec(B) '
π0(Spec(B)) ' π0(Spec(A)) (see [BS13, §2] for a discussion of the topology on π0). Thus, the canonical
map Spec(A) → π0(Spec(A)) can be identified with a map β : Spec(A) → T , which can be described
explicitly as follows. The preimage of TW in Spec(A) is Spec(

∏
i∈W Ri). The fibres β−1(t) = Spec(At)

are connected components of Spec(A), and are given by

At = lim−→
W∈P

∏
i∈W

Ri,

i.e., each At is identified with an ultraproduct of the valuation rings Ri (by definition of the ultraproduct),
where t ∈ T corresponds to the ultrafilter P. Note that the colimit is filtered. For (1), it now suffices to prove
that an ultraproduct of valuation rings is a valuation ring. First, At is a domain: if f, g ∈ At have product
fg = 0, then f, g ∈

∏
i∈W Ri for some W , and fg = 0 ∈

∏
i∈W Ri, possibly after shrinking W . As each

Ri is a domain, W is covered by {i ∈ W |fi = 0} and {i ∈ W |gi = 0}. By definition of an ultrafilter, at
least one of these sets lies in P, so f = 0 or g = 0 in At. Now, if f/g ∈ Frac(At), f, g ∈ At, f, g 6= 0, then
one may again assume f, g ∈

∏
i∈W Ri, and all coordinates of f, g are nonzero. As each Ri is a valuation

ring, one of fi/gi and gi/fi lies in Ri for each i ∈ W . One possibility happens for a set contained in the
ultrafilter, showing that one of f/g and g/f lies in At. Thus, At is indeed a valuation ring, proving (1). �

In fact, one can even break up valuation rings, allowing a reduction to valuation rings of rank12 1.

12The rank of a valuation ring V is simply the Krull dimension of V , and can also be defined purely combinatorially from the
value group of V . We refer to [Bou85, Chapter 6] for more on valuation rings.
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Lemma 6.3. Let V be a perfect valuation ring with valuation | · | : V → Γ ∪ {0}. Let α : Γ → Γ′ be a
map of ordered abelian groups with kernel Γ0. Let V ′ = V [S−1] where S is the set of all elements f ∈ V
with α(|f |) = 1; then V ′ is a valuation ring with a valuation | · |′ : V ′ → Γ′. Moreover, let V → V0 be
the quotient of V by the ideal I of all f ∈ V with α(|f |) < 1; then V0 is a valuation ring with a valuation
| · |0 : V0 → Γ0. Let V ′0 be the fraction field of V0.

The sequence
0→ V → V ′ ⊕ V0 → V ′0 → 0

is exact, and for any perfect V -scheme X and K ∈ Dqc(X), the triangle

RΓ(X,K)→ RΓ(X ×SpecV SpecV ′,K)⊕RΓ(X ×SpecV SpecV0,K)→ RΓ(X ×SpecV SpecV ′0 ,K)

is distinguished.

In other words, one may consider SpecV0 t SpecV ′ → SpecV as a cover for the purposes of quasi-
coherent sheaf theory, although it is not a v-cover. Geometrically, SpecV is a totally ordered chain of
points, SpecV ′0 ⊂ SpecV is a point, and SpecV0 (resp. SpecV ′) forms the set of specializations (resp.
generalizations) of SpecV ′0 in SpecV .

Proof. The distinguished triangle for general X follows from the exact sequence and Lemma 3.18.
Let us rewrite everything in terms of the fraction field L of V , which comes with the valuation | · | : L→

Γ ∪ {0}. Then
V = | · |−1(Γ≤1 ∪ {0})

and
V ′ = | · |−1(Γ0 · Γ≤1 ∪ {0}) .

Moreover, V0 is the quotient of V by

I = | · |−1(Γ<Γ0 ∪ {0})
and V ′0 is the quotient of V ′ by I; note that I is an ideal of both V and V ′. Thus, I = ker(V → V0) =
ker(V ′ → V ′0), which implies the exactness of

0→ V → V ′ ⊕ V0 → V ′0 → 0 ,

proving the claim. �

The next lemma uses the preceding reductions to give a crucial special case of a fibral criterion for descent
of vector bundles under proper maps:

Lemma 6.4. Let V be a perfect valuation ring, let f : X → SpecV be a proper perfectly finitely presented
map with RΓ(X,OX) = V ; in particular, all geometric fibres of f are connected. Let E be a vector bundle
on X such that for all geometric points ȳ of SpecV , E is trivial on Xȳ. Then E is trivial.

Remark 6.5. The lemma holds more generally, replacing the condition RΓ(X,OX) = V by the condition
that all geometric fibres are connected (and nonempty), cf. Remark 6.12 below.

Proof. We begin with some generalities that help reduce us to the rank 1 case. Every commutative ring R
can be regarded as a filtered colimit colimiRi of its finitely generated Z-subalgebras Ri ⊂ R. When R is a
valuation ring, there is an induced valuation on Ri, and the corresponding valuation ring R′i has finite rank
(which can be bounded in terms of the transcendence degree of its fraction field over the prime subfield).
Moreover, in this case, the inclusionRi ⊂ R extends canonically to an extensionR′i ⊂ R of valuation rings.
Thus, we also have R = colimiR

′
i, so we can write any valuation ring as a filtered colimit of finite rank

valuation subrings. Note that the map Spec(R) → Spec(R′i) is surjective: it is flat (as R is a torsionfree
R′i-module) and its image contains the closed point, and thus all points as the image of a flat map is stable
under generalizations. Applying this to R = V , by the usual limit arguments, we may thus assume that
the valuation of V is of finite rank. Applying Lemma 6.3, we may inductively assume that V is of rank 1.
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Moreover, we can assume that V is complete, and that the fraction field K of V is algebraically closed, as
by Proposition 6.1, it is enough to prove the result over a v-cover of SpecV .

As the fraction field of V is algebraically closed, there is a section s : SpecV → X , by taking a point of
the generic fibre and then taking the closure. We claim that the map

s∗ : RΓ(X,E)→ RΓ(SpecV, s∗E) ∼= V rkE

is a quasi-isomorphism. As E is trivial on the generic fibre and RΓ(X ×SpecV SpecK,O) ∼= K, it follows
that s∗ ⊗V K is a quasi-isomorphism. On the other hand, E is trivial over X ×SpecV Speck, there k is the
residue field of V . By finite presentation, E is trivial over (the derived scheme)X×L

SpecV SpecV/g for some

g ∈ m = ker(V → k). As RΓ(X ×L
SpecV SpecV/g,O) ∼= V/g, one sees that also s∗

L
⊗V V/g is a quasi-

isomorphism. Now the following lemma applied to the cone of s∗ implies that s∗ is a quasi-isomorphism.

Lemma 6.6. Let R be a ring and g ∈ R a non-zero divisor. Let C ∈ D(R) be a complex such that

C ⊗R R[g−1] = C
L
⊗R R/g = 0. Then C = 0.

Remark 6.7. ForR = V a perfect valuation ring, there exist complexes 0 6= C ∈ D(V ) such thatC⊗VK =

C
L
⊗V k = 0, e.g. C = K/m (sitting in degree 0). For this reason, we needed to lift the second condition

from k to V/g for some g ∈ m in the proof of Lemma 6.4. In contrast, if R is a noetherian ring, then any
K ∈ D(R) satisfies: K ' 0 if and only if K ⊗LR k for any residue field k of R.

Proof. As C ⊗R R[g−1] = 0, any cohomology group H i(C) is g-torsion. On the other hand, the long exact
cohomology sequence one gets from

0→ R
g−→ R→ R/g → 0

by tensoring with C shows that multiplication by g is an isomorphism on H i(C). Together, these imply
H i(C) = 0, for all i. �

In particular, we see that RΓ(X,E) = V rkE, so f∗E is a vector bundle on SpecV . Now consider the
adjunction map

f∗f∗E→ E ,

which is a map of vector bundles onX . To see whether this is an isomorphism, we can check on fibres, where
it follows from the assumption that E is trivial on fibres, and the fact that taking f∗E = Rf∗E commutes
with any base-change by Lemma 3.18. Thus, E ∼= f∗f∗E is the pullback of the trivial vector bundle f∗E,
and therefore trivial. �

Finally, we can give the fibral criterion to descend vector bundles along proper covers.

Theorem 6.8. Let f : X → Y be a proper perfectly finitely presented map in Perf such thatRf∗OX = OY ;
in particular, all geometric fibres of f are connected. Let E ∈ Vect(X). Then E descends to Y if and only
if for all geometric points ȳ of Y , E is trivial on the fibre Xȳ.

Proof. Clearly, if E ∈ Vect(X) comes via pullback from Y , then it it is trivial on geometric fibres.
For the converse, by v-descent for vector bundles and Proposition 6.1, it is enough to prove the result

after pullback along some v-cover Y ′ → Y . By Lemma 6.2, we may assume that Y is affine, and each
connected component is the spectrum of a valuation ring. If E is trivial over one connected component, this
trivialization spreads to a small open and closed neighborhood. Thus, it is enough to prove that E is trivial
over each connected component of Y , which reduces us to the case that Y = Spec(V ) is the spectrum of a
valuation ring. In that case, the result follows from Lemma 6.4. �

In fact, the condition Rf∗OX = OY can also be checked on geometric fibres:
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Lemma 6.9. Let f : X → Y be a proper surjective perfectly finitely presented map in Perf such that for
all geometric points ȳ of Y with field of definition k(ȳ) and fibre Xȳ, one has RΓ(Xȳ,O) = k(ȳ). Then
Rf∗OX = OY .

We remark that if f : X → Y arises as the perfection of a proper map f0 : X0 → Y0 of schemes of
finite type over a perfect field k, and X0 admits a Frobenius splitting (cf. [MR85]), the conclusion of the
lemma implies that Rif0∗OX0 = 0 for i > 0. Namely, if X0 admits a Frobenius splitting, then OX0 is a
direct summand of OX , and the same is true for its higher direct images. It may be interesting to compare
our results on perfect schemes with related results on Frobenius split schemes.

Proof. It is enough to check the assertion locally in the v-topology. By Lemma 6.2, we may assume that
Y = Spec(A) is the spectrum of a w-local ring all of whose local rings are valuation rings. Then it is
enough to check the assertion on stalks, which reduces us to the case that Y = Spec(V ) is the spectrum of a
valuation ring. By approximation, we can assume that the valuation on V is of finite rank. Applying Lemma
6.3 inductively, we can assume that V is a rank-1-valuation ring, which we can also assume to be complete
and algebraically closed. Finally, pick a model f0 : X0 → Y = Spec(V ) of f as in Proposition 3.13.

Consider the complex K ∈ Db(V ) given as a cone of V → RΓ(X0,OX0), which comes equipped with
a Frobenius-linear map ϕ : K → K. Let M = H i(K) be a cohomology group of K. This is a finitely
presented V -module which comes equipped with a Frobenius-linear map ϕ : M → M . Moreover, by
Lemma 3.18 and our hypothesis, N = lim−→ϕ

M satisfies N ⊗V k(s) = N ⊗V k(η) = 0, where s, η ∈
Spec(V ) are the special and generic point.13 The statement for the generic fibre implies that there is some
m such that ϕm(M) ⊂ Mtors is contained in the torsion submodule of M . Then the statement for the
special fibre implies that there is some m such that ϕm(M) ⊂ mMtors, where m ⊂ V is the maximal
ideal. By finite presentation, this implies that there is some g ∈ m with ϕm(M) ⊂ gMtors. But Mtors is
finitely presented, so there is some n such that gnMtors = 0. Then ϕmn(M) ⊂ gnMtors = 0. This implies
that N = lim−→ϕ

M = 0. Thus, lim−→ϕ
K is quasi-isomorphic to 0, which implies that RΓ(X,OX) = V , as

desired. �

In particular, checking isomorphisms can be done pointwise.

Corollary 6.10. Let f : X → Y be a proper perfectly finitely presented map of perfect Fp-schemes such
that for all geometric points ȳ of Y , the fibre Xȳ is isomorphic to Spec(k(ȳ)). Then f is an isomorphism.

Proof. Picking any finite type model f0 of f , the assumption implies that f0 is quasifinite, thus finite, and
in particular affine; therefore, f itself is affine, so f is determined by f∗OX . But Lemma 6.9 implies
f∗OX = OY , so that f is an isomorphism.

Alternately, one may argue as follows, as suggested by the referee. As above, we first show that f is the
perfection of a finite morphism f0. The fibral assumption shows that f0(k) is bijective for any algebraically
closed field k, and hence f0 is universally injective. It is also clear that f0 is universally surjective. As f0 is
finite, it follows that f0 is a universal homeomorphism. One then concludes using Lemma 3.8. �

In our application, the geometric fibres will be of the following form.

Lemma 6.11. Let k be a perfect field, and let Q be a finite length W (k)-module. Let X be a perfect
k-scheme which comes equipped with a filtration FiliQX ⊂ QX = Q ⊗W (k) W (OX) whose associated
gradeds griQX = FiliQX/Fili+1QX are finite projective OX -modules. Then the line bundle

L =
⊗
i

detOXgriQX

on X is trivial.
13If i > 0, then N = Hi(X,OX), and there is a short exact sequence 0 → Hi(X,OX) ⊗V k(s) → Hi(Xs,OXs) →

TorV1 (Hi+1(X,OX), k(s)) → 0, where the middle term is zero; thus, N ⊗V k(s) = 0. A similar argument works for i = 0,
where N = H0(X,OX)/V .

24



Using Theorem 5.7, this follows from the identity

L = d̃et(QX) = d̃et(Q)⊗k OX .

Here, we give an independent, more geometric, proof.

Proof. We may reduce to the universal case where X parametrizes filtrations of QX with griQX finite
projective of given rank. Refining further (which gives rise to a map with geometrically connected fibres),
we may assume that X parametrizes such filtrations with each griQX a line bundle.

Let n be the length of Q. Let X0 = Spec(k), Q0 = Q regarded as a sheaf on X0, and inductively let fi :
Xi → Xi−1 parametrize locally free quotients Gi of rank 1 of Qi−1/p, and set Qi = ker(f∗i Qi−1 → Gi) over
Xi. Then fi is a proper surjective perfectly finitely presented map, and X = Xn. Moreover, each geometric
fibre of fi is the perfection of a projective space. Applying Lemma 6.9, this shows that Rfi∗OXi = OXi−1 .

We claim by descending induction on i = n, n − 1, . . . , 0 that L descends (necessarily uniquely) to
a line bundle Li on Xi. For i = n, this is a tautology, so assume L descends to Li+1 over Xi+1. By
Theorem 6.8, to check whether Li+1 descends to Xi, it is enough to check on all geometric fibres, so let
x̄ ∈ Xi be a geometric point, giving a finite length W (k(x̄))-module Qi, equipped with a fixed filtration
into 1-dimensional k(x̄)-modules. Replacing Q by Qi, we can assume that i = 0.

Now L1 is a line bundle over X1, which is the perfection of a projective space Pk. Let Y ⊂ X param-
etrize those filtrations which are refinements of the p-adic filtration of Q. Then L restricted to Y agrees
with (⊗

i

detk(p
iQ/pi+1Q)

)
⊗k OY ,

and is therefore trivial. On the other hand, the map Y → X1 is the perfection of a proper surjective map
with geometrically connected fibres: It is a successive (perfection of a) flag variety bundle. But L1 becomes
trivial over Y , and is thus trivial by Proposition 6.1. �

Remark 6.12. In the period in which this paper was being refereed, we discovered that the fibral conditions
in Theorem 6.8 can be weakened substantially: one only needs geometric connectedness for the fibers.
Since this result is likely more applicable, we record it here; it is not used elsewhere in the paper. The proof
involves reduction to very big nonarchimedean fields. One may wonder whether the theorem admits a more
“classical” proof.

Theorem 6.13. Let f : X → Y be a proper surjective perfectly finitely presented map in Perf such that all
geometric fibres of f are connected. Let E ∈ Vect(X). Then E descends to Y if and only if for all geometric
points ȳ of Y , E is trivial on the fibre Xȳ.

Proof. As in the proof of Theorem 6.8, one reduces to the case that Y = Spec(V ) is the spectrum of a
valuation ring, and then, as in the first paragraph of the proof of Lemma 6.4, we reduce to V having rank
1. Let K be the fraction field of V , and m ⊂ V the maximal ideal, and let η and s be the generic and
special points of Spec(V ) respectively. We begin by explaining a reduction to the case where f is flat.
Choose a model f0 : X0 → Spec(V ) of f0, so f0 is a finitely presented proper map with perfection f . Let
X ′0 ⊂ X0 be the closure of the generic fiber X0,η ⊂ X0. The induced map g0 : X ′0 → Spec(V ) is proper
and flat with geometrically connected fibers: g0,∗OX′0 is a torsionfree finite V -algebra of rank 1, and must
thus coincide with V . The closed immersion X ′0 → X0 is an isomorphism away from the special fibre, so
X has a v-cover by X ′ and Xs with overlap X ′s; here we drop the subscript ‘0’ to denote passage to the
perfection. By Theorem 4.1, vector bundles on X are the same as vector bundles on X ′ and Xs together
with an isomorphism over X ′s. As the global functions on X ′s are constant by geometric connectedness, it
suffices to show triviality of E over X ′ and Xs separately. Since we are assuming triviality over Xs, we may
thus assume X = X ′ is flat over V .

We are now in the following setup: V is a valuation ring of rank 1, f : X → Spec(V ) is a proper
perfectly finitely presented flat map with geometrically connected fibers, and E ∈ Vect(X) is trivial on both
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fibersXη andXs. We will need to arrange a few extra properties. First, we want that OX is integrally closed
in OXη . For this, we make the extra assumption that the fraction field K of V is algebraically closed, which
amounts to a further v-cover on the base. Let f0 : X0 → Spec(V ) be a proper flat and reduced model of f .
In this situation, by [BGR84, §6.4.1, Corollary 5], the normalization X ′0 of X0 in its generic fibre is of finite
presentation over Spec(V ). Arguing as in the first paragraph, we can then reduce to the case where X = X ′

has the property that OX is integrally closed in OXη .
Let M = H0(X,E) ⊂ H0(Xη,OXη) ∼= Kr. This is bounded (as one can find an injection E ↪→ OrX

into a trivial vector bundle, as Eη is trivial). Moreover, we claim that M = HomV (m,M), where m ⊂ V
is the maximal ideal. This follows from the statement E = HomV (m,E) on the level of sheaves, which
can be reduced to OX = HomV (m,OX). To check this, let f0 : X0 → Spec(V ) be a proper flat reduced
model of f such that OX0 is integrally closed in OX0,η . Then HomV (m,OX) = lim−→ϕ

HomV (m,OX0)

as OX0 = OX0,η ∩ OX by our assumption that OX0 is integrally closed in OX0,η . But OX0 is locally a
free V -module (of infinite rank), by [RG71, Corollaire 3.3.13], so HomV (m,OX0) = OX0 by reduction to
HomV (m, V ) = V . In conclusion,

HomV (m,OX) = lim−→
ϕ

HomV (m,OX0) = lim−→
ϕ

OX0 = OX ,

as desired.
In fact, as we are allowed to make further v-covers, we can assume in addition that K is spherically

complete (i.e., any decreasing sequence of closed balls in V has nonempty intersection; equivalently,
Ext1

V (m, V ) = 0) and with value group R≥0. We claim that in this situation M = H0(X,E) is a finite
free V -module.

Lemma 6.14. Let K be a complete nonarchimedean field which is spherically complete, and with value
group R≥0. Let V be the valuation ring of K, m ⊂ V the maximal ideal, and let M ⊂ Kr be a sub-V -
module such that M is bounded and M = HomV (m,M). Then M is a finite free V -module.

Proof. If r = 1, then any sub-V -module is of the form {x ∈ K | |x| ≤ a} or {x ∈ K | |x| < a} for some
a ∈ R≥0 ∪ {∞}. The case a = ∞ is not allowed as M is bounded, and the case {x ∈ K | |x| < a} is
excluded by the condition M = HomV (m,M); the right-hand side evaluates to {x ∈ K | |x| ≤ a} in this
case. As any a ∈ R≥0 is the absolute value of some x ∈ K by assumption, it follows that M is free of rank
1 if a 6= 0; otherwise M = 0.

In general, we induct on r, so let M ′ = M ∩Kr−1 and M ′′ = M/M ′. Then M ′ ⊂ Kr−1 and M ′′ ⊂ K
are bounded V -submodules. Moreover, M ′ = HomV (m,M ′) as this holds for M ; thus, by induction, M ′

is finite free. This implies, as K is spherically complete, that Ext1
V (m,M ′) = 0, so one finds that also

M ′′ = HomV (m,M ′′). Therefore, M ′′ is finite free, and so is the extension M of M ′′ by M ′. �

In particular, this applies to show that M = H0(X,E) is a finite free V -module. We have a short exact
sequence

0→M ⊗V k(s)→ H0(Xs,Es)→ TorV1 (H1(X,E), k(s))→ 0 .

But M ⊗V k(s) and H0(Xs,Es) are k(s)-vector spaces of the same dimension as Es is trivial, so M ⊗V
k(s) → H0(Xs,Es) is an isomorphism. This implies that the map of vector bundles f∗M → E is an
isomorphism, as it is an isomorphism in both fibres. Thus, E is trivial, as desired. �

7. FAMILIES OF TORSION W (k)-MODULES

In this section, we collect some results on the behaviour of “families” of torsion W (k)-modules indexed
by perfect schemes; some of the discussion overlaps with [Zhu14]. The following definition will help with
the bookkeeping:

Definition 7.1. Consider the set of sequences λ := (λ1, λ2, ..., λn, . . .) of non-negative integers such that
λj ≥ λj+1 for all j, and λj = 0 for sufficiently large j. For another such sequence µ, we say µ ≤ λ if
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λ − µ (computed term wise) is a non-negative linear combination of εj := (0, . . . , 0, 1,−1, 0, . . .), where
the 1 entry is in the j-th spot.

If λ is any such sequence, we write λ− 1 for the sequence with entries (λ− 1)j given by λj − 1 in case
λj ≥ 1, and 0 otherwise.

The sequence λ represents the isomorphism class of a finite torsion module over W (k).

Definition 7.2. Fix a perfect field k. A finitely generated p-power torsion W (k)-module Q is said to have
type λ if Q ' ⊕jW (k)/pλj ; in that case, write λ = λ(Q). Let R be a perfect ring, and let Q be a
finitely generated p-power torsion W (R)-module. Then Q has type ≤ λ if λ(Q ⊗W (k(x))) ≤ λ for all
x ∈ Spec(R). If λ(Q⊗W (k(x))) = λ for each x ∈ Spec(R), then Q has type exactly λ.

The case where Q has type exactly λ is very rigid; in particular, it implies that Q is finitely presented.

Lemma 7.3. Let R be a perfect ring, and let Q be a finitely generated W (R)-module of p-power torsion, of
type exactly λ. Then each piQ/pi+1Q is a finite projective R-module.

Proof. Consider first i = 0. For any point x ∈ Spec(R), we know Q/p ⊗ k(x) ' (Q ⊗ W (k(x)))/p.
Thus, Q/p is a finitely generated R-module such that Q/p⊗ k(x) has the same rank n for all x ∈ Spec(R).
As R is reduced, this implies that Q/p is finite projective: for any point x ∈ Spec(R), after replacing R
by some localization around x, there are f1, . . . , fn ∈ Q/p freely generating Q/p ⊗ k(x). The cokernel
C of the resulting map Rn → Q/p is finitely generated with C ⊗ k(x) = 0. By Nakayama, C is trivial
in a neighborhood. But in this neighborhood, the surjective map Rn → Q/p has to be an isomorphism at
all points (as it is a surjective map of vector spaces of the same dimension), and thus is injective, as R is
reduced. In particular, the kernel pQ of Q → Q/p is still finitely generated, and of type exactly λ − 1, so
the claim for i > 0 follows by induction. �

Remark 7.4. In Lemma 7.3, one can compute the rank of the projective module piQ/pi+1Q explicitly: it
is the largest j such that i < λj ; we denote this number by nλ(i). More pictorially: if one visualizes λ as a
“bar graph” where each bar is made from blocks and the j-th bar has λj blocks, then nλ(i) is the size of the
i-th row (starting at 0).

Using these notations, let us recall the usual characterization of the majorization inequality λ ≥ µ.

Lemma 7.5. Let λ = (λ1, λ2, . . .) and µ = (µ1, µ2, . . .) be eventually 0 decreasing sequences of nonnega-
tive integers. Let Qλ, Qµ be torsion W (k)-modules with λ(Qλ) = λ and λ(Qµ) = µ. Then the following
conditions are equivalent.

(i) One has λ ≥ µ.
(ii) For all n ≥ 1, the inequality

n∑
j=1

λj ≥
n∑
j=1

µj

holds, and is an equality for sufficiently large n.
(iii) For all m ≥ 0, the inequality ∑

i≥m
nλ(i) ≥

∑
i≥m

nµ(i)

holds true (noting that both sums are finite), and is an equality for m = 0.
(iv) The lengths lg(Qλ) = lg(Qµ) are equal, and for all m ≥ 0, lg(pmQλ) ≥ lg(pmQµ).

Proof. The equivalence of (i) and (ii) is standard: Clearly (i) implies (ii) as adding a sequence εn =
(0, . . . , 0, 1,−1, 0, . . .) preserves the inequalities. Conversely, for the smallest n where the inequality is
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(ii) is strict, one can subtract εn + εn+1 + . . .+ εn′ from λ for suitable n′ while preserving all inequalities,
and then argue inductively. Moreover, (iii) and (iv) are the same, as

lg(pmQλ) =
∑
i≥m

nλ(i) .

As ∑
j

λj =
∑
i

nλ(i) ,

one sees that the equality part in (ii) and (iii) is equivalent. It remains to show that the inequalities are
equivalent. We give the proof that (ii) implies (iii); the converse is identical.14 Thus, take any m ≥ 0, and
let n be maximal such that µn > m. Then∑

i≥m
nµ(i) =

n∑
j=1

(µj −m) .

Let n′ be maximal such that λn′ > m, so that we have a similar equality

∑
i≥m

nλ(i) =
n′∑
j=1

(λj −m) .

Assume first that n ≤ n′. Applying (ii) for n shows∑
i≥m

nµ(i) =

n∑
j=1

(µj −m) ≤
n∑
j=1

(λj −m) ,

which is at most
n′∑
j=1

(λj −m) =
∑
i≥m

nλ(i) ,

as all further summands for n < j ≤ n′ are positive. If n > n′, then again applying (ii) for n shows that∑
i≥m

nµ(i) =

n∑
j=1

(µj −m) ≤
n∑
j=1

(λj −m) ,

which is at most
n′∑
j=1

(λj −m) =
∑
i≥m

nλ(i) ,

as all extra summands λj −m for n′ < j ≤ n are nonpositive. �

The basic source of finite torsion W (k)-modules in the sequel comes from isogenies:

Definition 7.6. For any perfect ring R, a map f : N → M of finite projective W (R)-modules is called an
isogeny if it admits an inverse up to multiplication by a power of p.

In particular, any isogeny is injective.

Lemma 7.7. A finitely generated p-torsion W (R)-module Q is of projective dimension 1 if and only if it
can be written as the cokernel of an isogeny.

14In fact, λ 7→ nλ is (up to shift i 7→ i+ 1) the transpose of a partition, so the situation is symmetric.
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Proof. If Q is the cokernel of the isogeny f : N →M , then

0→ N →M → Q→ 0

is a projective resolution of Q as W (R)-module, showing that the projective dimension is (at most) 1;
clearly, Q is not projective, so the projective dimension is 1.

Conversely, if M is of projective dimension 1, then pick a surjection M = W (R)n → Q. Its kernel N is
projective. By checking at the characteristic 0 points of Spec(W (R)) (which are dense), one sees that N is
of rank n, and thus finite projective. �

We will also need the following lemma.

Lemma 7.8. Let R be a perfect ring, and let Q be a finitely generated R-module. Then Q is a projective
R-module if and only if it is of projective dimension 1 as W (R)-module.

Proof. Note that R = W (R)/p is of projective dimension 1 as W (R)-module. Thus, the same is true for
any free module, and then also for any direct summand of a free module, i.e. any projective module.

Conversely, assume Q is a finitely generated R-module that is of projective dimension 1 as W (R)-
module. Take any x ∈ Spec(R), and let n = dimk(x)(Q ⊗ k(x)). Pick a map M = W (R)n → Q that
is surjective after ⊗k(x). By Nakayama, we may assume that it is surjective, after some localization on
Spec(R). Let f : N ↪→ M be the kernel of M → Q. Then N is a finite projective W (R)-module (as Q is
of projective dimension 1), and there is an injection

g : pW (R)n ↪→ N .

On the other hand, after base-change R → k(x), g is surjective. Applying Nakayama again (noting that g
being surjective is equivalent to g mod p being surjective), we can assume that g is surjective, after a further
localization around x. Then g : pW (R)n ∼= N , and Q = W (R)n/pW (R)n = Rn is finite projective. �

Now we want to prove that the locus where the cokernel Q of an isogeny has type ≤ λ is closed.

Lemma 7.9. Let R be a perfect ring, and let β : N →M be an isogeny of finite projective W (R)-modules
with cokernel Q. Fix any sequence λ of non-negative integers as above. The set

Spec(R)≤λ ⊂ {x ∈ Spec(R) | λ(Q⊗W (k(x))) ≤ λ}
is a closed subset of Spec(R).

The proof uses the Demazure scheme, so we define this first (see also [Zhu14, §1.3]).

Definition 7.10. Let X be a perfect Fp-scheme, let Q be a finitely generated p-power torsion quasicoherent
W (OX)-module of projective dimension 1, and let λ be a sequence of non-negative integers as above. The
Demazure scheme is the perfect scheme

Demλ(Q)→ X

parametrizing decreasing filtrations FiliQ ⊂ Q such that griQ = FiliQ/Fili+1Q is a finite projective OX -
module of rank nλ(i).15

We reserve the name Demazure resolution for the “absolute” construction defined in Definition 8.4 below;
a Demazure scheme may not be (the perfection of) a smooth scheme.

Proposition 7.11. The Demazure scheme exists, i.e. the moduli problem is representable by a perfect
scheme. The map Demλ(Q)→ X is a proper perfectly finitely presented morphism.

In the proof, we use the following convention: if X is a perfect scheme, F a finitely presented quasico-
herent OX -module, and n ∈ Z≥0, then Quot(F, n) denotes the perfection of the Quot-scheme, over X ,
parametrizing locally free quotients F � G with rk(G) = n. If F is locally free, this is the perfection of a
Grassmannian. In general, Quot(F, n)→ X is a proper perfectly finitely presented morphism.

15See Remark 7.4 for the definition of nλ(i).
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Proof. Assume first that λ = 0. In that case Demλ(Q) ⊂ X is the subset of x ∈ X such thatQ⊗W (k(x)) =
0, and we claim that this is open and closed (which implies the proposition in this case). The claim is local,
so we may assume X = Spec(R), and Q is associated to a finitely presented W (R)-module Q that can
be written as a cokernel of an isogeny f : N → M of finite free W (R)-modules. Then the locus where
Q ⊗W (k(x)) = 0 is (by Nakayama) the locus where f is an isomorphism, i.e. where detf ∈ W (R) is
invertible. But detf ∈ W (R)[1

p ]×, which implies that x 7→ vp(det(f ⊗W (k(x)))) is a locally constant
function on SpecR; in particular, the locus where detf is invertible is open and closed.

In general, consider Quot(Q/p, nλ(0))→ X . This parametrizes the different choices for Fil1Q such that
Q/Fil1Q is a finite projective OX -module of rank nλ(0): Over Quot(Q/p, nλ(0)), one has the universal
cokernel Q/p→ G, and one can define Fil1Q = ker(Q→ G). This is still of projective dimension 1, and

Demλ(Q) = Demλ−1(Fil1Q) ,

where λ − 1 = (λ1 − 1, . . . , λn − 1, 0, . . .) is the sequence of non-negative integers obtained from λ by
subtracting 1 from all positive entries. By induction, the proposition follows. �

Remark 7.12. The special case λ = 0 in the above proof can be presented slightly differently via K-
theory as follows. In §5, we defined a canonical map r : K0(W (X) onX)→ H0(X,Z) by composing the
determinant construction with the canonical map PicZ(X) → H0(X,Z). Now any Q as in the proposition
defines element ofK0(W (X)→ X). Unwinding definitions shows that r(Q) is given by the locally constant
function X → Z sending x ∈ X to the length of Q ⊗LW (OX) W (κ(x)) ' Q ⊗W (OX) W (κ(x)) as a finite
torsion W (κ(x))-module. In particular, the vanishing locus of this function is clopen in X .

Lemma 7.13. Let X , Q and λ be as in Definition 7.10. The image of the morphism Demλ(Q) → X is the
locus

X≤λ = {x ∈ X | λ(Q⊗W (k(x))) ≤ λ} .
If Q is of type exactly λ, then Demλ(Q) → X is an isomorphism. Moreover, if the fibre over a geometric
point x̄ of X is nonempty, then

RΓ(Demλ(Q)×X x̄,O) = k(x̄) ,

where k(x̄) is the residue field of x̄.

Proof. To determine the image, we may assume that X = Spec(k) is a point; then Q determines a torsion
W (k)-module Q. We need to show that the module

Q ∼=
n⊕
i=1

W (k)/pλi(Q)

admits a decreasing filtration FiliQ ⊂ Q with gradeds griQ ∼= knλ(i) if and only if λ(Q) ≤ λ. Assume first
thatQ admits such a filtration. Then Fil1Q admits a filtration of type given by λ−1, as nλ−1(i) = nλ(i+1)
for all i ≥ 0; it follows by induction that λ(Fil1Q) ≤ λ− 1. But then Q is an extension

0→ Fil1Q→ Q→ knλ(0) → 0

from which it follows that

λ(Q) ≤ λ(Fil1Q) + (1, . . . , 1︸ ︷︷ ︸
nλ(0)

, 0, . . .) ≤ (λ− 1) + (1, . . . , 1︸ ︷︷ ︸
nλ(0)

, 0, . . .) = λ ,

as desired. This analysis also implies that if one has equality λ(Q) = λ, then the filtration is given by
FiliQ = piQ; thus, Corollary 6.10 implies that Demλ(Q)→ X is an isomorphism if Q is of type exactly λ.

Conversely, assume that λ(Q) ≤ λ, again in the case X = Spec(k). In that case, we have to show that

RΓ(Demλ(Q),O) = k ,
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which implies in particular that Demλ(Q) is nonempty. Recall that Demλ(Q) can be written as

Demλ(Q) = Demλ−1(Fil1Q) ,

where Fil1Q is the kernel of the universal quotient Q → G over Quot(Q/p, nλ(0)). Arguing inductively
(always using Lemma 6.9 to pass from fibrewise information to global information), we see that the locus

Quot(Q/p, nλ(0))≤λ−1 ⊂ Quot(Q/p, nλ(0))

where ker(Q→ G) is of type ≤ λ− 1 is the image of

f : Demλ−1(Fil1Q)→ Quot(Q/p, nλ(0)) ,

and in particular closed, and Rf∗O = OIm f , so it remains to prove that

RΓ(Quot(Q/p, nλ(0))≤λ−1,O) = k .

Let us describe the locus Quot(Q/p, nλ(0))≤λ−1. Note that Q/p comes with a decreasing filtration

Fm(Q/p) = ker(Q/p
pm−→ pmQ/pm+1Q) .

We claim that a quotient Q/p→ G with kernel F ⊂ Q/p lies in Quot(Q/p, nλ(0))≤λ−1 if and only if for all
m ≥ 0, dim(F ∩ Fm(Q/p)) ≥ am for certain integers am (determined by λ and Q).16 Indeed, by Lemma
7.5, λ(Fil1Q) ≤ λ − 1 if and only if for all m ≥ 0, the length of pmFil1Q is bounded by the length of
pmQλ−1, where Qλ−1 is a torsion W (k)-module with λ(Qλ−1) = λ− 1. But there is an exact sequence

0→ pmFil1Q→ pmQ→ coker(F
pm−→ pmQ/pm+1Q)→ 0 ,

which allows one to compute the length of pmFil1Q in terms of Q, dimF = nλQ(0)− nλ(0) and dim(F ∩
Fm(Q/p)). More precisely, the inequalities are

dim(F ∩ Fm(Q/p)) ≥ nλQ(0)− nλ(0) +
∑

i≥m+1

(nλQ(i)− nλ(i)) =: am .

Thus, the following lemma finishes the proof. For this we need to observe two inequalities. First,

dimFmQ/p = nλQ(0)− nλQ(m) ≥ nλQ(0)− nλ(m) +
∑

i≥m+1

(nλQ(i)− nλ(i))

≥ nλQ(0)− nλ(0) +
∑

i≥m+1

(nλQ(i)− nλ(i)) = am ,

using the majorization ∑
i≥m

nλ(i) ≥
∑
i≥m

nλQ(i) .

Second,
dimF = nλQ(0)− nλ(0) ≥ nλQ(0)− nλ(0) +

∑
i≥m+1

(nλQ(i)− nλ(i)) = am ,

using the same majorization. �

Lemma 7.14. Let k be a perfect field, and V a finite-dimensional k-vector space equipped with a decreasing
filtration FmV ⊂ V , m = 1, . . . , N . Let a1, . . . , aN be integers such that am ≤ dimFmV , and let
n ≤ dimV be an integer such that n ≥ am for all m. Consider the space X of subspaces F ⊂ V of
dimension n such that dim(F ∩ FmV ) ≥ am for all m = 1, . . . , N . Then X is a projective k-scheme, and

RΓ(Xperf ,O) = k .

16Here, Q stands for the base extension of Q to varying fields.
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Proof. Clearly, X is a projective k-scheme, as it is closed inside a Grassmannian.
For the cohomological statement, we argue by induction on N . We may clearly assume am > 0 for all

m. Let X̃ → X be the covering which parametrizes subspaces W ⊂ F ∩ FNV of exact dimension aN .
Then all fibres of X̃ → X are perfections of Grassmannians. By Lemma 6.9, the derived pushforward of
OX̃perf

is OXperf
. Thus, it is enough to prove that

RΓ(X̃perf ,O) = k .

On the other hand, X̃ maps to the Grassmannian of aN -dimensional subspaces of FNV , and each fibre is a
similar scheme for V/W with the induced filtration and a′m = am − aN , n′ = n − aN . By induction and
Lemma 6.9, the result follows. �

Proof of Lemma 7.9. By Lemma 7.13 and Proposition 7.11, the desired locus is the image of a proper per-
fectly finitely presented morphism, and therefore closed. �

8. THE WITT VECTOR AFFINE GRASSMANNIAN

In this section, we use the results proved earlier in the paper to establish the promised representability
result for the Witt vector affine Grassmannian.

8.1. Statements. We now introduce the affine Grassmannian. For this, fix once and for all an integer n ≥ 0.

Definition 8.1. For any sequence λ = (λ1, . . . , λn, 0, . . .) of non-negative integers as above, let Gr≤λ be
the functor on Perf sending X ∈ Perf to the set of finite projective W (OX)-submodules E ⊂ W (OX)n

such that the defining inclusion β : E ↪→W (OX)n is an isogeny, and Q = coker(β) is of type ≤ λ.
Let Grλ ⊂ Gr≤λ be the subfunctor where the type is exactly λ. For µ ≤ λ, there is a closed immersion

Gr≤µ ⊂ Gr≤λ of functors (by Lemma 7.9), and Grλ = Gr≤λ \ ∪µ<λGr≤µ is open in Gr≤λ.

Note that by Theorem 4.1 and Corollary 4.4, the functor Gr≤λ is a v-sheaf. The following theorem was
proved by Zhu, [Zhu14].

Theorem 8.2 (Zhu). The functor Gr≤λ is represented by the perfection of a proper algebraic space over
Fp.

Our main result is:

Theorem 8.3. The functor Gr≤λ is representable by a proper perfectly finitely presented Fp-scheme, and
there is a natural ample line bundle L ∈ Pic(Gr≤λ).

In particular, Gr≤λ is the perfection of a projective Fp-scheme.
In the K-theoretic approach of Theorem 5.7, the line bundle L is given by L = d̃et(Q). Note that Q is

quasi-isomorphic to the perfect complex E → W (O)n, which is supported set-theoretically on the special
fibre {p = 0}. In the geometric approach, the existence of L is Theorem 8.8 below.

Our proof of Theorem 8.3 is independent of Theorem 8.2. Our strategy is to first construct the line bundle
L, and then to employ a fundamental theorem of Keel [Kee99] on positivity of line bundles in characteristic
p; this will allow us to work our way up to Gr≤λ from lower-dimensional strata by induction. Keel’s theorem
only applies to projective schemes, so we cannot apply it directly to Gr≤λ; instead, we will apply it to a
suitable h-cover.

8.2. The Demazure resolution. To study Gr≤λ, it will be useful to have access to (what will turn out to
be) a convenient resolution.

Definition 8.4. The Demazure resolution is the map

ψ : G̃rλ = Demλ(Q)→ Gr≤λ ,

of v-sheaves on Perf , where W (O)n → Q denotes the universal cokernel on Gr≤λ.
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Remark 8.5. By Proposition 7.11, the map ψ : G̃rλ → Gr≤λ is relatively representable by a proper
perfectly finitely presented map. Moreover, ψ is surjective and an isomorphism over Grλ by Lemma 7.13,
and

Rψ∗OG̃rλ
= OGr≤λ

by Lemma 7.13 and Lemma 6.9.17

The following proposition justifies the name Demazure resolution.

Proposition 8.6. The functor G̃rλ is representable by the perfection of a smooth projective Fp-scheme. It
represents the functor associating to X ∈ Perf the set of λ1-tuples Eλ1 ⊂ . . . ⊂ E1 ⊂ E0 = W (OX)n

of finite projective W (OX)-submodules of W (OX)n such that each Qi := Ei/Ei+1 is a finite projective
OX -module of rank nλ(i), where nλ(i) is the number defined in Remark 7.4.

Proof. From the definitions, it follows that G̃rλ is the subfunctor of those λ1-tuples (E1, . . . ,Eλ1) as in the
statement, for which the cokernel Q of Eλ1 ↪→ W (OX)n is of type ≤ λ. However, Lemma 7.13 guarantees
that Q is always of type ≤ λ.

The moduli description now presents G̃rλ as a successive perfect Grassmannian bundle. Indeed, set
X0 = Spec(Fp), E0 = W (OX0)n. Define inductively πi : Xi+1 → Xi and Ei+1 over Xi+1, by letting
Xi+1 = Quot(Ei/p, nλ(i)) parametrize quotients Qi of Ei/p of rank nλ(i), and setting Ei+1 = ker(π∗i Ei →
Qi). Then Ei+1 is still a finite projective W (OXi+1)-module by Lemma 7.8, and Xλ1 = G̃rλ. By induction,
each Xi is the perfection of a smooth projective Fp-scheme. �

The intermediate isogenies being recorded in G̃rλ keep track of how the quotient Q on Gr≤λ, which is a
pλ1-torsion module, is filtered by p-torsion modules. The following example is perhaps useful:

Example 8.7. Consider the case n = 3 and λ = (2, 1, 0). Then G̃rλ parametrizes chains of isogenies
E2 → E1 → E0 = W (O)3, where each Qi := Ei/Ei+1 is a vector bundle of rank 2 − i. The only element
µ < λ is µ := (1, 1, 1). Hence, Gr≤λ has a 2-step stratification with open Grλ, and closed Grµ. The
Demazure resolution G̃rλ is a tower of two perfect P2-bundles over a point, and hence has dimension 4;
it follows Grλ also has dimension 4. Now Grµ is a single point, and classifies the inclusion pE0 ↪→ E0.
The fibre of ψ over Grµ is the perfection of P2, corresponding to the Grassmannian of rank-2-quotients of
E0/pE0 = O3.

8.3. The line bundle L. The goal of this section is to construct a natural line bundle L on Gr≤λ.

Theorem 8.8. There is a line bundle Lλ on Gr≤λ such that ψ∗Lλ is the line bundle L̃λ on G̃rλ given by

L̃λ =

λ1−1⊗
i=0

detOXQi .

The restriction of Lλ to Gr≤µ is given by Lµ for µ < λ, compatibly in µ.

We recall that by Proposition 6.1 and Remark 8.5, the functor ψ∗ from line bundles on Gr≤λ to line
bundles on G̃rλ is fully faithful.

Proof. In the K-theoretic approach, one can define Lλ = d̃et(Q), which is clearly compatible with restric-
tion to Gr≤µ. In the geometric approach, the existence of Lλ follows by combining Theorem 6.8, Remark
8.5 and Lemma 6.11.

17As we do not yet know that Gr≤λ is representable, all of these assertions mean that they hold true after an arbitrary base-
change to a representable S over Gr≤λ. Note that viewing Gr≤λ as an object of a suitable ringed topos (the one associated to the
site Perf ringed using O equipped with the v-topology) leads to a potentially different notion of a pushforward. Nevertheless, both
these definitions coincide by Lemma 3.18.
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However, in the geometric approach it is not immediately clear that the line bundles Lλ thus constructed
are compatible for varying λ. To see this, it is enough to consider the special case λ = (N, 0, . . .): any
two comparable λ’s are both less than some λ of this form. Then G̃rλ parametrizes finite projective W (O)-
submodules EN ⊂ . . . ⊂ E1 ⊂ E0 = W (O)n such that each Qi = Ei/Ei+1 is a line bundle. For any
µ < λ, there is a cover G̃rµ(λ) → G̃rµ refining the universal filtration of Q on G̃rµ to a complete flag;
this has geometrically connected fibres, given by products of perfections of classical flag varieties. Then
G̃rµ(λ) ⊂ G̃rλ is a closed subfunctor, given by the condition that certain quotients Ei/Ej are killed by
p. The line bundles thus constructed on G̃rλ and G̃rµ(λ) are clearly compatible, and then Proposition 6.1
implies the same for Gr≤µ ⊂ Gr≤λ. �

Because of the compatibility between the different Lλ, we will simply call them L below.

8.4. Proof of Theorem 8.3. We put the preceding geometry to use in proving L ∈ Pic(Gr≤λ) is ample.18

Lemma 8.9. The following statements are true about line bundles on G̃rλ.

(i) The line bundle ⊗λ1−1
i=0 det(Qi)

ai is ample if a0 � a1 � a2 � ...� aλ1−1 � 0.
(ii) For each x ∈ Grλ and i = 0, . . . , λ1 − 1, there exists a section s ∈ H0(G̃rλ,det(Qi)) such that

s(x) 6= 0.

Proof. For (i), we work by induction using the tower

Xλ1

πλ1−1→ Xλ1−1 → ...
π1→ X1

π0→ X0

encountered in the proof of Proposition 8.6. Specifically, by induction, we will check that for m ≤ λ1, the
bundle⊗m−1

i=0 det(Qi)
ai is ample onXm provided a0 � a1 � a2 � · · · � am−1 � 0. Whenm = 0,X0 is

a point, so the statement is clear. Assume inductively that there exist integers b0 � b1 � · · · � bm−1 � 0
such that ⊗m−1

i=0 det(Qi)
bi is ample on Xm. Now Xm+1 → Xm is (the perfection of) a Grassmannian

fibration with universal quotient bundle Qm, so det(Qm) is relatively ample for this morphism. It follows

that det(Qm)⊗
(
⊗m−1
i=0 det(Qi)

bi
)N

is ample on Xm+1 for N � 0, which proves the inductive hypothesis,
and thus the claim.

For (ii), as all the Qi’s are killed by p, we first note the following: for each i, there is a natural map
On ' piW (O)n/pi+1W (On) → Qi of vector bundles on G̃rλ given by taking a local section f ∈ On

to the residue class of pif̃ for a suitable lift f̃ ∈ W (O)n. Moreover, these maps are surjective over Grλ.
Indeed, at a point x ∈ Grλ, the p-adic filtration on Qx coincides with the one coming from the Qi, i.e.,
Qi = piQ/pi+1Q over Grλ; see the proof of Lemma 7.13. As the map W (O)n → Q is surjective, also
piOn/pi+1On → piQ/pi+1Q is surjective, and hence the map On → Qi considered above is surjective at x.
This implies that ∧rk(Qi)(On)→ ∧rk(Qi)(Qi) = det(Qi) is surjective at x. We then find a section of det(Qi)

non-vanishing at x by picking a suitable general 1-dimensional subspace of L0 ⊂ ∧rk(Qi)(F⊕np ), and using
the induced map L0 ⊗ O

G̃rλ
→ ∧rk(Qi)(On)→ det(Qi) as a section. �

Next, we check that L is nef, even strictly nef.

Lemma 8.10. The line bundle L ∈ Pic(Gr≤λ) is strictly nef. In particular, L̃ ∈ Pic(G̃rλ) is nef.

Here “strictly nef” means that L has positive degree on any non-constant curve.

Proof. Fix a smooth connected projective curve C over k, and a non-constant map f : Cperf → Gr≤λ. Then
the generic point of Cperf maps into Grµ for a unique µ, in which case f factors through Gr≤µ by Lemma
7.9. Renaming µ as λ, we can assume that Cperf meets Grλ. Then the pullback of G̃rλ → Gr≤λ to Cperf is

18Cf. Lemma 3.6 for the meaning of this statement.
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proper and admits a generic section; by properness, the section extends to a map f̃ : Cperf → G̃rλ. In that
case, we need to prove that L̃ = ⊗idetO(Qi) is ample on Cperf .

By Lemma 8.9 (ii) (and the assumption that Cperf meets Grλ), detO(Qi)|Cperf
has a nonvanishing section,

and thus is effective. If their tensor product is not ample, then it follows that all detO(Qi) become trivial
over Cperf . On the other hand, Lemma 8.9 (i) guarantees that a weighted tensor product of the detO(Qi) is
ample (on G̃rλ, and thus on Cperf since f is non-constant), which is a contradiction. �

Now we can prove that L̃ is big.

Lemma 8.11. The line bundle L̃ is big, with exceptional locus contained in the boundary G̃rλ \Grλ.

We briefly recall the meaning the terms used above; see [Laz04, §1,2] and [Kee99, §0] for more. Fix a
line bundle N on a proper variety X over some field.

(1) We say that N is big if, for m� 0, we can write N⊗m ' A⊗E, where A is an ample line bundle,
and E is an effective line bundle.

(2) If N is nef, its exceptional locus is the Zariski closure of the union of all closed subvarieties Z ⊂ X
such that N |Z is not big.

In the perfect setting, we define these notions by passage to finite type models.

Proof. Recall that L̃ = ⊗λ1−1
i=0 det(Qi). Choose integers N � a0 � a1 � · · · � aλ1−1 � 0, and write

L̃⊗N =
(
⊗λ1−1
i=0 det(Qi)

ai
)
⊗
(
⊗λ1−1
i=0 det(Qi)

N−ai
)
.

By Lemma 8.9 (i), the first term on the right is ample, while Lemma 8.9 (ii) implies that the second term is
effective. It immediately follows that L̃⊗N , and hence L̃, is big. In fact, this factorisation combined with
Lemma 8.9 (ii) shows that for any x ∈ Grλ, we can write L̃⊗N = A(D), where A is ample, and D is an
effective divisor missing x. Thus, the exceptional locus E(L̃⊗N ) = E(L̃) misses x by [Kee99, Lemma 1.7]
and Lemma 8.10. Varying x then shows that E(L̃) ⊂ G̃rλ \Grλ. �

We now finish the promised proof:

Proof of Theorem 8.3. We will prove that Gr≤λ is representable, and L is ample on Gr≤λ, by induction on
λ. When λ is minimal, L = L̃ is ample on the Grassmannian Gr≤λ = G̃rλ. Assume inductively that L|Gr≤µ
is ample for all µ < λ.

First, we prove that L̃ is semiample on G̃rλ. Note that L̃ is nef by Lemma 8.10. Using Keel’s [Kee99,
Theorem 1.9], it is enough to check that L̃|

E(L̃)
is semiample. By Lemma 8.11, the locus E(L̃) is contained

in ψ−1(Gr≤λ \ Grλ) = ψ−1(∪µ<λGr≤µ). By induction, we know that L|Gr≤µ is ample for µ < λ. Using
[Kee99, Lemma 1.8], this shows L|∪µ<λGr≤µ is ample, so L̃|ψ−1(∪µ<λGr≤µ) is semiample, and thus L̃|

E(L̃)

is semiample.
Let φ : G̃rλ → X be the Stein factorization associated to L̃, so φ is a proper surjective perfectly finitely

presented map of perfectly finite presented k-schemes with geometrically connected fibres (and thus a v-
cover), and L̃⊗N = φ∗M for some ample M ∈ Pic(X) and N ≥ 1.19

We claim that
G̃rλ ×Gr≤λ G̃rλ = G̃rλ ×X G̃rλ (1)

as closed subschemes of G̃rλ×G̃rλ. Assuming this claim for the moment, we can finish the proof as follows.
Both X and Gr≤λ are v-sheaves, and thus are given by the coequalizer

G̃rλ ×X G̃rλ ⇒ G̃rλ ,

19For the construction, choose finite type models, apply the Stein factorization, and then go to the perfection.
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resp.
G̃rλ ×Gr≤λ G̃rλ ⇒ G̃rλ ,

as v-sheaves. As the equivalence relation agrees, we get Gr≤λ = X , on which L⊗N = M (by Lemma 6.1)
is ample, as wanted.

It remains to verify equation (1) above. As everything is perfect, and in particular reduced, this can be
checked on k-points, at least after enlarging k to make it algebraically closed.

Thus, let x, y ∈ G̃rλ(k) be any pair of points mapping to the same point of X . As the fibres of G̃rλ → X

are geometrically connected, it follows that there is a geometrically connected F ⊂ (G̃rλ)k contracted to a
point in X , such that x, y ∈ F . We can even assume that F is a curve. Note that L̃⊗N is trivial on F . We
want to show that F gets contracted under G̃rλ → Gr≤λ, as then (x, y) ∈ (G̃rλ ×Gr≤λ G̃rλ)(k). But as the
pullback of L⊗N to F is trivial, F gets contracted by Lemma 8.10.

Conversely, let x, y ∈ G̃rλ(k) be a pair of points mapping to the same point of Gr≤λ. The same arguments
apply, as the fibres of G̃rλ → Gr≤λ are geometrically connected by Lemma 7.13, and M is ample onX . �

9. AFFINE GRASSMANNIANS FOR GENERAL GROUPS

In this section, we deduce as corollaries several results concerning more general group schemes. Fix a
complete discrete valuation fieldK of characteristic 0 with perfect residue field k of characteristic p and ring
of integers OK . Moreover, let G be a reductive group over K, and let G be a smooth affine group scheme
over OK with generic fibre G.

For a k-algebra R, we define the relative Witt vectors WOK (R) as

WOK (R) = W (R)⊗W (k) OK ,

noting that there is a canonical inclusion W (k) ↪→ OK .

Definition 9.1. The (p-adic) loop group of G is the functor

LG : R 7→ G(WOK (R)[
1

p
])

on perfect k-algebras. The positive (p-adic) loop group of G is the functor

L+G : R 7→ G(WOK (R))

on perfect k-algebras.

Clearly, both functors take values in groups. As regards representability, we have the following well-
known result.

Proposition 9.2. The functor L+G is representable by an affine perfect scheme. The functor LG is a strict
ind-(perfect affine scheme), meaning that it can be written as an inductive limit of perfect affine schemes
along closed immersions.

Remark 9.3. One can define LG and L+G on general (non-perfect) k-algebras by the same formula. Then
L+G is already representable by a (non-perfect) affine scheme, but LG is not representable by a strict ind-
(affine scheme). The problem is that elements of WOK (R)[1

p ] do not admit a simple description as infinite
sequences of elements of R, if R is not perfect.

Proof. The first assertion is true for any affine scheme X over OK in place of G, cf. work of Greenberg,
[Gre61], and follows by observing that any element of WOK (R) can be written as an infinite sequence
of elements of R in such a way that addition and multiplication are given by polynomial functions. The
statement about LG can be reduced to the case of GLn by fixing a closed embedding G ↪→ GLn (which
induces a closed embedding LG ↪→ LGLn), where one gets representable subfunctors by restricting the
pole orders of g, g−1 ∈ GLn(WOK (R)[1

p ]). �
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Definition 9.4. The affine Grassmannian of G is the fpqc quotient

GrG = LG/L+G

on the category of perfect k-schemes.

One immediately verifies the following proposition, cf. also [Kre14, Theorem 5].

Proposition 9.5. If G = GLn, then for any perfect k-algebra R, GrGLn(R) is the set of finite projective
WOK (R)-modules M ⊂WOK (R)[1

p ]n such that M [1
p ] = WOK (R)[1

p ]n. �

Now one has the following result.

Corollary 9.6. The affine Grassmannian GrG can be written as an increasing union of perfections of
quasiprojective schemes over k, along closed immersions. If G is a parahoric group scheme, then GrG
can be written as an increasing union of perfections of projective schemes over k, along closed immersions.

Proof. Replacing G by ResOK/W (k)G, we may assume that OK = W (k). One can find a representation
G ↪→ GLn such that GLn/G is quasi-affine, cf. [PR08, §1.b]. In that case, the induced map GrG ↪→ GrGLn

is a locally closed embedding, cf. [Zhu14, Proposition 1.20] in the case considered here. This reduces
representability of GrG to the case of G = GLn. But here, the result follows from Theorem 8.3.

If G is parahoric, then [Zhu14, §1.5.2] shows that GrG is ind-proper, and thus (by ind-quasi projectivity)
ind-projective. �

One can also determine the connected components of GrG in case G is parahoric, using Kottwitz’ map

κ : LG(k̄)→ π1(G)GalK ,

defined for any algebraically closed field k̄ containing k.

Proposition 9.7 ([Zhu14, Proposition 1.21]). Assume that G is parahoric. There are canonical bijections
κ : π0(LG) ∼= π0(GrG)

∼=−→ π1(G)GalK , where GalK is the absolute Galois group of K. �

10. THE CENTRAL EXTENSION OF LG

In this section, let us fix G = SLn, n ≥ 2, over a complete discrete valuation ring OK of mixed charac-
teristic with perfect residue field k as above. We have the affine Grassmannian GrSLn .

Proposition 10.1. The affine Grassmannian GrSLn parametrizes finite projective WOK (R)-modules M ⊂
WOK (R)[1

p ]n such that M [1
p ] = WOK (R)[1

p ]n and detM = WOK (R). There is a natural ample line bundle
L on GrSLn given by

L = d̃etR(paWOK (R)n/M)

for any a� 0.

Proof. The first part is standard, cf. [Kre14, Theorem 5]. For the second part, note that

d̃etR : K(W (R) onR)→ PicZ(R)

induces by composition K(WOK (R) onR) → K(W (R) onR) (using that a perfect complex of WOK (R)-
modules stays perfect as a complex of W (R)-modules) a similar determinant map

d̃etR : K(WOK (R) onR)→ PicZ(R) .

Clearly, the line bundle L is independent of the choice of a� 0. �

The line bundle L is not equivariant under the action of LG. However, for any fixed element g ∈ LG(R),
the line bundles g∗L and L on GrSLn ⊗k R are locally on R isomorphic: Their difference is given by the
line bundle detR(paWOK (R)n/gWOK (R)n) on R for a� 0.
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Definition 10.2. Let L̃G be the functor on perfect k-algebras R given by

L̃G(R) = {(g, α) | g ∈ LG(R), α : g∗L ∼= L on GrSLn ⊗k R} .

With this definition, it is clear that L̃G acts on L.

Proposition 10.3. There is a short exact sequence

1→ Gm → L̃G→ LG→ 1

of Zariski sheaves (thus, of v-sheaves). This makes L̃G a central extension of LG by Gm.

Proof. The projection to LG is (g, α) 7→ g, and the embedding of Gm is given by α ∈ Gm 7→ (1, α). It
remains to see that the automorphism group scheme of L on GrSLn is given by Gm. Thus, we have to see
that

H0(GrSLn ⊗k R,Gm) = R× .

It is enough to see that
H0(GrSLn ⊗k R,O) = R .

But GrSLn is an increasing union of perfections of reduced projective k-schemes, which we can assume to
be connected by Proposition 9.7. �

On k-rational points, one can identify L̃G(k) with a more familiar object. We want to identify the central
extension

1→ k∗ → L̃G(k)→ SLn(K)→ 1 .

For any field F , Steinberg, [Ste62], has constructed a central extension (whose kernel was identified by
Matsumoto, [Mat69]),

1→ K2(F )→ S̃Ln(F )→ SLn(F )→ 1 .

Here, K2(F ) is the second K-group of F ; note that Milnor and Quillen K-theory give the same answer
in this range. Thus, K2(F ) is the quotient of the abelian group F ∗ ⊗Z F ∗ by the Steinberg relations
x⊗ (1− x) = 0 for all 0, 1 6= x ∈ F . One way to explain the relation of this extension to Quillen K-theory
is as follows. There is a natural map

BSLn(F )→ BGLn(F )→ BGL∞(F )→ (BGL∞(F ))+ = τ≥1K(F ) ,

where τ≥1K(F ) is the connected component of 0 of Quillen’sK-theory spaceK(F ) of F . This map factors
canonically over the simply connected cover τ≥2K(F ), as the (determinant) map SLn(F ) → π1K(F ) =
F× is trivial. Composing with τ≥2K(F )→ B2K2(F ), one gets a map

BSLn(F )→ B2K2(F ) ,

which (by passing to loops) is equivalent to a map of E1-groups SLn(F ) → BK2(F ), i.e. an extension of
SLn(F ) by K2(F ).

Proposition 10.4. The extension

1→ k∗ → L̃G(k)→ SLn(K)→ 1

is the pushout of Steinberg’s extension

1→ K2(K)→ ˜SLn(K)→ SLn(K)→ 1

along the tame Hilbert symbol map K2(K)→ K1(k) = k∗.
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Proof. The extension L̃G(k) is the group of pairs (g, α) of g ∈ SLn(K) and α : d̃etk(p
aOnK/gO

n
K) ∼= k,

for any a� 0. This can be encoded in the map of E1-groups SLn(K)→ Bk∗ sending g ∈ SLn(K) to the
1-dimensional k-vector space d̃etk(p

aOnK/gO
n
K). This can be refined to a map of E1-groups SLn(K) →

K(OK on k) by sending g to the perfect complex paOnK/gO
n
K .

The tame Hilbert symbol map K2(K) → K1(k) = k∗ can be defined as the boundary map in the long
exact sequence

. . .→ K2(OK)→ K2(K)→ K1(k)→ K1(OK)→ . . .

coming from the fibration sequenceK(OK on k)→ K(OK)→ K(K) and the identificationK(OK on k) ∼=
K(k). Recall that Steinberg’s extension comes from the map of E1-groups SLn(K) → ΩK(K) send-
ing any g ∈ SLn(K) to the induced loop in K(K). It remains to see that composing this map with the
map ΩK(K) → K(OK on k) from the fibration sequence induces the map of E1-groups SLn(K) →
K(OK on k) considered above. This follows from the constructions. �

Proposition 10.5. For any m ≥ 1, the representation

H0(GrSLn ,L
⊗m)

of L̃G is infinite-dimensional. More precisely, for any projective subscheme X ⊂ GrSLn , the restriction
map

H0(GrSLn ,L
⊗m)→ H0(X,L⊗m)

is surjective, and the right-hand side is infinite-dimensional once dimX > 0.

Proof. If X = (X0)perf is the perfection of a positive-dimensional projective scheme X0 over k with an
ample line bundle L0 on X0 with pullback L to X , then

H0(X,L) = lim−→
s 7→sp

H0(X0,L
⊗pk
0 )

is infinite-dimensional. If Y0 ⊂ X0 is a closed subscheme with perfection Y ⊂ X , then the restriction
map H0(X0,L

⊗pk) → H0(Y0,L
⊗pk |Y0) is surjective for k large enough (by Serre vanishing), and thus

H0(X,L)→ H0(Y,L) is surjective. Applying these observations, one gets the result; the n ≥ 2 assumption
ensures that GrSLn , and hence a suitable X ⊂ GrSLn , is not zero-dimensional. �

We end this section with several questions.

Question 10.6. (i) Can one construct an explicit nonzero section of L (or some tensor power) on
GrSLn? This would give rise to divisors on GrSLn , which are classically known as Theta-divisors.

(ii) What can be said about the representation H0(GrSLn ,L
⊗m) of L̃G? Is it (topologically) irre-

ducible? Classically, these representations are important in Kac-Moody theory and the Verlinde
formula, cf. e.g. [BL94]. Note that here, the representation is much bigger, as already the space of
sections on any finite-dimensional part is infinite-dimensional.

(iii) Is Pic(GrSLn) = Z[1
p ] ·L? Note that as GrSLn is a functor on perfect schemes, its Picard group is a

Z[1
p ]-module.

(iv) Let G be a general split, simple and simply connected group. Is Pic(GrG) ∼= Z[1
p ] · LG, with a

specified generator LG? One can get some multiple of the primitive line bundle via pullback from
SLn, and the line bundle coming from the adjoint representation of G should be the 2h∨-th power
of LG, where h∨ is the dual Coxeter number. E.g., if G = E8, the primitive line bundle should
be a 60-th root of the line bundle coming from the adjoint representation of E8. Faltings, [Fal03],
constructed the primitive line bundle by constructing natural divisors (on the corresponding affine
flag variety), related to orbits under G(k[t−1]) in the equal characteristic case; this approach seems
to break down in mixed characteristic.
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(v) Steinberg’s extension exists for a general split, simple and simply connected group G, cf. e.g.
[BD01]. Can one compare it with the central extension of LG corresponding to the primitive line
bundle?

(vi) Is there a finite-type structure on GrSLn , of some sort? Presumably, such a structure would give rise
to a subrepresentation of H0(GrSLn ,L

⊗m), so properties of this representation (such as irreducibil-
ity) may be relevant to this question.

11. h-DESCENT FOR THE DERIVED CATEGORY OF QUASI-COHERENT COMPLEXES

In this section, we investigate quasi-coherent sheaf theory on perfect schemes more thoroughly; these
results complement those in §4 by extending them to the derived category (and, in fact, give new proofs
of the results in §4 that do not rely on projective methods like the ones in Lemma 4.6), but are not used
elsewhere in the paper. For convenience, we define:

Definition 11.1. The h-topology on Perf is the topology generated by declaring perfectly finitely presented
v-covers to be covers; thus, the perfection of an h-cover in Sch/Fp gives an h-cover in Perf , and any h-cover
in Perf is of this form, up to refinements (by Lemma 2.12 and Lemma 3.12).

First, recall the warning in Remark 4.3: it is difficult to extend the h-descent results for vector bundles in
Perf to a larger class of quasi-coherent sheaves, as even flat quasi-coherent sheaves fail h-descent. Never-
theless, it turns out that this problem is specific to the abelian world, and disappears if we pass directly to
the derived category. More precisely, in the language of [Lur09], one has the following descent results:

Theorem 11.2. Regard Dqc(−), Perf(−), etc. as presheaves of spaces on Perf . Then:

(1) The functor X 7→ Dqc(X) gives an h-sheaf of spaces on Perf .
(2) The functor X 7→ Perf(X) gives a hypercomplete20 v-sheaf of spaces on Perf . The same applies to

Perf(Wn(X)), Perf(W (X)) and Perf(W (X) onX).
(3) Let Perf fp ⊂ Perf be the subcategory of all objects, and only perfectly finitely presented morphisms;

this still carries the h-topology. The association X 7→ Db
qc(X) is functorial in X ∈ Perf fp, and

defines an h-sheaf.
(4) Let k be a perfect field, or more generally the perfection of a regular Fp-algebra of finite Krull

dimension, and give Perf fp
/k the induced h-topology. Then the functor X 7→ Dqc(X) is a hypercom-

plete h-sheaf on Perf fp
/k.

Remark 11.3. In Theorem 11.2 (4), the same result follows formally if k is the perfection of an algebra
R0 which can be written as a quotient of a regular Fp-algebra of finite Krull dimension. Rings with this
property include noetherian F -finite rings (by [Gab04, Remark 13.6]), and complete noetherian local rings
(by the Cohen structure theorem).

Remark 11.4. Theorem 11.2 (2) is a close analogue of h-descent for perfect complexes in the setting of
derived schemes (see [HLP14] as well as Theorem 11.12 below); here the h-topology on derived schemes
is defined by passing to underlying classical schemes. However, the result above is stronger: in the derived
setting, the functor X 7→ Perf(X) does not give a hypercomplete sheaf. Indeed, if X is any derived
scheme with classical truncation τ(X), then the constant simplicial derived scheme with value τ(X) is a
h-hypercover of X , but Perf(X) 6= Perf(τ(X)) unless X is classical. In fact, even if X is classical, but not
reduced, then the same argument applies to Xred ↪→ X .

20The notion of a hypercomplete sheaf is specific to working in the ∞-categorical setting. Roughly speaking, a sheaf in the
∞-categorical setup is only required to satisfy descent along Cech covers, while a hypersheaf is required to satisfy descent along
hypercovers. If the sheaf takes on n-truncated values for some finite integer n, then the notions coincide.
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Remark 11.5. Theorem 11.2 (4) gives a fully faithful inclusion Db
qc(X) ⊂ Db(Perf fp

/X,h,O) for any X ∈
Perf fp

/k. This leads to a new numerical invariant of bounded complexes K ∈ Db
qc(X) as follows: define the

h-amplitude of such aK to be the amplitude ofK ∈ Db(Perf fp
/X,h,O). For example, any flat quasi-coherent

OX -module has h-amplitude 0. On the other hand, there exist non-discrete complexes in Db
qc(X) with

h-amplitude 0: the complex Rj∗OU in Remark 4.3 has h-amplitude 0 as it becomes a flat quasi-coherent
module after an h-cover. It might be interesting to study this invariant further in the context of local algebra.

The proof of Theorem 11.2 takes up the rest of §11. We begin in §11.1 by proving that any perfect sim-
plicial commutative ring is discrete. In §11.2, we study a property of maps of E∞-rings singled out recently
by Akhil Mathew; the key result here is Proposition 11.25, which shows that h-covers give descendable
maps on cohomology (there is also a partial converse in Theorem 11.26). The results in §11.1 and §11.2 are
then applied in §11.3 to prove Theorem 11.2 (1) - (3). Theorem 11.2 (4) is then established in §11.4; the
key result here is Proposition 11.31: perfectly finitely presented rings have finite global dimension. Finally,
in §11.5, we use the discreteness of perfect simplicial commutative rings proven in §11.1 to improve and
reprove an h-descent theorem for Witt vector cohomology from [BBE07].

11.1. Discreteness of perfect simplicial commutative rings. We work in the setting of derived algebraic
geometry given by simplicial commutative rings over Fp. Note that any such ring carries a canonical Frobe-
nius endomorphism, so it makes sense to talk about perfect simplicial commutative Fp-algebras. Our basic
observation is that Frobenius kills higher homotopy:

Proposition 11.6. If A is perfect simplicial commtuative Fp-algebra, then A is discrete.

Proof. Fix an integer i > 0, and set Ai = SymFp(Fp[i]). As an element of πi(A) is induced from the
canonical element in πi(Ai) along a map Ai → A, it suffices to show that Frob kills πi(Ai). For i = 1,
we can write this ring as Fp ⊗LFp[x] Fp, which allows us to identify π1(A1) ' (x)/(x2) via a standard
resolution. It is then clear that Frob kills π1(A1). In general, we proceed by induction using the formula
Ai+1 = Fp ⊗LAi Fp to get an identification πi+1(Ai+1) ' πi+1(Fp ×Ai Fp) ' πi(Ai) that is compatible
with Frobenius. �

Remark 11.7. The analogous cosimplicial statement is false: if X is an ordinary elliptic curve over Fp and
Y = Xperf , then RΓ(Y,OY ) is a non-discrete complex that can be represented by a cosimplicial perfect
Fp-algebra. Indeed, the ordinarity ensures that H1(Y,OY ) 6= 0, while the desired cosimplicial presentation
can be obtained via any Cech complex associated to an affine open cover.

Remark 11.8. Proposition 11.6 can also be deduced from the following more general and more precise
assertion, pointed out by Gabber: ifA is a simplicial commutative ring, then the multiplicationm : A×A→
A induces the 0 map on πi for i > 0. Gabber suggested an explicit simplicial proof, but we give a different
argument here. To show this statement for all A, it is enough to check the universal case A = Sym(K)
for K = (Z ⊕ Z)[i] with i > 0. For any (free) simplicial abelian group K, there is a natural commutative
diagram (of simplicial sets)

K ×K //

��

K ⊗Z K

��
Sym(K)× Sym(K) // Sym(K)⊗Z Sym(K) // Sym(K)

with the composite K ×K → Sym(K) being induced by the multiplication map. For K = (Z⊕Z)[i] with
i > 0, one has K ⊗Z K = Z4[2i], so πi(K ⊗Z K) = 0. The diagram then shows that the multiplication
map A×A→ A induces the 0 map πi(K ×K) ' πi(A×A)→ πi(A), which proves the claim.
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Passage to the perfection makes sense in the world of simplicial commutative Fp-algebras, and is local
for the étale topology. Consequently, there is a perfection functor X 7→ Xperf on derived Fp-schemes. The
previous result then translates to:

Corollary 11.9. Let X be a derived Fp-scheme with underlying scheme τ(X) ↪→ X . Then τ(X)perf '
Xperf . In particular, Xperf is classical.

Proof. The dual statement is that A→ π0(A) is an isomorphism after perfection for any simplicial commu-
tative Fp-algebra A, which was shown in Proposition 11.6. �

One consequence of the discreteness of perfect simplicial commutative Fp-algebras is the coincidence of
homotopy-colimits with naive ones:

Lemma 11.10. The collection of perfect rings is closed under colimits in all Fp-algebras. Moreover, any
such colimit is automatically a homotopy-colimit in simplicial commutative Fp-algebras. In particular, the
perfection functor A 7→ Aperf is cocontinuous on simplicial commutative Fp-algebras.

Proof. Filtered colimits are easy to handle in all statements, so we reduce to cofibre coproducts. So say
C ← A → B is a diagram of Fp-algebras. For the first statement, we must show that B ⊗A C is perfect if
A, B, and C are so. The Frobenius map on the tensor product is induced by passage to colimits from the
Frobenius endomorphism of the diagram C ← A → B, so the claim is clear. For the second statement,
by the same argument, the simplicial commutative A-algebra B ⊗LA C is perfect, and hence discrete by
Proposition 11.6. The last statement follows easily from these considerations. �

Remark 11.11. This fails if B and C are perfect, but A is not. For example, set A to be an imperfect field,
and B = C = Aperf . Then B ⊗A C has non-trivial nilpotents.

11.2. Descendable maps of E∞-rings. The goal of this section21 is to prove the following theorem, which
gives derived h-descent for quasi-coherent complexes on noetherian schemes.

Theorem 11.12. Let f : X → S be an h-cover of noetherian schemes with derived Cech nerveX•/Y . Then
Dqc(S) ' limDqc(X

•/S).

Remark 11.13. Theorem 11.12 applies to all quasi-coherent complexes, and thus specializes to a similar
descent result for perfect or pseudo-coherent complexes (since the property of being perfect or pseudo-
coherent can be detected22 after pullback along an h-cover for noetherian schemes); the latter was proven
earlier in [HLP14, §4] for all noetherian derived schemes. However, Theorem 11.12 does not extend to
derived schemes. Indeed, let A = SymC(C[2]). Then A → π0(A) gives an h-cover of derived schemes.
If one had derived h-descent in this setting, then the base change functor D(A) → D(π0(A)) would be
conservative. However, K = A[u−1], where u ∈ π2(A) is the generator, satisfies: (a) K 6= 0, and (b)
K ⊗A π0(A) = 0.

To prove this derived h-descent result for complexes, we will use a property of morphisms of rings
recently singled out by Akhil Mathew [Mat14] that implies descent for complexes. In fact, it is this property,
and not Theorem 11.12, that plays an important role in the sequel.

Fix a stable homotopy theory C in the sense of [Mat14], i.e., C is a presentable symmetric monoidal stable
∞-category where the ⊗-product commutes with colimits in each variable; the main relevant example for
us will be C = Dqc(X) for a qcqs scheme X . Mathew studied the following class of maps in C:

21In this section, we depart from our standing conventions, and go “fully” derived. Thus, for an E∞-ring A (which could be
a discrete ring), the notation Mod(A) refers to the stable∞-category of A-module spectra (and coincides with the usual derived
category D(A) when A is discrete). Likewise, all tensor products are always derived. The one exception is that “schemes” refers
to ordinary schemes; when we need derived schemes, we say so.

22For detection of pseudo-coherence after passage to an h-cover, one argues as in Lemma 11.30 below.
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Definition 11.14. A map A → B in CAlg(C) is descendable if {A} → {Tot≤nB
•} is a pro-isomorphism

of A-modules, where B• is the derived Cech nerve of A→ B.

A list of examples coming up in algebraic geometry is given in Lemma 11.23 below (see also Example
11.19). Before studying this notion further, we record the main consequence of interest to us.

Theorem 11.15 ([Mat14, Proposition 3.21]). If C is a stable homotopy theory, andA→ B is a descendable
map in CAlg(C) with Cech nerve B•, then A ' R limB•, and ModC(A) ' lim ModC(B•).

Remark 11.16. Assume C = D(Ab) is the derived category of abelian groups. Fix a map A → B of
discrete rings with Cech nerve B•. If A → B is descendable, then A ' R limB• by Theorem 11.15. It is
tempting to guess the converse is also true. However, this is false: if A = Zp and B = Fp, then A → B is
not descendable (as it is not so after inverting p), but A ' R limB• by [Car08, Theorem 4.4].

In order to use this notion, we record some basic stability properties.

Lemma 11.17. Let A→ B → C be composable maps in CAlg(C).
(1) If A→ B and B → C are descendable, so is A→ C.
(2) If A→ C is descendable, so is A→ B.

Proof. This is [Mat14, Proposition 3.23]. �

In applications, it will be useful to use the following more quantitative version:

Definition 11.18. A mapA→ B in CAlg(C) is descendable of index≤ m ifF⊗Am → A is null-homotopic,
where F is the fibre of A→ B.

We give one example first.

Example 11.19. Let A = Z[a, b, c, d]/(ab + cd − 1), and B = A[ 1
a ] × A[1

c ]. Then A → B is faithfully
flat, so Q := B/A is flat. Let F ' Q[−1] be the fibre of A→ B, so F⊗m = Q⊗m[−m] is concentrated in
degree m. Thus, the map F⊗m → A is classified by an element of ExtmA (Q⊗m, A). As A is regular (it is
smooth over Z) of dimension 4, it has global dimension 4, so the relevant Ext-group vanishes for m ≥ 5,
and hence A → B is descendable of index ≤ 5. More generally, the same argument shows that if A is any
Gorenstein (noetherian) ring of dimension d, and A → B is faithfully flat, then A → B is descendable of
index ≤ d+ 1: indeed, A has injective dimension d as an A-module.

We begin our analysis by observing that this notion is compatible with the previous one:

Lemma 11.20. A map A→ B in CAlg(C) is descendable if and only if it is descendable of index ≤ m for
somem ≥ 0. Moreover, any lax-monoidal cocontinuous functor preserves the property of being descendable
of index ≤ m.

Proof. Let F be the fibre of A → B. Assume first that A → B is descendable. Then the map F → A
becomes null-homotopic after applying − ⊗A B. By [Mat14, Proposition 3.26], it follows that the m-fold
composition

F⊗Am → F⊗Am−1 → · · · → F → A

is null-homotopic for some large m, so A → B is descendable of index ≤ m. Conversely, assume A → B
is descendable of index≤ m, so F⊗Am → A is null-homotopic. IfB• is the Cech nerve ofA→ B, then the
fibre of the map {A} → {Tot≤nB

•} of pro-objects is identified with {F⊗An}, where the transition maps
multiply the first two factors; see [Car08, Corollary 6.7]. The assumption that F⊗Am → A is null-homotopic
then implies that this fibre is pro-zero: the m-fold transition map F⊗A(m+i) → F⊗Ai is null-homotopic for
each i ∈ N; this proves the claim.

Let Φ : C → D be a lax-monoidal cocontinuous functor between stable homotopy theories, and assume
that A → B in CAlg(C) is descendable of index ≤ m; so, if F is the fibre, then F⊗Am → A is null-
homotopic in ModA. As Φ is exact, Φ(F ) is the fibre of Φ(A) → Φ(B). As Φ is lax-monoidal and
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cocontinuous, one checks, using the bar-resolution construction of the tensor product ofA-modules, that the
induced functor ModA → ModΦ(A) is also lax-monoidal. This gives, for each i ∈ N, natural maps

Φ(F )⊗Φ(A)i → Φ(F⊗Ai)

whose composition with the canonical map Φ(F⊗Ai) → Φ(A) is the canonical map Φ(F )⊗Φ(A)i → Φ(A).
Specializing to i = m then shows that the canonical map Φ(F )⊗Φ(A)m → Φ(A) is null-homotopic, proving
the claim. �

An arbitrary filtered colimit of descendable maps is not descendable in general:

Example 11.21. If R is a discrete ring and I ⊂ R is a locally nilpotent ideal that is not nilpotent (for
example: R = C[x1, x2, x3, . . . ]/(x1, x

2
2, x

3
3, . . . ), and I = (x1, x2, x3, . . . )), then R → R/I is not de-

scendable: for any m, the multiplication map I⊗m → R has image Im, and is thus non-zero by hypothesis.
However, we can write R/I = colimR/J as a filtered colimit of R-algebras indexed by finitely generated
subideals J ⊂ I . Each such J is nilpotent, so R → R/J is descendable (by Lemma 11.23 below). Thus,
descendability is not stable under filtered colimits.

Nevertheless, it turns out that filtered colimits of descendable maps of bounded index are descendable,
provided the indexing category is not too large:

Lemma 11.22. Let I be a filtered category such that inverse limits over Iopp have finite cohomological
dimension (in spectra). Fix A ∈ CAlg(C), and an I-indexed system {Ai} in CAlg(C)A/. If each A → Ai
is descendable of index ≤ m for some m independent of i, then A→ A∞ = colimAi is descendable.

Proof. We give a proof when I = N (which is the only relevant case in the sequel), leaving the generaliza-
tion to general I to the reader. Let Fi be the fibre of A→ Ai, so F⊗mi → A is null-homotopic for all i. Let
F = colimFi be the fibre of A→ A∞. Then one knows

Map(F,A) ' lim Map(Fi, A),

which gives a short exact sequence

0→ R1 limπ1Map(Fi, A)→ π0Map(F,A)→ limπ0(Map(Fi, A))→ 0.

The assumption tells us that the map F⊗m → A lies in the subspace

R1 limπ1Map(F⊗mi , A) ⊂ π0Map(F⊗m, A).

It remains to observe that the map on π0 induced by the obvious map

Map(F⊗m, A)×Map(F⊗m, A)→ Map(F⊗2m, A)

kills the R1 lim terms (as it pairs them to an R2 lim, which always vanishes for N-indexed towers). �

We now collect some examples of descendable maps from algebraic geometry:

Lemma 11.23. Fix a map f : X → Y of qcqs schemes.
(1) If {ji : Ui → X} is a finite open cover of X by qc opens, then OX →

∏
iRji,∗OUi is descendable

in Dqc(X).
(2) If f is fppf, then OY → Rf∗OX is descendable in Dqc(Y ).
(3) If I ⊂ OX is nilpotent and quasi-coherent, then OX → OX/I is descendable in Dqc(X).
(4) If A→ B is descendable in Dqc(X), then Rf∗A→ Rf∗B is descendable in Dqc(Y ).

Proof. For (1), we may write Dqc(X) as a finite limit of categories of the form Dqc(Ui1 ∩ ... ∩ Uin). By
[Mat14, Proposition 3.24], we reduce to the case where X = Ui for some i, whence the claim is clear
by Lemma 11.17 (2). For (2), using (1), as lax-monoidal cocontinuous functors preserve descendability,
we reduce to the case where X and Y are affine, and then it follows from [Mat14, Proposition 3.31]; (3)
similarly follows from [Mat14, Proposition 3.33]. (4) again follows from the preservation of descendability
under lax-monoidal cocontinuous functors. �
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Remark 11.24. Mathew shows that if A → B is a faithfully flat map of discrete rings, and B is countably
generated as an A-algebra, then A → B is descendable. We do not know if the countable generation
assumption is necessary.

The main “new” class of descendable morphisms relevant for us is:

Proposition 11.25. Let f : X → Y be an h-cover of noetherian schemes. Then OY → Rf∗OX is descend-
able.

The proof below is adapted from an argument due to Akhil Mathew for the case of finite morphisms; our
previous argument relied on almost mathematics and was restricted to perfect schemes.

Proof. We freely use Lemma 11.17 (2) to replace f by further covers when necessary. Using Lemma 11.23,
it is enough to handle the case where f is proper surjective. Assume that f is of inductive level ≤ n for
some n ≥ 0 (by Proposition 2.6). We prove the claim by induction on n. If n = 0, then, after refinements,
f factors as a composition of an fppf map and a nilpotent closed immersion, so the claim follows from
Lemma 11.23 (2), (3), (4) and Lemma 11.17 (1). In general, after refinements, we have a factorization
X → X ′ → Y ′ → Y where X → X ′ is proper and fppf, Y ′ → Y is a nilpotent closed immersion, and
X ′ → Y ′ is an isomorphism outside a closed subset Z ′ ⊂ Y ′ such thatX ′×Y ′ Z ′ → Z ′ is of inductive level
≤ n− 1. By the argument used in the n = 0 case, it is enough to prove the statement for X ′ → Y ′. We now
rename X = X ′, Y = Y ′, and Z = Z ′ for convenience. By Lemma 11.23 (1), (3) and (4), the property of
descendability can be checked locally on Y , so we may assume Y = Spec(A) is affine. Write U = Y − Z,
and let I ⊂ A be an ideal defining the closed subset Z ⊂ Y . Then the fibre F of OY → Rf∗OX is a
OY /I

n-complex for n� 0; here we use that F has coherent cohomology groups, is bounded, and is trivial
over Spec(A) − V (I) by flat base change for coherent cohomology. After replacing I with this power,
we assume F admits the structure of an OY /I-complex. By induction, we know that OZ → Rf∗Of−1Z is
descendable. So there is some k � 0 such that the composite F⊗k → OY → OZ is null-homotopic, and
hence that F⊗k → OY factors as F⊗k → I → OY . Then the canonical map F⊗k+1 → OY factors as

F⊗k+1 ' F⊗k ⊗ F a→ I ⊗ F b→ F
c→ OY

where a is induced from the previous factorization, b is the multiplication map, and c is the canonical
map. The map b is null-homotopic as F admits an OY /I-structure, so the above composition is also null-
homotopic. �

Proof of Theorem 11.12. We first record some generalities. Let F := Dqc(−), viewed as a presheaf of
spaces on derived schemes. In this proof, we will say that a map f : X → Y of (always qcqs) derived
schemes is good if f is of universal F-descent, i.e., that F(Y ) ' limF(X•/Y ), and the same is true after
arbitrary base change on Y . Then, by Lemma 2.10, we have: (a) the class of good maps is stable under
composition and base change, and (b) if a composite X → Y → Z is good, then so is Y → Z. Moreover,
if f : X → Y is an affine map with OY → Rf∗OX is descendable, then f is good by Theorem 11.15.

Now let f : X → S be an h-cover of noetherian schemes. We must check that f is good. This can be
checked locally on S, so we may assume that S is affine. Choose a Zariski cover j : U → X such that U
is affine, and set g : U → S. Then g is affine and an h-cover of noetherian schemes, so OS → Rg∗OU
is descendable, and thus g is good by the last sentence of the previous paragraph. It then follows that f is
good, proving the claim. �

Using Proposition 11.25, one can classify descendable maps in cases of interest in algebraic geometry:

Theorem 11.26. Let A → B be a finitely presented map of noetherian discrete rings. Then Spec(B) →
Spec(A) is an h-cover if and only if A→ B is descendable.

Proof. The “only if” direction follows from Proposition 11.25. Conversely, assume that A → B is a de-
scendable map of connective E∞-rings. We will check that Spec(B)→ Spec(A) is a topological quotient;
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this suffices to prove the claim by the well-known (see [Voe96, §3]) characterization of h-covers of noether-
ian schemes as universal topological quotients (and the stability of descendability under base change). To
prove this, note that, by [BHL15, Theorem 1.10], the poset of quasi-compact open subsets of Spec(A) can
be identified with the∞-category CA of eventually connective compact localizations of A in CAlg(D(A)),
i.e., CA ⊂ CAlg(D(A)) is the full subcategory of those C which are bounded above as A-complexes,
compact as commutative A-algebras, and satisfy C ⊗A C ' C via the multiplication map. If we write
B• for the Cech nerve of A → B, then descendability gives an identification D(A) ' limD(B•). This
equivalence is symmetric monoidal, and thus induces CAlg(D(A)) ' lim CAlg(D(B•)). It is easy to see23

that this identification induces an equivalence CA ' limCB• . Now say V ⊂ Spec(A) is a subset whose
inverse image U ⊂ Spec(B) is a quasi-compact open; we must check that V is a quasi-compact open.
By construction, we see that p−1

1 (U) = p−1
2 (U) as quasi-compact open subsets of Spec(B ⊗A B), where

p1, p2 : Spec(B ⊗A B)→ Spec(B) are the two projection maps. But then U defines an object of limCB• ,
which thus comes from one in CA, i.e., U is the inverse image of some quasi-compact open W ⊂ Spec(A).
Since Spec(B)→ Spec(A) is surjective, it follows that W = V , so V is a quasi-compact open subset. �

11.3. h-descent for complexes. We now discuss quasi-coherent complexes in the h-topology on perfect
schemes; here the latter is defined as the topology generated by perfections of fppf covers and finitely
presented proper surjections. The key descent result is:

Theorem 11.27. Let f : X → Y be an h-cover in Perf . Then OY → Rf∗OX is descendable.

Proof. By approximation, devissage, and (derived) base change, it is enough to prove the following: if
f0 : X0 → Y0 is either an fppf or a proper surjective map of noetherian schemes, then the map f : X → Y
on perfections induces a descendable map OY → Rf∗OX .

For the fppf case: we know that OY0 → Rf0,∗OY0 is descendable of some index ≤ m by Lemma 11.23
(2). Write Xn → X0 and Yn → Y0 for the n-fold Frobenius maps, and let gn : Wn := Xn ×Yn Y → Y be
the base change. Then we know that X ' limWn. Now each OY → Rgn,∗OWn is descendable of index
≤ m by base change. Since m is independent of n, the claim follows from Lemma 11.22.

For the proper case, one argues exactly as in the fppf case using Proposition 11.25 instead of Lemma
11.23 (2); the only difference is that the fibre product defining the scheme Wn appearing above must be
replaced with the derived fibre product (to get base change for the index of descendability); by Proposition
11.6, the limit limWn is still simply X , so the previous argument goes through. �

We can now prove most of Theorem 11.2:

Proof of Theorem 11.2 (1), (2). Part (1) is proven exactly as Theorem 11.12 using Theorem 11.27 instead
of Proposition 11.25.

For (2), first note the functor X 7→ Perf(X) is an h-sheaf of spaces by (1). Indeed, if f : X → S is
an h-cover in Perf with Cech nerve X•/S → S, then (1) gives Dqc(S) ' limDqc(X

•/S). Here the limit
on the right is also a limit of symmetric monoidal∞-categories, so passage to the dualizable objects shows
Perf(S) ' lim Perf(X•/S), i.e., Perf(−) is an h-sheaf of spaces. Now, for integers a ≤ b and a scheme
X , let Perf [a,b](X) ⊂ Perf(X) be the full∞-category spanned by perfect complexes with Tor-amplitude
contained in [a, b], i.e., those perfect complexes K that can, locally on X , be represented by a complex of
finite projective modules located in degrees between a and b. Then one can check:

23The only non-trivial bit is to check descent of compactness, i.e., show: given C ∈ CAlg(D(A)) satisfying C ⊗A C ' C, if
C ⊗A B is compact in CAlg(D(B)), then C is compact in CAlg(D(A)). For this, one first notes that the functor MapA(C,−)
on CAlg(D(A)) takes on discrete values since C ⊗A C ' C: in fact, the values are always contractible or empty. The same also
applies to C ⊗A Bi ∈ CAlg(D(Bi)) for all i. The descent of compactness now follows as totalization of cosimplicial n-truncated
spaces commute with filtered colimits for any finite n.
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(1) Perf [a,b](−) gives a presheaf of (b − a)-truncated spaces on Perf: for any X ∈ Perf and any two
K,L ∈ Perf [a,b](X),

Map(K,L) := τ≤0RHom(K,L) ' τ≤0RΓ(X,K∨ ⊗ L),

and the latter space is (b− a)-truncated since K∨ ⊗ L ∈ D≥−b+aqc (X).
(2) Perf(−) = colim Perf [−n,n](−) as presheaves on Perf .
(3) Membership in Perf [a,b](X) ⊂ Perf(X) can be detected v-locally. In fact, one has a stronger

statement: if K ∈ Perf(A) for a ring A, then K ∈ Perf [a,b](A) provided K ⊗A k ∈ D[a,b](k) for
every residue field k of A. To see this, one can reduce to A being noetherian (by (4) below) and
local, and then use minimal free resolutions.

(4) Both Perf(−) and Perf [a,b](−) commute with filtered colimits of rings.

Since Perf(−) is an h-sheaf on Perf , it follows from (a) and (c) that Perf [a,b](−) gives an h-sheaf of
truncated spaces on Perf as well. By (d) and Lemma 2.12, it follows that Perf [a,b](−) is a v-sheaf of
truncated spaces; here we use that totalizations of truncated cosimplicial spaces commutes with filtered
colimits. Also, by truncatedness, this v-sheaf is automatically hypercomplete. In other words, if X• → S

is a v-hypercover in Perf , then Perf [a,b](S) ' lim Perf [a,b](X•). By working locally on S and calculating
Map(OS ,OS) using this equivalence, it follows that Perf(S) → lim Perf(X•) is fully faithful as well.
Finally, if K• ∈ lim Perf(X•), then there exist integers a ≤ b such that K0 ∈ Perf [a,b](X0) ⊂ Perf(X0).
But then Ki ∈ Perf [a,b](Xi) for each i since Ki is a pullback of K0 along some simplicial structure map
Xi → X0. Thus, K ∈ lim Perf [a,b](X•) ' Perf [a,b](S) ⊂ Perf(S); this proves (2) for Perf(X). It is then
easy to deduce the same result for Perf(Wn(X)), Perf(W (X)) and Perf(W (X) onX). �

We end by noting a corollary (or, really, an equivalent form) of this h-descent result, extending Lemma
4.6 to the derived category:

Corollary 11.28. Let f : X → Y be a proper surjective finitely presented map in Sch/Fp which is an
isomorphism over a quasi-compact open U ⊂ Y . If Z ⊂ Y is the complement of U andE := f−1(Z) ⊂ X ,
then pullback induces an equivalence of∞-categories

Dqc(Yperf) ' Dqc(Xperf)×Dqc(Eperf) Dqc(Zperf),

and thus a similar statement for the corresponding∞-category of perfect complexes.

Proof. This follows from Theorem 11.2 (1) and Theorem 2.9 applied to F (X) = Dqc(Xperf); the statement
about perfect complexes follows immediately by passage to dualizable objects. �

Proof of Theorem 11.2 (3). Next, we establish part (3) of Theorem 11.2, i.e. X 7→ Db
qc(X) is functorial

in X ∈ Perf fp, and gives an h-sheaf of spaces. Note that the functoriality is a bit surprising from the
perspective of “classical” algebraic geometry: bounded complexes often become unbounded after pullback
along non-flat maps. This phenomenon does not occur in the perfect setting thanks to the following result.

Proposition 11.29. Let R → S be a perfectly finitely presented map of perfect Fp-algebras. Then S is of
finite Tor-dimension over R.

Proof. We will show that if S is the perfection of R[X1, . . . , Xn]/(f1, . . . , fm), then the Tor-dimension of
S over R is bounded by m. To see this, we may replace R by the perfection of R[X1, . . . , Xn] to assume
n = 0. Moreover, by induction, we may assume that m = 1. Then S = R/f1/p∞R, so it is enough to see
that f1/p∞R is flat. But the proof of Lemma 3.16 shows that

f1/p∞R = colim
f1/pn−1/pn+1

R ,

which is a filtered colimit of flat R-modules, and thus flat. �
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This directly implies that X 7→ Db
qc(X) is functorial in X ∈ Perf fp. To see that it is an h-sheaf, it is

enough to observe that we already have h-descent for Dqc(X), and that the following lemma holds true.

Lemma 11.30. Let f : X → Y be an h-cover in Perf . Given K ∈ Dqc(Y ), if f∗K ∈ Dqc(X) is bounded,
so is K.

Proof. This is clear if f is the perfection of an fppf map. Thus, by devissage, it is enough to prove this
for f being the perfection of a proper surjective map of inductive level ≤ n. We work by induction on n.
If n = 0, then, after refinements, f is the perfection of an fppf map, so the claim is clear. For general n,
we thus reduce to the case where f is perfectly proper surjective, an isomorphism outside a closed subset
Z ⊂ Y with preimage E ⊂ X , and the restriction fZ : E → Z of f is of inductive level ≤ n− 1. Then we
have a pullback diagram

OY

��

// Rf∗OX

��
OZ // Rf∗OE .

Tensoring this diagram with K, and using the projection formula, gives a pullback diagram

K

��

// Rf∗(f
∗K)

��
K|Z // Rf∗(f

∗K|E) ' RfZ,∗f∗Z(K|Z).

Now the terms on the right are bounded since f∗K is bounded (as derived pushforward along qcqs maps
has finite cohomological dimension). By induction applied to fZ , the complex K|Z is also bounded. The
preceding square then shows that K is bounded. �

�

11.4. h-hyperdescent for complexes. In this section, we establish hyperdescent for quasi-coherent com-
plexes, i.e., prove Theorem 11.2 (4). So fix a ring k that is the perfection of a regular Fp-algebra of finite
Krull dimension. We start by observing a general result on finite global dimension in this setup.

Proposition 11.31. Let R be a perfectly finitely presented k-algebra. Then R has finite global dimension,
i.e., there exists some positive integer N such that each R-module has projective dimension ≤ N .

Proof. Choose a perfect polynomial ring P over k equipped with a surjection P → R. Then R ⊗LP R ' R
by Lemma 11.10. Thus, for any R-module M , we have

M 'M ⊗LR (R⊗LP R) 'M ⊗LP R.
Thus, it suffices to prove the result for P , which is the perfection of a regular Fp-algebra P0 of finite Krull
dimension. Let d = dim(P ). Write P0 → Pn for the n-fold Frobenius map, so there are natural P0-algebra
maps Pn → Pn+1 given by Frobenius, and P ' colimPn. Now, for any P -module M , we can regard M as
a Pn-module via restriction along Pn → P , and write Fn := M ⊗Pn P for its base change back to P . Then
we have natural maps Fn →M compatibly in n, and this leads to

M ' colimFn.

Now each Fn has projective dimension ≤ d since Pn is a regular ring of dimension d, and Pn → P is flat.
Writing an N-indexed colimit as the cone of a map between direct sums then shows that M has projective
dimension ≤ d+ 1, so setting N = d+ 1 solves the problem. �

Remark 11.32. Proposition 11.31 implies that for any X ∈ Perf fp
/k, each K ∈ Db

qc(X) has projective
amplitude contained in [a, b] for suitable integers a ≤ b, i.e.,K can be represented, on affines Spec(A) ⊂ X ,
by a complex E• of projective A-modules with Ei = 0 for i 6∈ [a, b] (see [Sta15, Tag 0A5M]).
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Remark 11.33. Proposition 11.31 implies that for any perfectly finitely presented k-algebra R, the Tor-
dimension of any R-module is bounded above by some fixed integer N . We will show24 that, in fact, one
can choose N = 2d, where d := dim(R). We work by induction on d. We can assume that R is the
perfection of a noetherian complete local ring. If d = 0, there is nothing to prove as R is a product of fields.
If d > 0, choose a Noether normalization of R, i.e., a finite injective map of noetherian rings P0 → R0 with
P0 regular, andR = R0,perf ; set P = P0,perf . Then it is easy to see that the Tor-dimension of any P -module
is bounded above by d = dim(P0) = dim(R). Moreover, a standard argument25 implies that there exists
some non-zero f ∈ P such that P → R is almost finite étale with respect to the ideal I = (f

1
p∞ ) ⊂ P ; note

that the ideal I is flat and satisfies I2 = I , so almost mathematics ([GR03]) with respect to I makes sense.
In particular, the multiplication map R ⊗LP R → R is an almost direct summand as a R ⊗LP R-complex by
almost étaleness. (In fact, R⊗LP R ' R⊗P R by Lemma 11.10.) Given an R-module M , we may view M
as an R⊗LP R-module via the multiplication map, and M ⊗LP R as an R⊗LP R-complex in the natural way;
applying

(
M ⊗LP R

)
⊗L
R⊗LPR

(−) to the preceding retraction shows that M is an almost direct summand of

M ⊗LP R as an R ⊗LP R-complex. Using the second factor inclusion R ↪→ R ⊗LP R, this implies that any
R-module M is an almost direct summand of a complex of the form N ⊗LP R, where N is some P -module,
and the R-module structure comes from the second factor. In particular, since the Tor-dimension of N is
bounded above by d, the same is true for M in the almost world. To pass back to the non-almost world,
set J = IR ⊂ R, so both I and J are flat ideals in the corresponding rings; here we use the proof of
Lemma 3.16 to get the flatness of J . The preceding almost vanishing (and the flatness of J) implies that
I ⊗LP M ' J ⊗LR M ' J ⊗R M has Tor-dimension ≤ d; here we use that I ⊗LP (−) kills almost zero
objects in D(P ) since I ⊗LP P/I ' I ⊗P P/I ' I/I2 = 0. We now have canonical short exact sequences

0→ TorR1 (R/J,M)→ J ⊗RM → JM → 0

and
0→ JM →M →M/JM → 0.

By induction, both M/JM and TorR1 (R/J,M) have Tor-dimension ≤ 2d − 2 over R/J . Now R/J has
Tor-dimension≤ 1 overR as J isR-flat; the same then holds for any flatR/J-module by Lazard’s theorem.
By taking flat resolutions, it follows that both M/JM and TorR1 (R/J,M) have Tor-dimension ≤ 2d − 1
over R. The first exact sequence then shows that JM has Tor-dimension ≤ 2d over R; the second one then
implies that M has Tor-dimension ≤ 2d as well.

Remark 11.34. The homological properties of perfections of noetherian Fp-algebras established above have
been investigated previously in the commutative algebra literature to some extent. For example, [AH97,
Theorem 3.1] establishes that reduced quotients of perfectly finitely presented rings have Tor-dimension
≤ d, which can be deduced from Lemma 3.16. Likewise, [Asg10, Theorem 1.2] proves that such quotients
which are domains have a finite resolution by countably generated projectives, which follows immediately
from the proof of Proposition 11.31.

Using Proposition 11.31, one can reprove Kunz’s theorem characterizing regularity.

Corollary 11.35 (Kunz). Let R be a noetherian Fp-algebra. Then R is regular if and only if the absolute
Frobenius R→ R is flat.

24An earlier version of this preprint asserted that one may choose N = d. This is false: if R = k[x, y]/(xy)perf , then d = 1,
but TorR2 (R/(x), R/(y)) 6= 0. We thank Gabber for pointing out the mistake, the previous example, and the correct bound. Gabber
has also pointed out that the global dimension N in Proposition 11.31 is ≤ 2d + 1, where equality is obtained in some examples;
we do not prove that here.

25Indeed, after possibly adjusting our initial choice of P0 and R0, the map P0 → R0 is generically étale, so there exist some
non-zero f ∈ P0 such that P0 → R0 is finite étale after inverting f . One then checks that such an f does the job.
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Proof. The forward direction is well-known, and we have nothing new to offer. Instead, we explain the
converse: if Frobenius is flat, then R is regular. This can be checked after completion at points, so we may
assumeR is a complete noetherian local Fp-algebra; here we use that the hypothesis on flatness of Frobenius
passes to completions of R. By Remark 11.3, every Rperf -module has finite Tor-dimension. The faithful
flatness of R→ Rperf then implies that every R-module has finite Tor-dimension, so R is regular. �

To prove that quasi-coherent complexes give hypercomplete h-sheaves, our basic tool will be the follow-
ing:

Lemma 11.36. Let R be the perfection of a finitely presented k-algebra. Let M ∈ D(R), and let N• be a
cosimplicial R-module such that R limN• is bounded. Then the natural map gives

M ⊗LR R limN• ' R lim(M ⊗LR N•). (2)

The proof below applies to any ring of finite global dimension.

Proof. Let M = R lim τ≤iM be the Postnikov tower for M . For any K ∈ Db(R), we first observe that the
canonical map

M ⊗LR K '
(
R lim τ≤iM

)
⊗LR K → R lim(τ≤iM ⊗LR K)

is an equivalence. Indeed, by Proposition 11.31, this reduces to the case where K is given by a single
projective R-module, which is clear (by calculating homology of either side). Applying this observation to
K = R limN• (which is permissible, since R limN• is bounded by assumption), we obtain

M ⊗LR R limN• ' R lim
(
τ≤iM ⊗LR R limN•). (3)

Similarly, applying this observation to K = N• shows that

M ⊗LR N• ' R lim
(
τ≤iM ⊗LR N•) (4)

as cosimplicial A-complexes. Plugging equations (3) and (4) into the two sides of equation (2), and com-
muting limits, we reduce to the case where M = τ≤iM is bounded below. Assume first that M is, in fact,
bounded. Then, using Proposition 11.31, we reduce to the case where M is a projective R-module, which is
straightforward (via Dold-Kan). To pass to the general case, it is enough to show that for fixed k, the maps

ai : τ≤iM ⊗LR R limN• →M ⊗LR R limN•

and
bi : R lim(τ≤iM ⊗LR N•)→ R lim(M ⊗LR N•)

(induced by the canonical map τ≤iM → M ) induce isomorphisms on Hk for i sufficiently large. For
ai, this follows by observing that the functor − ⊗LR R limN• has bounded homological dimension (i.e.,
carries D>i(R) to D>i−c(R) for some fixed c) by Proposition 11.31 since R limN• is bounded below (in
fact, it is bounded). For bi, it suffices to observe that the functor R lim(−⊗LRN•) has bounded homological
dimension by Proposition 11.31 since eachN i is anR-module, and hence bounded below as a complex. �

Using the previous lemma, we immediately see that quasi-coherent complexes are hypercomplete:

Lemma 11.37. For any Y ∈ Perf fp
/k and K ∈ Dqc(Y ), the functor (f : X → Y ) 7→ RΓ(X, f∗K) gives a

hypercomplete h-sheaf of spectra on Perf fp
/Y .

Proof. Let f : X• → Y be an h-hypercover. We must check that pullback induces an equivalence

RΓ(Y,K) ' R limRΓ(X•, f∗K).

By Zariski hyperdescent, we may assume Y = Spec(A) and X• are all affine, and that K corresponds to
some M ∈ D(A). By the projection formula, we are reduced to showing that

M ' R lim
(
RΓ(X•,OX•)⊗LAM)
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via the canonical map. This follows from Lemma 11.36 applied toN• = RΓ(X•,OX•); this lemma applies
because R limN• ' A (as the structure sheaf is truncated, and hence hypercomplete) is bounded. �

In order to get effectivity of hyperdescent for quasi-coherent complexes, it is convenient to use the fol-
lowing criterion for hypercompleteness (in the special case n = −1):

Lemma 11.38. Let X be an∞-topos. Let F → G be a map in X which is relatively n-truncated for some
integer n. If G is hypercomplete, so is F.

Proof. When G = ∗, this follows from [Lur09, Lemma 6.5.2.9]. In general, one reduces to this case by
working in the slice ∞-topos X/G (since a map in X/G is ∞-connective if and only if its image under the
forgetful functor X/G → X is∞-connective by [Lur09, Proposition 6.5.1.18]). �

Hyperdescent for quasi-coherent complexes follows relatively formally from everything so far:

Proof of Theorem 11.2 (4). Let X be the ∞-topos defined by the h-topology on Perf fp
/k. Write O for the

structure sheaf, viewed as a sheaf of E∞-rings on X, i.e., the h-sheaf of E∞-rings on Perf fp
/k defined by

X 7→ RΓ(X,OX). Note that any X ∈ Perf fp
/k defines a hypercomplete object of X (since it is 0-truncated);

likewise, O is a hypercomplete h-sheaf of spectra since it is valued in coconnective spectra. Now for any
X ∈ Perf fp

/k, let G(X) be the∞-category of hypercomplete h-sheaves of O-module spectra on Perf fp
/X , i.e.,

the∞-category of sheaves O-module spectra on the hypercompletion of X/X . By [Lur14a, Remark 2.1.11]
applied to the hypercompletion of X, one deduces that G is itself a hypercomplete h-sheaf. Moreover,
Lemma 11.37 gives a map Dqc(X) → G(X) which is fully faithful: the right adjoint is given by the global
sections functor when X is affine, so full faithfulness again follows from Lemma 11.37. Now, by Theorem
11.2 (1), the functorDqc(−) is also an h-sheaf. Thus, by varying X , we obtain a map Dqc(−)→ G(−) in X

which is relatively (−1)-truncated26 (by full faithfulness), and whose target is hypercomplete. By Lemma
11.38, it follows that Dqc(−) is a hypercomplete h-sheaf. �

Remark 11.39. The proof of effectivity of hyperdescent given above is a bit abstract. Concretely, one may
argue as follows: if X• → Y is a h-hypercover in Perf fp

/k, and K• ∈ limDqc(X
•) is a hyperdescent datum,

then K• defines a unique hypercomplete h-sheaf L of O-module spectra on Y by the formula

(g : U → Y ) 7→ L(U) := RΓ(U ×Y X•, g∗K•).
The formation of L commutes with base change, by construction. It remains to check that L is quasi-
coherent. By general nonsense and Lemma 11.37, L|Xi ' Ki, and thus this restriction is quasi-coherent
for all i. In particular, for any g : U → Y that factors through X0, we know that L|U is quasi-coherent. But
then M := L|X0 is an object of Dqc(X

0) equipped with canonical Cech descent data for the map X0 → Y
(since L comes from Y ). Since the latter is an h-cover, we finish by invoking Theorem 11.2 (1).

11.5. Descent for Witt vector cohomology. Fix a noetherian Fp-scheme S of finite Krull dimension. The
next result of Berthelot-Bloch-Esnault (see [BBE07, Theorem 2.4 & Proposition 3.2]) identifies a descent
property for the cohomology of this sheaf on Schfp

/S after inverting p:

Theorem 11.40. The functor X 7→ RΓ(X,WOX)[1
p ] is an h-sheaf of spectra on Schfp

/S .

We can improve this to a descent property where only F is inverted:

Proposition 11.41. The functor X 7→ RΓ(X,WOX)[ 1
F ] is an h-sheaf of spectra on Schfp

/S .

It is convenient to use some derived algebraic geometry to establish this result. For this, we use the
following notation.

26This means that the fibres are either contractible or empty.
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Notation 11.42. All occurrences of derived geometry in this section are meant with respect to simplicial
commutative rings. For any such derived scheme X , write Xcl for its underlying classical scheme. Fibre
products of ordinary schemes are computed in the ordinary sense unless the adjective ‘derived’ is present.
By evaluating the Witt vector construction termwise on a simplicial commutative ring, we obtain a sheaf
W (OX) of simplicial commutative rings on any derived Fp-scheme X . The Frobenius on X induces an
endomorphism F : W (OX) → W (OX), and we will study the sheaf W (OX)[ 1

F ]. There is also a V
operator W (OX)→W (OX) such that FV = V F = p, but we do not use V .

The key observation is that the presheaf in Proposition 11.41 is insensitive to the derived structure.

Lemma 11.43. Let X be a derived Fp-scheme. Then pullback along Xcl ↪→ X induces an isomorphism

W (OX)[
1

F
] 'W (OXcl)[

1

F
].

Proof. We may assume X = Spec(A) is affine. We must show that W (A)[ 1
F ] ' W (π0(A))[ 1

F ]. The
definition of W (−) identifies W (A) with the simplicial set

∏
i∈NA in a manner that is compatible with F ,

functorial in the map A → π0(A), and sends 0 ∈ W (A) to 0 = (0, 0, ...) ∈
∏
i∈NA. Applying π0 then

immediately gives the π0-version of the desired statement. It remains to show that W (A)[ 1
F ] is discrete.

The preceding description of W (A) also gives an isomorphism πi(W (A), 0) '
∏
i∈N πi(A, 0) of groups

compatible with F ; here we use the Eckman-Hilton observation that, given a simplicial abelian groupK, the
two induced group structures on πi(K, 0) for i > 0 (one coming from the usual group structure on higher
homotopy groups which only depends on the simplicial set underlying K, the other coming from the group
structure on K) are identical. As F kills πi(A, 0) for i > 0 by (the proof of) Proposition 11.6, it follows
that F must kill πi(W (A), 0) for i > 0, and thus W (A)[ 1

F ] is discrete, as wanted. �

Remark 11.44. As a consequence of Lemma 11.43 and the formula V F = p, one has: if A is a simplicial
commutative Fp-algebra, then the cone of the canonical map W (A)→W (π0(A)) is killed by p.

The next lemma is the crucial ingredient in the proof of Proposition 11.41, and is the only spot in the
proof where derived schemes arise (via derived fibre products of non-flat maps).

Lemma 11.45. Consider a cartesian square

E //

��

X

f

��
Z

i // Y

of qcqs Fp-schemes with Y affine, and Z ↪→ Y a constructible closed immersion. Assume that pullback
induces a fibre sequence

RΓ(Y,OY )→ RΓ(X,OX)⊕RΓ(Z,OZ)→ RΓ(E,OE). (5)

For any integer n ≥ 1, let Xn/Y be the n-fold self fibre product of X over Y , and set En/Y = Xn/Y ×Y Z,
so En/Y is the n-fold self fibre product of E over Y (and thus also over Z, since Z → Y is a monomor-
phism). Then pullback induces a fibre sequence

RΓ(Y,W (OY )[
1

F
])→ RΓ(Xn/Y ,W (OXn/Y )[

1

F
])⊕RΓ(Z,W (OZ)[

1

F
])→ RΓ(En/Y ,W (OEn/Y )[

1

F
]).

Proof. As the Witt vector functor W (−) is a derived inverse limit of the truncated Witt vector functors
Wm(−), and because each Wm(−) is an m-fold iterated extension of copies of Ga (with Frobenius twists),
the case n = 1 is immediate from the fibre sequence (5), giving the desired fibre sequence

RΓ(Y,W (OY )[
1

F
])→ RΓ(X,W (OX)[

1

F
])⊕RΓ(Z,W (OZ)[

1

F
])→ RΓ(E,W (OE)[

1

F
]). (6)

Note that we did not need to invert F to get the above sequence; this will not be true for higher n.
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Assume now that n = 2. Since Y is affine, applying − ⊗RΓ(Y,OY ) RΓ(X,OX) to the fibre sequence
(5), and using that coherent cohomology commutes with base change in the derived setting, we get a fibre
sequence

RΓ(X,OX)→ RΓ(X ×LY X,OX×LYX)⊕RΓ(Z ×LY X,OZ×LYX)→ RΓ(E ×LY X,OE×LYX).

Arguing as above for n = 1, this gives a fibre sequence

RΓ(X,W (OX)[
1

F
])→ RΓ(X ×LY X,W (OX×LYX

)[
1

F
])⊕RΓ(Z ×LY X,W (OZ×LYX

)[
1

F
])→

RΓ(E ×LY X,W (OE×LYX
)[

1

F
]).

By Lemma 11.43, we can ignore the derived structure, so this sequence is identified with

RΓ(X,W (OX)[
1

F
])→ RΓ(X2/Y ,W (OX2/Y )[

1

F
])⊕RΓ(E,W (OE)[

1

F
])→ RΓ(E2/Y ,W (OE2/Y )[

1

F
]).

Comparing this last sequence with (6) and simplifying, we get

RΓ(Y,W (OY )[
1

F
])→ RΓ(X2/Y ,W (OX2/Y )[

1

F
])⊕RΓ(Z,W (OZ)[

1

F
])→ RΓ(E2/Y ,W (OE2/Y )[

1

F
]),

as wanted for n = 2. For n ≥ 3, one argues similarly by induction. �

We now prove the h-descent result, essentially using the criterion in Theorem 2.9. As it is not clear to us
how to check criterion (ii) in Theorem 2.9 directly, we instead follow the proof of Theorem 2.9 below.

Proof of Proposition 11.41. For simplicity, write F(X) = RΓ(X,W (OX)[ 1
F ]). If f : X → Y is a finite

universal homeomorphism, then F(X) ' F(Y ) since a power of Frobenius on either X or Y factors over f .
In particular, F(−) carries nilimmersions to isomorphisms. This fact will be used without further comment.

We begin by checking that F(−) is an fppf sheaf. Since the functor RΓ(X,WOX) takes on coconnective
values, it is enough to check this on affines and before inverting F , so we want: if A → B is an fppf
map of Fp-algebras with Cech nerve B•, then W (A) ' limW (B•). Exchanging limits, we reduce to
the analogous statement for Wn(−), which follows from standard exact sequence expressing Wn(−) as an
iterated extension of (Frobenius-twisted) copies of W1(−).

To check h-descent, we must check the following: if f : X → Y is a proper surjective map of finitely
presented S-schemes with Cech nerve X•/Y (in the classical sense), then F(Y ) ' limF(X•/Y ). We
prove this by induction on dim(Y ). If dim(Y ) = 0, then we are reduced to the case of fppf descent as in
Lemma 2.6. In general, using Lemma 2.6 and Lemma 2.10 (and the fact that F(−) is an fppf sheaf that
converts nilimmersions into isomorphisms), we may assume that f is an isomorphism outside some Z ⊂ Y
with dim(Z) < dim(Y ); in fact, by the proof of Lemma 2.6, we can even arrange for X to be the blowup
of Y along Z. Let E = X ×Y Z be the exceptional divisor, so H i(X,OX(−nE)) = 0 for all i > 0 and
n ≥ n0 by Serre vanishing (as OX(−E) is relatively ample for X → Y by the construction of blowups).
Replacing E with a suitable thickening (and similarly for Z, to ensure Z still receives a map from E), we
may assume that H i(X,OX(−E)) = 0 for i > 0. Now set Y ′ = X tE Z be the pushout of E ↪→ X along
E → Z. This gives a square

E //

��

X

��
Z // Y ′

which is a Cartesian square up to universal homeomorphisms, and the induced map Y ′ → Y is a finite
universal homeomorphism. In particular, F(Y ) ' F(Y ′) and F(X•/Y ) ' F(X•/Y

′
), so we may replace Y

with Y ′. (Note that in the process of making these replacements, we have destroyed the property of f being
a blowup or that E is the scheme-theoretic preimage of Z, but have preserved the crucial consequence that
H i(X,OX(−E)) = 0 for i > 0.)
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Now, by induction on dimension, we have F(Z) ' limF(E•/Z). As in the proof of Theorem 2.9, we are
reduced to showing that for each n > 0, applying F(−) to the square

En/Y //

��

Xn/Y

��
Z // Y

induces a fibre sequence
F(Y )→ F(Xn/Y )⊕ F(Z)→ F(En/Y )

of spectra. Using Lemma 11.45, it is enough to show that

RΓ(Y,OY )→ RΓ(X,OX)⊕RΓ(Z,OZ)→ RΓ(E,OE)

is a fibre sequence. This follows from the conjunction of the following facts: the first term has noH i for i >
0 as Y is affine, the second map induces an isomorphism on applyingH i for i > 0 asH i(X,OX(−E)) = 0
for i > 0 (and because Z are affine), and applying H0 gives a sequence

H0(Y,OY )→ H0(X,OX)⊕H0(Z,OZ)→ H0(E,OE)

which is left-exact as Y is the pushout X tE Z, and right exact because H0(X,OX) → H0(E,OE) is
surjective as H1(X,OX(−E)) = 0. �

12. APPENDIX: DETERMINANTS

Let R be a commutative ring. Our goal in this section is to recall the definition of the natural map

det : K(R)→ PicZ(R)

from the K-theory spectrum of R to the Picard groupoid of graded line bundles PicZ(R). Intuitively, this is
just the map sending a finite projective R-module M to (detM, rkM).

Recall that a symmetric monoidal category is a category C equipped with a functor ⊗ : C × C → C,
a unit object 1 ∈ C, as well as a unitality constraint ηX : 1 ⊗ X ∼= X , a commutativity constraint cX,Y :
X ⊗ Y ∼= Y ⊗ X and an associativity constraint aX,Y,Z : X ⊗ (Y ⊗ Z) ∼= (X ⊗ Y ) ⊗ Z functorially
in X,Y, Z ∈ C, satisfying certain compatibility conditions. Moreover, there is a notion of symmetric
monoidal functor between symmetric monoidal categories, which is a functor which commutes with ⊗
in the appropriate sense. As usual, there is also a notion of a natural transformation between symmetric
monoidal functors. The definitions were originally given by MacLane, [ML63].

Definition 12.1. A symmetric monoidal category C is called strict if cX,X : X⊗X ∼= X⊗X is the identity
for all X ∈ C.

In general, the axioms of a symmetric monoidal category say that cX,Y ◦ cY,X = id for all X,Y ∈ C, so
in particular cX,X is always an involution.

Note that whenever C is a symmetric monoidal category, the subcategory C' ⊂ C consisting of all
objects, but only isomorphisms as morphisms, is another symmetric monoidal category (as all extra data
concerns isomorphisms). Let us refer to symmetric monoidal categories all of whose morphisms are iso-
morphisms as symmetric monoidal groupoids.

Below, we will recall that any symmetric monoidal category C admits a K-theory spectrum K(C),
and any symmetric monoidal functor F : C → D induces a map of spectra K(F ) : K(C) → K(D).
Applying this to the inclusion C' ⊂ C will give an equivalence K(C') ' K(C); actually, an equality
K(C') = K(C). For this reason, we largely restrict to symmetric monoidal groupoids in the following.

The following examples are our main interest.

Example 12.2. Fix a commutative ring R.
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(i) The groupoid Vect(R) of finite projectiveR-modules is a symmetric monoidal category with respect
to ⊕, unit 0, and the standard unitality, commutativity and associativity constraints. For example,
cX,Y : X ⊕ Y ∼= Y ⊕X sends (x, y) to (y, x). Note that cX,X is not the identity map for X 6= 0.

We remark that the groupoid of finite projective R-modules is also symmetric monoidal with
respect to the tensor product ⊗; we will not use this symmetric monoidal structure.

(ii) The groupoid Pic(R) of line bundles over R (i.e., finite projective R-modules of rank 1) is a sym-
metric monoidal category with respect to ⊗, unit 1, and the standard unitality, commutativity and
associativity constraints. For example, cX,Y : X ⊗ Y ∼= Y ⊗ X sends x ⊗ y to y ⊗ x. Note that
cX,X is the identity map for all X ∈ Pic(R).

(iii) The groupoid PicZ(R) of Z-graded line bundles. Here, an object is given by a pair (L, f) where
L ∈ Pic(R), and f : Spec(R) → Z is a locally constant function; the set Isom((L, f), (M, g)) is
empty if f 6= g, and given by Isom(L,M) otherwise. The unit is given by (1, 0). This groupoid is
endowed with a symmetric monoidal structure ⊗ where (L, f) ⊗ (M, g) := (L ⊗M,f + g), and
the commutativity constraint

(L⊗M,f + g) =: (L, f)⊗ (M, g) ' (M, g)⊗ (L, f) := (M ⊗ L, g + f)

determined by the rule
`⊗m 7→ (−1)f ·gm⊗ `,

and the obvious associativity constraint. Note that c(L,f),(L,f) : (L, f) ⊗ (L, f) ∼= (L, f) ⊗ (L, f)

is given by multiplication with (−1)f , and is thus not in general the identity.

The following proposition is central.

Proposition 12.3. There is a natural symmetric monoidal functor

det : Vect(R)→ PicZ(R)

sending M ∈ Vect(R) to (detM, rkM) ∈ PicZ(R) = Pic(R)×H0(Spec(R),Z).

Note that this functor does not factor through Pic(R).

Proof. All verifications are automatic, and the only critical observation is the following. If M,N ∈
Vect(R), then the commutativity constraint cM,N : M ⊕ N ∼= N ⊕ M swapping N and M induces
multiplication by (−1)rkMrkN on

det(M)⊗ det(N) ∼= det(M ⊕N)
detcM,N∼= det(N ⊕M) ∼= det(N)⊗ det(M) ,

if one identifies det(M) ⊗ det(N) and det(N) ⊗ det(M) using the usual commutativity constraint of
Pic(R). �

Now we recall the construction of theK-theory spectrum. Let C be a symmetric monoidal category, with
C' ⊂ C the underlying symmetric monoidal groupoid. By definition, K(C) = K(C'), so assume that C
is a groupoid to start with. Recall that a groupoid is equivalent to a space whose only nonzero homotopy
groups are π0 and π1. Concretely, this can be realized by the nerve construction, which associates to any
category C the simplicial set N(C) whose n-simplices are chains of n− 1 morphisms,

X0
f0→ X1

f1→ . . .
fn−1→ Xn .

In particular, the 0-simplices N(C)0 are the objects of C, and the 1-simplices N(C)1 are the morphisms of
C. Higher simplices encode the composition law, and degenerate simplices encode identity morphisms. If
C is a groupoid, then N(C) is a Kan complex, whose geometric realization |N(C)| is a (compactly gener-
ated) topological space whose only nonzero homotopy groups are π0 and π1. In fact, |N(C)| is homotopy
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equivalent to the disjoint union ⊔
X∈C/'

BAut(X)

of the classifying spaces of the automorphism group Aut(X), over all isomorphism classes of objects
X ∈ C. In the following, we refer to Kan complexes as ‘spaces’. They are naturally organized into the
∞-category S of spaces. Here and in the following, we make use of the theory of∞-categories, cf. [Lur09],
which were previously defined under the name of weak Kan complexes (by Boardman-Vogt) and quasicat-
egories (by Joyal). Using this language, we can easily state precise definitions and theorems without having
to go into the pain of detailed constructions. Giving detailed proofs is more elaborate, and we only try to
convey the meaning of the statements below.

As C is symmetric monoidal, the spaceN(C) is equipped with an addition lawN(⊗) : N(C)×N(C) =
N(C × C) → N(C). Moreover, this addition law is commutative and associative up to coherent isomor-
phisms, as expressed by the commutativity and associativity constraints. However, the addition law is not
strictly commutative and associative. Such spaces equipped with a coherently commutative and associative
(but not necessarily invertible) addition law are known as (special) Γ-spaces, as defined by Segal, [Seg74],
or as E∞-monoids, as defined by May, [May74]. Although our definition is essentially that of a special
Γ-space, we prefer to call them E∞-monoids.27

Definition 12.4. Let Fin∗ be the category of finite pointed sets.28 For n ≥ 0, let [n] = {0, 1, . . . , n} ∈ Fin∗
be the object pointed at 0. An E∞-monoid is a functor

X : N(Fin∗)→ S

of∞-categories to the∞-category S of Kan complexes, such that for all [n] ∈ Fin∗, the natural map

X([n])→
n∏
i=1

X([1])

is a weak equivalence, where the map is induced by the n maps [n]→ [1] contracting everything to 0 except
i.

The E∞-monoids are naturally organized into an ∞-category (a full subcategory of the ∞-category of
functors from N(Fin∗) to S), which we call the∞-category of E∞-monoids MonE∞ .

For an E∞-monoidX , the 0-th spaceX([0]) is weakly contractible, as it is weakly equivalent to an empty
product. We refer to X([1]) as the underlying space of the E∞-monoid X , and will sometimes confuse X
with X([1]). It is pointed in the sense that it comes equipped with a map X([0]) → X([1]) from a weakly
contractible space; the space X([0]) is the ’unit’ of X([1]). Moreover, using the map [2]→ [1] sending only
0 to 0, we get a natural map

X([1])×X([1]) ' X([2])→ X([1])

which gives an addition law on X([1]). The higher data precisely ensure that the unit is unital, and that the
addition law is commutative and associative ’up to coherent homotopy’. In particular, for an E∞-monoid
X , the set of connected components π0X := π0X([1]) forms a commutative monoid.

Construction 12.5. Let C be a symmetric monoidal groupoid. We define an E∞-monoid N(C) in the
following way. For each finite pointed set (S, s) ∈ Fin∗, let

N(C)(S) = N
(
{(XT )T⊂S\{s}, XTtT ′ ∼= XT ⊗XT ′}

)
27Lurie in [Lur14b, Remark 2.4.2.2] calls these commutative monoids. However, with [Lur14b, Notation 5.1.1.6], this becomes

the same thing as an E∞-monoid.
28This is Segal’s category Γ (or its opposite, depending on references).
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be the nerve of the groupoid of objects XT ∈ C for all T ⊂ S \ {s} which are equipped with compatible
isomorphismsXTtT ′ ∼= XT ⊗XT ′ for any disjoint subsets T, T ′ ⊂ S \{s}. For any morphism f : (S, s)→
(S′, s′), let the map

N(C)(S)→ N(C)(S′)

be given by
(XT )T⊂S\{s} 7→ (Xf−1(T ′))T ′⊂S′\{s′} .

Remark 12.6. Here, we have defined an actual functor from Fin∗ to the category of Kan complexes. The
naive definition of N(C)(S) would be N(C)(S) = N(C)S\{s}, with the map

N(C)S\{s} → N(C)S
′\{s′}

for a map f : (S, s)→ (S′, s′) of pointed sets being given by

(Xt)t∈S\{s} 7→ (⊗t∈f−1(t′)Xt)t′∈S′\{s′} .

This definition is not compatible with composition on the nose, but can be made into a functor of ∞-
categories N(C) : Fin∗ → S. However, the verification of this fact is most easily done by constructing a
weakly equivalent strict functor, as above.

We leave it to the reader to spell out the definition of compatibility of the isomorphisms XTtT ′ ∼=
XT ⊗XT ′ ; verifying that N(C)([n]) → N(C)n is an equivalence uses the precise axioms of a symmetric
monoidal category.

Definition 12.7. An E∞-monoid X is called grouplike if the commutative monoid π0(X) is a group. Let
Mongp

E∞
⊂ MonE∞ denote the full subcategory of grouplike E∞-monoids.

Grouplike E∞-monoids are equivalent to connective spectra.

Definition 12.8. The∞-category of connective spectra Sp≥0 is given by the limit of

S∗
Ω← S≥1

∗
Ω← S≥2

∗
Ω← . . .

in the ∞-category of ∞-categories, where S∗ is the ∞-category of pointed spaces, S≥i∗ ⊂ S∗ is the full
subcategory of i-connected spaces29, and Ω : S∗ → S∗, X 7→ ∗ ×X ∗ is the loop space functor.

The following theorem is due to Segal, [Seg74, Proposition 3.4], cf. [Lur14b, Theorem 5.2.6.10, Remark
5.2.6.26]. The functor Mongp

E∞
→ Sp≥0 is usually called “the infinite loop space machine”.

Theorem 12.9. There is a natural equivalence of∞-categories

Mongp
E∞
' Sp≥0 .

May-Thomason, [MT78], showed that there is essentially only one such equivalence (although there are
many constructions).30 Let us briefly sketch the definition of the functors in either direction. Let X ∈ Sp≥0

be a connective spectrum. Then the natural map

X tX → X ×X
from the coproduct to the product, taken in the∞-category of connective spectra (equivalently, of spectra),
is an equivalence, cf. [Lur14b, Lemma 1.1.2.10]. Thus, the obvious map X t X → X extends to a map
X×X → X , which is the ’addition law’ of the spectrum. Repeating the same arguments for arbitrary finite
(co)products shows that the forgetful functor

MonE∞(Sp≥0)→ Sp≥0

29i.e., of pointed spaces X ∈ S∗ such that πjX = 0 for j < i.
30For an∞-categorical discussion of these matters, see recent work of Gepner-Groth-Nikolaus, [GGN13].
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from the ∞-category of E∞-monoids in Sp≥0 to Sp≥0, is an equivalence, i.e. any (connective) spectrum
comes equipped with a canonical E∞-monoid structure. Composing with the forgetful map

MonE∞(Sp≥0)→ MonE∞(S) = MonE∞

gives a functor Sp≥0 → MonE∞ , preserving all πi. As all πi, including π0, of a spectrum are groups, it
follows that the functor takes values in Mongp

E∞
.

Conversely, start with an E∞-monoid X ∈ MonE∞ (not necessarily grouplike). Then X admits a
classifying space BX . Indeed, there is a natural functor ∆op → Fin∗ (cf. [Seg74, p. 295]) taking the
m-simplex ∆m to [m]. This allows one to view X as a simplicial space X ′ : N(∆op) → N(Fin∗) → S,
which can be turned into a space BX = colim∆op X ′ ∈ S. In fact, one checks directly that BX still carries
a canonical E∞-monoid structure, cf. [Seg74, Definition 1.3]. This gives a functor

B : MonE∞ → MonE∞ .

There is a natural map X → ΩBX of E∞-monoids.31 The following is [Seg74, Proposition 1.4].

Proposition 12.10. If X ∈ MonE∞ is k-connected, then BX is (k + 1)-connected. Moreover, the natural
map

X → ΩBX

is an equivalence if and only if X is grouplike.

Remark 12.11. As π0(ΩBX) = π1(X) is a group, ΩBX is always a grouplike E∞-monoid. Also, BX is
always 1-connected, and thus grouplike (as π0BX = 0 is a group).

Thus, if X ∈ Mongp
E∞

is a grouplike E∞-monoid, the sequence of spaces X,BX,B2X, . . . forms a
connective spectrum, giving a functor

Mongp
E∞
→ Sp≥0 .

In particular, the construction shows that as with classical monoids, one can form the group completion.

Corollary 12.12. The full subcategory Mongp
E∞
⊂ MonE∞ is a reflective subcategory, cf. [Lur09, Remark

5.2.7.9], i.e. it admits a left adjoint, called the group completion,

MonE∞ → Mongp
E∞

: X 7→ Xgp = ΩBX .

Recall thatK0(C) is the group completion of the commutative monoid of objects ofC up to isomorphism.
Using the above machinery, we can erase the words “up to isomorphism”, and arrive at the definition of
higher algebraic K-theory:

Definition 12.13. Let C be a symmetric monoidal category. The K-theory spectrum K(C) ∈ Sp≥0 is
defined to be the image under Mongp

E∞
' Sp≥0 of the group completion N(C')gp of the E∞-monoid

N(C') from Construction 12.5.

Clearly, this construction is functorial in C. There is a certain situation in which the group completion is
unnecessary.

Definition 12.14. A symmetric monoidal category C is called a Picard groupoid if C is a groupoid, and any
object X ∈ C admits an inverse X−1 ∈ C such that X ⊗X−1 ∼= 1.

The groupoids Pic(R) and PicZ(R) are examples of Picard groupoids (explaining the name), as one can
form the inverse of a line bundle.

Proposition 12.15. A symmetric monoidal groupoid C is a Picard groupoid if and only if the E∞-monoid
N(C) is grouplike.

31The∞-category MonE∞ admits all small limits, and MonE∞ → S∗, X 7→ X([1]), preserves all small limits. In particular,
this applies to the loop space X 7→ ΩX = ∗ ×X ∗, giving a functor Ω : MonE∞ → MonE∞ .
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Proof. One has an identification of π0N(C) = C/ ' with the monoid (under ⊗) of objects of C up to
isomorphism. But, by definition, C is a Picard groupoid if and only if C/ ' is a group. �

In particular, for a Picard groupoid, the space underlying K(C) is just the nerve N(C), which is 1-
truncated. One can show that this induces an equivalence between Picard groupoids and 1-truncated con-
nective spectra, cf. [Pat12, §3]. The idea is that both can be identified with grouplike E∞-monoids in
groupoids.

Because of this equivalence, we will often confuse a Picard groupoid with its K-theory spectrum, and in
particular we continue to write PicZ(R) for the corresponding (1-truncated) connective spectrum.

Definition 12.16. Let R be a commutative ring. The K-theory spectrum of R is K(R) = K(Vect(R)).

Corollary 12.17. There is a natural functorial map

det : K(R)→ PicZ(R)

of connective spectra.

Proof. Apply the K-theory functor to

det : Vect(R)→ PicZ(R) .

�

As PicZ(R) is 1-truncated, the mapK(R)→ PicZ(R) factors canonically over the 1-truncation τ≤1K(R).
In fact, PicZ(R) is, at least after Zariski sheafification, precisely the 1-truncation of K(R).

Proposition 12.18. The natural map

det : τ≤1K(R)→ PicZ(R)

of presheaves of groupoids on the category of affine schemes becomes an isomorphism after Zariski sheafi-
fication.

Proof. We need to prove that the maps

K1(R) = π1K(R)→ π1PicZ(R)

and
K0(R) = π0K(R)→ π0PicZ(R)

are isomorphisms after Zariski sheafification; equivalently, for local rings R. But if R is local, K1(R) =
R× = π1PicZ(R), and K0(R) = Z = π0PicZ(R). �
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Algébriques (Bruxelles, 1962), pages 113–127. Librairie Universitaire, Louvain; Gauthier-Villars, Paris, 1962.
[SW85] Graeme Segal and George Wilson. Loop groups and equations of KdV type. Inst. Hautes Études Sci. Publ. Math., (61):5–

65, 1985.
[TT90] R. W. Thomason and Thomas Trobaugh. Higher algebraic K-theory of schemes and of derived categories. In The

Grothendieck Festschrift, Vol. III, volume 88 of Progr. Math., pages 247–435. Birkhäuser Boston, Boston, MA, 1990.
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