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Abstract. Let F be a field of characteristic 0 containing all roots of unity. We
construct a functorial compact Hausdorff space XF whose profinite fundamental
group agrees with the absolute Galois group of F , i.e. the category of finite cov-
ering spaces of XF is equivalent to the category of finite extensions of F .

The construction is based on the ring of rational Witt vectors of F . In the
case of the cyclotomic extension of Q, the classical fundamental group of XF is
a (proper) dense subgroup of the absolute Galois group of F . We also discuss
a variant of this construction when the field is not required to contain all roots
of unity, in which case there are natural Frobenius-type automorphisms which
encode the descent along the cyclotomic extension.
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1. Introduction

This paper grew out of an attempt to understand whether certain constructions
in p-adic Hodge theory could potentially have analogues over number fields. One
important technique in p-adic Hodge theory is the possibility to relate Galois groups
of p-adic fields with Galois groups or fundamental groups of more geometric objects.
Some sample results of this type are the following.

Theorem 1.1 (Fontaine–Wintenberger, [17]). Let K be the cyclotomic extension
Qp(ζp∞) of Qp. Then the absolute Galois group of K is isomorphic to the absolute
Galois group of Fp((t)).
Theorem 1.2 (Fargues–Fontaine, Weinstein, [46]). There is a natural ‘space’ Z
defined over Cp whose geometric fundamental group is the absolute Galois group of
Qp. Formally, Z is the quotient of a 1-dimensional punctured perfectoid open unit
disc by a natural action of Q×p .

One can regard both of these theorems as instances of the general ‘tilting’ philo-
sophy, [38], which relates objects of mixed characteristic with objects of equal char-
acteristic, the latter of which have a more geometric flavour. An important feature
of the tilting procedure is that it only works for ‘perfectoid’ objects; in the case of
fields, this is related to the need to pass to the cyclotomic extension, or a similar
‘big’ field. Another common feature is the critical use of (p-typical) Witt vectors.

In looking for a global version of these results, one is thus led to consider a ‘global’
version of the Witt vectors, and the standard objects to consider are the big Witt
vectors. Recall that for any commutative ring A, the ring of big Witt vectors W(A)
can be identified with the set 1 + tA[[t]] of power series with constant coefficient 1,
where addition of Witt vectors corresponds to multiplication of power series. The
multiplication is subtler to write down, and is essentially determined by the rule
that the product of 1 − at and 1 − bt is given by 1 − abt. In particular, there is a
multiplicative map A→W(A), a 7→ [a] = 1− at, called the Teichmüller map.

In general, there is a map of algebras W(A)→
∏

nA called the ghost map, where
the product runs over all integers n ≥ 1. If A is a Q-algebra, the ghost map is an
isomorphism, so that in particular for a field F of characteristic 0, W(F ) =

∏
n F

is just an infinite product of copies of F .
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One thus cannot expect W(F ) to have a rich structure. However, work on the K-
theory of endomorphisms, [3], suggested to look at the following subring of W(F ),
called the ring of rational Witt vectors.(∗)

Definition 1.3. Let A be a commutative ring. The rational Witt vectors over A
are the elements of

Wrat(A) =

{
1 + a1t+ . . .+ ant

n

1 + b1t+ . . .+ bmtm

∣∣∣∣ ai, bj ∈ A} ⊂W(A).

It is not hard to see that Wrat(A) actually forms a subring of W(A). The Teich-
müller map A→W(A) factors over Wrat(A).

Now let F be a field of characteristic 0 containing all roots of unity, and fix once
and for all an embedding ι : Q/Z ↪→ F×; this ‘bigness’ hypothesis will be important
for the construction, and all constructions will depend on ι. We also fix the standard
embedding

exp: Q/Z ↪→ C×, x 7→ e2πix.

Definition 1.4. Let XF be the set of ring maps Wrat(F ) → C whose restriction

along Q/Z ι
↪→ F×

[·]−→Wrat(F )× gives the standard embedding exp: Q/Z→ C. We
endow XF with its natural complex topology, cf. Definition 5.3.

One can check that XF is one connected component of the complex points of the
scheme Spec Wrat(F ). Actually, in the paper, XF will denote a closely related space
which is a deformation retract of the space considered here. This variant will be a
compact Hausdorff space.

Theorem 1.5 (Theorem 5.2). The functor taking a finite extension E of F to XE →
XF induces an equivalence of categories between the category of finite extensions of
F , and the category of connected finite covering spaces of XF . In particular, the
absolute Galois group of F agrees with the étale fundamental group of XF .

Here, the étale fundamental group of a connected topological space classifies, by
definition, the finite covering spaces of the latter, cf. Definition 2.10. It is in general
not directly related to the classical fundamental group defined in terms of paths.
We also prove a version of this theorem in the world of schemes, replacing XF by
one connected component of Spec(Wrat(F )⊗ C), cf. Theorem 4.5.

Contrary to the results in p-adic Hodge theory cited above which reflect deep
properties about ramification of local fields, this theorem is rather formal. In fact,
the proof of the theorem is essentially an application of Hilbert’s Satz 90 in its
original form. Also, we cannot currently state a precise relationship between this
theorem and the results in p-adic Hodge theory stated above. Still, we believe that
there is such a relation, and that the theorem indicates that the ring of rational

(∗)It is this connection, as well as the observation that the Dennis trace map from K-theory
to topological Hochschild homology factors canonically over the K-theory of endomorphisms, that
led the second author to consider the rational Witt vectors.
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Witt vectors is an interesting object; in fact, we would go so far as to suggest to
replace all occurences of the big Witt vectors by the rational Witt vectors.(†)

We warn the reader that the space XF is highly infinite-dimensional, and in
general far from path-connected. For example, if F is algebraically closed, it can
be (non-canonically) identified with an infinite product of copies of the solenoid
(cf. Proposition/Definition 2.1)

S = lim←−
n∈N

S1 = Hom(Q,S1) = A/Q.

Abstractly, it is clear that any group can be realised as the fundamental group
of a topological space, by using the theory of classifying spaces. One may thus
wonder what extra content Theorem 1.5 carries. We give several answers to this
question. All are variants on the observation that our construction gives an actual
topological space, as opposed to a topological space up to homotopy; and in fact,
it is not just any space, but a compact Hausdorff space. As such, it has certain
finer homotopical and (co)homological invariants which give rise to certain non-
profinitely completed structures on natural arithmetic invariants. From now on,
let XF denote the compact Hausdorff space defined in Section 5 below, which is a
deformation retract of the space considered above.

Fundamental group. By design, the étale fundamental group of XF agrees with
the absolute Galois group of F . However, as a topological space, XF also has a
classical fundamental group, given by homotopy classes of loops; we denote it by
πpath1 (XF ) (suppressing the choice of base point in the introduction). In general,
πpath1 (XF ) could be trivial even when F is not algebraically closed; this happens
whenever F is ‘too big’.

However, for many examples of interest, the situation is better.

Theorem 1.6 (Section 6.3). Assume that F is an abelian extension of a finite
extension of Q. Then XF is path-connected, and the map πpath1 (XF ) → πét1 (XF ) ∼=
Gal(F/F ) is injective with dense image. Moreover, πpath1 (XF ) carries a natural
topology, making it a complete topological group which can be written as an inverse
limit of discrete infinite groups. The map πpath1 (XF )→ Gal(F/F ) is continuous for
this topology, but πpath1 (XF ) does not carry the subspace topology.

Remark 1.7. More precisely, πpath1 (XF ) is an inverse limit of discrete groups, each
of which is an extension of a finite group by a free abelian group of finite rank. The
essential difference between πpath1 (XF ) and Gal(F/F ) is that the Kummer map

F× → Hom(Gal(F/F ), Ẑ)

lifts to a map
F× → Hom(πpath1 (XF ),Z) .

One can characterise the image of πpath1 (XF ) → Gal(F/F ) as the stabiliser of the
class in Ext(F×,Z) coming by pullback along a fixed inclusion F× ↪→ C× from the

(†)An instance is the definition of a Λ-ring, which can be regarded as a commutative ring A
with a map A → W(A) satisfying certain properties. In most natural examples, including K0 of
a commutative ring, the map A→W(A) actually factors through a map A→Wrat(A).
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exponential sequence
0→ Z→ C exp−→ C× → 0,

cf. Proposition 6.14. In particular, the group πpath1 (XQ(ζ∞)) ⊂ Gal(Q/Q(ζ∞)) acts
naturally on the group log(Q) ⊂ C of logarithms of algebraic numbers.(‡)

Cohomology. In general, the singular cohomology groups of XF do not agree with
the sheaf cohomology groups (as, e.g., path-connected and connected components
do not agree), and sheaf cohomology behaves better. Thus, let Hi(XF , A) denote
the sheaf cohomology with coefficients in the constant sheaf A, for any abelian group
A. The second part of the following theorem is a consequence of the Bloch–Kato
conjecture, proved by Voevodsky, [45, Theorem 6.1].

Theorem 1.8 (Theorem 7.8, Proposition 7.9). Let i ≥ 0 and n ≥ 1.
(i) There is a natural isomorphism

Hi(XF ,Z/nZ) ∼= Hi(Gal(F/F ),Z/nZ) .

(ii) The cohomology group Hi(XF ,Z) is torsion-free. In particular, using (i),
there is a canonical isomorphism

Hi(XF ,Z)/n ∼= Hi(Gal(F/F ),Z/nZ) .

Thus, one gets natural Z-structures on the Galois cohomology groups. Note that
we regard the choice ι of roots of unity as fixed throughout; in particular, all Tate
twists are trivialised.

Remark 1.9. Recall that by the Bloch–Kato conjecture,

Hi(Gal(F/F ),Z/nZ) ∼= KM
i (F )/n,

where KM
i (F ) denotes the Milnor K-groups of F . One might thus wonder whether

Hi(XF ,Z) = KM
i (F ). This cannot be true, as the latter contains torsion. However,

it is known that all torsion in KM
i (F ) comes via cup product by roots of unity

Q/Z⊗KM
i−1(F )→ KM

i (F ),

so that KM
i (F )tf

def
= KM

i (F )/(Q/Z ∪KM
i−1(F )) is torsion-free. Also, as we are taking

the quotient by a divisible subgroup, one still has

Hi(Gal(F/F ),Z/nZ) ∼= KM
i (F )tf/n.

One could then wonder whether

Hi(XF ,Z) = KM
i (F )tf .

This is true for i = 0, 1, but not for i > 1, as the Steinberg relation x ∪ (1− x) = 0
for x 6= 0, 1 does not hold in H2(XF ,Z). However, we regard this as a defect of XF

that should be repaired:

(‡)The induced action on 2πiZ ⊂ C is trivial, as we are working over the cyclotomic extension.
In fact, there can not be an action (except for complex conjugation) on 2πiZ, which presents an
obstruction to extending this action beyond the cyclotomic extension.
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Question 1.10. Does there exist a topological space XM
F mapping to XF such that

there are isomorphisms
Hi(XM

F ,Z) ∼= KM
i (F )tf

for all i ≥ 0, which are compatible with the isomorphisms in degrees i = 0, 1 for
XF ?

For algebraically closed fields F , the space XM
F would have to be constructed in

such a way as to freely adjoin the Steinberg relation on its cohomology groups; the
general case should reduce to this case by descent.

Descent along the cyclotomic extension. So far, all of our results were assum-
ing that F contains all roots of unity. One may wonder whether the general case
can be handled by a descent technique. This is, unfortunately, not automatic, as
the construction for F involved the choice of roots of unity, so one cannot naïvely
impose a descent datum. However, there are certain structures on XF that we have
not made use of so far.

First, XF was defined as (one connected component of) the C-valued points of
some scheme defined over Q (or even Z). In particular, by the machinery of étale
homotopy types, its profinite homotopy type acquires an action of (a subgroup of)
the absolute Galois group of Q. This action should, in fact, factor over the Galois
group of the cyclotomic extension of Q, and allow one to define the descent datum.
Unfortunately, this requires heavy technology, and does not play well with the
purely topological considerations on cohomology and fundamental groups above;
however, we record a version of this relationship on the level of cohomology as part
of Theorem 8.9 below.

Second, XF was defined in terms of the rational Witt vectors, and the rational
Witt vectors carry extra endomorphisms, given by Frobenius operators.(§) Thus,
one would expect to have Frobenius operators on XF ; however, the Frobenius op-
erators exchange connected components, and it turns out that on the connected
component XF there are no remaining operators.(¶) However, one can use a differ-
ent connected component instead, at least in some situations. In this respect, we
prove the following result.

Theorem 1.11 (Proposition 8.6.(ii), Theorem 8.8, Theorem 8.9). Let ` be a fixed
prime, and let F be a perfect field of characteristic different from ` (but possibly
positive) whose absolute Galois group Gal(F/F ) is pro-`. Let n ≤ ∞ be maximal
such that µ`n ⊂ F ; for simplicity, we assume n ≥ 2 in case ` = 2. Then there
is a compact Hausdorff space Y`n,F with an action of U(`n) = 1 + `nZ(`), with the
following properties.

(i) Let F (ζ`∞)/F be the `-cyclotomic extension. Then there is a natural iso-
morphism πét1 (Y`n,F ) ∼= Gal(F/F (ζ`∞)).

(§)In fact, one can combine the first and second observation, which leads to the observation that
Wrat(F ) is a Λ-ring; in fact, (almost tautologically) one for which the map Wrat(F )→W(Wrat(F ))
factors over Wrat(F )→Wrat(Wrat(F )).

(¶)In fancy language, the ‘dynamical system’ of the connected components of Spec(Wrat(k)⊗C)
with its Frobenius operators is one form of the Bost–Connes system, [10].
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(ii) There is a natural isomorphism

Hi(Y`n,F ,Z/`mZ) ∼= Hi(Gal(F/F (ζ`∞)),Z/`mZ) .

Under this isomorphism, the action of U(`n) on the left corresponds to the
action of 1 + `nZ` ∼= Gal(F (ζ`∞)/F ) on the right via the tautological em-
bedding U(`n) ↪→ 1 + `nZ`.

We note that there is again an interesting difference between discrete and profinite
groups: The Galois group of the cyclotomic extension is profinite, but the Frobenius
operators live in a discrete subgroup. This is necessary, as the Frobenius operators
will also act on Hi(Y`n,F ,Z).

Finally, let us give a brief summary of the different sections. In Sections 2 and 3,
we recall various basic facts about topological fundamental groups, and Pontrjagin
duals, respectively. The material here is standard, but not always well-known. In
Section 4, we prove Theorem 1.5 in the world of schemes, and in Section 5 we prove
the version for topological spaces. Next, in Section 6, we prove Theorem 1.6; this
relies on a careful analysis of the path-connected components of XF and an analysis
of the multiplicative groups of large extensions of number fields. In Section 7, we
prove Theorem 1.8. Finally, in Section 8, we prove Theorem 1.11.

Acknowledgements. Part of this work was done while the second author was a
Clay Research Fellow. All of it was done while the first author was supported by
the Swiss National Science Foundation. The first author wishes to thank Lennart
Meier for asking a very helpful question.

Notation. We denote the profinite completion of the integers by Ẑ, the ring of
finite (rational) adèles by Af = Ẑ⊗Z Q and the full ring of adèles by A = Af × R.

2. Preliminaries on fundamental groups

In this section we assemble a number of results, some well-known, some less so, on
different concepts of fundamental groups.

2.1. Classical fundamental groups and path components. For a topological
space X with a base point x ∈ X we let πpath1 (X, x) be the usual fundamental group
defined in terms of loops. To be precise, a loop in X based at x is a continuous map
γ : [0, 1]→ X with γ(0) = γ(1), and for two loops γ, δ the product γ ∗ δ is defined
as ‘run first through δ, then through γ’,(‖) i.e. as

γ ∗ δ : [0, 1]→ X, t 7→

{
δ(2t) for 0 ≤ t ≤ 1

2
,

γ(2t− 1) for 1
2
≤ 1.

This composition induces a group structure on the set πpath1 (X, x) of homotopy
classes of loops in X based at x; we call πpath1 (X, x) the classical fundamental group
of X at x.

(‖)Note that this convention is reverse to that prevalent in algebraic topology, but it is common
in algebraic geometry and is more convenient when working with categories of covering spaces.
Of course, these two conventions yield groups which are opposite groups of one another, hence
related by a canonical isomorphism [γ] 7→ [γ]−1.
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Figure 1. The topologist’s sine curve

Path components. Recall that a space X is path-connected if for every two points
x, y ∈ X there is a path in X from x to y, i.e. a continuous map γ : [0, 1]→ X with
γ(0) = x and γ(1) = y. More generally, introduce an equivalence relation on the
points of a space X by declaring x and y equivalent if there is a path from x to y
in X. Then the equivalence classes of this relation are called the path components
of X; they can be characterised as the maximal path-connected subspaces of X.
The set πpath0 (X) of path components will be equipped with the quotient topology
induced by the given topology on X.

Finally note that if x ∈ X and X◦ ⊆ X is the path component containing x,
then every loop in X based at x lies in X◦, and similarly for every homotopy of
loops. Hence the inclusion X◦ ↪→ X induces an isomorphism of fundamental groups
πpath1 (X◦, x)→ πpath1 (X, x).

Since the interval [0, 1] is connected, every path-connected space is connected,
but the converse does not hold. The most well-known counterexample seems to be
the topologist’s sine curve

T = {(0, y) | −1 ≤ y ≤ 1} ∪ {(x, sin 1
x
) | x > 0} ⊂ R2

which is connected but has two path components, cf. Figure 1. See [43, Example 117]
for more details.

More instructive for our purposes is the following example, to which we will return
several times in this section.

Proposition and Definition 2.1. The following topological groups are all canon-
ically isomorphic; each of them is called a (one-dimensional) solenoid.

(i) The Pontryagin dual Q∨, i.e. the set of group homomorphisms Q→ S1 en-
dowed with the compact-open topology, where Q carries the discrete topology
and S1 ⊂ C× is the unit circle;

(ii) the inverse limit lim←−n∈N S
1, where the set N is partially ordered by divisibil-

ity, and for m | n the transition map from the n-th to the m-th copy of S1

is z 7→ zn/m;
(iii) the inverse limit lim←−n∈N R/

1
n
Z, where the transition maps are induced by

the identity R→ R;
(iv) the adèle class group A/Q, where Q is diagonally embedded in A.

Proof. We can write each of these groups as an inverse limit of certain topological
groups, indexed by the partially ordered set N. The constituents of index n are,
respectively:

(i) the quotient An = ( 1
n
Z)∨ of Q∨ corresponding to the subgroup 1

n
Z ⊂ Q;

(ii) the n-th copy of S1, denoted by Bn;
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(iii) the quotient Cn = R/ 1
n
Z;

(iv) the double quotient Dn = ( 1
n
Ẑ)\A/Q = A/(Q + 1

n
Ẑ).

We can write down some isomorphisms between these constituents:
• Bn → An, s 7→ ( 1

n
Z→ S1, q 7→ snq);

• Cn → Bn, t+ 1
n
Z 7→ e2πint;

• Cn → Dn induced by the inclusion R ↪→ A = Af × R, t 7→ (0, t).
It is easy to see that these give three families of isomorphisms of topological groups
An ← Bn ← Cn → Dn, commuting with the structure maps of the inverse systems,
hence defining isomorphisms between the limits. �

Proposition 2.2. The solenoid S is a commutative compact Hausdorff group. It is
connected, but not path-connected. The path component S◦ containing the identity is
a subgroup, hence the path components of S are precisely the cosets of S◦. Therefore
πpath0 (S) ∼= S/S◦ acquires the structure of a topological group.

As such it is canonically isomorphic to Af/Q ∼= Ẑ/Z with the quotient topology
(which is indiscrete), where Q is embedded diagonally in Af .

Proof. The claims in the third and fourth sentences of the proposition follow form-
ally from S being a topological group.

We next show that S is connected, using the description (ii): S ∼= lim←−Bn with
each Bn

∼= S1. If f : lim←−Bn → {0, 1} is continuous, then by construction of the
inverse limit topology f must factor through some Bn, hence be constant.

It remains to determine πpath0 (S). It is most convenient to do this using descrip-
tion (iv): S ∼= A/Q. It is not hard to see that the quotient map A → A/Q has
unique lifting of paths, i.e. if γ : [0, 1] → A/Q is continuous and a ∈ A is such
that γ(0) = a+ Q, then there is a unique continuous γ̃ : [0, 1]→ A inducing γ and
satisfying γ̃(0) = a. From this we see that the neutral path component of A/Q is
precisely the image in A/Q of {0} × R ⊂ Af × R = A. Note that Q is embedded
diagonally, hence it intersects trivially with {0} × R, and we obtain a group iso-
morphism (but not a homeomorphism, see below!) R→ S0. Hence the topological
group πpath0 (S) ∼= πpath0 (A/Q) is isomorphic to (A/R)/Q ∼= Af/Q. Since Q is dense
in Af , this carries the indiscrete topology. Note that Q + Ẑ = Af and Q ∩ Ẑ = Z,
so we may also identify πpath0 (S) with Ẑ/Z. �

Locally path-connected spaces. A topological space X is locally path-connected if for
every x ∈ X and every open neighbourhood V ⊆ X of x there exists an open
neighbourhood U ⊆ V ⊆ X of x which is path-connected.

Let X be a topological space, and denote the given topology by O = {V ⊆ X |
V open} ⊆ P(X). For an open subset V ∈ O and x ∈ V set

U(V, x) = {y ∈ X | there is a path γ : [0, 1]→ V with γ(0) = x and γ(1) = y};

i.e., U(V, x) is the path component of V containing x. It is then clear that the
U(V, x) for varying x ∈ X and x ∈ V ∈ O form a basis of a topology Olpc on the
set X. We let X lpc be the topological space with underlying space X and topology
Olpc. Hence we obtain a continuous but not necessarily open bijection X lpc → X.
The following properties are easily checked:
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Lemma 2.3. Let X be a topological space, with topology O.
(i) For every point x ∈ X the sets U(V, x), where V runs through all elements

of O containing x, is a basis of neighbourhoods of x in X lpc.
(ii) The space X lpc is locally path-connected.
(iii) The topology Olpc is the coarsest topology on the set X which is finer than

O and locally path-connected.
(iv) The construction is functorial: if f : Y → X is continuous, then so is

f : Y lpc → X lpc.
(v) If Y is a locally path-connected space, then any continuous map Y → X

factors uniquely as Y → X lpc → X. In other words, X lpc → X is universal
among continuous maps from locally path-connected spaces to X.

This may be rephrased as follows: if Top denotes the category of topolo-
gical spaces with continuous maps and LPC ⊂ Top denotes the full subcat-
egory of locally path-connected spaces then the functor (−)lpc : Top→ LPC
is right adjoint to the inclusion functor LPC ↪→ Top. �

Examples 2.4. (i) If X is totally disconnected then X lpc is discrete.
(ii) Let M be a smooth manifold and let F be a foliation on M , defined by a
vector subbundle F of the tangent bundle TM such that the sections of F are
stable under the Lie bracket (also known as an involutive or integrable subbundle).
Recall that a leaf of the foliation is a smooth manifold L together with an injective
immersion i : L ↪→M which, for every p ∈ L, induces an identification of TpL with
Fp ⊆ Ti(p)M , and which is maximal with respect to this property.

Since i is injective, we may identify L with a subset of M . In general, however,
the topology of L will not be the subspace topology inherited from M . It is not too
hard to show that if i(L) is endowed with this subspace topology, then

i(L)lpc ∼= L.

For instance, let ϑ ∈ R and consider the Kronecker foliation of slope ϑ. This is the
foliation Fϑ on the torus M = R2/Z2 given by the subbundle Fϑ ⊂ TM ∼= R2 ×M
with Fϑ,p = R ·

(
ϑ
1

)
for every p ∈ M . Each leaf of Fϑ is then the image in M of an

affine subspace in R2 parallel to R ·
(
ϑ
1

)
. If ϑ ∈ Q then every leaf L is homeomorphic

to S1, and L → i(L) is a homeomorphism. If ϑ is irrational then all leaves are
homeomorphic to R and have dense image in M . They are all translates, via the
group structure on M , of the leaf through 0:

i : R→M, t 7→
(
tϑ
t

)
mod Z2.

The topology on i(R) inherited from M defines a topology Oϑ on R. A basis of
neighbourhoods of 0 for this topology is given by the sets

{t ∈ R | both t and tϑ differ by less than ε from an integer}

for varying ε > 0. Hence every Oϑ-neighbourhood of 0 is unbounded. Still, Olpc
ϑ is

the Euclidean topology on R.
Note that M is the completion of the topological group (R,Oϑ), and using this

it is not hard to see that (R,Oϑ1) ' (R,Oϑ2) as topological groups if and only if
ϑ1 and ϑ2 are in the same GL2(Z)-orbit in P1(R) r P1(Q).
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(iii) There is a similar description of Slpc, where S = A/Q is the solenoid. We have
already determined the path components of S in the proof of Proposition 2.2. Since
S is a topological group, they are all homeomorphic, and they are all dense in S by
Proposition 2.2. One of them is the image of R under the obvious homomorphism
i : R → A → S. Again, i is injective and continuous, but not a homeomorphism
onto its image. If O denotes the topology on R corresponding to the subspace
topology on i(R) ⊂ S, then a basis for O is given by the open sets

x+
⋃
n∈Z

]kn− ε, kn+ ε[

for x ∈ R, k ∈ N and ε > 0. This topology is not locally path-connected, but Olpc

is the Euclidean topology on R.
From this we can determine the topology on Slpc: it is the unique topology on S

for which S is a topological group and i : R→ S is a homeomorphism onto an open
subgroup, where R has the Euclidean topology. Hence Slpc is (non-canonically)
isomorphic to Ẑ/Z× R, with the discrete topology on Ẑ/Z.
Corollary 2.5. Let X be a topological space.

(i) The canonical map πpath0 (X lpc)→ πpath0 (X) is a bijection.
(ii) For any x ∈ X the canonical map πpath1 (X lpc, x) → πpath1 (X, x) is a group

isomorphism, and similarly for higher homotopy groups defined in the usual
way using spheres.

(iii) The complex C•(X) of singular simplices in X with integral coefficients
is canonically isomorphic to C•(X

lpc). In particular X lpc → X induces
isomorphisms on singular homology and cohomology, for any abelian coef-
ficient group.

Proof. Lemma 2.3 implies that a map of sets [0, 1]→ X is continuous if and only if
it is continuous when viewed as a map [0, 1] → X lpc, and similarly for homotopies
and singular simplices. �

Topologies on the classical fundamental group. Let (X, x) be a pointed topological
space. Then there exist several natural topologies on πpath1 (X, x).

• The loop topology on πpath1 (X, x) is the quotient topology defined by the surjective
map Ω(X, x) → πpath1 (X, x), where Ω(X, x) is the loop space of (X, x), i.e. the set
of all continuous pointed maps (S1, 1) → (X, x) endowed with the compact-open
topology. While the loop topology is defined in a very natural way it does not
always turn πpath1 (X, x) into a topological group, only into a quasi-topological group.

Here a quasi-topological group is a group G together with a topology such that
the inverse map G → G, g 7→ g−1, and all multiplication maps G → G, g 7→ gh,
and G→ G, g 7→ hg, for h ∈ G are continuous. These conditions do not imply that
the multiplication map G×G → G, (g, h) 7→ gh, is continuous (which would turn
G into a topological group).

For instance for the Hawaiian earrings

H =
⋃
n∈N

Cn
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where Cn ⊂ R2 is a circle of radius 1
n
centered at (0, 1

n
), the fundamental group

πpath1 (H, 0) with the loop topology is a quasi-topological group but not a topological
group, see [16].
• Brazas [12] showed that for any pointed space (X, x) there is a finest topology
on πpath1 (X, x) such that πpath1 (X, x) becomes a topological group and Ω(X, x) →
πpath1 (X, x) is continuous. This topology is known as the τ -topology. Clearly it
agrees with the loop topology if and only if the latter already turns πpath1 (X, x) into
a topological group.

Brazas introduces a generalised notion of covering spaces called semicovering
spaces, cf. [11]. For a semicovering space p : Y → X the subspace topology on
the fibre p−1(x) is discrete, and the monodromy action of πpath1 (X, x) on p−1(x) is
continuous for the τ -topology. If X is path-connected and locally path-connected
this construction provides an equivalence of categories between semicoverings of X
and discrete sets with continuous πpath1 (X, x)-action.
• For any monodromy action defined by a semicovering space the point stabilisers
will be open subgroups of πpath1 (X, x) for the τ -topology. Hence it makes sense
to define a new topology called the σ-topology on πpath1 (X, x) where a neighbour-
hood basis of the identity is given by the τ -open subgroups (rather than all τ -open
neighbourhoods) of πpath1 (X, x).
• Finally we may consider the completion πGal

1 (X, x) of πpath1 (X, x) with respect to
the σ-topology (more precisely, with respect to the two-sided uniformity defined by
the σ-topology). This group is complete and has a basis of open neighbourhoods of
the identity given by open subgroups. By [6, Proposition 7.1.5] it is then a Noohi
group, i.e. the tautological map from πGal

1 (X, x) to the automorphism group of the
forgetful functor

πGal
1 (X, x)-Sets→ Sets

is an isomorphism. Here Sets is the category of sets and πGal
1 (X, x)-Sets is the

category of (discrete) sets with a continuous left πGal
1 (X, x)-action.

In the case where X is path-connected and locally path-connected the category
πGal

1 (X, x)-Sets is again equivalent to the category of semicovering spaces of X, and
πGal

1 (X, x) can be constructed from that category as the automorphism group of a
fibre functor, see [27] for details.

2.2. Etale fundamental groups of topological spaces. Let X be a connected
(but not necessarily path-connected!) topological space and x ∈ X. We shall
construct a profinite group πét1 (X, x) which classifies pointed finite coverings of
(X, x), much like the étale fundamental group in algebraic geometry does. To do
so we proceed analogously to the usual construction for schemes.

Categories of finite covering spaces. Recall that a continuous map of topological
spaces p : Y → X is a trivial finite covering if there is a finite discrete space D and a
homeomorphismX×D → Y making the obvious diagram commute; more generally,
p : Y → X is a finite covering if every point inX has an open neighbourhood U ⊆ X
such that the base change pU : YU = p−1(U) → U is a trivial finite covering. The
map

X → N0, x 7→ |p−1(x)|,
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is continuous. If X is connected, it is therefore constant; the unique value it assumes
is called the degree of the covering.

Definition 2.6. Let X be a topological space. The category FCov(X) has as objects
the pairs (Y, p) where Y is a topological space and p : Y → X is a finite covering,
and as morphisms from (Y1, p1) to (Y2, p2) the continuous maps f : Y1 → Y2 such
that p1 = p2 ◦ f .

For every point x ∈ X we define a functor Φx : FCov(X) → FSet (the target
being the category of finite sets) by sending p : Y → X to the fibre p−1(x), with
the obvious action on morphisms. For a continuous map f : X → X ′ we obtain
a functor f ∗ : FCov(X ′) → FCov(X) by pullback. For x ∈ X there is then a
canonical isomorphism Φf(x)

∼= Φx ◦ f ∗ of functors FCov(X ′)→ FSet.

Proposition 2.7. Let X be a connected topological space and x ∈ X. Let p : Y →
X be a finite covering of degree d. Then Y splits into finitely many connected
components as Y = Y1

∐
· · ·
∐
Yn, each Yi → X is a finite covering of X of some

degree di, and d = d1 + · · ·+ dn.

Proof. To each open and closed subset Z ⊆ Y we assign a counting function

cZ : X → {0, 1, . . . , d}, x 7→ |p−1(x) ∩ Z|.
We claim this is continuous: let U ⊆ X be an open subset over which p becomes
trivial. Note we cannot assume U to be connected itself because we have not
assumed X to be locally connected. Still, Z ∩ p−1(U) is both open and closed in
p−1(U), and we may assume the latter to be U × D, where D is a discrete set of
cardinality d. Hence for each δ ∈ D the locus of u ∈ U with (u, δ) ∈ Z is both open
and closed in U . Therefore cZ is continuous on U . But any point in X is contained
in a suitable U , therefore cZ is continuous on X. But as X is connected, cZ must
be constant, equal to some 0 ≤ dZ ≤ d.

From this argument we also see that Z → X is a finite covering. The same
applies to Y r Z. The degrees of the two coverings thus obtained must be strictly
smaller than d, hence after finitely many steps we arrive at a decomposition into
connected finite coverings. �

Lemma 2.8. Let p : Y → X be a finite covering, where X and Y are connected
topological spaces. Let g ∈ Aut(Y/X), i.e. g is a homeomorphism Y → Y with
p ◦ g = g. If g has a fixed point, then it is the identity.

Proof. Similarly to the proof of Proposition 2.7, we show that the set {y ∈ Y |
g(y) = y} is both open and closed in Y . �

Proposition 2.9. Let X be a connected topological space. Then FCov(X) is a
Galois category in the sense of SGA 1, and for every x ∈ X the functor Φx may
serve as a fibre functor.

Proof. There are several equivalent characterisations of Galois categories, one being
given as follows: an essentially small category C that admits a functor Φ: C →
FSet (called ‘fibre functor’) satisfying the following set of axioms (reproduced from
cf. [2, Exposé V.4]).

(G1) C has a final object, and arbitrary fibre products exist.
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(G2) C has finite coproducts and categorical quotients of objects by finite groups
of automorphisms.

(G3) Every morphism in C factors as ι ◦ π where ι is the inclusion of a direct
summand in a coproduct and π is a strict epimorphism.

(G4) Φ commutes with fibre products and sends right units to right units.
(G5) Φ commutes with finite coproducts, sends strict epimorphisms to strict

epimorphisms and sends categorical quotients by finite groups to categorical
quotients by finite groups.

(G6) If Φ(f) is an isomorphism, then so is f .
To show that FCov(X) and Φx satisfy these axioms is mostly straightforward. The
nontrivial parts are the existence of quotients in (G2), and (G6).

For the former let p : Y → X be an object in FCov(X) and let G ⊆ Aut(Y/X) be
a finite subgroup. Endow G\Y with the quotient topology; we claim that G\Y → X
is an object of FCov(X), and it will follow formally that it is a categorical quotient
for the group action. Take an open subset U ⊆ X over which Y is trivialised; it
suffices to show that G\p−1(U) → U is a finite covering. We may assume that
p−1(U) = U × {1, 2, . . . , d}. Then we obtain a continuous, hence locally constant,
map

α : U → Hom(G,Sd)

where α(u) : G→ Sd is the permutation action ofG on the fibre p−1(u) ∼= {1, 2, . . . , d}.
From the fact that α is locally constant we deduce that the restriction of G\Y to
U is a finite covering of U , as desired.

As for (G6) let f : Y1 → Y2 be a morphism in FCov(X) which induces a bijection
on the fibres over some x ∈ X. We need to show that f is a homeomorphism. First,
by an argument analogous to the preceding, we show that f is in fact bijective.
Then on any open subset U ⊆ X trivialising both coverings we may assume that f
takes the form

U × {1, 2, . . . , d} → U × {1, 2, . . . , d}, (u, δ) 7→ (u, β(u)(δ))

for some finite sets Di and some continuous map β : U → Sd. It is then clear that
f is also open. �

For a Galois category C with a fibre functor Φ the group π = Aut Φ acquires a
natural structure of a profinite group, as a projective limit over all the images of π in
Aut(Φ(Y )) for Y ∈ ObC. The functor Φ then factors through the category π-FSet
of finite sets with a continuous left action by π, and in fact induces an equivalence
between C and π-FSet by [2, Exposé V, Théorème 4.1]. In fact, Galois categories
are precisely those that are equivalent to π-FSet for some profinite group π, cf. the
remarks after [2, Exposé V, Définition 5.1].

Definition 2.10. Let X be a connected topological space and x ∈ X. The auto-
morphism group of the fibre functor Φx : FCov(X) → FSet is called the étale
fundamental group of X at x and denoted by πét1 (X, x).

It follows from the formalism of Galois categories that for two points x, x′ ∈ X
the groups πét1 (X, x) and πét1 (X, x′) are isomorphic, the isomorphism being canonical
up to inner automorphisms, cf. [2, Exposé V, Corollaire 5.7].
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In a similar vein, let X be a connected topological space and γ : [0, 1] → X a
path; write x0 = γ(0) and x1 = γ(1). Then γ induces an isomorphism of func-
tors ϕγ : Φx0 → Φx1 as follows: for any finite covering p : Y → X the pullback
γ∗p : γ∗Y = Y ×X,γ [0, 1] → [0, 1] trivialises canonically, i.e. for any t ∈ [0, 1] the
composition

Φxt(Y ) = p−1(γ(t)) = (γ∗p)−1(t) ↪→ γ∗Y → π0(γ∗Y )

is a bijection, hence there is a canonical identification

Φx0(Y ) ∼= π0(γ∗Y ) ∼= Φx1(Y ). (1)

We define the isomorphism of functors ϕγ : Φx0 → Φx1 applied to the object p : Y →
X to be (1). By conjugation it induces an isomorphism of étale fundamental groups

τγ : πét1 (X, x0) = Aut Φx0 → Aut Φx1 = πét1 (X, x1), α 7→ ϕγ ◦ α ◦ ϕ−1
γ . (2)

The class of this isomorphism up to inner automorphisms is precisely the canonical
class of isomorphisms for any two points of X mentioned above.

Continuity properties. Another important property of étale fundamental groups is
their compatibility with cofiltered projective limits.

Proposition 2.11. Let (Xα) be a cofiltered projective system of compact Hausdorff
spaces and let X = lim←−αXα.

(i) Let p : Y → X be a finite covering space. Then there exists some α0, a
finite covering p0 : Y0 → Xα0 and a pullback diagram

Y //

p

��

Y0

p0

��

X // Xα0 .

(ii) Let p1 : Y1 → Xα1 and p2 : Y2 → Xα2 be finite covering spaces, and let
f : Y1 ×Xα1 X → Y2 ×Xα2 X be a continuous map commuting with the
projections to X. Then there exists some α0 ≥ α1, α2 such that f is the base
change along X → Xα0 of a continuous map Y1 ×Xα1 Xα0 → Y2 ×Xα2 Xα0

commuting with the projections to Xα0.

Proof. We will only prove (i), the proof for (ii) being very similar.
Call a subset of X basis-open if it is the preimage of an open set in some Xα. As

the name suggests, these form a basis of the topology on X.
Let U be the set of basis-open subsets of X on which p becomes trivial. Then

U is an open cover of X, and since X is compact there exists a finite subcover,
say {U1, . . . , Un}. Then there exist finite sets D1, . . . , Dn and continuous functions
ϕij : Uij = Ui ∩ Uj → Isom(Di, Dj) satisfying the cocycle condition

ϕjk(u) ◦ ϕij(u) = ϕik(u) for all u ∈ Uijk = Ui ∩ Uj ∩ Uk
such that Y is isomorphic to the union of the spaces Ui ×Di, glued along the ϕij.

Next, let V be the set of all basis-open subsets V ⊆ X such that V is contained
in some Uij, and for every i, j with V ⊆ Uij the restriction ϕij|V is constant. Again,
V is an open cover of X and hence has a finite subcover {V1, . . . , Vm}. Since the
projective system (Xα) is cofiltered and the Ui and Vj are basis-open sets, there
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exists some α0 such that all Ui and Vj are preimages of open sets in Xα0 . Then also
the ϕij are compositions with functions on Xα0 , and we see that p : Y → X is the
pullback of a finite covering defined on Xα0 . �

Remark 2.12. With a little more effort we can show that in the situation of Pro-
position 2.11, for a compatible system of basepoints and under the assumption that
the Xα are connected (and hence so is X), the natural map

πét1 (X, x)→ lim←−
α

πét1 (Xα, xα)

is an isomorphism.

Lemma 2.13. Let X be a connected compact Hausdorff space, and let (pα : Yα →
X)α be a cofiltered projective system of connected finite covering spaces such that
Ỹ = lim←−α Yα has trivial étale fundamental group.

Then every connected finite covering space of X is dominated by some Yα.

Proof. Let Z → X be a connected finite covering. By assumption, the pullback
covering Z ×X Ỹ → Ỹ splits, i.e. Z ×X Ỹ is isomorphic to Ỹ ×D as a Ỹ -space, for
some finite discrete set D. By Proposition 2.11 this splitting has to occur at a finite
level, i.e. there has to be some α0 such that Z ×X Yα0 ' Yα0 × D as a Yα0-space.
Choosing some d ∈ D we obtain a commutative diagram

Yα0

� � id×d // Yα0 ×D
'
//

��

Z ×X Yα0
//

��

Z

��

Yα0 Yα0 Yα0
// X

The composition of the upper horizontal maps Yα → Z is a continuous map between
finite covering spaces of X, respecting the projections to X, hence itself a finite
covering, as desired. �

Homotopy invariance. We now show that étale fundamental groups are homotopy
invariant. We will make extensive use of the following classical result:

Proposition 2.14 (Unique Homotopy Lifting Property). Let X be a topological
space, p : Y → X a finite covering, and S another topological space. Assume we are
given a homotopy, i.e. a continuous map H : S × [0, 1]→ X, together with a lift of
H(−, 0) to Y , i.e. a commutative diagram of continuous maps

S × {0} //
� _

��

Y

p

��

S × [0, 1]
H
// X.
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Then there exists a unique continuous map S × [0, 1] → Y making the resulting
diagram

S × {0} //
� _

��

Y

p

��

S × [0, 1]
H
//

::

X.

commute. �

This is of course well-known, see e.g. [21, Proposition 1.30]; however, we wish to
explicitly stress that no (local) connectivity assumptions about X are made.

Proposition 2.15. Let X and Z be connected topological spaces, let f, g : X → Z
be continuous, let H be a homotopy between them (i.e. a continuous map H : X ×
[0, 1] → Z such that H(ξ, 0) = f(ξ) and H(ξ, 1) = g(ξ) for all ξ ∈ X), and let
x ∈ X be a basepoint. These data determine a path γ : [0, 1]→ Z by γ(t) = H(x, t).

Then the diagram
πét1 (Z, f(x))

τγ∼=

��

πét1 (X, x)

f∗
77

g∗
''

πét1 (Z, g(x)),

where τγ is the map in (2), commutes.

To show this we first need a lemma.

Lemma 2.16. Let X be a topological space and let q : W → X × [0, 1] be a finite
covering. For any t ∈ [0, 1] consider the restriction qt : Wt = q−1(X × {t}) →
X × {t} ∼= X. Then there is a canonical isomorphism W0

∼= W1 in FCov(X); the
construction of this isomorphism is functorial in W .

Proof. Applying Proposition 2.14 to the diagram

W0
� � //
� _

idW0
×0

��

W

q

��

W0 × [0, 1]
q0×id[0,1]

// X × [0, 1],

we deduce the existence of a unique continuous map W0 × [0, 1] → W making the
resulting diagram commute. In particular this map induces an isomorphism on the
fibres over any point in X × [0, 1] of the form (x, 0). By Proposition 2.9 (or more
precisely by axiom (G6) for Galois categories, mentioned in the proof thereof) it
must be a homeomorphism W0 × [0, 1]→ W . Functoriality is straightforward. �

Proof of Proposition 2.15. We first note that H induces an isomorphism of functors
f ∗ ⇒ g∗ : FCov(Z) → FCov(X), which by abuse of notation we call H∗, in the
following way: for every finite covering p : Y → Z we consider the pullback q =
H∗p : H∗Y → X × [0, 1]. The natural isomorphism from Lemma 2.16 can then
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be rewritten as f ∗Y '→ g∗Y , and it is easy to check that this indeed defines an
isomorphism of functors H∗ : f ∗ ⇒ g∗. The ‘horizontal’ composition of H∗ with the
identity on the fibre functor Φx induces an isomorphism of functors Φx◦f ∗ ⇒ Φx◦g∗;
this isomorphism can be identified with

Φx ◦ f ∗ ∼= Φf(x) = Φγ(0)
ϕγ⇒ Φγ(1) = Φg(x)

∼= Φx ◦ g∗,

where ϕγ is the isomorphism of functors from (1). This identity of isomorphisms
between functors can be translated into the identity τy ◦ f∗ = g∗ of maps between
automorphism groups of fibre functors, i.e. the commutativity of the diagram under
consideration. �

Two consequences are easily drawn:

Corollary 2.17. Let (X, x) and (Z, z) be connected pointed topological spaces, and
let f, g : (X, x) → (Z, z) be homotopic continuous maps in the pointed sense, that
is, assume there exists a continuous map H : X × [0, 1] → Z with H(ξ, 0) = f(ξ)
and H(ξ, 1) = g(ξ) for all ξ ∈ X, and also H(x, t) = z for all t ∈ [0, 1].

Then the group homomorphisms f∗, g∗ : πét1 (X, x)→ πét1 (Z, z) are equal.

Proof. In this case the path γ : [0, 1]→ Z as in Proposition 2.15 is constant, hence
induces the identity automorphism of πét1 (Z, z). �

Corollary 2.18. Let (X, x) and (Y, y) be pointed topological spaces, and let f : (X, x)→
(Y, y) be a pointed homotopy equivalence, that is, assume there exists a pointed map
g : (Y, y) → (X, x) such that f ◦ g and g ◦ f are homotopic in the pointed sense to
the respective identities.

Then X is connected if and only if Y is connected. Assuming this to be the case,
f ∗ : FCov(Y ) → FCov(X) is an equivalence of categories and f∗ : π

ét
1 (X, x) →

πét1 (Y, y) is an isomorphism of topological groups.

Proof. It suffices to show that connectedness is preserved under homotopy equival-
ence, then the remainder will follow formally from Corollary 2.17. So, let f : X → Y
be a homotopy equivalence with quasi-inverse g : Y → X. If Y is disconnected there
exists a continuous surjection c : Y → {0, 1}. Then c ◦ f ◦ g is homotopic to c; but
since these two maps have discrete image, they must then be identical. Hence c ◦ f
must be surjective, hence X is disconnected as well. �

The assumptions in Corollary 2.18 are met for the inclusion of a deformation
retract. Recall that a subspace A of a topological space X is called a deformation
retract if there exists a continuous map H : X × [0, 1] → X with the following
properties:

(i) H(x, 0) = x for all x ∈ X;
(ii) H(x, 1) ∈ A for all x ∈ X;
(iii) H(a, t) = a for all a ∈ A and t ∈ [0, 1].

Such a mapH is then called a defining homotopy for the deformation retract A ⊆ X,
and the map r : X → A sending x toH(x, 1) is called a deformation retraction. Note
that some authors do not require condition (iii), and call a deformation retraction
in our sense a ‘strong deformation retraction’.
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The étale fundamental group as a limit of deck transformation groups. There is
another way to view the étale fundamental group which will be useful; for proofs
cf. [2, Exposé V.4]. A general fact about Galois categories is the existence of a
fundamental pro-object representing a given fibre functor Φ: C → FSet; this is a
cofiltered projective system (Yα) of objects together with a functorial isomorphism

Φ(T ) ∼= lim−→
α

HomC(Yα, T )

for objects T of C. By passing to a cofinal subsystem we may assume that all Yα
are Galois objects, i.e. Aut(Yα) operates simply transitively on Φ(Yα). We then
obtain identifications Aut(Yα) ∼= Im(π → Aut Φ(Yα)), and by passage to the limit

lim←−
α

Aut(Yα) ∼= π.

For C = FCov(X) and Φ = Φx a fundamental pro-object is a cofiltered projective
system of connected finite coverings of X such that every connected finite covering
is dominated by one of them. It serves as a replacement for a universal covering
space of X, which may not even exist as a topological space. The Galois objects in
FCov(X) are precisely the normal finite connected coverings, and so we obtain:

Proposition 2.19. Let X be a connected topological space and x ∈ X. Then there
exists a cofiltered projective system (pα : Yα → X) of finite connected normal cover-
ings of X such that every finite connected covering of X is dominated by some Yα,
together with an isomorphism of functors

Φx
∼= lim−→

α

HomX(Yα,−).

For such a system there is a canonical isomorphism of profinite groups

πét1 (X, x) ∼= lim←−
α

AutX(Yα).

Given x ∈ X there is a simple natural construction of this fundamental pro-
object. We define a pointed finite covering space of (X, x) to be a continuous map
of pointed spaces p : (Y, y)→ (X, x) such that p : Y → X is an object of FCov(X);
to put it another way, this is an object Y of FCov(X) together with an element of
Φx(Y ). A morphism of pointed finite covering spaces, say from p1 : (Y1, y1)→ (X, x)
to p2 : (Y2, y2) → (X, x) is a continuous map of pointed spaces (Y1, y1) → (Y2, y2)
that makes the obvious diagram commute. Then for each two given pointed finite
covering spaces there is at most one morphism from the first to the second. In
particular, if two pointed finite covering spaces are isomorphic, the isomorphism is
unique.

It is easily seen that the isomorphism classes of pointed finite covering spaces of
(X, x) form a set P = P (X, x); it becomes a directed set when we define (Y1, y1) ≥
(Y2, y2) to mean that there exists a (necessarily unique) morphism of pointed direct
covering spaces (Y1, y1)→ (Y2, y2). We then define the universal profinite covering
space of (X, x) to be the pair

(X̃, x̃) = lim←−
(Y,y)∈P

(Y, y).
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This is a pointed topological space coming with a continuous map p : (X̃, x̃) →
(X, x), and (by Proposition 2.19) also with a continuous action by πét1 (X, x) which
preserves p; moreover, p is the quotient map for this action. The fibre p−1(x) ⊆ X̃
is a principal homogeneous space for πét1 (X, x), and the point x̃ ∈ p−1(x) defines a
canonical trivialisation.

We also note the following for later use:

Proposition 2.20. Let (X, x) be a pointed connected topological space, and let
p : (X̃, x̃) → (X, x) be its universal profinite covering space. Then p : X̃ → X
satisfies the unique homotopy lifting property.

Proof. This follows formally from Proposition 2.14 and the universal property of
projective limits. �

Equivariant étale fundamental groups. Let X be a connected topological space and
let Γ be a group acting on X from the left by homeomorphisms. Then we define a
Γ -equivariant finite covering space ofX as a finite covering p : Y → X together with
a lift of the Γ -action to Y , i.e. an action of Γ by homeomorphisms on Y such that
p becomes Γ -equivariant. If pi : Yi → X are Γ -equivariant finite covering spaces for
i = 1, 2 then a morphism from Y1 to Y2 is a continuous Γ -equivariant map f : Y1 →
Y2 such that p2 ◦ f = p1. We obtain a category FCovΓ (X) of Γ -equivariant finite
covering spaces of X. Essentially repeating the proof of Proposition 2.9 we see that
FCovΓ (X) is a Galois category, and for every x ∈ X the functor Φx : FCovΓ (X)→
FSet with Φx(p : Y → X) = p−1(Y ) is a fibre functor.

Definition 2.21. Let X be a connected topological space endowed with a left action
of a group Γ by homeomorphisms, and let x ∈ X. The automorphism group of the
fibre functor Φx : FCovΓ (X)→ FSet is called the Γ -equivariant étale fundamental
group of X at x and denoted by πét1 ([Γ\X], x).

The notation is purely symbolic at this point, though it is possible to define a
stack [Γ\X] on a suitable site and extend the theory of étale fundamental groups to
such stacks. For our purposes, however, the definition of πét1 ([Γ\X], x) given above
will suffice.

There is a forgetful functor F : FCovΓ (X) → FCov(X) and also a functor
I : Γ -FSet → FCovΓ (X) which is some sort of induction: it sends a finite Γ -
set S to the topologically trivial covering X × S → X with the diagonal Γ -action
on X × S (note that as soon as the Γ -action on S is nontrivial this is nontrivial
as an object of FCovΓ (X)). These two exact functors induce homomorphisms of
fundamental groups πét1 (X, x)→ πét1 ([Γ\X], x)→ Γ̂ , where Γ̂ is the profinite com-
pletion of Γ , which is canonically isomorphic to the fundamental group of Γ -FSet
at the forgetful fibre functor Γ -FSet→ FSet.

Proposition 2.22. Let X be a connected topological space endowed with a left ac-
tion of an abstract group Γ by homeomorphisms, and let x ∈ X. Then the sequence

πét1 (X, x)
F ∗→ πét1 ([Γ\X], x)

I∗→ Γ̂ → 1 (3)

is exact.
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Proof. The functor I : Γ -FSet → FCovΓ (X) is fully faithful, hence it induces a
surjection on fundamental groups by [2, Exposé V, Proposition 6.9]. The functor
F ◦I sends every object of Γ -FSet to a completely decomposed object in FCov(X);
by [2, Exposé V, Corollaire 6.5] this implies that I∗ ◦ F ∗ = (F ◦ I)∗ = 1, or
imF ∗ ⊆ ker I∗. For the reverse inclusion ker I∗ ⊆ imF ∗ we apply the criterion
given in [2, Exposé V, Proposition 6.11](∗∗). Using said criterion we can reduce this
inclusion to the following claim: if Y → X is a connected object in FCovΓ (X)
whose image under F admits a section (i.e. such that there is a continuous but
not necessarily Γ -invariant section of Y → X) then Y is in the essential image
of I. Indeed, the tautological map Y → X × π0(Y ) is then an isomorphism in
FCovΓ (X). �

Remark 2.23. (i) The homomorphism πét1 (X, x)→ πét1 ([Γ\X], x) need not be inject-
ive. As a counterexample we may take X = S1 and Γ = µ∞ acting by translations.
Then for any n > 1 the homeomorphism of S1 given by a primitive n-th root of
unity does not lift to a homeomorphism of the same order along the degree n cov-
ering S1 → S1, which shows that a finite covering of S1 admitting a lift of the
µ∞-action must already be trivial. Hence the map Ẑ ∼= πét1 (S1) → πét1 ([µ∞\S1]) is
trivial (therefore not injective), and consequently πét1 ([µ∞\S1]) ∼= µ̂∞ = 1.
(ii) We will need to apply these constructions in the case where Γ operates from the
right on X. This can be translated to an action from the left by setting γx = xγ−1

and πét1 ([X/Γ ], x) = πét1 ([Γ\X], x). This way we still obtain an exact sequence

πét1 (X, x)→ πét1 ([X/Γ ], x)→ Γ̂ → 1,

but we have to bear in mind that the construction of the second map involves the
inversion map γ 7→ γ−1.

2.3. Comparison between classical and étale fundamental groups. Let X
be a connected topological space and x ∈ X. Then there is a canonical homo-
morphism

α : πpath1 (X, x)→ πét1 (X, x) = Aut(Φx) (4)
constructed as follows. For [γ] ∈ πpath1 (X, x) represented by a loop γ : [0, 1] → X
and a finite covering p : Y → X we let τ([γ]) operate on Φx(Y ) = p−1(x) by sending
y ∈ p−1(x) to the end point γ̃(1) of the unique continuous lift γ̃ : [0, 1] → Y of γ
with starting point γ̃(0) = y.

Proposition 2.24. Let (X, x) be a connected pointed topological space. Then α
as in (4) is continuous if πét1 (X, x) is endowed with its profinite topology, and
πpath1 (X, x) is endowed with either of the loop, τ - and σ-topologies. It also extends
uniquely to a continuous group homomorphism πGal

1 (X, x)→ πét1 (X, x).

Proof. We first show that α is continuous for the loop topology on πpath1 (X, x).
Since the open subgroups of πét1 (X, x) form a basis of open neighbourhoods of the
identity and since the loop topology turns πpath1 (X, x) into a quasi-topological group,
it suffices to show that the preimage of any open subgroup of πét1 (X, x) under α is
open in πpath1 (X, x).

(∗∗)Note, however, the misprint there: the two inclusions keru ⊂ imu′ and keru ⊃ imu′ must
be exchanged.
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For such an open subgroup there is a pointed connected finite covering p : (Y, y)→
(X, x) such that the subgroup is the image of p∗ : πét1 (Y, y)→ πét1 (X, x). There is a
commutative diagram of continuous maps

Ω(Y, y) //

Ω(p)

��

πpath1 (Y, y)
α
//

p∗
��

πét1 (Y, y)

p∗

��

Ω(X, x) // πpath1 (X, x) α
// πét1 (X, x).

By the unique homotopy lifting property for p the map Ω(p) defines a homeomorph-
ism from Ω(Y, y) to an open and closed subset of Ω(X, x); in particular it is open
as a map Ω(Y, y)→ Ω(X, x). Hence p∗ : πpath1 (Y, y)→ πpath1 (X, x) is also open, and
its image is equal to the preimage in πpath1 (X, x) of p∗(πét1 (Y, y)) ⊆ πét1 (X, x). Hence
this preimage is open. Therefore α is continuous for the loop topology.

One way to construct the τ -topology from the loop topology is explained in
[27, Section 7]: the forgetful functor from topological groups to quasi-topological
groups has a left adjoint τ which preserves the underlying groups. Hence for any
topological group G and any quasi-topological group π a group homomorphism
π → G is continuous if and only if τ(π) → G is continuous. Now τ applied
to πpath1 (X, x) with the loop topology yields πpath1 (X, x) with the τ -topology, and
therefore α remains continuous when πpath1 (X, x) is endowed with the τ -topology.

For the σ-topology we use again the fact that the open subgroups of πét1 (X, x)
form a basis of open neighbourhoods of the identity. Since the preimage of each of
these under α is an open subgroup for the τ -topology, it is also an open subgroup
for the σ-topology. Hence α is also continuous for the σ-topology.

Finally, because πét1 (X, x) is complete, α extends to a continuous homomorphism
πGal

1 (X, x)→ πét1 (X, x). �

Proposition 2.25. Let (X, x) be a pointed connected topological space, and let
p : (X̃, x̃) → (X, x) be its universal profinite covering space. Then the sequence
of groups

1→ πpath1 (X̃, x̃)
p∗→ πpath1 (X, x)

α→ πét1 (X, x) (5)
is exact.

Proof. We first show that p∗ is injective. Let γ̃ : [0, 1] → X̃ be a loop based at x̃
such that γ = p◦ γ̃ is nullhomotopic, say by a homotopy H : [0, 1]× [0, 1]→ X with
H(0, t) = H(1, t) = x and H(t, 0) = γ(t) for all t ∈ [0, 1]. Then by Proposition 2.20
H lifts to a homotopy of paths H̃ : [0, 1]× [0, 1]→ X̃ with H̃(0, t) = x̃ and H̃(t, 0) =
γ̃(t) for all t ∈ [0, 1]. By construction, H̃(1, t) ∈ p−1(x) for all t ∈ [0, 1], and
H̃(1, 0) = x̃. Since p−1(x) is totally disconnected, H̃(1, t) must be equal to x̃ for all
t ∈ [0, 1]. Hence H̃ really defines a homotopy of loops, and not just of paths, from
γ̃ to the constant loop. Therefore the class of γ̃ in πpath1 (X̃, x̃) is trivial. This shows
the injectivity of p∗.

For exactness at πpath1 (X, x), let γ : [0, 1] → X be a loop based at x. Then
by Proposition 2.20 there exists a unique lift γ̃ : [0, 1] → X̃ which is continuous
and satisfies γ̃(0) = x̃. The end point x̃′ = γ̃(1) is another element of the fibre
p−1(x), not necessarily equal to x̃. Recall that p−1(x) is a principal homogeneous
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space for πét1 (X, x), hence there is a unique element of πét1 (X, x) that sends x̃ to x̃′.
Unravelling of definitions shows that this element is equal to α([γ]). Hence we find
that the following conditions are equivalent:

(i) [γ] ∈ p∗(πpath1 (X̃, x̃));
(ii) γ̃(1) = γ̃(0);
(iii) x̃ = x̃′;
(iv) α([γ]) = 1.

The equivalence of (i) and (iv) then shows exactness at πpath1 (X, x). �

We can also characterise the image of α. Since πét1 (X, x) acts continuously on X̃
it permutes the path-components of that space.

Proposition 2.26. Let (X, x) be a pointed connected space and let p : (X̃, x̃) →
(X, x) be its universal profinite covering space. Let X̃◦ be the path-component of X̃
containing x̃.

Then the image of α : πpath1 (X, x)→ πét1 (X, x) is the stabiliser of X̃◦ in πét1 (X, x).

Proof. Let [γ] ∈ πpath1 (X, x) be represented by a loop γ : [0, 1]→ X based at x, and
let x̃′ ∈ p−1(x) ⊆ X̃. Let γ̃ : [0, 1] → X̃ be the unique continuous lift of γ with
γ̃(0) = x̃′. Then α([γ])(x̃′) = γ̃(1), hence x̃′ and its image under α([γ]) lie in the
same path component of X̃. Since x̃′ ∈ p−1(x) was arbitrary this shows that α([γ])
preserves all path components of X̃ meeting p−1(x), in particular X̃◦.

For the other inclusion let β ∈ πét1 (X, x) be an element preserving X̃◦. Then
β(x̃) ∈ X̃◦, hence there is a path γ̃ in X̃ from x̃ to β(x̃). Then γ = p ◦ γ̃ is a
closed loop in X based at x and therefore represents an element of πpath1 (X, x). By
construction, both α([γ]) ∈ πét1 (X, x) and β send x̃ to β(x̃), but since πét1 (X, x) acts
freely on X̃, they must be equal. Hence β = α([γ]) is in the image of α. �

Hence we can rewrite (5) in a more precise way: the sequence

1→ πpath1 (X̃, x̃)
p∗→ πpath1 (X, x)

α→ Stabπét
1 (X,x)(X̃

◦)→ 1 (6)

is exact.
Let π̂path1 (X, x) be the profinite completion of the group πpath1 (X, x). By the

universal property of profinite completions α induces a continuous group homo-
morphism

α̂ : π̂path1 (X, x)→ πét1 (X, x). (7)

Proposition 2.27. Let X be path-connected, locally path-connected and semi-locally
simply connected. Then α̂ as in (7) is an isomorphism of topological groups.

Proof. This follows from the classical theory of covering spaces: under the given
circumstances, (X, x) has a universal (possibly infinite) covering space, and discrete
sets with an operation by πpath1 (X, x) are equivalent to covering spaces of X. Hence
finite covering spaces ofX are equivalent to finite sets with πpath1 (X, x)-action, which
are in turn equivalent to finite sets with continuous πét1 (X, x)-action. �

For general path-connected spaces α̂ need not be an isomorphism; however, there
is a weaker technical condition which still ensures that α̂ is surjective.
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∗

Figure 2. The Warsaw circle (left) and the long circle (right)

Definition 2.28. Let X be a topological space. We say that X is stably path-
connected if X is path-connected, and for every finite covering Y → X with Y
connected, Y is already path-connected.

Examples 2.29. (i) If a topological space X is connected and locally path-connected
then it is also stably path-connected. To see this, note that any finite covering space
of X is then also locally path-connected, and a space which is connected and locally
path-connected is also globally path-connected, cf. [33, Theorem 25.5].
(ii) Let ω1 be the first uncountable ordinal, and let L = ω1 × [0, 1) be the long
line, equipped with the order topology (see [43, Example 45]). Then L is Hausdorff
and locally homeomorphic to R but not paracompact. Every two points in L are
contained in an open subset homeomorphic to R, hence L is path-connected and
locally path-connected. The one-point compactification L∗ = L ∪ {∗} is no longer
path-connected.

We then define the long circle to be C = L∗/(∗ ∼ (0, 0)), see Figure 2. The
dotted part is so long on the left that no path can enter it from the left, but every
point in it can be reached by a path entering from the right, which shows that C is
path-connected. C is not locally path-connected at ∗, but everywhere else.

For every n ∈ N the long circle admits a connected covering of degree n with n
path components, hence it is not stably path-connected. See Figure 3 for the case
n = 3; the different colours encode the path components.
(iii) Similar remarks apply to the Warsaw circle. Consider the truncated topolo-
gist’s sine curve

S ′ = {(0, y) | −1 ≤ y ≤ 1} ∪
{(

x, sin
1

x

) ∣∣∣∣ 0 < x ≤ 1

π

}
;

the Warsaw circle is defined as the quotient W = S ′/((0, 0) ∼ (0, 1
π
)), cf. Figure 2.

Like the long circle, W is path-connected but not stably path-connected.

Proposition 2.30. Let X be a path-connected topological space and let x ∈ X.
Then the following are equivalent.

(i) X is stably path-connected.
(ii) For every finite Galois covering p : Y → X the natural map αY : πpath1 (X, x)→

Aut(Y/X) is surjective.
(iii) The map α : πpath1 (X, x)→ πét1 (X, x) has dense image.
(iv) The map α̂ : π̂path

1 (X, x)→ πét1 (X, x) is surjective.
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Figure 3. A connected but not path-connected covering of the long circle

Proof. The equivalence of (ii), (iii) and (iv) is easily seen.
We now show that (i) implies (ii). Assume that X is stably path-connected, let

β ∈ Aut(Y/X), and fix some y ∈ p−1(Y ). By assumption Y is path-connected,
hence there exists a path γ̃ : [0, 1] → Y from y to β(y). Then γ = p ◦ γ̃ is a closed
loop in X, and as in the proof of Proposition 2.26 we find that αY ([γ]) = β. Hence
(iv) holds.

Finally we assume (ii) and show that it implies (i). Since every connected finite
covering of X is dominated by a finite Galois covering it suffices to show that all
finite Galois covering spaces are path-connected. So, let p : Y → X be a finite
Galois covering. First we note that every y ∈ Y is in the same path-component as
some element of the fibre p−1(x) (take a path from p(y) to x and lift it). It then
suffices to show that any two points y1, y2 in p−1(x) can be linked by a path in Y .
Since Aut(Y/X) operates transitively on p−1 and since αY is surjective, there is
some loop γ in (X, x) such that α([γ]) sends y1 to y2. There is then a lift of γ to
a path in Y starting at y1, and by our choice of γ this path must end at y2. This
shows (iv). �

Remark 2.31. By Proposition 2.30 the image of α cannot be dense for our examples
of path-connected spaces which are not stably path-connected. Indeed, the long
circle C from Example 2.29.(ii) is path-connected, and C lpc is homeomorphic to the
long line, hence πpath1 (C) ∼= πpath1 (C lpc) is trivial. However, from the finite connected
coverings of C mentioned in Example 2.29.(ii) we see that πét1 (C) ∼= Ẑ. Similarly, the
Warsaw circle W from Example 2.29.(iii) has trivial classical fundamental group,
and there exists a surjection πét1 (W )→ Ẑ.

2.4. Etale fundamental groups of schemes. We assume the classical theory of
étale fundamental groups for schemes, as exposed in [2], to be known to the reader.
Briefly, for a connected scheme X the category FEt(X) of étale coverings of X (i.e.
schemesY together with a finite étale morphismY → X) is a Galois category, and
for every geometric point x : SpecΩ → X the functor

Φx : FEt(X)→ FSet

is a fibre functor, and the corresponding fundamental group Aut(Φx) is called the
étale fundamental group of X at x and denoted by πét1 (X, x).

If X is a connected scheme of finite type over C, there is a canonical topology
called the complex topology on X(C), turning it into a connected topological space.
For an étale covering Y → X the map Y(C) → X(C) is then a finite covering.
Hence we obtain a functor FEt(X) → FCov(X(C)) which is an equivalence of
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categories by Riemann’s Existence Theorem, cf. [2, Exposé XII, Théorème 5.1]. In
particular we obtain an isomorphism of profinite groups

πét1 (X, x) ∼= πét1 (X(C), x).

See section 5.2 for a partial extension of these observations to schemes of infinite
type over C.

For a field F , the étale covers of SpecF are of the form SpecE where E is
an étale F -algebra, i.e. a finite product of finite separable field extensions of F .
Consequently, a universal profinite covering is given by SpecF → SpecF where F
is a separable closure of F . Note that the morphism x : SpecF → SpecF is also a
geometric point of SpecF , and we obtain an isomorphism of profinite groups

πét1 (SpecF, x) ∼= Gal(F/F ),

where Gal(F/F ) is endowed with the Krull topology.
We note a technical result on étale fundamental groups of schemes which is ana-

logous to one for compact Hausdorff spaces mentioned before.

Lemma 2.32. Let X be a connected quasi-compact quasi-separated scheme, and let
(pα : Yα → X)α be a cofiltered projective system of connected finite étale coverings
such that Ỹ = lim←−αYα is simply connected (in the sense that πét1 (Ỹ) is trivial).

Then every connected finite étale covering space of X is dominated by some Yα.

Proof. The proof of Lemma 2.32 is strictly parallel to that of Lemma 2.13. �

3. Topological invariants of Pontryagin duals

We begin by briefly summarising the basic results about Pontryagin duals; for a
systematic introduction see [36].

For a commutative, locally compact topological groupM letM∨ be its Pontryagin
dual, i.e. the set of continuous group homomorphisms M → S1, endowed with
the compact open topology. By Pontryagin duality, this is again a commutative,
locally compact topological group, and the tautological map M → (M∨)∨ is an
isomorphism.

The Pontryagin dual M∨ is compact if and only if M is discrete. Moreover, M∨

is connected if and only if M is torsion-free, and M∨ is totally disconnected if and
only if M is a torsion group.

3.1. Pontryagin duals of discrete abelian groups. For discrete abelian M
there is a short exact sequence

0→Mtors →M →Mtf → 0,

where Mtors is the torsion subgroup of M , and Mtf is the maximal torsion-free
quotient of M . By duality we obtain a short exact sequence of compact topological
groups

0→M∨
tf →M∨ →M∨

tors → 0

with M∨
tf connected and M∨

tors totally disconnected. In particular, the connected
components of M∨ are precisely the translates of the subgroup M∨

tf . Note that Mtf

can be written as a filtered inductive limit over free abelian groups of finite rank,
hence M∨

tf can be written as a cofiltered projective limit over finite-dimensional
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tori. We then also see that the canonical homomorphism π0(M∨) → M∨
tors is an

isomorphism of topological groups, in particular π0(M∨) is compact and totally
disconnected, therefore profinite.

The determination of the path components ofM∨ is a bit more involved. Consider
the short exact sequence

0→ Z→ R→ S1 → 0,

where R→ S1 is the map t 7→ e2πit, and apply the left-exact functor Hom(M,−) to
it. This yields an exact sequence

0→ Hom(M,Z)→ Hom(M,R)→ Hom(M, S1)

δ→ Ext(M,Z)→ Ext(M,R)→ . . . ;

here Hom(M,S1) = M∨ (because M is discrete), and since R is a Q-vector space,
it is injective as an abelian group, hence Ext(M,R) = 0. That is, the interesting
part of our sequence can be rewritten as

Hom(M,R)→M∨ δ→ Ext(M,Z)→ 0. (8)

Recall that the connecting homomorphism δ can be described in a more explicit
way: if χ ∈M∨ = Hom(M, S1) then δ(χ) ∈ Ext(M,Z) is the class of the extension

0→ Z→ Eχ →M → 0,

where
Eχ = R×S1,χM = {(r,m) ∈ R×M | exp r = χ(M)}.

Proposition 3.1. Let M be a discrete abelian group. The path component of M∨

containing the trivial element is precisely the image of Hom(M,R). In particular,
the connecting homomorphism δ in (8) induces a group isomorphism

πpath0 (M∨)
∼=→ Ext(M,Z).

Proof. Endow Hom(M,R) with the compact-open topology. Then it is clearly path-
connected (if f is an element of this space, then so is tf for every t ∈ [0, 1], and
the assignment t 7→ tf is continuous). Furthermore, the map Hom(M,R) → M∨

is continuous, therefore its image must be contained in the trivial path component
of M∨.

For the other inclusion, consider a path beginning at the trivial element of M∨.
Such a path is given by a family (χt)t∈[0,1] of group homomorphisms χt : M → S1

such that for every m ∈M , χ0(m) = 1 and the map γm : [0, 1]→ S1, t 7→ χt(m), is
continuous. We need to show that then χt is in the image of Hom(M,R), for every
t ∈ [0, 1].

Since R is the universal covering space of S1, there is a unique continuous lift
γ̃m : [0, 1]→ R with γ̃m(0) = 0. Then for each t ∈ [0, 1] we define a map

χ̃t : M → R, m 7→ γ̃m(t).

By construction, the composition

M
χ̃t→ R exp→ S1

is equal to χt; it remains to be shown that χ̃t is indeed a group homomorphism.
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For each m,n ∈M consider the map

fm,n : [0, 1]→ R, t 7→ χ̃t(m) + χ̃t(n)− χ̃t(m+ n) = γ̃m(t) + γ̃n(t)− γ̃m+n(t).

This is a continuous map, as can be seen from the second expression. Also it has
image in Z because the χt = exp χ̃t are group homomorphisms. Hence it is constant.
Since fm,n(0) = 0, it has to be zero. That this holds for every m,n ∈ M precisely
means that each χ̃t is a group homomorphism. �

Remark 3.2. A Whitehead group is an abelian group M with Ext(M,Z) = 0. By
Proposition 3.1 an abelian group is a Whitehead group if and only if its Pontryagin
dual is path-connected. Clearly free abelian groups are Whitehead groups; their
Pontryagin duals are products of circle groups. The Whitehead problem is the
question whether the reverse implication holds, i.e. whether every Whitehead group
is free abelian or, equivalently, whether every path-connected compact Hausdorff
topological group is a product of circles.

Stein [44] showed that every countable Whitehead group is indeed free abelian;
Shelah [41, 42] showed that the statement ‘every Whitehead group is free abelian’ is
independent of ZFC. More precisely, if Gödel’s constructibility axiom V = L holds,
then every Whitehead group is free abelian; if 2ℵ0 > ℵ1 and Martin’s Axiom holds,
then there is a Whitehead group of cardinality ℵ1 which is not free abelian.

The subspace topology on this path component may be odd (cf. Example 2.4.(iii)),
but its minimal locally path-connected refinement admits a simple description, at
least in the case relevant to us:

Proposition 3.3. Let M be a Q-vector space with discrete topology, and let (M∨)◦

be the neutral path component of its Pontryagin dual. Then there is a natural
isomorphism of topological groups

Hom(M,R) ∼= ((V ∨)◦)lpc,

where Hom(M,R) is endowed with the compact-open topology.

Proof. From the short exact sequence (8) we obtain a map Hom(M,R)→ ((M∨)◦)lpc.
This map is a continuous bijection and an isomorphism of abstract groups. Arguing
as in Example 2.4.(iii) we find that it is in fact a homeomorphism. �

Corollary 3.4. LetM be a Q-vector space with discrete topology. Then πpath1 (M∨, 1)
is the trivial group.

Proof. This follows from Corollary 2.5 and Proposition 3.3. �

We will now determine the étale fundamental groups of Pontryagin duals.

Proposition 3.5. Let M be a torsion-free discrete abelian group. Then the connec-
ted étale coverings of M∨ are precisely the N∨, where N runs through the subgroups
of V = M ⊗Q that contain M with finite index.

Proof. Let us first assume thatM is finitely generated; thenM∨ is an n-dimensional
torus, and the statement is well-known.

Now consider the general case. We first show that each N indeed defines a
finite covering of M∨. Without loss of generality we may assume that (N : M)
is a prime p. Then there exists a finitely generated subgroup N ′ ⊆ N which is
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not completely contained in M ; the subgroup M ′ = M ∩ N ′ is then also finitely
generated, and (N ′ : M ′) must be p because it cannot be 1. Then N = N ′+M and
thus

N∨ ∼= (N ′)∨ ×(M ′)∨ M
∨.

Hence the map N∨ → M∨ is a base change of the finite covering (N ′)∨ → (M ′)∨,
hence itself a finite covering. Since N is also torsion-free, N∨ is connected.

For the other implication, let Y → M∨ be a finite covering. By Proposition
2.11 this must be the base change of some finite covering space Y0 → (M ′)∨ for a
finitely generated subgroup M ′ ⊆ M , and by what we have already shown, Y0 =
(N ′)∨ with (N ′ : M ′) finite. Then Y = (N ′ ⊕M ′ M)∨; since this is assumed to be
connected, N ′ ⊕M ′ M must be torsion-free, hence embed via the obvious map into
V = M ⊗Q. �

The next corollary follows essentially formally from Proposition 3.5.

Corollary 3.6. Let M be a torsion-free discrete abelian group. Then πét1 (M∨, 0) ∼=
(M ⊗Q/M)∨ as topological groups.

In particular, if M is a Q-vector space, then πét1 (M∨) is trivial. �

Applying this to M = Q we find that the solenoid S ∼= Q∨ has trivial étale
fundamental group.

Cohomology. For a topological space X and an abelian group A there are several
different ways to define cohomology groups Hp(X,A), and they do not always agree.

(i) First there is the singular cohomology group Hp
sing(X,A) which is the co-

homology of the singular cochain complex C•(X,A) with Cp(X,A) = Hom(Cp(X), A).
(ii) There is another construction using sheaf cohomology: the category Sh(X)

of sheaves of abelian groups on X is an abelian category with enough in-
jectives, and the global sections functor ΓX : Sh(X)→ Ab sending a sheaf
A to Γ(X,A) is left exact. Hence it admits right derived functors, and we
set Hp(X,A) = RpΓX(A). For each abelian group A there is a constant
sheaf AX modelled on A, and we set Hp(X,A) = Hp(X,AX).

(iii) Finally we can also consider Čech cohomology groups for sheaves:

Ȟp(X,A) = lim−→
U

Ȟp(U,A)

where the limits goes over ever finer open covers of X, and again we set
Ȟp(X,A) = Ȟp(X,AX).

If X is a paracompact Hausdorff space, sheaf cohomology in terms of derived func-
tors is always isomorphic to Čech cohomology by [19, Théorème 5.10.1]. However,
sheaf cohomology and singular cohomology do not even agree on all compact Haus-
dorff spaces, see Remark 3.9 below. We prefer to work with sheaf cohomology
because it behaves better with respect to projective limits of spaces:

Proposition 3.7. Let A be an abelian group and let (Xj)j∈J be a cofiltered projective
system of compact Hausdorff spaces and let X = lim←−j Xj. Then the canonical map
of sheaf cohomology groups

lim−→
j∈J

Hp(Xj, A)→ Hp(X,A)
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is an isomorphism.

Proof. As already remarked we may identify these groups with Čech cohomology
groups; the corresponding statement for Čech cohomology groups is [15, Chapter X,
Theorem 3.1]. The proof is based on the observation that for a compact space Čech
cohomology may be computed using only finite covers. �

Proposition 3.8. Let V be a Q-vector space.
(i) If A is an abelian torsion group then H0(V ∨, A) = A and Hp(V ∨, A) = 0

for all p > 0.
(ii) For each p ≥ 0 there is a canonical isomorphism

Hp(V ∨,Q) ∼=
∧p

QV.

Under these isomorphisms wedge and cup products correspond to each other.
(iii) We have H0(V ∨,Z) = Z, and for each p > 0 the inclusion Z ↪→ Q induces

an isomorphism
Hp(V ∨,Z) ∼= Hp(V ∨,Q).

Proof. (i) First note that it suffices to prove this statement for A = Z/nZ: On
compact Hausdorff spaces, sheaf cohomology commutes with direct sums
and filtered limits of sheaves, and every abelian torsion group can be built
from the groups Z/nZ for n ∈ N using these constructions.

Let M be the set of all finitely generated free abelian subgroups of V ,
so that V = lim−→M∈MM is a filtered limit. Then by Proposition 3.7 we can
write

Hp(V ∨,Z/nZ) ∼= lim−→
M∈M

Hp(M∨,Z/nZ).

We need to show that the image of each c ∈ Hp(M∨,Z/Z) for p > 0 is
trivial. Consider the subgroup 1

n
M ∈ M; a short calculation using that

M∨ and ( 1
n
M)∨ are tori of the same dimension shows that the pullback of

c to Hp(( 1
n
M)∨,Z/nZ) is zero (but only for p > 0).

(ii) Again we write V = lim−→M∈MM and use that Hp(M∨,Q) ∼=
∧p

Q(M ⊗Q).
(iii) This follows from (i) and (ii) using the long exact cohomology sequence

induced by the short exact sequence 0→ Z→ Q→ Q/Z→ 0. �

Remark 3.9. Note that, by contrast, for any abelian group A the singular cohomo-
logy of V ∨ with A-coefficients can be calculated as

H0
sing(V ∨, A) ∼= AExt(V,Z), Hp

sing(V ∨, A) = 0 for all p > 0

by Corollary 2.5.(iii) and Proposition 3.1. So, for every p ≥ 0 the groups Hp(V ∨,Z)
and Hp

sing(V ∨,Z) are not isomorphic. The same holds for rational coefficients.

3.2. Spectra of group algebras. We assemble some simple results on the spectra
of group algebras; they will play the role in our scheme-theoretic considerations that
is played by Pontryagin duals in the topological case.

Proposition 3.10. Let M be an abelian group. Then SpecC[M ] is connected if
and only if M is torsion-free.
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Proof. Note that a C-scheme X is connected if and only if every C-morphism X →
S = SpecC

∐
SpecC is constant.

First assume that M is torsion-free. Then M is a filtered limit lim−→i∈IMi where
the Mi are free abelian groups of finite rank. Then

SpecC[M ] = lim←−
i∈I

SpecC[Mi],

so each C-morphism SpecC[M ] → S factors through some SpecC[Mi]. But Mi '
Zn for some n ∈ N, hence SpecC[Mi] ' Gn

m is connected.
Now assume thatM contains a nontrivial finite subgroupM0. Then SpecC[M ]→

SpecC[M0] is surjective, but the target is a disjoint union of |M0| copies of SpecC,
so SpecC[M ] cannot be connected. �

For any abelian group M the group algebra C[M ] is a Hopf algebra: the comul-
tiplication C[M ] → C[M ] ⊗C C[M ] is determined by m 7→ m ⊗m for all m ∈ M ,
and the other structure maps are even more obvious. This turns C[M ] into a com-
mutative group scheme over C. From the short exact sequence

0→Mtors →M →Mtf → 0,

where Mtors is the torsion subgroup and Mtf is the maximal torsion-free quotient,
we obtain a short exact sequence of group schemes

0→ SpecC[Mtf ]→ SpecC[M ]→ SpecC[Mtors]→ 0.

Here SpecC[Mtf ] is connected by Proposition 3.10, and it is easy to see that the
topological group underlying SpecC[Mtors] is isomorphic to (Mtors)

∨, in particular
totally disconnected. From this we see:

Corollary 3.11. Let M be an abelian group. Then SpecC[M ] → SpecC[Mtors]
induces a homeomorphism on π0(·), and the identity component is isomorphic to
SpecC[Mtf ]. In particular π0(SpecC[M ])) is canonically isomorphic to (Mtors)

∨ as
a topological group, and the étale fundamental group of SpecC[M ] at any base point
is isomorphic to that of SpecC[Mtf ].

Proof. Everything is clear from the preceding, except the statement about funda-
mental groups; but because SpecC[M ] is a group scheme and any connected com-
ponent contains a C-rational point, every two connected components are isomorphic
as schemes. �

Proposition 3.12. LetM be a torsion-free abelian group. Then the connected étale
coverings of SpecC[M ] are precisely given by the SpecC[N ], where N runs through
the subgroups of V = M ⊗Q that contain M with finite index.

Proof. The proof Proposition 3.12 is closely analogous to that of Proposition 3.5.
We begin again by observing that the desired result is well-known in the finitely
generated case.

For the general case, the argument that eachN defines an étale covering SpecC[N ]→
SpecC[M ] is directly parallel to the corresponding argument in the proof of Pro-
position 3.5, and we shall not repeat it.

For the other implication, letY → SpecC[M ] be an étale covering. ThenY must
be affine, say Y = SpecB for some finite étale ring homomorphism SpecC[M ] →
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B. By [1, Tag 00U2, item (9)] this must be the base change of some étale ring
homomorphism C[M ′] → B′ for a finitely generated subgroup M ′ ⊆ M . Since B
is finite over C[M ] so must B′ be over C[M ′], i.e. SpecB′ → SpecC[M ′] must be
an étale covering, and by what we have already shown, B′ = C[N ′] with (N ′ :
M ′) finite. Then B = C[N ′ ⊕M ′ M ]; since the spectrum of this algebra must be
connected, N ′ ⊕M ′ M must be torsion-free, hence embed via the obvious map into
V = M ⊗Q. �

Corollary 3.13. Let M be a torsion-free abelian group. Then SpecC[M ] is connec-
ted, and for any geometric base point x we obtain a natural isomorphism of profinite
groups

πét1 (SpecC[M ], x) ∼= (M ⊗Q/M)∨.

In particular, SpecC[M ] is simply connected if and only if M is a Q-vector space.
�

This corollary is again directly analogous to Corollary 3.6. Finally we note the
following analogue of Proposition 3.8.(i):

Proposition 3.14. Let V be a Q-vector space and let A be an abelian torsion group.
Then the étale cohomology groups Hp

ét(SpecC[V ], A) vanish for all p > 0.

Proof. The proof is analogous to that of Proposition 3.8.(i). �

4. Galois groups as étale fundamental groups of C-schemes

4.1. Rational Witt vectors. We begin by recalling rings of ‘big’ Witt vectors.
Note that there are many different constructions of these rings; for more information
see [22].

In the following, rings are always supposed commutative and unital. The ring
W(A) of Witt vectors in A is defined for any ring A. Its underlying set is the set
1 + tA[[t]] of formal power series in A[[t]] with constant coefficient one. Addition of
Witt vectors is multiplication of power series: f ⊕ g = fg. Multiplication of Witt
vectors is more involved.

Proposition 4.1. There is a unique system of binary operations �, consisting of
one binary operation � : W(A) ×W(A) → W(A) for each ring A, such that the
following statements hold:

(i) With ⊕ as addition and � as multiplication, W(A) becomes a ring.
(ii) For any ring A and elements a, b ∈ A the equation

(1− at)� (1− bt) = 1− abt
holds in W(A).

(iii) The operation � is functorial in A: for a ring homomorphism ϕ : A → B
and elements f, g ∈W(A) the equation W(ϕ)(f�g) = W(ϕ)(f)�W(ϕ)(g)
holds.

Here W(ϕ) : W(A) → W(B) is the obvious map that sends t to t and
acts as ϕ on the coefficients.

(iv) The operation � is continuous for the t-adic topology on W(A).
Hence (W(A),⊕,�) becomes a complete topological ring, and W becomes a functor
from rings to complete topological rings.
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The proof of this result can be found in many sources, e.g. [22, Section 9].

Proposition 4.2. Let A be a ring. The set

Wrat(A)
def
=

{
f ∈W(A)

∣∣∣∣ f =
1 + a1t+ a2t

2 + · · ·+ ant
n

1 + b1t+ b2t2 + · · ·+ bmtm
, ai, bj ∈ A

}
is a subring of W(A).

It seems that this result first appeared explicitly in the literature as [3, Propos-
ition 3.4]. The elements of Wrat(A) are called rational Witt vectors. The rings
Wrat(A) occur naturally in some problems in K-theory, see [3, 4, 26].

Remark 4.3. In case A = F is a field of characteristic zero, there is a more element-
ary description of Wrat(F ). First assume that F is algebraically closed. Then the
set of all polynomials 1 − αt, where α runs through F×, is a basis of the abelian
group underlying Wrat(F ), and the product of two basis elements corresponding to
α and β, respectively, is the basis element corresponding to αβ. This means that
Wrat(F ) is canonically isomorphic to the group ring Z[F×].

In the general case, choose an algebraic closure F/F . Then there is a natural
action of Gal(F/F ) on Wrat(F ), the ring of invariants being canonically isomorphic
to Wrat(F ). The isomorphism Wrat(F ) ∼= Z[F×] is equivariant for this Galois
action, hence Wrat(F ) is canonically isomorphic to the ring of Gal(F/F )-invariants
in Z[F×].

Now we can give the the construction of the schemes XF . So, let F be a field
containing Q(ζ∞)

def
=
⋃
nQ(ζn), where the latter is assumed embedded into C. The

group homomorphism

µ∞ →Wrat(F ), ζ 7→ [ζ]
def
= 1− ζt

and the canonical inclusion
µ∞ ↪→ C×

define ring homomorphisms Z[µ∞] → Wrat(F ) and Z[µ∞] → C, respectively. We
then set

AF = Wrat(F )⊗Z[µ∞] C and XF = SpecAF .

Note that if F/F is an algebraic closure, AF comes with an action by Gal(F/F ),
and the ring of invariants is canonically isomorphic to AF .

Remark 4.4. In fact we may define a C-algebra AE and a C-scheme XE = SpecAE
for any Q(ζ∞)-algebra E by the same formula. We will only use this construction
in the case where E is a finite product of fields, say E = E1 × · · · × En with each
Eν a field extension of Q(ζ∞); then there are natural isomorphisms

AE ∼=
n∏
ν=1

AEν and XE
∼=

n∐
ν=1

XEν .

The following is the version of Theorem 1.5 for schemes.

Theorem 4.5. For any field F ⊃ Q(ζ∞), XF is connected, and the étale funda-
mental group of XF is isomorphic to the absolute Galois group of F . More precisely,
the functor E 7→ XE induces a (degree-preserving) equivalence of categories between
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the category of finite étale F -algebras and the category of finite étale schemes over
XF .

A special case of this can be handled directly.

Proposition 4.6. If F is algebraically closed, XF is connected and simply connec-
ted.

Proof. We may identify XF with

Spec
(
(Wrat(F )⊗Z C)⊗C[µ∞] C

) ∼= SpecC[F×]×SpecC[µ∞] SpecC.

The embedding µ∞ ↪→ F× induces an isomorphism on torsion subgroups, hence by
Corollary 3.11 the morphism SpecC[F×]→ SpecC[µ∞] induces a homeomorphism
on π0(·). The morphism SpecC → SpecC[µ∞] picks one connected component,
hence the fibre product XF must be connected, more precisely identified with one
particular connected component of SpecC[F×].

By Corollary 3.11, πét1 (YF ) is therefore isomorphic to πét1 (SpecC[(F×)tf ]). Since
F× is divisible, (F×)tf is a Q-vector space, and by Corollary 3.13 the spectrum of
its group algebra is simply connected. Hence so is XF . �

4.2. Recognising properties of scheme morphisms on geometric points.
We assemble a few well-known observations on morphisms of schemes which will be
useful later.

Proposition 4.7. Let X = SpecA be an affine scheme and let G be a finite group
operating on X, hence on A. Assume that for any algebraically closed field k the
group G operates freely on X(k).

Then the natural morphism π : X →Y = SpecAG is a finite étale Galois covering
with deck group G.

Proof. We claim that the natural morphism X × G → X × X, (x, g) 7→ (x, xg)
is a closed immersion. It is clearly finite, as the composite with each projection
X ×X → X is finite. Thus, by [20, Corollaire 18.12.6], it remains to show that it
is a monomorphism. Thus, let S be some scheme with two maps a = (aX, aG), b =
(bX, bG) : S→ X×G whose composites with X×G→ X×X agree. In particular,
it follows that the two maps aX, bX : S → X agree. It remains to see that the two
maps aG, bG : S→ G agree. As both maps are constant on connected components,
it suffices to check this on geometric points, where it follows from the assumption.

Since the component maps X × G → X are also finite étale, the morphism
X × G → X × X is a finite étale equivalence relation on X. Hence its quotient
[X/G] is an algebraic space; by [1, Tag 03BM] it must be representable by an affine
scheme, and the morphism X → [X/G] is finite. This affine scheme represents the
same functor as Y, therefore Y = [X/G] and X →Y is finite. It is also étale by
[1, Tag 02WV]. �

Lemma 4.8. Let B ⊆ A be an integral ring extension, and let f : X = SpecA →
SpecB = Y be the corresponding morphism of schemes. Then for every algebraic-
ally closed field k the map X(k)→Y(k) is surjective.

Proof. Let y : Spec k →Y be a geometric point with image y ∈Y. Then y factors
as Spec k → Specκ(y) ↪→Y, defined by a field extension κ(y) ↪→ k.
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By [1, Tag 00GQ] f is surjective on topological points, hence there exists some
x ∈ X with f(x) = y. By integrality, κ(x) is an algebraic extension of κ(y). Since
k was assumed to be algebraically closed, we can find an embedding κ(y) ↪→ k
making the diagram

Specκ(x) //

��

X

��

Spec k //

99

Specκ(y) //Y

commute. Then the composition x : Spec k → Specκ(x) → X is a preimage of y
in X(k). �

Lemma 4.9. Let A be a ring, and let G be a profinite group acting continuously
on A. Let AG ⊆ A be the ring of invariants, and let ϕ : X = SpecA→ SpecAG = Y

be the associated morphism of schemes. Then for every algebraically closed field k
the induced map X(k)/G→Y(k) is bijective.

Proof. Note that the map AG → A is integral: For any a ∈ A, the G-orbit Ga =
{a1, . . . , an} of a is finite, and then a is a root of the monic polynomial P (X) =∏n

i=1(X−ai) ∈ AG[X]. Surjectivity therefore follows from Lemma 4.8, and we only
need to show injectivity.

First, we handle the case of finite G. Let p be the characteristic of k. First, we
reduce to the case A is an algebra over the corresponding prime field. If p = 0,
then (A ⊗ Q)G = AG ⊗ Q as invariants commute with filtered colimits, so we can
replace A by A ⊗ Q. If p > 0, we first assume that A is flat over Z, by replacing
A by the free algebra Z[xa|a ∈ A] on the elements of A, which admits a natural
G-equivariant surjective map to A. Assuming now that A is flat over Z, the map
AG/p → (A/p)G is injective, but need not be an isomorphism. However, we claim
that the map induces an isomorphism on perfections, i.e. on the filtered colimit
over a 7→ ap; in particular, the k-valued points are the same. We need to show that
whenever a ∈ A/p is G-invariant, there is some n such that apn lifts to an element
of AG. Note that there is a commutative diagram

0 // AG //

��

AG //

��

(A/p)G //

��

H1(G,A)

��

0 // (A/pn)G // (A/pn+1)G // (A/p)G // H1(G,A/pn) .

Choose n large enough that the p-part of the order of G divides pn. Then H1(G,A)
is killed by pn, and thus the map H1(G,A)→ H1(G,A/pn) is injective. Thus, if an
element of (A/p)G can be lifted to (A/pn+1)G, then it can be lifted all the way to
AG. But for any a ∈ A/p, the element apn lifts canonically to A/pn+1: Indeed, for
any two lifts ã1, ã2 ∈ A of a, one has ãp

n

1 = ãp
n

2 ∈ A/pn+1. It follows that for any
a ∈ (A/p)G, apn lifts to (A/pn+1)G.

In particular, we can assume that A is defined over a field. Let x0, x1 ∈ X(k)
be in different G-orbits. Then for every g ∈ G the induced homomorphisms xν ◦
g : Ak = A⊗ k → k are surjective, hence their kernels are maximal ideals in Ak. By
assumption, these ideals are all distinct, hence (by maximality) coprime. By the
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Chinese Remainder Theorem we then find some f ∈ Ak which is sent to 0 by all
x0 ◦ g and to 1 by all x1 ◦ g. After possibly replacing f by∏

g∈G

g(f)

we may assume that f ∈ AGk = AG ⊗ k (as k is a free module over its prime field).
Then f(ϕ(x0)) = 0 and f(ϕ(x1)) = 1, whence ϕ(x0) 6= ϕ(x1).

This finishes the case that G is finite. In general, A is the filtered colimit of its
subrings AH , where H ⊂ G runs through open subgroups. Let YH = Spec(AH), so
that X(k) = lim←−H⊂GYH(k). By the case of finite G, we know thatYH(k)/(G/H) =

Y(k). Therefore, if x, y ∈ X(k) map to the same element ofY(k), then their images
in YH(k) lie in the same G/H-orbit, in particular in the same G-orbit. For each
H, we get a nonempty closed subset of G of elements which carry the image of x in
YH(k) to the image of y inYH(k). By the variant of Cantor’s Intersection Theorem
given as Lemma 4.10 below, their intersection is nonempty, which gives an element
of G carrying x to y. �

Lemma 4.10. Let X be a compact topological space and let (Ai)i∈I be a family of
non-empty closed subspaces of X. Assume the family is cofiltered in the sense that
for every i, j ∈ I there is some k ∈ I such that Ak ⊆ Ai ∩ Aj.

Then the intersection
⋂
i∈I Ai is non-empty.

Proof. Assume that the intersection is empty. Then the union of the open subsets
Ui = X r Ai is all of X, that is, the Ui form an open cover of X. By compactness
there exists some finite subcover, say X = Ui1 ∪ · · · ∪ Uin . This means that Ai1 ∩
· · · ∩ Ain = ∅. But by our assumption there exists some k ∈ I such that Ak ⊆
Ai1 ∩ · · · ∩ Ain = ∅, which contradicts our assumption that A 6= ∅. �

4.3. Classification of étale covering spaces of XF . Now let F be any field con-
taining Q(ζ∞) ⊂ C. Consider the C-scheme XF as defined before. By Remark 4.4
we obtain a contravariant functor E 7→ XE from F -algebras to XF -schemes, in other
words, a covariant functor from affine (SpecF )-schemes to XF -schemes.

Theorem 4.11. For any field F ⊇ Q(ζ∞) the C-scheme XF is connected. If E/F
is a finite étale F -algebra then XE → XF is a finite étale covering space. The
resulting functor

FEt(SpecF )→ FEt(XF ), SpecE 7→ XE,

is an equivalence of categories.

The proof of this theorem rests on the generalities proved before, as well as the
following observations.

Lemma 4.12. Let F ⊇ Q(ζ∞) be a field, let F/F be an algebraic closure and let
G = Gal(F/F ) be the corresponding Galois group. Let k be a field. Then G operates
freely on the set

I(F , k) = {χ : (F )× → k× | χ is a group homomorphism, injective on µ∞}.

Proof. Let σ ∈ Gr {1} and χ ∈ I(F , k). We need to show that σ(χ) 6= χ.
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Without loss of generality we may assume that σ topologically generates G (oth-
erwise we replace F by the fixed field of σ). Then G is a procyclic group. Since F
was supposed to contain µ∞, in particular a square root of −1, no algebraic exten-
sion of F can be formally real. Hence G must be torsion-free: if it were not, it would
contain a nontrivial closed finite subgroup, say H = Gal(F/F ′) for some algebraic
extension F ′ ⊂ F of F . By a result of Artin and Schreier ([5, Satz 4], see also [25,
Theorem 11.14]) F ′ must then be formally real, contradicting our assumption.

From these conditions on G we find that it must be of the form

G '
∏
p∈S

Zp

for a nonempty set S of rational primes. Pick some p ∈ S and let E be the fixed
field of σp. Then E/F is a cyclic Galois extension of degree p.

Let ζ ∈ F be a primitive p-th root of unity. Note that since χ is injective on
µ∞ we must have χ(ζ) 6= 1. Furthermore NE/F (ζ) = ζp = 1, hence by the original
form of Hilbert’s ‘Satz 90’ ([23, Satz 90], see also [34, Chapter IV, Theorem 3.5])
there is some α ∈ E× with ζ = σ(α)/α. But then χ(σ(α)/α) = χ(ζ) 6= 1, hence
χ(σ(α)) 6= χ(α). Therefore σ(χ) 6= χ. �

Lemma 4.13. Let F , F , G and k be as in Lemma 4.12. Then G operates freely on
XF (k).

Proof. Just note that

XF (k) = Hom(Z[F×]⊗Z[µ∞] C, k)

can be identified with the set of pairs (χ, g), where χ : F× → k× is a group homo-
morphism and g : C→ k is a field embedding such that χ and g agree on all roots
of unity. The Galois action is given by σ(χ, g) = (σ(χ), g). The χ occurring are all
injective on µ∞, and therefore the desired result follows from Lemma 4.12. �

Lemma 4.14. The map XF (k)→ XF (k) is constant on G-orbits, and the induced
map XF (k)/G→ XF (k) is a bijection.

Proof. Recall that XF = SpecAF and XF = SpecAG
F
(the ring of G-invariants), so

the result follows from Lemma 4.9. �

Proof of Theorem 4.11. Let E be a finite étale F -algebra. We will show that XE →
XF is a finite étale covering.

First assume that E is a field, Galois over F . Combining Lemmas 4.13 and 4.14
we find that Gal(E/F ) operates freely on XE(k), for any algebraically closed field k.
By Proposition 4.7 then XE → XF must be finite étale.

For a general finite field extension E/F let E ′/F be the Galois closure of E in
F ; then the composition XE′ → XE → XF is finite étale, as is the first component,
hence the second has to be finite étale, too.

Finally, if E is an arbitrary finite étale F -algebra, there is a canonical isomorphism

E
∼=→

∏
p∈SpecE

E/p
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with the E/p being finite field extensions of F . Therefore, by Remark 4.4, we obtain
an isomorphism of XF -schemes

XE

∼=→
∐

p∈SpecE

XE/p,

hence XE → XF is also finite étale.
We now have shown that the functor SpecE 7→ XE really sends FEt(SpecF ) to

FEt(XF ). Note that if E/F is Galois, then XE → XF is a Galois covering with
group Gal(E/F ). From this we deduce that the functor is fully faithful. It remains
to be shown that it is essentially surjective; this follows by applying Lemma 2.32 to
the system of étale coverings (XE → XF )E/F finite, using that the limitXF = lim←−E XE

is simply connected by Proposition 4.6. �

Corollary 4.15. ‘The’ étale fundamental group of XF is naturally isomorphic to
‘the’ absolute Galois group of F . �

The formulation of this corollary requires some explanation. Note that classically,
to speak sensibly of the absolute Galois group of a field F one needs to fix an
algebraic closure F . However, we can get by with a slightly more general type of
object. In Grothendieck’s interpretation of the absolute Galois group, Gal(F/F )
is the étale fundamental group of SpecF at the geometric point SpecF → SpecF .
This is the automorphism group of the fibre functor ΨF on the Galois category
FEt(SpecF ), given by ΨF (X) = X(F ). If Ψ is any fibre functor on FEt(SpecF ),
then Aut Ψ is still isomorphic to Gal(F/F ), the isomorphism being canonical up to
inner automorphisms. Hence we might call Aut(Ψ) ‘the absolute Galois group of F
at Ψ’.

Now, let x : SpecΩ → XF be a geometric point. Then πét1 (XF , x) is the auto-
morphism group of the fibre functor Φx on FEt(XF ) with Φx(Y ) = Yx. The com-
position

Ψx : FEt(SpecF )
X(·)−→ FEt(XF )

Φx−→ Sets

is still a fibre functor on FEt(SpecF ), and Corollary 4.15 says that the absolute
Galois group of F at Ψx is canonically isomorphic to πét1 (XF , x), for any geometric
point x of XF .

Remark 4.16. Let A be any ring and B a finite étale A-algebra of constant degree
d. Above, we have shown that if A is a field over Q(ζ∞), then the map Wrat(A)→
Wrat(B) becomes finite étale after base change from Z[µ∞] to C; by faithfully flat
base change, this is already true after base change along Z[µ∞] → Q(ζ∞). It is
not evident from our proof how general this result is, so we want to mention the
following generalisation. We do not know whether the assumption Pic(A) = 0 is
necessary, and it would be nice to remove it.

Theorem 4.17. Let A be a ring with Pic(A) = 0, let S be a set of primes which is
invertible in A, and let B be a finite étale A-algebra. For a prime p ∈ S, consider
the element Φp ∈ Wrat(A) given by the cyclotomic polynomial

∏p−1
i=1 (1 − ζ ipt) ∈

Wrat(Z)→Wrat(A). Then the map

Wrat(A)[(Φp − (p− 1))−1 | p ∈ S]→Wrat(B)[(Φp − (p− 1))−1 | p ∈ S]
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is finite étale in the following cases:

(i) The algebra B is everywhere of degree ≤ d over A, and S contains the set
of primes p ≤ d.

(ii) The algebra B is Galois over A with Galois group G, and S contains the
set of primes dividing the order of G.

Note that if A contains a p-th root of unity ζp ∈ A and we denote [ζp] = 1− ζpt ∈
Wrat(A), then Φp = [ζp] + [ζ2

p ] + . . .+ [ζp−1
p ], and inverting Φp− (p− 1) is equivalent

to inverting [ζp]− 1. We do not know to what extent it is necessary to Φp− (p− 1)
for all p ∈ S.

Proof. One may reduce part (i) to part (ii) by passing to the Galois closure. Now
Wrat(A) = Wrat(B)G and this passes to the filtered colimit, giving

Wrat(A)[(Φp − (p− 1))−1 | p ∈ S] = Wrat(B)[(Φp − (p− 1))−1 | p ∈ S]G .

By Proposition 4.7, it is enough to check that G acts freely on geometric points of
Spec(Wrat(B)[([ζp] − 1)−1 | p ∈ S]). Thus, for every 1 6= g ∈ G, we need to check
that g acts freely; replacing g by a power, we can assume that the order of g is a
prime p. We can also replace G by the cyclic subgroup generated by g (and A by
the invariants of B under this subgroup), and assume that G ∼= Z/pZ is cyclic of
prime order.

We make a further reduction to assume that A contains a p-th root of unity.
Indeed, let A1 = A ⊗Z Z[ζp], which is a finite étale Galois cover with Galois group
G1 = (Z/pZ)×. We claim that

Wrat(A)[(Φp − (p− 1))−1]→Wrat(A1)[(Φp − (p− 1))−1] = Wrat(A1)[([ζp]− 1)−1]

is a finite étale Galois cover with Galois group G1. To check this, as before it is
enough to check that G1 acts trivially on geometric points of Spec(Wrat(A1)[([ζp]−
1)−1]). But for any map Wrat(A1)[([ζp] − 1)−1] → k, the image of [ζp] in k will be
a nontrivial p-th root of 1, so that no nontrivial element of G1 fixes the image of
[ζp] in k, and in particular G1 acts freely on geometric points. A similar statement
holds for B → B1

def
= B ⊗A A1, and by faithfully flat base change it is enough to

check the result for A1 → B1.
Thus, we are reduced to the case that A is a Z[1

p
, ζp]-algebra, and B is a finite

étale G = Z/pZ-cover of A; we want to prove that the map

Wrat(A)[([ζp]− 1)−1]→Wrat(B)[([ζp]− 1)−1]

is finite étale, for which it is enough to check that G acts freely on geometric points
of Spec(Wrat(B)[([ζp]−1)−1]). In that case, by Kummer theory and our assumption
Pic(A) = 0, B is given by adjoining the p-th root a1/p ∈ B of some element a ∈ A×.
But then a1/p gives an element [a1/p] ∈ Wrat(B) on which 1 ∈ G = Z/pZ acts by
[a1/p] 7→ [ζpa

1/p] = [ζp][a
1/p]. For any geometric point Wrat(B)[([ζp] − 1)−1] → k,

the image of [ζp] − 1 is invertible in k, so it follows that [a1/p] maps to 0 in k; but
this is impossible, as a1/p and thus [a1/p] is a unit. �



40 ROBERT A. KUCHARCZYK AND PETER SCHOLZE

5. Galois groups as étale fundamental groups of topological spaces

We now present the construction of a compact Hausdorff space XF for every field
F containing Q(µ∞), with properties analogous to those of XF . In fact, the two
constructions are closely related, see Theorem 5.7 below.

5.1. The spaces XF . Let F be a field containing Q(ζ∞) and let F/F be an algeb-
raic closure. We endow F× with the discrete topology and consider the Pontryagin
dual (F×)∨ = Hom(F×,S1). Letting ι : µ∞ ↪→ S1 be the obvious embedding, we
then set

XF = {χ ∈ (F×)∨ | χ|µ∞ = ι},
endowed with the subspace topology from (F×)∨. The absolute Galois group G =
Gal(F/F ) operates from the left on XF by homeomorphisms via σ(f) = f ◦ σ−1.
Then we set

XF = G\XF ,

endowed with the quotient topology. Note that if F ′/F is another algebraic closure
of F , the version of XF constructed from F and that constructed from F ′ are
canonically homeomorphic.

Proposition 5.1. Let F ⊇ Q(ζ∞) be a field with algebraic closure F and absolute
Galois group G = Gal(F/F ).

(i) The G-action on XF is proper and free.
(ii) The space XF is nonempty, connected, compact and Hausdorff.
(iii) The étale fundamental group of XF is trivial.

Proof. We begin by showing that XF is nonempty; it will follow that XF is also
nonempty. The group F× is divisible, and its torsion subgroup is equal to µ∞.
By general facts about divisible groups it can then be written as a direct sum
F× = V ⊕ µ∞ where V is a Q-vector space. Then we can construct an element
χ ∈ XF ⊂ Hom(F×,S1) = Hom(V, S1)×Hom(µ∞,S1) by declaring it to be ι on µ∞
and any group homomorphism on V . Note, however, that V can in general not be
chosen Galois invariant.

The space XF is a translate of, and therefore homeomorphic to, the closed sub-
group Hom(F×/µ∞,S1) ⊂ Hom(F×, S1). This is clearly a connected compact Haus-
dorff space, and it has trivial étale fundamental group by Corollary 3.6, which proves
(iii).

For (i), note that the action being proper means that the map G×XF → XF×XF

sending (g, x) to (gx, x) is proper; but since both G andXF are compact, this follows
automatically from continuity. That the action is free is a direct consequence of
Lemma 4.12.

For (ii), note that we already know the corresponding statement for XF . From
this and (i) we easily deduce (ii). �

Similarly to the scheme-theoretic case, let E be finite étale F -algebra. Recall
that there is a canonical isomorphism

E
∼=→

∏
p∈SpecE

E/p;
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we therefore set
XE =

∐
p∈SpecE

XE/p.

This assignment extends to a functor from FEt(SpecF ) to the category CH/XF

of compact Hausdorff spaces over XF . To give its action on morphisms, note that

HomF (SpecE1, SpecE2) ∼= HomF

( ∐
p1∈SpecE1

SpecE1/p1,
∐

p2∈SpecE2

SpecE2/p2

)
∼=
∏
p1

∐
p2

HomF (SpecE1/p1, SpecE2/p2)

∼=
∏
p1

∐
p2

HomF (E2/p2, E1/p1)

and similarly

HomXF (XE1 , XE2)
∼= HomXF

( ∐
p1∈SpecE1

XE1/p1 ,
∐

p2∈SpecE2

XE2/p2

)
∼=
∏
p1

∐
p2

HomXF (XE1/p1 , XE2/p2).

By piecing together morphisms the obvious way, it therefore suffices to give a con-
tinuous mapXE → XF for a finite field extension E/F . For this, choose an algebraic
closure E/E, which is then also an algebraic closure of F , and let XE → XF be the
forgetful map

XE = Gal(E/E)\XE → Gal(E/F )\XE = XF .

Theorem 5.2. The functor FEt(SpecF ) → CH/XF sending an étale covering
space SpecE → SpecF to the map XE → XF in fact has image in FCov(XF ) and
defines an equivalence of categories FEt(SpecF )→ FCov(XF ).

Proof. Let first E/F be a finite Galois extension. Then XE → XF is the quotient
map for the action of the finite group Gal(E/F ) on XE, which is free by Propos-
ition 5.1. Since the spaces involved are compact Hausdorff spaces, XE → XF is
then a finite covering, and Gal(E/F ) = AutSpecF (SpecE) → AutXF (XE) is an
isomorphism of finite groups.

By passing to a Galois closures, we find that for finite but not necessarily Galois
field extensions E/F the map XE → XF is still a finite covering. From this, the
same statement for finite étale F -algebras follows formally.

Hence the functor FEt(SpecF ) → FCov(XF ) is well-defined. That it is fully
faithful can again be reduced to the case of automorphisms of a Galois object, which
we have already seen. Finally, its essential surjectivity follows from the combination
of Propositions 2.13 and 5.1.(iii). �

5.2. The relation between XF and XF . Recall that for a scheme X of finite
type over C there is a canonical topology on X(C), called the complex topology, cf.
[39] and [2, Exposé XII]. Here X(C) designates the set of sections of the structural
morphism X → SpecC (rather than all scheme morphisms SpecC→ X); we hope
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that no confusion with the usage in section 4 will arise. The complex topology is
characterised by the following properties:

(i) The complex topology on A1(C) ∼= C is the Euclidean topology, i.e. the
metric topology on C induced by the metric d(z, w) = |z − w|.

(ii) The complex topology on (X×SpecCY)(C) ∼= X(C)×Y(C) is the product
topology defined by the complex topologies on X(C) and Y(C).

(iii) If Y ↪→ X is an open, resp. closed, embedding, then so is Y(C) ↪→ X(C).
In particular, for a quasiprojective variety X ⊆ PnC the complex topology on X(C)
is the subspace topology induced by the Euclidean topology on Pn(C).

The complex topology can easily be generalised to arbitrary C-schemes; its de-
scription is facilitated when restricted to affine C-schemes, which suffices for our
purposes.

Let A be a C-algebra, so that X = SpecA becomes an affine C-scheme. Note
that X(C) can be identified with the set of C-algebra homomorphisms A→ C. We
can interpret an element f ∈ A as a function f : X(C) → C by sending X(C) 3
x : A→ C to x(f), i.e. by writing f(x) for what formally is x(f).

This way we define for every f ∈ A a subset Uf ⊆ X(C) by

Uf = {x ∈ X(C) | |f(x)| < 1}.
Definition 5.3. Let X = SpecA be an affine C-scheme. The complex topology on
X(C) is the unique topology for which {Uf | f ∈ A} is a subbasis of open sets.

That is, a subset of X(C) is open if it can be written as a union of subsets of the
form Uf1,...,fn = Uf1 ∩ · · · ∩ Ufn (for possibly varying n).

Proposition 5.4. (i) If X is an affine C-scheme of finite type, the above defin-
ition of the complex topology on X(C) agrees with the classical one.

(ii) If X = lim←−αXα is a cofiltered limit of affine C-schemes Xα of finite type,
then X(C) = lim←−αXα(C) as topological spaces.

(iii) The complex topology is compatible with fibre products: (X ×S Y)(C) =
X(C)×S(C) Y(C) as topological spaces.

(iv) IfY → X is a finite étale covering, thenY(C)→ X(C) is a finite covering.

Proof. (i) Easy.
(ii) Note that we can write X = SpecA and Xα = SpecAα where A = lim−→α

Aα.
Then because the limit is filtered every finite subset of A is the image of
a finite subset of some Aα. Hence every basic open set Uf1,...,fn ⊆ X(C) is
the preimage of an open subset of some Xα(C).

(iii) By (i) this holds if X, Y and S are of finite type over C. Apply (ii) to
deduce the general case from this.

(iv) Again this is well-known if X (and then automatically also Y) is of finite
type over C. It follows e.g. from [2, Exposé XII, Propositions 3.1.(iii) and
3.2.(vi)]. Every étale covering of an arbitrary X is the pullback from an
étale covering of a C-scheme of finite type, cf. [1, Tag 00U2, item (9)].
Apply this, (ii) and (iii) to deduce the general case. �

Remark 5.5. Note that for a nonempty affine C-scheme X the space X(C) may well
be empty, e.g. for X = SpecC(T ).
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For each field F containing Q(ζ∞) we may consider XF (C), and from now on we
will tacitly assume it to be endowed with its complex topology.

Corollary 5.6. Let F be a field extension of Q(ζ∞). Then XF (C) is connected.
For a finite extension E/F the map XE(C) → XF (C) is a covering map of degree
[E : F ].

Proof. We only need to prove thatXF (C) is connected. This reduces to the case that
F is algebraically closed, where it follows from Proposition 5.4 and Theorem 5.7 (i).

�

This suggests that also πét1 (XF (C)) ∼= Gal(F/F ); the difficulty here is to show
that every topological finite covering of XF (C) comes from an étale covering of the
schemeXF . An analogous statement in the case of C-schemes of finite type is known
under the name ‘Riemann’s existence theorem’, cf. [2, Exposé XII, Théorème 5.1].
It is, however, not known to the authors in which generality this can hold for affine
schemes of infinite type over C.

However, we can now show in a roundabout way that indeed πét1 (XF (C)) ∼=
Gal(F/F ).

Theorem 5.7. Let F be a field containing Q(ζ∞), and let F/F be an algebraic
closure.

(i) There is a canonical Gal(F/F )-equivariant homeomorphism

XF (C)
∼=→ XF × Hom(F×,R),

where the second factor denotes the set of group homomorphisms F× → R,
endowed with the compact-open topology (the topology on F× being discrete).

(ii) The homeomorphism from (i) induces a continuous map XF (C) → XF ,
which is a deformation retraction. Each fibre of this map is homeomorphic
to Hom(F×,R).

(iii) The diagram

FEt(SpecF )
Φsch

//

Φtop

��

FEt(XF )

Y 7→Y(C)

��

FCov(XF )
Ψ
// FCov(XF (C))

commutes up to isomorphism of functors, and all functors in it are equival-
ences of categories. Here the two functors Φsch and Φtop are those from The-
orems 4.11 and 5.2, respectively, and Ψ is induced by the map XF (C)→ XF

in (ii).

Proof. (i) Note that there are canonical bijections

XF (C) ∼= HomC-algebras(Wrat(F )⊗Z[µ∞] C,C)

∼= HomC-algebras(Z[F×]⊗Z[µ∞] C,C)

∼= HomC-algebras(C[F×]⊗C[µ∞] C,C)

∼= {χ ∈ Homgroups(F
×,C×) | χ|µ∞ = idµ∞}.
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Now C× ∼= S1 × R as Lie groups, and from this we obtain a product de-
composition

XF (C) ∼= {χ ∈ Hom(F×,S1) | χ|µ∞ = idµ∞} × Hom(F×,R).

The first factor is equal toXF . This bijection is clearly Gal(F/F )-equivariant,
and it is straightforward to show that it is a homeomorphism.

(ii) There is a Gal(F/F )-equivariant deformation retraction XF (C) → XF :
using the description of XF (C) from (i) we can define it as

H : XF × Hom(F×,R)× [0, 1]→ XF × Hom(F×,R)

(χ, λ, t) 7→ (χ, tλ).

By equivariance, H descends to a deformation retraction XF (C) → XF

(note that XF is the quotient of XF by the Galois group by construction,
and XF (C) is the quotient by the Galois group by Lemma 4.14). The
statement about the fibres follows from the fact that Gal(F/F ) operates
freely on XF .

(iii) That the diagram commutes up to isomorphism of functors is a direct cal-
culation. We already know that three of the functors are equivalences: Φsch

is an equivalence by Theorem 4.11, Φtop is an equivalence by Theorem 5.2,
and Ψ is an equivalence by (ii) and Corollary 2.18. Hence the fourth functor
is also an equivalence. �

6. Classical fundamental groups inside Galois groups

6.1. Path components of the spaces XF . First let F be an algebraically closed
field. To determine the set of path components of XF we need to contemplate a
large commutative diagram.

Lemma 6.1. Let F be an algebraically closed field containing Q(ζ∞). Then there
is a commutative diagram with exact rows and columns:

0

��

0

��

0

��

0 // Hom(F×tf ,R) //

��

Hom(F×tf ,S1) //

��

Ext(F×tf ,Z) //

��

0

0 // Hom(F×,R) //

��

Hom(F×,S1) //

��

Ext(F×,Z) //

��

0

0 // Hom(µ∞,S1) //

��

Ext(µ∞,Z) //

��

0

0 0

(9)

Here, all Hom and Ext groups are understood to be in the category of abelian groups.
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Proof. This diagram is essentially obtained by applying the bifunctor Hom(−,−)
and its derivative Ext(−,−) to the short exact sequences

0→ µ∞ → F× → F → 0

in the first variable and
0→ Z→ R→ S1 → 0

in the second variable. Hence it commutes by functoriality. We now show exactness
in the rows and columns.

For the rows, let A be one of the groups µ∞, F× and F×tf . Then we obtain an
exact sequence

Hom(A,Z)→ Hom(A,R)→ Hom(A, S1)→
Ext(A,Z)→ Ext(A,R).

(10)

In all three cases A is divisible, therefore the first term Hom(A,Z) vanishes; the
last term Ext(A,R) vanishes because R is divisible. In the case A = µ∞ the term
Hom(A,R) is also trivial. Hence the exact sequences (10) for these choices of A can
be identified with the rows of (9).

As to the columns, the exactness of the first column is trivial. The second column
is the exact sequence

0→ Hom(F×tf ,S
1)→ Hom(F×,S1)→ Hom(µ∞,S1)→ Ext(F×tf ,S

1)

where the last term is zero because S1 is divisible. Finally the third column is the
exact sequence

Hom(µ∞,Z)→ Ext(F×tf ,S
1)→ Ext(F×,S1)→ Ext(µ∞, S1)→ 0,

which is exact because Ext2 is zero on the category of abelian groups, and whose
first member Hom(µ∞,Z) is clearly trivial. �

Recall that by Proposition 3.1 there is a canonical bijection between πpath0 ((F×)∨)
and Ext(F×,Z). Denote by

Extexp(F×,Z) ⊂ Ext(F×,Z)

the subset of those extensions whose restriction to µ∞ ⊂ F× is isomorphic to the
exponential sequence

0→ Z→ Q→ µ∞ → 0,

i.e. the preimage of the element in Ext(µ∞,Z) encoding this extension in Ext(F×,Z).

Proposition 6.2. Let F ⊃ Q(ζ∞) be an algebraically closed field. The subset
XF ⊂ (F×)∨ is the union of those path components corresponding to the subset
Extexp(F×,Z) ⊂ Ext(F×,Z) ∼= πpath0 ((F×)∨).

Proof. The middle column in (9) can be rewritten as

0→ (F×tf)
∨ → (F×)∨ → µ∨∞ → 0,

and XF is equal to the preimage of the inclusion ι ∈ Hom(µ∞, S1) = µ∨∞. The
horizontal map (F×)∨ = Hom(F×,S1) → Ext(F×,Z) occurring in (9) is precisely
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the one taking a point in (F×)∨ to its path component. The exactness and com-
mutativity of (9) imply that XF can equally be described as the preimage of the
exponential sequence

[0→ Z→ Q→ µ∞ → 0] ∈ Ext(µ∞,Z)

in (F×)∨. �

Corollary 6.3. There is a canonical Gal(F/F )-equivariant bijection between πpath0 (XF )
and Extexp(F×,Z). �

By Theorem 5.7.(i) there is then also a Gal(F/F )-equivariant bijection between
πpath0 (XF (C)) and Extexp(F×,Z).

6.2. Multiplicatively free fields. We will now investigate conditions for XF , and
therefore also XF (C), to be path-connected. First we note that for a large class of
fields it cannot be path-connected.

Proposition 6.4. Let F ⊇ Q(ζ∞) be a field, and assume that there exists an ele-
ment α ∈ F× which is not a root of unity, such that for infinitely many n ∈ N there
exists an n-th root of α in F .

Then XF has uncountably many path components.

For example, XF has uncountably many path components for F = Q(ζ∞, p
1/∞)

with p a rational prime.

Proof. Let M ⊂ F× be the smallest saturated subgroup of F× containing α; then
µ∞ ⊂ M , and Mtf = M/µ∞ is a torsion-free abelian group of rank one, hence it
can be embedded into the additive group of Q. By construction it has unbounded
denominators, i.e. it is not contained in 1

n
Z for any n ∈ N.

The inclusion M ↪→ F× defines a continuous surjection XF → Homexp(M,S1)
which is clearly Gal(F/F )-equivariant, hence we obtain a continuous surjection
XF → Homexp(M,S1), where the target is (non-canonically) homeomorphic to M∨.
We therefore obtain a surjection πpath0 (XF )→ πpath0 (M∨).

By Proposition 3.1 there is a bijection πpath0 (M∨) ∼= Ext(M,Z). Hence we need
to show that Ext(M,Z) is uncountable.

We may assume that Z ⊂M . Then there is a short exact sequence

0→ Z→M →M/Z→ 0

and hence a long exact sequence

Hom(M,Z)︸ ︷︷ ︸
=0

→ Hom(Z,Z)︸ ︷︷ ︸
=Z

→ Ext(M/Z,Z)→ Ext(M,Z)→ Ext(Z,Z)︸ ︷︷ ︸
=0

. (11)

Letting N be the set of cyclic subgroups N ⊂ M containing Z we can then write
M = lim−→N∈NN , hence we obtain a spectral sequence with

Ep,q
2 = Rp lim←−

N∈N
Extq(N/Z,Z)⇒ Extp+q(M/Z,Z).



TOPOLOGICAL REALISATIONS OF ABSOLUTE GALOIS GROUPS 47

Since the Extq(N,Z) satisfy a Mittag-Leffler condition the higher limits vanish and
the spectral sequence degenerates at E2. We therefore obtain an isomorphism

Ext(M/Z,Z) ∼= lim←−
N∈N

Ext(N/Z,Z).

This is an inverse limit over infinitely many finite groups with surjective transition
maps, hence an uncountable profinite group. By (11) Ext(M,Z) ∼= πpath0 (M∨) must
then also be uncountable. �

Here is a class of fields where an α as in Proposition 6.4 cannot occur.

Definition 6.5. Let F be a field containing Q(ζ∞). Then F is called multiplicat-
ively free if F×tf = F×/µ∞ is a free abelian group. F is called stably multiplicatively
free if every finite extension of F is multiplicatively free.

Remark 6.6. (i) It is unknown to the authors whether there exists a field which is
multiplicatively free but not stably multiplicatively free.
(ii) Recall that a subgroup B of an abelian group A is saturated if whenever a ∈ A
and there is some n ∈ N with na ∈ B, then a ∈ B. By a result of Pontryagin
[35, Lemma 16], a torsion-free abelian group A is free if and only if every finitely
generated subgroup of A is contained in a saturated finitely generated subgroup
of A. Hence a field F ⊇ Q(ζ∞) is multiplicatively free if and only if every finite
subset of F× is contained in a saturated subgroup of F× generated (as a group) by
all roots of unity and possibly finitely many additional elements.
(iii) The condition in Proposition 6.4 and the property of being multiplicatively free
are mutually exclusive. It is again unknown to the authors whether always one or
the other holds. For general abelian torsion-free groups, not necessarily isomorphic
to F×tf for a field F , both can be false.

More precisely, there exists an abelian group A with the following properties: it
is torsion-free; it has rank two (i.e., A ↪→ A⊗Z Q ∼= Q2); for any a ∈ Ar {0} there
are only finitely many n ∈ N for which there exists b ∈ A with a = nb; it is not
free, in fact, every rank one quotient of A is divisible. This group A is constructed
in [18, Lemma 2].(††)

Proposition 6.7. Let F be an algebraic extension of Q(ζ∞) which can be written
as an abelian extension of a finite extension of Q. Then F is stably multiplicatively
free.

In particular, Q(ζ∞) is stably multiplicatively free.

Proof. We first show that F is multiplicatively free.
For a finite set S of rational primes let oF,S be the ring of S-integers in F .

By a result of May [30, Theorem] the group o×F,S/µ∞ is then free abelian. Note
that the free abelian subgroups o×F,S/µ∞ are saturated in F×/µ∞, and every finitely
generated subgroup of F×/µ∞ is contained in one of them. By [30, Lemma] F×/µ∞
must then be free abelian itself. Hence F is multiplicatively free.

(††)Here is the construction. Let ϕ ∈ End(Q/Z) ∼= End(Ẑ) ∼= Ẑ ∼=
∏

p prime Zp be such that
the component ϕp ∈ Zp at each p is transcendental over Q. Then we set A = {(a, b) ∈ Q2 |
ϕ(a mod Z) = b mod z}.
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Now let E/F be a finite extension; we can write E = F (α) for some α ∈ E.
By assumption there exists a subfield K ⊂ F which is finite over Q such that the
extension F/K is abelian. Then E/K(α) is abelian, too. By what we have just
shown E is therefore multiplicatively free. �

The Kummer pairing. For a field F containing Q(ζ∞) and an algebraic closure
F/F , let F×sat be the saturation of F× in F×, i.e. the group of all α ∈ F× such
that there exists some n ∈ N with αn ∈ F×. Note that F×sat is divisible, hence
F×sat/µ∞ = (F×sat)tf is a Q-vector space. Then there is a canonical biadditive pairing

〈·, ·〉 : Gal(F/F )× F×sat → µ∞, (σ, α) 7→ 〈σ, α〉 =
σ(α)

α
.

It clearly factors through Gal(F ab/F )× F×sat/F
×. By Kummer theory, cf. [28, sec-

tion VI.8], the maximal abelian extension F ab is obtained by adjoining all elements
of F×sat to F , and the resulting homomorphism

κ : Gal(F (F×sat)/F )→ Hom(F×sat/F
×, µ∞), σ 7→ 〈σ, ·〉 (12)

is an isomorphism.
Now assume in addition that F is stably multiplicatively free. We wish to un-

derstand the action of Gal(F/F ) on Extexp(F×,Z).
We begin by considering a saturated subgroup V ⊂ F× such that µ∞ ⊆ V ,

Vtf = V/µ∞ is a Q-vector space of finite rank, V is stable under the Galois action,
and V is the saturation of Λ = V ∩ F×. Note that then Λtf = Λ/µ∞ is a Z-lattice
in V .

Then the Galois action on V admits the following description: for α ∈ V and
σ ∈ Gal(F/F ) we obtain

σ(α) = 〈σ, α〉 · α.
Then there is also a natural action of Gal(F/F ) on Hom(V, µ∞), namely σ(χ) =
χ ◦ σ−1, that is,

σ(χ)(α) = χ(σ−1α) = χ(〈σ−1, α〉 · α) = χ(〈σ, α〉)−1 · χ(α).

Hence for the subset

Homexp(V, µ∞) = {χ ∈ Hom(V, µ∞) | χ|µ∞ = idµ∞},
which is a translate of the subgroup Hom(Vtf , µ∞) ⊂ Hom(V, µ∞), we obtain a
particularly simple description of the Galois action: for χ ∈ Homexp(V, µ∞) and
σ ∈ Gal(F/F ) we have

σ(χ) = 〈σ, ·〉−1 · χ = κV (σ)−1 · χ, (13)

where κV is the isomorphism Gal(F (V )/F )→ Hom(V/Λ, µ∞) induced by (12).

Lemma 6.8. Let F ⊇ Q(ζ∞) be a stably multiplicatively free field, let F/F be an
algebraic closure, and let V ⊂ F× be a Galois-stable saturated subgroup of finite
rank.

Then there exist
• an open subgroup H ⊆ Gal(F/F ),
• an open compact subgroup L ⊆ Hom(Vtf , µ∞) ∼= Hom(V,Af) and
• a surjective continuous group homomorphism κ : H → L
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such that H ⊆ Gal(F/F ) operates on Homexp(V, µ∞) by τ(χ) = χ + κ(τ) (where
the group structure on µ∞ is written additively).

Proof. Let B ⊂ V be a finite set which maps to a Q-basis of Vtf , and let E be
the subfield of F generated by B. Then E/F is a finite extension, hence E is
multiplicatively free. Let Λ = V ∩ E×; this is a subgroup of V containing µ∞, and
the quotient Λtf = Λ/µ∞ is a full Z-lattice in Vtf .

We set L = Hom(V/Λ, µ∞) ⊂ Hom(Vtf , µ∞); under the isomorphism

Hom(Vtf , µ∞) ∼= Hom(V,Af) ∼= Hom(Λ,Af)

it corresponds to the subgroup Hom(Λ, Ẑ), which is clearly open and compact.
We then set H = Gal(F/E) and let κ : Gal(F/E)→ Hom(V/Λ, µ∞) be the map

induced by the Kummer pairing, as in (12). From (13) we see that the H-action on
Homexp(V, µ∞) is indeed as described. �

Lemma 6.9. Let F ⊇ Q(ζ∞) be a stably multiplicatively free field, let F/F be an
algebraic closure and let V ⊂ F× be a Galois-stable saturated subgroup of finite
rank.

Then Gal(F/F ) operates transitively on Extexp(V,Z).

Proof. Using the short exact sequences 0 → Z → Q → µ∞ → 0 and 0 → µ∞ →
V → Vtf → 0 we obtain a commutative diagram with exact rows and columns
analogous to (9):

0

��

0

��

0

��

0 // Hom(Vtf ,Q) //

��

Hom(Vtf , µ∞) //

��

Ext(Vtf ,Z) //

��

0

0 // Hom(V,Q) //

��

Hom(V, µ∞) //

��

Ext(V,Z) //

��

0

0 // Hom(µ∞, µ∞) //

��

Ext(µ∞,Z) //

��

0.

0 0

Here Extexp(V,Z) is the preimage of the exponential extension εexp ∈ Ext(µ∞,Z)
in Ext(V,Z), hence a translate of the subgroup Ext(Vtf ,Z). It can therefore also
be described as the quotient of Homexp(V, µ∞), a translate of Hom(Vtf , µ∞) in
Hom(V, µ∞), by the subgroup Hom(V,Q).

From Lemma 6.8 we see that there is an open subgroup of Hom(Vtf , µ∞) on
whose translates in Homexp(V, µ∞) a suitable open subgroup H of the Galois group
acts transitively. Since the subgroup Hom(Vtf ,Q) is dense in Hom(Vtf , µ∞) ∼=
Hom(Vtf ,Af) this implies that H, and therefore also Gal(F/F ), operates trans-
itively on Extexp(V,Z). �
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Lemma 6.10. Let V ⊆ W ⊂ F× be Galois-stable saturated subgroups of finite
rank. Let also ε1, ε2 ∈ Extexp(F×,Z), and let χ(V )

1 , χ
(V )
2 ∈ Hom(V, µ∞) satisfying

the following conditions:
(i) the connecting homomorphism δ : Hom(V, µ∞)→ Ext(V,Z) induced by the

exponential sequence sends χ(V )
i to εi|V , for i = 1, 2;

(ii) χ(V )
1 and χ(V )

2 lie in the same Gal(F/F )-orbit.
Then there exist elements χ(W )

1 , χ
(W )
2 ∈ Hom(W,µ∞) such that

(iii) the connecting homomorphism δ : Hom(W,µ∞)→ Ext(W,Z) sends χ(W )
i to

εi|W , for i = 1, 2;
(iv) χ(W )

i |V = χ
(V )
i , for i = 1, 2;

(v) χ(W )
1 and χ(W )

2 lie in the same Gal(F/F )-orbit.

Proof. Again we contemplate a large commutative diagram, obtained from 0 →
V → W → W/V → 0 and the exponential sequence:

0

��

0

��

0

��

0 // Hom(W/V,Q) //

��

Hom(W/V, µ∞) //

��

Ext(W/V,Z) //

��

0

0 // Hom(W,Q) //

��

Hom(W,µ∞) //

��

Ext(W,Z) //

��

0

0 // Hom(V,Q) //

��

Hom(V, µ∞) //

��

Ext(V,Z) //

��

0

0 0 0

First we consider the problem of lifting an individual character. So, let ε ∈
Ext(F×,Z) and χ(V ) ∈ Hom(V, µ∞) with δ(χ(V )) = ε|V . A short diagram chase then
shows that there exists some χ(W ) ∈ Hom(W,µ∞) with δ(χ(W )) = ε|W and χ(W )|V =
χ(V ), and that moreover the set of all such χ(W ) is a translate of Hom(W/V,Q)
(which can be considered a subgroup of Hom(W,µ∞)).

With this preparation we find an element χ(W )
1 satisfying (iii) and (iv). We choose

some σ ∈ Gal(F/F ) with σ(χ
(V )
1 ) = χ

(V )
2 , and let ψ = σ(χ

(V )
1 ). Then ψ is our first

approximation to χ(W )
2 , and it clearly satisfies (iv) and (v), but not necessarily (iii).

From Lemma 6.8 we deduce the existence of the following objects:
• a closed subgroup H ⊆ Gal(F/F ),
• an open compact subgroup L ⊆ Hom(W/V, µ∞) ∼= Hom(W/V,Af) and
• a surjective continuous group homomorphism κ : H → L

such that on Homexp(V, µ∞) the group H ⊆ Gal(F/F ) operates by τ(χ) = χ+κ(τ)
(here we write the group structure in µ∞ additively).

Since ε2|W and δ(ψ) both restrict to ε2|V ∈ Ext(V,Z) their difference lies in
Ext(W/V,Z). Hence there exists an element α ∈ Hom(W/V, µ∞) ∼= Hom(W/V,Af)
such that δ(α) = ε2|W − δ(ψ). We let further τ ∈ H ⊆ Gal(F/F ) with κ(τ) = α.
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Finally we set χ(W )
2 = ψ + α. We check that all desired conditions are met:

(iii) χ(W )
1 was chosen such that δ(χ(W )

1 ) = ε2|W , and

δ(χ
(W )
2 ) = δ(ψ) + δ(α) = δ(ψ) + ε2|W − δ(ψ) = ε2|W .

(iv) χ(W )
1 was chosen such that χ(W )

1 |V = χ
(V )
1 , and

χ
(W )
2 |V = ψ|V + α|V = χ

(V )
2 + 0 = χ

(V )
2 .

(v) χ(W )
1 and χ(W )

2 are in the same Galois orbit because

τσ(χ
(W )
1 ) = τ(ψ) = ψ + κ(τ) = ψ + α = χ

(W )
2 . �

Proposition 6.11. Let F ⊇ Q(ζ∞) be a countable stably multiplicatively free field,
and let F/F be an algebraic closure.

Then Gal(F/F ) operates transitively on Extexp(F×,Z).

Proof. By countability we can find an ascending chain (indexed by N) of Galois-
stable subgroups µ∞ ⊂ V1 ⊂ V2 ⊂ · · · of finite rank, whose union is F×. Hence
there is a spectral sequence with

Ep,q
2 = Rp lim←−

n

Extq(Vn,Z)⇒ Extp+q(F×,Z). (14)

Since these Ext groups are taken in the category of abelian groups, the entries with
q > 1 vanish. Likewise, it is easy to see that the structure maps Hom(Vn,Z) →
Hom(Vm,Z) and Ext(Vn,Z) → Ext(Vm,Z) for n ≥ m are surjective, hence the
inverse systems in (14) satisfy a Mittag-Leffler condition, and the higher direct
images also vanish. Therefore the spectral sequence degenerates at E2, and the
natural map

Ext(F×,Z)→ lim←−
n

Ext(Vn,Z)

is an isomorphism. We deduce that the restriction

Extexp(F×,Z)→ lim←−
n

Extexp(Vn,Z) (15)

is a bijection.
Let ε1, ε2 ∈ Extexp(F×,Z). We need to show that there is a σ ∈ Gal(F/F ) with

σ(ε1) = ε2; by what we have just seen this is equivalent to σ(ε1|Vn) = ε2|Vn for all
n ∈ N. Using Lemmas 6.9 and 6.10 we inductively produce elements χ(n)

1 , χ
(n)
2 ∈

Hom(Vn, µ∞) such that the following conditions hold:

(iii) the connecting homomorphism δ : Hom(Vn, µ∞) → Ext(Vn,Z) sends χ(n)
i

to εi|Vn , for i = 1, 2 and n ∈ N;
(iv) χ(n+1)

i |Vn = χ
(n)
i for i = 1, 2 and n ∈ N;

(v) χ(n)
1 and χ(n)

2 lie in the same Gal(F/F )-orbit.
We let

Tn = {σ ∈ Gal(F/F ) | σ(χ
(n)
1 ) = χ

(n)
2 }.

By (v) each Tn is a nonempty subset of Gal(F/F ), and by (iv) the sequence of sub-
sets (Tn) is descending, i.e. Tn ⊇ Tn+1 for all n ∈ N. Moreover, Gal(F/F ) operates
continuously on Hom(Vn, µ∞) when the latter is endowed with the compact-open
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topology; since Hom(Vn, µ∞) is Hausdorff, points in this space are closed, hence the
Tn are closed subsets of Gal(F/F ).

Now we can apply Cantor’s Intersection Theorem (Lemma 4.10 above) to con-
clude that ⋂

n∈N

Tn 6= ∅.

By construction, any element in this intersection sends ε1 to ε2. �

Remark 6.12. The reader may wonder why we do not simply proceed as follows to
prove Proposition 6.11. For any Galois-stable saturated subgroup V ⊂ F× of finite
rank we set UV = {σ ∈ Gal(F/F ) | σ(ε1|V ) = ε2|V }; this is a coset of the stabiliser
of ε1|V , and it is nonempty by Lemma 6.9. Then an application of Lemma 4.10
should show that the intersection of all UV is nonempty.

The problem with this argument is that UV is not closed, only an Fσ-subset (a
countable union of closed subsets). Rigidifying the situation by adding the auxiliary
conditions that the lifts χ(n)

i ∈ Hom(V, µ∞) also be fixed replaces the UV by the
closed subsets TV , which allows us to apply Lemma 4.10.

Corollary 6.13. Let F be a countable stably multiplicatively free field. Then XF

and XF (C) are path-connected.

Proof. By Corollary 6.3 and Proposition 6.11, Gal(F/F ) operates transitively on
πpath0 (XF ), hence XF = Gal(F/F )\XF is path-connected. By Theorem 5.7.(ii) then
also XF (C) is path-connected. �

6.3. Classical fundamental groups of the spaces XF . It will be convenient
to fix a basepoint χ̃ ∈ XF and denote its image in XF by χ. Then p : (XF , χ̃) →
(XF , χ) is a universal profinite covering space. Recall that there is then a short
exact sequence of abstract groups (6) which in our case becomes

1→ πpath1 (XF , χ̃)
p∗→ πpath1 (XF , χ)

α→ Stabπét
1 (XF ,χ) X

◦
F
→ 1.

Since XF is homeomorphic to the Pontryagin dual of a Q-vector space its clas-
sical fundamental group πpath1 (XF , χ̃) is trivial by Corollary 3.4, hence α maps
πpath1 (XF , χ) isomorphically to the stabiliser. The latter can be rewritten: the
set πpath0 (XF ) is in canonical bijection with Extexp(F×,Z), and this bijection is
equivariant for the isomorphism πét1 (XF , χ) ∼= Gal(F/F ). Hence we have shown the
following:

Proposition 6.14. Let F ⊇ Q(ζ∞) be a field, and let χ̃ ∈ XF . Denote the image
of χ̃ in XF by χ, and let ε ∈ Extexp(F×,Z) be the pullback of the extension

[0→ Z→ R→ S1 → 0] ∈ Ext(S1,Z)

along χ̃.
Then πpath1 (XF , χ) is canonically isomorphic to the stabiliser of ε in Gal(F/F ).

�

This stabiliser seems to be hard to determine in general. However, in the count-
able stably multiplicatively free case we can at least say that it is large.
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Proposition 6.15. Let F ⊇ Q(ζ∞) be a countable stably multiplicatively free field,
and let χ ∈ XF be any basepoint. Then the image of πpath1 (XF , χ) is a dense subgroup
of Gal(F/F ).

Proof. If F is countable and stably multiplicatively free then so is any finite exten-
sion E of F . Hence all coverings XE defined by finite extensions of F are path-
connected by Corollary 6.13. By Theorem 5.2 every connected covering space of XF

is of this form, therefore XF is stably path-connected. Hence by Proposition 2.30
the image of πpath1 (XF , χ) in πét1 (XF , χ) ∼= Gal(F/F ) is dense. �

This applies in particular to F = Q(ζ∞).

The fundamental group as an inverse limit. Let F ⊇ Q(ζ∞) be a countable stably
multiplicatively free field. We shall write πpath1 (XF ) as an inverse limit of discrete
groups which are extensions of finite groups by free abelian groups of finite rank.
In particular, πpath1 (XF ) will be endowed with a non-discrete topology.

Fix an algebraic closure F/F , and let L(F/F ) denote the set of all subgroups
Λ < F× satisfying the following conditions:

(i) Λ contains µ∞, and Λtf = Λ/µ∞ is a free abelian group of finite rank.
(ii) Λ is stable under Gal(F/F ).
(iii) Set E = F (Λ); this is a finite Galois extension of F by (i) and (ii). Also,

let V be the saturation of Λ in F×. Then E× ∩ V = Λ.
(iv) For every σ ∈ Gal(E/F ) there exists a λ ∈ Λ such that σ(λ)/λ = ζn, where

n is the order of σ in Gal(E/F ).

Lemma 6.16. Let F ⊇ Q(ζ∞) be a stably multiplicatively free field with algebraic
closure F . Then F× can be written as the filtered union

F× =
⋃

Λ∈L(F/F )

Λ.

Proof. Let α1, . . . , αn ∈ F×; we need to find a Λ ∈ L(F/F ) with α1, . . . , αn ∈ Λ.
First let E be the Galois closure of F (α1, . . . , αn) in F . By Hilbert’s Theorem 90

in the form already used in the proof of Lemma 4.12, for every σ ∈ Gal(E/F ) there
exists some λσ ∈ E× such that σ(λσ)/λσ = ζn. Let V be the smallest saturated
subgroup of F× containing the λσ and all Galois conjugates of α1, . . . , αn. Then Vtf

is a Q-vector space of finite rank, and Λ = E× ∩ V will be an element of L(F/F )
containing α1, . . . , αn. �

For Λ ∈ L(F/F ) set XF (Λ) = Homexp(Λ,S1). There is a natural continuous action
of Gal(F/F ) on XF (Λ), and we set XF (Λ) = Gal(F/F )\XF (Λ).

Lemma 6.17. Let F ⊇ Q(ζ∞) be a stably multiplicatively free field, and let F/F
be an algebraic closure.

(i) For every Λ ∈ L(F/F ) the space XF (Λ) is homeomorphic to a torus of
dimension rankΛ. For any basepoint χ ∈ XF (Λ) there is a canonical iso-
morphism

πpath1 (XF , χ) ∼= Hom(Λ,Z).
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(ii) Let Λ ∈ L(F/F ) and let E be the subfield of F generated by Λ, a finite
Galois extension of F . Then the action of Gal(F/F ) on XF (Λ) factors
through Gal(E/F ), and the induced action of Gal(E/F ) is free. Hence
XF (Λ)→ XF (Λ) is a finite covering.

(iii) For any basepoint χ ∈ XF (Λ) there is a natural exact sequence

1→ Hom(Λ,Z)→ πpath1 (XF (Λ), χ)→ Gal(E/F )→ 1.

Proof. For (i) note thatXF (Λ) is a translate of the subgroup Λ∨tf in Λ∨; this subgroup
is a torus whose classical fundamental group is canonically isomorphic to Hom(Λ,Z).

As to (ii), it is clear that the Galois action factors through Gal(E/F ). We will now
show that the induced action of this finite group is free. Let 1 6= σ ∈ Gal(E/F )
be an element of order n > 1, and assume that there is some χ ∈ XF (Λ) with
σ(χ) = χ. By condition (iv) in the definition of L(F/F ) there exists some λ ∈ Λ
with σ(λ)/λ = ζn. But then

e2πi/n = χ(ζn) =
χ(σ(λ))

χ(λ)
=
σ(χ)(λ)

χ(λ)
=
χ(λ)

χ(λ)
= 1,

a contradiction. Therefore σ cannot have a fixed point in XF (Λ), and the action is
free.

Part (iii) then follows easily (note that these spaces are path-connected and locally
path-connected, in fact manifolds, so the classical theory of fundamental groups and
covering spaces applies). �

Proposition 6.18. Let F ⊇ Q(ζ∞) be a stably multiplicatively free field with algeb-
raic closure F/F . Then the canonical map

XF → lim←−
Λ∈L(F/F )

XF (Λ) (16)

is a homeomorphism.

Proof. Consider first the map XF → lim←−XF (Λ) = lim←−Gal(F/F )\XF (Λ). This is
clearly surjective, and if two elements of XF have the same image they must be
in the same Galois orbit, by an argument using Lemma 4.10 (Cantor’s Intersection
Theorem) similar to that used in the proof of Proposition 6.11. Hence the map (16)
is bijective. It is also continuous, and domain and target are compact Hausdorff
spaces. Therefore it is a homeomorphism. �

Proposition 6.19. Let F ⊇ Q(ζ∞) be a countable stably multiplicatively free field
with algebraic closure F . Choose a basepoint χ ∈ XF , and for each Λ ∈ L(F/F )
denote its image in XF (Λ) by χΛ. Then the natural map

πpath1 (XF , χ)→ lim←−
Λ∈L(F/F )

πpath1 (XF (Λ), χΛ) (17)

is an isomorphism.

Proof. Since F (hence also F ) is countable, there exists a cofinal sequence (Λn)n∈N
in L(F/F ). To see this, choose an enumeration F = {a1, a2, a3, . . .} and choose
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the Λn inductively in such a way that Λn ⊆ Λn+1 and a1, . . . , an ∈ Λn. Hence
XF → lim←−nXF (Λn) is is also a homeomorphism, and it suffices to show that

πpath1 (XF , χ)→ lim←−
n∈N

πpath1 (XF (Λn), χΛn)

is an isomorphism.
For each n ∈ N there is a commutative diagram

XF (Λn+1)

��

p̃
// XF (Λn)

��

XF (Λn+1) p
// XF (Λn)

where p̃ is a fibration and the vertical maps are finite coverings. Therefore p is also
a fibration.

In general if (Xn)n∈N is a projective system of pointed topological spaces where
the transition maps are fibrations, then there is a short exact sequence

1→ R1 lim←−
n∈N

πpath
2 (Xn)→ πpath1 (X)→ lim←−

n∈N
πpath1 (Xn)→ 1

of abstract groups (compatible choice of basepoints understood), see [13] (see also
[24, Theorem 2.1] for a more elementary exposition). Hence in our case there is a
short exact sequence

1→ R1 lim←−
n∈N

πpath
2 (XF (Λn))→ πpath1 (XF )→ lim←−

n∈N
πpath1 (XF (Λn))→ 1.

Since theXF (Λn) admit finite covering spaces which are tori, their second homotopy
groups vanish. �

Proposition 6.20. The loop topology turns πpath1 (XF , χ) into a topological group
with a basis of open neighborhoods of the identity given by open subgroups, hence
it is equal to the τ - and σ-topologies. If we endow each πpath1 (X(Λ), χΛ) with the
discrete topology, then (17) becomes an isomorphism of topological groups.

Moreover, πpath1 (XF , χ) is complete for this topology, hence πpath1 (XF , χ) ∼= πGal
1 (XF , χ)

is a Noohi group.

Proof. Since the XF (Λ) are manifolds, their classical fundamental groups are dis-
crete for the loop topology. Consider the commutative diagram

Ω(XF , χ) //

��

lim←−
Λ∈L(F/F )

Ω(XF (Λ), χΛ)

��

πpath1 (XF , χ)
(17)
// lim←−
Λ∈L(F/F )

πpath1 (XF (Λ), χΛ).

Here the upper horizontal map is a homeomorphism and the vertical maps are open.
Hence (17) is a bijection which is continuous and open, hence also a homeomorph-
ism.
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A quasi-topological group which is a projective limit of topological groups is itself
a topological group, and hence the loop and τ -topologies on πpath1 (XF , χ) agree.
Since πpath1 (X,χ) is a projective limit of discrete groups its τ - and σ-topologies
agree, and it is complete. �

In particular we find that the loop topology turns πpath1 (XF ), which we may
identify with a subgroup of Gal(F/F ), into a complete topological group whose
topology is strictly finer than the subspace topology induced from the Krull topology
on Gal(F/F ), because it has infinite discrete quotients.

7. Cohomology

We will next show how to realise Galois cohomology groups with constant coeffi-
cients as suitable cohomology groups of the spaces XF and the schemes XF .

7.1. The Cartan–Leray spectral sequence. Consider the following situation:
X is a compact Hausdorff space and G is a profinite group operating freely and
continuously on X, with quotient space Y = G\X. We will construct a spectral
sequence relating the (sheaf) cohomologies of X and Y with the continuous group
cohomology of G.

Continuous group cohomology. Let G be a profinite group. A continuous G-module
is an abelian group A with a G-operation which becomes continuous when A is
endowed with the discrete topology. The continuous G-modules form an abelian
category G-Mod in an obvious way; this category has enough injectives. The
functor (−)G : G-Mod→ Ab sending a G-module A to its invariant submodule AG
is left exact. Hence we obtain a total derived functor between derived categories
R(−)G : D(G-Mod) → D(Ab), and derived functors in the classical sense which
we call continuous group cohomology :

Hp(G,A) = Rp(−)G(A).

Note that this may well differ from the classical group cohomology Hp(Gδ, A) where
Gδ is G as an abstract group. However, there is a canonical isomorphism

lim−→
H

Hp(G/H,AH) ∼= Hp(G,A),

where the limit is over all normal open subgroups H of G, cf. the discussion in [40,
section 2.2].

For a field F with separable closure F/F and a continuous Gal(F/F )-module A
we write shortly

Hm(F,A) = Hm(Gal(F/F ), A);

these groups are called Galois cohomology groups. Note that if A is an abelian group
interpreted as a constant module for the Galois group, then Hm(F,A) does not
depend on the choice of a separable closure of F , i.e. for another separable closure
F ′/F there is a canonical isomorphism Hm(Gal(F ′/F ), A) ∼= Hm(Gal(F/F ), A); this
justifies the notation Hm(F,A).
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Equivariant sheaves and their cohomology. Let X be a compact Hausdorff space
and G a profinite group operating continuously and freely on X. There are several
ways to define the category ShG(X) of G-equivariant abelian sheaves on X.

For instance, a sheaf of abelian groups A on X corresponds to an espace étalé
π : A→ X, which is a topological space A with a local homeomorphism π : A→ X
and an abelian group structure in the category of X-spaces. Here π−1(x) ∼= Ax (the
stalk), and for an open set U ⊆ X sections of A on U are the same as continuous
sections of the map π−1(U) → U . Then we define a G-equivariant sheaf on X to
be a sheaf A of abelian groups on X together with a lift of the G-action on X to a
continuous G-action on A. For a more ‘modern’ definition that is more amenable
to generalisations see e.g. [37, section 1].

Again the G-equivariant sheaves on X form an abelian category ShG(X) with
enough injectives; there is a canonical equivalence ShG(∗) ' G-Mod, where ∗
denotes the one-point space.

For a G-equivariant sheaf A the group Γ(X,A) of global sections comes naturally
with a continuous G-action. Hence we obtain a left exact functor

ΓX,G : ShG(X)→ G-Mod, A 7→ Γ(X,A).

For aG-equivariant sheafA onX we then obtain a complex RΓX,G(A) ∈ D(G-Mod);
but we may also forget its G-structure and apply the derived functor of the usual
global sections functor ΓX : Sh(X)→ Ab to it.

Lemma 7.1. ForA ∈ ShG(X) the complex of abelian groups underlying RΓX,G(A) ∈
D(G-Mod) (i.e. its image in D(Ab)) is canonically isomorphic to the complex
RΓX(A).

In particular, the cohomology groups of either of these complexes become continu-
ous G-modules whose underlying abelian groups are the ordinary sheaf cohomology
groups Hp(X,A).

Proof. This follows directly from the fact, proved in [37, Corollary 3], that the
forgetful functor ShG(X) → Sh(X) sends injective objects to soft sheaves, hence
sends an injective resolution of A in ShG(X) to an acyclic resolution of A in Sh(X).

�

Sheaves on the quotient. Let X and G as before, and consider the quotient map
p : X → G\X = Y . There is a canonical equivalence of abelian categories between
ShG(X) and Sh(Y ), which can again be described rather simply in terms of espaces
étalés:

If B is a sheaf of abelian groups on Y with espace étalé B, then π−1B has a
natural G-structure since its espace étalé is the fibre product B ×Y X, where G
operates on the second factor. Vice versa, if A is a G-equivariant sheaf on X with
espace étalé A, we may form the quotient G\A→ Y which is the espace étalé of a
sheaf on Y . It is not hard to see that these two constructions are mutually inverse.

Proposition 7.2. Let X be a compact Hausdorff space and let G be a profinite
group acting continuously and freely on X, with quotient Y = G\X. Let A be an
abelian group, and denote the constant sheaves on X and Y modelled on A by AX
and AY , respectively; endow AX with the tautological G-operation. Then there is a
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natural isomorphism in D(Ab):

R(−)G (RΓX,G(AX)) ∼= RΓY (AY ).

Proof. Consider the following diagram of left exact functors between abelian cat-
egories:

Sh(Y )

ΓY
��

'
// ShG(X)

ΓX,G
��

Ab G-Mod
(−)G
oo

It is easy to see that it is commutative up to isomorphism of functors.
The equivalence on the upper horizontal line sends AY to AX , as can be seen on

their espaces étalés, which are simply A× Y and A×X with G operating trivially
on A. The claim then follows by the chain rule for derived functors R(F ◦ G) ∼=
RF ◦ RG. �

Corollary 7.3. With the same assumptions as in Proposition 7.2 there is a spectral
sequence with

Ep,q
2 = Hp(G,Hq(X,A))⇒ Hp+q(Y,A),

where Hp(G,−) denotes continuous group cohomology, and Hq(X,A) and Hp+q(Y,A)
denote sheaf cohomology. �

Proposition 7.2 and Corollary 7.3 have analogues in étale cohomology. We content
ourselves with stating the analogue of the latter.

Proposition 7.4. Let X → Y be a pro-étale Galois covering of schemes, with a
profinite deck transformation group G, and let A be an abelian group. Then there
is a natural spectral sequence with

Ep,q
2 = Hp(G,Hq

ét(X, A))⇒ Hp+q
ét (Y, A).

Proof. This is shown in [31, Chapter III, Remark 2.21.(b)]. Here is a brief summary
of the proof.

First we assume that G is finite. Then X is an object of the small étale site of
Y on which G acts by automorphism, hence the functor

Sh(Yét)→ G-Mod, F 7→ Γ(X,F),

is well-defined. Its composition with the forgetful functor G-Mod → Ab is the
usual global sections functor. Hence we obtain a spectral sequence relating the
derived functors of these functors.

We deduce the general case by passing to the limit over all coverings H\X →Y

with H ⊆ G an open normal subgroup. �

7.2. The cohomology of XF and XF . We can now compute some cohomology
groups of these spaces using the Cartan–Leray spectral sequence. We discuss the
topological case in detail, the étale case for torsion coefficients is analogous.

We begin by computing the cohomology of XF when F is algebraically closed.

Proposition 7.5. Let F be an algebraically closed field containing Q(ζ∞).
(i) Let A be an abelian torsion group. Then H0(XF , A) = A and Hp(XF , A) = 0

for all p > 0.
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(ii) There is a canonical isomorphism of graded algebras⊕
p≥0

Hp(XF ,Q) ∼=
⊕
p≥0

∧p

Q
F×tf .

(iii) H0(XF ,Z) = Z, and for each p > 0 the inclusion Z ↪→ Q induces an
isomorphism Hp(XF ,Z) ∼= Hp(XF ,Q).

Proof. Recall that XF is a translate of the subgroup (F×tf)
∨ ⊂ (F×)∨. Hence for any

χ ∈ XF we obtain a homeomorphism tχ : (F×tf)
∨ → XF by tχ(ω) = χω, and there-

fore an isomorphism of cohomology groups t∗χ : H•(XF , A) → H•((F×tf)
∨, A). These

depend continuously on χ ∈ XF , but since XF is connected, they must be independ-
ent of χ. Hence we obtain a canonical isomorphism H•(XF , A) ∼= H•((F×tf)

∨, A), and
the statements follow from Proposition 3.8. �

Theorem 7.6. Let F be a field containing Q(ζ∞).
(i) For every abelian torsion group A and every m ≥ 0 there is a natural

isomorphism
Hm(XF , A) ∼= Hm(F,A).

(ii) For each m ≥ 0 there are natural isomorphisms

Hm(XF ,Q) ∼=
(∧m

Q
F×tf

)Gal(F/F )

.

In low degrees this simplifies to

H0(XF ,Q) = Q and H1(XF ,Q) ∼= F× ⊗Z Q.

(iii) The cohomology groups with integral coefficients begin with

H0(XF ,Z) = Z and H1(XF ,Z) ∼= F×tf .

Proof. We consider the Cartan–Leray spectral sequence as in Corollary 7.3 for X =
XF , G = Gal(F/F ) and Y = XF :

Ep,q
2 = Hp(Gal(F/F ),Hq(XF , A)⇒ Hp+q(XF , A). (18)

(i) If A is torsion then Hq(XF , A) = 0 for all q > 0 by Proposition 7.5, hence the
spectral sequence (18) degenerates at E2 and we obtain an isomorphism Hp(Gal(F/F ), A) ∼=
Hp(XF , A).
(ii) Consider the spectral sequence (18) forA = Q. All cohomology groups Hq(XF ,Q)
are Q-vector spaces, hence have trivial Galois cohomology, so Ep,q

2 = 0 for p 6= 0.
Again the spectral sequence (18) degenerates at E2 and we obtain isomorphisms

H0(Gal(F/F ),Hq(XF ,Q) ∼= Hq(XF ,Q).

Using Proposition 7.5.(ii) we can rewrite this in the desired form. It is clear that
H0(XF ,Q) = Q; for the calculation of H1(XF ,Q) we need that the Galois invariants
in F×tf are isomorphic to F× ⊗ Q. To see this consider the short exact sequence of
Galois modules

0→ µ∞ → F× → F×tf → 0
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and the associated long exact Galois cohomology sequence

0→ µ∞ → F× → (F×tf)
Gal(F/F ) → Hom(Gal(F/F ), µ∞)→ · · ·

which shows that the cokernel of the inclusion F×tf → (F×tf)
Gal(F/F ) is a torsion group.

Hence F× ⊗Q→ (F×tf)
Gal(F/F ) must be an isomorphism.

(iii) Consider the long exact cohomology sequence for the short exact sequence of
coefficient groups 0→ Z→ Q→ µ∞ → 0:

· · · → Q � µ∞
0→ H1(XF ,Z)→ H1(XF ,Q)→ H1(XF , µ∞)→ · · · .

We see that H1(XF ,Z) is the kernel of the map H1(XF ,Q)→ H1(XF , µ∞). By (ii)
the domain of this map is isomorphic to F× ⊗ Q ∼= (F×sat)tf , by (i) the target is
isomorphic to H1(Gal(F/F ), µ∞) = Hom(Gal(F/F ), µ∞). A tedious but straight-
forward calculation shows that this map

(F×sat)tf → Hom(Gal(F/F ), µ∞)

is given by α 7→ 〈−, α〉, where 〈−,−〉 is the Kummer pairing discussed in section 6.2.
Hence its kernel is precisely F×tf . �

Remark 7.7. Even for A = Z the spectral sequence (18) gets somewhat simplified,
namely then Ep,q

2 = 0 whenever p 6= 0 and q 6= 0. This is because then Hq(XF ,Z) is
a Q-vector space by Proposition 7.5.(iii), hence all higher Galois cohomology groups
for this space vanish.

In a similar vein we can identify Galois cohomology with constant torsion coeffi-
cients with étale cohomology of XF :

Theorem 7.8. Let F ⊇ Q(ζ∞) be a field and let A be an abelian torsion group,
viewed as a trivial Galois module. Then for every m ≥ 0 there is a canonical
isomorphism

Hm
ét(XF , A) ∼= Hm(F,A).

Proof. Consider the Cartan–Leray spectral sequence as in Proposition 7.4:

Ep,q
2 = Hp(Gal(F/F ),Hq

ét(XF , A))⇒ Hp+q
ét (XF , A).

Since XF
∼= SpecC[F×tf ] as a scheme, Hq(XF , A) = 0 for all q > 0 by Proposi-

tion 3.14. Hence the spectral sequence degenerates at E2, and the claim follows. �

The Galois symbol. Recall that for a field F and an integer m ≥ 0 the m-th Milnor
K-group KM

m(F ) is defined as the quotient of the m-th exterior power
∧m

Z F
× by

the subgroup generated by all expressions of the form α ∧ (1 − α) ∧ β2 ∧ · · · ∧ βm
for α ∈ F r {0, 1} and βi ∈ F×. In other words, the graded algebra

⊕
m≥0 KM

m(F )

is the quotient of the exterior algebra
∧• F× by the two-sided homogeneous ideal

generated by all α ∧ (1− α) with α ∈ F r {0, 1}. See [32] for more information.
The Milnor K-groups are related to the more universal and well-known Quil-

len K-groups Km(F ) as follows. There are canonical isomorphisms K0(F ) ∼= Z and
K1(F ) ∼= F×. There is therefore a unique multiplicative extension

∧•
Z F

× → K•(F );
it factors degreewise through a homomorphism KM

m(F ) → Km(F ). This is an iso-
morphism for m = 0, 1 by construction and for m = 2 by Matsumoto [29], see
also [32, §12].
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For n prime to the characteristic of F there is a canonical homomorphism

∂ : F× → H1(F,Z/nZ(1)) = H1(Gal(F/F ), µn)

that sends α ∈ F× to the cohomology class ∂α defined by the crossed homomorph-
ism Gal(F/F ) → µn sending σ to σ( n

√
α)/ n
√
α. Taking cup products this extends

to a homomorphism of graded rings⊕
m≥0

∧m
F× →

⊕
m≥0

Hm(F,Z/nZ(m)), α1 ∧ · · · ∧ αm 7→ ∂α1 ∪ · · · ∪ ∂αm. (19)

For any α ∈ F r {0, 1} the relation ∂α ∪ ∂(1 − α) = 0 holds in H2(F,Z/nZ(2)).
Hence (19) factors through the Milnor K-groups of F , defining the Galois symbols

∂m : KM
m(F )→ Hm(F,Z/nZ(m)).

The Bloch–Kato conjecture [7, p. 118], now a theorem due to Voevodsky [45, The-
orem 6.1], asserts that for every field F , every integer m ≥ 0 and every n ∈ N prime
to the characteristic of F the induced group homomorphism

KM
m(F )⊗ Z/nZ→ Hm(F,Z/nZ(m))

is an isomorphism.
Assume now that F contains Q(ζ∞); then we may ignore Tate twists. By The-

orem 7.6.(i) we obtain therefore an isomorphism

∂mn : KM
m(F )⊗ Z/nZ→ Hm(XF ,Z/nZ); (20)

taking an inductive limit over all n ∈ N we can also construct an isomorphism

∂m∞ : KM
m(F )⊗Q/Z→ Hm(XF ,Q/Z).

Note also that ∂1
n lifts canonically to an isomorphism ∂1 : KM

1 (F ) = F× → H1(XF ,Z)
by Theorem 7.6.(iii). However, for α ∈ F r {0, 1} the element ∂1(α) ∪ ∂1(1− α) ∈
H2(XF ,Z) is nonzero since its image in H2(XF ,Q) is nonzero by Theorem 7.6.(ii).
In particular the resulting homomorphism∧m

Z
F× → Hm(XF ,Z), α1 ∧ · · · ∧ αm 7→ ∂1(α1) ∪ · · · ∪ ∂1(αm)

does not factor through KM
m(F ) for any m ≥ 2 and any field F ⊇ Q(ζ∞).

Proposition 7.9. Let F ⊇ Q(ζ∞) be a field.
(i) For every m ≥ 0 the homomorphism

Hm(XF ,Q)→ Hm(XF ,Q/Z)

is surjective.
(ii) For every m ≥ 0 the group Hm(XF ,Z) is torsion-free.

Proof. Consider the commutative diagram∧m
Q(F× ⊗Q) //

��

KM
m(F )⊗Q/Z

��

Hm(XF ,Q) // Hm(XF ,Q/Z).

Here the upper horizontal map is surjective by construction, and the right vertical
map is surjective by the Bloch–Kato conjecture. Hence the lower horizontal map
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has to be surjective as well, which proves (i). The map from (i) is part of a long
exact sequence

· · · →Hm(XF ,Z)→ Hm(XF ,Q)→ Hm(XF ,Q/Z)
δm→

Hm+1(XF ,Z)→ Hm+1(XF ,Q)→ Hm+1(XF ,Q/Z)
δm+1

→ · · · .

By (i) the connecting homomorphisms δm have to vanish, hence the short sequences

0→ Hm(XF ,Z)→ Hm(XF ,Q)→ Hm(XF ,Q/Z)→ 0

are also exact. Therefore Hm(XF ,Z) injects into a Q-vector space, which proves (ii).
�

8. The cyclotomic character

In this section we develop a variant of the preceding constructions that works also
for fields which do not contain all roots of unity, provided their absolute Galois
groups are pro-`-groups. We will summarise the necessary structural results, the
proofs being very similar to the case treated before, and then discuss in more detail
some actions on cohomology groups that only become nontrivial in this new case.

8.1. A variant with (some) roots of unity. Throughout this section we fix a
rational prime ` and a perfect field F with algebraic closure F whose characteristic
is not equal to ` (but may well be positive) such that Gal(F/F ) is a pro-`-group.

We write µn for the group of all n-th roots of unity in F , where n ∈ N. We also
set

µ`∞ =
⋃
n∈N

µ`n and µ`′ =
⋃

n∈Nr`N

µn.

The groups µ`n for n < ∞ are cyclic of order `n. There is a continuous group
homomorphism

χ`,F : Gal(F/F )→ Autµ`∞
∼=→ Z×`

called the `-adic cyclotomic character and characterised by σ(ζ) = ζχ`,F (σ) for all
σ ∈ Gal(F/F ) and ζ ∈ µ`∞ . Its kernel is the group Gal(F/F (ζ`∞)), and the
possibilities for its image are rather restricted.

Proposition 8.1. Let n be maximal such that µ`n ⊂ F . If ` is odd or if n > 1, the
image of Gal(F/F ) under the `-adic cyclotomic character is equal to the subgroup

U`n
def
= 1 + `nZ` ⊂ Z×` .

If ` = 2 and n = 1, there is some m ∈ {2, 3, 4, . . . ,∞} such that the image is
generated by U2m ⊂ Z×2 and −1 ∈ Z×2 , where we set U2∞ = {1}.

Proof. By assumption, this image H = imχ`,F is a closed subgroup of Z×` which
is contained in U`n but not contained in U`n+1 . If ` is odd or n > 1, the `-adic
exponential series defines an isomorphism of topological groups `nZ` → U`n . Any
closed subgroup of Z` is an ideal, hence of the form `mZ` for 0 ≤ m ≤ ∞, and an
ideal contained in `nZ` but not contained in `n+1Z` must be equal to `nZ`.
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The case ` = 2 and n = 1 remains. Here the exponential series defines an
isomorphism 4Z2 → U4, hence by the previous argument we find that H∩U4 = U2m

for some 2 ≤ m ≤ ∞. From the short exact sequence

0→ 4Z2
exp→ U4 → {±1} → 0

and the assumption that H * U4 we conclude that H = ±U2m . �

By considering algebraic extensions of finite fields we see that all of these pos-
sibilities do occur. For another example, if F is a real closed field, then ` = 2 and
n = 1, and the image of χ2,F : Gal(F/F ) ↪→ Z×2 is simply {±1} ⊂ Z×2 .

We will only formulate our main results in this section for the case where imχ`,F =
U`n , the case imχ2,F = ±U2m being similar.

The spaces Y`n,F . For each n ∈ N ∪ {∞} and each perfect field F of characteristic
different from ` with µ`n ⊂ F and each injective character ι : µ`n → S1 we will now
define a topological space Y`n,F (ι). We start with the algebraically closed case and
let

Y`n,F (ι) = {χ ∈ Hom(F×/µ`′ ,S1) | χ|µ`n = ι}
where ‘Hom’ denotes group homomorphisms; this space is endowed with the compact-
open topology. The Galois group Gal(F/F ) operates continuously on Y`n,F (ι), and
we set

Y`n,F (ι) = Gal(F/F )\Y`n,F (ι).

Proposition 8.2. Let ` be a rational prime and F a perfect field of characteristic
different from ` such that Gal(F/F ) is a pro-`-group. Let n ∈ N ∪ {∞} such that
µ`n ⊂ F and let ι : µ`n → S1 be an injective character.

(i) Y`n,F (ι) is a nonempty compact Hausdorff space.
(ii) Gal(F/F ) operates freely and properly on Y`n,F (ι).

Proof. The proof is essentially analogous to that of Proposition 5.1.(i) and (ii).
For the freeness in (ii) we use Lemma 8.3 below, which is similar to Lemma 4.12
above. �

Lemma 8.3. Let ` and F be as in Proposition 8.2, and let k be a field. Then
Gal(F/F ) operates freely on the set Ì (F , k) of all group homomorphisms F× → k×

which are injective on µ`∞ and trivial on µ`′.

Proof. Let σ ∈ Gal(F/F ) be different from the identity element, and let χ ∈
Ì (F , k). We need to show that σ(χ) 6= χ.

Replacing F by the fixed field of σ we may assume that σ topologically gener-
ates Gal(F/F ). Since Gal(F/F ) is a pro-`-group, it is then either finite cyclic or
isomorphic to Z`.

In the first case it has to be cyclic of order 2 by the Theorem of Artin–Schreier,
and F has to be real closed. Then χ(ζ4) is a primitive fourth root of unity in k,
and σ(χ)(ζ4) = χ(σ(ζ4)) = χ(ζ−1

4 ) = χ(ζ4)−1 6= χ(ζ4), hence χ 6= σ(χ).
In the second case we let E be the fixed field of σ`, so that E/F is a cyclic

extension of degree `. By Hilbert’s Theorem 90 we find some α ∈ E with σ(α)/α =
ζ`, and since χ(ζ`) 6= 1 we then find σ(χ)(α) 6= χ(α), i.e. χ 6= σ(χ). �

It is here that the assumption that Gal(F/F ) is a pro-`-group is used.
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Lemma 8.4. Let ` and F as before, and assume that the image of χ`,F : Gal(F/F )→
Z×` is equal to U`n for some n ∈ N∪{∞}. Let ι : µ`n → S1 be an injective character
and let ι̃ : µ`∞ → S1 be an injective character with ι̃|µ`n = ι.

Then the spaces Y`n,F (ι) and Y`∞,F (ζ`∞ )(ι̃) are canonically homeomorphic.

Proof. There is a tautological inclusion Y`∞,F (ι̃) ↪→ Y`n,F (ι), which is equivariant
for the group inclusion Gal(F/F (ζ∞)) ↪→ Gal(F/F ). It therefore descends to a
continuous map Y`∞,F (ζ`∞ )(ι̃) → Y`n,F (ι), and since the spaces under consideration
are compact Hausdorff spaces, it suffices to show that this map is a bijection.

Note that Y`n,F (ι) is the disjoint union (as sets, not as topological spaces!)⋃
j∈Hom(µ`∞ ,S1)

j|µ`n=ι

Y`∞,F (j),

and the subgroup Gal(F/F (ζ`∞)) ⊂ Gal(F/F ) preserves each summand while the
quotient Gal(F (ζ`∞)/F ) ∼= U`n permutes the summands simply transitively. There-
fore the quotient of each summand by its stabiliser Gal(F/F (ζ`∞)) maps bijectively
to the quotient of the whole set by Gal(F/F ). �

Proposition 8.5. Let ` and F be as before with imχ`,F = U`n and let ι : µ`n ↪→ S1.
Then Y`n,F (ι) is connected.

Proof. By Lemma 8.4 we may assume that n =∞. Then Y`∞,F (ι) is homeomorphic
to the Pontryagin dual of the torsion-free group F×/µ`′µ`∞ = F×/µ∞, hence it is
connected. Therefore its quotient Y`∞,F (ι) is also connected. �

Proposition 8.6. Let `, F , n, ι and ι̃ as before.
(i) The étale fundamental group of Y`∞,F (ι̃) is trivial.
(ii) The étale fundamental group of Y`n,F (ι) is isomorphic to Gal(F/F (ζ`∞));

this isomorphism is canonical up to inner automorphisms.

Proof. For (i) note that Y`∞,F (ι̃) is homeomorphic to the Pontryagin dual of F×/µ∞,
aQ-vector space. Hence Y`∞,F (ι̃) is the universal profinite covering space of Y`∞,F (ζ`∞ )

by Proposition 8.2. It follows that the deck transformation group Gal(F/F (ζ`∞))
is isomorphic to the étale fundamental group of Y`∞,F (ζ`∞ )(ι̃); by Lemma 8.4 this
space is canonically homeomorphic to Y`n,F (ι). �

Theorem 8.7. Let `, F , n and ι as before, and let A be an abelian torsion group.
Then there are canonical isomorphisms

Hm(Y`n,F , A) ∼= Hm(F (ζ`∞), A)

and

Hm(Y`n,F ,Q) ∼=
(∧m

Q
F×tf

)Gal(F/F (ζ`∞ ))

for each m ≥ 0.

Proof. The proof is similar to that of Theorem 7.6. �
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There is also again a scheme-theoretic version of these constructions. For a perfect
field F of characteristic different from ` with algebraic closure F such that Gal(F/F )
is a pro-`-group, an n ∈ N ∪ {∞} with µ`n ⊂ F and an embedding ι : µ`n(F ) ↪→ S1

we set
B`n,F =

(
C[F×/µ`′ ]/I

)Gal(F/F )
,

where I ⊂ C[F×/µ`′ ] is the ideal generated by all [ζ] − ι(ζ) · [1] with ζ ∈ µ`n(F ).
Note that if n <∞ then this ideal is generated by a single element [ζ`n ]− ι(ζ`n) · [1]
with ζ`n a primitive `n-th root of unity.

Then we set Ỳ n,F = SpecB`n,F . Note that this still depends on ι, but we suppress
this to lighten the notation. In complete analogy to the schemes XF we obtain the
following properties:

Theorem 8.8. Let ` be a rational prime and let F be a perfect field of character-
istic other than `. Assume that Gal(F/F ) is a pro-`-group and that the image of
χ`,n : Gal(F/F )→ Z×` is equal to U`n for some n ∈ N ∪ {∞}.

Then the scheme Ỳ n,F is connected, and its étale fundamental group is iso-
morphic to Gal(F/F (ζ`∞)), the isomorphism being canonical up to inner auto-
morphisms. For abelian torsion groups A we obtain natural isomorphisms

Hm
ét(Ỳ n,F , A) ∼= Hm(F (ζ`∞), A).

The space Y`n,F can be identified with a subspace in Ỳ n,F (C) with the complex
topology; it is a strong deformation retract.

Proof. In analogy to Lemma 8.4 there is a canonical isomorphism Ỳ n,F
∼= Ỳ∞,F (ζ`∞ ),

hence we may assume that n =∞. The proof is then analogous to those of Corol-
lary 4.15, Theorem 5.7.(ii) and Theorem 7.8. �

8.2. Three actions on cohomology. We assume that ` is a prime, F a perfect
field of characteristic other than ` with algebraic closure F such that Gal(F/F ) is
a pro-`-group and such that the image of χ`,F : Gal(F/F )→ Z×` is equal to U`n for
some (finite!) n ∈ N. We have seen that then for each abelian torsion group A and
each m ≥ 0 there are canonical isomorphisms

Hm(Y`n,F , A) ∼= Hm
ét(Ỳ n,F , A) ∼= Hm(F (ζ`∞), A). (21)

On each of the groups in (21) there is a natural action from the left by a certain
group; we will show below that these three actions are compatible.

The topological action. By construction Y`n,F is a closed subset of the Pontryagin
dual (F×/µ`′)

∨, more precisely a translate of (F×tf)
∨. The group F×/µ`′ is divisible

and has no torsion elements of order prime to `, therefore it is a Z(`)-module in a
unique way (here Z(`) ⊂ Q is the ring of rational numbers whose denominators are
prime to `). Therefore the group of units Z×(`) acts on (F×/µ`′) by group automorph-
isms from the left: u · (α mod µ`′) = (αu mod µ`′). Hence it acts on the Pontryagin
dual (F×/µ`′)

∨ from the right: (χ · u)(α) = χ(αu).
This action does not preserve the subspace Y`n,F ⊂ (F×/µ`′)

∨, but its restriction
to the subgroup

U(`n) = 1 + `nZ(`) ⊂ Z×(`)
will, because elements of U(`n) operate trivially on µ`n .
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This action of U(`n) on Y`n,F commutes with that of Gal(F/F ), hence it descends
to a right action of U(`n) on Y`n,F .

Then by functoriality we obtain a left action of U(`n) on the cohomology group
Hm(Y`n,F , A) for any abelian torsion group A and any m ≥ 0.

The arithmetic action. The scheme Ỳ n,F admits a natural model over the ring of
cyclotomic integers Z[ζ`n ]. To be precise, let

YF, int = SpecBF, int

with
BF, int =

(
Z[F×/µ′`][([ζ`]− 1)−1]

)Gal(F/F )

where ζ` ∈ F is an `-th root of unity. Each embedding ι : µ`n(F ) ↪→ S1 induces a
ring embedding

eι : Z[ζ`n ] = Z[µ`n(C)] ↪→ BF, int

with eι(ι(ζ)) = [ζ] for each ζ ∈ µ`n(F ). This ring embedding turns YF, int into a
Z[ζ`n ]-scheme, and there is a natural isomorphism

YF, int ×eι, SpecZ[ζ`n ] SpecC ∼= Ỳ n,F (ι).

There are then also a natural isomorphisms

Hm
ét(Ỳ n,F , A) ∼= Hm

ét(YF, int ×eι, SpecZ[ζ`n ] SpecQ, A).

Now Gal(Q/Q(ζ`n)) operates from the left on BF, int ⊗eι,Z[ζ`n ] Q (trivially on the
first factor and tautologically on the second factor), hence from the right on the
spectrum of this algebra, hence from the left on the cohomology of the latter. Thus
we obtain a left action of Gal(Q/Q(ζ`n)) on Hm

ét(Ỳ n,F , A).

The group-theoretic action. This is the simplest to describe: from the short exact
sequence of profinite groups

1→ Gal(F/F (ζ`∞))→ Gal(F/F )
χ`,F→ U`n → 1

we obtain an action from the right of Gal(F/F ) on its normal subgroup Gal(F/F (ζ`∞))
by hg = g−1hg, hence an action from the left on Hm(F (ζ`∞), A) = Hm(Gal(F/F (ζ`∞)), A).
Since inner group automorphisms act trivially on cohomology, this descends to a
left action by U`n ∼= Gal(F (ζ`∞)/F ).

Theorem 8.9. Let ` be a rational prime, F a perfect field of characteristic other
than ` with algebraic closure F such that Gal(F/F ) is a pro-`-group and such that
imχ`,F = U`n for some n ∈ N. Let A be an abelian torsion group. Then the
following claims hold for each m ≥ 0:

(i) The arithmetic action of Gal(Q/Q(ζ`n)) on Hm
ét(Ỳ n,F , A) factors through

the `-adic cyclotomic character

χ` = χ`,Q(ζ`n ) : Gal(Q/Q(ζ`n)) � U`n ⊂ Z×` .
Hence it defines an action by U`n on Hm

ét(Ỳ n,F , A) which we also call arith-
metic.

(ii) The topological action of U(`n) on Hm(Y`n,F , A) extends uniquely to a con-
tinuous action of U`n = 1 + `nZ` on the same space. Here continuity refers
to the `-adic topology on U`n.
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Moreover the isomorphisms in (21) are U`n-equivariant up to a sign. More precisely,
the isomorphism

Hm
ét(Ỳ n,F , A) ∼= Hm(F (ζ`∞), A)

is equivariant for the identity U`n → U`n, while the other two isomorphisms

Hm(Y`n,F , A) ∼= Hm
ét(Ỳ n,F , A) and Hm(Y`n,F , A) ∼= Hm(F (ζ`∞), A)

are equivariant for the inverse map U`n → U`n, u 7→ u−1.

Proof. Broken up into smaller pieces, this is proved below in Proposition 8.13,
Corollary 8.16 and Proposition 8.25 below. �

The proof of Theorem 8.9 will fill up the remainder of this section. More precisely,
for each two of the three actions we will establish equivariance for these two actions,
and prove along the way that the actions factor through U`n . From a strictly logical
point of view this is redundant, but we believe each of the three proofs reveals
something particular about the objects under consideration.

8.3. Compatibility of the arithmetic and group-theoretic actions. For each
field F satisfying the conditions of Theorem 8.9 and each ‘coefficient field’ k we set
YF,k = YF, int ×SpecZ Spec k. The scheme YF,k is not necessarily connected, but for
k = Q it is. We will now determine the étale fundamental group of YF,Q.

There is a pro-étale but possibly disconnected normal covering YF ,Q. Its deck
transformation group can be identified with Gal(F/F )×Gal(Q/Q) which operates
in the obvious way on YF ,Q (from the right, however). The space of connected
components π0(YF ,Q) is canonically homeomorphic to Isom(µ`∞(F ), µ`∞(Q)), with
its obvious left action by Gal(Q/Q) and its obvious right action by Gal(F/F ). The
space Isom(µ`∞(F ), µ`∞(Q)) is a two-sided principal homogeneous space for the
abelian group Z×` , and the Galois actions respect this structure.

Lemma 8.10. Let Gal(F/F )×Gal(Q/Q) act on Isom(µ`∞(F ), µ`∞(Q)) by (σF , σQ)·
ι = χ`(σF )χ`(σQ)−1·ι. Then the homeomorphism π0(YF ,Q)→ Isom(µ`∞(F ), µ`∞(Q))

is equivariant for Gal(F/F )×Gal(Q/Q).

Proof. This follows from the previous discussion. As to the different signs, note
that Gal(Q/Q) operates most naturally from the left on Isom(µ`∞(F ), µ`∞(Q)) and
from the right on YF ,Q, whereas Gal(F/F ) operates most naturally from the right
on both spaces. �

Corollary 8.11. Fix some group isomorphism ι̃ : µ`∞(F ) → µ`∞(Q), and denote
the corresponding component of YF ,Q by Y◦

F ,Q. Then Y◦
F ,Q → YF,Q is a universal

profinite covering space, and its deck transformation group is

GF,Q
def
= {(σF , σQ) ∈ Gal(F/F )×Gal(Q/Q) | χ`,F (σF ) = χ`(σQ)}.

Hence there is a natural isomorphism πét1 (YF,Q) ∼= GF,Q, canonical up to inner
automorphisms. �

Now take an isomorphism ι : µ`n(F )→ µ`n(Q), and extend it to an isomorphism
ι̃ : µ`∞(F ) → µ`∞(Q). We wish to find our space Ỳ n,F and its model over Q(ζ`n)
back as a quotient of Y◦

F ,Q.
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We construct two intermediate coverings of Y◦
F ,Q →YF,Q.

• First note that there is a continuous epimorphism

χ` : GF,Q → Z×` , (σF , σQ) 7→ χ`(σF ) = χ`(σQ).

Then GF,Q(`n) = χ−1
` (U`n) is an open normal subgroup of GF,Q ∼= πét1 (YF,Q),

and the corresponding intermediate covering is equal to Y◦F,Q(ζ`n ), the con-
nected component of YF,Q(ζ`n ) determined by ι. This is precisely the model
of Ỳ n,F over Q(ζ`n) used to define the Gal(Q/Q(ζ`n))-action on its étale
cohomology.
• The closed normal subgroup Gal(F/F (ζ`∞))× {1} ⊂ GF,Q ⊂ Gal(F/F )×

Gal(Q/Q) defines the normal profinite covering spaceY◦
F (ζ`∞ ),Q →Y◦F,Q(ζ`n ) →

YF,Q; as a Y◦F,Q(ζ`n )-scheme this is isomorphic to YF,Q(ζ`n ) ⊗Q(ζ`n ) Q.

Lemma 8.12. There are natural isomorphisms of cohomology groups

Hm(F (ζ`∞), A)
∼=← Hm

ét(Y
◦
F (ζ`∞ ),Q, A)

∼=→ Hm
ét(Ỳ n,F,Q, A)

equivariant for the group homomorphisms (natural projections)

Gal(F/F )← GF,Q(`n)→ Gal(Q/Q(ζ`n)).

Proof. The isomorphism Hm
ét(Y

◦
F (ζ`∞ ),Q, A) → Hm(F (ζ`∞), A) is obtained from the

Cartan–Leray spectral sequence applied to the universal coveringY◦
F ,Q →Y◦

F (ζ`∞ ),Q;
note that all the higher cohomology groups of Y◦

F ,Q with torsion coefficients vanish.
The rest follows from the preceding discussion. �

Proposition 8.13. Let σF ∈ Gal(F/F ) and σQ ∈ Gal(Q/Q(ζ`n)) be such that
χ`(σF ) = χ`(σQ). Then under the isomorphism Hm(F (ζ`∞), A) ∼= Hm

ét(Ỳ n,F,Q, A) in
(21) the actions of σF and σQ correspond to each other.

Proof. This follows from Lemma 8.12: just note how the element (σF , σQ) ∈ GF,Q(`n)
acts. �

8.4. Compatibility of the group-theoretic and topological actions. We shall
consider diverse Galois categories and exact functors between them:

U`n-FSet

��

// FEt(SpecF )

��

// FEt(SpecF (ζ`∞))

��

U(`n)-FSet // FCovU(`n)
(Y`n,F ) // FCov(Y`n,F )

(22)

Though we have suppressed this in the notation, this diagram will depend on a
choice of ι : µ`n ↪→ S1 and of an extension ι̃ : µ`∞ ↪→ S1. The functors in (22) are as
follows:
• U`n-FSet→ FEt(SpecF ) is the composition of two functors

U`n-FSet→ Gal(F/F )-FSet→ FEt(SpecF ),

the first of which is induced by the group homomorphism χ`,F : Gal(F/F ) → UF
and the second of which is ‘Grothendieck’s Galois theory’. For an explicit descrip-
tion, let S be a finite set with a continuous left action of Gal(F/F ), then Gal(F/F )
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acts from the left on the F -algebra F S by

σ((αs)s∈S) = (ασ−1s)s∈S,

and the ring of invariants E(S) = (F S)Gal(F/F ) is a finite étale F -algebra. Then the
functor can be described as S 7→ SpecE(S).
• FEt(SpecF )→ FEt(SpecF (ζ`∞)) is the functor X 7→ X ×SpecF SpecF (ζ`∞).
• The two functors in the lower horizontal line are obtained from the U(`n)-action
on Y`n,F as on page 20, that is, the first one sends a finite U(`n)-set S to the product
Y`n,F ×S with the diagonal U(`n)-action, and the second one is the obvious forgetful
functor.
• U`n-FSet→ U(`n)-FSet is induced by the `-adic completion map U(`n) → U`n .
• FEt(SpecF )→ FCovU(F )

(Y`n,F ) sends SpecE for a finite extension E/F to Y`n,E,
and more generally for an étale F -algebra E we set

Y`n,E =
∐

p∈SpecE

Y`n,E/p.

Note that in the basic case where E is a field we need to choose an algebraic
closure E/E to even define Y`n,E, and an isomorphism E → F to obtain a map
Y`n,E → Y`n,F . However, as for the spaces YF we check that Y`n,F and Y`n,E → Y`n,F
are independent up to canonical isomorphism from the choices of F , E and E → F .
• FEt(SpecF (ζ`∞))→ FCov(Y`n,F ) is the composition

FEt(SpecF (ζ`∞))→ FCov(Y`∞,F (ζ`∞ ))→ FCov(Y`n,F )

where the first functor sends SpecE to Y`∞,E and the second functor is induced by
the homeomorphism Y`n,F ∼= Y`∞,F (ζ`∞ ).

Lemma 8.14. The diagram of exact functors between Galois categories (22) com-
mutes up to isomorphism of functors.

Proof. The commutativity of the right square is straightforward but tedious.
For the commutativity of the left hand side, let S be a finite set endowed with a

continuous left action by U`n . We will construct a natural isomorphism

Y`n,F × S ∼= Y`n,E(S)

of U(`n)-equivariant finite covering spaces of Y`n,F .
First we may assume that the U`n-action on S is transitive, because all the func-

tors involved respect finite direct sums. Hence E(S) is a finite field extension of F .
As explained above, to construct the covering Y`n,E(S) → Y`n,F we need to choose
an embedding of E(S) into F , and later check that the choice of this embedding
changes everything by canonical isomorphisms only (we omit that later part). By
definition, E(S) = (F S)Gal(F/F ), and hence

HomF (E(S), F ) ∼= HomF (F S, F ) ∼= S.

Therefore the choice we need to make is that of a particular element s0 ∈ S,
which then allows us to trivialise the Gal(F/F )-set S as Gal(F/F )/H, where H =
Gal(F/E(S)) is the stabiliser of s0.
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Note that
Homι(µ`∞ ,S1) = {j : µ`∞ → S1 | j|µ`n = ι}

is a U`n-torsor, and it is trivialised by the choice of ι̃ ∈ Homι(µ`∞ ,S1) (which is
implicit in the construction of the rightmost vertical functor in (22)). There is then
a unique U`n-equivariant map

q : Homι(µ`∞ ,S1) � S

with q(ι̃) = s0. We define a continuous map

Y`n,F → Y`n,F × S, χ 7→ (χ, q(χ|µ`∞ ))

which is equivariant for the group inclusion Gal(F/E(S)) ↪→ Gal(F/F ) (trivial
Galois action on S), hence it descends to a continuous map

Y`n,E(S) → Y`n,F × S.
It is straightforward to check that this last map is a bijection, hence a homeomorph-
ism, and that it is U(`n)-equivariant. �

Choosing a point in Y`∞,F (ι̃) we obtain a compatible family of fibre functors on all
the categories in (22), hence a commutative diagram of profinite groups.

Proposition 8.15. The diagram of profinite groups and continuous group homo-
morphisms

1 // πét1 (Y`n,F ) //

∼=
��

πét1 ([Y`n,F/U(`n)]) //

����

Û(`n)
//

����

1

1 // Gal(F/F (ζ`∞)) // Gal(F/F ) χ`,F
// U`n // 1

(where Û(`n) denotes the profinite completion of the abstract group U(`n)) commutes,
and the rows are exact. The leftmost vertical map is an isomorphism, the other two
vertical maps are surjective but not injective.

Proof. The commutativity follows from Lemma 8.14. The lower row is exact by
Galois theory and our assumptions on F ; the upper row is exact except possibly
at πét1 (Y`n,F ) by Proposition 2.22. The map πét1 (Y`n,F ) → Gal(F/F (ζ`∞)) is an
isomorphism by Proposition 8.6.(ii). Combining the last two observations we also
obtain exactness of the upper row at πét1 (Y`n,F ). Finally, the rightmost vertical map
is clearly surjective but not injective, hence the same holds for the middle vertical
map. �

Corollary 8.16. For each abelian torsion group A the natural isomorphisms of
cohomology groups

Hm(Y`n,F , A)
∼=→ Hm(πét1 (Y`n,F ), A)

∼=→ Hm(F (ζ`∞), A)

are equivariant for the canonical group homomorphisms

U(`n) → Û(`n) → U`n ,

up to an exponent which is 1 for the first map and −1 for the second map.
In particular the U(`n)-action on Hm(Y`n,F ) extends uniquely to a continuous U`n-

action.
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Proof. This follows from Proposition 8.15. The exponent −1, i.e. inversion, on the
acting groups for Hm(πét1 (Y`n,F ), A)→ Hm(F (ζ`∞), A) occurs because U(`n) operates
on Y`n,F from the right, see Remark 2.23.(ii). �

8.5. Compatibility of the topological and arithmetic actions. This argu-
ment is technically much more difficult than the other two, so considering its logical
redundancy we will be very sketchy here.

The essential ingredient is the fact thatYF,int is a Λ-scheme in the sense of Borger
[9]. The general definition of Λ-schemes is rather involved, but a naïve variant
suffices for our purposes.

Definition 8.17. Let X be a scheme which is flat over Z. A Λ-structure on X is a
family of mutually commuting endomorphisms ϕp : X → X, indexed by the rational
primes p = 2, 3, 5, 7, . . . , such that for all p the base change

ϕp × id : X × SpecFp → X × SpecFp

is the absolute Frobenius of Xp = X × SpecFp, i.e. the morphism which is the
identity on the topological space underlying Xp and which is f 7→ fp on sections of
the structure sheaf.

For example let M be an abelian group in multiplicative notation. Then there is
a canonical Λ-structure on SpecZ[M ] given by

ϕ]p : Z[M ]→ Z[M ], [m] 7→ [mp]. (23)

We will now construct a Λ-structure on YF,int = SpecBF,int by writing down the
corresponding endomorphisms ϕ]p of BF,int. Recall that

BF,int =
(
Z[F×/µ`′ ][([ζ`]− 1)−1]

)Gal(F/F )

We begin by setting ϕ]` = id (or anything)(‡‡), and next consider the case p 6= `.
Here we define ϕ]p on Z[F×/µ`′ ] by (23). This descends to an endomorphism

ϕ]p : Z[F×/µ`′ ][([ζ`]− 1)−1]→ Z[F×/µ`′ ][([ζ`]− 1)−1].

Lemma 8.18. Let p 6= `. The canonical ring homomorphism

BF,int ⊗ Fp →
(
Fp[F×/µ`′ ][([ζ`]− 1)−1]

)Gal(F/F )

is an isomorphism.

Proof. For F = F this is clear. For the general case, we use that BF,int → BF ,int

is a pro-finite étale Gal(F/F )-cover (cf. Theorem 4.17), so that forming quotients
under Gal(F/F ) commutes with base change. �

Corollary 8.19. The family of endomorphisms ϕp : YF,int → YF,int given on rings
by the ϕ]p as constructed above define a Λ-structure on YF,int. �

(‡‡)Note that inverting [ζ`] − 1 in particular inverts `, so the condition that ϕ]
` lifts Frobenius

is vacuous.
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Note that for p 6= ` the ϕp are even automorphisms of YF,int. They can be
described in a different way as follows:

The group F×/µ`′ is a Z(`)-module, hence Z×(`) acts by automorphisms from the
left on F×/µ`′ and also on Z[F×/µ`′ ][([ζ`]− 1)−1]. Since this action commutes with
Gal(F/F ), it restricts to a left Z×(`)-action on BF,int; hence a right Z×(`)-action on
YF,int.

Lemma 8.20. Consider the Z×(`)-action on YF,int as just described. For each prime
p 6= ` the element p ∈ Z×(`) acts by the automorphism ϕp, and the element −1 ∈ Z×(`)
acts by the automorphism [a] 7→ [a−1] on Z[F×/µ`′ ]. �

Note that Z×(`) is generated by −1 and the primes different from `, hence the
Z×(`)-action on YF,int is uniquely determined by Lemma 8.20.

Extending scalars from Z to C we then obtain a right Z×(`)-action on

YF,int × SpecC ∼=
∐

ι : µ`n ↪→S1
Ỳ n,F (ι).

The stabiliser of each component is U(`n), and the quotient Z×(`)/U(`n)
∼= (Z/`nZ)×

operates simply transitively on the set of components. Hence there is a canonical
Z×(`)-equivariant isomorphism of cohomology groups

Hm(YF,int ⊗Q, A) ∼= Hm(YF,int ⊗ C, A) ∼=
⊕
ι

Hm(Ỳ n,F (ι), A),

and each summand on the right hand side is stable under U(`n). By unravelling
definitions we see that the U(`n)-action on each summand corresponds to the ‘topo-
logical action’ described above under the canonical isomorphism Hm(Ỳ n,F (ι), A) ∼=
Hm(Y`n,F , A).

We now draw some consequences from the fact that the ϕp constitute a Λ-
structure on YF,int.

Proposition 8.21. For each p 6= ` and each abelian torsion group A the automorph-
ism of Hm

ét(YF,int×SpecFp, A) induced by ϕp mod p is the inverse of the ‘arithmetic’
automorphism induced by the canonical generator σp ∈ Gal(Fp/Fp) with σp(a) = ap.

Sketch of proof. This follows from the fact that σ[p and ϕp mod p commute, their
product is the absolute Frobenius endomorphism of the Fp-scheme YF,int×SpecFp,
and this absolute Frobenius acts trivially on étale cohomology. The latter is clear for
H0

ét and then follows formally for Hm
ét by the universal property of sheaf cohomology.

See [14, Rapport, section 1.8] for a detailed discussion in the finite type case. �

Proposition 8.22. Fix an algebraic closure Qp of Qp and an embedding Q ↪→ Qp.
Then for any abelian torsion group A and any m ≥ 0 the natural maps

Hm
ét(YF,int⊗Fp, A)← Hm

ét(YF,int⊗OQp , A)→ Hm
ét(YF,int⊗Qp, A)← Hm

ét(YF,int⊗Q, A)

are isomorphisms, and they are equivariant for the action of Z×(`) and the homo-
morphisms of absolute Galois groups

Gal(Fp/Fp)← Gal(Qp/Qp) = Gal(Qp/Qp)→ Gal(Q/Q).
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Sketch of proof. This can be shown identifying each of the étale cohomology groups
with Hm(F (ζ`∞), A). �

The next proposition is a variant of a result of Borger, [8, Theorem 6.1].

Proposition 8.23. The action of Gal(Q/Q) on Hm
ét(YF,int ⊗Q, A) factors through

the `-adic cyclotomic character χ`,Q : Gal(Q/Q)→ Z×` .

Proof. By Proposition 8.22 and Proposition 8.21, the action of any two Frobenius
elements commute, as they can be identified with the action of the commuting
operators ϕp. By Chebotarev, we see that the action of Gal(Q/Q) factors through
its maximal abelian quotient; also, it is unramified at all primes different from ` by
Proposition 8.22. This implies that it factors through the quotient Gal(Q(ζ`∞)/Q),
which is precisely the quotient defined by the `-adic cyclotomic character. �

Proposition 8.24. (i) Let p 6= ` be a rational prime, and let σp ∈ Gal(Q/Q)

be such that χ`(σp) = p ∈ Z×` . Then σp operates on Hm
ét(YF,int ⊗ Q, A)

through the inverse of ϕp.
(ii) Let σ−1 ∈ Gal(Q/Q) be such that χ`(σ−1) = −1 ∈ Z×` . Then σ−1 operates

on Hm
ét(YF,int⊗Q, A) through the involution induced by the involution [a] 7→

[a−1] on Z[F×/µ`′ ].

Proof. (i) follows from the conjunction of Propositions 8.21, 8.22 and 8.23. For (ii),
by Proposition 8.23 we may assume that σ−1 is complex conjugation, whose action
on cohomology is easily determined by contemplating the isomorphisms

Hm
ét(YF,int ⊗Q, A) ∼= Hm

ét(YF,int ⊗ C, A) ∼= Hm(YF,int(C), A) ∼=
⊕
ι

Hm(Y`n,F (ι), A).

�

Proposition 8.25. The canonical isomorphism

Hm(Y`n,F (ι), A)→ Hm
ét(YF,int ×eι, SpecZ[ζ`n ] SpecQ, A)

is equivariant for the inverse inclusion U(`n) → U`n, u 7→ u−1, in the sense that for
any u ∈ U(`n) and any σ ∈ Gal(Q/Q(ζ`n)) with χ`,Q(σ) = u−1 the action by u on
the left hand side agrees with the action by σ on the right hand side.

Proof. It suffices to show that the canonical isomorphism⊕
ι : µ`n ↪→S1

Hm(Y`n,F (ι), A)→ Hm
ét(YF,int ×SpecZ SpecQ, A)

is equivariant for the inverse inclusion Z×(`) → Z×` , u 7→ u−1, where the Z×` -action
on the right hand side is given by Proposition 8.23. Since Z×(`) is generated by −1

and the primes different from ` it is sufficient to check this for these elements. The
combination of Lemma 8.20 and Proposition 8.24 yields the desired result. �
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