
ON THE GENERIC PART OF THE COHOMOLOGY OF
NON-COMPACT UNITARY SHIMURA VARIETIES

ANA CARAIANI AND PETER SCHOLZE

Abstract. We prove that the generic part of the mod ` cohomology of Shimura
varieties associated to quasi-split unitary groups of even dimension is concen-
trated above the middle degree, extending previous work [CS17] to a non-
compact case. The result applies even to Eisenstein cohomology classes com-
ing from the locally symmetric space of the general linear group, and has been
used in [ACC+18] to get good control on these classes and deduce potential
automorphy theorems without any self-duality hypothesis.

Our main geometric result is a computation of the fibers of the Hodge–Tate
period map on compactified Shimura varieties, in terms of similarly compact-
ified Igusa varieties.
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1. Introduction

In this paper, we aim to control the torsion in the cohomology of some non-
compact unitary Shimura varieties, extending previous results [CS17] to the non-
compact case. Before explaining our results, let us explain our motivation.

The original Taylor–Wiles method for proving automorphy lifting theorems, used
for example in proving the modularity of elliptic curves over Q, is restricted to set-
tings where a certain numerical criterion holds: these are roughly the settings where
the objects on the automorphic side arise from the middle degree cohomology of a
Shimura variety. Recently, Calegari–Geraghty [CG18] outlined a strategy for ex-
tending the Taylor–Wiles method to GLn over a general CM field F . Their method
requires a detailed understanding of the cohomology of the locally symmetric spaces
associated with GLn /F . Part of their insight was to realize the central role played
by torsion classes in the cohomology of these locally symmetric spaces, and another
part of their insight was to reinterpret the failure of the Taylor–Wiles numerical
criterion in terms of invariants q0, l0 seen on the automorphic side.

More precisely, for a connected reductive group G/Q, let l0 := rk(G(R)) −
rk(K∞) − rk(A∞) and q0 := 1

2 (d − l0).1 The Calegari–Geraghty method works
for GLn over an arbitrary number field F as long as the following prerequisites are
in place:

(1) The construction of Galois representations associated to classes in the co-
homology with Z`-coefficients of the locally symmetric space for GLn /F .

(2) Local-global compatibility for these Galois representations at all primes of
F , including at primes above `.

(3) A folklore conjecture that predicts that, under an appropriate non-degeneracy
condition, the cohomology with Z`-coefficients of the locally symmetric
space for GLn /F vanishes outside the range of degrees [q0, q0 + l0].

From now on, assume that F is a CM field. Then the first problem was solved
in [Sch15], strengthening previous work [HLTT16] that applies to Q`-coefficients.
(See also [NT16] and [CGH+18] for some further refinements.)

The remaining two problems were within reach with Q`-coefficients: see [Var14]
for local-global compatibility and [ACC+18, Theorem 2.4.9], which builds on [Fra98],
for vanishing results. However, both problems remained largely open for torsion
classes. In the second problem, local-global compatibility at primes dividing ` is
particularly subtle, because the construction of Galois representations in [Sch15]
uses congruences to automorphic forms with arbitrarily deep level at `. The third

1Here K∞ ⊆ G(R) is a maximal compact subgroup, A∞ is the identity component of the
R-points of the maximal Q-split torus in the center of G, and d is the dimension over R of the
symmetric space for G.
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problem is known only in low-dimensional cases, such as arithmetic hyperbolic
three-manifolds (arising from GL2 over an imaginary quadratic field F ).

When the locally symmetric spaces for the group G arise from Shimura varieties,
l0 = 0 and q0 is equal to the complex dimension of the Shimura variety. Originally,
we were trying to understand the third problem, by approaching it in the easier case
of Shimura varieties first; this is a result we obtained in [CS17] for compact unitary
Shimura varieties. Our hope was that a suitable adaptation of these results to the
case of non-compact unitary Shimura varieties, whose compactification contains the
locally symmetric spaces for GLn /F , could give new information in that situation.
This turns out to be the case: however, so far not about the third problem, but
about the second problem.

This has been taken up in [ACC+18], where the main result of the present
paper is used to obtain local-global compatibility in the ordinary and (many)
Fontaine–Laffaille cases. The third problem was overcome in the particular set-
ting of [ACC+18] via an alternative argument that reduces it to the case of Q`-
coefficients, allowing us to implement the Calegari–Geraghty method uncondition-
ally in arbitrary dimensions, and prove the meromorphic continuation of the L-
function and the Sato–Tate conjecture for elliptic curves over CM fields (among
other results).

In conclusion, the results of the present paper are tailored to give interesting
information about GLn /F . For this reason, we restrict attention to the follow-
ing specific case at hand, although our methods should extend to somewhat more
general Shimura varieties.

1.0.1. Locally symmetric spaces. Fix a CM field F and an integer n ≥ 1. We
assume that F contains an imaginary quadratic field F0 ⊂ F ; if we let F+ ⊂ F be
the maximal totally real subfield, we have F = F+ · F0. Let V = F 2n be equipped
with the skew-hermitian form

〈(x1, . . . , x2n), (y1, . . . , y2n)〉 =

n∑
i=1

(xiy2n+1−i − x2n+1−iyi)

where y denotes the complex conjugate of y, and consider the associated alternating
form

(·, ·) : V × V → Q : (x, y) = trF/Q〈x, y〉 .
Then V admits OF -lattices L ⊂ V that are self-dual with respect to (·, ·); fixing
one, we get an alternating perfect pairing

(·, ·) : L× L→ Z .

Let G be the algebraic group over Z defined by

G(R) := {g ∈ GLOF (L)(R)×Gm(R) | (gv, gw) = (v, w) ∀v, w ∈ L} .
The generic fibre of G is then a quasi-split unitary group.2

Over R, we have GR = U(n, n)[F+:Q]. The associated symmetric space X =
G(R)/K∞ for G(R) is given by

X =
∏

τ :F+↪→R

Xτ,+

2In the main text, we will denote by G a unitary similitude group. The translation is explained
in §2.1.
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where Xτ,+ is the space of positive definite n-dimensional subspaces in the split
hermitian space V ⊗F+,τ R ∼= C2n.

For any neat compact open subgroupK ⊂ G(Af ), we are interested in the double
quotient

XK = G(Q)\(X ×G(Af )/K) .

As detailed below, this has the structure of a complex manifold of complex di-
mension d = [F+ : Q]n2. The Borel–Serre compactification of XK includes strata
related to the locally symmetric spaces for GLn /F ; this explains our interest in
XK .

Assume that K =
∏
pKp is a product of compact open subgroups Kp ⊂ G(Qp),

and fix a finite set of primes S containing all primes that ramify in F or at which
Kp 6= G(Zp). The abstract unramified Hecke algebra

T = TS =
⊗

p 6∈S,p∈SplF0/Q

Z[G(Qp)//G(Zp)]

acts naturally on Hi(XK , A) and Hi
c(XK , A) for any coefficient module A; here we

restrict to the primes SplF0/Q of Q that split in F0. (We remark that including
fewer Hecke operators makes our main theorem stronger.)

If v is a prime of F that divides a prime p 6∈ S that splits in the imaginary
quadratic field F0, then we get a lift p|p of p in F0, and an isomorphism

G(Qp) ∼=
∏
w|p

GL2n(Fw) = GL2n(Fv)×
∏

w|p,w 6=v

GL2n(Fw) .

Here w runs over primes of F dividing p. For i = 1, . . . , 2n, we let

Ti,v ∈ Z[G(Qp)//G(Zp)]

be the Hecke operator given by the double coset of

GL2n(OFv )diag($v, . . . , $v︸ ︷︷ ︸
i

, 1, . . . , 1) GL2n(OFv )×
∏

w|p,w 6=v

GL2n(OFw)

inside G(Qp).
Now fix a prime ` and let m ⊂ T be a maximal ideal occurring in the support

of H∗(XK ,F`) (i.e. a system of Hecke eigenvalues occurring in the cohomology of
XK), and fix an embedding T/m → F`. Enlarge S to include `. It follows from
[Sch15, Theorem 4.3.1] and [ACC+18, Theorem 2.3.3] (which relies on [Shi14]) that
there exists a continuous semisimple 2n-dimensional Galois representation

ρm : Gal(F/F )→ GL2n(F`)

unramified at all places not dividing a prime of S and such that for every prime v
of F as above, the characteristic polynomial of ρm(Frobv) is the reduction of

X2n − T1,vX
2n−1 + · · ·+ (−1)iqi(i−1)/2

v Ti,vX
2n−i + · · ·+ qn(2n−1)

v T2n,v.

modulo m, where qv is the cardinality of the residue field at v.
Our main theorem is the following.

Theorem 1.1. Assume the following conditions.
(i) F+ 6= Q;
(ii) ρm is of length at most 2;
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(iii) there is a prime p 6= ` that splits completely in F and such that for all
primes v|p of F , the representation ρm is unramified at v with eigenvalues
{α1,v, . . . , α2n,v} of ρm(Frobv) ∈ GL2n(F`) satisfying αi,v 6= pαj,v for all
i 6= j.

Then

(1) If Hi(XK ,F`)m 6= 0 then i ≥ d.
(2) If Hi

c(XK ,F`)m 6= 0 then i ≤ d.

Remark 1.2. Assumption (i) simplifies some trace formula computations (essen-
tially, it implies that certain boundary terms vanish). Roughly, the point is that
the geometric side of the trace formula simplifies whenever the test function at two
auxiliary places is of a simple form, and here we would like to use two infinite places.
We would expect that one could remove this assumption with additional work.

Remark 1.3. We use assumption (ii) to ensure that only one boundary stratum (the
one of interest, giving rise to GLn /F ) can possibly contribute to the cohomology
localized at m. This is required to ensure a tight relation between cohomology and
compactly supported cohomology after localization at m, and seems to be a critical
assumption. In order to ensure this tight relation, we also need the existence of
Galois representations associated to torsion classes in the cohomology of locally
symmetric spaces for GLm /F for m ≤ n, as proved in [Sch15, Theorem 5.4.3].

Remark 1.4. Assumption (iii) is slightly weaker than a corresponding assumption in
[CS17, Theorem 1.1], which would in addition ask that αi,v 6= αj,v. As observed by
Koshikawa, this extra assumption is in fact superfluous: The critical [CS17, Lemma
6.2.2] holds (with very minor modifications) in this more general setup, cf. proof
of Corollary 5.1.3 below, so in fact [CS17, Theorem 1.1] holds in this more general
setup. (The condition αi 6= αj was also not necessary in Boyer’s work, [Boy19].)

Remark 1.5. The theorem implies formally that the same conclusion holds for
Hi(XK ,Z`)m and Hi

c(XK ,Z`)m, and in addition that Hd(XK ,Z`)m is torsion-
free. There is an excision long exact sequence relating Hi

c(XK ,Z`)m, Hi(XK ,Z`)m
(which agrees with the cohomology of the Borel–Serre compactification of XK) and
the cohomology of the boundary Hi(∂XK ,Z`)m. The cohomology of the boundary
is related to the cohomology of GLn /F , and can contribute in many different de-
grees, both below and above the middle degree. By the long exact sequence, this
cohomology has to be split between Hi and Hi

c. The theorem asserts that this is
done in the most transparent way:3 Below the middle degree, everything maps into
Hi
c; above middle degree, everything comes from Hi; and one has an exact sequence

0→ Hd−1(∂XK ,Z`)m → Hd
c (XK ,Z`)m → Hd(XK ,Z`)m → Hd(∂XK ,Z`)m → 0

around the middle degree. In particular, the torsion-free group Hd(XK ,Z`)m sur-
jects onto the cohomology Hd(∂XK ,Z`)m of the boundary, yielding control over the
various torsion classes there. Using the Hochschild–Serre spectral sequence, we can
deduce the theorem and the same consequences also for non-trivial Z`-coefficient
systems on XK , such as Vλ, where λ is a highest weight for G. See [ACC+18] for
applications.

3It surprises the second author that such a clean picture can possibly be true.
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Remark 1.6. If m is non-Eisenstein, i.e. if ρm is absolutely irreducible, the theorem
and the excision long exact sequence with F`-coefficients imply that

Hi
c(XK ,F`)m

∼→ Hi(XK ,F`)m

and that these are non-zero only in degree i = d. Indeed, if m is non-Eisenstein,
then Hi(∂XK ,F`)m = 0, which follows from the proof of [ACC+18, Theorem 2.4.2].
This also implies the same result with Z`-coefficients and that Hd

c (XK ,Z`)m
∼→

Hd(XK ,Z`)m is torsion-free. This matches the folklore conjecture stated in (3)
above, in the case of the locally symmetric space XK .

1.6.1. Shimura varieties. The spaceXK can be identified, Hecke-equivariantly, with
a union of connected components of SK(N)(C), for a Shimura variety SK(N) of PEL
type over Z; see § 2.1 for the precise relationship. As in [CS17], we will prove the
theorem by using the p-adic geometry of SK(N) for a prime p as guaranteed by
Assumption (iii). More precisely, we will use the Shimura variety with infinite level
at p regarded as a perfectoid space, and analyze the fibers of the Hodge–Tate period
map in terms of Igusa varieties, including compactifications.

Our geometric results hold for any imaginary CM field F (not necessarily con-
taining an imaginary quadratic field). Let ∆F be the discriminant of F . From
now on, set K := K(N) to be a principal congruence subgroup in the unitary
similitude group corresponding to G, for some integer N ≥ 3. We can define an
algebraic variety SK over Z[ 1

N∆F
] whose S-valued points parametrize quadruples

(A, ι, λ, η) where A is an abelian scheme of dimension [F : Q]n over S with an ac-
tion ι : OF → End(A) such that LieA is free of rank n over OF ⊗ZOS , λ : A ∼= A∨

is a principal polarization of A whose associated Rosati involution is compatible
with complex conjugation on OF via ι, and η is an isomorphism A[N ] ∼= L/NL
compatible with the OF -action and polarization. Moreover, SK admits a minimal
compactification S ∗K and a toroidal compactification S tor

K , the latter depending on
the choice of a certain family of cone decompositions Σ, as usual.

Now fix a prime p that is unramified in F and prime to N , and an algebraically
closed field k of characteristic p. Moreover, fix a p-divisible group X over k, with
an OF -action ι and a principal polarization λ, satisfying the same assumptions as
the abelian variety above. Then the subset

{x ∈ SK × k | A[p∞]× k(x) ∼= X×k k(x)}

of all points x such that A[p∞] is isomorphic to X, compatibly with the extra
structures, defines a leaf C X ⊂ SK × k, a locally closed smooth subscheme. In
[LS18a], Lan–Stroh prove that the leaf C X is well-positioned, which implies that
one can define partial minimal and toroidal compactifications C X,∗, C X,tor, which
have many of the same properties as the ambient Shimura varieties.

Over the leaf C X, we can look at the scheme parametrizing isomorphismsA[p∞] ∼=
X compatible with extra structures. This defines an Aut(X)-torsor

IgX → C X,

where IgX is a perfect scheme. Note that in general when X is not isoclinic, Aut(X)
is a highly non-reduced group scheme. Its group of connected components is the
profinite group ΓX := Aut(X)(k). Then the map to the perfection

IgX → C X
perf
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is a ΓX-torsor. One important property of IgX is that it depends on X only up to
isogeny, i.e. an isogeny φ : X → X′ (compatible with the extra structures) induces
an isomorphism IgX ∼= IgX

′
.

Our first result is that there are good partial toroidal compactifications of Igusa
varieties.

Proposition 1.7. The ΓX-torsor IgX → C X
perf extends uniquely to a ΓX-torsor

IgX,tor → C X,tor
perf .

Moreover, one can describe the local structure of IgX,tor at the toroidal boundary
as in the case of Shimura varieties, cf. e.g. Theorem 3.2.13. As a consequence, we
prove that an isogeny φ : X → X′ that induces isomorphisms on étale quotients
induces an isomorphism IgX,tor ∼= IgX

′,tor.4

One can also define partial minimal compactifications of IgX,∗, for example via
normalization. We can describe the boundary components of the minimal com-
pactification explicitly in terms of Igusa cusp labels, cf. Theorem 3.3.15. Another
important result is that partial minimal compactifications are affine:

Proposition 1.8. For any X, the leaf C X,∗ and the Igusa variety IgX,∗ are affine.

To prove this, we first prove it for a special leaf in a given isogeny class (one
that is contained in a fundamental Ekedahl–Oort stratum). Such leaves exist in
general by a result of Nie, [Nie15], and in their case we appeal to a result of Boxer,
[Box15], that partial minimal compactifications of Ekedahl–Oort strata are affine.
(The latter result was also proved independently by Goldring–Koskivirta [GK19].)
Then we deduce the general case by using isogenies and the invariance of the partial
toroidal compactifications and minimal compactifications under isogenies.

Remark 1.9. When X is completely slope divisible the Igusa variety and its com-
pactifications admit non-perfect versions that are sometimes useful to keep the
situation more geometric. In particular, one can naturally define versions with fi-
nite level structure. For this reason, some of the analysis is carried out only for
completely slope divisible X. As any X is isogenous to a completely slope divisible
X this results in no essential loss of generality.

Our main geometric result is a description of the fibres of the Hodge–Tate period
map on both minimal and toroidal compactifications. Let

S∗K(p∞N) = lim←−
m

S ∗K(pmN),Qp

and similarly
Stor
K(p∞N) = lim←−

m

S tor
K(pmN),Qp ,

as “p-adic analytic spaces”.5 There is a Hodge–Tate period map

π∗HT : S∗K(p∞N) → F`

4The condition on étale quotients is required to ensure that the choice of cone decomposition
does not cause trouble.

5Technically, as diamonds, [Sch17]. It is known that both limits are representable by perfectoid
spaces, but we will not need to know this.
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where the flag variety F` parametrizes totally isotropic F -stable subspaces of V ;
by pre-composition with the projection from the toroidal to the minimal compact-
ification, we also get a map

πtor
HT : Stor

K(p∞N) → F`.

Let C be some complete algebraically closed nonarchimedean extension of Qp, and
let x ∈ F`(C) be a point. By [SW13], this is equivalent to a p-divisible groupX over
OC with extra structure as above, and an isomorphism Tp(X) ∼= L. The special
fibre X of X gives rise to IgX with its partial minimal and toroidal compactification
IgX,∗ and IgX,tor. As these are perfect schemes, they admit canonical lifts to p-adic
formal schemes over OC ; let us simply denote these by a subscript OC , and then
their generic fibres, which are perfectoid spaces over C, by a subscript C .

Theorem 1.10. There are canonical maps

IgX,tor
C → (πtor

HT)−1(x),

IgX,∗C → (π∗HT)−1(x).

They are open immersions of perfectoid spaces with the same rank-1-points; in fact,
the target is the canonical compactification of the source, in the sense of [Sch17,
Proposition 18.6].

In particular, the cohomology of the fibres of the Hodge–Tate period map agrees
with the cohomology of Igusa varieties, even on compactifications. This extends
the result of [CS17] to the non-compact case.

1.10.1. Organization. Let us now summarize the contents of the different sections,
highlighting also some further results not mentioned so far.

In Section 2, we set up the basic formalism of our Shimura varieties and recall
some foundational results, especially about the construction of Igusa varieties. At
the end of this section, we also explain the main argument, referring to the key
results of the later sections.

In Section 3, we construct the compactifications of Igusa varieties and prove
basic results about their geometry, as stated above.

In Section 4, we describe the fibres of the compactified Hodge–Tate period maps
πtor

HT and π∗HT in terms of compactified Igusa varieties. We use toroidal compact-
ifications first to write down an explicit map in terms of boundary strata (even
integrally). Once we have a map, checking that it is an isomorphism can be done
on geometric points by general properties of perfectoid spaces (or even diamonds).
The case of minimal compactifications follows rather formally by using that both
sides are affine. Finally, we also use these results to deduce a semiperversity result
for Rπ◦HT∗F`.

In Section 5, we compute the cohomology of the Igusa varieties Igb, as a vir-
tual Q`-representation. This builds on the previous work of Shin, [Shi09], [Shi10],
[Shi11]; a similar analysis also appeared in [CS17]. The present situation requires
us to understand more precisely the boundary terms. It is here that we have to
assume that F+ 6= Q, which ensures that G admits no cuspidal subgroups, cf. Def-
inition 5.5.2. Essentially, this ensures that we have a special test function at at
least two places (the infinite places) which simplifies the geometric of the side trace
formula, and allows us to compare it to Shin’s trace formula for Igusa varieties. If
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F+ = Q, then the work of Morel, [Mor10], shows that the situation is more com-
plicated even in the case of Shimura varieties, and one can expect a clean answer
only for intersection cohomology.

In Section 6, we analyze the cohomology of the boundary of the Igusa varieties in
terms of the Igusa varieties for smaller unitary groups and the cohomology of general
linear groups. What we prove is essentially a version for Igusa varieties of Pink’s
formula [Pin92]. It is actually somewhat tricky to show that these computations
are Hecke-equivariant, and we use some new ideas involving adic spaces to get a
transparent argument. As an application, we also construct Galois representations
associated to mod ` systems of Hecke eigenvalues that occur in the cohomology of
Igusa varieties (in the setting of Theorem 1.1).

1.10.2. Acknowledgments. We thank Teruhisa Koshikawa for pointing out that the
“decomposed generic” condition of [CS17] can be slightly weakened. We also thank
Kęstutis Česnavičius, Sophie Morel, and James Newton for helpful discussions. The
first author was supported by a Royal Society University Research Fellowship and
by ERC Starting Grant 804176. The second author was supported by a DFG
Leibniz Grant and the Hausdorff Center for Mathematics (GZ 2047/1, Projekt-ID
390685813).



10 ANA CARAIANI AND PETER SCHOLZE

2. Quasisplit unitary Shimura varieties

In this section, we define the relevant Shimura varieties associated to quasi-split
unitary similitude groups and prove some basic related results. Our notation in
this section will be slightly different from the notation we used in the introduction.

2.1. Shimura varieties. As in the introduction, fix an imaginary CM field F with
totally real subfield F+ ⊂ F , and an integer n ≥ 1. Consider the F -vector space
V = F 2n with the skew-hermitian form

〈(x1, . . . , x2n), (y1, . . . , y2n)〉 =

n∑
i=1

(xiy2n+1−i − x2n+1−iyi)

and consider the induced alternating form

(·, ·) : V × V → Q : (x, y) = trF/Q〈x, y〉.

Then V admits self-dual OF -lattices L ⊂ V with respect to the pairing (·, ·): For
example, if I ⊂ F is the inverse different, then L = OnF ⊕ I

n
is such a self-dual

lattice. Fix any self-dual OF -lattice L ⊂ V , and define the group G over Z by

G(R) = {(g, c) ∈ GLOF (L)(R)×Gm(R) | (gv, gw) = c(v, w) ∀v, w ∈ L} ,

which is a unitary similitude group. We let

X =
∏

τ :F+↪→R

Xτ,+ t
∏

τ :F+↪→R

Xτ,−

be the symmetric space for G(R), where Xτ,+ (resp. Xτ,−) is the space of positive
(resp. negative) definite n-dimensional subspaces of V ⊗F+ R ∼= C2n. For any neat
compact open subgroup K ⊂ G(Af ), we consider the double quotient

XK = G(Q)\(X ×G(Af )/K) .

To compare with Theorem 1.1, we will also need to consider the corresponding
unitary group G0 over Z:

G0(R) = {g ∈ GLOF (L)(R) | (gv, gw) = (v, w) ∀v, w ∈ L} .

Then G0 is naturally a subgroup of G (and is the group denoted by G in the
introduction). We also considerX0 =

∏
τ :F+↪→RXτ,+, which is the symmetric space

for G0(R) and, for a neat compact open subgroup K0 ⊂ G0(Af ), the corresponding
double quotient X0

K0
(this is the space denoted XK in the introduction).

Moreover, for a prime v of F above a prime away from S and that splits in F0,
let T 0

i,v be the double coset operator

GL2n(OFv )diag($v, . . . , $v︸ ︷︷ ︸
i

, 1, . . . , 1) GL2n(OFv )×
∏

w|p,w 6=v

GL2n(OFw)

for G0, and Ti,v be the double coset operator

GL2n(OFv )diag($v, . . . , $v︸ ︷︷ ︸
i

, 1, . . . , 1) GL2n(OFv )×
∏

w|p,w 6=v

GL2n(OFw)× Z×p

for G. The inclusion G0 ↪→ G induces a restriction map TS → T0,S on the level of
Hecke algebras that identifies Ti,v with T 0

i,v.
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Lemma 2.1.1. Assume that K0 = K ∩ G0(Af ). The inclusion G0 ↪→ G induces
a natural map X0

K0
→ XK , which is an open and closed immersion. The induced

map on cohomology and compactly supported cohomology is Hecke-equivariant for
the restriction map TS → T0,S.

Proof. We have a short exact sequence of algebraic groups over Z:

1→ G0 → G
c→ Gm → 1.

The inclusion G0 ↪→ G identifies X0 with a connected component of X. The locally
symmetric space XK is a disjoint union of quotients of X by congruence subgroups
of G(Q); the analogous statement also holds true for X0

K0
. To prove the lemma, it

is enough to check that the natural map X0
K0
→ XK is injective. Assume that we

have pairs (hi, gi) ∈ X0 × G0(Af ) for i = 1, 2 and elements γ ∈ G(Q) and k ∈ K
such that (h1, g1) = γ(h2, g2)k. From g1 = γg2k, we deduce that

c(γ) = c(k)−1 ∈ Q× ∩

(∏
p

Z×p

)
= {±1}.

On the other hand, h1 = γh2 implies that c(γ) > 0. We deduce that γ ∈ G0(Q),
k ∈ K0. The last statement is clear. �

It will be convenient to know that G satisfies the Hasse principle:

Proposition 2.1.2. The group G satisfies the Hasse principle, i.e. the map

H1(Q, G)→
∏
v

H1(Qv, G)

is injective, where v runs over all places of F . Equivalently, if (V ′, (·, ·)′) is any
other 2n-dimensional F -vector space with an alternating form (·, ·)′ such that (xv,w)′ =
(v, xw)′ for all v, w ∈ V ′ and x ∈ F , such that there are isomorphisms (Vv, (·, ·)v) ∼=
(V ′v , (·, ·)′v), identifying the forms up to a scalar, after base change to any local field
Qv of Q, then there is an isomorphism (V, (·, ·)) ∼= (V ′, (·, ·)′), identifying the forms
up to a scalar.

Proof. (cf. [Kot92, Section 7]) The derived group Gder of G is simply connected,
so H1(Q, Gder) = 0. It follows that it suffices to see that D = G/Gder satisfies the
Hasse principle. One can identify D with the subtorus of ResF/QGm × Gm of all
pairs (z, t) such that NmF/F+(z) = t2n. Via (z, t) 7→ (z/tn, t), this is isomorphic
to ResF+/QT × Gm, where T = ker(Nm : ResF/F+Gm → Gm). Both of these tori
satisfy the Hasse principle. �

We can now interpret XK as the C-points of a moduli scheme of abelian varieties
with certain extra structures. As we will have much occasion to consider similar
kinds of extra structure, let us fix some terminology for this paper.

Definition 2.1.3.
(1) Let S be a scheme over Z[ 1

∆F
]. An abelian variety with G-structure over

S is a triple (A, ι, λ) where A is an abelian scheme of dimension [F : Q]n
over S, ι : OF → End(A) is an OF -action such that LieA is free of rank
n over OF ⊗Z OS, and λ : A ∼= A∨ is a principal polarization on A whose
Rosati involution is compatible with complex conjugation on OF via ι.
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(2) Let p be a prime that is unramified in F and let S be a scheme on which p
is locally nilpotent. A p-divisible group with G-structure over S is a triple
(X, ι, λ) where X is a p-divisible group of height 2[F : Q]n and dimension
[F : Q]n, ι : OF → End(X) is an OF -action such that LieX is free of rank
n over OF ⊗Z OS, and λ : X ∼= X∨ is a principal polarization on X whose
Rosati involution is compatible with complex conjugation on OF via ι.

Let N ≥ 3 and let

K = K(N) = {g ∈ G(Ẑ) | g ≡ 1 mod N}

be a principal congruence subgroup, automatically neat. In the following definition,
we do not invert N ; we do not claim any nice geometric properties of the resulting
scheme at primes dividing N .

Definition 2.1.4. Let S pre
K over SpecZ[ 1

∆F
] parametrize over a test scheme S

an abelian variety with G-structure A = (A, ι, λ) together with an OF -linear map
L/N → A[N ] and a primitive N -th root of unity ζN ∈ µN (OS) such that the
diagram

L/N × L/N
(·,·)
//

��

Z/N

ζN

��
A[N ]×A[N ] // µN

commutes, where the lower map is the Weil pairing on A[N ] induced by λ, and such
that the map L/N → A[N ] extends to similar OF -linear maps L/∆m

F N → A[∆m
F N ]

compatible with the pairing for all m ≥ 1.

It is standard that S pre
K is a Deligne–Mumford stack and that S pre

K × Z[ 1
∆FN

]
is representable, as it is relatively representable over the Siegel modular variety of
principal level N ≥ 3. In fact, even if p divides N , S pre

K × Z(p) is representable as
soon as the part of N prime to p is at least 3; we will always be in such a situation.
We will need to normalize S pre

K :

Definition 2.1.5. Let SK be the normalization of S pre
K in S pre

K × Z[ 1
∆FN

].

The reason for the final condition on lifting the level structure will become ap-
parent in the following proof:

Proposition 2.1.6. There is a natural isomorphism of manifolds

XK
∼= SK(C).

Proof. If A = (A, ι, λ) is an abelian variety with G-structure over C, then the first
homology L′ = H1(A,Z) is a finite projective OF -module of rank 2n equipped with
a perfect alternating form (·, ·)′ : L′×L′ → Z (up to sign). We want to see that when
A comes from SK , there is an F -linear isomorphism LQ ∼= L′Q compatible with the
forms up to scalar. By the Hasse principle (Proposition 2.1.2), it is enough to show
that such isomorphisms exist locally. At the archimedean places, both forms are
of the same signature by the condition on the dimension of the Lie algebra. At
the primes that are unramified in F , both lattices are self-dual, which determines
the isomorphism class of the form. Finally, at the ramified primes we use the final
condition in Definition 2.1.4.
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Now the choice of an isomorphism LQ ∼= L′Q compatible with the form, up to
scalar, gives aG(Q)-torsor over SK(C). We want to identify this withX×G(Af )/K.
The element of X comes from Hodge theory – the (positive or negative) definite n-
dimensional F ⊗QC-subspace is the Hodge filtration – and the element of G(Af )/K
is exactly the given level structure. Note again that at ramified primes, we need
to use the assumption that the isomorphism lifts to ensure that the isomorphism
modulo N comes from an element of G(Af ). �

2.2. p-divisible groups. Next, we give some results about p-divisible groups with
G-structure.

Let (X, ι, λ) be a p-divisible group with G-structure over an algebraically closed
field k of characteristic p. We get a filtration

Xµ ⊂ X◦ ⊂ X

into the multiplicative and connected part. This filtration is OF -stable and sym-
plectic with respect to λ. We let

X(0,1) = X◦/Xµ,Xét = X/X◦

be the graded pieces for the filtration. As we work over a perfect field, this filtration
splits uniquely, so

X ∼= Xµ ⊕ X(0,1) ⊕ Xét

under which λ decomposes similarly into a direct sum. In particular, up to isomor-
phism, X is determined by X(0,1) with its OF -action and principal polarization and
the finite projective OF ⊗Z Zp-module Tp(Xét). Slightly more generally, we have
the following observation.6

Proposition 2.2.1. Assume that

Z−2 ⊂ Z−1 ⊂ X

is an OF -stable filtration by sub-p-divisible groups such that Z−2 is multiplicative,
X/Z−1 is étale, and the polarization identifies Z−2 with X/Z−1. Then there is an
OF -linear splitting

X ∼= Z−2 ⊕ Z−1/Z−2 ⊕ X/Z−1

under which λ decomposes similarly into a direct sum.

Proof. We can decompose into multiplicative, biconnected, and étale parts, which
gives us only two splitting problems, on the étale and on the multiplicative parts.
We only have to arrange that they are dual, so we can make an arbitrary choice at
one side and then arrange the other one to be dual. �

2.2.2. Construction of Igusa covers. Let k be an algebraically closed field of charac-
teristic p and let X/k be an isoclinic p-divisible group equipped with extra structures
of EL type or of PEL type. For every m ∈ Z≥1, let Γm denote the group of au-
tomorphisms of X[pm] which commute with the extra structures and which lift to
automorphisms of X[pm

′
] for every m′ ≥ m. We let Γm,k denote the finite étale

group scheme over k corresponding to Γm. The following is a consequence of [CS17,
Corollary 4.1.10].

6The motivation for the result are the Igusa cusp labels introduced later; this also explains the
notation.
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Proposition 2.2.3. The finite étale group scheme Γm,k represents the functor

FΓm : Spec k − Schemes→ Sets

for which FΓm(T ) is the set of T -automorphisms of XT [pm] which commute with
the extra structures and which lift (fppf locally on T ) to T -automorphisms of
XT [pm

′
] for all m′ ≥ m. In fact, for any m there is some m′ ≥ m so that it

is enough to ask for a lifting to XT [pm
′
] (fppf locally on T ).

Proof. We consider the functor FHm sending a Spec k-scheme T to the set of T -
endomorphisms of XT [pm] which lift (fppf locally on T ) to T -endomorphisms of
XT [pm

′
] for all m′ ≥ m (we do not require these to be invertible or to commute

with the extra structures). Then FΓm is a subfunctor of FHm . It is enough to
see that FHm is representable by a finite étale scheme Hm,k. This is proved in the
second part of [CS17, Corollary 4.1.10], which applies because X is isoclinic.

To see that one m′ is enough, use that everything is finitely presented. �

Let X/k be a seminormal scheme. Assume that G /X is a p-divisible group
equipped with extra structures of EL type or of PEL type as in [CS17, Section 4.2],
such that for any point x ∈ X and for any geometric point x̄ above x there exist
isomorphisms

G ×X k(x̄)
∼→ X×k k(x̄)

compatible with the extra structures. The following result is proved in [Man05] in
the special case when X is an Oort central leaf in a PEL-type Shimura variety, but
the result holds more generally and we will need to appeal to the general result
repeatedly later on.

Theorem 2.2.4. Let m ∈ Z≥1. Consider the functor from X-schemes to sets
which sends a scheme T /X to the set of isomorphisms

ρm : G [pm]×X T
∼→ X[pm]×k T

compatible with the extra structures and which lift (fppf locally on T ) to isomor-
phisms ρm′ for all m′ ≥ m (or just for one sufficiently large m′ as in the previous
proposition). This functor is representable by a Γm-torsor

Jm(G /X)→ X.

Proof. We may assume that X = SpecR is affine. We first make a reduction
to the case that R is perfect, so assume that the result holds true when R is
perfect. Our goal is to show that after some faithfully flat cover, G is isomorphic
to X; this clearly implies the theorem by faithfully flat descent. Assuming the
result for Xperf , we get for any m ≥ 1 a Γm-torsor Jm(G ×X Xperf/Xperf) →
Xperf . As X → Xperf is a universal homeomorphism, this Γm-torsor descends
uniquely to a Γm-torsor J ′m → X. Let J ′ = lim←−m J

′
m, which is faithfully flat

over X. We claim that the isomorphism G ∼= X that exists tautologically over
J ′ ×X Xperf = lim←−m Jm(G ×X Xperf/Xperf) is in fact defined over J ′. Note that
this isomorphism is given by a series of isomorphisms between finite locally free
group schemes G [pm] ∼= X[pm], so this amounts to a countable system of elements
of Rperf being elements of R. As R is seminormal, an element f ∈ Rperf lies in
R if and only if for all x ∈ X = SpecR, the element f(x) ∈ k(x)perf lies in k(x),
cf. [Swa80, Theorem 2.6]. Thus, we can reduce to the case that R is a field. In that
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case R → Rperf is faithfully flat, so the theorem follows by faithfully flat descent
for R; and then we also see the claim, as necessarily Jm(G /X) = J ′m.

We therefore assume thatX is perfect. We further want to reduce to the case that
X is strictly henselian local. For this, consider for anym the scheme J ′′m(G /X)→ X
parametrizing isomorphisms G [pm] ∼= X[pm] compatible with extra structures; note
that this functor is representable by a finitely presented affine scheme over X. (For
this, we think of group scheme homomorphisms G [pm] ×X T → X[pm] ×k T as
maps of Hopf algebras over T .) Let J ′′m(G /X) = SpecAm. For m′ ≥ m, we get
maps Am → Am′ ; let Am denote the image of Am in Am′ where m′ is chosen large
enough as in the previous proposition. Then the formation of Am commutes with
flat base change, and Am is still a finitely presented R-algebra, as it only depends on
G [pm

′
] which is finitely presented. It is enough to show that Am is faithfully finite

flat over R: Indeed, if this holds for all m, then lim−→m
Am = lim−→m

Am is faithfully
flat over R, and we can by flat base change reduce to the case that G ∼= X, in which
case the claim is clear. But checking that Am is faithfully finite flat can be done
over the strictly henselian local rings of R, so from now on we assume X = SpecR,
with R a strictly henselian local ring that is also perfect. It is then enough to find
an isomorphism G

∼→ X×κ R compatible with extra structures.
From [CS17, Lemma 4.3.15], we see that we can construct an isogeny G →

X ×κ R, a priori not compatible with extra structures. This induces a morphism
from SpecR to the reduced special fiberM0,d

X of a truncated Rapoport–Zink space
for X. Lemma 2.2.5 below shows that the subset of points ofM0,d

X over which the
p-divisible group parametrised by the Rapoport–Zink space is isomorphic to X is
finite. As SpecR is connected, the map from SpecR to the Rapoport–Zink space
factors through one such (closed) point. Modifying the isogeny, we can then find
an isomorphism ρ : G

∼→ X×κR, a priori not compatible with extra structure. But
[CS17, Lemma 4.3.15] ensures that it must automatically be compatible with the
extra structure. �

We used the following general lemma: Let k be an algebraically closed field of
characteristic p and let Y/k be a p-divisible group. LetMY be the Rapoport–Zink
space for Y parametrizing quasi-isogenies from Y to varying p-divisible groups.
Consider the truncated Rapoport–Zink space M0,d

Y , which parametrises isogenies
with kernel contained in the pd-torsion subgroup. LetM0,d

Y be its reduced special
fiber. The following lemma is a slight generalisation of [Man04, Lemma 3.4], which
applies to the special case of an isoclinic, completely slope divisible p-divisible
group.

Lemma 2.2.5. Let H be the universal p-divisible group overM0,d

Y . The subset

Z := {x ∈M0,d

Y |H × k(x̄) ∼= Y×k k(x̄)} ⊆ M0,d

Y

consists of finitely many reduced points.

Proof. We know that the subset Z is constructible by [Oor04, Corollary 2.5]. To
show that it is finite, it is enough to see that all points are defined over k. Consider
the scheme Z̃ →M0,d

Y parametrizing isomorphisms H ∼= Y; this surjects onto Z.
Then for any algebraically closed field k′ over k, Z̃(k′) is the set of self-isogenies
Yk′ → Yk′ of degree ≤ d. But End(Y) = End(Yk′), so we see that Z̃(k′) = Z̃(k),
and so it follows that all points of Z are k-valued, and hence Z is finite. �
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Note that in the previous lemma, we did not ask that Y be isoclinic. In fact, we
will now use it to prove a variant of Theorem 2.2.4 for non-isoclinic groups.

Let X/k be a p-divisible group with extra structure of EL or PEL type. Let
Γ = lim←−m Γm = Aut(X) be the profinite group of automorphisms of X/k compatible
with the extra structure. Let X/k be a perfect scheme, and assume that G is a
p-divisible group over X with the same kind of extra structure such that for all
geometric points x̄ of X, there is an isomorphism G ×k(x̄) ∼= X×k k(x̄) compatible
with extra structures.

Proposition 2.2.6. The functor on perfect X-schemes T parametrizing isomor-
phisms G ×X T ∼= X×k T is representable by a Γ-torsor J(G /X)→ X.

Proof. First one verifies the assertion when G is constant, for which one uses that
if R is a strictly henselian perfect ring then all automorphisms of XR are constant,
cf. [CS17, Lemma 4.3.15]. In general, the functor is evidently representable by a
scheme affine over X; it is enough to show that it is faithfully flat, as one can
then by faithfully flat descent reduce to the case that G is constant. Now faithful
flatness can be checked on strictly henselian local rings, so we can assume that
X = SpecR where R is a strictly henselian perfect ring. In this case, the argument
from Theorem 2.2.4 shows that G is already constant, so the result follows. �

A variant is the following. Let Aut(X) denote the group scheme of automor-
phisms of X compatible with extra structures. This is in general highly non-reduced,
with the non-reduced structure related to the failure of X to be isoclinic (see [CS17,
Corollary 4.1.11]). Let X/k be a regular scheme, and assume as above that G is
a p-divisible group over X with the same kind of extra structure such that for all
geometric points x̄ of X, there is an isomorphism G ×k(x̄) ∼= X×k k(x̄) compatible
with extra structures.

Proposition 2.2.7. The functor on all X-schemes T parametrizing isomorphisms
G ×X T ∼= X×k T is representable by an Aut(X)-torsor over X.

Proof. It is clearly a quasi-torsor, so it is enough to find a section over a faith-
fully flat cover. Proposition 2.2.6 gives a section over the faithfully flat J(G ×X
Xperf/Xperf)→ Xperf , and Xperf → X is faithfully flat as X is regular. �

2.3. Igusa varieties. Using the results of the previous subsection, we will now
define the Igusa varieties related to the Shimura variety SK . We assume that
K = K(N) is a principal level with N ≥ 3, and we fix a prime p that is unramified
in F and prime to N . Let k be an algebraically closed field of characteristic p, and
let X/k be a p-divisible group with G-structure.

Definition 2.3.1. The central leaf7 corresponding to X is the subset of SK,k :=
SK ×Fp k where the fibers of the p-divisible group A[p∞] at all geometric points are
isomorphic to X:

C X := {x ∈ SK,k | A[p∞]× k(x̄) ∼= X×k k(x̄)} .

(The isomorphisms are understood to be isomorphisms of p-divisible groups with
G-structure.)

7In [Oor04], Oort calls these objects central leaves to distinguish them from so-called isogeny
leaves. We will only consider central leaves in this paper, so we will simply call these leaves.
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By the argument in [Man05, Proposition 1], this is a locally closed subset of SK,k

and becomes a smooth subscheme when endowed with the induced reduced struc-
ture.

The results of the previous section imply the following result.

Corollary 2.3.2. The scheme

IgX → C X ⊂ SK,k

parametrizing isomorphisms A[p∞] ∼= X of p-divisible groups with G-structure is
representable by an Aut(X)-torsor over C X.

Proof. Apply Proposition 2.2.7. �

Moreover, IgX can be reinterpreted in terms of a moduli space of abelian varieties
with G-structures up to p-power isogeny, and isomorphisms of A[p∞] with X-action
up to p-power isogeny, cf. [CS17, Lemma 4.3.4]. This shows in particular that IgX is
perfect, and that an isogeny φ : X→ X′ (compatible with extra structures) induces
an isomorphism IgX ∼= IgX

′
. In particular, we get pro-finite correspondences

C X ← IgX ∼= IgX
′
→ C X′

between different leaves in the same isogeny class.
Now we wish to obtain a variant of Igusa varieties that works at finite level. For

this, we work with completely slope divisible p-divisible groups:

Definition 2.3.3. Let T / SpecFp be a scheme and G /T a p-divisible group. Let
FrobG denote the Frobenius morphism relative to T .

(1) G is isoclinic and slope divisible of slope λ ∈ Q≥0 if one can write λ = r
s

so that the quasi-isogeny

p−rFrobsG : G → G (ps)

is an isomorphism.
(2) G is slope divisible with respect to λ ∈ Q≥0 if one can write λ = r

s so that
the quasi-isogeny

p−rFrobsG : G → G (ps)

is an isogeny.
(3) G is completely slope divisible if it has a filtration by closed immersions of

p-divisible groups

0 = G≤0 ⊂ G≤1 ⊂ · · · ⊂ G≤r = G

such that, for each i, G≤i/G≤i−1 is isoclinic and slope divisible of slope λi
and G≤i is slope divisible with respect to λi, where λi is a strictly decreasing
sequence of rational numbers.

We note that such slope decompositions are unique if they exist (as when G is
isoclinic and slope divisible of slope λ and G ′ is slope divisible with respect to
λ′ > λ, then there are no maps G ′ → G ) and stable under base change. In
particular, the property of being completely slope divisible is fpqc local.

We will use repeatedly the following basic result on completely slope divisible
p-divisible groups.
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Lemma 2.3.4. Let T / SpecFp be a connected regular scheme and G /T a p-
divisible group. Let η be the generic point of T , and η a geometric point above
η. If Gη is completely slope divisible, then so is G .

Proof. This is shown in the first part of the proof of [Zin01, Theorem 7]. �

Choose a p-divisible group with G-structure X over an algebraically closed field k
of characteristic p. Assume that X is completely slope divisible (this is a condition
without extra structures). Note that a p-divisible group over Fp is completely slope
divisible if and only if it is a direct sum of its isoclinic pieces, which are defined
over a finite field, cf. [OZ02, Corollary 1.5]. One can check that such a choice of X
exists in any isogeny class.

We have
X = ⊕ri=1Xi,

where the Xi are isoclinic p-divisible groups of strictly decreasing slopes λi ∈ [0, 1].
The polarization λ on X induces isomorphisms λi : Xi → (Xj)∨ for all i, j with
λi + λj = 1 which satisfy (λi)∨ = −λj . Let G = GX be the p-divisible group of
the universal abelian variety A/SK restricted to C X. Then G is completely slope
divisible, since it is geometrically fiberwise constant. (Note that C X is a regular
scheme and the fibers of G over every generic point of C X are completely slope
divisible, so Lemma 2.3.4 implies the result.) It has a slope filtration

0 ⊂ G≤1 ⊂ · · · ⊂ G≤r = G

for which the graded pieces Gi := G≤i/G≤i−1 are isoclinic of slope λi. The OF⊗ZZp-
action on G respects this filtration, so that each Gi is endowed with an OF ⊗Z Zp-
action. Moreover, the polarization on G induces isomorphisms li : Gi → (Gj)∨ for
all i, j with λi + λj = 1, which satisfy (li)∨ = −lj .

Definition 2.3.5. The (pro-)Igusa variety is the map

IgX → C X

which over a C X-scheme T parametrizes tuples (ρi)
r
i=1 of isomorphisms

ρi : Gi ×CX T
∼→ Xi ×k T

which are compatible with the OF ⊗Z Zp-actions on Gi and Xi and commute with
the polarizations on G and X up to an element of Z×p (T ) that is independent of i.
8

Remark 2.3.6. We can also define IgX
m for any m ≥ 0 as the moduli space of

isomorphisms on C X-schemes T

ρi,m : Gi[p
m]×CX T

∼→ Xi[pm]×k T

which (fppf locally on T ) lift to arbitrary m′ ≥ m and which respect the extra
structures. Explicitly, this means that the isomorphisms ρi,m commute with the

8This element of Z×p (T ) can be identified with an automorphism of the multiplicative p-
divisible group µp∞,T .
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OF ⊗Z Zp-actions on Gi[pm] and Xi[pm] and for i, j with λi + λj = 1 they fit into a
diagram of isomorphisms

Gi[pm]×CX T

li

��

ρi,m
// Xi[pm]×k T

λi

��

(Gj)∨[pm]×CX T (Xj)∨[pm]×k T
ρ∨j,m

oo

,

that commutes up to an element of (Z/pmZ)× that is independent of i. By The-
orem 2.2.4, IgX

m is a finite étale cover of C X, Galois with Galois group Γm,X, the
group of automorphisms of X[pm] that lift to isomorphisms of X compatible with
extra structure.

In particular, passing to the inverse limit, we see that

IgX → C X

is a pro-finite étale cover with Galois group ΓX = Aut(X).

Remark 2.3.7. The scheme IgX maps naturally to IgX (as is evident from the moduli
description), and then even to its perfection. The resulting map IgX → IgX

perf is an
isomorphism, as the slope filtration splits uniquely over a perfect base, cf. [CS17,
Proposition 4.3.8], or simply because it is a map between ΓX-torsors over C X

perf .

2.4. Serre–Tate theory. Our goal in this subsection is to prove a version of Serre–
Tate theory for semi-abelian schemes that are globally extensions of abelian schemes
by tori. We follow Drinfeld’s original proof, cf. [Kat81], but see also [And03]. Note
that we do not assume that we are working over a Noetherian base.

Theorem 2.4.1. Let S′ � S be a surjection of rings in which p is nilpotent, with
nilpotent kernel I ⊂ S′.

(1) The functor GS′ 7→ GS := GS′ ×S′ S from p-divisible groups up to isogeny
over S′ to p-divisible groups up to isogeny over S is an equivalence of cat-
egories.

(2) The functor AS′ 7→ AS := AS′ ×S′ S from abelian varieties up to p-power
isogeny over S′ to abelian varieties up to p-power isogeny over S is an
equivalence of categories.

(3) We now consider the category RS′ of semi-abelian schemes AS′ which are
globally over S′ an extension

0→ TS′ → AS′ → BS′ → 0

of an abelian scheme BS′ by a split torus TS′ (necessarily of constant rank
over S′), with morphisms in RS′ given by Hom(AS′ , A

′
S′)[1/p]. Then the

functor RS′ → RS given by AS′ 7→ AS := AS′ ×S′ S is an equivalence of
categories.

Proof. Consider first the case of p-divisible groups. We prove that the functor
GS′ 7→ GS is faithful. Let GS′ be a p-divisible group over S′. Then its formal
completion along its identity section ĜS′ is a formal Lie group. Let T ′ be an affine
S′-scheme and set T := T ′ ×S′ S. Then

ker(GS′(T
′)→ GS(T ))

∼→ ker(ĜS′(T
′)→ ĜS(T ))
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is killed by pn for some sufficiently large positive integer n that depends only on
the degree of nilpotence of the ideal (p, I) ⊂ S′. This follows from [Mes72, Ch. II,
§4].

Now let Gi,S′ be p-divisible groups over S′ for i = 1, 2 and assume f : G1,S′ →
G2,S′ is a map that reduces to 0 on S. Then for all T ′, the image of f(T ′) lies
in ker(G2,S′(T

′) → G2,S(T )) which is killed by pn. It follows that pnf = 0, which
implies that f = 0 as Hom’s between p-divisible groups are torsion-free.

We now prove that the functor for p-divisible groups is full. Let f ∈ Hom(G1,S ,G2,S).
We want to show that there exists a lifting g̃ ∈ Hom(G1,S′ ,G2,S′) of pnf , where
n is the sufficiently large positive integer chosen above. Let x ∈ G1,S′(T

′) with
image x̄ ∈ G1,S(T ). Since G2,S′ is formally smooth over S′, there exists a lift
f̃(x̄) ∈ G2,S′(T

′) of f(x̄). Since pn kills

ker(G2,S′(T
′)→ G2,S(T )),

the element g̃(x) := pnf̃(x̄) is well-defined and gives rise to an element

g̃ ∈ Hom(G1,S′(T
′),G2,S′(T

′))

lifting pnf .
Essential surjectivity in the case of p-divisible groups follows from [Ill85].
We now consider the case of abelian schemes. The full faithfulness is proved in

the same way as for p-divisible groups. The key point is that ker(ÂS′(T
′)→ ÂS(T ))

is the same as ker(ÂS′(T
′)→ ÂS(T )), where Â is the formal completion of A along

its identity section and is a formal Lie group. Essential surjectivity for abelian
schemes is standard (the obstruction theory of abelian schemes is unobstructed).

We now consider the case of semi-abelian schemes. The full faithfulness is also
proved in the same way as for p-divisible groups: note that AS′ is still smooth and
therefore formally smooth. Moreover, ker(AS′(T

′)→ AS(T )) can still be identified
with ker(ÂS′(T

′) → ÂS(T )), where Â is the formal completion of A along its
identity section and is a formal Lie group. For essential surjectivity, note that we
can first lift the base abelian scheme B; afterwards, lifting the semiabelian scheme
is equivalent to lifting a section of the dual abelian scheme, which is possible by
(formal) smoothness. �

Theorem 2.4.2. Let S′ � S be a surjection of rings in which p is nilpotent, with
nilpotent kernel I ⊂ S′.

(1) Consider the category of triples (AS ,GS′ , ρ), where AS is an abelian scheme
over S, GS′ is a p-divisible group over S′ and

ρ : AS [p∞]
∼→ GS′ ×S′ S

is an isomorphism. The functor AS′ 7→ (AS′ ×S′ S,AS′ [p∞], id) induces an
equivalence of categories between the category of abelian schemes over S′
and the category of triples defined above.

(2) Consider the category of triples (AS ,GS′ , ρ), where AS is an extension

1→ TS → AS → BS → 1

of an abelian scheme BS by a split torus TS over S (necessarily of constant
rank over S), GS′ is a p-divisible group over S′ and

ρ : AS [p∞]
∼→ GS := GS′ ×S′ S
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is an isomorphism. We let morphisms between these triples be compatible
morphisms of triples. The functor AS′ 7→ (AS′ ×S′ S,AS′ [p∞], id) induces
an equivalence of categories between the category of extensions

1→ TS′ → AS′ → BS′ → 1

over S′ and the category of triples defined above.

Proof. Consider first the case of abelian schemes. We prove that the functor is fully
faithful. The faithfulness follows from the fact that we have an injection

Hom(A1,S′ , A2,S′) ↪→ Hom(A1,S , A2,S),

as proved in Theorem 2.4.1. To prove that the functor is also full, let f : A1,S →
A2,S and f∞ : G1,S′ → G2,S′ be compatible with the isomorphisms ρ1, ρ2. We can
lift pnf to a morphism g̃ : A1,S′ → A2,S′ , for n as in the proof of Theorem 2.4.1.
In order to obtain a lift f̃ : A1,S′ → A2,S′ of f , we need to show that g̃ is divisible
by pn, in other words that A1,S′ [p

n] ⊆ ker g̃. This can be checked on the level of
p-divisible groups, where it is automatic that pnf∞ is divisible by pn.

For essential surjectivity, take a triple (AS ,GS′ , ρ) and pick any abelian scheme
A′S′ over S

′ with an isogeny f : A′S → AS , which exists by Theorem 2.4.1. We get an
isogeny ρf∞ : A′S [p∞]→ GS . Up to multiplying f by pn, we may assume that this
lifts (necessarily uniquely) to an isogeny ρ̃ : A′S′ [p

∞]→ GS′ . Let K = ker ρ̃ ⊂ A′S′ ,
which is a finite flat group scheme. Replacing A′S′ by A

′
S′/K, we get the result.

Consider now the case of semi-abelian schemes. The fact that the functor is fully
faithful is proved in the same way as above. In the proof of essential surjectivity, the
only thing to make sure is that the quotient A′S′/K is indeed a semi-abelian scheme
of the desired form. But note that this quotient is a flat algebraic space over S′
whose base change to S is AS . This implies that it is a scheme, smooth over S, with
all fibers being semi-abelian schemes, i.e. it is a semi-abelian scheme. Moreover, by
the rigidity of multiplicative groups as in [SGA70, Exposé IX Théorème 3.6 bis],
the torus TS ⊂ AS deforms uniquely to a torus TS′ ⊂ AS′ , and then necessarily the
quotient is an abelian scheme (as it deforms an abelian scheme), showing that AS′
is still an extension of an abelian variety by a split torus TS′ . �

2.5. Compactifications. In this section, we recall the minimal and toroidal com-
pactifications of the Shimura varieties under consideration.

2.5.1. Degenerations. Before explaining the precise combinatorics of the compact-
ifications, let us quickly describe the C-valued points of SK where C is some
complete algebraically closed nonarchimedean field with ring of integers OC , such
that ∆−1

F ∈ OC .
Let us recall first the structure of principally polarized abelian varieties (A, λ)

over C. By the semistable degeneration theorem, there is a unique semiabelian
scheme A over OC with generic fibre A. The completion Â of A along its special
fibre sits in an exact sequence

0→ T̂ → Â → B̂ → 0

where T̂ is the completion of a torus T over OC , and B̂ is the completion of an
abelian variety B over OC . In fact, this short exact sequence algebraizes uniquely
to a short exact sequence

0→ T → G → B → 0 ,
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where G is the so-called Raynaud extension. The polarization induces a line bundle
L on A × A; its pullback to the generic fibre of Ĝ × Ĝ arises from a line bundle
on the generic fibre of B × B, inducing a principal polarization of the generic fibre
of B, and thus on B itself by properness. Thus, B carries a canonical principal
polarization λB : B ∼= B∨.

Let X be the cocharacter group of T (as OC is strictly henselian, this is simply a
finite free abelian group). Then the Raynaud extension is given by a map X → B∨.
Using the principal polarization of B, this gives a map f0 : X → B. On the other
hand, the map Ĝ → Â extends to a map between the rigid-analytic generic fibres of
G and A; this is a covering map, and identifies A as a rigid-analytic variety with a
quotient Gη/Y for some discrete subgroup Y ⊂ G(C). The principal polarization in
fact induces an identification Y ∼= X under which the composite Y → G(C)→ B(C)
is identified with the given map f0 : X → B(OC) = B(C). The lift f : X → G(C)
of f0 : X → B(C) is equivalent to a section of the pullback of the Poincaré bundle
over B × B∨ ∼= B × B to X × X; this section has to be symmetric (recalling that
the Poincaré bundle is symmetric). Moreover, for all x ∈ X, the section at (x, x)
must be topologically nilpotent (this condition is independent of a local integral
trivialization of the Poincaré bundle).

Conversely, given a symmetric lift f : X → G(C) of the given map X → B(C)
satisfying this topological nilpotence condition, one can form the quotient Gη/X to
get a principally polarized abelian variety A over C.

If (A, λ) carries in addition an OF -action, all objects involved will carry an
OF -action; note that X will then automatically be a finite projective OF -module.
Regarding level structures, we note that for any integer N invertible in C, the
N -torsion A[N ] = A(C)[N ] of A carries a canonical filtration

0 ⊂ T (C)[N ] ⊂ G(C)[N ] ⊂ A(C)[N ]

with associated gradeds

Gr−2 = T (C)[N ],Gr−1 = G(C)[N ]/T (C)[N ] = B(C)[N ],

Gr0 = A(C)[N ]/G(C)[N ] = X/NX .

Moreover, T (C)[N ] = G(C)[N ]⊥, and G(C)[N ] = T (C)[N ]⊥, under the Weil pair-
ing on A(C)[N ]. Thus, any level structure η : A(C)[N ] ∼= L/N will induce a filtra-
tion ZN = {ZN,−2 ⊂ ZN,−1 ⊂ L/N} such that ZN,−2 = Z⊥N,−1 and ZN,−1 = Z⊥N,−2

(and the filtration lifts to a similar filtration modulo M for all N |M). Let GrZN
i

denote the associated gradeds for i = −2,−1, 0. Let us pick an OF -linear splitting
of this sequence, so

(2.5.1) L/NL = ZN,−2 ⊕ ZN,−1/ZN,−2 ⊕ (L/N)/ZN,−1 =

0⊕
i=−2

GrZN
i .

In that case, level structures η : A(C)[N ] ∼= L/N inducing the given filtration
ZN are in bijection with the following data:

(1) OF -linear isomorphisms η−2 : T (C)[N ] ∼= GrZN
−2 , η−1 : B(C)[N ] ∼= GrZN

−1 ,
η0 : X/NX ∼= GrZN

0 such that η−2 and η0 are dual under the canonical
pairing, and η−1 is compatible with the Weil pairing;

(2) an OF -linear splitting of the short exact sequence

0→ T (C)[N ]→ G(C)[N ]→ B(C)[N ]→ 0 .
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This amounts to giving an extension of the given map f0 : X → B(C) to a
map 1

NX → B(C).
(3) An OF -linear extension of the map f : X → G(C) to a map 1

NX → G(C)
whose composition with G(C) → B(C) gives the extension in (2), which
amounts to a splitting X/NX → A(C)[N ],

subject to the condition that the induced isomorphism

(2.5.2) L/N ∼=
0⊕

i=−2

GrZN
i
∼= T (C)[N ]⊕B(C)[N ]⊕X/NX ∼= A(C)[N ]

is compatible with the Weil pairing, and that this data lifts to similar data modulo
M for all N |M . In (2.5.2), the first isomorphism is the splitting chosen in (2.5.1),
the second is induced by the ηi for i = −2,−1, 0, and the third is induced by the
splittings in (2) and (3).

2.5.2. Cusp labels. In our situation (using critically that the alternating form (·, ·)
on L is perfect), we can define a cusp label to be a pair (Z, X) where

(1) The filtration
Z = {Z−2 ⊂ Z−1 ⊂ L⊗Z Ẑ}

is OF -stable and symplectic in the sense that Z−1 = Z⊥−2 and Z−2 = Z⊥−1

with respect to the perfect alternating form (·, ·) on L.
(2) X is a finite projective OF -module with an OF -linear isomorphism

X ⊗Z Ẑ→ GrZ0 = L⊗Z Ẑ/Z−1.

In the following, we write GrZ
−2 = Z−2, GrZ

−1 = Z−1/Z−2 and GrZ
0 = L⊗Z Ẑ/Z−1.

Then GrZ
−2 and GrZ

0 are in natural perfect duality, and GrZ
−1 admits a natural

perfect pairing. Note also that in (2), one could equivalently ask for an isomorphism
X∨ ⊗Z Ẑ ∼= Z−2, where X∨ = Hom(X,Z) is the dual of X.

There is an action of G(Af ) on cusp labels (Z, X). Indeed, cusp labels are in
bijection with pairs (ZQ, XQ) defined similarly but on the rational level, and there
is an obvious action on the latter.

Definition 2.5.3. For K ⊂ G(Af ) a compact open subgroup, a cusp label at level
K is a K-orbit of cusp labels (Z, X). If H ⊂ G(Af ) is any closed subgroup, a
cusp label at level H is a compatible collection of cusp labels at level K for all open
compact subgroups K ⊂ G(Af ) containing H.

In case K = K(N) as above, we note that the cusp labels at level K can be
identified with pairs (ZN , X) where Z is an OF -stable filtration

ZN,−2 ⊂ ZN,−1 ⊂ L/N
that admits a lift to a filtration Z as above (in particular, ZN,−2 = Z⊥N,−1 and
ZN,−1 = Z⊥N,−2), and X is a finite projective OF -module with an OF -linear isomor-
phism X/N ∼= GrZN

0 .
Given a cusp label Z = (ZN , X) at principal level K = K(N), we define the

group
ΓZ = {g ∈ GLOF (X) | g ≡ 1 mod N} .

Moreover, we define a smaller Shimura variety SZ associated to Z as follows, via
its moduli problem. Let r be the OF -rank of X. Then S pre

Z /Z[ 1
∆F

] parametrizes
over a test scheme S quadruples (B, ι, λ, η) where
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(1) B is an abelian scheme of dimension [F : Q](n− r);
(2) ι : OF → End(B) is an action making LieB free of rank n−r overOF⊗ZOS ;
(3) λ : B ∼= B∨ is a principal polarization whose Rosati involution is compatible

with complex conjugation on OF along ι;
(4) η : GrZN

−1 → B[N ] is a map compatible with ι and such that the diagram

GrZN
−1 ×GrZN

−1
//

��

Z/NZ

ζN

��
B[N ]×B[N ] // µN

commutes for some primitive N -th root of unity ζN ∈ OS ; here, the upper
map is the natural perfect pairing on GrZN

−1 and the lower map is the Weil
pairing induced by λ. Moreover, we demand that étale locally there is a
lifting to such a level structure modulo N∆m

F for all m ≥ 0.
Let SZ be the normalization of S pre

Z in S pre
Z × Z[ 1

∆FN
]. Note that this is again

one of the unitary Shimura varieties of our setup, with n replaced by n − r. We
will make use of this observation for some inductive arguments.

2.5.4. Cone decompositions. Each cusp label Z = (ZN , X) at level K(N) deter-
mines an R-vector space MZ of symmetric pairings

(·, ·) : X ⊗ R×X ⊗ R→ R

such that (av, w) = (v, aw) for v, w ∈ X ⊗ R, a ∈ F ; these are equivalent to
Hermitian pairings

〈·, ·〉 : X ⊗ R×X ⊗ R→ F ⊗ R .

We consider the cones P+
Z ⊂ PZ ⊂ MZ , where P+

Z is the cone of positive definite
Hermitian pairings in MZ and PZ is the cone of positive semidefinite Hermitian
pairings with F -rational radicals9. There is an action of ΓZ on MZ and both P+

Z

and PZ are stable under this action.

Remark 2.5.5. In our case we can identify MZ with [F+ : Q] copies of the space of
Hermitian matrices in Mr(C), where r is the OF -rank of X. The subspace P+

Z is
then obtained by taking [F+ : Q] copies of the space of positive definite Hermitian
matrices in Mr(C), but PZ does not decompose into a product.

The cusp label Z also determines the Z-lattice SZ ⊂ M∨Z that is the image of
1
N (X ⊗X) under the natural map

1
N (X ⊗X)→M∨Z

sending v ⊗ w ∈ X ⊗ X to the map taking the alternating form (·, ·) ∈ MZ to
(v, w). Then SZ is stable under the action of ΓZ onM∨Z . A rational polyhedral cone
σ ⊂MZ is a subset of the form

σ = R>0v1 + . . .+ R>0vr

9In general, one would impose the condition of admissible radicals, but in our case the order
OF is maximal and having admissible radicals is equivalent to having rational radicals, cf. [Lan13,
Remark 6.2.5.5].
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for v1, . . . , vr ∈ S∨Z . (In particular, {0} is a rational polyhedral cone because it
is obtained from the empty sum.) A rational polyhedral cone σ ⊂ MZ is non-
degenerate if the closure σ̄ of σ does not contain any non-trivial R-vector subspace
of MZ . A rational polyhedral cone σ ⊂MZ is smooth if it is of the form

σ = R>0v1 + . . .+ R>0vr

for v1, . . . , vr ∈ S∨Z which extend to a basis of S∨Z . A rational polyhedral cone τ is a
face of a rational polyhedral cone σ if there exists a linear functional λ : MZ → R
with λ(σ) ⊂ R≥0 and τ̄ = σ̄ ∩ λ−1(0). (This definition implies that σ is always a
face of itself.)

A rational polyhedral cone σ ⊂MZ determines semigroups

σ∨ = {l ∈ SZ | l(v) ≥ 0,∀v ∈ σ} ,

σ∨0 = {l ∈ SZ | l(v) > 0,∀v ∈ σ} ,

σ⊥ = {l ∈ SZ | l(v) = 0,∀v ∈ σ} .
A ΓZ-admissible rational polyhedral cone decomposition is a set ΣZ of non-

degenerate rational polyhedral cones such that
(1) The cones in ΣZ are disjoint and PZ = ∪σ∈ΣZσ.
(2) For each σ ∈ ΣZ and each face τ of σ we have τ ∈ ΣZ .
(3) The set ΣZ is invariant under ΓZ and the set of orbits ΣZ/ΓZ is finite.

Such a ΣZ has a ΓZ-stable subset Σ+
Z forming a rational polyhedral cone decom-

position of P+
Z . We call ΣZ smooth if each cone σ ∈ ΣZ is smooth.

Let us write Z ≤ Z ′ if Z = (ZN , X), Z ′ = (ZN ′ , X
′) are cusp labels at level K

that admit lifts (Z, X), (Z′, X ′) such that Z−2 ⊂ Z′−2 and X∨ ⊂ (X ′)∨. In that
case, fixing such a lift, the injection X∨ → (X ′)∨ induces a surjection X ′ → X and
then inclusions MZ′ ⊂ MZ and PZ′ ⊂ PZ . We say that two admissible rational
polyhedral cone decompositions ΣZ and ΣZ′ are compatible if for each σ ∈ ΣZ′

we also have σ ∈ ΣZ (via the inclusion MZ′ ⊂ MZ). A compatible family of
cone decompositions at level K is a collection Σ = {ΣZ} of ΓZ-admissible rational
polyhedral cone decompositions for each cusp label Z at level K that are pairwise
compatible.

Remark 2.5.6. We can and do assume that each Σ is smooth and projective, in
the sense of [Lan13, Definition 7.3.1.1], and that for each cusp label Z and σ ∈
Σ+
Z , its stabilizer Γσ in ΓZ is trivial. The fact that compatible families of cone

decompositions satisfying these properties exist follows from [Lan13, Proposition
7.3.1.4]. Moreover, we note that such a cone decomposition at some principal
level K(N) induces a cone decomposition with the same properties at principal
level K(M) for any N |M . For the following, we fix some smooth projective cone
decomposition Σ (satisfying the assumption that all stabilizers Γσ are trivial) at
some auxiliary principal level K(N) in the beginning, and pull it back to any other
principal level considered.

2.5.7. Compactifications. Under the above assumptions, in particular K = K(N),
and away from the primes dividing N , the Shimura variety SK has good toroidal
and minimal compactifications S tor

K,Σ and S ∗K , whose properties we summarize
below. Actually, we will define a naive extension of the toroidal compactification
to unramified primes dividing N .



26 ANA CARAIANI AND PETER SCHOLZE

Theorem 2.5.8. There exists a flat, projective, normal scheme S ∗K/ SpecZ[ 1
N∆F

]
together with a dense open embedding

j : SK [ 1
N ] ↪→ S ∗K ,

satisfying the following additional properties:
(1) For each cusp label Z at level K, there is a canonical locally closed immer-

sion SZ [ 1
N ] ↪→ S ∗K , where SZ is the Shimura variety defined above.

(2) The incidence relations among strata are determined by the partial order
relation on cusp labels: SZ [ 1

N ] lies in the closure of SZ′ [
1
N ] if and only if

Z ≤ Z ′. Moreover, this property is preserved under pullback to the special
fiber.

(3) If K1 = K(N1),K2 = K(N2) ⊂ G(Ẑ) with N1, N2 ≥ 3 and g ∈ G(Af )
satisfies gK1g

−1 ⊂ K2 then there is a finite surjective morphism

[g] : S ∗K1
[ 1
N1N2

]→ S ∗K2
[ 1
N1N2

]

extending the usual morphism [g] : SK1 [ 1
N1N2

]→ SK2 [ 1
N1N2

].

Proof. This summarizes the main results in [Lan13, §7]. There is one subtlety,
namely the identification of the boundary stratum SZ . See [Lan13, Definition
5.4.2.6] and [LS18a, Remark 4.3.3] for an explanation of why the description of the
boundary stratum simplifies in our case, when the level K = K(N) is principal,
when p - N∆F , and when [Lan13, Condition 1.4.3.10] is satisfied. �

In the following statement, we assume that for all primes p unramified in F ,
the part of N prime to p is still ≥ 3. (Otherwise, we would have to talk about
Deligne–Mumford stacks.)

Theorem 2.5.9. Given a choice Σ of a compatible family of cone decompositions as
in §2.5.4 (and Remark 2.5.6), there exists a projective scheme S tor

K,Σ/SpecZ[ 1
∆F

],
together with an open dense embedding jtor

Σ : SK ↪→ S tor
K,Σ, satisfying the following

additional properties:
(1) After inverting N , the scheme S tor

K,Σ[ 1
N ] is smooth.

(2) There is a set-theoretic decomposition

S tor
K,Σ =

⊔
Z

S tor
K,Σ,Z ,

where the disjoint union runs over the set of cusp labels at level K where
each S tor

K,Σ,Z is reduced, flat over Z, and locally closed.
(3) Let Ŝ tor

K,Σ,Z denote the formal completion of S tor
K,Σ along S tor

K,Σ,Z . Moreover,
pick a splitting

L/N ∼= GrZN
−2 ⊕GrZN

−1 ⊕GrZN
0

of the filtration ZN . Then we have the following canonical description of
the formal completion Ŝ tor

K,Σ,Z . There exists an abelian scheme

CZ → SZ

together with a compatible action of ΓZ . There exists a torsor under the
split torus with character group SZ ,

ΞZ → CZ ,
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with a compatible action of ΓZ . We have

ΞZ = SpecOCZ

⊕
l∈SZ

ΨZ(l),

where for each l ∈ SZ , ΨZ(l) is a line bundle on CZ and for each l, l′ ∈ SZ
there is an isomorphism ΨZ(l) ⊗ ΨZ(l′) ∼= ΨZ(l + l′), giving

⊕
l∈SZ ΨZ(l)

the structure of a sheaf of OCZ -algebras. The choice of ΣZ determines a
ΓZ-equivariant relative torus embedding

∂Z,ΣZ : ΞZ ↪→ ΞZ,ΣZ .

We let XZ,ΣZ denote the formal completion of ΞZ,ΣZ along the boundary
∂Z,ΣZ of the relative torus embedding. We may form the quotient XZ,ΣZ/ΓZ
as a formal scheme and we have a canonical isomorphism of formal schemes

Ŝ tor
K,Σ,Z ' XZ,ΣZ/ΓZ .

Moreover, there exists a semi-abelian scheme A over S tor
K endowed with

an OF⊗ZZp-action and a Raynaud extension GZ over CZ also endowed with
an OF⊗ZZp-action such that we have a canonical OF⊗ZZp-equivariant iso-
morphism of the formal completion of A with GZ over Ŝ tor

K,Σ,Z ' XZ,ΣZ/ΓZ .
(4) There is a stratification

S tor
K,Σ =

⊔
(Z,[σ])

S tor
K,Σ,(Z,[σ]),

where Z runs over cusp labels at level K and [σ] runs over ΓZ-orbits in
Σ+
Z . If (Z, [σ]) and (Z ′, [σ′]) are two such pairs, then S tor

K,Σ,(Z,[σ]) lies in the
closure of S tor

K,Σ,(Z′,[σ′]) if and only if Z ≤ Z ′ and there are representatives
σ, σ′ such that via the inclusion MZ ⊆ MZ′ , σ′ is a face of σ. These
incidence relations among strata are preserved under pullback to fibers.

(5) Fix a representative σ of an orbit [σ] ∈ Σ+
Z/ΓZ . We have the relatively

affine toroidal embedding

ΞZ ↪→ Ξ(σ) := SpecOCZ

⊕
l∈σ∨

ΨZ(l).

The scheme Ξ(σ) has a closed subscheme Ξσ defined by the ideal sheaf
SpecOCZ

⊕
l∈σ∨0

ΨZ(l) (so naturally isomorphic to SpecOCZ

⊕
l∈σ⊥ ΨZ(l)).

Let Xσ denote the formal completion of Ξ(σ) along Ξσ and Ŝ tor
K,Σ,(Z,[σ])

denote the formal completion of S tor
K,Σ along S tor

K,Σ,(Z,[σ]). Then there is a
canonical isomorphism

Ŝ tor
K,Σ,(Z,[σ]) ' Xσ.

(6) After inverting N , there is a projective morphism

πK,Σ : S tor
K,Σ[ 1

N ]→ S ∗K

which is the identity on the open subscheme SK [ 1
N ]. For each cusp label Z

we have
π−1
K,Σ(SZ) = S tor

K,Σ,Z [ 1
N ]

set-theoretically and πK,Σ∗OS tor
K,Σ

[ 1
N ] = OS ∗K

. This final equality holds on
any fiber.
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Proof. Away from the primes dividing N , this summarizes results in [Lan13, §6,§7].
See [LS18a, Remark 2.1.8] for an explanation why CZ → SZ is an abelian scheme
in our particular case rather than an abelian scheme torsor over a finite étale cover
of SZ .

More precisely, let us give a construction of the Raynaud extension in part (2).
Let r be the OF -rank of X. Then SZ parametrizes on S-valued points quadruples
(B, ι, λ, η) where B is an abelian scheme of dimension [F : Q](n − r), ι : OF →
End(B) is an OF -action making LieB free of rank n− r over OF ⊗Z OS , λ : B ∼=
B∨ is a principal polarization whose Rosati involution is compatible with complex
conjugation on OF via ι, and η : B[N ] ∼= GrZN

−1 is an isomorphism that étale locally
lifts to an isomorphism modulo M for all N |M .

Let T be the torus with character group X. Over SZ , the abelian scheme
CZ → SZ parametrizes the following data:

(1) An OF -linear extension

0→ T → G → B → 0 .

(2) An OF -linear splitting of the short exact sequence

0→ T [N ]→ G[N ]→ B[N ]→ 0 .

We note that the first piece of data is equivalent to an OF -linear map X → B∨,
and then the second piece of data is equivalent to lifting this to a map 1

NX → B
∨.

As 1
NX is a finite projective OF -module, one sees that

CZ = HomOF ( 1
NX,B

∨)

defines an abelian scheme over SZ .
Identifying B∨ with B via λ, we get a map f0 : 1

NX → B over CZ . The SZ-
torsor ΞZ → SZ parametrizes “polarizable” lifts f : 1

NX → G of f0. Via the theory
of degenerations of abelian varieties, one can after formal completion along the
boundary of a corresponding torus compactification construct the quotient

A = G/X

over XZ,ΣZ , as a semiabelian scheme equipped with OF -action and a principal
polarization away from the boundary. From the construction, A[N ] admits, away
from the boundary, a filtration with graded pieces T [N ], B[N ] and X/NX. In fact,
the construction makes this filtration split. The similar decomposition

L/N ∼= GrZN
−2 ⊕GrZN

−1 ⊕GrZN
0

induces a level-N -structure on the generic fibre of A.
At primes dividing N , these models have been constructed by Lan, [Lan16]. Let

N = pmN ′ and assume that still N ′ ≥ 3. Then one can construct the desired
toroidal compactification relatively over the toroidal compactification at level N ′.
On boundary charts, the extra data parametrized is an OF -linear splitting of the
short exact sequence

0→ T [pm]→ G[pm]→ B[pm]→ 0

(which is incorporated into the abelian scheme CZ → SZ) and a polarizable lift of
f0 : 1

NX → B to f : 1
NX → G. Both of these structures extend the corresponding
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structures present away from characteristic p. Away from the toroidal boundary,
the given data induce an OF -linear map

L/pm ∼= Gr
Zpm
−2 ⊕Gr

Zpm
−1 ⊕Gr

Zpm
0 → T [pm]⊕ B[pm]⊕X/pmX → A[pm]

giving the desired level-pm-structure. �

In the following, we will fix a choice of Σ as in Remark 2.5.6 and leave its
choice implicit; in particular, we will simply write S tor

K := S tor
K,Σ for principal level

K = K(N).

2.6. Perfectoid Shimura varieties. In this section, we recall what is known
about perfectoid Shimura varieties in our setup. Fix a prime p that can actually
be arbitrary for this section (i.e., even be ramified in F ). We can take the adic
spaces over Qp associated with S ∗K(N) and S tor

K(N); let us denote these simply by
a subscript Qp . We would like to take the inverse limit over levels K(pmN) as
m → ∞. Unfortunately, inverse limits do not exist in the category of adic spaces,
but they do in the category of diamonds. As we are mainly interested in étale
cohomology, which is entirely functorial in diamonds, [Sch17], this is good enough
for our purposes.

As above, we fix a cone decomposition Σ as in Remark 2.5.6.

Definition 2.6.1. Let
S∗K(p∞N) = lim←−

m

S ∗,♦K(pmN),Qp ,

Stor
K(p∞N) = lim←−

m

S tor,♦
K(pmN),Qp

in the category of diamonds over SpdQp.

As both are inverse limits of diamonds associated to qcqs analytic adic spaces,
they are spatial diamonds. We have the following theorem. We will not need the
part on toroidal compactifications in this paper, but we record it for reassurance.

Theorem 2.6.2. The diamonds S∗K(p∞N) and, for a cofinal choice of cone decom-
positions Σ, Stor

K(p∞N) are representable by perfectoid spaces.

Proof. In [Sch15, Theorem 4.1.1], certain spaces S
∗
K(pmN) finite under S ∗K(pmN)

were defined such that
S∗K(p∞N) = lim←−

m

S
∗,♦
K(pmN),Qp

is representable by a perfectoid space. Now [BS19, Theorem 1.16 (1)] ensures that
S∗K(p∞N) is itself representable by a perfectoid space.

In the case of Stor
K(p∞N), the result follows from [PS16, Théorème 0.4], at least for

cone decompositions that are compatible with cone decompositions on the Siegel
moduli space, as the induced map of toroidal compactifications is a closed immersion
at high enough level (here, we are using that Zariski closed subsets of perfectoid
spaces are themselves perfectoid by [Sch15, Section 2.2]). �

We note that for any locally spatial diamond D over Spd Qp, there is a well-
defined étale siteDét and a sheafO+

D/p onDét whose pullback to any quasi-pro-étale
perfectoid space X → D agrees with O+

X/p. Indeed, it is clear that one can define a
quasi-pro-étale sheaf this way, but this comes via pullback from the étale site when
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X is a perfectoid space; thus, [Sch17, Theorem 14.12 (ii)] applies. If D = X♦ for
an analytic adic space X over Qp, then Dét

∼= Xét and O+
D/p

∼= O+
X/p naturally (as

this can be checked after pullback to a pro-étale perfectoid cover). For a cofiltered
inverse limit of spatial diamonds Di over Spd Qp along qcqs transition maps, the
inverse limit D = lim←−iDi is a locally spatial diamond by [Sch17, Lemma 11.22],
and denoting by πi : D → Di the projections, we have

O+
D/p = lim−→

i

π∗iO+
Di
/p.

This can be proved by identifying the stalks at geometric points of D; these
factor over geometric points of Di, and then one is reduced to the case that
Di = Spa(Ci, C

+
i ) are all adic spectra of complete algebraically closed field Ci over

Qp with open and bounded valuation subrings C+
i ⊂ Ci. Then D = Spa(C,C+)

where C+ is the p-adic completion of lim−→i
C+
i is of the same form, and indeed

C+/p = lim−→i
C+
i /p.

We see in particular that we have such an identification of étale O+/p-sheaves
in the situation of Definition 2.6.1.

Remark 2.6.3. In [Sch15, Theorem 4.1.1], a stronger result is proved, namely that
the map

lim−→
m

OS
∗
K(pmN),Qp

→ OS∗
K(p∞N)

has dense image when evaluated on some (explicit) affinoid cover of the limit.
A similar result is known for the toroidal compactification by [PS16, Théorème
0.4], but for the minimal compactification it is still open (it was claimed by the
second author in the original version of [SW19, Lecture X], but the argument was
incorrect).

Inside S ∗K(N),Qp , we have the locus S ◦K(N),Qp ⊂ SK(N),Qp , contained in the adic
space associated to the scheme SK(N)×SpecQp, where the universal abelian variety
has good reduction. This is a Hecke-equivariant quasicompact open subspace. If p
is a prime of good reduction, this can also be defined as the adic generic fibre of
the p-adic completion SK(N),Zp of SK(N). We also let

S◦K(p∞N) := lim←−
m

S ◦,♦K(pmN),Qp

and note that it is itself a perfectoid space; this case follows directly from [Sch15,
Theorem 4.1.1] (and so we even have the stronger assertion from Remark 2.6.3).

We note that the cohomology of the good reduction locus captures the whole
cohomology of the Shimura variety by results of Lan-Stroh, [LS18b]:10

Proposition 2.6.4. Let C be a complete algebraically closed extension of Qp. For
any N ≥ 3 (not necessarily prime to p), the natural Hecke-equivariant map

Hi(SK(N),Q,F`)→ Hi(S ◦K(N),C ,F`)

is an isomorphism.

10We will actually only use the result when N is prime to p, in which case it is a standard
consequence of the existence of a compactification with a relative normal crossing boundary divisor,
here given by the toroidal compactification.
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Proof. We apply the results of Lan-Stroh, [LS18b], in the case (Nm) of normal inte-
gral models defined by normalization over the Siegel moduli problem; let SK(N),Zp
be such a model. Then [LS18b, Corollary 5.20] shows that

Hi(SK(N),Q,F`) ∼= Hi(SK(N),Fp , RψF`)

using the nearby cycles RψF`. (This would be clear for proper varieties, and Lan-
Stroh prove that even in case of bad reduction one can understand the boundary
well enough to justify the assertion.) On the other hand the natural map

Hi(S ◦K(N),C ,F`)→ Hi(SK(N),k, RψF`)

is always an isomorphism, where k is the residue field, by the comparison of nearby
cycles in the algebraic and adic setting, [Hub96, Theorem 3.5.13]. We conclude by
invariance of nearby cycles and cohomology under the extension of algebraically
closed fields k/Fp. �

2.7. The Hodge–Tate period morphism. Let F` be the adic space over Spa Qp
associated to the flag variety Fl parametrizing totally isotropic F -linear subspaces
of V .

Theorem 2.7.1. There exists a G(Af )-equivariant Hodge–Tate period morphism11

fitting in the commutative diagram

j : S◦K(p∞N)
� � //

π◦HT
''

S∗K(p∞N)

π∗HT

��

F`.

In particular, by projection to the minimal compactification we also get a Hodge–
Tate period morphism

πtor
HT : Stor

K(p∞N) → F`.

Proof. This relies on [Sch15, Theorem 4.1.1] and [CS17, Theorem 2.1.3], though the
precise statement regarding π∗HT requires the extra argument in [CGH+18, Theorem
3.3.1]. �

In [CS17], we also described the fibers of the Hodge–Tate period morphism π◦HT

on the good reduction locus. More precisely, assume from now on again that p is
unramified in F and let C be a complete algebraically closed nonarchimedean field
over Qp with ring of integers OC and residue field k, and with a section k → OC/p.
Take a point x ∈ F`(C). By [SW13, Theorem B], the point x corresponds to
a p-divisible group XOC with G-structure over OC together with an isomorphism
Tp(XOC ) ∼= L⊗Z Zp compatible with G-structures. Associated to the special fibre
Xk, we get the perfect Igusa variety

IgXk

defined above, where the level prime to p is given by the part of N prime to p. As
it is perfect a scheme, it admits a canonical lift to W (k), and thus to OC ; let us
denote by subscript C the adic generic fibre, which is a perfectoid space over C.

11The morphisms are equivariant for the natural action of G(Qp) on F`G,µ and for the trivial
action of G(Apf ) on F`G,µ.



32 ANA CARAIANI AND PETER SCHOLZE

Theorem 2.7.2. There is a canonical open immersion

IgXkC ↪→ (π◦HT)−1(x)

whose image contains all points of rank 1. In particular, for a prime ` 6= p, there
is a canonical Hecke-equivariant isomorphism

(R(π◦HT)∗F`)x ∼= RΓ(IgXk ,F`).

Proof. This is [CS17, Theorem 4.4.4]. �

We also recall the Newton stratification of F`. Let B(GQp) be the Kottwitz set
attached to the group GQp ; see [Kot85] and [RR96] for more details on the Kottwitz
set. This is equipped with a partial order called the Bruhat order, which we denote
by ≤. Let µ−1 be a dominant representative of the inverse of µ. Let B(GQp , µ

−1)

denote the set of µ−1-admissible elements in B(GQp), cf. [CS17, Definition 3.1.2].
For any b ∈ B(GQp , µ

−1), let db be the dimension of the Igusa variety Igb; this
is known to be given explicitly by 〈2ρ, νb〉, cf. e.g. [Ham15]. In particular, db′ ≥ db
whenever b′ ≥ b.

Recall from above that for a complete algebraically closed nonarchimedean exten-
sion C/Qp and a point x ∈ F`(C), we have a p-divisible group XOC withG-structure
over OC . In particular, the special fiber Xk defines a p-divisible group with G-
structure, and this is classified up to isogeny by an element b = b(x) ∈ B(GQp , µ

−1).
The following theorem asserts that this defines a reasonable stratification of F`:

Theorem 2.7.3 (§3 of [CS17]). There exists a stratification

F` =
⊔

b∈B(GQp ,µ
−1)

F`b

with locally closed partially proper strata such that x ∈ F`(C) lies in F`b(C) if and
only if b(x) = b. The dimension of F`b (i.e., the Krull dimension of the locally
spectral space |F`b|) is given by d− db.

Moreover, the strata
F`≥b =

⊔
b′≥b

F`b
′

are closed.

Since the reflex field of the Shimura datum is Q, the largest element of B(GQp , µ
−1)

is the ordinary one, cf. [Wed99, Theorem 1.6.3]. We have F`ord = F`(Qp) (see,
for example, [CGH+18, Proposition 3.3.8]) and in particular this stratum is 0-
dimensional.

2.8. The main argument. Let us now give the proof of Theorem 1.1. It uses the
following inputs. Assume again that p is unramified in F and fix some level N ≥ 3
prime to p and cone decomposition Σ as in Remark 2.5.6. For any b ∈ B(GQp , µ

−1),
we have the associated Igusa variety Igb = IgX

Kp(N) associated to some choice of
completely slope divisible X in the isogeny class given by b. In Section 3, we define
a partial minimal compactification j : Igb ↪→ Igb,∗, and set

Hi
c−∂(Igb,F`) = Hi(Igb,∗, j!F`).

The first result we need is that Igb,∗ is affine:

Theorem 2.8.1. The partial minimal compactification Igb,∗ is affine.
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Proof. This is Lemma 3.3.8. �

In particular, we get the following result about cohomology:

Proposition 2.8.2. For any ` 6= p, the cohomology group

Hi
c−∂(Igb,F`)

is nonzero only for i ≤ db = dim Igb.

Proof. This is a direct consequence of Artin vanishing and the affineness of Igb,∗. �

The next result we need is the following semiperversity result.

Theorem 2.8.3. Let C be a complete algebraically closed extension of Qp with ring
of integers OC and residue field k. Consider the Hodge–Tate period map

π◦HT : S◦K(p∞N),C → F`C .

There is a cofinal system of formal models Fl of F`C over OC such that

Rψ(R(π◦HT)∗F`) ∈ pD≥d(Flk,F`).

Proof. This is Theorem 4.6.1. It proceeds by first proving an analogous result
for toroidal compactifications, for which one uses an identification of the fibers
of the Hodge–Tate period map with partial toroidal compactifications of Igusa
varieties. �

Now fix a maximal ideal m ⊂ TS containing `, where the finite set S of places of
Q contains ∞ and all primes dividing p`N∆F . Pick a b with db minimal such that
Hi(Igb,F`)m is nonzero; recall that db is the dimension of Igb. (If several b achieve
the same value of db, pick any of them.) The previous theorem implies the following
result that proves a bound going in the other direction than Proposition 2.8.2:

Lemma 2.8.4. If Hi(Igb,F`)m 6= 0 then i ≥ db.

Remark 2.8.5. One could prove a variant of Theorem 2.8.3 for Rπ∗HT∗(j!F`), where
j denotes the Zariski open immersion of the open Shimura variety into its minimal
compactification, where one would get an object in pD≤d at the end. However, the
result obtained this way would only amount to Proposition 2.8.2 (definitely for the
largest b as in this lemma; for deeper strata there is some nontrivial translation
to do between our notion of (semi)perversity in terms of nearby cycles and a more
naive version one could hope to define directly on the flag variety).

Proof. Consider the complex of étale sheaves A = (R(π◦HT)∗F`)m on F`C . By
assumption and Theorem 2.7.2 (that also applies to higher rank points; in fact
qcqs pushforwards of overconvergent sheaves are overconvergent), we know that it
is concentrated on

⊔
b′,db′≥db

F`b
′
, which is of dimension ≤ d−db. In particular, for

any formal model Fl of F`C , the nearby cycles RψA ∈ D(Flk,F`) are concentrated
on a closed subscheme of dimension ≤ d−db: The closure of a subset of the generic
fibre of dimension δ is of dimension at most δ, as the specialization map (from
the generic fibre to the special fibre) is specializing. Choosing formal models as
in Theorem 2.8.3, we note that RψA ∈ pD≥d(Flk,F`) as localization is a filtered
colimit and thus preserves pD≥d. Together, we see that the stalks of RψA at all
points of dimension d − db are concentrated in degrees ≥ db. Now choose a rank
1 point of F` of dimension d − db and compute the stalk of A at this point as a
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filtered colimit of the stalks of RψA at its specialization (which will define a point
of dimension d−db for fine enough formal models, cf. [CS17, Corollary 6.1.4, end of
proof]), over a cofinal system of formal models. This gives the desired result.12 �

We need two more results about the cohomology of Igusa varieties. These rely
on the trace formula for which we have to assume that F contains an imaginary
quadratic field F0, that F+ 6= Q, and we have to fix a character $ : A×F0

/F×0 → C×
such that $|A×/Q× is the quadratic character corresponding to the extension F0.
We include all primes above which $ is ramified into S. We assume moreover that
the level N ≥ 3 is only divisible by primes in S \ {p}, and is divisible by some
specific sufficiently large N0 with these properties, cf. Remark 5.4.5.

Theorem 2.8.6. Assume that F+ 6= Q, that p is split in the imaginary quadratic
field F0 ⊂ F , and that b ∈ B(GQp , µ

−1) is such that

Hi(Igb,F`)m
is nonzero for exactly one i. Then there exists a continuous semisimple Galois
representation

ρm : Gal(F/F )→ GL2n(F`)
such that for all primes v dividing a rational prime q 6∈ S that splits in F0, the
characteristic polynomial of ρm is given by

X2n − T1,vX
2n−1 + · · ·+ (−1)iqi(i−1)/2

v Ti,vX
2n−i + · · ·+ qn(2n−1)

v T2n,v

with notation as in the introduction. Moreover, if p is totally split in F and
ρm is unramified at all places v dividing p, such that the Frobenius eigenvalues
{α1,v, . . . , α2n,v} of ρm(Frobv) satisfy αi,v 6= pαj,v for all i 6= j, then b is ordinary.

Proof. This is Corollary 5.1.3. It is proved by computing H∗(Igb,Q`), as a virtual
representation, in terms of automorphic representations. �

To get concentration in one degree, we need to understand the cohomology of
the boundary of Igusa varieties in order to play off upper bounds on Hi

c−∂ with
lower bounds on Hi. This is achieved in Section 6 and gives the following result:

Theorem 2.8.7. Assume that F+ 6= Q, that p is split in the imaginary quadratic
field F0 ⊂ F , and that the map

Hi
c−∂(Igb,F`)m → Hi(Igb,F`)m

is not an isomorphism for some i. Then there exists a continuous semisimple Galois
representation

ρm : Gal(F/F )→ GL2n(F`)
such that for all primes v dividing a rational prime q 6∈ S that splits in F0, the
characteristic polynomial of ρm is given by

X2n − T1,vX
2n−1 + · · ·+ (−1)iqi(i−1)/2

v Ti,vX
2n−i + · · ·+ qn(2n−1)

v T2n,v.

Moreover, if b is not ordinary, then the length of ρm is at least 3.

Proof. This is proved in Section 6. �

12When writing [CS17], the authors wanted their perverse sheaves to be constructible, not
realizing that the theory works well without constructibility. This explains the circumlocutions
involving the quotient by Kp in [CS17].
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Proof of Theorem 1.1. Now assume all of our hypotheses: that F = F0 · F+ with
F+ 6= Q, that p is totally split in F , and that m is so that ρm is unramified and
generic at all places dividing p, and of length at most 2.

Pick b as in Lemma 2.8.4. If b is not ordinary, then the map

Hi
c(Ig

b,F`)m → Hi(Igb,F`)m
is an isomorphism by Theorem 2.8.7. Combining Lemma 2.8.4 with Proposi-
tion 2.8.2, we see that both sides are nonzero only for i = db. But then Theo-
rem 2.8.6 gives a contradiction unless b is ordinary.

It follows that Hi(Igb,F`)m can be nonzero only if b is ordinary. By Lemma 2.8.4,
this shows that also in this case Hi(Igb,F`)m 6= 0 only for i ≥ d = db. By The-
orem 2.7.2, this shows that (R(π◦HT)∗F`)m is concentrated on the ordinary locus
F`(Qp) and in degrees ≥ d. We see that

Hi(S◦K(p∞N),C ,F`)m ∼= Hi(F`, (R(π◦HT)∗F`)m)

is concentrated in degrees≥ d. By a Hochschild-Serre spectral sequence, this implies
that

Hi(S ◦K(N),C ,F`)m
is concentrated in degrees ≥ d. By Proposition 2.6.4, we see that

Hi(SK(N)(C),F`)m ∼= Hi(SK(N),Q,F`)m ∼= Hi(S ◦K(N),C ,F`)m
is concentrated in degrees ≥ d, which is what we wanted to prove (by Lemma 2.1.1
and Proposition 2.1.6).

Finally, the case of Hi
c(XK ,F`)m follows by Poincaré duality applied to the

“dual” system of Hecke eigenvalues. More precisely, let ι : TS → TS be the
(anti-)involution that sends the double coset operator [KSgKS ] to [KSg−1K]. Set
m∨ := ι(m). Then Poincaré duality, cf. e.g. [ACC+18, Proposition 2.2.12 and
Corollary 2.2.13], provides an isomorphism between Hi

c(XK ,F`)m and the dual of
H2d−i(XK ,F`)m∨ . We only need to check that the conditions of the theorem are
also satisfied for m∨.

By explicitly computing the characteristic polynomial of ρm∨(Frobv) for any
prime v 6∈ S of F in terms of Hecke operators, we deduce the relationship

ρm∨
∼→ ρ∨m|Art−1

F |
1−2n,

where the global Artin reciprocity map ArtF is normalized to take uniformizers to
geometric Frobenius elements. Note that ρm∨ still has length at most 2, and, when
restricted to Gal(F v/Fv) for any prime v|p of F , is still unramified. Moreover,
if ρm has Frobv-eigenvalues equal to αi,v for i = 1, . . . , 2n, then ρm∨ has Frobv-
eigenvalues equal to p2n−1α−1

i,v for i = 1, . . . , 2n. This implies that m∨ satisfies our
genericity hypothesis at all v|p. �
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3. Compactifications of Igusa varieties

In this section, we construct the partial minimal and toroidal compactifications
of Igusa varieties and establish their main geometric properties. Throughout this
section, we fix: a prime p unramified in F , an integer N ≥ 3 prime to p, and a
cone decomposition Σ as in Remark 2.5.6 at principal level K(N). We abbreviate
K = K(N) and S = SK = SK(N).

3.1. Well-positioned subsets. In this section, we recall the notion of well-positioned
subsets introduced by [Box15, LS18a] and the fact that Oort central leaves are well-
positioned subsets of the special fiber of S . Fix an algebraically closed field k of
characteristic p.

To state the condition of being well-positioned, we note that if C is some com-
plete algebraically closed nonarchimedean field, with ring of integers OC , and
x = (A, ι, λ, η) ∈ S (C), then the associated Raynaud extension

0→ T → G → B → 0

over OC endows the abelian scheme B over OC with a principal polarization, an
OF -action, and a level-N -structure, defining a point of SZ(OC), where Z is the
cusp into which x degenerates, and in particular a point π(x) ∈ SZ(C).

Definition 3.1.1. A locally closed subset Y ⊆ Sk = S × k is well-positioned if
there exists a family Y \ = {Y \Z} indexed by the cusp labels Z at level K such that

(1) Y \Z is a locally closed subset of SZ,k.
(2) For any C over k and x = (A, ι, λ, η) ∈ Sk(C) as above, degenerating

into a cusp Z, the point x lies in Y if and only if the associated point
π(x) = (BC , . . .) ∈ SZ,k(C) lies in Y \Z .

Remark 3.1.2. Let us verify that this agrees with [LS18a, Definition 2.2.1] in our
case. In what follows, we will need to work with an open cover X◦σ of the formal
scheme XZ,ΣZ , indexed by elements σ ∈ Σ+

Z . The formal scheme X◦σ is obtained by
taking the formal completion along a larger closed subscheme of ΞZ,ΣZ than Ξσ,
namely

Ξ(σ)+ :=
⋃

τ∈Σ+
Z ,τ̄⊂σ̄

Ξτ .

(The reason for considering Ξ(σ)+ is the following: when τ̄ ⊂ σ̄ we have σ∨ ⊂ τ∨,
which defines an open embedding Ξ(τ) ⊂ Ξ(σ). The closed subscheme Ξ(σ)+ is pre-
cisely the set-theoretic intersection of the boundary ∂Z,ΣZ with Ξ(σ).) See [LS18a,
Proposition 2.1.3] for properties of this formal scheme; the key property is that
there is a canonical isomorphism

(3.1.1) Ŝ tor
∪
τ∈Σ

+
Z
,τ̄⊂σ̄

(Z,[τ ]) ' X◦σ.

For any affine open formal subscheme Spf R of X◦σ, we obtain canonical morphisms
W := SpecR → Ξ(σ) and W → S tor (induced by the isomorphism (3.1.1)).
Then the two stratifications of W induced by the stratifications of Ξ(σ) and S tor

coincide. In particular, the preimages of S and ΞZ coincide and we denote this
open subscheme byW 0. Now [LS18a, Definition 2.1.1] asks that for any affine open
Spf R ⊂ X◦σ ⊂ XZ,ΣZ as above, we have an identification

Y ×S W 0 = Y \Z ×SZ
W 0,
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where the morphism W 0 → SZ is obtained by composing the induced morphism
W 0 → ΞZ with the canonical morphism ΞZ → SZ . But this identification can be
checked on points, where it amounts precisely to the condition we stated.

In particular, the definition is independent of the choice of Σ, cf. also [LS18a,
Lemma 2.2.2]. Remark 2.3.8 of [LS18a] shows that this notion is consistent (in
our particular case, when there exist good integral models) with [Box15, Definition
3.4.1].

A well-positioned subset admits partial toroidal and minimal compactifications
that satisfy many nice properties. Let Y ⊂ Sk be a well-positioned subset. Let Ỹ
be the closure of Y in Sk, with complement Y0. Let Ỹ ∗ and Y ∗0 denote the closures
of Y and Y0 in S ∗k . Define

Y ∗ := Ỹ ∗ \ Y ∗0
and call this the partial minimal compactification of Y . Define Y tor analogously by

Y tor := Ỹ tor \ Y tor
0

and call it the partial toroidal compactification of Y . See [LS18a, Theorem 2.3.3]
for the first basic properties of these partial compactifications. We have an identi-
fication

Y ∗ ×S ∗k
SZ,k = Y \Z

as subsets of SZ,k.
We need the following basic proposition.

Proposition 3.1.3. Let Y ⊂ Y ′ ⊂ Sk be well-positioned locally closed subsets such
that Y is closed in Y ′. Then Y ∗ is a closed subset of Y ′∗.

Proof. The maps W 0 → SZ , for varying W 0, form an fpqc cover, and using this
one can check that Y \Z must be a closed subset of Y ′\Z for all cusp labels Z. In
particular, the last displayed formula now shows that Y ∗ is a subset of Y ′∗. On the
other hand, Ỹ ∗ is a closed subset of Ỹ ′

∗
, and then

Y ∗ = Ỹ ∗ \ Y ∗0 ⊂ Ỹ ′
∗
\ Y ∗0

is a closed subset. As Y ′∗ is a subset of Ỹ ′
∗
\Y ∗0 (as Y0 ⊂ Y ′0), the result follows. �

Now we want to apply these ideas to the case of central leaves. For this, we fix
a p-divisible group X with G-structures over k.

Proposition 3.1.4. For any p-divisible group X with extra structure over k, the
associated Oort central leaf C X ⊂ Sk is well-positioned. For a cusp label Z =

(ZN ′ , X), the subset (C X)\Z is either the central leaf C XZ
Z on SZ,k associated with

the unique p-divisible group XZ with extra structure that admits a decomposition

X ∼= Hom(X,µp∞)⊕ XZ ⊕X ⊗ (Qp/Zp) ,
or empty if there is no such XZ .13

Proof. This is [LS18a, Proposition 3.4.2], but let us give the proof. Choose C as
above and a point (A, ι, λ, η) ∈ Sk(C). Let 0→ T → G → B → 0 be the Raynaud
extension and X the cocharacter group of T .

We have two short exact sequences

0→ GC [pm]→ AC [pm]→ (X/pmX)C → 0

13The uniqueness follows from the discussion around Proposition 2.2.1.
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and
0→ TC [pm]→ GC [pm]→ BC [pm]→ 0.

These two short exact sequences give a canonical OF -linear filtration on AC [pm]
which is symplectic with respect to the Weil pairing. Passing to the direct limit
over m, we get a filtration on AC [p∞] with graded pieces Hom(X,µp∞), BC [p∞],
and X ⊗ (Qp/Zp).

By Proposition 2.2.1, this implies that there is an isomorphism

XC ∼= Hom(X,µp∞)⊕ BC [p∞]⊕X ⊗ (Qp/Zp)

and, as observed there, the corresponding p-divisible group BC [p∞] ∼= (XZ)C is
then unique up to isomorphism. �

We let C X,tor and C X,∗ denote the partial toroidal and minimal compactifications
of the leaf C X. Let C X

Z := C X,∗ ×S ∗ SZ . By Proposition 3.1.4 and the remark
above it, we can identify C X

Z with C XZ
Z .

Lemma 3.1.5. The partial toroidal compactification C X,tor is a smooth variety.

Proof. Since we are working over the perfect field k, it is enough to show that C X,tor

is a regular scheme. This follows from the fact that C X is smooth, thus regular,
and from [LS18a, Proposition 2.3.13]. �

3.2. Partial toroidal compactifications of Igusa varieties. We continue in
the same setup, in particular X is a p-divisible group with G-structure over k, as
before. Let A denote the restriction of the semi-abelian scheme over S tor to C X,tor.
Note that the group schemes A[pm] for m ∈ Z≥1 are quasi-finite and flat, but not
finite and flat. Therefore, the inductive system A[p∞] is not a p-divisible group.
Nonetheless, we show below that the connected part A[p∞]◦ of A[p∞] (which can be
defined as the ind-scheme Â[p∞], where Â is the completion of A along its identity
section) is a p-divisible group.

Proposition 3.2.1. The connected part A[p∞]◦ of A[p∞] is a p-divisible group
over C X,tor.

Proof. We can check this on the completed strict local rings of C X,tor; more pre-
cisely, we restrict to SpecR, where R is the completed strict local ring of C X,tor at
some point x that lies in a boundary stratum indexed by a cusp label Z.

In that case, there is the Raynaud extension

0→ T → G → B → 0

over SpecR and a map G → A over Spf R. On formal completions at the identity,
this gives an isomorphism Ĝ ∼= Â that is in fact defined over SpecR (as modulo any
power of the augmentation ideal, both schemes are finite over Spf R, so one can
apply formal GAGA). This induces an isomorphism G[p∞]◦ ∼= A[p∞]◦ over SpecR.
But G[p∞] is a p-divisible group, and its connected part has constant rank, as the
abelian variety B is given by a map from SpecR into the leaf C XZ

Z . Thus, G[p∞]◦

is also a p-divisible group, as desired. �

Clearly, A[p∞]◦ carries an OF -action. At every geometric point x̄ of C X,tor, there
is an OF -linear isomorphism

A[p∞]◦ ×CX,tor k(x̄) ∼= X◦ ×k k(x̄).
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Indeed, in the notation of the previous proof, this follows directly from B[p∞] ×k
k(x̄) ∼= XZ as

X◦ ∼= Hom(X,µp∞)⊕ X◦Z .
In particular, we see that the multiplicative part A[p∞]µ is of constant rank, and
thus defines a p-divisible group itself. Let

A[p∞](0,1) = A[p∞]◦/A[p∞]µ

be the biconnected part.

Proposition 3.2.2. There exists a polarization on A[p∞](0,1) extending the polar-
ization that exists after restriction to C X.

Proof. Again, this can be checked after restriction to SpecR for the completed local
rings of C X,tor. With notation as before, this identifies A[p∞](0,1) with the bicon-
nected part of B[p∞], which has a natural principal polarization, by construction
compatible with the polarization on the generic fibre of A. �

3.2.3. Partial toroidal compactifications of Igusa varieties in the completely slope
divisible case. Assume now that X =

⊕
i Xi is completely slope divisible. Let IgX

m

be the Igusa variety over C X of some finite level pm as defined in Remark 2.3.6;
recall that this is a finite étale cover of C X, which is Galois with Galois group Γm,X.

Theorem 3.2.4. The finite étale cover IgX
m → C X extends uniquely to a finite étale

cover IgX,tor
m → C X,tor, Galois with group Γm,X.

In fact, we can be more precise, and give a moduli description of IgX,tor
m . Note

thatA[p∞]◦ is also completely slope divisible, so we obtain p-divisible groupsA[p∞]i
equipped with extra structures of EL or of PEL type for all i such that λi < 1.

Definition 3.2.5. An Igusa level pm structure ρm on a C X,tor-scheme T consists
of the following data:

For each i such that λi > 0, an isomorphism

ρi,m : A[p∞]i[p
m]×CX,tor T

∼→ Xi[pm]×k T ,

that commutes with the OF -action and lifts fppf locally to pm
′
-torsion for all m′ ≥

m, and an element of (Z/pmZ)×(T ) such that, for all i, j such that λi, λj > 0 and
λi+λj = 1, the isomorphisms ρi,m and ρj,m commute with the polarizations up the
given scalar in (Z/pmZ)×(T ).

Proof of Theorem 3.2.4. We prove that the moduli problem in Definition 3.2.5 is
representable by a finite étale scheme over C X,tor. This follows from Theorem 2.2.4
applied to the isoclinic p-divisible groups A[p∞]i for all i with λi > 1

2 as p-divisible
groups with EL structure, and the p-divisible group A[p∞]i for i with λ = 1

2 as p-
divisible group with PEL structure. Indeed, the isomorphisms for i with 0 < λi <

1
2

are then formally determined. We now apply Theorem 2.2.4 to each graded piece
with its induced extra structures and take the fiber product of the resulting finite
étale covers of C X,tor.

It is clear that over the open part, this recovers IgX
m, again as the polarization de-

termines the structure on the étale quotient from the structure on the multiplicative
quotient. In particular, it defines a Γm,X-torsor, as desired. �
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For further use, we would like to give a preliminary description of the formal
completions along boundary strata in IgX,tor

m in terms of the toroidal boundary
charts in Theorem 2.5.9.14 Let Z be a cusp label at level N . This determines a
locally closed boundary stratum C X,tor

Z ⊂ C X,tor. Let Ĉ X,tor
Z denote the completion

along this boundary stratum. Let Îg
X,tor

m,Z denote the formal completion of IgX,tor
m

along the boundary stratum IgX,tor
m,Z determined by the preimage of C X,tor

Z . We have
a finite étale map of formal schemes

Îg
X,tor

m,Z → Ĉ X,tor
Z ,

which is Galois, with Galois group Γm,X.
Because C X is well-positioned, we can identify Ĉ X,tor

Z with the quotient by ΓZ
of the formal completion of

C X
Z,ΣZ := ΞZ,ΣZ ×SZ

C X
Z

along ∂Z,ΣZ×SZ
C X
Z , cf. [LS18a, Theorem 2.3.2 (5)]. We would like to give a similar

description for Îg
X,tor

m,Z . By construction, over CZ , we have a semi-abelian scheme
GZ together with an OF -action. Here GZ is a Raynaud extension

0→ T → GZ → BZ → 0,

where T is the constant torus with character group X (recall that X is part of
the torus argument that comes with the cusp label Z) and BZ is the pullback of
the universal abelian scheme over SZ to CZ . As observed in the proof of Proposi-
tion 3.2.1, over CZ ×SZ

C X
Z , the connected part GZ [p∞]◦ defines a p-divisible group

itself (as the étale part has constant rank); let us write HZ for this p-divisible group
with OF -action on CZ ×SZ

C X
Z . Again, it is completely slope divisible, so we get

p-divisible groups HZ,i of slope λi, equipped with polarizations as above.
With the obvious version of Definition 3.2.5, we can now define a Γm,X-torsor

over CZ ×SZ
C X
Z , whose pullback to ΞZ,ΣZ ×SZ

CX
Z we denote by

IgX
Z,ΣZ → ΞZ,ΣZ .

We also let ∂IgX
Z,ΣZ denote the corresponding finite étale cover of ∂Z,ΣZ ×SZ

C X
Z .

This is a closed subscheme of IgX
Z,ΣZ . Finally, we let YZ,ΣZ denote the formal

completion of IgX
Z,ΣZ along ∂IgX

Z,ΣZ .
Theorem 3.2.6. With the same choice of a splitting of the filtration ZN as in
Theorem 2.5.9 (3), there is a canonical isomorphism of formal schemes

Îg
X,tor

m,Z
∼→ YZ,ΣZ/ΓZ .

Proof. This follows once we prove that there exists an isomorphism between the
pullbacks of A[p∞]◦ and HZ to Ĉ X,tor

Z that commutes with the extra structures.
We work Zariski locally on Ĉ X,tor

Z . We cover Ĉ X,tor
Z by affine open formal sub-

schemes Spf R which lift to affine opens in the formal completion of C X
Z,ΣZ

along
the toroidal boundary stratum (because taking the quotient by ΓZ is a local iso-
morphism) and which arise by formal completion from affine opens in C X,tor and
C X
Z,ΣZ

. We obtain induced flat maps of schemes

f1 : SpecR→ C X,tor and f2 : SpecR→ C X
Z,ΣZ .

14A different description will be given in Theorem 3.3.12.
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We let A denote the pullback of the semi-abelian scheme A along f1 and Ã denote
the pullback of the Raynaud extension G̃Z along f2. As above, the completions
along the identity Â ∼= ̂̃

A are isomorphic over Spf R, and thus over SpecR.
Now

f∗2 HZ = Ã[p∞]◦ ∼= A[p∞]◦ = f∗1A[p∞]◦ ,

as desired. �

3.2.7. Partial toroidal compactifications of perfect Igusa varieties. In this subsec-
tion, we will repeat the previous constructions for perfect Igusa varieties, allowing
now general X (not necessarily completely slope divisible).

Let IgX be the perfect Igusa variety over C X; this is a pro-finite étale cover of
the perfection of C X, Galois with group ΓX = Aut(X).

Theorem 3.2.8. The pro-finite étale cover IgX → C X
perf extends uniquely to a

pro-finite étale cover IgX,tor → C X,tor
perf , Galois with group ΓX.

We remark that if X is completely slope divisible, then IgX,tor is the perfection
of lim←−m IgX,tor

m (by uniqueness).
Again, we can be more precise, and give a moduli description of IgX,tor:

Definition 3.2.9. A perfect Igusa level structure ρ on a perfect C b,tor
Σ -scheme T

is given by an OF -linear isomorphism

ρ : A[p∞]◦ ×CX,tor T
∼→ X◦ ×k T

and a scalar in Z×p (T ) such that the induced isomorphism

ρ(0,1) : A[p∞](0,1) ×CX,tor T
∼→ X(0,1) ×k T

obtained by quotienting by the multiplicative parts commutes with the polarizations
up to the given element of Z×p (T ).

Proof of Theorem 3.2.8. Uniqueness is clear as the base is normal and the cover
is given on an open dense subspace. The proof is now similar to the proof of
Theorem 3.2.4, except that we refer to Proposition 2.2.6 instead of Theorem 2.2.4.

�

Remark 3.2.10. By Corollary 2.3.2, IgX is an fpqc Aut(X)-torsor over C X (before
perfection). However, this no longer holds true over the boundary strata of the
partial toroidal compactification. This phenomenon already occurs for the modular
curves, in which case the precise structure at the boundary is described in [How18,
§3].

Again, we can give a description of the formal completions along boundary strata.
More precisely, we would like to describe the ΓX-torsor

Îg
X,tor

Z → Ĉ X,tor
Z,perf

with notation following the previous subsection.
We can identify Ĉ X,tor

Z,perf with the quotient by ΓZ of the formal completion of

C X
Z,ΣZ ,perf = (ΞZ,ΣZ ×SZ

C X
Z )perf

along its toroidal boundary. We would like to give a similar description for Îg
X,tor

Z .
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As above, we have the p-divisible group HZ over CZ×SZ
CXZ (the connected part

of the p-divisible group of the Raynaud extension). On perfect test schemes over
CZ ×SZ

C X
Z , we can parametrize OF -linear isomorphisms

HZ
∼= X◦

together with a section of Z×p such that the induced isomorphism of biconnected
parts is compatible with the polarization. By Proposition 2.2.6, this is representable
by a ΓX-torsor

CIg,X
Z → (CZ ×SZ

C X
Z )perf .

Let us give an explicit description of CIg,X
Z .

Proposition 3.2.11. The perfect scheme CIg,X
Z parametrizes points (B, ι, λ, η) ∈

SZ together with an extension

0→ T → G → B → 0

by the split torus T with cocharacter group X, and an OF -linear embedding

ρ : G[p∞] ↪→ X

that is compatible with the polarization in the following sense: The filtration ZX of
X given by

T [p∞] ⊂ G[p∞] ⊂ X
is symplectic, and the induced isomorphism

B[p∞] = G[p∞]/T [p∞] ∼= GrZX
−1

is compatible with principal polarizations.

Proof. The description given above would only require an isomorphism G[p∞]◦ =
HZ
∼= X◦. However, over a perfect base the étale part is a direct summand, which

by duality with the multiplicative part has a natural map into the étale part of X,
inducing a canonical extension G[p∞] ↪→ X. The result follows easily. �

Now define ΞIg,X
Z,ΣZ

by the cartesian square

ΞIg,X
Z,ΣZ

//

��

(ΞZ,ΣZ ×SZ
C X
Z )perf

��

CIg,X
Z

// (CZ ×SZ
C X
Z )perf .

We would also like to understand this explicitly. The essential point is to understand
the SZ,perf -torsor

ΞIg,X
Z → CIg,X

Z

of which ΞIg,X
Z,ΣZ

is a partial compactification.

Proposition 3.2.12. The SZ,perf-torsor

ΞIg,X
Z → CIg,X

Z

is the perfection of the SZ-torsor that parametrizes lifts of the map f0 : X → B∨ ∼= B
(given by the extension 0→ T → G → B → 0) to symmetric f : X → G.
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Explicitly, this can be described as follows. Choose a symplectic splitting δX of
the filtration ZX of X over CIg,X

Z . Via the embedding ρ : G[p∞] ↪→ X, this induces
a splitting of

0→ T [p∞]→ G[p∞]→ B[p∞]→ 0

and dually a lift of f0 to a map f̃0 : X[ 1
p ]→ B∨ ∼= B. Then the SZ,perf-torsor

ΞIg,X
Z → CIg,X

Z

parametrizes symmetric lifts f̃ : X[ 1
p ]→ G of f̃0.

Proof. The first description follows directly from the definition. For the second
description, it is enough to observe that it does indeed define a lift of the given
SZ-torsor to a SZ,perf -torsor; by uniqueness, it must be the correct one. �

Let YZ,ΣZ be the completion of ΞIg,X
Z,ΣZ

along its toroidal boundary.

Theorem 3.2.13. With the same choice of a splitting of the filtration ZN as in
Theorem 2.5.9 (3), there is a canonical isomorphism of formal schemes

Îg
X,tor

Z
∼→ YZ,ΣZ/ΓZ .

Proof. The proof is the same as for Theorem 3.2.6. �

A corollary of this description is the independence of IgX,tor
Z from X up to quasi-

isogeny:

Corollary 3.2.14. Let φ : Xb,1 → Xb,2 be an isogeny between p-divisible groups
with G-structure over k. Assume that φ induces an isomorphism on étale and
multiplicative parts. Then the isomorphism

IgX1 ∼= IgX2

induced by φ extends uniquely to an isomorphism

IgX1,tor ∼= IgX2,tor .

Proof. For each cusp Z, we will produce an isomorphism

Îg
b,tor

Kp,Σ,Z,1
∼= Îg

b,tor

Kp,Σ,Z,2.

For this, we use the description in Theorem 3.2.13. First, consider the ΓX-torsor
CIg,X
Z → (CZ ×SZ

C X
Z )perf . We use the description in Proposition 3.2.11. We have

given the Raynaud extension

0→ T → G → B → 0

together with an embedding
ρ : G[p∞] ↪→ X,

and the isogeny φ : X → X′ whose kernel K ⊂ X is contained in X◦ and does
not meet the multiplicative part. It follows that G′ = G/ρ−1(K) defines another
semiabelian scheme

0→ T → G′ → B′ → 0

(where B′ = B/ρ−1(K), noting that the composite ρ−1(K)→ G → B is still a closed
immersion as K does not meet the multiplicative part), together with an injection

ρ′ : G′[p∞] ↪→ X′.
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It is clear that this induces an isomorphism

φ∗ : CIg,X
Z

∼= CIg,X′
Z .

We need to compare the perfect torus torsors. Note that the maps f0 : X → B
and f ′0 : X → B′ satisfy that the composite X f0−→ B → B′ is pmf ′0 where pm is the
degree of φ. In particular, the pullback of the natural SZ-torsor over CIg,X′

Z under
φ∗ is the pushout of the natural SZ-torsor over CIg,X

Z under pm : SZ → SZ . After
perfection, we get a natural isomorphism, and as pm is a scalar, it preserves the
cone decomposition.

It is now easy to check that this isomorphism on completions at the boundary is
compatible with the given one in the interior, which implies the desired extension.

�

3.3. Partial minimal compactifications of Igusa varieties. In this section,
we will analyze the partial minimal compactifications of Igusa varieties, by using
the geometry of the toroidal compactifications from the last subsection. As before,
we fix an algebraically closed field k of characteristic p and a p-divisible group X
with G-structure as usual.

3.3.1. Partial minimal compactifications are affine. First, we observe that the par-
tial minimal compactifications of leaves are affine.

Theorem 3.3.2. The partial minimal compactification C X,∗ is affine.

Proof. First, we prove that there exists some X in the given isogeny class for which
the result is true. By a result of Nie, [Nie15, Proposition 1.5, Corollary 1.6], there
is an Ekedahl–Oort stratum that is completely contained in the given Newton
stratum. Taking X so that X[p] defines such an Ekedahl–Oort stratum, the leaf C X

is a closed subset of the corresponding Ekedahl–Oort stratum (as it is closed in its
Newton stratum). By [Box15, Theorem C], the partial minimal compactifications
of Ekedahl-Oort strata are affine. As mentioned above, the definitions of partial
minimal compactifications of [LS18a] and [Box15] are equivalent in our situation.
We conclude by Proposition 3.1.3.

In general, we can find an isogeny φ : X′ → X from a p-divisible group X′
with G-structure for which the result holds, and we may assume that φ induces
isomorphisms of étale and multiplicative parts. Using Corollary 3.2.14, we get a
correspondence

C X′,∗ IgX,torπtor
1oo

πtor
2 // C X,∗

which extends the diagram

C X′ IgX
π1oo

π2 // C X.

Approximating IgX,tor by a scheme of finite type, the result now follows from
Lemma 3.3.3 below, and induction to ensure that the boundary of C X,∗ is affine. �

Lemma 3.3.3. Consider a diagram

X0� _

��

C0� _

��

oo // Y0� _

��

X C
π1oo

π2 // Y
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of schemes, where the vertical arrows are closed immersions and C0 ⊂ C is topo-
logically the preimage both of X0 ⊂ X and of Y0 ⊂ Y . Assume that X, X0 and Y0

are affine, and that π1 and π2 are proper and surjective and finite away from C0.
Then Y is affine.

Proof. Let C → C ′ → Y be the Stein factorization of π2. Note that the map
C → X factors uniquely over C ′ as H0(C ′,OC′) = H0(C,OC) and X is affine. The
resulting map C ′ → X is automatically proper and surjective (cf. e.g. [Sta19, Tag
03GN]). We can then replace C by C ′.

In particular, we can assume that π2 is finite and surjective. As affineness de-
scends along finite surjections, it follows that it is enough to prove that C is affine.
For this, it suffices to show that π1 is finite, for which it suffices to prove that π1 is
quasi-finite. This is evident away from X0. On X0, the map C0 → X0 is a proper
map of affine schemes (as C0 → Y0 is finite and Y0 is affine), and thus finite. This
gives the result. �

In particular, if one defines the partial minimal compactification IgX,∗ as the
normalization of C X,∗ in IgX, we have the following results.

Proposition 3.3.4. The map IgX,∗ → C X,∗ is integral, and in particular IgX,∗ is
affine. It agrees with the Stein factorization of

IgX,tor → C X,∗.

In particular,
IgX,∗ = H0(IgX,tor,OIgX,tor),

and a G-isogeny φ : X→ X′ inducing isomorphisms of étale and multiplicative parts
induces an isomorphism

IgX,∗ ∼= IgX
′,∗.

Remark 3.3.5. One would expect that the final statement does not need φ to induce
isomorphisms of étale and multiplicative parts.

Proof. All statements are immediate. �

3.3.6. Partial minimal compactifications of Igusa varieties in the completely slope
divisible case. From now on, we fix, for a given b ∈ B(GQp , µ

−1), a p-divisible group
with G-structure X = Xb in the given isogeny class such that Xb is completely slope
divisible. As the perfect Igusa varieties are invariant under isogenies, it is for the
rest enough to understand one choice of Xb. Thus, by abuse of notation, we denote
by Igbm := IgXb

m be the Igusa variety over C b := C Xb of level pm; recall that this is
a finite étale cover of C b, which is Galois with Galois group Γm,b = Γm,Xb .

Definition 3.3.7. Define the partial minimal compactification Igb,∗ of Igb to be the
normalization of C b,∗ in Igb.

While we cannot in general expect Igb,∗ to be finite étale over C b,∗, the partial
minimal compactifications of Igusa varieties satisfy the following basic properties
that follow formally from the definition.

Lemma 3.3.8.
(1) The morphism hb,∗ : Igb,∗ → C b,∗ is finite and surjective. In particular,

Igb,∗ is affine.
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(2) The morphism Igb ↪→ Igb,∗ is the open immersion of a dense subset and
Igb,∗ is normal.

Proof. This is clear. �

3.3.9. Igusa cusp labels. In order to describe the boundary strata in Igb,∗ explicitly,
we will define a notion of Igusa cusp label that mirrors the notion of cusp label
introduced in § 2.5.2. Recall that we have fixed the completely slope divisible
p-divisible group Xb with G-structure.

Definition 3.3.10. An Igusa cusp label is a triple Z̃ = (Zb,Z
p, X) where

(1) Zb is an OF -stable filtration of Xb of the form

Zb,−2 ⊂ Zb,−1 ⊂ Xb

such that GrZb
−2 = Zb,−2 is multiplicative, GrZb

0 = Xb/Zb,−1 is étale, and
the polarization identifies these as Cartier dual. In particular, it induces a
principal polarization of

GrZb
−1 = Zb,−1/Zb,−2.

(2) Zp is an OF -stable symplectic filtration

Zp−2 ⊂ Zp−1 ⊂ L⊗Z Ẑp.

(3) X is a finite projective OF -module equipped with isomorphisms X⊗(Qp/Zp) ∼=
GrZb

0 , X ⊗ Ẑp ∼= GrZp

0 .
There is an action of Jb(Qp)×G(Apf ) on Igusa cusp labels. If K ⊂ Jb(Qp)×G(Apf )
is a compact open subgroup, then an Igusa cusp label at level K is a K-orbit of
Igusa cusp labels. For a general closed subgroup H ⊂ Jb(Qp) × G(Apf ), an Igusa
cusp label at level H is a compatible family of Igusa cusp labels at level K for all
K ⊃ H.

If K = Γb(p
m)Kp(N) where Γb(p

m) = ker(Γb → Γm,b) is the principal level
pm subgroup of Γb, one can identify Igusa cusp labels at level K with triples Z̃ =
(Zm,b,ZN , X) where Z = (ZN , X) form a usual cusp label at level K(N), and Zm,b
is an OF -linear symplectic filtration of Xb[pm] with an isomorphism

X/pm ∼= Gr
Zm,b
0 .

(This forces in particular that this is an étale p-divisible group, and then the sym-
plectic pairing forces Gr

Zm,b
−2 to be multiplicative. The filtration will automatically

lift modulo higher powers of p.)
Given an Igusa cusp label Z̃ at level Γb(p

m)Kp(N), we define the group

ΓZ̃ := {γ ∈ AutOF (X) | g ≡ 1 mod pmN}.

3.3.11. Boundary strata in partial toroidal compactifications of Igusa varieties. Con-
sider a cusp label Z = (ZN , X) at level K(N). We will now give a description of
the formal completion Îg

b,tor

m,Z of Igb,tor
m along Igb,tor

m,Z in terms of Igusa cusp labels at
level Γb(p

m)Kp(N).

Theorem 3.3.12.
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(1) There exists a decomposition into open and closed formal subschemes

Îg
b,tor

m,Z =
⊔
Z̃

Îg
b,tor

m,Z̃

where Z̃ runs over Igusa cusp labels at level Γb(p
m)Kp(N) above Z.

(2) Let Z̃ be an Igusa cusp label at level Γb(p
m)Kp(N) above Z. Fix a sym-

plectic OF -linear splitting

Xm,b =

0⊕
i=−2

Gr
Zm,b
i ,

cf. Proposition 2.2.1, and as usual a splitting of ZN . The formal scheme
Îg
b,tor

m,Z̃ can be described as follows:
Consider the diagram

ΞZ
� � //

��

ΞZ,ΣZ

{{

CZ

��

SZ

describing Ŝ tor
Z . Then there is an abelian variety

CZ̃ → IgbZ,m

over the level-pm-Igusa variety over the leaf C b
Z of SZ , and a commutative

diagram
CZ̃

//

��

CZ

��

IgbZ,m // SZ .

Let ΞZ̃,ΣZ → CZ̃ be the pullback of ΞZ,ΣZ → CZ . Then there is an action
of ΓZ̃ on all objects, and letting XZ̃,ΣZ be the completion of ΞZ̃,ΣZ at its
toroidal boundary, there is an isomorphism

Îg
b,tor

m,Z̃
∼= XZ̃,ΣZ/ΓZ̃ .

Proof. For the first part, note that in the notation of Theorem 3.2.6, over Îg
b,tor

m,Z

one parametrizes in particular isomorphisms H µ
Z [pm] ∼= Xµb [pm]. Here HZ is the

connected part of the p-divisible group of the Raynaud extension. Inside its multi-
plicative part, there is the p-divisible group T [p∞] ⊂ H µ

Z . In particular, we get a
multiplicative subspace

T [pm] ∼= H µ
Z [pm] ∼= Xµb [pm] ⊂ Xb[pm] .

This is necessarily locally constant, and together with its dual defines a symplectic
filtration

T [pm] = Zm,b,−2 ⊂ Zm,b,−1 ⊂ Xb[pm].
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Together with the identification T [pm] = Zm,b,−2, this defines the Igusa cusp label
Z̃ above Z (as T is the torus with cocharacter group X, so T [pm] = Hom(X,µpm),
and the identification T [pm] ∼= Zm,b,−2 is Cartier dual to an identification Gr

Zm,b
0

∼=
X/pm).

If we fix the cusp label Z̃ together with a symplectic OF -linear splitting

δm,b : Xb[pm] ∼=
0⊕

i=−2

Gr
Zm,b
i ,

then the data of an Igusa level-pm-structure can be described as follows. Recall
that over CZ ×SZ

C b
Z we have the Raynaud extension

0→ T → G → B → 0

where T is the split torus with cocharacter group X and B lies in the leaf C b
Z of

the smaller Shimura variety SZ . In particular, B[p∞] carries a slope filtration; we
let Bi denote the graded pieces, with slopes λi.

Definition 3.3.13. An Igusa level-pm-structure on a CZ ×SZ
C b
Z-scheme T that

is compatible with the Igusa cusp label Z̃ and δm,b consists of the following data:
(1) An isomorphism

ρBµ,m : Bµ[pm]×CZ×SZ
C b
Z

T
∼→ (Gr

Zm,b
−1 )µ[pm]×k T

compatible with the OF -action on both sides.
(2) A splitting

δm : Bµ[pm]×CZ×SZ
C b
Z

T →H µ
Z [pm]×CZ×SZ

C b
Z

T

compatible with the OF -action on both sides.
(3) For each λi ∈ (0, 1), an isomorphism

ρi,m : Bi[pm]×CZ×SZ
C b
Z

T
∼→ Xi[pm]×k T ,

that commutes with the OF -action, and commutes with the isomorphisms
Bi[pm]

∼→ (Bj [pm])∨ and Xi[pm]
∼→ (Xj [pm])∨ induced by polarizations for

λi + λj = 1 up to an element of (Z/pmZ)×(T ) that is independent of i.
The isomorphisms ρi,m are required to lift fppf locally to pm

′
torsion for

any m′ ≥ m.

Note that the Igusa cusp label itself defines an isomorphism X/pm ∼= Gr
Zm,b
0 ,

and thus T [pm] ∼= Zm,b,−2 by Cartier duality. It is easy to see that Igusa level-pm-
structures compatible with Z̃ and δm,b are representable by a scheme

CZ̃ → CZ ×SZ
C b
Z

that we will identify in a second. Moreover, a direct comparison of moduli problems,
and Theorem 3.2.6, shows that

Îg
b,tor

m,Z̃

can be described in terms of the pullback of ΞZ,ΣZ → CZ to CZ̃ in the way described
in the statement. (In Theorem 3.2.6, one was taking the quotient by ΓZ whereas
here it is ΓZ̃ ; this difference is accounted for by the isomorphism T [pm] ∼= Zm,b,−2

that is part of the cusp label.)
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It remains to identify CZ̃ . We note that the data in parts (1) and (3) precisely
define an Igusa level structure of level pm on B. This shows that there is a natural
map

CZ̃ → CZ ×SZ
IgbZ,m,

where IgbZ,m → C b
Z denotes the Igusa level-pm-covering. Recall that CZ → SZ

parametrizes OF -linear Raynaud extensions 0→ T → G → B → 0 with a splitting
B[N ] → G[N ]; equivalently, CZ is given by HomOF ( 1

NX,B
∨). Parametrizing data

of type (2) in addition amounts to a splitting of the extension

0→ T [pm]→ Gµ[pm]→ Bµ[pm]→ 0.

This means that CZ̃ → IgbZ,m is given by HomOF ( 1
NX, (B/B

µ[pm])∨), which is an
abelian scheme. (We note that this explicit description also implies that the natural
map CZ̃ → CZ ×SZ

IgbZ,m is finite étale.) �

3.3.14. Boundary strata in partial minimal compactifications of Igusa varieties. As
an application, we can describe the boundary strata of Igb,∗m in terms of Igusa cusp
labels at level Γb(p

m)Kp(N).

Theorem 3.3.15. We have a decomposition into locally closed strata

Igb,∗m =
⊔
Z̃

Igb
Z̃
,

where Z̃ runs over Igusa cusp labels at level Γb(p
m)Kp(N).

If Z̃ lies over a cusp label Z of level K(N), then Igb
Z̃
∼= IgbZ,m → C b

Z is isomorphic
to the Igusa variety of level pm over the Oort central leaf C b

Z in the special fiber of
the boundary stratum SZ .

Proof. Observe that Igb,∗m → C b,∗ is the Stein factorization of Igb,tor
m → C b,∗: since

the toroidal compactification is smooth, its Stein factorization factors over the
normalization of C b,∗ in Igbm, and then the map is an isomorphism by Zariski’s
main theorem. The description of the boundary strata of Igb,∗m now follows from
this observation, from Theorem 3.3.12, and from the same arguments as in the case
of Shimura varieties using Fourier–Jacobi series, cf. e.g. [Lan13, Section 7]. (In fact,
our situation is even simpler than the one in loc. cit. because Igb,∗m is affine.) �



50 ANA CARAIANI AND PETER SCHOLZE

4. The Hodge–Tate period morphism on compactifications

4.1. Statements. As before, fix a prime p that is unramified in the CM field F ,
and fix an integer N ≥ 3 prime to p and a cone decomposition Σ level K(N) as in
Remark 2.5.6. We consider the infinite-level minimal and toroidal compactifications

S∗K(p∞N) := lim←−
m

S ∗,♦K(pmN),Qp ,

Stor
K(p∞N) := lim←−

m

S tor,♦
K(pmN),Qp

as diamonds. They admit the Hodge–Tate period map
π∗HT : S∗K(p∞N) → F`,

πtor
HT : Stor

K(p∞N) → F`,

where the flag variety F` is the adic space (or diamond) over Qp parametrizing
totally isotropic F -linear subspaces over V .

Our goal in this section is to describe the fibers of these maps. For this, let
C be any complete algebraically closed nonarchimedean extension of Qp with ring
of integers OC and residue field k. Let x ∈ F`(C) be a point of the flag variety,
which by [SW13, Theorem B] gives rise to a p-divisible group XOC with G-structure
over OC , equipped with an isomorphism α : Tp(XOC ) ∼= L ⊗Z Zp compatible with
G-structures. Associated to the special fibre Xk, we get the perfect Igusa variety
IgX equipped with its partial minimal and toroidal compactification IgX,∗, IgX,tor.

Being perfect schemes, they admit unique flat deformations to formal schemes
over W (k), which we can then base change to OC . Let us denote simply by a
subscript C the generic fibres of these formal schemes, which are perfectoid spaces
over SpaC.

The main theorem of this section is the following:

Theorem 4.1.1. There are natural maps

IgX,∗C → (π∗HT)−1(x),

IgX,tor
C → (πtor

HT)−1(x).

They are open immersions of perfectoid spaces with the same rank-1-points; in fact,
the target is the canonical compactification of the source.

In particular, this implies the following corollary:

Corollary 4.1.2. There are natural Hecke-equivariant isomorphisms

RΓ(IgX,∗,F`) ∼= (R(π∗HT)∗F`)x,

RΓ(IgX,tor,F`) ∼= (R(πtor
HT)∗F`)x,

Moreover, the stalks at higher-rank points agree with the stalks at the corresponding
rank 1 points.

Proof. This follows from Theorem 4.1.1 and the arguments in [CS17, Section 4.4].
�

We start by giving an explicit description of the Hodge–Tate period morphism
on boundary strata, in terms of toroidal boundary charts. Next, we construct maps
from IgX,tor

C into the fibre of the Hodge–Tate period map, by describing the map
on toroidal boundary charts. We check that it is (essentially) an isomorphism by
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checking that it has the correct geometric points; by general properties of (qcqs)
diamonds, this is enough to imply the result.

In the final part of this section, we deduce a semiperversity result for Rπ◦HT∗F`.

4.2. The Hodge–Tate period morphism on boundary strata. Our first goal
is to describe the Hodge–Tate period map explicitly on the toroidal compactifica-
tion. We have the naive integral models

S tor
K(pmN),Zp

of S tor
K(pmN),Qp from Theorem 2.5.9, regarded as p-adic formal schemes. We can

take the inverse limit
S tor
K(p∞N),Zp = lim←−

m

S tor
K(pmN),Zp

as a p-adic formal scheme. Fix a cusp label Z of level K(N). We can take the fibre
product of formal schemes

Ŝ tor
K(p∞N),Z,Zp = S tor

K(p∞N),Zp ×S tor
K(N)

Ŝ tor
K(N),Z

with the formal completion at the boundary stratum corresponding to the cusp Z.
The cusp Z defines a rational parabolic subgroup P = Pr ⊂ G (up to conjugation)
depending on the OF -rank r of the OF -lattice X implicit in the cusp label Z, and
the projection to the cusp labels at p defines a natural map

π1 : Ŝ tor
K(p∞N),Z,Zp → (G/P )(Qp) ;

here, (G/P )(Qp) parametrizes symplectic OF -linear filtrations

Zp∞,−2 ⊂ Zp∞,−1 ⊂ L⊗Z Zp

where the OF ⊗ZZp-rank of Zp∞,−2 is r. In particular, over Ŝ tor
K(p∞N),Z,Zp , we have

a natural local system of OF ⊗ZZp-lattices LZ := Gr
Zp∞
−1 with a perfect alternating

form. On the other hand, there is a natural projection

Ŝ tor
K(p∞N),Z,Zp → SZ,K(N),Zp

remembering only the base B of the Raynaud extension, with its extra structure.
Moreover, over Ŝ tor

K(p∞N),Z,Zp , we have compatible maps LZ/pm → B[pm] for vary-
ing m, inducing level structures on the generic fibre.

Let
Ŝ tor
K(p∞N),Z,Qp = Ŝ tor

K(p∞N),Z,Zp ×SpaZp SpaQp
be the generic fibre, as a (pre-)adic space over Qp (where we regard any formal
scheme as a (pre-)adic space via the natural fully faithful functor). Its associated
diamond is an open subspace

(Ŝ tor
K(p∞N),Z,Qp)♦ ⊂ Stor

K(p∞N)

whose C-valued points are exactly those that specialize into the cusp Z. The
Hodge–Tate filtration of B now defines a totally isotropic subspace

LieB(1)⊗O
(Ŝ tor

K(p∞N),Z,Qp
)♦
↪→ LZ ⊗Zp O(Ŝ tor

K(p∞N),Z,Qp
)♦
.

Pulling this filtration back to

Zp∞,−1 ⊗Zp O(Ŝ tor
K(p∞N),Z,Qp

)♦
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then defines a totally isotropic subspace of

L⊗Z O(Ŝ tor
K(p∞N),Z,Qp

)♦
,

yielding a map
πHT,Z : (Ŝ tor

K(p∞N),Z,Qp)♦ → F`.

Theorem 4.2.1. The map πHT,Z constructed above agrees with the composite

(Ŝ tor
K(p∞N),Z,Qp)♦ → (S tor

K(p∞N),Qp)♦
πtor

HT−→ F`.

Proof. For points away from the boundary, this follows from [Sch15, Proposition
3.3.1] (as the forgetful map to the Siegel modular variety is injective on flag vari-
eties). We deduce the general case by continuity: The locus where the two maps
agree is closed. If they do not agree, they differ on some quasicompact open sub-
space

U ⊂ |(Ŝ tor
K(p∞N),Z,Qp)♦| ⊂ |(Stor

K(p∞N))
♦|,

necessarily contained in the boundary. Note that U is necessarily the preimage of
some quasicompact open subspace Um ⊂ |S tor

K(pmN),Qp | for m large enough, where
U → Um will be surjective, so that Um is contained in the boundary. But there are
no open subspaces of S tor

K(pmN),Qp contained in the boundary. �

We can now also describe the restriction of π∗HT to the boundary of the minimal
compactification S∗K(p∞N). We have a set-theoretic decomposition

S∗K(p∞N) =
⊔
Ẑ

SK(p∞N),Ẑ

in terms of cusp labels at level K(p∞N) on the generic fiber, defined by taking the
inverse limit of the corresponding decomposition on the level of schemes.

Corollary 4.2.2. The restriction of π∗HT : S∗K(p∞N) → F` to SK(p∞N),Ẑ agrees
with the composition

SK(p∞N),Ẑ → F`Ẑ ↪→ F`,

where the first morphism is the Hodge–Tate period morphism for the smaller Shimura
variety SK(p∞N),Ẑ .

4.3. Construction of the map. In this subsection, fix a complete algebraically
closed nonarchimedean field C over Qp with ring of integers OC and residue field k,
and fix a point x ∈ F`(C) of the flag variety. This corresponds to a pair (XOC , α)
consisting of a p-divisible group XOC with G-structure over OC and a trivialization
α : Tp(XOC ) ∼= L⊗Z Zp compatible with G-structures.

Note that the filtration XµOC ⊂ X◦OC ⊂ XOC induces by transport of structure
via α a symplectic OF -linear filtration of L ⊗Z Zp; we fix a symplectic splitting δ
of this filtration. Transporting it back via α, this induces an OF -linear splitting

δXOC : XOC ∼= XµOC ⊕ X(0,1)
OC ⊕ Xét

OC

under which the polarization similarly decomposes into a direct sum.
Let X = Xk be the special fiber of XOC , which comes with an induced splitting

δX, and fix a section k → OC/p.
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Proposition 4.3.1. There exists ε ∈ Q, 1 ≥ ε > 0 such that there exists an
isomorphism

ρ : X×k OC/pε ∼= XOC ×OC OC/pε

of p-divisible groups with G-structures, lifting the identity. Moreover, we can ar-
range that δXOC ×OC OC/p

ε = δX ×k OC/pε.

Proof. Consider the p-divisible group X := XOC ×OC OC/p equipped with the
induced extra structures. Its associated Dieudonné module is a finite projective
Acrys-module equipped with a Frobenius; let (M,φ) be the corresponding φ-module
over B+

crys = Acrys[
1
p ]. Let (M0, φ0) be similarly the Dieudonné module associated

with X×kOC/p. By [SW13, Theorem A], it suffices to find an isomorphism (M,φ) ∼=
(M0, φ0) of G-Dieudonné modules reducing to the identity onW (k)[ 1

p ] (indeed, then
the associated quasi-isogeny will be an isomorphism over k, and thus over OC/pε
for ε small enough). It is in fact enough to find any such isomorphism, as we can
always change it by an automorphism of (M0, φ0).

Now [Far15, Théorème 5.1] classifies G-Dieudonné modules over B+
crys, as they

are equivalent to G-bundles on the Fargues-Fontaine curve, and in particular shows
that they are determined up to isomorphism by their restriction toW (k)[ 1

p ], cf. [Far15,
Théorème 5.6].

For the final statement, note that we can also apply the argument individually
to all three summands (identifying the outer ones as Cartier duals) and then pass
to the direct sum. �

We consider the perfect toroidally compactified Igusa variety IgX,tor associated
with X. By construction, this comes with a map

f tor : IgX,tor → S tor

which factors through the partial toroidal compactification C X,tor of the leaf corre-
sponding to X.

We can base change everything from k to OC/pε and express everything in terms
of XOC ×OC OC/pε using ρ. Our goal in this section is to lift the morphism

f tor
ε : IgX,tor

OC/pε → S tor
OC/pε

to a morphism of p-adic formal schemes. We first define the formal schemes: we set

IgX,tor
OC := W (IgX,tor)×W (k) OC ,

where W (IgX,tor) is the p-adic formal scheme over Spf W (k) obtained by taking an
affine cover of IgX,tor, applying Witt vectors, and gluing. This is also the unique
flat formal lift of IgX,tor

OC/pε to OC . On the other hand, we have the p-adic formal
scheme S tor

OC , and we want to construct a map

f tor
OC : IgX,tor

OC → S tor
OC ,

and in fact a lift to
gtor : IgX,tor

OC → S tor
K(p∞N),OC .

Let us recall the construction away from the boundary: Over IgXOC/pε , we have
an abelian scheme AOC/pε with extra structures together with an isomorphism of
p-divisible groups with G-structures

(4.3.1) AOC/pε [p
∞]
∼→ XOC ×OC IgXOC/pε .
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By Serre-Tate theory, the abelian scheme AOC/pε with G-structure lifts uniquely to
an abelian scheme AOC with G-structure over IgXOC equipped with an isomorphism

AOC [p∞]
∼→ XOC ×OC IgXOC

of p-divisible groups with G-structures. This induces the morphism of formal
schemes

f : IgXOC → SOC ,

such that AOC can be identified with the pullback under f of the universal abelian
scheme over SOC . Now the composition of (Tp applied to) the isomorphismAOC [p∞] ∼=
XOC with α : Tp(XOC ) ∼= L ⊗Z Zp gives a full level structure on the generic fibre
of AOC , and thus (via the definition of integral models via normalization and the
normality of Igusa varieties) a lift to a map

g : IgXOC → SK(p∞N),OC .

Our goal now is to extend this to toroidal compactifications.

Theorem 4.3.2. The morphism g constructed above extends to a morphism of
p-adic formal schemes

gtor : IgX,tor
OC → S tor

K(p∞N),OC .

Proof. We will first construct analogues of the morphism g for boundary strata,
then glue. Fix a cusp label Z = (ZN , X) at level N .

First, we recall the description of

Îg
X,tor

Z

from Theorem 3.2.13. By Proposition 3.2.11, over CIg,X
Z , we have a Raynaud ex-

tension
0→ T → G → B → 0

together with an OF -linear embedding

ρ : G[p∞] ↪→ X

with étale quotient, and that is compatible with polarizations.
Now we lift these structures to OC . By base change, everything exists over

OC/pε. The injection G[p∞] ↪→ Xb deforms uniquely to an injection G[p∞]OC ↪→
XOC as the quotient is étale. By Serre–Tate theory, this induces a unique deforma-
tion of the Raynaud extension compatibly with the deformation of G[p∞], yielding
a Raynaud extension

0→ T → GOC → BOC → 0

over CIg,X
Z,OC with an injection ρOC : GOC [p∞] ↪→ XOC , which is OF -linear and

compatible with polarizations after taking the quotient by the isotropic subspace
T [p∞].

We also need to describe the lift of the SZ,perf -torsor

ΞIg,X
Z → CIg,X

Z .

To do this, we fix a symplectic OF -linear splitting δXOC ,Z of the filtration ZXOC of
XOC over CIg,X

Z,OC given by

T [p∞] ⊂ GOC [p∞] ⊂ XOC ,
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compatible with the splitting δXOC chosen above. Equivalently, we only have to
choose a splitting on étale parts (it will induce a similar splitting on multiplicative
parts, which together with the splitting δX induces the desired splitting). Note that
we automatically have

δXOC ,Z ×OC OC/p
ε = (δXOC ,Z ×OC k)×k OC/pε

as this holds for δXOC by Proposition 4.3.1, and splittings of the étale parts are
rigid.

Using the splitting δXOC ,Z and ρOC , we get a splitting of

0→ T [p∞]→ GOC [p∞]→ BOC [p∞]→ 0

and thus a map f̃0 : X[ 1
p ]→ BOC . Then the lift

ΞIg,X
Z,OC → CIg,X

Z,OC

of the SZ,perf -torsor

ΞIg,X
Z → CIg,X

Z

parametrizes symmetric lifts f̃ : X[ 1
p ] → GOC of f̃0. Indeed, this describes a flat

lift of this relatively perfect scheme, and over OC/pε, it agrees with the description
from Proposition 3.2.12, using critically that δXOC is constant modulo OC/pε.

Now fix any m ≥ 0. Note that Îg
b,tor

Z decomposes into open and closed subsets

Îg
b,tor

Z̃ according to Igusa cusp labels Z̃ of level Γb(p
m)Kp(N); concretely, this

is given by the symplectic OF -stable filtration T [pm] ⊂ Zb,−1[pm] ⊂ X[pm] above.
Note that XOC and the isomorphism XOC [pm](C) ∼= L/pm induce a map from Igusa
cusp labels to usual cusp labels. For an Igusa cusp label Z̃ of level Γb(p

m)Kp(N),
let by abuse of notation Z̃ also denote the corresponding usual cusp label of level
K(pmN). We want to construct maps

Îg
b,tor

Z̃ → Ŝ tor
K(pmN),Z̃

.

For this, we want to use the explicit description of the right-hand side, and so
choose a symplectic splitting L/pm ∼=

⊕0
i=−2 Gr

Zpm
i compatible with splitting δ

chosen in the beginning of this section. (Also choose a similar splitting on L/N ; we
will in the following ignore the discussion of level structures away from p as they are
identical in the two setups.) By transfer of structure along XOC [pm](C) ∼= L/pm,
this induces a splitting Gr

Zm,b
−1 → Zm,b,−1, which then induces a splitting of

0→ T [pm]→ GOC [pm]→ BOC [pm]→ 0.

This gives a map to the abelian variety CZ̃ in the description of Ŝ tor
K(pmN),Z̃

. More-
over, this splitting also induces a lift of the map f0 : X → BOC corresponding to
the Raynaud extension to a map fm : 1

pmX → BOC . By the description of the torus
torsor

ΞIg,X
Z,OC → CIg,X

Z,OC

above, we get a map from ΞIg,X
Z,OC to the torsor of lifts of fm to GOC over CZ̃ , and

then also a map of torus compactifications. The given structures also evidently
define a pre-level structure on BOC [pm] (as in the definition of S pre

K ) but then by
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normality of Îg
b,tor

Z,OC a level structure. In the inverse limit, these structures define
a map

Îg
b,tor

Z,OC → Ŝ tor
K(p∞N),Z,OC ,

as desired.
It remains to show that these maps on toroidal boundary charts glue. We argue

modulo any power pM of p. Take any small enough

Spf R ⊂ Îg
b,tor

Z,OC/pM

and let UR ⊂ SpecR be the complement of the boundary. We get two induced maps
UR → SK(p∞N),OC/pM : One via the map on toroidal boundary charts, the other
by mapping UR → IgbOC/pM to the open Igusa variety first, and then using the map
g above. We need to see that the two maps agree. Note that the first map also
factors naturally over IgbOC/pM → SK(p∞N),OC/pM : Indeed, the abelian variety A
over UR will come with an isomorphism A[p∞]◦ ∼= X◦OC which is OF -linear and
compatible with polarizations after taking the quotient by the multiplicative part;
moreover, the chosen splitting δ (and thus δXOC ) induces an OF -linear symplectic
splitting

A[p∞] ∼= A[p∞]µ ⊕A[p∞](0,1) ⊕A[p∞]ét.

Now this comes with the desired isomorphism to XOC , giving the lift UR → IgbOC/pM
of the first map UR → SK(p∞N),OC/pM . At this point, we have to show that two
maps UR → IgbOC/pM agree, where we note that all schemes are flat lifts of schemes
that are relatively perfect over OC/p. As thus the cotangent complex vanishes, it
suffices to see that these maps agree over OC/pε. But in that case, everything is
simply the base change from k, so we get the desired result. �

4.4. The fibers of the toroidal compactification.

Theorem 4.4.1. The morphism gtor constructed in Theorem 4.3.2 induces a map
of diamonds

Igb,tor
C

∼→ (πtor
HT)−1(x)

that is an open immersion with the same rank 1 points. As the target is partially
proper over Spa(C,OC), this implies that it is the canonical compactification of
Igb,tor
C , and itself affinoid perfectoid.

Proof. By Lemma 4.4.2 below, it is enough to check that it induces a bijection
on (C,OC)-valued points (for all possibly larger C). Note that on both sides, the
C-valued points decompose according to Igusa cusp labels of level Kp(N) (using
Theorem 4.2.1 for the right-hand side) via looking at the induced k-valued point,
and the map is by construction compatible with this decomposition. Thus, fix an
Igusa cusp label Z̃ of level Kp(N). In particular, we fix a symplectic OF -stable
filtration

Zb,−2 ⊂ Zb,−1 ⊂ XOC
with Zb,−2

∼= Hom(X,µp∞) a trivialized multiplicative group. Moreover, we fix an
OF -linear symplectic splitting δb of this filtration. Let

Zp∞,−2 ⊂ Zp∞,−1 ⊂ L⊗Z Zp
be the induced filtration (with induced splitting), using Tp(XOC ) ∼= L⊗Z Zp.
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On the left-hand side, we parametrize now in addition the following data:15

(1) A principally polarized abelian variety B over OC with OF -action as usual.
(2) An OF -linear extension

0→ T → G → B → 0

where T is a torus with cocharacter group X. This induces in particular
an OF -linear map f0 : X → B.

(3) An isomorphism
G[p∞] ∼= Zb,−1

compatible with the T [p∞] = Zb,−2. By the splitting δb, this induces an
OF -linear splitting of

0→ T [p∞]→ G[p∞]→ B[p∞]→ 0

and in particular f0 extends to a map f̃0 : X[ 1
p ]→ B.

(4) Away from the boundary, a lift of f̃0 to an OF -map f̃ : X[ 1
p ]→ G(C) that

is symmetric and positive. In general, we have a torsor P over OC for the
torus SZ̃ with cocharacter group generated by 1

p∞X ⊗ X, parametrizing
symmetric lifts of f̃0 to X[ 1

p ] → G, and the cone decomposition ΣZ gives
rise to an embedding P ⊂ PΣZ . Then the final datum is an OC-point of
PΣZ whose special fibre lies in the boundary.

On the right-hand side, we parametrize the following data:
(1’) A principally polarized abelian variety B over OC with OF -action as usual,

and an OF -linear symplectic isomorphism

Tp(B) ∼= Gr
Zp∞
−1 ,

that induces an isomorphism

B[p∞] ∼= GrZb
−1,

by Theorem 4.2.1 (and [SW13, Theorem B]).
(2’) An OF -linear extension

0→ T → G → B → 0

where T is a torus with cocharacter group X. This induces in particular
an OF -linear map f0 : X → B.

(3’) An OF -linear splitting of

0→ T [p∞]→ G[p∞]→ B[p∞]→ 0;

in particular, this induces a lift of f0 to f̃0 : X[ 1
p ]→ B.

(4’) Away from the boundary, a lift of f̃0 to a symmetric positive f̃ : X[ 1
p ] →

G(C). In general, we have a torsor P ′ over OC for the torus SZ̃ with
cocharacter group generated by 1

p∞X⊗X, parametrizing symmetric lifts of
f̃0 to X[ 1

p ]→ G, and the cone decomposition ΣZ gives rise to an embedding
P ′ ⊂ P ′ΣZ . Then the final datum is an OC-point of P ′ΣZ whose special fibre
lies in the boundary.

15We ignore the level-N -structures away from p.
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It is clear that (2) and (2’) as well as (4) and (4’) correspond. But (3) is equivalent
to a splitting of 0 → T [p∞] → G[p∞] → B[p∞] → 0 plus an isomorphism B[p∞] ∼=
GrZb
−1, i.e. (3’) and the extra part of (1’), as desired. �

Lemma 4.4.2. Let f : X → Y be a map from a quasicompact separated perfectoid
space X to a proper diamond Y over Spd C for some complete algebraically closed
extension C of Qp. Assume that for all complete algebraically closed C ′/C, the map
X(C ′,OC′) → Y (C ′,OC′) is a bijection. Then f induces an isomorphism X → Y
where X is the canonical compactification of X over Spd C, in the sense of [Sch17,
Proposition 18.6]. In particular, if X/Spd C is compactifiable, then f is an open
immersion.

Proof. We may replace X by X and assume that X/Spd C is also proper. Then f
induces bijections on (C ′, C ′+)-valued points for general C ′+ ⊂ C ′ containing OC
(as these agree with the (C ′,OC′)-valued points by properness). Now the result
follows from [Sch17, Lemma 11.11]. �

4.5. The fibers of the minimal compactification.

Theorem 4.5.1. The morphism f tor induces an open immersion

f∗ : Igb,∗C
∼→ (π∗HT)−1(x).

of affinoid perfectoid spaces with the same rank 1 points.

Proof. The fact that Igb,∗C is affinoid perfectoid follows from Lemma 3.3.8. By
[Sch15, Theorem 4.1.1], we know that (π

∗
HT)−1(x) is an affinoid perfectoid space.

By [BS19, Theorem 1.16], we see that (π∗HT)−1(x) is affinoid perfectoid as well.
The theorem follows from Theorem 4.4.1 after taking global sections, and noting
the results of Lemma 4.5.2 below. �

Lemma 4.5.2.
(1) The canonical morphism Igb,tor

C → Igb,∗C induces an isomorphism on global
sections.

(2) The canonical morphism F tor := (πtor
HT)−1(x) → F ∗ := (π∗HT)−1(x) in-

duces an isomorphism on global sections.

Proof. The first part is clear (we know it over k, thus over OC/pε by base change,
then we can lift to OC , and invert p).

For the second part, let π : Sb,tor
K(p∞N) → S

b,∗
K(p∞N) denote the canonical projection.

It is enough to prove that the natural map of sheaves on (F ∗)ét

(4.5.1) O+a
F∗/p

n → π∗O+a
F tor/p

n

is an almost isomorphism. The result in the statement of the lemma follows from
this by passing to the inverse limit over n, inverting p, and taking global sections.

We now claim that it is enough to prove that the natural map of sheaves on
(Sb,∗K(p∞N),C)ét

(4.5.2) O+a

Sb,∗
K(p∞N),C

/pn → π∗O+a

Sb,tor
K(p∞N),C

/pn

is an almost isomorphism. Since the pullback functor ν∗ from the étale site to the
quasi-pro-étale site is fully faithful, cf. [Sch17, Proposition 14.8], it is enough to
consider the pullbacks of the sheaves to the corresponding quasi-pro-étale sites.
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The map x → F`C is quasi-pro-étale, since the point x can be identified with
lim←−U , where the limit runs over a cofinal set of quasi-compact open neighbourhoods
U of x in F`G,µ. This implies that the immersions ιtor : F tor → Stor

K(p∞N),C and
ι : F ∗ → Sb,∗K(p∞N),C are quasi-pro-étale as well. Therefore, (F tor)qproét is a slice

category of (Sb,tor
K(p∞N))qproét and we can identify the sheaves

(ιtor)∗(O+
Stor
K(p∞N)

/pn) = O+
F tor/p

n

on (F tor)qproét. Similarly, we can identify the sheaves

ι∗(O+
S∗
K(p∞N),C

/pn) = O+
F∗/p

n

on (F ∗)qproét. By the base change result in [Sch17, Corollary 16.9], we obtain a
natural isomorphism of sheaves on (F ∗)qproét.

ι∗ ◦ π∗O+
Stor
K(p∞N)

/pn
∼→ π∗ ◦ (ιtor)∗O+

Stor
K(p∞N)

/pn.

We conclude that (4.5.2) implies (4.5.1).
It remains to prove the almost isomorphism (4.5.2). At each finite levelK(pmN),

we have a natural isomorphism Z/pnZ ∼→ πK(pmN),∗(Z/pnZ) of sheaves on (Sb,∗K(pmN))ét,
by base change, e.g. [Sch17, Corollary 16.10], and by the fact that the fibers of the
Stein factorisation are geometrically connected. We tensor with O+

Sb,∗
K(pmN

/pn and

apply the relative primitive comparison isomorphism in the form of [Sch13, Theo-
rem 3.13]; this gives an almost isomorphism

O+a
S∗
K(pmN)

/pn
∼→ πK(pmN)∗O+a

Stor
K(pmN)

/pn.

We conclude by taking a direct limit over the finite levels K(pmN). �

4.6. Semiperversity. Let C be any complete algebraically closed extension of Qp
with ring of integers OC and residue field k.

Theorem 4.6.1. Consider

Rπ◦HT∗F` ∈ D(F`C ,F`).

There is a cofinal system of formal models Fl of F` over OC such that the nearby
cycles

Rψ(Rπ◦HT∗F`) ∈ pD≥d(Flk,F`)
are semiperverse, where d = [F+ : Q]n2 is the dimension of the Shimura variety.

For the proof, we need the following lemma about passage to `∞-level structures.
Let

jN`∞ : SK(N`∞),Q → S tor
K(N`∞),Q

denote the open immersion, where the inverse limit over levels N`m is taken in the
category of schemes.

Lemma 4.6.2. The natural map

F` → RjN`∞,∗F`
is an isomorphism.



60 ANA CARAIANI AND PETER SCHOLZE

Proof. This is a standard consequence of the structure of toroidal compactifications,
see for example [Pin92, §2.7]. For completeness, we sketch the argument: At each
finite level, the boundary of the toroidal compactification is a divisor with normal
crossings, so one can compute RjN`m,∗F` explicitly: The R1jN`m,∗F` is at each
point freely generated by the divisors passing through this point, and the higher
RijN`m,∗F` are wedge powers. Going up the `∞-tower, the boundary divisors get
more and more ramified with transition maps of degree divisible by `, so the transi-
tion maps are zero on RijN`m,∗F` for i > 0, giving the desired result in the colimit
over m. �

Similarly:

Lemma 4.6.3. For any Igusa variety IgX, the restriction map

Hi(IgX,tor
K(N`∞),F`)→ Hi(IgXK(N`∞),F`)

is an isomorphism.

Proof. One can assume that X is completely slope divisible and reduce to the similar
assertion for the non-perfect schemes

IgX
m,K(N`∞) ⊂ IgX,tor

m,K(N`∞)

that have the same local structure as Shimura varieties, so the same argument as
for Shimura varieties works. �

Proof of Theorem 4.6.1. First, we note that by the Hochschild–Serre spectral se-
quence, it is enough to show that

Rψ(Rπ◦HT,`∞,∗F`) ∈ pD≥d(Flk,F`)

where
π◦HT,`∞ : S◦K(p∞N`∞),C → F`C

is the version with `∞-level structure. Combining Lemma 4.6.3, Theorem 2.7.2 and
Corollary 4.1.2, we see that the natural map

Rπtor
HT,`∞,∗F` → Rπ◦HT,`∞,∗F`

is an isomorphism. From now on, we will work with the left-hand side.
We may arrange, using [Sch15, Theorem 4.1.1], that there is an integral model

S
∗
K(p∞N),OC of S

∗
K(p∞N),C that is an inverse limit of integral models S∗K(pmN),OC

of S
∗
K(pmN),C for sufficiently large m, and an extension of π∗HT to an affine map

π
∗,int
HT : S

∗
K(p∞N),OC → Fl.

The map on the special fibre factors over a map of special fibers

fm : S
∗
K(pmN),k → Flk

for sufficiently largem. Now fm is still affine, and is also partially proper (as π∗HT is,
cf. proof of [CS17, Proposition 6.1.3]), which implies that it is finite. In particular,
pushforward along fm preserves pD≥d.

As taking nearby cycles commutes with pushforwards, we find that it is enough
to see that if

g∞,∞m : S tor
K(p∞N`∞),C → S

∗
K(pmN),C
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denotes the projection, then

Rψ(Rg∞,∞m∗ F`) ∈ pD≥d(S
∗
K(pmN),k,F`).

If we let for any m1 ≥ m, m2 ≥ 0

gm1,m2
m : S tor

K(pm1N`m2 ),C → S
∗
K(pmN),C

be the corresponding projection, and

jm1,m2 : SK(pm1N`m2 ),C ↪→ S tor
K(pm1N`m2 ),C

the open immersion (of analytifications of smooth schemes over C), then on the
one hand

Rg∞,∞m∗ F` = lim−→
m1,m2

Rgm1,m2
m∗ F` ,

while on the other hand for any fixed m1, the natural map

lim−→
m2

Rgm1,m2
m∗ F` → lim−→

m2

Rgm1,m2
m∗ Rjm1,m2

∗ F`

is an isomorphism. For the latter claim, it suffices to check the analogous assertion
on schemes (as all operations are between analytifications of schemes of finite type,
where they agree with the operations on the scheme level), and then it follows from
Rjm1,∞
∗ F` = F` in the setting of schemes, which is Lemma 4.6.2.
Finally, it suffices to see that for all m1,m2,

Rψ(Rgm1,m2
m∗ Rjm1,m2

∗ F`) ∈ pD≥d(S
∗
K(pmN),k,F`).

But the sheaf Rgm1,m2
m∗ Rjm1,m2

∗ F` is simply the pushforward of F` under the open
immersion SK(pm1N`m2 ),C ↪→ S

∗
K(pm1N`m2 ),C , which can be computed in the same

way on the level of schemes, and lies in pD≥d in the scheme setting. Now the result
follows from t-exactness of nearby cycles for the perverse t-structure, cf. [Ill94] (and
compatibility of nearby cycles between schemes and adic spaces, [Hub96, Theorem
3.5.13]). �
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5. The cohomology of Igusa varieties and automorphic
representations

In this section, we analyze the Q`-cohomology of Igusa varieties as a virtual
representation, and describe it in terms of automorphic representations. As an
application, we can prove the existence of associated Galois representations when
the cohomology is concentrated in one degree.

The methods and results of this section are parallel to those of Section 5 of [CS17],
but we will replace the conditions imposed there on the ramification of primes in
F with the condition that the level be sufficiently small at “bad places”. In [Shi10],
Sug Woo Shin derived a formula for the alternating sum of the compactly supported
cohomology of Igusa varieties as a sum of stable orbital integrals forG and its elliptic
endoscopic groups. If F is not imaginary quadratic and the level N is sufficiently
divisible, we can reinterpret this formula as the geometric side of the twisted trace
formula. We then compare it to the spectral side of the twisted trace formula to
compute it in terms of virtual representations of G(Apf )× Jb(Qp).

5.1. Statements. As usual, we fix a prime p that is unramified in F . In this
section, we make the following further assumptions:

(1) The CM field F contains an imaginary quadratic field F0 in which p is split;
(2) The totally real subfield F+ is not equal to Q.

We also fix a set S of places of Q containing ∞ and all primes dividing p`∆F .
For technical reasons, we also fix a character $ : A×F0

/F×0 → C× extending the
quadratic character of A×/Q× → {±1} corresponding to F0 (via the embedding
A×/Q× ↪→ A×F0

/F×0 ), and add to S all primes above which $ is ramified.
Throughout this section we also fix an isomorphism ι` : Q`

∼→ C.
Let SplF0/Q be the set of primes that split in F0, and let

TS =
∏

q 6∈S,q∈SplF0/Q

Z[G(Qq)//G(Zq)]

be the associated spherical Hecke algebra. If v is a place of F dividing a prime
q 6∈ S that splits in F0, then v determines a prime q|q of F0, and

G(Qq) = GL2n(Fv)×
∏

w|q,w 6=v

GL2n(Fw)×Q×q .

For any i = 1, . . . , 2n, we define Ti,v ∈ TS as the Hecke operator corresponding to
the G(Zq)-double coset

GL2n(OFv )diag($v, . . . , $v︸ ︷︷ ︸
i

, 1, . . . , 1) GL2n(OFv )×
∏

w|p,w 6=v

GL2n(OFw)× Z×q

inside G(Qq).
Fix b ∈ B(GQp , µ

−1) and fix a p-divisible group X = Xb with G-structure over
Fp in the isogeny class given by b; we assume that X is completely slope divisible.
Note that if v is a prime of F dividing p, inducing a prime p|p of F0, then we have
a decomposition

Jb(Qp) ∼= Jbv (Fv)×
∏

w|p,w 6=v

Jbw(Fw)×Q×p
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where bv ∈ B(GL2n,Fv ) and bw ∈ B(GL2n,Fw) are the elements induced by b. If π
is an irreducible representation of Jb(Qp), we will write

π = πv ⊗
⊗

w|p,w 6=v

πw ⊗ χ

for the associated decomposition. Note that Jbv (Fv) is an inner form of a Levi
subgroup of GL2n(Fv). As such, any irreducible smooth Q` representation πv of
Jbv (Fv) has a semisimple L-parameter

σπv : WFv → GL2n(Q`),
using the results of Badulescu, [Bad07], on the Jacquet–Langlands correspondence
for all inner forms of general linear groups.

Remark 5.1.1. Recall that the semisimple Langlands parameter associated to a
Frobenius semisimple Weil-Deligne representation

WFv × SL2(C)→ GLm(C)

is the restriction along the embedding

WFv →WFv × SL2(C) : w 7→ (w,diag(|w|1/2, |w|−1/2))

where | · | : WFv → R>0 is the map sending a Frobenius to qv. This has the property
that nontrivial extensions can only exist between irreducible smooth representations
with the same semisimple Langlands parameter; in fact the semisimple Langlands
parameter gives exactly a point of the Bernstein center. Also, it is compatible with
normalized parabolic induction.

We fix a level N ≥ 3 that is only divisible by primes in Spf := Sfin \ {p}. The
goal of this section is to describe the virtual representation

[Hc(Ig
b,Q`)] :=

∑
i

(−1)i[lim−→
m

Hi
c(Ig

b
m,K(N),Q`)]

of Jb(Qp)×TS , under an additional assumption on N . As a virtual representation
of Jb(Qp)× TS , we can write

[Hc(Ig
b,Q`)] =

∑
j∈J

njπj ⊗ ψj

over some countable index set J , where each πj is an irreducible smooth represen-
tation of Jb(Qp), ψj : TS → Q` is a character, and we assume that all nj 6= 0 and
all πj ⊗ ψj are pairwise distinct.

The goal of this section is to prove the following theorem.

Theorem 5.1.2. Assume that the level N is divisible by some N0 ≥ 3 as in Re-
mark 5.4.5; in particular, N0 is only divisible by primes in Spf := Sfin \ {p}.

For each j ∈ J , there is a continuous semisimple Galois representation

ρj : Gal(F/F )→ GL2n(Q`)
that is almost everywhere unramified, and for all primes v of F dividing a prime q 6∈
S that splits in F0, the representation ρj is unramified at v, and the characteristic
polynomial of ρj(Frobv) is given by

X2n−ψj(T1,v)X
2n−1 + · · ·+ (−1)iqi(i−1)/2

v ψj(Ti,v)X
2n−i+ · · ·+ qn(2n−1)

v ψj(T2n,v),

where qv is the cardinality of the residue field at v.
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Moreover, for all primes v dividing p, the semisimple Langlands parameter of
πj,v| · |

1
2−n is given by the semisimple Langlands parameter induced by ρj |Gal(Fv/Fv).

In particular, we get the following corollary.

Corollary 5.1.3. Let N be divisible by N0 as above. Assume that m ⊂ TS is a
maximal ideal such that

Hi(Igb,F`)m 6= 0

in exactly one degree. Then there exists a continuous semisimple Galois represen-
tation

ρm : Gal(F/F )→ GL2n(F`)
such that for all primes v of F dividing a prime q 6∈ S that splits in F0, the
representation ρm is unramified at v, and the characteristic polynomial of ρm(Frobv)
is given by the reduction of

X2n − T1,vX
2n−1 + · · ·+ (−1)iqi(i−1)/2

v Ti,vX
2n−i + · · ·+ qn(2n−1)

v T2n,v

modulo m, where qv is the cardinality of the residue field at v.
Moreover, if p splits completely in F and for all v|p, the representation ρm is

unramified with the eigenvalues {α1,v, . . . , α2n,v} of ρm(Frobv) satisfying αi,v 6=
pαj,v for all i 6= j, then b is ordinary.

Proof. Recall the involution ι : TS → TS , as in [ACC+18, §2.2.11] and set m∨ :=
ι(m). By the assumption of concentration in one degree and Poincaré duality, it
follows that Hi

c(Ig
b,Z`)m∨ is also concentrated in one degree and torsion-free, so

there must be some j ∈ J such that ψj : TS → Q` reduces to m∨. Then we can
apply Theorem 5.1.2, define ρm∨ as the semisimplification of the reduction of ρj
modulo `, and set

ρm := ρm∨ |Art−1
F |

1−2n.

For the final statement, assume that b is not ordinary. Then Jb is a nontrivial
inner form of a Levi subgroup of GQp . In particular, there is some prime v dividing p
such that Jbv is a nontrivial inner form of a Levi subgroup of GL2n,Fv = GL2n,Qp . It
follows that there are no irreducible smooth representations πv of Jbv (Fv) such that
σπv is a direct sum of characters χ1⊕. . .⊕χ2n such that χi/χj is not the cyclotomic
character for any i 6= j. (Indeed, such L-parameters correspond to generic principal
series representations which do not transfer to any nontrivial inner form, cf. [CS17,
Lemma 5.4.3].)

Now we distinguish two cases. If p 6≡ 1 mod `, then we claim that ρj must be
unramified at v; necessarily no two Frobenius eigenvalues can have ratio p (as they
do not have ratio p modulo ` by assumption), leading to the desired contradiction.
To show that ρj |Gal(Fv/Fv) is unramified, look at the deformation theory of the
unramified representation ρj |Gal(Fv/Fv) that is a direct sum of unramified characters
with eigenvalues α1,v, . . . , α2n,v and check, using the condition αi,v 6= pαj,v, that
the obstructions, deformations, and automorphisms are the same whether regarded
as representations of Gal(Qp/Qp) or Gal(Fp/Fp).16

On the other hand, if p ≡ 1 mod `, then the similar deformation theoretic argu-
ment implies that ρj |Gal(Fv/Fv) is a direct sum of characters, and again their ratio
cannot be the cyclotomic character as this does not happen modulo `, cf. [CS17,
Lemma 6.2.2]. �

16We thank Koshikawa for pointing out this argument.
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5.2. Unitary groups and endoscopic triples. If ~n = (ni)
s
i=1 is a vector with

entries positive integers, one can define a quasi-split group G~n over Q as in [Shi11,
Section 3.1]. Define GL~n :=

∏s
i=1 GLni and let i~n : GL~n ↪→ GL(

∑
i ni)

be the
natural embedding. Let

Φ~n := i~n(Φn1
, . . . ,Φns),

where Φm is the matrix in GLm with entries (Φm)ij = (−1)i+1δi,m+1−j . Then G~n
is the algebraic group over Q sending a Q-algebra R to

G~n(R) = {(λ, g) ∈ R× ×GL~n(F ⊗Q R)|g · Φ~n · tgc = λΦ~n}.
Since GQ is quasi-split, we have GQ ∼= G2n.

We identify the Langlands dual group of G~n with

Ĝ~n = C× ×
∏
σ∈Φ+

GL~n(C),

where Φ+ is the set of embeddings F ↪→ C above a fixed embedding τ0 : F0 ↪→ C.
Let E ell(G) be the set of isomorphism classes of elliptic endoscopic triples for G. By
[Shi11, Section 3.2], a set of representatives for these isomorphism classes is given
by

{(G2n, s2n, η2n)} ∪ {(Gn1,n2 , sn1,n2 , ηn1,n2)|n1 + n2 = 2n, n1 ≥ n2 ≥ 0} ,
where (n1, n2) may be excluded if all of n1, n2 and [F+ : Q] are odd numbers (see
condition 7.4.3 of [Kot84]). Here, s2n = 1 ∈ Ĝn, sn1,n2

= (1, (In1
,−In2

)) ∈ Ĝn1,n2
,

η2n : Ĝ2n → Ĝ2n is the identity map and ηn1,n2 : Ĝn1,n2 → Ĝ2n is the natural
embedding induced by GLn1 ×GLn2 ↪→ GL2n.

We can extend the map ηn1,n2
: Ĝn1,n2

→ Ĝ2n on Langlands dual groups to
an L-morphism of L-groups η̃n1,n2 : LGn1,n2 → LG2n. Then the L-group LG~n :=

Ĝ~n oWQ is the semidirect product defined by

w(λ, (gσ)σ)w−1 = (λ, (gw−1σ)σ), if w ∈WF0

and

w(λ, (gσ)σ)w−1 =

(
λ
∏
σ∈Φ+

det gσ, (Φ~n
tg−1
cw−1σΦ−1

~n )σ

)
if w 6∈WF0 .

We will use the same formula for η̃n1,n2
as in Section 3.2 of [Shi11], but we recall

the precise definition here because it will be important when we attach Galois rep-
resentations to systems of Hecke eigenvalues. As in the beginning of this section, we
fix $ : A×F0

/F×0 → C× such that $|A×/Q× is the quadratic character corresponding
to F0. Using the map ArtF0 , we can also view $ as a character WF0 → C×. Set
ε : Z → {0, 1} to be the unique map such that ε(m) ∼= m (mod 2). Let w∗ be a
fixed element in WQ \WF0

. We extend ηn1,n2
to an L-morphism η̃n1,n2

by

w ∈WF0 7→
(
$(w)−N(n1,n2),

(
$(w)ε(n1)·In1

0

0 $(w)ε(n2)·In2

)
σ∈Φ+

)
o w

w∗ 7→
(
an1,n2

, (Φn1,n2
Φ−1

2n )σ∈Φ+

)
o w∗,

where N(n1, n2) = [F+ : Q](n1ε(n1)+n2ε(n2))/2 ∈ Z and an1,n2 is a square root of
(−1)N(n1,n2). Using the definition of the L-groups LG~n one can check that η̃n1,n2

is
indeed an L-morphism. We remark that this is an adaptation to unitary similitude
groups of the L-morphism defined in Section 1.2 of [Rog92].
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5.3. A stable trace formula. Let φ ∈ C∞c (Jb(Qp)×G(Apf )) be a function of the
form

φ = φp · φSpf · φ
S

where φp ∈ C∞c (Jb(Qp)),
φSpf ∈ C

∞
c (G(ASpf ))

is simply the characteristic function of the principal congruence subgroup K(N)
where N is sufficiently divisible as defined later, and

φS ∈ Hur(G(AS))

is in the unramified Hecke algebra. We assume moreover that φ is acceptable in
the sense of Definition 6.2 of [Shi09].

For G~n ∈ E ell(G) as in Section 5.2, we can define the transfer of φ to φ~n ∈
C∞c (G~n(Af )) as follows.

Definition 5.3.1. Let φ~n := φ~np · φ~nSpf · φ
~n,S · φ~n∞, where:

(1) φ~np is constructed in Section 6 of [Shi10] and is the same function used in
Sections 5.2 and 5.4 of [CS17].

(2) φ~n
Spf

is the Langlands-Shelstad transfer of φSpf .

(3) φ~n,S ∈ Gur(G~n(AS) is given by η̃∗~n(φS), where

η̃∗~n : Hur(G(AS))→ Hur(G~n(AS))

is induced by the L-morphism η̃~n defined in Section 5.2.
(4) φ~n∞ is a linear combination of Euler-Poincaré functions, the same as in

Section 5.2 of [CS17].

The following is the main result of [Shi10].

Theorem 5.3.2. If φ ∈ C∞c (Jb(Qp)×G(ASpf ))⊗Hur(G(AS)) is as above, then

tr
(
φ|Hc(Ig

b,Q`)
)

=
∑
G~n

ι(G,G~n)STG~ne (φ~n),

where G~n runs over the set of representatives of E ell(G) and φ~n is obtained from φ
as in Definition 5.3.1.

5.4. Base change and compatibility of transfers. Let G~n := ResF0/Q(G~n ×Q

F0). The Langlands dual group Ĝ~n can be identified with

Ĝ~n = C× × C× ×
∏
σ∈Φ

GL~n(C),

where Φ is the set of embeddings F ↪→ C. We can describe the L-group LG~n as
the semidirect product Ĝ~n oWQ, where

w(λ+, λ−, (gσ)σ∈Φ)w−1 = (λ+, λ−, (gw−1σ)σ∈Φ) if w ∈WF0

and if w 6∈WF0

w(λ+, λ−, (gσ)σ∈Φ)w−1 =

λ− ∏
σ∈Φ\Φ+

det gσ, λ+

∏
σ∈Φ+

det gσ, (Φ~n
tg−1
cw−1σΦ−1

~n )σ∈Φ

 .
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One can define L-morphisms BC~n : LG~n → LG~n and ζ̃n1,n2
: LGn1,n2

→ LG2n and
there is a commutative diagram of L-morphisms

(5.4.1) LGn1,n2

BCn1,n2

��

η̃n1,n2 // LG2n

BC2n

��
LGn1,n2

ζ̃n1,n2 // LG2n.

We give the precise definition of ζ̃n1,n2
, as it will be important for explicitly defining

the transfer of functions and representations at unramified places, which in turn will
determine the Galois representations. On the level of dual groups Ĝ~n, the morphism
is induced by the embedding GL~n ↪→ GL2n. We extend this to an L-morphism by

w ∈WF0 7→
(
$(w)−N(n1,n2), $(w)−N(n1,n2),

(
$(w)ε(n1)·In1

0

0 $(w)ε(n2)·In2

)
σ∈Φ

)
ow

w∗ 7→
(
an1,n2 , an1,n2 , (Φn1,n2Φ−1

2n )σ∈Φ

)
o w∗.

The L-morphism BC~n is defined by

(λ, (gσ)σ∈Φ+) o w 7→ (λ, λ, (gσ)σ∈Φ+ , (gcσ)σ∈Φ\Φ+).

One can check the commutativity of the diagram (5.4.1) by a direct computation.
In this section, we review the associated base change for the groups G~n and G~n

as well as the twisted trace formula. Recall that we have fixed a finite set of bad
places S. Everything is identical with Section 5.3 of [CS17], except for the base
change transfer of functions at primes in Spf .

More precisely, if v is a finite place of Q such that v 6∈ S, then the dual map to
the L-morphism BC~n defines the transfer

BC∗~n : Hur(G~n(Qv))→ Hur(G~n(Qv)),

(Case 1) of Section 4.2 of [Shi11]. We remark that, if v 6∈ S then we can define a
transfer corresponding to the L-morphism ζ̃~n via

ζ̃∗~n : Hur(G2n(Qv))→ Hur(G~n(Qv)).

Moroever the diagram 5.4.1 gives rise to a commutative diagram of transfers

(5.4.2) Hur(G2n(Qv))

BC∗n
��

ζ̃∗n1,n2// Hur(Gn1,n2
(Qv))

BC∗n1,n2

��

Hur(G2n(Qv))
η̃∗n1,n2// Hur(Gn1,n2

(Qv))

.

We note that we can also transfer unramified representations and we have the
corresponding commutative diagram

(5.4.3) Repur(Gn1,n2(Qv))

BCn1,n2,∗

��

η̃n1,n2,∗ // Repur(G2n(Qv))

BC2n,∗

��

Repur(Gn1,n2
(Qv))

ζ̃n1,n2,∗ // Repur(G2n(Qv))

.
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Both commutative diagrams come from equation (4.18) of [Shi11]. Moreover, trans-
fer of functions and transfer of representations are, in some sense, inverse operations,
so that we have

tr π(η̃∗n1,n2
(φv)) = tr η̃n1,n2,∗(π)(φv)

and similarly for BC~n and ζ̃~n.

Remark 5.4.1. We give explicit formulas for ζ̃∗~n and for ζ̃~n,∗, using the fact that both
G2n and Gn1,n2 are products of (restrictions of scalars of) general linear groups.
Let Qn1,n2 be a parabolic subgroup of G2n with Levi subgroup Gn1,n2 . Recall
that we have chosen a character $ : A×F0

/F×0 → C×. Let χ$ be the character
Gn1,n2

(A)→ C× defined by

(λ, g1, g2) ∈ A×F0
×GLn1

(AF )×GLn2
(AF ) 7→ $

(
λ−N(n1,n2)

2∏
i=1

NF/F0
(det(gi))

ε(ni)

)
.

Given a place v of Q and a function fv ∈ C∞c (G2n(Qv)), we let fQn1,n2
v be the

constant term of fv along Qn1,n2 and we set ζ̃∗n1,n2
(fv) = f

Qn1,n2
v · χ$,v. Given

Πv ∈ Rep(Gn1,n2(Qv)), define ζ̃n1,n2,∗(Πv) := n− IndG2n

Qn1,n2
(Πv ⊗ χ$,v). The com-

patibility trΠv(ζ̃
∗
n1,n2

(fv)) = trζ̃n1,n2,∗(Πv)(fv) follows from Lemma 3.3 of [Shi11].

If v = p, then it splits in F0 and Section 4.2 of [Shi11], (Case 2), constructs a
BC-transfer φp ∈ C∞c (G~n(Qp)) of fp ∈ C∞c (G~n(Qp)). Moreover, in this case one
can check directly that BC∗~n is surjective.

At ∞, the transfer is defined in Section 4.3 of [Shi11]. Let ξ be an irreducible
algebraic representation of (G~n)C, giving rise to the representation Ξ of (G~n)C which
is just Ξ := ξ⊗ξ. Recall that φG~n,ξ is the Euler-Poincaré function for ξ. Associated
to Ξ, Labesse defined a twisted analogue of the Euler-Poincaré function, a Lefschetz
function fG~n,Ξ [Lab91]. The discussion on page 24 of [Shi11] implies that fG~n,Ξ and
φG~n,ξ are BC-matching functions.

At places v ∈ Spf , we will be less explicit. We simply note that Theorem
3.3.1 of [Lab99] guarantees the existence of a base-change transfer: given f~nv ∈
C∞c (G~n(Qv)), there exists φ~nv ∈ C∞c (G~n(Qv)) such that f~nv and φ~nv have matching
orbital integrals. We will be more interested in inverse transfer : finding f~nv given
φ~nv such that the two are BC-matching functions. For this, we will follow the strat-
egy used in Section 8 of [Mor10]. Proposition 3.3.2 of [Lab99], recalled below, gives
a sufficient condition for a function φ~nv to be a BC-transfer of some f~nv .

Proposition 5.4.2. Let φ~n ∈ C∞c (G~n(Qv)) be such that the stable orbital integral
of φ~n, SOγ(φ~n), is equal to 0 for every γ ∈ G~n(Qv) that is not a norm. Then there
exists f~n ∈ C∞c (G~n(Qv)) such that φ~n is a BC-transfer of f~n.

The following is an analogue of Lemma 8.3.6 of [Mor10] to the case where F is
a general imaginary CM field rather than an imaginary quadratic field.

Lemma 5.4.3. Let D~n := G~n/G
der
~n . Then a semisimple element of G~n(Qv) is a

norm if and only if its image in D~n(Qv) is a norm.

Proof. This follows in the same way as Lemma 8.3.6 of [Mor10]. We give more
details for completeness. If v splits in F0, then every element of G~n(Qv) is a norm
and the same holds for D~n(Qv), so the lemma is immediate in this case. Assume
that v is inert or ramified in F0 and let w be the place of F0 above v. For every Levi
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subgroup M of G~n, set DM := M/Mder. For a semisimple element γ ∈ G~n(Qv),
let M be a Levi subgroup of G~n such that γ ∈M(Qv) and γ is elliptic in M . Then
Proposition 2.5.3 of [Lab99] says that γ is a norm if and only if its image in DM (Qv)
is a norm. It remains to check that an element of DM (Qv) is a norm if and only if
its image under the canonical map DM (Qv)→ D~n(Qv) is a norm.

The Levi M is G~n(Qv) conjugate to a standard Levi subgroup of G~n defined
over Q. We may assume that M is a standard Levi subgroup of G~n defined over
Q, in which case we have explicit descriptions of M,DM and D~n. There exist
s,m1,m2 ∈ N such that ni − mi is non-negative and even for i = 1, 2 and M is
the product of Gm1,m2

and of s groups obtained by restriction of scalars of general
linear groups over F . We have isomorphisms

D~n
∼→
{

(λ, z1, z2) ∈ Gm × (ResF/QGm)2|ziz̄i = λni
}
.

and
DM

∼→ DM,l ×DM,h,

where DM,l = (ResF/QGm)s and

DM,h
∼→
{

(λ, z1, z2) ∈ Gm × (ResF/QGm)2|ziz̄i = λmi if mi > 0 and zi = 1 if mi = 0.
}

The map DM → D~n is 1 on DM,l and given by

(λ, z1, z2) 7→ (λ, λ(n1−m1)/2z1, λ
(n2−m2)/2z2)

on DM,h. Every element of DM,l(Qp) is the norm of some element in DM,l(Qp),
where DM,l := ResF0/Qp(DM,l×Qp F0). The lemma follows, since an element of D~n
or DM,h is a norm if and only if the corresponding multiplier λ is a norm. �

By combining Proposition 5.4.2, Lemma 5.4.3 and the observation that the group
of norms in a torus contains an open neighborhood of the identity, we deduce that
every function in C∞c (G~n(Qv)) with support a small enough neighborhood of the
identity is the BC-transfer of some function in C∞c (G~n(Qv)).

Lemma 5.4.4. Let v ∈ Spf . Every function φv ∈ C∞c (G2n(Qv)) with support
in a small enough neighborhood of the identity has the property that its transfer
φ~n ∈ C∞c (G~n(Qv)) is the BC-transfer of some f~n ∈ C∞c (G~n(Qv)).

Remark 5.4.5. We can now explain the choice of N0: It is such that the principal
congruence subgroup of level N0 is small enough in the sense of this lemma, for all
v ∈ Spf . (Recall that G ∼= G2n.)

Proof. This is essentially the same as the proof of the first part of Lemma 8.4.1
of [Mor10]. The only difference is that we use Lemma 5.4.3 instead of Lemma
8.3.6 of [Mor10]. We sketch the proof. For every G~n ∈ E ell(G2n), choose an
embedding G~n ↪→ G2n. By Lemma 5.4.3 and the observation that the group of
norms in a torus contains an open neighborhood of the identity, there exists an
open neighborhood of the identity U~n ⊂ G~n such that every semisimple element of
U~n is a norm. By Lemma 8.4.2 of [Mor10] (with G~n the Levi subgroup of G2n),
there exists a neighborhood V~n of the identity in G2n(F0 ⊗Q Qv) such that every
semisimple element of G~n(Qv) that is G2n(F0 ⊗Q Qv)-conjugate to an element of
V~n is G~n(Qv)-conjugate to an element of U~n.

Let V := ∩G~n∈E ell(G)V~n, then U := V ∩G2n(Qv) is an open neighborhood of the
identity in G2n(Qv). Any function φ ∈ C∞c (G2n(Qv)) with support contained in U
will satisfy the desired property. Choose a transfer φ~n of φ to G~n. To show that
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φ~n is the base change transfer of some f~n ∈ C∞c (G~n(Qv)), it is enough, by Propo-
sition 5.4.2 to show that, if for some semisimple γ ∈ G~n(Qv) we have SOγ(φ~n) 6= 0,
then γ is a norm. By the definition of transfer, if SOγ(φ~n) 6= 0, then there exists
δ ∈ G2n(Qv) which is associated to γ such that the orbital integral Oδ(φ) 6= 0. The
fact that γ and δ are associated means that they are G2n(F0⊗QQv)-conjugate and
the fact that Oδ(φ) 6= 0 means that δ ∈ U ⊆ V~n. By the construction of V~n, we see
that γ is G~n(Qv)-conjugate to an element of U~n, which is a norm, so γ is a norm
itself. �

5.5. The twisted trace formula. The first part of this section is identical to the
corresponding section of [CS17]. The essential difference is that we give more detail
in the proof of Proposition 5.5.1, since we want to emphasize the role that cuspidal
subgroups play in it.

Define the group

G+
~n := (ResF0/QGm × ResF/Q GL~n) o {1, θ},

where θ(λ, g)θ−1 = (λc, λcg]) and g] = Φt~ng
cΦ−1

~n . There is a naturalQ-isomorphism
G~n

∼→ G◦~n, which extends to an isomorphism

G~n o Gal(F0/Q)
∼→ G+

~n

so that c ∈ Gal(F0/Q) maps to θ. Using this isomorphism, we write G~n and G~nθ
for the two cosets.

If f ∈ C∞c (G~n(A)) (with trivial character on A◦Gn,∞), then we define fθ to be
the function on G~nθ(A) obtained via translation by θ. The (invariant) twisted trace
formula (see [Art88a, Art88b]) gives an equality

(5.5.1) IG~nθgeom(fθ) = IG~nθspec(fθ).

The left hand side of the equation is defined in Section 3 of [Art88b], while the
right hand side is defined in Section 4 of loc. cit.

Let fG~n,Ξ and φG~n,ξ be as defined above. The following is analogous to Corollary
4.7 of [Shi11].

Proposition 5.5.1. We have the following equality:

(5.5.2) IG~nθgeom(f~nθ) =
∑
γ

SOG~n(A)
γ (φ~n) = τ(G~n)−1 · STG~ne (φ~n),

when φ~n and f~n satisfy

φ~n = (φ~n)S · φ~nSf · φG~n,ξ and f~n = (f~n)S · f~nSf · fG~n,Ξ

with (φ~n)S a BC-transfer of (f~n)S, φ~nSf a BC-transfer of f~nSf . The sum in the
center runs over a set of representatives of Q-elliptic semisimple stable conjugacy
classes in G~n(Q) and τ(G~n) is the Tamagawa number of G~n.

Proof. The second equality follows exactly as in the proof of Corollary 4.7 of [Shi11].
Moreover, Theorem 4.3.4 of [Lab99] rewrites the sum of stable orbital integrals in
the center as the elliptic part of the twisted trace formula for G~nθ. Comparing with
the definition of the elliptic part in Section 4.1 of [Lab99], we get∑

γ

SOG~n(A)
γ (φ~n) =

∑
δ

vol(Iδθ(Q)AG~nθ \ Iδθ(A)) ·OG~n(A)
δθ (f~n),
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where γ is as above and δ runs over a set of representatives for θ-elliptic θ-conjugacy
classes in G~n(Q).

The key point in proving the first equality is to simplify the geometric side of
the twisted trace formula for G~nθ, using similar techniques to those in Chapter 7
of [Art88b] to show that only this part contributes. This is done in Proposition
4.5 of [Shi11], but we repeat the argument here in order to emphasize the role that
cuspidal subgroups play. Theorem 7.1.(b) and Corollary 7.4 of [Art88b] give a way
to simplify the geometric side of the trace formula if the test function f~n is cuspidal
at two places. The test function f~n that we constructed is only necessarily cuspidal
at ∞ but we will use the assumption that [F+ : Q] ≥ 2 instead and we will explain
why twisted analogues of these two results hold.

The geometric side of the twisted trace formula is a linear combination of in-
variant distributions IG~nθM (δθ, f~nθ), where M runs over Levi subsets of G~n. (The
twisted analogue of) Theorem 7.1.(b) of [Art88b] shows that the geometric side can
be simplified to a linear combination of distributions on G~nθ itself. The proof of
Theorem 7.1.(b) of [Art88b] goes through as long as one can show that the distribu-
tions IG~nθM (δθ, f~nθ) vanish for every proper subset M ⊂ G~n and semisimple element
δ ∈ M(Q). Since f~nG~n,Ξ is cuspidal, Proposition 9.1 (the splitting formula) and
Corollary 8.3 of [Art88a] imply that IG~nθM (δθ, f~nθ) is a multiple of IG~nθM (δθ, fG~n,Ξθ)
so it is enough to show that the distribution at ∞ vanishes. Proposition 8.2.3
of [Mor10] shows that the term IG~nθM (δθ, fG~n,Ξθ) vanishes if M is not a cuspidal
Levi subset of G~nθ. We recall what cuspidal subgroups and subsets are in Defini-
tion 5.5.2 below and show in Lemma 5.5.3 that, when [F+ : Q] ≥ 2, G~nθ does not
admit any cuspidal subsets.

The argument above implies that the conclusion of Theorem 7.1.(b) of [Art88b]
holds: the geometric side of the twisted trace formula in this case is a linear com-
bination of distributions on G~nθ itself. Recall that f~n is cuspidal at ∞. Theorem
A.1.1 of [Lab99] implies that OG~n(A)

δθ (f~n) = 0 unless δ is θ-elliptic in G~n(R). We
deduce the twisted analogue of the first condition of Corollary 7.4 of [Art88b]. The
second condition (that f~n is cuspidal at an additional place) is not needed for the
proof to go through: it was only imposed in order to invoke Theorem 7.1 of loc.
cit.

By the twisted analogue of Corollary 7.4 of [Art88b], we deduce that

IG~nθgeom(f~nθ) =
∑
δ

vol(Iδθ(Q)AG~nθ \ Iδθ(A)) ·OG~n(A)
δθ (f~n),

where δ runs over a set of representatives for θ-elliptic θ-conjugacy classes in G~n(Q).
The proposition follows. �

Definition 5.5.2.
(1) A cuspidal group is a reductive group M over Q such that (M/AM )R con-

tains a maximal R-torus that is R-anisotropic. Here AM denotes the max-
imal Q-split torus in the center of M .

(2) A cuspidal Levi subgroup M of G~n is a subgroup which is a cuspidal group.
(3) For a Levi subset M of G~nθ, we let M◦ be the intersection of the subgroup

of G+
~n generated by M with G~n. We say that a subset M of G~nθ is cuspidal

if M◦ ∩G~n is a cuspidal Levi subgroup of G~n.

Lemma 5.5.3. G~nθ admits no proper cuspidal subsets.
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Proof. It is enough to show that G~n admits no proper cuspidal Levi subgroups.
Suppose that M ( G~n is a cuspidal Levi subgroup. Then M contains a direct
factor of the form ResF/Q GLh for some 0 < h ≤ n, which would also have to be
cuspidal group. However, the center of ResF/Q GLh×QR contains a split torus of
rank [F+ : Q] > 1, whereas the maximal split torus in the center of ResF/Q GLh
has rank 1. �

Remark 5.5.4. When F is an imaginary quadratic field, so F+ = Q, the unitary
similitude groups G~n do admit proper cuspidal subgroups. For example, for G2n,
these are the Levi subgroups of the form (ResF/QGm)s×G2(n−s) for some s ∈ Z>0.
In this case, one cannot directly identify the stable trace formula for Igusa varieties
with the geometric side of the (twisted) trace formula. The latter contains more
terms coming from the cuspidal subgroups.

5.6. Construction of test functions. In this section, we explain how to construct
our test functions. This differs slightly from the construction of test functions in
Section 6 of [Shi11] and Section 5 of [CS17], but only at primes in Spf . We fix
the isomorphism G ∼= G2n. We let (f2n)S be any function in Hur(G2n(AS)) and
take φS ∈ Hur(G(AS)) be its BC-transfer. We let φSpf ∈ C∞c (G(ASpf )) be the
characteristic function of a principal congruence subgroup for some sufficiently large
level N , as guaranteed by Lemma 5.4.4. We let φp ∈ C∞c (Jb(Qp)) and set

φ := φp · φSpf · φ
S ,

and assume that it is acceptable.
From these test functions, we construct all the other test functions we will need.

First, for each elliptic endoscopic group G~n, we let φ~n be the function constructed
from φ as in Definition 5.3.1. Let (fn1,n2)S be obtained from (f2n)S by transfer
along the L-morphism ζ̃n1,n2 . We choose f~n

Spf
as in Lemma 5.4.4 to be any function

such that φ~n
Spf

is a BC-transfer of f~n
Spf
. We choose f~np so that BC∗~n(f~np ) = φ~np (recall

that BC∗~n is surjective at p). We define f~n∞ explicitly, as a linear combination of
Lefschetz functions for representations Ξ(ϕ~n) of G~n for which ζ̃~n ◦ ϕ~n corresponds
to the trivial representation of G2n (see (6.7) of [Shi11] for the precise formula).
Finally, we set

f~n := f~np · (f~n)Spf · (f
~n)S · f~n∞.

By the commutative diagram (5.4.2), we see that (φ~n)S is the transfer of (f~n)S

along BC∗~n. We can therefore apply Proposition 5.5.1 to f~n and φ~n. We obtain the
following result, analogous to Theorem 5.3.2 of [CS17].

Theorem 5.6.1. We have an equality

tr(φ|[Hc(Ig
b,Q`)]) = τ(G)

∑
G~n∈E ell(G)

ε~n · IG~nθspec(f~nθ),

where ε~n = 1
2 if ~n = (n, n) and ε~n = 1 otherwise.

Recall the group morphism

Redb~n : Groth(G~n(Qp))→ Groth(Jb(Qp))
from Section 5.4 of [CS17]. This is the representation-theoretic counterpart of
constructing the transfer φ~np of φp. The following is an analogue of Lemma 5.5.1
of [CS17].



GENERIC COHOMOLOGY OF NON-COMPACT UNITARY SHIMURA VARIETIES 73

Lemma 5.6.2. The trace tr(φ|[Hc(Ig
b,Q`)]) can be written as a linear combination

of terms of the form

tr
(

Redb~n(π~np )(φp)
)

tr
(

(Π~n)Spf ((f~n)Spf ) ◦ASpf
)

tr
(

(ζ̃~n∗Π
~n)S((f2n)S)

)
,

where π~np ∈ Rep(G~n(Qp)) base changes to Π~n
p ∈ Rep(G~n(Qp)), the component at p

of a θ-stable isobaric irreducible automorphic representation Π~n of G~n. Moreover,
Π~n
∞ is cohomological (with respect to the trivial algebraic representation).

Proof. We sketch the proof. Since we are only interested in obtaining a linear
combination, we do not keep track of endoscopic signs or constants. First, assume
that φ was chosen to be an acceptable function. Then we can apply Theorem 5.6.1
to tr(φ|[Hc(Ig

b,Q`)]).
For each G~n ∈ E ell(G), we simplify the spectral side IG~nθspec(f~nθ) as in Section

of [Shi11] and Section 5.3 of [CS17]. Fix a minimal Levi subgroup M0 of G~n.
For each Levi subgroup M containing M0, choose a parabolic subgroup Q with
Levi M . The spectral side IG~nθspec(f~nθ) can be written as a linear combination of

terms of the form tr
(

n− IndG~n
Q (ΠM )ξ(f

~n) ◦A
)
, where ΠM runs over irreducible,

Φ−1
~n θ-stable subrepresentations of the (relatively) discrete spectrum RM,disc. The

subscript ξ indicates a possible twist by a character of A◦G~n,∞ corresponding to an
irreducible algebraic representation ξ of G~n and A is a normalized intertwiner on
n− IndG~n

Q (ΠM )ξ. This follows by combining Proposition 4.8 and Corollary 4.14
of [Shi11].

We take Π~n to be n− IndG~n
Q (ΠM )ξ. Choose a decomposition

A = Ap ·ASpf ·A
S ·A∞

as a product of normalized intertwining operators. Then we can rewrite the desired
trace as a linear combination of terms of the form

tr
(
Π~n
p (f~np ) ◦Ap

)
tr
(

(Π~n)Spf ((f~n)Spf ) ◦ASpf
)

tr
(
(Π~n)S((f~n)S) ◦AS

)
.

In order to rewrite the traces at p, use the fact that the base change transfer of
representations at p is injective, since p splits in F0, to construct π~np ; then the term
at p is equal to tr

(
π~np (φ~np )

)
. Then appeal to Lemma 5.4.2 of [CS17] which identifies

the latter trace with tr
(

Redb~n(π~np )(φp)
)
. On the other hand, if we ignore the sign

that comes from the choice of the normalized intertwiner A∞,p, then recalling that
(f~n)S is the transfer of (f2n)S along ζ̃∗~n, we can rewrite

tr
(
(Π~n)S((f~n)S)

)
= tr

(
ζ̃~n,∗(Π

~n)S((f2n)S)
)
.

We now explain why Π~n has the desired properties. The fact that Π~n is θ-
stable follows from the fact that ΠM is Φ−1

~n θ-stable. The fact that Π~n is irreducible
follows from the fact that ΠM is irreducible and unitary, and ΠM is isobaric because
it contributes to the (relatively) discrete automorphic spectrum RM,disc and M is a
product of general linear groups. Then Π~n is also isobaric because it is irreducible.

Finally, we remove the assumption that φ be acceptable using Lemma 6.4 of [Shi09].
(The idea is that the twist φ(N ′)

p of any φp by a power of Frobenius makes φ an
acceptable function for any large enough N ′ and that, as long as we keep φp fixed,
we have expressed the desired trace as a finite linear combination of traces of φ(N ′)

p
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against irreducible representations of Jb(Qp). The argument in the proof of Lemma
6.4 of [Shi09] proves that the desired equality holds for every integer N ′ and, in
particular, for N ′ = 0.) �

Remark 5.6.3. A fixed TS-character of [Hc(Ig
b,Q`)] could be obtained from several

Π~n for several different G~n ∈ E ell(G). For example, in the Case ST which is
discussed in Section 6 of [Shi11], the contribution is from an endoscopic group
Gn1,n2

but also from a Levi subgroup M of G.

5.7. Galois representations. Lemma 5.6.2 essentially finishes the proof of The-
orem 5.1.2; it only remains to apply the known results on existence of Galois repre-
sentations for regular L-algebraic, essentially self-dual, cuspidal automorphic rep-
resentations of GLm(AF ). (Here we use the notions of L-algebraic and C-algebraic
representations due to Buzzard-Gee [BG14] and note that in the case of general
linear groups these notions only differ by a character twist.)

Our goal is now to construct a Galois representation

ρΠ : Gal(F/F )→ GL2n(Q`)

attached to the automorphic representation Π := ζ̃~n,∗(Π
~n) (or rather the auto-

morphic representation of GL2n(AF ) obtained from Π by forgetting the similitude
factor) as in Lemma 5.6.2.

By Lemma 5.6.2, Π~n
∞ is cohomological, which implies that Π~n is C-algebraic.

Write Π~n = ψ ⊗ Π1 ⊗ Π2 according to the decomposition Gn1,n2
(A) = A×F0

×
GLn1(AF )×GLn2(AF ). Each Πi is a regular C-algebraic, θ-stable isobaric automo-
prhic representation of GLni(AF ). The automorphic representation Πi|det |(1−ni)/2
is regular L-algebraic.

Recall that we have chosen an isomorphism ι` : Q`
∼→ C.

Theorem 5.7.1. There exists a Galois representation

ρi : Gal(F/F )→ GLni(Q`)

such that for any place q of F ,

WD
(
ρi|Gal(Fq/Fq)

)F−ss

' ι−1
` rec

(
Πi,q|det |(1−ni)/2

)
,

where rec denotes the local Langlands correspondence normalized as in [HT01].

Proof. This is proved just as Theorem 5.5.3 of [CS17]. Recall that the represen-
tation Π~n was constructed as n− IndG~n

Q (ΠM ) (recall that for us ξ is trivial), for
some automorphic representation ΠM which is Φ−1

~n θ-stable and which occurs in the
discrete automorphic spectrum of some Levi subgroup M of G~n. This means we
can write

Πi = n− Ind
GLni
Qi

(ΠMi
) ,

where Mi is the Levi subgroup of parabolic subgroup Qi of GLni and ΠMi
is Φ−1

ni θ-
stable and occurs in the discrete automorphic spectrum ofMi. The classification of
the discrete automorphic spectrum for general linear groups due to Harris–Taylor
and Moeglin–Waldspurger [MW89] together with the fact that ΠMi is Φ−1

ni θ-stable
tells us that ΠMi can be expressed in terms of regular L-algebraic, conjugate self-
dual cuspidal automorphic representations of (possibly a product of) general linear
groups. The existence of the Galois representation ρi and the compatibility with
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the local Langlands correspondence now follows from the main theorems of [Shi11,
CH13, Car12]. �

Now we can prove Theorem 5.1.2.

Proof of Theorem 5.1.2. We use the description from Lemma 5.6.2, where we fix φpf
to be the characteristic function of K(N), and note that we can realize all elements
of TS as the base change of some (f2n)S as we only used places split in F0 in the
definition of TS . Lemma 5.6.2 shows that for each j ∈ J , there is some cuspidal
automorphic representation Π~n = ψ ⊗ Π1 ⊗ Π2 of G~n such that (Π~n)S gives the
Hecke character ψj , and πj = Redb~n(π~np ) where π~np is an irreducible representation of
G~n(Qp) base changing to Π~n

p . By Theorem 5.7.1, there exist Galois representations
ρi associated to the L-algebraic representations Πi|det |(1−ni)/2.

The character $ satisfies $∞(z) = (z/z̄)δ/2 for some odd integer δ, since $∞ :
C× → C× extends the sign character on R×. The character of GLni(AF ) defined
by |det |ni/2−n$(NF/F0

◦ det)ε(ni) is L-algebraic, since (ni + ε(ni)δ)/2 ∈ Z, so it
corresponds to a character εi : Gal(F/F )→ Q×` .

Let Π := ζ̃n1,n2,∗(Π
~n). Write Π = ψ′ ⊗ Π0, according to the decomposition

G2n(A) = A×F0
×GL2n(AF ). Set

Π0
i := Πi|det |(1−ni)/2|det |ni/2−n$(NF/F0

◦ det)ε(ni)

By the definition of ζ̃n1,n2,∗, we get the identity

Π0|det |1/2−n = n− IndGLn
GLn1 ×GLn2

(
Π0

1 ⊗Π0
2

)
.

The representation on the RHS is L-algebraic and normalized parabolic induction
is compatible with this notion and with the local Langlands correspondence rec,
so the term on the LHS, Π0|det |(1−n)/2, is also L-algebraic, with corresponding
Galois representation ρΠS ,` := ⊕2

i=1ρi ⊗ εi (matching via rec).
In particular, one can compare the Hecke eigenvalues at good places, as stated

in Theorem 5.1.2. On the other hand, regarding the representation πj of Jb(Qp),
we recall that it is given by Redb~n(π~np ), and then follow the semisimple Langlands
parameter through all normalized parabolic inductions and Langlands correspon-
dences. Note that Redb~n is also by construction compatible with semisimple Lang-
lands parameters. �
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6. Boundary cohomology of Igusa varieties

In this section, we compute the cohomology of the (partial) boundary of Igusa
varieties.

6.1. Statements. More precisely, fix as usual a prime p that is unramified in F .
Fix any p-divisible group with G-structure X over an algebraically closed field k
of characteristic p. By abuse of notation, we write IgbK(N) = IgXKp(N) for the
associated Igusa variety, where b = b(X) ∈ B(GQp , µ

−1) is as usual; here N ≥ 3 is
any integer prime to p. Let ∂Igb,∗ ⊂ Igb,∗ be the boundary of the Igusa variety. It
admits a natural stratification in terms of conjugacy classes [P ] of maximal rational
parabolic subgroups P ( GQ: Note that a set of representatives for these are given
by the stabilizer Pr of the chain

0 ⊂ F r ⊂ F 2n−r ⊂ F 2n

for r = 1, . . . , n. Then the stratum Igb,∗[P ] ⊂ ∂Igb,∗ can be defined as the preimage
of all strata SZ ⊂ S ∗ where the cusp label Z = (ZN , X) has an OF -lattice X of
rank r. The strata are naturally Hecke-equivariant.

We can pass to the inverse limit over all N ≥ 3 prime to p: Let

Igb∞ = lim←−
N

IgbK(N)

and define similarly Igb,∗∞ , Igb,tor
∞ , ∂Igb,∗∞ and Igb,∗∞,[P ].

Let
j : Igb∞ ↪→ Igb,∗∞

be the open immersion and

i[P ] : Igb,∗∞,[P ] ↪→ Igb,∗∞

the locally closed immersion. We consider

RΓc(Ig
b,∗
∞,[P ], i

∗
[P ]Rj∗F`).

This is naturally a complex of smooth representations of Jb(Qp) × G(Apf ) (where
we note that both groups act naturally on all objects in the definition).

The main theorem of this section is the following. For the statement, we fix the
standard rational parabolic P ∈ [P ] given by the stabilizer of 0 ⊂ F r ⊂ F 2n−r ⊂
F 2n. Its Levi group M is given by ResF/Q GLr ×G2(n−r) where G2(n−r) is the
variant of G with n replaced by n− r. Let

Xr =

( ∏
τ :F+↪→R

Mherm,>0
r (C)

)
/R>0

whereMherm,>0
r (C) denotes the space of positive definite hermitian matrices, which

is the symmetric space for GLr(F ⊗Q R). Finally, fix a symplectic OF -stable filtra-
tion

Zb : 0 ⊂ Zb,−2 ⊂ Zb,−1 ⊂ Xb
with an isomorphism Zb,−2

∼= Hom(OrF , µp∞). This induces a parabolic subgroup
Pb(Qp) ⊂ Jb(Qp) of the self-quasi-isogenies preserving this filtration, and a p-
divisible group XP = Zb,−2/Zb,−1 with G2(n−r)-structure; we denote by bP its
associated isocrystal with G2(n−r)-structure.
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Theorem 6.1.1. There is a natural Jb(Qp)×G(Apf )-equivariant isomorphism

RΓc(Ig
b,∗
∞,[P ], i

∗
[P ]Rj∗F`) ∼= Ind

Jb(Qp)×G(Apf )

Pb(Qp)×P (Apf )
RΓ(GLr(F )\(Xr×GLr(AF,f )),F`)⊗RΓc(Ig

bP
∞ ,F`).

The action of Pb(Qp)× P (Apf ) on

RΓ(GLr(F )\(Xr ×GLr(AF,f )),F`)⊗RΓc(Ig
bP
∞ ,F`)

is through its Levi quotient.

We will prove this result in several steps. First, we realize the structure of par-
abolic induction geometrically and reduce to a statement about Pb(Qp) × P (Apf )-
representations. Then we construct an equivariant map, as the cup product of two
different maps, realizing the two factors. The factor RΓc(Ig

bP
∞ ,F`) is easy, while

the other factor RΓ(GLr(F )\(Xr ×GLr(AF,f )),F`) will arise by realizing this real
manifold inside the perfectoid space that is the punctured formal neighborhood
of Igb,∗∞,P . The latter is probably the most novel part of the proof. Finally, we
show that the map is an isomorphism. For this, we use the explicit toroidal bound-
ary charts. (We could have done this computation directly, but this would have
obscured the Hecke-equivariance).

In the last subsection, we deduce Theorem 2.8.7 on possible systems of Hecke
eigenvalues in the boundary. In particular, we show, under the same technical
assumptions as in the last section, that all systems of Hecke eigenvalues appearing
in the cohomology of Igusa varieties admit associated Galois representations.

6.2. Construction of the map. The goal of this section is to construct a natural
map

Ind
Jb(Qp)×G(Apf )

Pb(Qp)×P (Apf )
RΓ(GLr(F )\(Xr×GLr(AF,f )),F`)⊗RΓc(Ig

bP
∞ ,F`)→ RΓc(Ig

b,∗
∞,[P ], i

∗
[P ]Rj∗F`).

6.2.1. Parabolic induction. First, we prove that

RΓc(Ig
b,∗
∞,[P ], i

∗
[P ]Rj∗F`)

is necessarily parabolically induced, by showing that the space Igb,∗∞,[P ] is parabol-
ically induced. More precisely, we note that there is a natural Jb(Qp) × G(Apf )-
equivariant map

Igb,∗∞,[P ] → Jb(Qp)/Pb(Qp)×G(Apf )/P (Apf )

induced by cusp labels, as Jb(Qp)/Pb(Qp)×G(Apf )/P (Apf ) parametrizes pairs (Zb,Z
p)

“of rank r”. Let

Igb,∗∞,P ⊂ Igb,∗∞,[P ]

be the fibre over the identity. It is then formal that

RΓc(Ig
b,∗
∞,[P ], i

∗
[P ]Rj∗F`) = Ind

Jb(Qp)×G(Apf )

Pb(Qp)×P (Apf )
RΓc(Ig

b,∗
∞,P , i

∗
PRj∗F`)

as Jb(Qp)×G(Apf )-representations.
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6.2.2. Cup products. It remains to construct a map

RΓ(GLr(F )\(Xr ×GLr(AF,f )),F`)⊗RΓc(Ig
bP
∞ ,F`)→ RΓc(Ig

b,∗
∞,P , i

∗
PRj∗F`)

as a representation of Pb(Qp)× P (Apf ). To do this, we will construct two maps:
(1) A map

RΓc(Ig
bP
∞ ,F`)→ RΓc(Ig

b,∗
∞,P ,F`).

(2) A map

RΓ(GLr(F )\(Xr ×GLr(AF,f )),F`)→ RΓ(Igb,∗∞,P , i
∗
PRj∗F`).

Both maps will by construction be Pb(Apf )×G(Apf )-equivariant, where the action on
the left-hand side will factor over JbP (Qp) × G2(n−r)(Apf ) respectively GLr(AF,f ),
both of which are quotients of the Levi. The desired map will then arise as the cup
product of the two maps, via the natural map

RΓc(Ig
b,∗
∞,P ,F`)⊗RΓ(Igb,∗∞,P , i

∗
PRj∗F`)→ RΓc(Ig

b,∗
∞,P , i

∗
PRj∗F`).

The first map comes directly from the profinite map

Igb,∗∞,P → IgbP∞

obtained by passing to the limit in Theorem 3.3.15.

6.2.3. Perfectoid magic. Thus, it remains to construct a natural equivariant map

RΓ(GLr(F )\(Xr ×GLr(AF,f )),F`)→ RΓ(Igb,∗∞,P , i
∗
PRj∗F`).

Note that this seems a priori tricky, as the space on the left is naturally only a real
manifold, while on the right we have a perfect scheme.

Let us indicate how one can bridge the gap by using analytic geometry; in the
present situation, we will naturally get perfectoid spaces. Let us first give an
idealized version of the argument and then add in the details.

Let Igb∞,P be the perfectoid space obtained from Igb,∗∞ by taking the punctured
formal neighborhood of Igb,∗∞,P . This agrees with the perfectoid space obtained from
Igb,tor
∞ by taking the punctured formal neighborhood of the preimage of Igb,∗∞,P .

Using the corresponding description of the toroidal boundary, and restricting for
the moment to a specific cusp label Z̃, we see that over Igb∞,Z̃ we have the universal
abelian variety A as well as a Raynaud extension

0→ T → G → B → 0

and a lift of the corresponding map f0 : X → B to a symmetric map f : X → G;
equivalently, a section of the Poincaré bundle P → B × B over X × X; such that
A = G/X. Note that the principally polarized abelian variety B has locally good
reduction, and in particular the Poincaré bundle P over B × B has a canonical
integral structure. If one takes a point x ∈ Igb∞,Z̃ and fixes a norm |·| : K(x)→ R≥0

on the residue field, then the map taking x, y ∈ X to the logarithm of the norm of
the section of P gives a positive definite symmetric hermitian form

X ×X → R;

changing the norm |·| changes this only by a scalar. We see that there is a canonical
map

|Igb∞,Z̃ | → GLOF (X)\Xr.
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In fact, working globally and Hecke-equivariantly, we note that XQ is a well-defined
F -vector space of rank r over all of Igb∞,P . Fixing an isomorphism XQ ∼= F r, we
get (for each x ∈ Igb∞,P ) a point of Xr. Moreover, we have level structures: In the
present situation, this is an OF -linear symplectic isomorphism V pf (A) ∼= V ⊗Q Apf
matching the subspace V pf (T ) with F r ⊗Q Apf . This gives another isomorphism
XQ ⊗Q Apf ∼= F r ⊗Q Apf , i.e. an element of GLr(F ⊗Q Apf ). Similarly, the Igusa
level structure induces an isomorphism XQ ⊗Q Qp ∼= F r ⊗Q Qp, i.e. an element of
GLr(F ⊗Q Qp). In total, we get a natural continuous map

f : |Igb∞,P | → GLr(F )\(Xr ×GLr(AF,f ))

and it follows from the construction that it is Jb(Qp)× P (Apf )-equivariant.
There is a natural map

RΓ(Igb,∗∞,P , i
∗
PRj∗F`)→ RΓ(Igb∞,P ,F`)

(as the left-hand side can be computed as the cohomology of the perfect scheme
obtained by taking the henselization of Igb,∗∞ along Igb,∗∞,P and deleting the bound-
ary, and there is a natural map from Igb∞,P to that scheme) that is probably an
isomorphism. However, as Igb∞,P is in general highly non-quasicompact – in fact,
at least as noncompact as the locally symmetric space GLr(F )\(Xr ×GLr(AF,f ))
– it is nontrivial to justify this. If the map were an isomorphism, we would now get
a natural map

RΓ(GLr(F )\(Xr ×GLr(AF,f )),F`)
f∗→ RΓ(Igb∞,P ,F`)
∼= RΓ(Igb,∗∞,P , i

∗
PRj∗F`).

For this reason, we make the following small circumlocutions. Recall that the
natural map

lim−→
K⊂GLr(AF,f )

RΓ(GLr(F )\(Xr×GLr(AF,f )/K),F`)→ RΓ(GLr(F )\(Xr×GLr(AF,f )),F`)

is an isomorphism, where K runs over compact open subgroups of GLr(AF,f ); this
follows for example from the Borel–Serre compactification.17

17Indeed, let XBS
r be the Borel–Serre compactification of Xr. Then both Xr and XBS

r are
contractible. It follows that for any paracompact Hausdorff space S, one has

RΓ(Xr × S,A) = RΓ(S,A) = RΓ(XBS
r × S,A)

for any coefficient module A; here cohomology means Čech (or equivalently sheaf) cohomology.
By descent along the GLr(F )-quotient, it follows that the natural map

RΓ(GLr(F )\(XBS
r ×GLr(AF,f )/H), A)→ RΓ(GLr(F )\(Xr ×GLr(AF,f )/H), A)

is an isomorphism, for any closed subgroup H ⊂ GLr(AF,f ). On the other hand, the quotients
GLr(F )\(XBS

r ×GLr(AF,f )/H) are compact Hausdorff, and the natural maps

GLr(F )\(XBS
r ×GLr(AF,f )/H)→ lim←−

K⊃H
GLr(F )\(XBS

r ×GLr(AF,f )/K)

are homeomorphisms (as continuous bijections between compact Hausdorff spaces), where K runs
through open compact subgroups containing H. This implies that on Čech cohomology,

lim−→
K⊃H

RΓ(GLr(F )\(XBS
r ×GLr(AF,f )/K), A)→ RΓ(GLr(F )\(XBS

r ×GLr(AF,f )/H), A)

is an isomorphism.
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Similarly, for each finite m and N ≥ 3 prime to p, let

Igb,∗m,K(N),P ⊂ Igb,∗m,K(N)

be the image of Igb,∗∞,P , and let Igbm,K(N),P be formed similarly as the punctured
formal completion, which is an analytic adic space. Then it follows from [Hub96,
Corollary 3.5.14] applied at each of these finite levels, plus passage to the limit on
the left-hand side, that

RΓ(Igb,∗∞,P , i
∗
PRj∗F`) ∼= lim−→

m,N

RΓ(Igbm,K(N),P ,F`).

Moreover, the map

f : |Igb∞,P | → GLr(F )\(Xr ×GLr(AF,f ))

is the limit of a map of pro-systems

{|Igbm,K(N),P |}m,N → {GLr(F )\(Xr ×GLr(AF,f )/K)}K .

Thus, passing to the colimit, we get the desired map

RΓ(GLr(F )\(Xr ×GLr(AF,f )),F`) ∼= lim−→
K⊂GLr(AF,f )

RΓ(GLr(F )\(Xr ×GLr(AF,f )/K),F`)

→ lim−→
m,N

RΓ(Igbm,K(N),P ,F`)

∼= RΓ(Igb,∗∞,P , i
∗
PRj∗F`).

On the level of pro-systems (and passing to perfections where appropriate), every-
thing carries natural Pb(Qp) × P (Apf )-actions for which the maps are equivariant,
implying the desired equivariance.

6.3. Local computation. In this section, we do a local computation with toroidal
boundary charts to finish the proof of Theorem 6.1.1.

Note that
Igb,∗∞,P

admits a further decomposition according to Igusa cusp labels above P . Concretely,
this amounts to finite projective OF -modules X of rank r with isomorphisms X⊗Z
Ẑp ∼= OrF ⊗Z Ẑp and X ⊗Z Zp ∼= OrF ⊗Z Zp (as we have fixed an isomorphism
Zb,−2

∼= Hom(OrF , µp∞)). Noting that we are really only mapping to the limit
over all levels K of K-equivalence classes of cups labels, we get a decomposition
according to ⊔

X/∼=

GLOF (X)\GLOF (X ⊗Z Ẑ).

On the other hand, in the last section, we constructed a map from the punctured
formal neighborhoods to

GLr(F )\(Xr ×GLr(AF,f )),

and in particular to GLr(F )\GLr(AF,f ). Note that the natural map⊔
X/∼=

GLOF (X)\GLOF (X ⊗Z Ẑ)→ GLr(F )\GLr(AF,f )

is a bijection. It is readily seen that these two maps are compatible.
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Thus, from now on we fix a finite projective OF -module X of rank r with an
isomorphism X ⊗Z Ẑ ∼= OrF ⊗Z Ẑ, corresponding to an Igusa cusp label Z̃, and let

Igb,∗∞,Z̃ ⊂ Igb,∗∞,P

be the corresponding closed subset, defined as the inverse limit of the correspond-
ing strata at finite level. Note that the corresponding part of the cohomology of
GLr(F )\(Xr ×GLr(AF,f )) is given by

lim−→
Γ⊂GLOF (X)

RΓ(Γ,F`),

where Γ runs through congruence subgroups of GLOF (X) (recall that Xr is con-
tractible). Thus, we have to prove the following statement.

Proposition 6.3.1. The map

RΓc(Ig
bP
∞ ,F`)⊗ lim−→

Γ⊂GLOF (X)

RΓ(Γ,F`)→ RΓc(Ig
b,∗
∞,Z̃ , i

∗
Z̃
Rj∗F`)

constructed in the previous section is an isomorphism.

Proof. Using the toroidal compactification to do the computation and the explicit
description of the toroidal boundary charts from Theorem 3.3.12, this is a by now
standard computation due to Pink, [Pin92, Theorem 4.2.1], see also [LS18a, Theo-
rem 4.3.10]. The key point is to notice that the inverse system

(
Igb,tor
Kp

)
Kp

of partial
toroidal compactifications of Igusa varieties has the axiomatic properties described
in [LS18a, Lemma 4.3.2]. �

This finishes the proof of Theorem 6.1.1.

Remark 6.3.2. Theorem 6.1.1 can be interpreted as a version of Pink’s formula [Pin92]
for Igusa varieties. A similar argument as in § 6.2.3 in the setting of Shimura va-
rieties can be used to prove that the original version of Pink’s formula is Hecke-
equivariant. This provides an alternative to the argument in [Pin92, §4.8].

6.4. Applications. We now use Theorem 6.1.1 to construct Galois representations
associated to maximal ideals m ⊂ T in the support of RΓ(c−∂)(Ig

b,F`).
From now on, assume that F contains (properly) an imaginary quadratic field

F0 ⊂ F in which p splits and fix the finite set S of places of Q and a level N ≥ 3
prime to p as in the last section. We let TS be the same unramified Hecke algebra,
and fix a maximal ideal m ⊂ TS containing `.

We will consider the Igusa varieties with implicit tame level Kp(N).

Theorem 6.4.1. Assume that for some b ∈ B(GQp , µ
−1) one of the cohomology

groups
Hi
c−∂(Igb,F`)m, Hi(Igb,F`)m

is nonzero. Then there exists a continuous semisimple Galois representation

ρm : Gal(F/F )→ GL2n(F`)
such that for all primes v dividing a rational prime q 6∈ S that splits in F0, the
characteristic polynomial of ρm is given by

X2n − T1,vX
2n−1 + · · ·+ (−1)iqi(i−1)/2

v Ti,vX
2n−i + · · ·+ qn(2n−1)

v T2n,v

with notation as in the introduction.
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Moreover, if the map

Hi
c−∂(Igb,F`)m → Hi(Igb,F`)m

is not an isomorphism and b is not ordinary, then ρm is of length at least 3.

Before proving the theorem, we record some preliminary notation and results.
We denote by

RΓcont(K
p(N), ) : D+

sm(G(Apf ),F`)→ D+(TS)

the derived functor of Kp(N)-invariants in the bounded below derived category of
smooth G(Apf )-representations with F`-coefficients. We also consider the forgetful
functor D+(TS) → D+(Z). After applying this forgetful functor to the left hand
sides, we obtain TS-equivariant isomorphisms

(6.4.1) RΓcont(K
p(N), RΓc(Ig

b
∞,F`))

∼→ RΓc(Ig
b,F`)

and

(6.4.2) RΓcont(K
p(N), RΓc(Ig

b,∗
∞ , Rj∗F`))

∼→ RΓc(Ig
b,∗, Rj∗F`).

in D+(Z).
We setKS

P := KS∩P (AS) and consider the corresponding abstract Hecke algebra
TSP for P . Recall from [NT16, §2.2.3] the ring homomorphism rP : TS → TSP given
by “restriction of functions”. The following is a version of [NT16, Corollary 2.6] for
smooth representations.

Lemma 6.4.2. There is a natural isomorphism of functors

RΓcont

(
KS , Ind

G(AS)

P (AS)

)
∼→ r∗PRΓcont(K

S
P , )

from D+
sm(P (AS),F`) to D+(TSP ).

Proof. Since KS is hyperspecial for every place v 6∈ S of F , we have the Iwasawa
decomposition G(AS) = KS · P (AS). For non-derived functors, we obtain the
commutative diagram

Modsm(G(AS),F`)
Γ(KS , )

// Mod(TS)

Modsm(P (AS),F`)

Ind
G(AS)

P (AS)

OO

Γ(KS
P , )

// Mod(TSP ),

r∗P

OO

where the smooth induction Ind
G(AS)

P (AS)
is exact and preserves injectives, r∗P is exact,

and Γ(KS , ) and Γ(KS
P , ) are left exact. The proof that the diagram commutes

is identical to that of [NT16, Lemma 2.4 (iii)]. Taking derived functors, we obtain
the lemma. �

Let M = ResF/Q GLr ×Gn−r,Q be the Levi and N be the unipotent radical
of P ; we have a Levi decomposition P = M o N . The compact open subgroup
KS
P ⊂ P (AS) is decomposed in the sense of [NT16, §2.2.4] with respect to this Levi

decomposition. We set KS
M := KS

P ∩M(AS) and KS
N := KS

P ∩N(AS). Recall also
from [NT16, §2.2.4] the ring homomorphism rM : TSP → TSM given by “integration
along unipotent fibers”. The following is an analogue of [NT16, Corollary 2.8] for
smooth representations.
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Lemma 6.4.3. There is a natural isomorphism of functors

r∗MRΓcont(KM , )
∼→ RΓcont(K

S
P , Inf

P (AS)

M(AS)
)

from D+
sm(M(AS),F`) to D+(TSP ).

Proof. On the level of non-derived functors, we have the commutative diagram

Modsm(P (AS),F`)
Γ(KS

P , )
// Mod(TSP )

Modsm(M(AS),F`)

Inf
P (AS)

M(AS)

OO

Γ(KS
M , )

// Mod(TSM ),

r∗M

OO

where the vertical functors are exact and the horizontal functors are left exact. We
do not know that Inf

P (AS)

M(AS)
preserves injectives, but we get a natural transformation

of functors
r∗MRΓcont(KM , )→ RΓcont(K

S
P , Inf

P (AS)

M(AS)
)

by [NT16, Lemma 2.1].
Now observe that the above natural transformation becomes an isomorphism on

any object of D+
sm(M(AS),F`). It is enough to check this after applying functors

that forget the Hecke action. We have RΓcont(K
S
P , ) = RΓcont(K

S
M , ) ◦ Γ(KS

N , ),
because Γ(KS

N , ) preserves injectives and is exact on D+
sm(P (AS),F`). This last

part follows from the fact that KS
N is profinite with order prime to `. On the other

hand, Γ(KS
N , ) ◦ Inf

KS
P

KS
M

= Id. �

Proof of Theorem 6.4.1. We argue by induction on n, so we may assume that the
analogous result is known for Igusa varieties on smaller unitary groups. Assume
first that the map

Hi
c−∂(Igb,F`)m → Hi(Igb,F`)m

is not an isomorphism. In particular, this happens at some finite Igusa level pm,
and then by Poincaré duality the map

Hi
c(Ig

b,F`)m∨ → Hi
c(Ig

b,∗, Rj∗F`)m∨

is not an isomorphism for the “dual” set of Hecke eigenvalues m∨.
From the TS-equivariant isomorphisms (6.4.1) and (6.4.2), and by considering

the stratification of the boundary of Igb,∗∞ in terms of the conjugacy classes [P ] of
rational parabolic subgroups of G, we deduce that for some such [P ] corresponding
to an integer 1 ≤ r ≤ n,

RΓcont(K
p(N), RΓc(Ig

b,∗
∞,[P ], i

∗
[P ]Rj∗F`))m∨ 6= 0.

In particular,

(6.4.3) RΓcont(K
S , RΓc(Ig

b,∗
∞,[P ], i

∗
[P ]Rj∗F`))m∨ 6= 0

where KS = G(OF ⊗Z ẐS).
We now wish to apply Theorem 6.1.1 in order to show that m∨ must be pulled

back under the unnormalized Satake transform TS → TSM from a maximal ideal of
the Hecke algebra TSM . We will do this in two steps, going via the Hecke algebra TSP
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of P . By Theorem 6.1.1 and Lemma 6.4.2, we can rewrite (6.4.3) as the localization
at m∨ of
(6.4.4)

r∗PRΓcont

(
KS
P , Inf

P (AS)

M(AS)
Ind

Jb(Qp)×G(F⊗QASp
f

)

Pb(Qp)×P (F⊗QASp
f

)RΓ(GLr(F )\(Xr ×GLr(AF,f )),F`)⊗RΓc(Ig
bP
∞ ,F`)

)
.

By Lemma 6.4.3, we can rewrite (6.4.4) as the localization at m∨ of
(6.4.5)

r∗Mr
∗
PRΓcont

(
KS
M , Ind

Jb(Qp)×G(F⊗QASp
f

)

Pb(Qp)×P (F⊗QASp
f

)RΓ(GLr(F )\(Xr ×GLr(AF,f )),F`)⊗RΓc(Ig
bP
∞ ,F`)

)
.

After applying the forgetful functor to D+(Z), and using (6.4.1) for IgbP and
the analogue for the locally symmetric spaces for GLr, we see that (6.4.5) is TS-
equivariantly isomorphic to

r∗Mr
∗
P Ind

Jb(Qp)×G(F⊗QASp
f

)

Pb(Qp)×P (F⊗QASp
f

)RΓ(GLr(F )\(Xr×GLr(AF,f )/KS,GLr ),F`)⊗RΓc(Ig
bP

K
S,G2(n−r)

,F`),

where KS,GLr = GLr(OF ⊗Z ẐS) and similarly KS,G2(n−r) = G2(n−r)(OF ⊗Z ẐS)

(satisfying KS
M = KS,GLr ×KS,G2(n−r)).

Note that the composition rM ◦ rP : TS → TSM is the unnormalised Satake
transform. Using the decomposition M = ResF/Q GLr ×Gn−r,Q, we find that there
are maximal ideals m1 of the Hecke algebra for ResOF /Z GLr and m2 of the Hecke
algebra for G2(n−r) such that

RΓ(GLr(F )\(Xr ×GLr(AF,f )/KS,GLr ),F`)m1
6= 0

and
RΓc(Ig

bP

K
S,G2(n−r)

,F`)m2
6= 0,

and m∨ maps into a maximal ideal containing m1 ⊗ m2 ⊂ TM . Using [Sch15,
Corollary 5.4.3], the induction hypothesis, and Poincaré duality, we get the desired
Galois representation ρm associated to m.

If r < n, ρm will be a direct sum of three representations: Note that the rep-
resentation from GLr will contribute two summands. If b is not ordinary, then
P = Pn ⊂ G does not contribute a stratum to the Igusa variety (as there will be
no Igusa cusp labels where the rank of X is n), justifying the final statement.

Thus, we are left with the case that

Hi
c−∂(Igb,F`)m → Hi(Igb,F`)m

is an isomorphism. Possibly changing b, we can then ensure, using Proposition 2.8.4
and Corollary 2.8.2, that these cohomology groups are concentrated in one degree.
Now Theorem 5.1.2 finishes the proof. �
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