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TOPOLOGICAL REALISATIONS OF ABSOLUTE GALOIS

GROUPS

ROBERT A. KUCHARCZYK AND PETER SCHOLZE

ABSTRACT. Let F' be a field of characteristic 0 containing all roots of unity. We
construct a functorial compact Hausdorff space X whose profinite fundamental
group agrees with the absolute Galois group of F', i.e. the category of finite cov-
ering spaces of X is equivalent to the category of finite extensions of F'.

The construction is based on the ring of rational Witt vectors of F. In the
case of the cyclotomic extension of QQ, the classical fundamental group of Xy is
a (proper) dense subgroup of the absolute Galois group of F. We also discuss
a variant of this construction when the field is not required to contain all roots
of unity, in which case there are natural Frobenius-type automorphisms which
encode the descent along the cyclotomic extension.
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1. INTRODUCTION

This paper grew out of an attempt to understand whether certain constructions
in p-adic Hodge theory could potentially have analogues over number fields. One
important technique in p-adic Hodge theory is the possibility to relate Galois groups
of p-adic fields with Galois groups or fundamental groups of more geometric objects.
Some sample results of this type are the following.

Theorem 1.1 (Fontaine-Wintenberger, [17]). Let K be the cyclotomic extension
Qp(Cpee) of Qp. Then the absolute Galois group of K is isomorphic to the absolute
Galois group of F,((t)).

Theorem 1.2 (Fargues—Fontaine, Weinstein, [46|). There is a natural ‘space’ Z
defined over C, whose geometric fundamental group is the absolute Galois group of
Qp. Formally, Z is the quotient of a 1-dimensional punctured perfectoid open unit
disc by a natural action of Q.

One can regard both of these theorems as instances of the general ‘tilting’ philo-
sophy, [38], which relates objects of mixed characteristic with objects of equal char-
acteristic, the latter of which have a more geometric flavour. An important feature
of the tilting procedure is that it only works for ‘perfectoid’ objects; in the case of
fields, this is related to the need to pass to the cyclotomic extension, or a similar
‘big’ field. Another common feature is the critical use of (p-typical) Witt vectors.

In looking for a global version of these results, one is thus led to consider a ‘global’
version of the Witt vectors, and the standard objects to consider are the big Witt
vectors. Recall that for any commutative ring A, the ring of big Witt vectors W(A)
can be identified with the set 1 + tA[t] of power series with constant coefficient 1,
where addition of Witt vectors corresponds to multiplication of power series. The
multiplication is subtler to write down, and is essentially determined by the rule
that the product of 1 — at and 1 — bt is given by 1 — abt. In particular, there is a
multiplicative map A — W(A), a — [a] =1 — at, called the Teichmiiller map.

In general, there is a map of algebras W(A) — [],, A called the ghost map, where
the product runs over all integers n > 1. If A is a Q-algebra, the ghost map is an
isomorphism, so that in particular for a field F' of characteristic 0, W(F') =[], F
is just an infinite product of copies of F'.
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One thus cannot expect W(F') to have a rich structure. However, work on the K-
theory of endomorphisms, [3], suggested to look at the following subring of W(F),
called the ring of rational Witt vectors.*)

Definition 1.3. Let A be a commutative ring. The rational Witt vectors over A
are the elements of

1+ait+...+a,t"
W, (A) =
«(4) {1+b1t+...+bmtm

It is not hard to see that W, (A) actually forms a subring of W(A). The Teich-
miiller map A — W(A) factors over Wi, (A).

Now let F' be a field of characteristic 0 containing all roots of unity, and fix once
and for all an embedding ¢: Q/Z < F*; this ‘bigness’ hypothesis will be important
for the construction, and all constructions will depend on ¢. We also fix the standard
embedding

a;, bj S A} - W(A)

exp: Q/Z — C*, x> e*™",
Definition 1.4. Let Xp be the set of ring maps W (F) — C whose restriction

along Q/Z & pr A Wiat (F)* gives the standard embedding exp: Q/Z — C. We
endow Xp with its natural complex topology, cf. Definition 5.3.

One can check that X is one connected component of the complex points of the
scheme Spec Wy, (F). Actually, in the paper, Xr will denote a closely related space
which is a deformation retract of the space considered here. This variant will be a
compact Hausdorff space.

Theorem 1.5 (Theorem 5.2). The functor taking a finite extension E of F to X —
X induces an equivalence of categories between the category of finite extensions of
F', and the category of connected finite covering spaces of Xp. In particular, the
absolute Galois group of ' agrees with the étale fundamental group of Xp.

Here, the étale fundamental group of a connected topological space classifies, by
definition, the finite covering spaces of the latter, cf. Definition 2.10. It is in general
not directly related to the classical fundamental group defined in terms of paths.
We also prove a version of this theorem in the world of schemes, replacing Xz by
one connected component of Spec(Wy.(F) @ C), cf. Theorem 4.5.

Contrary to the results in p-adic Hodge theory cited above which reflect deep
properties about ramification of local fields, this theorem is rather formal. In fact,
the proof of the theorem is essentially an application of Hilbert’s Satz 90 in its
original form. Also, we cannot currently state a precise relationship between this
theorem and the results in p-adic Hodge theory stated above. Still, we believe that
there is such a relation, and that the theorem indicates that the ring of rational

(1t is this connection, as well as the observation that the Dennis trace map from K-theory
to topological Hochschild homology factors canonically over the K-theory of endomorphisms, that
led the second author to consider the rational Witt vectors.
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Witt vectors is an interesting object; in fact, we would go so far as to suggest to
replace all occurences of the big Witt vectors by the rational Witt vectors. !

We warn the reader that the space Xy is highly infinite-dimensional, and in
general far from path-connected. For example, if F' is algebraically closed, it can
be (non-canonically) identified with an infinite product of copies of the solenoid
(cf. Proposition/Definition 2.1)

§ = @Sl = Hom(Q,S") = A/Q.
neN

Abstractly, it is clear that any group can be realised as the fundamental group
of a topological space, by using the theory of classifying spaces. One may thus
wonder what extra content Theorem 1.5 carries. We give several answers to this
question. All are variants on the observation that our construction gives an actual
topological space, as opposed to a topological space up to homotopy; and in fact,
it is not just any space, but a compact Hausdorff space. As such, it has certain
finer homotopical and (co)homological invariants which give rise to certain non-
profinitely completed structures on natural arithmetic invariants. From now on,
let X7 denote the compact Hausdorff space defined in Section 5 below, which is a
deformation retract of the space considered above.

Fundamental group. By design, the étale fundamental group of X agrees with
the absolute Galois group of F. However, as a topological space, Xp also has a
classical fundamental group, given by homotopy classes of loops; we denote it by
W{’ath(X r) (suppressing the choice of base point in the introduction). In general,
Wfath(X r) could be trivial even when F' is not algebraically closed; this happens
whenever F'is ‘too big’.

However, for many examples of interest, the situation is better.

Theorem 1.6 (Section 6.3). Assume that F' is an abelian extension of a finite
extension of Q. Then Xp is path-connected, and the map w0 (Xp) — 78(Xp) =
Gal(F/F) is injective with dense image. Moreover, 72" (Xp) carries a natural
topology, making it a complete topological group which can be written as an inverse
limit of discrete infinite groups. The map 77" (X ) — Gal(F/F) is continuous for
this topology, but ﬂlpath(XF) does not carry the subspace topology.

Remark 1.7. More precisely, W{’ath(X F) is an inverse limit of discrete groups, each

of which is an extension of a finite group by a free abelian group of finite rank. The

essential difference between 70" (X ) and Gal(F/F) is that the Kummer map

F* — Hom(Gal(F/F),Z)
lifts to a map
F* — Hom(n?™(Xp), Z) .

One can characterise the image of 7" (Xy) — Gal(F/F) as the stabiliser of the
class in Ext(F*,Z) coming by pullback along a fixed inclusion F'* < C* from the

()An instance is the definition of a A-ring, which can be regarded as a commutative ring A
with a map A — W(A) satisfying certain properties. In most natural examples, including Ky of
a commutative ring, the map A — W(A) actually factors through a map A — W, (A).
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exponential sequence
0—=2Z—C=5C*—0,

cf. Proposition 6.14. In particular, the group W{’ath(X@(Coo)) C Gal(Q/Q(¢s)) acts
naturally on the group log(Q) C C of logarithms of algebraic numbers.®

Cohomology. In general, the singular cohomology groups of Xz do not agree with
the sheaf cohomology groups (as, e.g., path-connected and connected components
do not agree), and sheaf cohomology behaves better. Thus, let H'(Xp, A) denote
the sheaf cohomology with coefficients in the constant sheaf A, for any abelian group
A. The second part of the following theorem is a consequence of the Bloch—Kato
conjecture, proved by Voevodsky, [45, Theorem 6.1].

Theorem 1.8 (Theorem 7.8, Proposition 7.9). Let i > 0 and n > 1.

(i) There is a natural isomorphism
H(Xp, Z/nZ) = H(Gal(F/F),Z/n7Z) .

(i) The cohomology group H'(Xg,Z) is torsion-free. In particular, using (i),
there is a canonical tsomorphism

H(Xp,Z)/n = H(Gal(F/F),Z/nZ) .

Thus, one gets natural Z-structures on the Galois cohomology groups. Note that
we regard the choice ¢ of roots of unity as fixed throughout; in particular, all Tate
twists are trivialised.

Remark 1.9. Recall that by the Bloch-Kato conjecture,
Wi (Gal(F/F), Z/nZ) = K¥(F)/n,

where KM(F) denotes the Milnor K-groups of F. One might thus wonder whether

H!(Xp,Z) = KM(F). This cannot be true, as the latter contains torsion. However,

it is known that all torsion in KM(F) comes via cup product by roots of unity
Q/Z & KL (F) = K (F),

so that KM(F)y & KM(F)/(Q/Z UKM, (F)) is torsion-free. Also, as we are taking

the quotient by a divisible subgroup, one still has
HY(Gal(F/F),Z/nZ) = KM(F)y/n.
One could then wonder whether
H (Xp, Z) = KM(F) .

This is true for ¢ = 0,1, but not for i > 1, as the Steinberg relation zU (1 —z) =0
for z # 0,1 does not hold in H*(X,Z). However, we regard this as a defect of Xp
that should be repaired:

(D The induced action on 2miZ C C is trivial, as we are working over the cyclotomic extension.
In fact, there can not be an action (except for complex conjugation) on 27iZ, which presents an
obstruction to extending this action beyond the cyclotomic extension.
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Question 1.10. Does there exist a topological space XM mapping to X such that
there are isomorphisms

H'(Xp,Z) = K (F)

for all ¢ > 0, which are compatible with the isomorphisms in degrees ¢ = 0,1 for
Xp?

For algebraically closed fields F, the space X would have to be constructed in
such a way as to freely adjoin the Steinberg relation on its cohomology groups; the
general case should reduce to this case by descent.

Descent along the cyclotomic extension. So far, all of our results were assum-
ing that F' contains all roots of unity. One may wonder whether the general case
can be handled by a descent technique. This is, unfortunately, not automatic, as
the construction for F' involved the choice of roots of unity, so one cannot naively
impose a descent datum. However, there are certain structures on X that we have
not made use of so far.

First, Xz was defined as (one connected component of) the C-valued points of
some scheme defined over Q (or even Z). In particular, by the machinery of étale
homotopy types, its profinite homotopy type acquires an action of (a subgroup of)
the absolute Galois group of Q. This action should, in fact, factor over the Galois
group of the cyclotomic extension of @, and allow one to define the descent datum.
Unfortunately, this requires heavy technology, and does not play well with the
purely topological considerations on cohomology and fundamental groups above;
however, we record a version of this relationship on the level of cohomology as part
of Theorem 8.9 below.

Second, X was defined in terms of the rational Witt vectors, and the rational
Witt vectors carry extra endomorphisms, given by Frobenius operators.®) Thus,
one would expect to have Frobenius operators on Xp; however, the Frobenius op-
erators exchange connected components, and it turns out that on the connected
component Xy there are no remaining operators.'Y However, one can use a differ-
ent connected component instead, at least in some situations. In this respect, we
prove the following result.

Theorem 1.11 (Proposition 8.6.(ii), Theorem 8.8, Theorem 8.9). Let ¢ be a fized
prime, and let F' be a perfect field of characteristic different from £ (but possibly
positive) whose absolute Galois group Gal(F/F) is pro-f. Let n < oo be mazimal
such that pe,m C F'; for simplicity, we assume n > 2 in case { = 2. Then there
is a compact Hausdorff space Yy p with an action of Uyny = 1 + £"Zy, with the
following properties.

(i) Let F((p)/F be the C-cyclotomic extension. Then there is a natural iso-
morphism 75 (Y p) =2 Gal(F/F(()).

O fact, one can combine the first and second observation, which leads to the observation that
Wiat (F') is a A-ring; in fact, (almost tautologically) one for which the map W, (F) — W(W 1 (F))
factors over Wiat(F) = Wiat(Wiat (F)).

(In fancy language, the ‘dynamical system’ of the connected components of Spec(Wia; (k) ®C)
with its Frobenius operators is one form of the Bost—Connes system, [10].
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(ii) There is a natural isomorphism
H (Yo, Z/07Z) = H (Gal(F/F (o)), Z/0"T) .

Under this isomorphism, the action of Uyny on the left corresponds to the
action of 1+ 0"Z, = Gal(F((4=)/F) on the right via the tautological em-
bedding Ugny — 1+ £"Zy.

We note that there is again an interesting difference between discrete and profinite
groups: The Galois group of the cyclotomic extension is profinite, but the Frobenius
operators live in a discrete subgroup. This is necessary, as the Frobenius operators
will also act on H(Yjn g, Z).

Finally, let us give a brief summary of the different sections. In Sections 2 and 3,
we recall various basic facts about topological fundamental groups, and Pontrjagin
duals, respectively. The material here is standard, but not always well-known. In
Section 4, we prove Theorem 1.5 in the world of schemes, and in Section 5 we prove
the version for topological spaces. Next, in Section 6, we prove Theorem 1.6; this
relies on a careful analysis of the path-connected components of X and an analysis
of the multiplicative groups of large extensions of number fields. In Section 7, we
prove Theorem 1.8. Finally, in Section 8, we prove Theorem 1.11.

Acknowledgements. Part of this work was done while the second author was a
Clay Research Fellow. All of it was done while the first author was supported by
the Swiss National Science Foundation. The first author wishes to thank Lennart
Meier for asking a very helpful question.

Notation. We denote the profinite completion of the integers by Z, the ring of
finite (rational) adéles by Af = Z ®z Q and the full ring of adéles by A = As x R.

2. PRELIMINARIES ON FUNDAMENTAL GROUPS

In this section we assemble a number of results, some well-known, some less so, on
different concepts of fundamental groups.

2.1. Classical fundamental groups and path components. For a topological
space X with a base point x € X we let ﬂfath(X , ) be the usual fundamental group
defined in terms of loops. To be precise, a loop in X based at z is a continuous map
v:[0,1] — X with v(0) = (1), and for two loops 7, ¢ the product 7 * ¢ is defined

as ‘run first through §, then through .M i.e. as

d(2t) for 0 <t <1,

0: 10,1 X, t
v*6:00,1] = X, H{V(Qt—l) for%ﬁl.

This composition induces a group structure on the set ﬂfath(X ,x) of homotopy

classes of loops in X based at z; we call Wfath(X ,x) the classical fundamental group
of X at x.

(IDNote that this convention is reverse to that prevalent in algebraic topology, but it is common
in algebraic geometry and is more convenient when working with categories of covering spaces.
Of course, these two conventions yield groups which are opposite groups of one another, hence
related by a canonical isomorphism [y] ~ [y] 1.
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FIGURE 1. The topologist’s sine curve

Path components. Recall that a space X is path-connected if for every two points
x,y € X there is a path in X from z to y, i.e. a continuous map 7: [0, 1] — X with
7(0) = x and (1) = y. More generally, introduce an equivalence relation on the
points of a space X by declaring x and y equivalent if there is a path from x to y
in X. Then the equivalence classes of this relation are called the path components
of X; they can be characterised as the maximal path-connected subspaces of X.
The set ﬁgath(X ) of path components will be equipped with the quotient topology
induced by the given topology on X.

Finally note that if x € X and X° C X is the path component containing x,
then every loop in X based at x lies in X°, and similarly for every homotopy of
loops. Hence the inclusion X° < X induces an isomorphism of fundamental groups
(X z) = 7PN X ).

Since the interval [0, 1] is connected, every path-connected space is connected,
but the converse does not hold. The most well-known counterexample seems to be
the topologist’s sine curve

T={0y) | -1<y<1}U{(z,sinl)|z>0} CR?
which is connected but has two path components, cf. Figure 1. See [43, Example 117]
for more details.

More instructive for our purposes is the following example, to which we will return
several times in this section.

Proposition and Definition 2.1. The following topological groups are all canon-
ically isomorphic; each of them is called a (one-dimensional) solenoid.

(i) The Pontryagin dual QV, i.e. the set of group homomorphisms Q — S en-
dowed with the compact-open topology, where Q carries the discrete topology
and St C C* is the unit circle;

(i1) the inverse limit l'glneN S, where the set N is partially ordered by divisibil-
ity, and for m | n the transition map from the n-th to the m-th copy of S!
is z > 2" me

(111) the inverse limit Hm o R/L7Z, where the transition maps are induced by
the identity R — R;

(iv) the adéle class group A/Q, where Q is diagonally embedded in A.

Proof. We can write each of these groups as an inverse limit of certain topological
groups, indexed by the partially ordered set N. The constituents of index n are,
respectively:

(i) the quotient A, = (%Z)V of QY corresponding to the subgroup %Z C Q;
(ii) the n-th copy of S', denoted by By;
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(iii) the quotient C,, = R/1Z;
(iv) the double quotient D, = (1Z)\A/Q = A/(Q + 1Z).
We can write down some isomorphisms between these constituents:
e B, = Ay, s (22— S, g s™);
o C,, = By, t+ 27 — *™;
e C,, —» D, induced by the inclusion R < A = A; x R, t — (0, t).

It is easy to see that these give three families of isomorphisms of topological groups
A, < B, < C, — D,,, commuting with the structure maps of the inverse systems,
hence defining isomorphisms between the limits. O

Proposition 2.2. The solenoid § is a commutative compact Hausdorff group. It is
connected, but not path-connected. The path component §° containing the identity is
a subgroup, hence the path components of & are precisely the cosets of §°. Therefore
Wgath(oS’) = §/8° acquires the structure of a topological group.

As such it is canonically isomorphic to Ag/Q = Z/Z with the quotient topology
(which is indiscrete), where Q is embedded diagonally in Ag.

Proof. The claims in the third and fourth sentences of the proposition follow form-
ally from & being a topological group.

We next show that & is connected, using the description (ii): & = im B, with
each B, = S'. If f: im B, — {0,1} is continuous, then by construction of the
inverse limit topology f must factor through some B,,, hence be constant.

It remains to determine 75*"(s8). It is most convenient to do this using descrip-
tion (iv): & = A/Q. It is not hard to see that the quotient map A — A/Q has
unique lifting of paths, i.e. if v: [0,1] — A/Q is continuous and a € A is such
that v(0) = a + Q, then there is a unique continuous 7: [0, 1] — A inducing v and
satisfying 7(0) = a. From this we see that the neutral path component of A/Q is
precisely the image in A/Q of {0} x R C Af x R = A. Note that Q is embedded
diagonally, hence it intersects trivially with {0} x R, and we obtain a group iso-
morphism (but not a homeomorphism, see below!) R — &°. Hence the topological
group mb*™(§) = 7P*™ (A /Q) is isomorphic to (A/R)/Q = A¢/Q. Since Q is dense
in A¢, this carries the indiscrete topology. Note that Q + 7 = A; and Qn 7, = 7,
so we may also identify 75*™(&§) with Z/Z. O

Locally path-connected spaces. A topological space X is locally path-connected if for
every x € X and every open neighbourhood V' C X of x there exists an open
neighbourhood U C V C X of x which is path-connected.

Let X be a topological space, and denote the given topology by O = {V C X |
V open} C B(X). For an open subset V € O and z € V set

U(V,z) ={y € X | thereis a path v: [0,1] = V with v(0) = z and v(1) = y};

i.e., U(V,x) is the path component of V' containing x. It is then clear that the
U(V,x) for varying + € X and z € V € O form a basis of a topology D¢ on the
set X. We let X'P° be the topological space with underlying space X and topology
O Hence we obtain a continuous but not necessarily open bijection XP¢ — X
The following properties are easily checked:
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Lemma 2.3. Let X be a topological space, with topology 9.

(i) For every point x € X the sets U(V,x), where V runs through all elements
of O containing x, is a basis of neighbourhoods of x in X'P°.

(ii) The space X' is locally path-connected.

(iii) The topology O is the coarsest topology on the set X which is finer than
9 and locally path-connected.

(iv) The construction is functorial: if f:Y — X is continuous, then so is
fye 5 Xlpe,

(v) If Y is a locally path-connected space, then any continuous map Y — X
factors uniquely as Y — X™¢ — X. In other words, X'P° — X is universal
among continuous maps from locally path-connected spaces to X.

This may be rephrased as follows: if Top denotes the category of topolo-
gical spaces with continuous maps and LPC C Top denotes the full subcat-
egory of locally path-connected spaces then the functor (—)*¢: Top — LPC
is right adjoint to the inclusion functor LPC — Top. U

Examples 2.4. (i) If X is totally disconnected then X'P¢ is discrete.

(ii) Let M be a smooth manifold and let & be a foliation on M, defined by a
vector subbundle F' of the tangent bundle TM such that the sections of F' are
stable under the Lie bracket (also known as an involutive or integrable subbundle).
Recall that a leaf of the foliation is a smooth manifold L together with an injective
immersion ¢: L < M which, for every p € L, induces an identification of T, L with
F, € T M, and which is maximal with respect to this property.

Since i is injective, we may identify L with a subset of M. In general, however,
the topology of L will not be the subspace topology inherited from M. It is not too
hard to show that if i(L) is endowed with this subspace topology, then

i(L)'PC = L.
For instance, let ¥ € R and consider the Kronecker foliation of slope . This is the
foliation Fy on the torus M = R?/Z? given by the subbundle Fy C TM = R?* x M
with Fy, =R - (119) for every p € M. Each leaf of Fy is then the image in M of an
affine subspace in R? parallel to R- (119) If ¥ € Q then every leaf L is homeomorphic
to S', and L — (L) is a homeomorphism. If ¥ is irrational then all leaves are

homeomorphic to R and have dense image in M. They are all translates, via the
group structure on M, of the leaf through 0:

PR M, te (tf) mod Z2.

The topology on i(R) inherited from M defines a topology 9y on R. A basis of
neighbourhoods of 0 for this topology is given by the sets

{t € R | both t and ¢ differ by less than ¢ from an integer}

for varying € > 0. Hence every y-neighbourhood of 0 is unbounded. Still, Dg’c is
the Euclidean topology on R.

Note that M is the completion of the topological group (R, Oy), and using this
it is not hard to see that (R, Dy,) ~ (R, Dy,) as topological groups if and only if
¥ and 9y are in the same GLy(Z)-orbit in P'(R) \ P1(Q).
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(iii) There is a similar description of $™¢, where & = A/Q is the solenoid. We have
already determined the path components of & in the proof of Proposition 2.2. Since
& is a topological group, they are all homeomorphic, and they are all dense in & by
Proposition 2.2. One of them is the image of R under the obvious homomorphism
1: R - A — &. Again, 7 is injective and continuous, but not a homeomorphism
onto its image. If O denotes the topology on R corresponding to the subspace
topology on i(R) C &, then a basis for O is given by the open sets

x+U]kn—z—:,k5n+5[

neEL

for x € R, k € N and € > 0. This topology is not locally path-connected, but O'P°
is the Euclidean topology on R.

From this we can determine the topology on &'P¢: it is the unique topology on &
for which & is a topological group and i: R — & is a homeomorphism onto an open
subgroup, where R has the Euclidean topology. Hence &' is (non-canonically)
isomorphic to Z/Z x R, with the discrete topology on Z/Z.

Corollary 2.5. Let X be a topological space.

(i) The canonical map 2™ (X'P¢) — 72 (X) is a bijection.

(ii) For any x € X the canonical map 7> (X%¢ z) — 7P*"(X, 2) is a group
isomorphism, and similarly for higher homotopy groups defined in the usual
way using spheres.

(111) The complex Co(X) of singular simplices in X with integral coefficients
is canonically isomorphic to Co(X™°). In particular X™¢ — X induces
isomorphisms on singular homology and cohomology, for any abelian coef-

ficient group.

Proof. Lemma 2.3 implies that a map of sets [0, 1] — X is continuous if and only if
it is continuous when viewed as a map [0,1] — X'°, and similarly for homotopies
and singular simplices. U

Topologies on the classical fundamental group. Let (X, z) be a pointed topological
space. Then there exist several natural topologies on 72*"(X z).

e The loop topology on 72" (X, z) is the quotient topology defined by the surjective
map Q(X,z) — 7P X, 2), where Q(X, ) is the loop space of (X, z), i.e. the set
of all continuous pointed maps (S',1) — (X, ) endowed with the compact-open
topology. While the loop topology is defined in a very natural way it does not
always turn Wfath(X ,x) into a topological group, only into a quasi-topological group.

Here a quasi-topological group is a group G together with a topology such that
the inverse map G — G, g — ¢!, and all multiplication maps G — G, g — gh,
and G — G, g — hg, for h € G are continuous. These conditions do not imply that
the multiplication map G x G — G, (g, h) — gh, is continuous (which would turn
G into a topological group).

For instance for the Hawaiian earrings

H=|]JC,

neN
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where C, C R? is a circle of radius % centered at (0, %), the fundamental group

Wfath(H ,0) with the loop topology is a quasi-topological group but not a topological
group, see [16].

e Brazas [12] showed that for any pointed space (X, z) there is a finest topology
on 7P*"(X z) such that #"(X, z) becomes a topological group and Q(X,z) —
wfath(X ,x) is continuous. This topology is known as the 7-topology. Clearly it
agrees with the loop topology if and only if the latter already turns 7>*" (X, z) into
a topological group.

Brazas introduces a generalised notion of covering spaces called semicovering
spaces, cf. [11]. For a semicovering space p: Y — X the subspace topology on
the fibre p~!(z) is discrete, and the monodromy action of 7™ (X, z) on p~'(z) is
continuous for the 7-topology. If X is path-connected and locally path-connected
this construction provides an equivalence of categories between semicoverings of X
and discrete sets with continuous 72**( X, z)-action.

e For any monodromy action defined by a semicovering space the point stabilisers
will be open subgroups of 7P*"(X, z) for the 7-topology. Hence it makes sense
to define a new topology called the o-topology on ﬂ’ath(X ,x) where a neighbour-
hood basis of the identity is given by the 7-open subgroups (rather than all 7-open
neighbourhoods) of 77" (X z).

e Finally we may consider the completion #%(X, z) of 7P*"(X, ) with respect to
the o-topology (more precisely, with respect to the two-sided uniformity defined by
the o-topology). This group is complete and has a basis of open neighbourhoods of
the identity given by open subgroups. By [6, Proposition 7.1.5] it is then a Noohi
group, i.e. the tautological map from 7(X, x) to the automorphism group of the
forgetful functor

794X, 2)-Sets — Sets

is an isomorphism. Here Sets is the category of sets and 7 (X, z)-Sets is the
category of (discrete) sets with a continuous left 7#2!( X, z)-action.

In the case where X is path-connected and locally path-connected the category
el X, z)-Sets is again equivalent to the category of semicovering spaces of X, and
7%l X, z) can be constructed from that category as the automorphism group of a
fibre functor, see [27] for details.

2.2. Etale fundamental groups of topological spaces. Let X be a connected
(but not necessarily path-connected!) topological space and =z € X. We shall
construct a profinite group 7$*(X,z) which classifies pointed finite coverings of
(X, x), much like the étale fundamental group in algebraic geometry does. To do
so we proceed analogously to the usual construction for schemes.

Categories of finite covering spaces. Recall that a continuous map of topological
spaces p: Y — X is a trivial finite covering if there is a finite discrete space D and a
homeomorphism X x D — Y making the obvious diagram commute; more generally,
p: Y — X is a finite covering if every point in X has an open neighbourhood U C X
such that the base change py: Yy = p~}(U) — U is a trivial finite covering. The
map

X =Ny, a0 |p i),
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is continuous. If X is connected, it is therefore constant; the unique value it assumes
is called the degree of the covering.

Definition 2.6. Let X be a topological space. The category FCov(X) has as objects
the pairs (Y,p) where Y is a topological space and p: Y — X is a finite covering,
and as morphisms from (Y1,p1) to (Ya,ps) the continuous maps f: Yy — Y such
that py = pyo f.

For every point z € X we define a functor ®,: FCov(X) — FSet (the target
being the category of finite sets) by sending p: Y — X to the fibre p~'(x), with
the obvious action on morphisms. For a continuous map f: X — X’ we obtain
a functor f*: FCov(X’) — FCov(X) by pullback. For # € X there is then a
canonical isomorphism ® () = @, o f* of functors FCov(X') — FSet.

Proposition 2.7. Let X be a connected topological space and x € X. Let p: Y —
X be a finite covering of degree d. Then Y splits into finitely many connected
components as Y =Y, [[-- ][ Yn, each Y; — X is a finite covering of X of some
degree d;, and d = dy + - -+ + d,,.

Proof. To each open and closed subset Z C Y we assign a counting function
cz: X = {0,1,...,d}, x~|pH(2)NZ]

We claim this is continuous: let U C X be an open subset over which p becomes
trivial. Note we cannot assume U to be connected itself because we have not
assumed X to be locally connected. Still, Z N p~!(U) is both open and closed in
p~1(U), and we may assume the latter to be U x D, where D is a discrete set of
cardinality d. Hence for each 6 € D the locus of v € U with (u,d) € Z is both open
and closed in U. Therefore cz is continuous on U. But any point in X is contained
in a suitable U, therefore cz is continuous on X. But as X is connected, ¢z must
be constant, equal to some 0 < dz < d.

From this argument we also see that Z — X is a finite covering. The same
applies to Y ~ Z. The degrees of the two coverings thus obtained must be strictly
smaller than d, hence after finitely many steps we arrive at a decomposition into
connected finite coverings. O

Lemma 2.8. Let p: Y — X be a finite covering, where X and Y are connected
topological spaces. Let g € Aut(Y/X), i.e. g is a homeomorphism Y — Y with
pog=g. If g has a fized point, then it is the identity.

Proof. Similarly to the proof of Proposition 2.7, we show that the set {y € Y |
g(y) = y} is both open and closed in Y. 0

Proposition 2.9. Let X be a connected topological space. Then FCov(X) is a
Galois category in the sense of SGA 1, and for every x € X the functor ®, may
serve as a fibre functor.

Proof. There are several equivalent characterisations of Galois categories, one being
given as follows: an essentially small category € that admits a functor ®: € —
F'Set (called ‘fibre functor’) satisfying the following set of axioms (reproduced from
cf. [2, Exposé V.4]).

(G1) € has a final object, and arbitrary fibre products exist.
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(G2) € has finite coproducts and categorical quotients of objects by finite groups
of automorphisms.

(G3) Every morphism in € factors as ¢ o m where ¢ is the inclusion of a direct
summand in a coproduct and 7 is a strict epimorphism.

(G4) ® commutes with fibre products and sends right units to right units.

(G5) & commutes with finite coproducts, sends strict epimorphisms to strict
epimorphisms and sends categorical quotients by finite groups to categorical
quotients by finite groups.

(G6) If ®(f) is an isomorphism, then so is f.

To show that FCov(X) and ®, satisfy these axioms is mostly straightforward. The
nontrivial parts are the existence of quotients in (G2), and (G6).

For the former let p: Y — X be an object in FCov(X) and let G C Aut(Y/X) be
a finite subgroup. Endow G\Y with the quotient topology; we claim that G\Y — X
is an object of FCov (X)), and it will follow formally that it is a categorical quotient
for the group action. Take an open subset U C X over which Y is trivialised; it
suffices to show that G\p~'(U) — U is a finite covering. We may assume that
p Y (U) =U x {1,2,...,d}. Then we obtain a continuous, hence locally constant,
map

a: U — Hom(G, &)

where a(u): G — G, is the permutation action of G on the fibre p~*(u) = {1,2,...,d}.
From the fact that « is locally constant we deduce that the restriction of G\Y to
U is a finite covering of U, as desired.

As for (G6) let f: Y7 — Y5 be a morphism in FCov(X) which induces a bijection
on the fibres over some x € X. We need to show that f is a homeomorphism. First,
by an argument analogous to the preceding, we show that f is in fact bijective.
Then on any open subset U C X trivialising both coverings we may assume that f
takes the form

Ux{1,2,....d} = Ux{1,2,....d}, (u.6) (u,Bu)))

for some finite sets D; and some continuous map #: U — &,. It is then clear that
f is also open. O

For a Galois category € with a fibre functor ® the group m = Aut ® acquires a
natural structure of a profinite group, as a projective limit over all the images of 7 in
Aut(®(Y)) for Y € Ob@. The functor ® then factors through the category n-FSet
of finite sets with a continuous left action by 7, and in fact induces an equivalence
between € and m-FSet by [2, Exposé V, Théoréme 4.1|. In fact, Galois categories
are precisely those that are equivalent to 7m-FSet for some profinite group =, cf. the
remarks after 2, Exposé V, Définition 5.1].

Definition 2.10. Let X be a connected topological space and x € X. The auto-
morphism group of the fibre functor ®,: FCov(X) — FSet is called the étale
fundamental group of X at x and denoted by 7¢*(X, z).

It follows from the formalism of Galois categories that for two points z, 2’ € X
the groups 7¢(X, z) and 7$*( X, 2’) are isomorphic, the isomorphism being canonical
up to inner automorphisms, cf. |2, Exposé V, Corollaire 5.7].
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In a similar vein, let X be a connected topological space and ~v: [0,1] — X a
path; write 29 = 7(0) and 27 = 7(1). Then ~ induces an isomorphism of func-
tors ¢, @, — P, as follows: for any finite covering p: ¥ — X the pullback
Yp: Y =Y xx,[0,1] — [0,1] trivialises canonically, i.e. for any ¢ € [0,1] the
composition

O, (V) =p (7)) = (V') () = 7Y = m(yY)
is a bijection, hence there is a canonical identification
Dy (V) = mo(7Y) = @, (V). (1)

We define the isomorphism of functors ¢ : ®,, — ®,, applied to the object p: ¥ —
X to be (1). By conjugation it induces an isomorphism of étale fundamental groups

7 (X, 20) = Aut @, — Aut @, = (X, 1), a— p,0ao0 90;1. (2)

The class of this isomorphism up to inner automorphisms is precisely the canonical
class of isomorphisms for any two points of X mentioned above.

Continuity properties. Another important property of étale fundamental groups is
their compatibility with cofiltered projective limits.

Proposition 2.11. Let (X,) be a cofiltered projective system of compact Hausdorff
spaces and let X = @a X,

(i) Let p: Y — X be a finite covering space. Then there exists some ag, a
finite covering py: Yo = Xo, and a pullback diagram

Y —Y,

X — X,

(ii) Let p1: Y1 — X, and pe: Yo — X,, be finite covering spaces, and let
-y Xx, X — Y2 Xx,, X be a continuous map commuting with the
projections to X . Then there exists some ag > oy, a such that f is the base
change along X — X,, of a continuous map Y; X Xa, Xay = Yo X X, Xay
commuting with the projections to X, .

Proof. We will only prove (i), the proof for (ii) being very similar.

Call a subset of X basis-open if it is the preimage of an open set in some X,. As
the name suggests, these form a basis of the topology on X.

Let & be the set of basis-open subsets of X on which p becomes trivial. Then
il is an open cover of X, and since X is compact there exists a finite subcover,
say {Ui,...,U,}. Then there exist finite sets Dy, ..., D, and continuous functions
wij: Uy = U;NU; — Isom(D;, D;) satisfying the cocycle condition

©ir(u) o wij(u) = i (u) forall w € Uy, = U;NU; N U
such that Y is isomorphic to the union of the spaces U; x D;, glued along the ¢;;.

Next, let U be the set of all basis-open subsets V' C X such that V is contained

in some U,;, and for every ¢, 7 with V' C Uj; the restriction ¢;;|v is constant. Again,

0 is an open cover of X and hence has a finite subcover {V1,...,V,,}. Since the
projective system (X,) is cofiltered and the U; and V; are basis-open sets, there
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exists some o such that all U; and V; are preimages of open sets in X,,. Then also
the ¢;; are compositions with functions on X, and we see that p: ¥ — X is the
pullback of a finite covering defined on X,,. U

Remark 2.12. With a little more effort we can show that in the situation of Pro-
position 2.11, for a compatible system of basepoints and under the assumption that
the X, are connected (and hence so is X), the natural map

X, ) — L (X, To)

is an isomorphism.

Lemma 2.13. Let X be a connected compact Hausdorff space, and let (py: Yo —
X)a be a cofiltered projective system of connected finite covering spaces such that
Y = @a Y, has trivial étale fundamental group.

Then every connected finite covering space of X is dominated by some Y,.

Proof. Let Z — X be a connected finite covering. By assumption, the pullback
covering Z xy Y — Y splits, i.e. Z X x Y is isomorphic to Y x D as a Y-space, for
some finite discrete set D. By Proposition 2.11 this splitting has to occur at a finite
level, i.e. there has to be some oy such that Z xx Y,, ~ Y,, x D as a Y,,-space.
Choosing some d € D we obtain a commutative diagram

Yo, CL Y, x D -2 Z Xy Yo, —— 7

AN

Yoo Yoo —

Yo

0

The composition of the upper horizontal maps Y,, — Z is a continuous map between
finite covering spaces of X, respecting the projections to X, hence itself a finite
covering, as desired. O

Homotopy invariance. We now show that étale fundamental groups are homotopy
invariant. We will make extensive use of the following classical result:

Proposition 2.14 (Unique Homotopy Lifting Property). Let X be a topological
space, p: Y — X a finite covering, and S another topological space. Assume we are
given a homotopy, i.e. a continuous map H: S x [0,1] — X, together with a lift of
H(—,0) to Y, i.e. a commutative diagram of continuous maps

Sx{0} ——Y

lp

S x[0,1] — X.
H
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Then there exists a unique continuous map S X [0,1] — Y making the resulting
diagram
S x {0} —Y
- g p

e
7

commute. O

This is of course well-known, see e.g. [21, Proposition 1.30]; however, we wish to
explicitly stress that no (local) connectivity assumptions about X are made.

Proposition 2.15. Let X and Z be connected topological spaces, let f,g: X — Z

be continuous, let H be a homotopy between them (i.e. a continuous map H: X X

0,1] — Z such that H(&,0) = f(&) and H(E,1) = g(&) for all £ € X ), and let

x € X be a basepoint. These data determine a path v: [0,1] — Z by v(t) = H(x,t).
Then the diagram

m'(Z, f(x))

where T, is the map in (2), commutes.
To show this we first need a lemma.

Lemma 2.16. Let X be a topological space and let q: W — X x [0,1] be a finite
covering. For any t € [0,1] consider the restriction q;: Wy = ¢ Y(X x {t}) —
X x {t} = X. Then there is a canonical isomorphism Wy = W, in FCov(X); the
construction of this isomorphism is functorial in W.

Proof. Applying Proposition 2.14 to the diagram
W6 W

idWOXO[ QJ/

Wy x [0,1] ——— X x [0, 1],

qo Xid[g, 1)

we deduce the existence of a unique continuous map Wy x [0, 1] — W making the
resulting diagram commute. In particular this map induces an isomorphism on the
fibres over any point in X x [0, 1] of the form (z,0). By Proposition 2.9 (or more
precisely by axiom (G6) for Galois categories, mentioned in the proof thereof) it
must be a homeomorphism Wy x [0, 1] — W. Functoriality is straightforward. [

Proof of Proposition 2.15. We first note that H induces an isomorphism of functors
f* = ¢g*: FCov(Z) — FCov(X), which by abuse of notation we call H*, in the
following way: for every finite covering p: Y — Z we consider the pullback ¢ =
H*p: H*Y — X x [0,1]. The natural isomorphism from Lemma 2.16 can then
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be rewritten as f*Y = ¢*Y, and it is easy to check that this indeed defines an
isomorphism of functors H*: f* = ¢g*. The ‘horizontal’ composition of H* with the
identity on the fibre functor ®, induces an isomorphism of functors ®,0 f* = ®,0g*;
this isomorphism can be identified with

Dy 0 f* = Dya) = Pog) B Pyr) = Pyia) = D09,

where ¢, is the isomorphism of functors from (1). This identity of isomorphisms
between functors can be translated into the identity 7, o f. = g, of maps between
automorphism groups of fibre functors, i.e. the commutativity of the diagram under
consideration. U

Two consequences are easily drawn:

Corollary 2.17. Let (X,x) and (Z,z) be connected pointed topological spaces, and
let f,g: (X,z) — (Z,2) be homotopic continuous maps in the pointed sense, that
is, assume there exists a continuous map H: X x [0,1] — Z with H(&,0) = f(§)
and H(&, 1) = g(§) for all € € X, and also H(x,t) = z for all t € [0, 1].

Then the group homomorphisms f, g.: 78X, x) — 7%(Z, 2) are equal.

Proof. In this case the path «: [0,1] — Z as in Proposition 2.15 is constant, hence
induces the identity automorphism of 7$'(Z7, 2). U

Corollary 2.18. Let (X, z) and (Y,y) be pointed topological spaces, and let f: (X, z) —
(Y,y) be a pointed homotopy equivalence, that is, assume there exists a pointed map
g: (Yy) = (X, z) such that f o g and go f are homotopic in the pointed sense to
the respective identities.

Then X is connected if and only if Y is connected. Assuming this to be the case,
f*: FCov(Y) — FCov(X) is an equivalence of categories and f.: n$*(X,x) —
(Y, y) is an isomorphism of topological groups.

Proof. Tt suffices to show that connectedness is preserved under homotopy equival-
ence, then the remainder will follow formally from Corollary 2.17. So, let f: X — Y
be a homotopy equivalence with quasi-inverse g: Y — X. If Y is disconnected there
exists a continuous surjection ¢: Y — {0,1}. Then co f o g is homotopic to ¢; but
since these two maps have discrete image, they must then be identical. Hence co f
must be surjective, hence X is disconnected as well. U

The assumptions in Corollary 2.18 are met for the inclusion of a deformation
retract. Recall that a subspace A of a topological space X is called a deformation
retract if there exists a continuous map H: X x [0,1] — X with the following
properties:

(i) H(x,0) =« for all z € X;
(i) H(xz,1) € A for all x € X
(ii) H(a,t) =a for all a € A and t € [0, 1].
Such a map H is then called a defining homotopy for the deformation retract A C X,
and the map r: X — A sending z to H(x,1) is called a deformation retraction. Note
that some authors do not require condition (iii), and call a deformation retraction
in our sense a ‘strong deformation retraction’.
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The étale fundamental group as a limit of deck transformation groups. There is
another way to view the étale fundamental group which will be useful; for proofs
cf. [2, Exposé V.4]. A general fact about Galois categories is the existence of a
fundamental pro-object representing a given fibre functor ®: € — FSet; this is a
cofiltered projective system (Y,) of objects together with a functorial isomorphism

O(T) = @Homg(Ya,T)

for objects T of €. By passing to a cofinal subsystem we may assume that all Y,
are Galois objects, i.e. Aut(Y,) operates simply transitively on ®(Y,). We then
obtain identifications Aut(Y,) = Im(7 — Aut ®(Y,)), and by passage to the limit

@ Aut(Y,) = 7.

For € = FCov(X) and ® = &, a fundamental pro-object is a cofiltered projective
system of connected finite coverings of X such that every connected finite covering
is dominated by one of them. It serves as a replacement for a universal covering
space of X, which may not even exist as a topological space. The Galois objects in
FCov(X) are precisely the normal finite connected coverings, and so we obtain:

Proposition 2.19. Let X be a connected topological space and x € X. Then there
exists a cofiltered projective system (po: Yo — X) of finite connected normal cover-
ings of X such that every finite connected covering of X is dominated by some Y,,
together with an isomorphism of functors

o, = liﬂHomX(Ya, —).

For such a system there is a canonical isomorphism of profinite groups

(X, 1) = @AutX(Ya).

Given z € X there is a simple natural construction of this fundamental pro-
object. We define a pointed finite covering space of (X, x) to be a continuous map
of pointed spaces p: (Y,y) — (X, z) such that p: Y — X is an object of FCov(X);
to put it another way, this is an object Y of FCov(X) together with an element of
®,(Y). A morphism of pointed finite covering spaces, say from p;: (Y1,v1) — (X, z)
to po: (Ya,42) — (X, ) is a continuous map of pointed spaces (Y1,y1) — (Y2, y2)
that makes the obvious diagram commute. Then for each two given pointed finite
covering spaces there is at most one morphism from the first to the second. In
particular, if two pointed finite covering spaces are isomorphic, the isomorphism is
unique.

It is easily seen that the isomorphism classes of pointed finite covering spaces of
(X, z) form a set P = P(X,z); it becomes a directed set when we define (Y1,4;) >
(Y2,y2) to mean that there exists a (necessarily unique) morphism of pointed direct
covering spaces (Y1,41) — (Y2, y2). We then define the universal profinite covering
space of (X, ) to be the pair

(X.#)= lim (V.y).
(Yyy)eP
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This is a pointed topological space coming with a continuous map p: (X , ) —
(X, z), and (by Proposition 2.19) also with a continuous action by 7¢'(X, z) which
preserves p; moreover, p is the quotient map for this action. The fibre p~1(z) C X
is a principal homogeneous space for 7$'(X, z), and the point Z € p~'(x) defines a
canonical trivialisation.

We also note the following for later use:

Proposition 2.20. Let (X,x) be a pointed connected topological space, and let
p: (X,2) = (X,z) be its universal profinite covering space. Then p: X — X
satisfies the unique homotopy lifting property.

Proof. This follows formally from Proposition 2.14 and the universal property of
projective limits. U

Equivariant étale fundamental groups. Let X be a connected topological space and
let I" be a group acting on X from the left by homeomorphisms. Then we define a
I'-equivariant finite covering space of X as a finite covering p: Y — X together with
a lift of the I'-action to Y, i.e. an action of I" by homeomorphisms on Y such that
p becomes [-equivariant. If p;: Y; — X are I'-equivariant finite covering spaces for
1 = 1,2 then a morphism from Y; to Y; is a continuous ['-equivariant map f: Y; —
Y, such that py o f = p;. We obtain a category FCovp(X) of I'-equivariant finite
covering spaces of X. Essentially repeating the proof of Proposition 2.9 we see that
FCov(X) is a Galois category, and for every x € X the functor ®,: FCov(X) —
FSet with ®,(p: Y — X) = p~'(Y) is a fibre functor.

Definition 2.21. Let X be a connected topological space endowed with a left action
of a group I' by homeomorphisms, and let x € X. The automorphism group of the
fibre functor ®,.: FCovp(X) — FSet is called the I'-equivariant étale fundamental
group of X at x and denoted by 7$*([I'\X], z).

The notation is purely symbolic at this point, though it is possible to define a
stack [I"\ X] on a suitable site and extend the theory of étale fundamental groups to
such stacks. For our purposes, however, the definition of 7¢*([I"\ X], z) given above
will suffice.

There is a forgetful functor F': FCovr(X) — FCov(X) and also a functor
I: I'"FSet — FCov(X) which is some sort of induction: it sends a finite I'-
set S to the topologically trivial covering X x S — X with the diagonal ['-action
on X x S (note that as soon as the I'-action on S is nontrivial this is nontrivial
as an object of FCov(X)). These two exact functors induce homomorphisms of
fundamental groups 7 (X, z) — 7¢([I'\X], ) — I", where I is the profinite com-
pletion of I, which is canonically isomorphic to the fundamental group of I'-FSet
at the forgetful fibre functor I'-FSet — FSet.

Proposition 2.22. Let X be a connected topological space endowed with a left ac-
tion of an abstract group I' by homeomorphisms, and let x € X. Then the sequence

(X, x) LN o[\ X], ) LAY AN | (3)

18 exact.
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Proof. The functor I: I'-FSet — FCovp(X) is fully faithful, hence it induces a
surjection on fundamental groups by [2, Exposé V, Proposition 6.9]. The functor
F ol sends every object of I'-FSet to a completely decomposed object in FCov(X);
by [2, Exposé V, Corollaire 6.5| this implies that [* o F* = (F o I)* = 1, or
im F* C ker I*. For the reverse inclusion ker I* C im F* we apply the criterion
given in [2, Exposé V, Proposition 6.11]**). Using said criterion we can reduce this
inclusion to the following claim: if Y — X is a connected object in FCov(X)
whose image under F' admits a section (i.e. such that there is a continuous but
not necessarily ['-invariant section of ¥ — X) then Y is in the essential image
of I. Indeed, the tautological map Y — X x my(Y) is then an isomorphism in
FCOV]"(X ) O

Remark 2.23. (i) The homomorphism 7$"(X, z) — #{*([I"\ X], z) need not be inject-
ive. As a counterexample we may take X = S! and I" = u,, acting by translations.
Then for any n > 1 the homeomorphism of S! given by a primitive n-th root of
unity does not lift to a homeomorphism of the same order along the degree n cov-
ering S' — S!, which shows that a finite covering of S! admitting a lift of the
fiso-action must already be trivial. Hence the map Z 2 78 (SY) — 78 ([10s\SY]) is
trivial (therefore not injective), and consequently 75t ([11o0\S']) = fioe = 1.

(ii) We will need to apply these constructions in the case where I" operates from the
right on X. This can be translated to an action from the left by setting yvo = xy !
and 7$([X /T, z) = 78 ([I'\X], ). This way we still obtain an exact sequence

X, x) = 7 X/, 2) = [ — 1,

but we have to bear in mind that the construction of the second map involves the
inversion map v+ vy~ L.

2.3. Comparison between classical and étale fundamental groups. Let X
be a connected topological space and x € X. Then there is a canonical homo-
morphism

o TP (X ) = 78X, 2) = Aut(D,) (4)

constructed as follows. For [y] € 7P*"(X, z) represented by a loop v: [0,1] — X

and a finite covering p: Y — X we let 7([7]) operate on ®,(Y) = p~!(x) by sending
y € p~'(z) to the end point §(1) of the unique continuous lift §: [0,1] — Y of v
with starting point 4(0) = y.

Proposition 2.24. Let (X,x) be a connected pointed topological space. Then «
as in (4) is continuous if w$*(X,x) is endowed with its profinite topology, and
Wfath(X, x) is endowed with either of the loop, T- and o-topologies. It also extends

uniquely to a continuous group homomorphism w3*( X, x) — 7(X, ).

Proof. We first show that « is continuous for the loop topology on Wfath(X , ).
Since the open subgroups of 7¢*(X, z) form a basis of open neighbourhoods of the
identity and since the loop topology turns Wfath(X ,x) into a quasi-topological group,
it suffices to show that the preimage of any open subgroup of 7¢'(X, x) under « is

open in 7™ ( X, x).

(**)Notc, however, the misprint there: the two inclusions keru C imu’ and keru O im v’ must
be exchanged.



22 ROBERT A. KUCHARCZYK AND PETER SCHOLZE

For such an open subgroup there is a pointed connected finite covering p: (Y,y) —
(X, z) such that the subgroup is the image of p,: 7$'(Y,y) — #¢"(X, x). There is a
commutative diagram of continuous maps

QY y) —— 7Y, y) —— (Y, y)

le ml lm

QX x) —— m*MX, 1) —— 78X, ).

By the unique homotopy lifting property for p the map Q(p) defines a homeomorph-
ism from (Y, y) to an open and closed subset of Q(X, x); in particular it is open
as a map Q(Y,y) — Q(X, z). Hence p,: 72*"(Y,y) — 72*"(X, z) is also open, and
its image is equal to the preimage in 77" (X, z) of p,(78(Y,y)) C 78 (X, x). Hence
this preimage is open. Therefore « is continuous for the loop topology.

One way to construct the 7-topology from the loop topology is explained in
[27, Section 7|: the forgetful functor from topological groups to quasi-topological
groups has a left adjoint 7 which preserves the underlying groups. Hence for any
topological group G and any quasi-topological group 7 a group homomorphism
m — G is continuous if and only if 7(7) — G is continuous. Now 7 applied
to 7™ (X, x) with the loop topology yields 7°*"(X,z) with the 7-topology, and
therefore v remains continuous when 7%** (X, z) is endowed with the 7-topology.

For the o-topology we use again the fact that the open subgroups of 7$'(X, z)
form a basis of open neighbourhoods of the identity. Since the preimage of each of
these under « is an open subgroup for the 7-topology, it is also an open subgroup
for the o-topology. Hence « is also continuous for the o-topology.

Finally, because 7$*(X, x) is complete, a extends to a continuous homomorphism
rdal(X x) — 7%(X, x). O

Proposition 2.25. Let (X,z) be a pointed connected topological space, and let
p: (X,JE) — (X, ) be its universal profinite covering space. Then the sequence
of groups

1 — a2 X 5 5 2 X x) S af(X, x) (5)
15 exact.

Proof. We first show that p, is injective. Let #: [0,1] — X be a loop based at #
such that v = po# is nullhomotopic, say by a homotopy H: [0,1] x [0, 1] — X with
H(0,t) = H(1,t) = x and H(t,0) = v(t) for all t € [0,1]. Then by Proposition 2.20
H lifts to a homotopy of paths H: [0,1] x [0, 1] — X with H(0,t) = Z and H(t,0) =
5(t) for all t € [0,1]. By construction, H(1,t) € p~'(z) for all + € [0,1], and
H(1,0) = &. Since p~!(z) is totally disconnected, H(1,t) must be equal to Z for all
t € ]0,1]. Hence H really defines a homotopy of loops, and not just of paths, from
7 to the constant loop. Therefore the class of 7 in W{’ath(f( , ) is trivial. This shows
the injectivity of p,.

For exactness at 77*"(X,z), let v: [0,1] — X be a loop based at z. Then
by Proposition 2.20 there exists a unique lift 4: [0,1] — X which is continuous
and satisfies 7(0) = #. The end point &' = (1) is another element of the fibre
p~(z), not necessarily equal to #. Recall that p~'(x) is a principal homogeneous
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space for 7¢(X, x), hence there is a unique element of 7$'(X, x) that sends  to 7'.
Unravelling of definitions shows that this element is equal to a([y]). Hence we find
that the following conditions are equivalent:

(i) [7] € pu(mP*™ (X, 7));
(i) 3(1) = 3(0)

(iii) = = 2/
(iv) a([y]) = 1.
The equivalence of (i) and (iv) then shows exactness at 72" (X, ). O

We can also characterise the image of a. Since m¢*(X, z) acts continuously on X
it permutes the path-components of that space.

Proposition 2.26. Let (X, ) be a pointed connected space and let p: (X, %) —
(X, z) be its universal profinite covering space. Let X° be the path-component of X
containing T.

Then the image of o: T2*"(X, z) — 7%(X, z) is the stabiliser of X° in 7% (X, x).

Proof. Let [v] € Wfath(X, x) be represented by a loop v: [0,1] — X based at z, and

let # € p~'(z) € X. Let 4: [0,1] — X be the unique continuous lift of v with
74(0) = &’. Then a([y])(Z') = 7(1), hence &’ and its image under «([y]) lie in the
same path component of X. Since &’ € p~!(z) was arbitrary this shows that a/([y])
preserves all path components of X meeting p~Y(z), in particular Xe.

For the other inclusion let § € 7%(X,z) be an element preserving X°. Then
B(#) € X°, hence there is a path 7 in X from 7 to 8(#). Then v = po 7 is a
closed loop in X based at x and therefore represents an element of 7***(X, z). By
construction, both a([y]) € 7$*(X, x) and 3 send Z to (%), but since 75 (X, z) acts
freely on X, they must be equal. Hence 8 = a([4]) is in the image of a. OJ

Hence we can rewrite (5) in a more precise way: the sequence
1— (X, ) B 7P (X, 2) 5 Stabe x ) (X°) = 1 (6)

is exact.

Let #P*""(X z) be the profinite completion of the group 7%*(X z). By the
universal property of profinite completions « induces a continuous group homo-
morphism

a: AN X x) = (X, x). (7)

Proposition 2.27. Let X be path-connected, locally path-connected and semi-locally
simply connected. Then & as in (7) is an isomorphism of topological groups.

Proof. This follows from the classical theory of covering spaces: under the given
circumstances, (X, z) has a universal (possibly infinite) covering space, and discrete
sets with an operation by ﬂll)ath(X ,x) are equivalent to covering spaces of X. Hence
finite covering spaces of X are equivalent to finite sets with Wfath(X , x)-action, which
are in turn equivalent to finite sets with continuous 7¢*( X, x)-action. O

For general path-connected spaces & need not be an isomorphism; however, there
is a weaker technical condition which still ensures that & is surjective.
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*

FIGURE 2. The Warsaw circle (left) and the long circle (right)

Definition 2.28. Let X be a topological space. We say that X is stably path-
connected if X s path-connected, and for every finite covering Y — X with Y
connected, Y 1s already path-connected.

Ezamples 2.29. (i) If a topological space X is connected and locally path-connected
then it is also stably path-connected. To see this, note that any finite covering space
of X is then also locally path-connected, and a space which is connected and locally
path-connected is also globally path-connected, cf. [33, Theorem 25.5].

(ii) Let wy be the first uncountable ordinal, and let L = w; x [0,1) be the long
line, equipped with the order topology (see |43, Example 45|). Then L is Hausdorff
and locally homeomorphic to R but not paracompact. Every two points in L are
contained in an open subset homeomorphic to R, hence L is path-connected and
locally path-connected. The one-point compactification L* = L U {*} is no longer
path-connected.

We then define the long circle to be C' = L*/(x ~ (0,0)), see Figure 2. The
dotted part is so long on the left that no path can enter it from the left, but every
point in it can be reached by a path entering from the right, which shows that C' is
path-connected. C'is not locally path-connected at *, but everywhere else.

For every n € N the long circle admits a connected covering of degree n with n
path components, hence it is not stably path-connected. See Figure 3 for the case
n = 3; the different colours encode the path components.

(iii) Similar remarks apply to the Warsaw circle. Consider the truncated topolo-
gist’s sine curve

1 1
5/:{(0,?/)|—1§y§1}U{<x,Sin5)‘O<x§—};

™

the Warsaw circle is defined as the quotient W = S'/((0,0) ~ (0, 1)), cf. Figure 2.
Like the long circle, W is path-connected but not stably path-connected.

Proposition 2.30. Let X be a path-connected topological space and let v € X.
Then the following are equivalent.
(1) X is stably path-connected.
(ii) For every finite Galois covering p: Y — X the natural map oy : 7™ (X, ) —
Aut(Y/X) is surjective.
(iii) The map o: 72" (X, 2) — 78(X, 2) has dense image.
() The map &: 7™ (X, x) — 78(X, x) is surjective.
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FIGURE 3. A connected but not path-connected covering of the long circle

Proof. The equivalence of (ii), (iii) and (iv) is easily seen.

We now show that (i) implies (ii). Assume that X is stably path-connected, let
B € Aut(Y/X), and fix some y € p~*(Y). By assumption Y is path-connected,
hence there exists a path 4: [0,1] — Y from y to B(y). Then v = po 7 is a closed
loop in X, and as in the proof of Proposition 2.26 we find that ay ([y]) = 8. Hence
(iv) holds.

Finally we assume (ii) and show that it implies (i). Since every connected finite
covering of X is dominated by a finite Galois covering it suffices to show that all
finite Galois covering spaces are path-connected. So, let p: Y — X be a finite
Galois covering. First we note that every y € Y is in the same path-component as
some element of the fibre p~!(z) (take a path from p(y) to x and lift it). It then
suffices to show that any two points 41, y» in p~!(z) can be linked by a path in Y.
Since Aut(Y/X) operates transitively on p~' and since ay is surjective, there is
some loop 7 in (X, z) such that «([y]) sends y; to yo. There is then a lift of v to
a path in Y starting at y;, and by our choice of v this path must end at y,. This
shows (iv). O

Remark 2.31. By Proposition 2.30 the image of o cannot be dense for our examples
of path-connected spaces which are not stably path-connected. Indeed, the long
circle C' from Example 2.29.(ii) is path-connected, and C'*® is homeomorphic to the
long line, hence 7P*"(C) 22 7P (C%°) is trivial. However, from the finite connected
coverings of C' mentioned in Example 2.29.(ii) we see that 7¢(C) 2 Z. Similarly, the
Warsaw circle W from Example 2.29.(iii) has trivial classical fundamental group,

and there exists a surjection 7¢"(W) — Z.

2.4. Etale fundamental groups of schemes. We assume the classical theory of
étale fundamental groups for schemes, as exposed in [2[, to be known to the reader.
Briefly, for a connected scheme 2 the category FEt(Z') of étale coverings of 2 (i.e.
schemes % together with a finite étale morphism % — ') is a Galois category, and
for every geometric point T: Spec {2 — X the functor

®,: FEt(Z) — FSet

is a fibre functor, and the corresponding fundamental group Aut(®z) is called the
étale fundamental group of £ at T and denoted by 72, 7).

If & is a connected scheme of finite type over C, there is a canonical topology
called the complex topology on I (C), turning it into a connected topological space.
For an étale covering % — X the map % (C) — Z(C) is then a finite covering.
Hence we obtain a functor FEt(Z) — FCov(Z'(C)) which is an equivalence of
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categories by Riemann’s Existence Theorem, cf. |2, Exposé XII, Théoréme 5.1|. In
particular we obtain an isomorphism of profinite groups

m'(X,7) = 71 (X(C), 7).
See section 5.2 for a partial extension of these observations to schemes of infinite
type over C.
For a field F, the étale covers of Spec F' are of the form Spec ¥ where E is
an étale F-algebra, i.e. a finite product of finite separable field extensions of F.
Consequently, a universal profinite covering is given by Spec F — Spec F' where F

is a separable closure of F'. Note that the morphism Z: Spec I’ — Spec F' is also a
geometric point of Spec F', and we obtain an isomorphism of profinite groups

7' (Spec F, 7) = Gal(F/F),

where Gal(F/F) is endowed with the Krull topology.
We note a technical result on étale fundamental groups of schemes which is ana-
logous to one for compact Hausdorff spaces mentioned before.

Lemma 2.32. Let & be a connected quasi-compact quasi-separated scheme, and let

(Pa: Yo — X)a be a cofiltered projective system of connected finite étale coverings

such that Y = Mm%, is simply connected (in the sense that w(¥) is trivial).
Then every connected finite étale covering space of & is dominated by some Y, .

Proof. The proof of Lemma 2.32 is strictly parallel to that of Lemma 2.13. O

3. TOPOLOGICAL INVARIANTS OF PONTRYAGIN DUALS

We begin by briefly summarising the basic results about Pontryagin duals; for a
systematic introduction see [36].

For a commutative, locally compact topological group M let MY be its Pontryagin
dual, i.e. the set of continuous group homomorphisms M — S!', endowed with
the compact open topology. By Pontryagin duality, this is again a commutative,
locally compact topological group, and the tautological map M — (MY)Y is an
isomorphism.

The Pontryagin dual MV is compact if and only if M is discrete. Moreover, M"Y
is connected if and only if M is torsion-free, and M"Y is totally disconnected if and
only if M is a torsion group.

3.1. Pontryagin duals of discrete abelian groups. For discrete abelian M
there is a short exact sequence

0= Migrs > M — My — 0,

where M, is the torsion subgroup of M, and M, is the maximal torsion-free
quotient of M. By duality we obtain a short exact sequence of compact topological
groups

0— My — MY — M
with M} connected and M/ . totally disconnected. In particular, the connected
components of M"Y are precisely the translates of the subgroup M. Note that M
can be written as a filtered inductive limit over free abelian groups of finite rank,

hence M,$ can be written as a cofiltered projective limit over finite-dimensional

—0
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tori. We then also see that the canonical homomorphism m(MY) — MY is an
isomorphism of topological groups, in particular my(M") is compact and totally
disconnected, therefore profinite.
The determination of the path components of MY is a bit more involved. Consider
the short exact sequence
0-Z—-R—S"—o0,

where R — S is the map t ~ 2™

it. This yields an exact sequence
0 — Hom(M,Z) — Hom(M,R) — Hom(M,S")

, and apply the left-exact functor Hom(M, —) to

2 Ext(M,Z) — Ext(M,R) — ... ;

here Hom(M,S') = MV (because M is discrete), and since R is a Q-vector space,
it is injective as an abelian group, hence Ext(M,R) = 0. That is, the interesting
part of our sequence can be rewritten as

Hom(M,R) — MY 2 Ext(M,Z) — 0. (8)

Recall that the connecting homomorphism 0 can be described in a more explicit
way: if x € MV = Hom(M,S') then d(y) € Ext(M,Z) is the class of the extension

0—=2Z—E,—M—Q0,

where
E,=Rxg, M={(r,m) e Rx M |expr=x(M)}.

Proposition 3.1. Let M be a discrete abelian group. The path component of MY
containing the trivial element is precisely the image of Hom(M,R). In particular,
the connecting homomorphism § in (8) induces a group isomorphism

(VYY) S Ext(M, Z).

Proof. Endow Hom (M, R) with the compact-open topology. Then it is clearly path-
connected (if f is an element of this space, then so is tf for every t € [0,1], and
the assignment ¢ — ¢f is continuous). Furthermore, the map Hom(M,R) — MY
is continuous, therefore its image must be contained in the trivial path component
of MV.

For the other inclusion, consider a path beginning at the trivial element of MV.
Such a path is given by a family (x;)tej0,1] of group homomorphisms y,: M — S
such that for every m € M, xo(m) = 1 and the map 7,,: [0,1] = S, t — x¢(m), is
continuous. We need to show that then y; is in the image of Hom (M, R), for every
te0,1].

Since R is the universal covering space of S!, there is a unique continuous lift
Am: 10,1] = R with 4,,(0) = 0. Then for each ¢ € [0, 1] we define a map

Xe: M =R, m— 3,(%).
By construction, the composition
MYERZS

is equal to x;; it remains to be shown that yx; is indeed a group homomorphism.
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For each m,n € M consider the map
ma [0, 1] = R, £ Xe(m) + Xe(n) = Xe(m 4 n) = Fn(t) + Fu(t) = Vmsn()-
This is a continuous map, as can be seen from the second expression. Also it has
image in Z because the y; = exp x; are group homomorphisms. Hence it is constant.

Since fm,(0) = 0, it has to be zero. That this holds for every m,n € M precisely
means that each y; is a group homomorphism. U

Remark 3.2. A Whitehead group is an abelian group M with Ext(M,Z) = 0. By
Proposition 3.1 an abelian group is a Whitehead group if and only if its Pontryagin
dual is path-connected. Clearly free abelian groups are Whitehead groups; their
Pontryagin duals are products of circle groups. The Whitehead problem is the
question whether the reverse implication holds, i.e. whether every Whitehead group
is free abelian or, equivalently, whether every path-connected compact Hausdorft
topological group is a product of circles.

Stein [44] showed that every countable Whitehead group is indeed free abelian;
Shelah [41, 42] showed that the statement ‘every Whitehead group is free abelian’ is
independent of ZFC. More precisely, if Godel’s constructibility axiom V' = L holds,
then every Whitehead group is free abelian; if 2% > X; and Martin’s Axiom holds,
then there is a Whitehead group of cardinality N; which is not free abelian.

The subspace topology on this path component may be odd (cf. Example 2.4.(iii)),
but its minimal locally path-connected refinement admits a simple description, at
least in the case relevant to us:

Proposition 3.3. Let M be a Q-vector space with discrete topology, and let (M")°
be the neutral path component of its Pontryagin dual. Then there is a natural
isomorphism of topological groups

Hom(M,R) = ((VV)°)re,
where Hom(M, R) is endowed with the compact-open topology.

Proof. From the short exact sequence (8) we obtain a map Hom(M,R) — ((M")°)®e.
This map is a continuous bijection and an isomorphism of abstract groups. Arguing
as in Example 2.4.(iii) we find that it is in fact a homeomorphism. O

Corollary 3.4. Let M be a Q-vector space with discrete topology. Then 7" (MY, 1)
15 the trivial group.

Proof. This follows from Corollary 2.5 and Proposition 3.3. U

We will now determine the étale fundamental groups of Pontryagin duals.

Proposition 3.5. Let M be a torsion-free discrete abelian group. Then the connec-
ted étale coverings of MV are precisely the NV, where N runs through the subgroups
of V.= M ® Q that contain M with finite indez.

Proof. Let us first assume that M is finitely generated; then MV is an n-dimensional
torus, and the statement is well-known.

Now consider the general case. We first show that each N indeed defines a
finite covering of M. Without loss of generality we may assume that (N : M)
is a prime p. Then there exists a finitely generated subgroup N’ C N which is
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not completely contained in M; the subgroup M’ = M N N’ is then also finitely
generated, and (N’ : M’) must be p because it cannot be 1. Then N = N’ + M and
thus

NY (Nl)v X (M) M.
Hence the map NV — MV is a base change of the finite covering (N')¥ — (M’)Y,
hence itself a finite covering. Since N is also torsion-free, NV is connected.

For the other implication, let Y — MY be a finite covering. By Proposition
2.11 this must be the base change of some finite covering space Yy — (M’)Y for a
finitely generated subgroup M’ C M, and by what we have already shown, Y, =
(N")Y with (N": M’) finite. Then Y = (N’ @,y M)V; since this is assumed to be
connected, N’ @, M must be torsion-free, hence embed via the obvious map into
V=MxQ. O

The next corollary follows essentially formally from Proposition 3.5.

Corollary 3.6. Let M be a torsion-free discrete abelian group. Then w$'(MY,0) =
(M ® Q/M)Y as topological groups.
In particular, if M is a Q-vector space, then w$'(MY) is trivial. 4

Applying this to M = Q we find that the solenoid & = QY has trivial étale
fundamental group.

Cohomology. For a topological space X and an abelian group A there are several
different ways to define cohomology groups HP(X, A), and they do not always agree.

(i) First there is the singular cohomology group Hf, (X, A) which is the co-

homology of the singular cochain complex C*(X, A) with C?(X, A) = Hom(C,(X), A).
(ii) There is another construction using sheaf cohomology: the category Sh(X)

of sheaves of abelian groups on X is an abelian category with enough in-

jectives, and the global sections functor I'y : Sh(X) — Ab sending a sheaf

A to I'(X, o) is left exact. Hence it admits right derived functors, and we

set HP(X, o) = RPI'x(&/). For each abelian group A there is a constant

sheaf Ax modelled on A, and we set HP(X, A) = HP(X, Ax).

(iii) Finally we can also consider Cech cohomology groups for sheaves:

HP (X, of ) = lim HP (8L, o )
u

where the limits goes over ever finer open covers of X, and again we set
HP(X, A) = HP(X, Ax).
If X is a paracompact Hausdorff space, sheaf cohomology in terms of derived func-
tors is always isomorphic to Cech cohomology by [19, Théoréme 5.10.1|. However,
sheaf cohomology and singular cohomology do not even agree on all compact Haus-
dorff spaces, see Remark 3.9 below. We prefer to work with sheaf cohomology
because it behaves better with respect to projective limits of spaces:

Proposition 3.7. Let A be an abelian group and let (X;);cs be a cofiltered projective
system of compact Hausdorff spaces and let X = @j X;. Then the canonical map
of sheaf cohomology groups

@HP(Xj,A) — HP(X, A)

jeJ
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18 an isomorphism.

Proof. As already remarked we may identify these groups with Cech cohomology
groups; the corresponding statement for Cech cohomology groups is [15, Chapter X,
Theorem 3.1]. The proof is based on the observation that for a compact space Cech
cohomology may be computed using only finite covers. U

Proposition 3.8. Let V' be a Q-vector space.
(i) If A is an abelian torsion group then H'(VV, A) = A and H(VV,A) = 0
for all p > 0.
(ii) For each p > 0 there is a canonical isomorphism

HP(VY,Q) = A\gV.
Under these isomorphisms wedge and cup products correspond to each other.
(iii) We have H*(VY,Z) = Z, and for each p > 0 the inclusion Z — Q induces
an isomorphism
HP(VY,Z) = H(VY, Q).

Proof. (i) First note that it suffices to prove this statement for A = Z/nZ: On
compact Hausdorff spaces, sheaf cohomology commutes with direct sums
and filtered limits of sheaves, and every abelian torsion group can be built
from the groups Z/nZ for n € N using these constructions.

Let . be the set of all finitely generated free abelian subgroups of V/,
so that V = ligMe s Misa filtered limit. Then by Proposition 3.7 we can
write

HY (VY| Z/nZ) = hg HP (MY, Z/n7Z).
Mean
We need to show that the image of each ¢ € HP(MY,Z/Z) for p > 0 is
trivial. Consider the subgroup %M € M; a short calculation using that
MY and (2M)" are tori of the same dimension shows that the pullback of
¢ to HP(( M)V, Z/nZ) is zero (but only for p > 0).
(if) Again we write V' =limg M and use that H?(M",Q) = A\G(M @ Q).
(iii) This follows from (i) and (ii) using the long exact cohomology sequence
induced by the short exact sequence 0 - Z — Q — Q/Z — 0. U

Remark 3.9. Note that, by contrast, for any abelian group A the singular cohomo-
logy of V'V with A-coefficients can be calculated as

HO (VY A) =2 ABVE) - P (VY A) =0 for all p > 0

sing sing

by Corollary 2.5.(iii) and Proposition 3.1. So, for every p > 0 the groups H?(VV, Z)
and Hf,,(VV,Z) are not isomorphic. The same holds for rational coefficients.

3.2. Spectra of group algebras. We assemble some simple results on the spectra
of group algebras; they will play the role in our scheme-theoretic considerations that
is played by Pontryagin duals in the topological case.

Proposition 3.10. Let M be an abelian group. Then Spec C[M] is connected if
and only if M 1is torsion-free.
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Proof. Note that a C-scheme & is connected if and only if every C-morphism & —
& = Spec C ][ Spec C is constant.

First assume that M is torsion-free. Then M is a filtered limit @ie ; M, where
the M; are free abelian groups of finite rank. Then

Spec C[M] = Jim Spec C[M;],
iel
so each C-morphism Spec C[M]| — & factors through some Spec C[M;]. But M; ~
Z™ for some n € N, hence Spec C[M;] ~ G, is connected.
Now assume that M contains a nontrivial finite subgroup My. Then Spec C[M] —
Spec C[My)] is surjective, but the target is a disjoint union of | M| copies of Spec C,
so Spec C[M] cannot be connected. O

For any abelian group M the group algebra C[M] is a Hopf algebra: the comul-
tiplication C[M| — C[M] ®¢ C[M] is determined by m +— m ® m for all m € M,
and the other structure maps are even more obvious. This turns C[M] into a com-
mutative group scheme over C. From the short exact sequence

0 — Miors = M — My — 0,

where M, is the torsion subgroup and M;; is the maximal torsion-free quotient,
we obtain a short exact sequence of group schemes

0 — Spec C[M;¢] — Spec C[M] — Spec C[M;ors] — 0.

Here Spec C[My] is connected by Proposition 3.10, and it is easy to see that the
topological group underlying Spec C[M,qs] is isomorphic to (Mis)Y, in particular
totally disconnected. From this we see:

Corollary 3.11. Let M be an abelian group. Then Spec C[M] — Spec C[M;oys)
induces a homeomorphism on my(-), and the identity component is isomorphic to
Spec C[My¢]. In particular mo(Spec C[M])) is canonically isomorphic to (Mios)” as
a topological group, and the étale fundamental group of Spec C[M| at any base point
is isomorphic to that of Spec C[My].

Proof. Everything is clear from the preceding, except the statement about funda-
mental groups; but because Spec C[M] is a group scheme and any connected com-
ponent contains a C-rational point, every two connected components are isomorphic
as schemes. O

Proposition 3.12. Let M be a torsion-free abelian group. Then the connected étale
coverings of Spec C[M] are precisely given by the Spec C[N|, where N runs through
the subgroups of V.= M ® Q that contain M with finite index.

Proof. The proof Proposition 3.12 is closely analogous to that of Proposition 3.5.
We begin again by observing that the desired result is well-known in the finitely
generated case.

For the general case, the argument that each N defines an étale covering Spec C[ V]
Spec C[M] is directly parallel to the corresponding argument in the proof of Pro-
position 3.5, and we shall not repeat it.

For the other implication, let % — Spec C[M] be an étale covering. Then % must
be affine, say % = Spec B for some finite étale ring homomorphism Spec C[M] —
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B. By [1, Tag 00U2, item (9)] this must be the base change of some étale ring
homomorphism C[M’| — B’ for a finitely generated subgroup M’ C M. Since B
is finite over C[M] so must B’ be over C[M'], i.e. Spec B" — Spec C[M’] must be
an étale covering, and by what we have already shown, B’ = C[N’'] with (N’ :
M) finite. Then B = C[N’ @&,y M]; since the spectrum of this algebra must be
connected, N’ @y, M must be torsion-free, hence embed via the obvious map into
V=M®Q. O

Corollary 3.13. Let M be a torsion-free abelian group. Then Spec C[M] is connec-
ted, and for any geometric base point x we obtain a natural isomorphism of profinite
groups

7 (Spec C[M],z) = (M @ Q/M)".
In particular, Spec C[M] is simply connected if and only if M is a Q-vector space.
O

This corollary is again directly analogous to Corollary 3.6. Finally we note the
following analogue of Proposition 3.8.(i):

Proposition 3.14. Let V be a Q-vector space and let A be an abelian torsion group.
Then the étale cohomology groups HE, (Spec C[V], A) vanish for all p > 0.

Proof. The proof is analogous to that of Proposition 3.8.(i). U

4. GALOIS GROUPS AS ETALE FUNDAMENTAL GROUPS OF C-SCHEMES

4.1. Rational Witt vectors. We begin by recalling rings of ‘big’ Witt vectors.
Note that there are many different constructions of these rings; for more information
see [22].

In the following, rings are always supposed commutative and unital. The ring
W(A) of Witt vectors in A is defined for any ring A. Its underlying set is the set
1 4 tA[t] of formal power series in A[t] with constant coefficient one. Addition of
Witt vectors is multiplication of power series: f @ g = fg. Multiplication of Witt
vectors is more involved.

Proposition 4.1. There is a unique system of binary operations ©, consisting of
one binary operation ©: W(A) x W(A) — W(A) for each ring A, such that the
following statements hold:

(i) With @ as addition and © as multiplication, W(A) becomes a ring.

(ii) For any ring A and elements a,b € A the equation

(1—at)®(1—=0bt) =1—abt

holds in W(A).

(iii) The operation ® is functorial in A: for a ring homomorphism ¢: A — B
and elements f,g € W(A) the equation W(p)(f©g) = W(p)(f) ©W(p)(g)
holds.

Here W(p): W(A) — W(B) is the obvious map that sends t to t and
acts as ¢ on the coefficients.

(iv) The operation © is continuous for the t-adic topology on W(A).

Hence (W(A),®,®) becomes a complete topological ring, and W becomes a functor
from rings to complete topological rings.
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The proof of this result can be found in many sources, e.g. [22, Section 9.
Proposition 4.2. Let A be a ring. The set

L4 ait + agt® + - - - + ayt”
A
{feW( ) 1+ byt + bot? + -+ - + byt™’
is a subring of W(A).

It seems that this result first appeared explicitly in the literature as |3, Propos-
ition 3.4]. The elements of W,(A) are called rational Witt vectors. The rings
Wiat(A) occur naturally in some problems in K-theory, see [3, 4, 26].

Wrat (A) d:ef

f= a,-,bjEA}

Remark 4.3. In case A = F'is a field of characteristic zero, there is a more element-
ary description of W, (F'). First assume that F' is algebraically closed. Then the
set of all polynomials 1 — at, where « runs through F*, is a basis of the abelian
group underlying W ,:(F"), and the product of two basis elements corresponding to
a and [, respectively, is the basis element corresponding to af. This means that
W,at(F') is canonically isomorphic to the group ring Z[F*].

In the general case, choose an algebraic closure F//F. Then there is a natural
action of Gal(F/F) on Wy, (F), the ring of invariants being canonically isomorphic
to Wyt (F). The isomorphism W, (F) = Z[F*] is equivariant for this Galois
action, hence W, (F') is canonically isomorphic to the ring of Gal(F/F)-invariants
in Z[F*].

Now we can give the the construction of the schemes 2. So, let F' be a field
containing Q((w) o lU,, Q(¢,), where the latter is assumed embedded into C. The
group homomorphism

,uoo_>Wrat(F)7 CH[C] défl_ct

and the canonical inclusion
oo — C*
define ring homomorphisms Z[io] — Wyat(F) and Z[us] — C, respectively. We
then set
Ap = Wit (F) ®2z/u C and 2r = Spec Ap.

Note that if F//F is an algebraic closure, Az comes with an action by Gal(F/F),
and the ring of invariants is canonically isomorphic to Ap.

Remark 4.4. In fact we may define a C-algebra A and a C-scheme 2 = Spec Ag
for any Q(()-algebra E by the same formula. We will only use this construction
in the case where F is a finite product of fields, say F = F; x --- X E,, with each
E, a field extension of Q((); then there are natural isomorphisms

Ap = [[Ae, and Zp=]] .
v=1 v=1
The following is the version of Theorem 1.5 for schemes.
Theorem 4.5. For any field F D Q((x), X is connected, and the étale funda-

mental group of L 1s isomorphic to the absolute Galois group of F'. More precisely,
the functor E — g induces a (degree-preserving) equivalence of categories between
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the category of finite étale F-algebras and the category of finite étale schemes over
Xp.

A special case of this can be handled directly.

Proposition 4.6. If F is algebraically closed, Xr is connected and simply connec-
ted.

Proof. We may identify 2 with
Spec ((Wrat(F) Rz C) ®c[uue] C) = Spec C[F™] XgpecClu] SpecC.

The embedding jis < F* induces an isomorphism on torsion subgroups, hence by
Corollary 3.11 the morphism Spec C[F*| — Spec C[o] induces a homeomorphism
on my(+). The morphism Spec C — Spec C|us] picks one connected component,
hence the fibre product £ must be connected, more precisely identified with one
particular connected component of Spec C[F*].

By Corollary 3.11, n{*(Yr) is therefore isomorphic to 7$*(Spec C[(F*)]). Since
F* is divisible, (F*) is a Q-vector space, and by Corollary 3.13 the spectrum of
its group algebra is simply connected. Hence so is 2. U

4.2. Recognising properties of scheme morphisms on geometric points.
We assemble a few well-known observations on morphisms of schemes which will be
useful later.

Proposition 4.7. Let & = Spec A be an affine scheme and let G be a finite group
operating on X, hence on A. Assume that for any algebraically closed field k the
group G operates freely on X (k).

Then the natural morphismm: & — ¥ = Spec A% is a finite étale Galois covering
with deck group G.

Proof. We claim that the natural morphism & x G — & x X, (x,9) — (z,z9)
is a closed immersion. It is clearly finite, as the composite with each projection
X x X — X is finite. Thus, by |20, Corollaire 18.12.6], it remains to show that it
is a monomorphism. Thus, let & be some scheme with two maps a = (ag, ag),b =
(ba,bg): & = X x G whose composites with &' x G — £ x X agree. In particular,
it follows that the two maps ag,by: & — X agree. It remains to see that the two
maps ag,bg: & — G agree. As both maps are constant on connected components,
it suffices to check this on geometric points, where it follows from the assumption.

Since the component maps & x G — X are also finite étale, the morphism
X xG — X x I is a finite étale equivalence relation on 2. Hence its quotient
(2 /G| is an algebraic space; by [1, Tag 03BM] it must be representable by an affine
scheme, and the morphism & — [2/G] is finite. This affine scheme represents the
same functor as %, therefore % = [2/G] and & — ¥ is finite. It is also étale by
[1, Tag 02WV]. O

Lemma 4.8. Let B C A be an integral ring extension, and let f: X = Spec A —
Spec B = ¥ be the corresponding morphism of schemes. Then for every algebraic-
ally closed field k the map X (k) — ¥ (k) is surjective.

Proof. Let y: Speck — % be a geometric point with image y € %. Then ¥y factors
as Spec k — Spec k(y) — %, defined by a field extension k(y) — k.
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By [1, Tag 00GQ)] f is surjective on topological points, hence there exists some
x € X with f(x) = y. By integrality, x(x) is an algebraic extension of k(y). Since
k was assumed to be algebraically closed, we can find an embedding k(y) — k
making the diagram

Speck(z) — X

]

Speck —— Speck(y) — ¥

commute. Then the composition Z: Speck — Speck(z) — & is a preimage of 7
in X(k). O

Lemma 4.9. Let A be a ring, and let G be a profinite group acting continuously
on A. Let AS C A be the ring of invariants, and let o: £ = Spec A — Spec A = ¥
be the associated morphism of schemes. Then for every algebraically closed field k

the induced map X (k)]G — ¥ (k) is bijective.

Proof. Note that the map A9 — A is integral: For any a € A, the G-orbit Ga =
{ai,...,a,} of a is finite, and then a is a root of the monic polynomial P(X) =
[T, (X —a;) € A[X]. Surjectivity therefore follows from Lemma 4.8, and we only
need to show injectivity.

First, we handle the case of finite G. Let p be the characteristic of k. First, we
reduce to the case A is an algebra over the corresponding prime field. If p = 0,
then (A ® Q)Y = AY ® Q as invariants commute with filtered colimits, so we can
replace A by A® Q. If p > 0, we first assume that A is flat over Z, by replacing
A by the free algebra Z[z,|la € A] on the elements of A, which admits a natural
G-equivariant surjective map to A. Assuming now that A is flat over Z, the map
A% /p — (A/p)Y is injective, but need not be an isomorphism. However, we claim
that the map induces an isomorphism on perfections, i.e. on the filtered colimit
over a — aP; in particular, the k-valued points are the same. We need to show that
whenever a € A/p is G-invariant, there is some n such that a?" lifts to an element
of A®. Note that there is a commutative diagram

0 AC AC (A/p)¢ —— HY(G, A)

| | | J

0— (A/p")Y — (A/p"tH)Y — (A/p)Y — H'(G, A/p") .

Choose n large enough that the p-part of the order of G divides p". Then H'(G, A)
is killed by p", and thus the map H'(G, A) — HY(G, A/p™) is injective. Thus, if an
element of (A/p)¢ can be lifted to (A/p"*1)%, then it can be lifted all the way to
A%, But for any a € A/p, the element a?” lifts canonically to A/p"*!: Indeed, for
any two lifts d;,d, € A of a, one has @ = ab € A/p™*'. It follows that for any
a € (A/p)Y, a®" lifts to (A/p"t1H)C.

In particular, we can assume that A is defined over a field. Let zq,x; € (k)
be in different G-orbits. Then for every g € G the induced homomorphisms x, o
g: A = A® k — k are surjective, hence their kernels are maximal ideals in A;. By
assumption, these ideals are all distinct, hence (by maximality) coprime. By the
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Chinese Remainder Theorem we then find some f € Ay which is sent to 0 by all
xpo g and to 1 by all z; o g. After possibly replacing f by

[Ts5)

geG

we may assume that f € AY = A @ k (as k is a free module over its prime field).
Then f(p(z0)) = 0 and f(p(a1)) = 1, whence o(zo) # (z:)

This finishes the case that G is finite. In general, A is the filtered colimit of its
subrings A¥, where H C G runs through open subgroups. Let %y = Spec(Af), so
that Z'(k) = hm, Yn (k). By the case of finite G, we know that %y (k)/(G/H) =
% (k). Therefore, if 2,y € 2 (k) map to the same element of % (k), then their images
in %y (k) lie in the same G/H-orbit, in particular in the same G-orbit. For each
H, we get a nonempty closed subset of G of elements which carry the image of x in
%1 (k) to the image of y in %y (k). By the variant of Cantor’s Intersection Theorem
given as Lemma 4.10 below, their intersection is nonempty, which gives an element
of G carrying x to y. U

Lemma 4.10. Let X be a compact topological space and let (A;)icr be a family of
non-empty closed subspaces of X. Assume the family is cofiltered in the sense that
for every i,j € I there is some k € I such that A, C A; N A;j.

Then the intersection (\;c; Ai is non-empty.

Proof. Assume that the intersection is empty. Then the union of the open subsets
U; = X A, is all of X, that is, the U; form an open cover of X. By compactness
there exists some finite subcover, say X = U;; U--- U U, . This means that A4; N
---NA;, = @. But by our assumption there exists some k € I such that A; C
A, N---NA;, = @, which contradicts our assumption that A # @. 0

4.3. Classification of étale covering spaces of 2. Now let I’ be any field con-
taining Q({s) C C. Consider the C-scheme 2 as defined before. By Remark 4.4
we obtain a contravariant functor F +— 2 from F-algebras to £ p-schemes, in other
words, a covariant functor from affine (Spec F')-schemes to Xp-schemes.

Theorem 4.11. For any field F O Q((x) the C-scheme Xk is connected. If EJF
1s a finite étale F-algebra then Lr — L is a finite étale covering space. The
resulting functor

FEt(Spec F') - FEt(2r), SpecFE — g,
1s an equivalence of categories.

The proof of this theorem rests on the generalities proved before, as well as the
following observations.

Lemma 4.12. Let F' 2 Q(Cx) be a field, let F/F be an algebraic closure and let
G = Gal(F'/F) be the corresponding Galois group. Let k be a field. Then G operates
freely on the set

F(F,k) = {x: (F)* — k* | x is a group homomorphism, injective on fis}.
Proof. Let 0 € G~ {1} and x € J(F, k). We need to show that o(x) # x.
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Without loss of generality we may assume that o topologically generates G (oth-
erwise we replace F' by the fixed field of o). Then G is a procyclic group. Since F
was supposed to contain ji.., in particular a square root of —1, no algebraic exten-
sion of F' can be formally real. Hence G must be torsion-free: if it were not, it would
contain a nontrivial closed finite subgroup, say H = Gal(F/F’) for some algebraic
extension I’ C F of F. By a result of Artin and Schreier ([5, Satz 4], see also [25,
Theorem 11.14]) F" must then be formally real, contradicting our assumption.

From these conditions on GG we find that it must be of the form

G:HZP

peS

for a nonempty set S of rational primes. Pick some p € S and let E be the fixed
field of o?. Then E/F is a cyclic Galois extension of degree p.

Let ¢ € F be a primitive p-th root of unity. Note that since y is injective on
oo We must have x(¢) # 1. Furthermore Ng,p(¢) = (P = 1, hence by the original
form of Hilbert’s ‘Satz 90’ (|23, Satz 90|, see also [34, Chapter IV, Theorem 3.5|)
there is some a € E* with ¢ = o(«)/a. But then x(o(a)/a) = x(¢) # 1, hence

x(o(a)) # x(a). Therefore o(x) # x. O

Lemma 4.13. Let F, F, G and k be as in Lemma 4.12. Then G operates freely on
Ap(k).

Proof. Just note that
Xr(k) = Hom(Z[F*] @z C, k)

can be identified with the set of pairs (y, g), where y: F* — kX is a group homo-
morphism and g: C — k is a field embedding such that y and g agree on all roots
of unity. The Galois action is given by o(x, g) = (c(x), g). The x occurring are all
injective on fi,, and therefore the desired result follows from Lemma 4.12. O

Lemma 4.14. The map X5(k) — XLr(k) is constant on G-orbits, and the induced
map Lr(k)/G — XLr(k) is a bijection.

Proof. Recall that 2% = Spec Az and X = Spec A% (the ring of G-invariants), so
the result follows from Lemma 4.9. O

Proof of Theorem 4.11. Let E be a finite étale F-algebra. We will show that 2 —
Zr is a finite étale covering.

First assume that F is a field, Galois over F'. Combining Lemmas 4.13 and 4.14
we find that Gal(E/F) operates freely on 2 (k), for any algebraically closed field k.
By Proposition 4.7 then ' — 2r must be finite étale.

For a general finite field extension E/F let E'/F be the Galois closure of E in
F: then the composition L — L — Xr is finite étale, as is the first component,
hence the second has to be finite étale, too.

Finally, if E is an arbitrary finite étale F-algebra, there is a canonical isomorphism

ES IT E/p

peESpec £



38 ROBERT A. KUCHARCZYK AND PETER SCHOLZE

with the E/p being finite field extensions of F'. Therefore, by Remark 4.4, we obtain
an isomorphism of r-schemes

e [ Zenw

pESpec E

hence X — Zr is also finite étale.

We now have shown that the functor Spec £ — 2 really sends FEt(Spec F') to
FEt(Zr). Note that if E/F is Galois, then Xr — Zr is a Galois covering with
group Gal(E/F). From this we deduce that the functor is fully faithful. It remains
to be shown that it is essentially surjective; this follows by applying Lemma 2.32 to
the system of étale coverings (¥u — Lr)E/F finite, using that the limit X7 = 1&1}3 L
is simply connected by Proposition 4.6. O

Corollary 4.15. ‘The’ étale fundamental group of XLr is naturally isomorphic to
‘the’ absolute Galois group of F. O

The formulation of this corollary requires some explanation. Note that classically,
to speak sensibly of the absolute Galois group of a field F' one needs to fix an
algebraic closure F. However, we can get by with a slightly more general type of
object. In Grothendieck’s interpretation of the absolute Galois group, Gal(F/F)
is the étale fundamental group of Spec F at the geometric point Spec F' — Spec F.
This is the automorphism group of the fibre functor Uz on the Galois category
FEt(Spec F), given by U=(X) = X (F). If ¥ is any fibre functor on FEt(Spec F),
then Aut W is still isomorphic to Gal(F/F), the isomorphism being canonical up to
inner automorphisms. Hence we might call Aut(¥) ‘the absolute Galois group of F'
at 0.

Now, let Z: Spec 2 — 2 be a geometric point. Then 7¢'(2F,T) is the auto-
morphism group of the fibre functor &z on FEt(2F) with ®z(Y) = Yz. The com-
position

2. _
U5 FEt(Spec F) =% FEt(2r) 2%, Sets

is still a fibre functor on FEt(Spec F), and Corollary 4.15 says that the absolute
Galois group of F' at Wz is canonically isomorphic to 7{*(2r, T), for any geometric
point T of Xk.

Remark 4.16. Let A be any ring and B a finite étale A-algebra of constant degree
d. Above, we have shown that if A is a field over Q((w), then the map Wy, (A) —
Wit (B) becomes finite étale after base change from Z[u.] to C; by faithfully flat
base change, this is already true after base change along Z[u.] — Q((x). It is
not evident from our proof how general this result is, so we want to mention the
following generalisation. We do not know whether the assumption Pic(A) = 0 is
necessary, and it would be nice to remove it.

Theorem 4.17. Let A be a ring with Pic(A) =0, let S be a set of primes which is
invertible in A, and let B be a finite étale A-algebra. For a prime p € S, consider
the element ®, € Wy (A) given by the cyclotomic polynomial H?;ll(l — g;t) €
Wiat(Z) — Wiai(A). Then the map

Weat(A)[(@p — (0= 1)7" | p € S| = Weae( B)[(®, = (p = 1)) " | p € 5]
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is finite étale in the following cases:

(i) The algebra B is everywhere of degree < d over A, and S contains the set
of primes p < d.

(ii) The algebra B is Galois over A with Galois group G, and S contains the
set of primes dividing the order of G.

Note that if A contains a p-th root of unity ¢, € A and we denote [(,] =1—(,t €
W,at(A4), then &, = [(,] + [Cg] +...+ [Cf;*l], and inverting ®, — (p — 1) is equivalent
to inverting [(,] — 1. We do not know to what extent it is necessary to ®, — (p — 1)
forallp € S.

Proof. One may reduce part (i) to part (ii) by passing to the Galois closure. Now
Wiat(A) = Wiat (B)€ and this passes to the filtered colimit, giving

Weat (A)[(@) — (p = 1)) [p € S] = Wou(B)[(®, — (p— 1)) " [p€ 5] .

By Proposition 4.7, it is enough to check that G acts freely on geometric points of
Spec(Wyat (B)[([¢p) — 1)1 | p € S]). Thus, for every 1 # g € G, we need to check
that g acts freely; replacing g by a power, we can assume that the order of g is a
prime p. We can also replace G by the cyclic subgroup generated by g (and A by
the invariants of B under this subgroup), and assume that G = Z/pZ is cyclic of
prime order.

We make a further reduction to assume that A contains a p-th root of unity.
Indeed, let A; = A ®z Z[(,], which is a finite étale Galois cover with Galois group
G1 = (Z/pZ)*. We claim that

Weat(A)[(®p = (p = 1)) 7] = Weate(A)[(@p — (p = 1) = Wrae (A1) [([G] — 1) 7]

is a finite étale Galois cover with Galois group G;. To check this, as before it is
enough to check that Gy acts trivially on geometric points of Spec(W,at(A1)[([¢] —
1)7'). But for any map W, (A41)[([¢] — 1)7'] — k, the image of [¢,] in k will be
a nontrivial p-th root of 1, so that no nontrivial element of (G; fixes the image of

[(p] in k, and in particular G acts freely on geometric points. A similar statement

holds for B — B, B 4 A1, and by faithfully flat base change it is enough to

check the result for A; — B;.
Thus, we are reduced to the case that A is a Z[i, (pl-algebra, and B is a finite
étale G = Z/pZ-cover of A; we want to prove that the map

Wrat (A)[([G] = D)7 = Weat(B)[([G] = D7)

is finite étale, for which it is enough to check that G acts freely on geometric points
of Spec(W,at(B)[([¢] —1)7']). In that case, by Kummer theory and our assumption
Pic(A) = 0, B is given by adjoining the p-th root a'/? € B of some element a € A*.
But then a'/? gives an element [a'/?] € W, (B) on which 1 € G = Z/pZ acts by
[a}/?] — [¢,at/P] = [(,)[a'/?]. For any geometric point W (B)[([¢,)] — 1)7Y — &,
the image of [,] — 1 is invertible in k, so it follows that [a'/?] maps to 0 in k; but
this is impossible, as a'/? and thus [a!/?] is a unit. O
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5. GALOIS GROUPS AS ETALE FUNDAMENTAL GROUPS OF TOPOLOGICAL SPACES

We now present the construction of a compact Hausdorff space Xp for every field
F containing Q(u« ), with properties analogous to those of 7. In fact, the two
constructions are closely related, see Theorem 5.7 below.

5.1. The spaces Xr. Let F be a field containing Q({) and let F//F be an algeb-
raic closure. We endow F* with the discrete topology and consider the Pontryagin
dual (F*)Y = Hom(F*,S'). Letting ¢: ps < S' be the obvious embedding, we
then set

Xp={x€(F) [ Xlpw = 1},
endowed with the subspace topology from (F*)Y. The absolute Galois group G =
Gal(F/F) operates from the left on X# by homeomorphisms via o(f) = f oo™l
Then we set
Xr =G\ X5,
endowed with the quotient topology. Note that if F”/F is another algebraic closure

of F, the version of Xy constructed from F and that constructed from F’ are
canonically homeomorphic.

Proposition 5.1. Let ' 2 Q(C) be a field with algebraic closure F and absolute
Galois group G = Gal(F/F).
(i) The G-action on Xz is proper and free.
(i) The space Xp is nonempty, connected, compact and Hausdorff.
(11i) The étale fundamental group of Xg is trivial.

Proof. We begin by showing that Xz is nonempty; it will follow that Xp is also
nonempty. The group F* is divisible, and its torsion subgroup is equal to fiso.
By general facts about divisible groups it can then be written as a direct sum
F* =V @ po where V is a Q-vector space. Then we can construct an element
X € Xz C Hom(F*,S") = Hom(V,S") x Hom(js,S") by declaring it to be ¢ on jis
and any group homomorphism on V. Note, however, that V' can in general not be
chosen Galois invariant.

The space X is a translate of, and therefore homeomorphic to, the closed sub-
group Hom (F* /15, S') € Hom(F>,S). This is clearly a connected compact Haus-
dorff space, and it has trivial étale fundamental group by Corollary 3.6, which proves
(iii).

For (i), note that the action being proper means that the map Gx Xz — Xzx Xz
sending (g, x) to (gz, x) is proper; but since both G and Xz are compact, this follows
automatically from continuity. That the action is free is a direct consequence of
Lemma 4.12.

For (ii), note that we already know the corresponding statement for Xz. From
this and (i) we easily deduce (ii). O

Similarly to the scheme-theoretic case, let E be finite étale F-algebra. Recall
that there is a canonical isomorphism

E=S ] E/w:

peESpec E
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we therefore set
Xp= [] Xep

pESpec E
This assignment extends to a functor from FEt(Spec F') to the category CH/Xp
of compact Hausdorff spaces over Xp. To give its action on morphisms, note that

HomF(SpecEl,SpecEg)gHomF( H Spec E1 /p1, H SpecEg/p2>

p1ESpec 1 p2E€Spec Eo

=~ H H Homp(Spec Ey /p1, Spec Ey/ps)
p1 P2

=~ H H Homp(Es /v, Er/91)

p1 P2

and similarly

HomXF(XEl,XEz)%HomXF( IT Xem. 11 XEQ/,D2>

p1ESpec Fq p2E€Spec Eo

o~ H H Homy,, (XEl/anEQ/Pz)'
P1 P2

By piecing together morphisms the obvious way, it therefore suffices to give a con-
tinuous map Xp — Xp for a finite field extension E/F. For this, choose an algebraic
closure E/E, which is then also an algebraic closure of F, and let Xz — X be the
forgetful map

Xg = Gal(E/E)\Xz — Gal(E/F)\Xz = Xr.

Theorem 5.2. The functor FEt(Spec F) — CH/Xp sending an étale covering
space Spec E — Spec F' to the map Xg — Xp in fact has image in FCov(Xr) and
defines an equivalence of categories FEt(Spec F') — FCov(XF).

Proof. Let first E/F be a finite Galois extension. Then Xp — X is the quotient
map for the action of the finite group Gal(E/F) on Xg, which is free by Propos-
ition 5.1. Since the spaces involved are compact Hausdorff spaces, Xp — Xp is
then a finite covering, and Gal(E/F) = Autgpecr(Spec E) — Auty,(Xg) is an
isomorphism of finite groups.

By passing to a Galois closures, we find that for finite but not necessarily Galois
field extensions E/F the map Xgp — Xp is still a finite covering. From this, the
same statement for finite étale F-algebras follows formally.

Hence the functor FEt(Spec F') — FCov(Xp) is well-defined. That it is fully
faithful can again be reduced to the case of automorphisms of a Galois object, which
we have already seen. Finally, its essential surjectivity follows from the combination
of Propositions 2.13 and 5.1.(iii). O

5.2. The relation between Xr and 2. Recall that for a scheme Z of finite
type over C there is a canonical topology on &' (C), called the complex topology, cf.
[39] and |2, Exposé XII|. Here 2'(C) designates the set of sections of the structural
morphism 2 — Spec C (rather than all scheme morphisms Spec C — Z7); we hope
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that no confusion with the usage in section 4 will arise. The complex topology is
characterised by the following properties:

(i) The complex topology on A'(C) = C is the Euclidean topology, i.e. the
metric topology on C induced by the metric d(z,w) = |z — w|.
(ii) The complex topology on (X Xgpecc % )(C) = X (C) x % (C) is the product
topology defined by the complex topologies on 2'(C) and % (C).
(iii) If % — X is an open, resp. closed, embedding, then so is % (C) — Z'(C).
In particular, for a quasiprojective variety 2 C P the complex topology on 2'(C)
is the subspace topology induced by the Euclidean topology on P"(C).

The complex topology can easily be generalised to arbitrary C-schemes; its de-
scription is facilitated when restricted to affine C-schemes, which suffices for our
purposes.

Let A be a C-algebra, so that & = Spec A becomes an affine C-scheme. Note
that 2'(C) can be identified with the set of C-algebra homomorphisms A — C. We
can interpret an element f € A as a function f: 2(C) — C by sending 2 (C) >
x: A— Cto x(f), i.e. by writing f(z) for what formally is z(f).

This way we define for every f € A a subset Uy C X(C) by

Up={z e Z(C)|[f() <1}.

Definition 5.3. Let & = Spec A be an affine C-scheme. The complex topology on
X (C) is the unique topology for which {Uy | f € A} is a subbasis of open sets.

That is, a subset of 2'(C) is open if it can be written as a union of subsets of the
form Uy, 5, =Up N---N Uy, (for possibly varying n).

Proposition 5.4. (i) If L is an affine C-scheme of finite type, the above defin-
ition of the complex topology on X (C) agrees with the classical one.
(i) If X = hm Z, is a cofiltered limit of affine C-schemes I, of finite type,
then X (C) = Jim Lo (C) as topological spaces.
(i1i) The complex topology is compatible with fibre products: (X xs ¥ )(C) =
Z(C) xs@c) % (C) as topological spaces.
() If Y — X is a finite étale covering, then % (C) — ' (C) is a finite covering.

Proof. (i) Easy.

(ii) Note that we can write & = Spec A and X, = Spec A, where A = hg A,.
Then because the limit is filtered every finite subset of A is the image of
a finite subset of some A,. Hence every basic open set Uy, . ; C Z(C) is
the preimage of an open subset of some 2, (C).

(iii) By (i) this holds if ', % and & are of finite type over C. Apply (ii) to
deduce the general case from this.

(iv) Again this is well-known if & (and then automatically also %) is of finite
type over C. It follows e.g. from [2, Exposé XII, Propositions 3.1.(iii) and
3.2.(vi)]. Every étale covering of an arbitrary 2 is the pullback from an
étale covering of a C-scheme of finite type, cf. [1, Tag 00U2, item (9)].
Apply this, (ii) and (iii) to deduce the general case. O

.....

Remark 5.5. Note that for a nonempty affine C-scheme & the space 2 (C) may well
be empty, e.g. for ' = Spec C(T).
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For each field F' containing Q(() we may consider £ (C), and from now on we
will tacitly assume it to be endowed with its complex topology.

Corollary 5.6. Let F' be a field extension of Q((x). Then Lr(C) is connected.
For a finite extension E/F the map Lr(C) — Lp(C) is a covering map of degree
[E : F.

Proof. We only need to prove that £(C) is connected. This reduces to the case that
F is algebraically closed, where it follows from Proposition 5.4 and Theorem 5.7 (i).
O

This suggests that also 7¢(2(C)) = Gal(F/F); the difficulty here is to show
that every topological finite covering of Z%(C) comes from an étale covering of the
scheme 2. An analogous statement in the case of C-schemes of finite type is known
under the name ‘Riemann’s existence theorem’, cf. [2, Exposé XII, Théoréme 5.1].
It is, however, not known to the authors in which generality this can hold for affine
schemes of infinite type over C.

However, we can now show in a roundabout way that indeed 7{'(2r(C)) =
Gal(F/F).

Theorem 5.7. Let F be a field containing Q((s), and let F/F be an algebraic
closure.

(i) There is a canonical Gal(F /F)-equivariant homeomorphism
25(C) S Xz x Hom(F*,R),

where the second factor denotes the set of group homomorphisms F* — R,
endowed with the compact-open topology (the topology on F* being discrete).
(ii) The homeomorphism from (i) induces a continuous map Lr(C) — Xp,
which is a deformation retraction. Each fibre of this map is homeomorphic
to Hom(F*, R).
(111) The diagram

FEt(Spec F) — FEt(Zr)

(Aptopl J?H?(C)

FCov(XF) — FCov(Zr(C))

commutes up to isomorphism of functors, and all functors in it are equival-
ences of categories. Here the two functors @s, and Pyop are those from The-
orems 4.11 and 5.2, respectively, and ¥ is induced by the map Lr(C) — Xp
in (i1).

Proof. (i) Note that there are canonical bijections

%F(C) = HomC—algebras<Wrat<F> ®Z[#oo] C, C)
= HomC—algebras<Z[FX] ®Z[Moo] (C, C)

= Hom(C—algebras<C[FX] ®C[/Loo} C, C)
= {x € Homgroups (F™, C7) | X|puo = idpsc }-
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Now C* = S! x R as Lie groups, and from this we obtain a product de-
composition

Zr(C) = {x € Hom(F*,S") | x|, = id,.. } x Hom(F*,R).

The first factor is equal to X . This bijection is clearly Gal(F/F)-equivariant,
and it is straightforward to show that it is a homeomorphism.

(ii) There is a Gal(F/F)-equivariant deformation retraction 4%(C) — Xz:
using the description of Z%(C) from (i) we can define it as

H: Xz x Hom(F*,R) x [0,1] = X# x Hom(F*,R)
(G A ) = (X EA).

By equivariance, H descends to a deformation retraction Zr(C) — Xp
(note that X is the quotient of Xz by the Galois group by construction,
and Zr(C) is the quotient by the Galois group by Lemma 4.14). The
statement about the fibres follows from the fact that Gal(F/F) operates
freely on Xp.

(iii) That the diagram commutes up to isomorphism of functors is a direct cal-
culation. We already know that three of the functors are equivalences: &g,
is an equivalence by Theorem 4.11, &y, is an equivalence by Theorem 5.2,
and ¥ is an equivalence by (ii) and Corollary 2.18. Hence the fourth functor
is also an equivalence. l

6. CLASSICAL FUNDAMENTAL GROUPS INSIDE GALOIS GROUPS

6.1. Path components of the spaces Xp. First let F be an algebraically closed
field. To determine the set of path components of X3 we need to contemplate a
large commutative diagram.

Lemma 6.1. Let F be an algebraically closed field containing Q((x). Then there
1s a commutative diagram with exact rows and columns:

0 0 0 (9)

0 — Hom(F;,R) —— Hom(F},S') —— Ext(F, Z) — 0

tf tf tf

0 —— Hom(F*,R) —— Hom(F*,S') —— Ext(F*,Z) —— 0

00— Hom(fieo, ') —— Ext(fto0, Z) —— 0

0 0

Here, all Hom and Ext groups are understood to be in the category of abelian groups.
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Proof. This diagram is essentially obtained by applying the bifunctor Hom(—, —)
and its derivative Ext(—, —) to the short exact sequences

0= fioo > F* = F —0

in the first variable and
05Z—->R—->S"—>0

in the second variable. Hence it commutes by functoriality. We now show exactness
in the rows and columns.

For the rows, let A be one of the groups pi.., F* and F5. Then we obtain an
exact sequence

Hom(A,Z) — Hom(A,R) — Hom(A4,S") —
Ext(A,Z) — Ext(A,R).

In all three cases A is divisible, therefore the first term Hom(A, Z) vanishes; the
last term Ext(A,R) vanishes because R is divisible. In the case A = p the term
Hom(A, R) is also trivial. Hence the exact sequences (10) for these choices of A can
be identified with the rows of (9).
As to the columns, the exactness of the first column is trivial. The second column
is the exact sequence
0 — Hom(F},S") — Hom(F*,S') — Hom(fie0, S") — Ext(F%, S

tf

(10)

where the last term is zero because S! is divisible. Finally the third column is the
exact sequence

Hom (ptoo, Z) — Ext(F}5,S') — Ext(F*,S') — Ext(poo, S') — 0,

which is exact because Ext? is zero on the category of abelian groups, and whose
first member Hom (i, Z) is clearly trivial. O

Recall that by Proposition 3.1 there is a canonical bijection between TR (F)Y)
and Ext(F*,Z). Denote by

Extex(F*,Z) C Ext(F*,Z)

the subset of those extensions whose restriction to pi.o C F* is isomorphic to the
exponential sequence

0 =>2Z— Q= poo — 0,
i.e. the preimage of the element in Ext (jto0, Z) encoding this extension in Ext(F*, Z).

Proposition 6.2. Let F D Q(¢s) be an algebraically closed field. The subset
Xz C (F*)Y is the union of those path components corresponding to the subset

Extex (F*, Z) C Ext(F*,Z) 2 ab*((F*)V).
Proof. The middle column in (9) can be rewritten as
0— (FX)Y — (F*)Y — ul —0,

and Xp is equal to the preimage of the inclusion + € Hom(jin,S') = p,. The
horizontal map (F*)¥ = Hom(F*,S') — Ext(F*,Z) occurring in (9) is precisely
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the one taking a point in (F*)V to its path component. The exactness and com-
mutativity of (9) imply that X can equally be described as the preimage of the
exponential sequence

0—=Z—Q— pe — 0] € Ext(pteo, Z)
in (F>)V. O

Corollary 6.3. There is a canonical Gal(F/F)-equivariant bijection between 75" (X 7)
and Extex, (F*,Z). d

By Theorem 5.7.(i) there is then also a Gal(F/F)-equivariant bijection between
T (XH(C)) and Exteg,(FX, Z).

6.2. Multiplicatively free fields. We will now investigate conditions for Xz, and
therefore also £7(C), to be path-connected. First we note that for a large class of
fields it cannot be path-connected.

Proposition 6.4. Let F' O Q((y) be a field, and assume that there exists an ele-
ment o € F* which is not a root of unity, such that for infinitely many n € N there
exists an n-th root of a in F.

Then Xg has uncountably many path components.

For example, X5 has uncountably many path components for F' = Q((s, p*/*°)
with p a rational prime.

Proof. Let M C F* be the smallest saturated subgroup of F'* containing «; then
foo C M, and My = M/pus is a torsion-free abelian group of rank one, hence it
can be embedded into the additive group of Q. By construction it has unbounded
denominators, i.e. it is not contained in %Z for any n € N.

The inclusion M < F* defines a continuous surjection Xz — Home,,(M,S?)
which is clearly Gal(F/F)-equivariant, hence we obtain a continuous surjection
X7 — Home,, (M, S'), where the target is (non-canonically) homeomorphic to M.
We therefore obtain a surjection 75" (Xp) — 78" (MV).

By Proposition 3.1 there is a bijection 78" (M) = Ext(M, Z). Hence we need
to show that Ext(M,Z) is uncountable.

We may assume that Z C M. Then there is a short exact sequence

0—-Z—M-—MJZ—0
and hence a long exact sequence

Hom(M, Z) — Hom(Z, Z) — Ext(M/Z,Z) — Ext(M,Z) — Ext(Z,Z).  (11)
N T —

Letting Ot be the set of cyclic subgroups N C M containing Z we can then write
M = %ﬂ Nen N, hence we obtain a spectral sequence with

EP = R lim Ext*(N/Z, Z) = Ext"*(M/Z, 7).

NeNn
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Since the Ext?(N, Z) satisfy a Mittag-Leffler condition the higher limits vanish and
the spectral sequence degenerates at Fy. We therefore obtain an isomorphism

Ext(M/Z,7.) = Jm Ext(N/Z,7).
Nem
This is an inverse limit over infinitely many finite groups with surjective transition
maps, hence an uncountable profinite group. By (11) Ext(M,Z) = 752*"(M") must
then also be uncountable. U

Here is a class of fields where an « as in Proposition 6.4 cannot occur.

Definition 6.5. Let F' be a field containing Q((x). Then F' is called multiplicat-
ively free if Fif = F'* /oo 1 a free abelian group. F is called stably multiplicatively
free if every finite extension of F is multiplicatively free.

Remark 6.6. (1) It is unknown to the authors whether there exists a field which is
multiplicatively free but not stably multiplicatively free.

(ii) Recall that a subgroup B of an abelian group A is saturated if whenever a € A
and there is some n € N with na € B, then a € B. By a result of Pontryagin
[35, Lemma 16|, a torsion-free abelian group A is free if and only if every finitely
generated subgroup of A is contained in a saturated finitely generated subgroup
of A. Hence a field F' O Q((s) is multiplicatively free if and only if every finite
subset of F'* is contained in a saturated subgroup of F'* generated (as a group) by
all roots of unity and possibly finitely many additional elements.

(iii) The condition in Proposition 6.4 and the property of being multiplicatively free
are mutually exclusive. It is again unknown to the authors whether always one or
the other holds. For general abelian torsion-free groups, not necessarily isomorphic
to Fi for a field F', both can be false.

More precisely, there exists an abelian group A with the following properties: it
is torsion-free; it has rank two (i.e., A — A ®z Q = Q?); for any a € A\ {0} there
are only finitely many n € N for which there exists b € A with a = nb; it is not
free, in fact, every rank one quotient of A is divisible. This group A is constructed
in [18, Lemma 2].(1)

Proposition 6.7. Let F' be an algebraic extension of Q((s) which can be written
as an abelian extension of a finite extension of Q. Then F' is stably multiplicatively
free.

In particular, Q((x) is stably multiplicatively free.

Proof. We first show that F' is multiplicatively free.

For a finite set S of rational primes let opg be the ring of S-integers in F.
By a result of May [30, Theorem| the group o0 /i is then free abelian. Note
that the free abelian subgroups oy ¢/fi are saturated in F*/ i, and every finitely
generated subgroup of F* /i, is contained in one of them. By [30, Lemmal| F* /10,
must then be free abelian itself. Hence F' is multiplicatively free.

() Here is the construction. Let ¢ € End(Q/Z) =~ End(Z) =~ Z = [, prime Zp be such that
the component ¢, € Z, at each p is transcendental over Q. Then we set A = {(a,b) € Q? |
p(amod Z) = b mod z}.
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Now let E//F be a finite extension; we can write £ = F(«) for some a € E.
By assumption there exists a subfield K C F' which is finite over Q such that the
extension F/K is abelian. Then E/K(«) is abelian, too. By what we have just
shown F is therefore multiplicatively free. O

The Kummer pairing. For a field F' containing Q((s) and an algebraic closure
F/F, let FJ, be the saturation of F* in F*, i.e. the group of all @ € F* such
that there exists some n € N with " € F*. Note that F_, is divisible, hence
F /oo = (Fay )it is @ Q-vector space. Then there is a canonical biadditive pairing

sat

() Gal(F/F) x Fy = oer (0,0) =+ (0,0 = 2.

It clearly factors through Gal(F2*/F) x F.%,/F*. By Kummer theory, cf. 28, sec-
tion VI.8|, the maximal abelian extension F#" is obtained by adjoining all elements

of F, to F, and the resulting homomorphism
ke Gal(F(Fg,)/F) = Hom(FG /F™, pie), 0 (0,) (12)

is an isomorphism.

Now assume in addition that F' is stably multiplicatively free. We wish to un-
derstand the action of Gal(F/F) on Exte,(F*,Z).

We begin by considering a saturated subgroup V C F* such that p. C V,
Vit = V/ s 18 @ Q-vector space of finite rank, V' is stable under the Galois action,
and V is the saturation of A =V N F*. Note that then Ay = A/py is a Z-lattice
inV.

Then the Galois action on V' admits the following description: for o € V and
o € Gal(F/F) we obtain

o(a) = (o,a) - a.
Then there is also a natural action of Gal(F/F) on Hom(V, j), namely o(y) =
x oo~ !, that is,

Hence for the subset

Homey, (V, thoo) = {Xx € Hom(V, pioo) | X|uoo = id,“oo}’

which is a translate of the subgroup Hom(Vi, pie) € Hom(V, ps), we obtain a
particularly simple description of the Galois action: for xy € Homey,(V, pteo) and
o € Gal(F/F) we have

a(x) = (o) - x =rv(e) X, (13)
where ky is the isomorphism Gal(F(V)/F) — Hom(V/A, ps) induced by (12).

Lemma 6.8. Let F' O Q((s) be a stably multiplicatively free field, let F/F be an
algebraic closure, and let V. C F* be a Galois-stable saturated subgroup of finite
rank.
Then there exist
e an open subgroup H C Gal(F/F),
e an open compact subgroup L C Hom(Vi, i) = Hom(V, Ag) and
e a surjective continuous group homomorphism k: H — L
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such that H C Gal(F/F) operates on Homex,(V, fiso) by 7(x) = x + &(7) (where
the group structure on i 1s written additively).

Proof. Let B C V be a finite set which maps to a QQ-basis of Vi, and let E be
the subfield of F' generated by B. Then E/F is a finite extension, hence E is
multiplicatively free. Let A =V N E*; this is a subgroup of V' containing ., and
the quotient Ay = A/ is a full Z-lattice in V.

We set L = Hom(V/ A, pioo) C Hom(Vig, o ); under the isomorphism

Hom(Vig, tieo) = Hom(V, Ag) = Hom(A, Ay)

it corresponds to the subgroup Hom(4, Z), which is clearly open and compact.
We then set H = Gal(F/E) and let : Gal(F/E) — Hom(V/A, jis,) be the map

induced by the Kummer pairing, as in (12). From (13) we see that the H-action on

Homey, (V, f1oo) is indeed as described. O

Lemma 6.9. Let F' 2 Q(C) be a stably multiplicatively free field, let F/F be an
algebraic closure and let V. C F* be a Galois-stable saturated subgroup of finite

rank.
Then Gal(F/F) operates transitively on Extey,(V,Z).

Proof. Using the short exact sequences 0 - Z — Q — fio — 0 and 0 — oo —
V — Vit — 0 we obtain a commutative diagram with exact rows and columns
analogous to (9):

0 —— Hom(V;¢, Q) —— Hom(Vig, ptoo) — Ext(Vis, Z) —— 0

0 —— Hom(V, Q) —— Hom(V, ptoo) —— Ext(V,Z) —— 0

0 ————— Hom (oo, floo) — Ext (oo, Z) — 0.

0 0

Here Exteyp,(V,Z) is the preimage of the exponential extension ey, € Ext(poo, Z)
in Ext(V,Z), hence a translate of the subgroup Ext(Vi,Z). It can therefore also
be described as the quotient of Home,(V, fio), & translate of Hom(Vi, p1oo) in
Hom(V, i), by the subgroup Hom(V, Q).

From Lemma 6.8 we see that there is an open subgroup of Hom(Vis, 11o) on
whose translates in Home,(V, pioo) a suitable open subgroup H of the Galois group
acts transitively. Since the subgroup Hom(Vif, Q) is dense in Hom(Vif, f1oo) =2
Hom(Vi¢, A¢) this implies that H, and therefore also Gal(F/F), operates trans-
itively on Exte,(V,Z). O
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Lemma 6.10. Let V. C W C F* be Galois-stable saturated subgroups of finite
rank. Let also 1,69 € Extep(F*,Z), and let ng),xgv) € Hom(V, o) satisfying

the following conditions:
(1) the connecting homomorphism 6: Hom(V, ) — Ext(V,Z) induced by the
exponential sequence sends XEV) to gily, fori=1,2;
(i1) ng) and ng) lie in the same Gal(F /F)-orbit.

Then there exist elements ng), Xéw) € Hom(W, pso) such that

(i11) the connecting homomorphism 0: Hom(W, ps) — Ext(W,Z) sends XZ(W) to
5i|W; fO’f’i = 1, 2,’

(iv) X\l =", fori =1,2;
(v) ng) and Xéw) lie in the same Gal(F /F)-orbit.

Proof. Again we contemplate a large commutative diagram, obtained from 0 —
V — W — W/V — 0 and the exponential sequence:

0 0 0
0 —— Hom(W/V,Q) —— Hom(W/V, tioo) —— Ext(W/V,Z) —— 0
0 —— Hom(W,Q) —— Hom(W, pioo) — Ext(W,Z) —— 0

0 —— Hom(V,Q) ——— Hom(V, pioe) —— Ext(V,Z) —— 0

0 0 0

First we consider the problem of lifting an individual character. So, let ¢ €
Ext(F*,Z) and x(V) € Hom(V, 1o ) with §(x(")) = ¢|y,. A short diagram chase then
shows that there exists some ") € Hom(W, pio) with 6(x")) = e[y and x|y, =
x"), and that moreover the set of all such x") is a translate of Hom(W/V,Q)
(which can be considered a subgroup of Hom(W, pis)).

With this preparation we find an element XEW) satisfying (iii) and (iv). We choose
some ¢ € Gal(F/F) with a(xgv)) = ng), and let ¢ = O‘(ng)). Then 9 is our first
approximation to ng) , and it clearly satisfies (iv) and (v), but not necessarily (iii).

From Lemma 6.8 we deduce the existence of the following objects:

e a closed subgroup H C Gal(F/F),

e an open compact subgroup L € Hom(W/V, u) = Hom(W/V, A¢) and

e a surjective continuous group homomorphism «: H — L
such that on Homey,(V, jiao) the group H C Gal(F/F) operates by 7(x) = x + x(7)
(here we write the group structure in p., additively).

Since eo|w and 6(¢)) both restrict to e3]y € Ext(V,Z) their difference lies in
Ext(W/V,Z). Hence there exists an element o € Hom(W/V, pioo) = Hom(W/V, Ay)
such that d(a) = eo|w — 6(10). We let further 7 € H C Gal(F/F) with k(1) = a.
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Finally we set Xéw) =1 + a. We check that all desired conditions are met:

(iii) ng) was chosen such that (5(X§W)) = e9|lw, and

SO") = (1) + 8(a) = 8(4) + ealw — 5() = ealw

(iv) ng) was chosen such that XSW)|V = ng), and
W v v
Xl =l +aly = x7 +0 ="
(V) ng) and ng) are in the same Galois orbit because

7o) = 7(W) =¥+ w(r) =+ a = x. D

Proposition 6.11. Let ' 2 Q((w) be a countable stably multiplicatively free field,
and let F'/F' be an algebraic closure. B
Then Gal(F'/F) operates transitively on Extec,(F*,Z).

Proof. By countability we can find an ascending chain (indexed by N)_of Galois-

stable subgroups o C V3 C Vo C --- of finite rank, whose union is F'*. Hence
there is a spectral sequence with

BRI = R,plgI'nEth(VTw Z) = ExtPT(F* 7). (14)

Since these Ext groups are taken in the category of abelian groups, the entries with
g > 1 vanish. Likewise, it is easy to see that the structure maps Hom(V,,,Z) —
Hom(V,,,Z) and Ext(V,,Z) — Ext(V,,,Z) for n > m are surjective, hence the
inverse systems in (14) satisfy a Mittag-Leffler condition, and the higher direct
images also vanish. Therefore the spectral sequence degenerates at Fs, and the
natural map

Ext(F*,Z) — lim Ext(V},, Z)

is an isomorphism. We deduce that the restriction

Extexy(F*,Z) — lim Extex, (V,, Z) (15)

is a bijection.

Let €1, 69 € Extex,(F*,Z). We need to show that there is a o € Gal(F/F) with
o(e1) = e9; by what we have just seen this is equivalent to o(ely,) = ea|y, for all
n € N. Using Lemmas 6.9 and 6.10 we inductively produce elements Xﬁ”), Xg") €
Hom(V},, t1oo) such that the following conditions hold:

(iii) the connecting homomorphism §: Hom(V},, o) — Ext(V},,Z) sends XE")

to v, for i = 1,2 and n € N;
(iv) X" =" fori = 1,2 and n € N;
(v) ™ and X" lie in the same Gal(F/F)-orbit.
We let
T, = {7 € Gal(F/F) | o(xi") = x5}
By (v) each T}, is a nonempty subset of Gal(F/F), and by (iv) the sequence of sub-

sets (T},) is descending, i.e. T), D Ty, for all n € N. Moreover, Gal(F/F) operates
continuously on Hom(V},, iio,) when the latter is endowed with the compact-open
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topology; since Hom(V},, 11+, ) is Hausdorff, points in this space are closed, hence the
T,, are closed subsets of Gal(F/F).
Now we can apply Cantor’s Intersection Theorem (Lemma 4.10 above) to con-
clude that
(T # .
neN
By construction, any element in this intersection sends €; to &5. U

Remark 6.12. The reader may wonder why we do not simply proceed as follows to
prove Proposition 6.11. For any Galois-stable saturated subgroup V C F* of finite
rank we set Uy = {0 € Gal(F/F) | o(g1|v) = e2|v'}; this is a coset of the stabiliser
of 1]y, and it is nonempty by Lemma 6.9. Then an application of Lemma 4.10
should show that the intersection of all Uy is nonempty.

The problem with this argument is that Uy is not closed, only an F,-subset (a
countable union of closed subsets). Rigidifying the situation by adding the auxiliary
conditions that the lifts XZ(»") € Hom(V, 11o,) also be fixed replaces the Uy by the
closed subsets Ty, which allows us to apply Lemma 4.10.

Corollary 6.13. Let F' be a countable stably multiplicatively free field. Then Xg
and Lr(C) are path-connected.

Proof. By Corollary 6.3 and Proposition 6.11, Gal(F/F) operates transitively on
0 (X7), hence X = Gal(F/F)\ X5 is path-connected. By Theorem 5.7.(ii) then
also Zr(C) is path-connected. O

6.3. Classical fundamental groups of the spaces Xp. It will be convenient
to fix a basepoint ¥ € Xz and denote its image in X by x. Then p: (Xz, X) —
(XF,Xx) is a universal profinite covering space. Recall that there is then a short
exact sequence of abstract groups (6) which in our case becomes

path path

1— ™ (XI?, )Z) &) ™ (XF,X) g> Stabﬂ?t(XF’X) X% — 1.

Since Xz is homeomorphic to the Pontryagin dual of a Q-vector space its clas-
sical fundamental group W?ath(Xp, X) is trivial by Corollary 3.4, hence o maps
7P ( Xy, x) isomorphically to the stabiliser. The latter can be rewritten: the
set mh*"(X7) is in canonical bijection with Extee,(F*,Z), and this bijection is
equivariant for the isomorphism 7$'( X, x) = Gal(F/F). Hence we have shown the
following;:

Proposition 6.14. Let F O Q(() be a field, and let x € Xp. Denote the image
of X in Xp by x, and let € € Extex,(F*,Z) be the pullback of the extension
0—Z—R—S'—0] €Ext(S',2Z)

along x.
Then 7™ (Xp, x) is canonically isomorphic to the stabiliser of e in Gal(F/F).
UJ

This stabiliser seems to be hard to determine in general. However, in the count-
able stably multiplicatively free case we can at least say that it is large.
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Proposition 6.15. Let F' O Q((x) be a countable stably multiplicatively free field,
and let x € Xp be any basepoint. Then the image Ofwfath(XF, X) is a dense subgroup

of Gal(F/F).

Proof. If F' is countable and stably multiplicatively free then so is any finite exten-
sion F of F. Hence all coverings Xg defined by finite extensions of F' are path-
connected by Corollary 6.13. By Theorem 5.2 every connected covering space of Xz
is of this form, therefore X is stably path-connected. Hence by Proposition 2.30
the image of 7™ (Xp, x) in 7¢(Xp, x) = Gal(F/F) is dense. O

This applies in particular to F' = Q((x)-

The fundamental group as an inverse limit. Let F' O Q(() be a countable stably
multiplicatively free field. We shall write 70" (X ) as an inverse limit of discrete
groups which are extensions of finite groups by free abelian groups of finite rank.
In particular, Wfath(X r) will be endowed with a non-discrete topology.

Fix an algebraic closure F'/F, and let £(F/F) denote the set of all subgroups

A < F* satisfying the following conditions:

(i) A contains pie, and Ay = A/ is a free abelian group of finite rank.
(ii) A is stable under Gal(F/F).
(iii) Set E = F(A); this is a finite Galois extension of F' by (i) and (ii). Also,
let V' be the saturation of A in F*. Then EX NV = A.
(iv) For every o € Gal(FE/F) there exists a A € A such that o(\)/\ = (,, where
n is the order of ¢ in Gal(E/F).

Lemma 6.16. Let F O Q((x) be a stably multiplicatively free field with algebraic
closure F. Then F* can be written as the filtered union

F* = U A.

AeL(F/F)

Proof. Let o, ..., a, € F*; we need to find a A € £(F/F) with oy, ..., a, € A.
First let £ be the Galois closure of F(ay,...,a,) in F. By Hilbert’s Theorem 90

in the form already used in the proof of Lemma 4.12, for every o € Gal(E/F) there

exists some A\, € E* such that o(\,)/\s = (,. Let V be the smallest saturated

subgroup of F* containing the A, and all Galois conjugates of a1, . .., . Then Vi
is a Q-vector space of finite rank, and A = E* NV will be an element of £(F/F)
containing ac, . .., ay,. Ul

For A € £(F/F) set Xz(A) = Homey,(A,SY). There is a natural continuous action
of Gal(F/F) on Xz(A), and we set Xp(A) = Gal(F/F)\Xz(A).

Lemma 6.17. Let F O Q((s) be a stably multiplicatively free field, and let F/F
be an algebraic closure.

(i) For every A € £(F/F) the space Xz(A) is homeomorphic to a torus of
dimension rank A. For any basepoint x € Xz(A) there is a canonical iso-
morphism

770 (X7, v) = Hom(A, Z).
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(i) Let A € £(F/F) and let E be the subfield of F generated by A, a finite
Galois extension of F. Then the action of Gal(F/F) on Xz(A) factors
through Gal(E/F), and the induced action of Gal(E/F) is free. Hence
Xz(A) = Xp(A) is a finite covering.

(11i) For any basepoint x € Xp(A) there is a natural exact sequence

1 — Hom(A, Z) — 7™ Xp(A), x) — Gal(E/F) — 1.

Proof. For (i) note that Xz(A) is a translate of the subgroup Ay} in AY; this subgroup
is a torus whose classical fundamental group is canonically isomorphic to Hom(A, Z).

As to (ii), it is clear that the Galois action factors through Gal(E/F). We will now
show that the induced action of this finite group is free. Let 1 # o € Gal(E/F)
be an element of order n > 1, and assume that there is some y € Xz(A4) with
o(x) = x. By condition (iv) in the definition of £(F/F) there exists some A € A
with o(A)/A = (,. But then

o2mi/n _ _xe(V) _ e _ x(W)
XD =20 T a0

a contradiction. Therefore o cannot have a fixed point in Xz(A), and the action is
free.

Part (iii) then follows easily (note that these spaces are path-connected and locally
path-connected, in fact manifolds, so the classical theory of fundamental groups and
covering spaces applies). U

=1,

Proposition 6.18. Let ' D Q(Cxo) be a stably multiplicatively free field with algeb-
raic closure F'/F. Then the canonical map

Aeg(F/F)

18 a homeomorphism.

Proof. Consider first the map Xz — @XF(A) = @Gal(F/F)\XF(A). This is
clearly surjective, and if two elements of X# have the same image they must be
in the same Galois orbit, by an argument using Lemma 4.10 (Cantor’s Intersection
Theorem) similar to that used in the proof of Proposition 6.11. Hence the map (16)
is bijective. It is also continuous, and domain and target are compact Hausdorft
spaces. Therefore it is a homeomorphism. O

Proposition 6.19. Let F' D Q(Cxo) be a countable stably multiplicatively [ree field
with algebraic closure F. Choose a basepoint x € Xg, and for each A € £(F/F)
denote its image in Xp(A) by xa. Then the natural map
A (Xp) > lm w P (XR(A), ) a7)
A€L(F/F)
s an isomorphism.

Proof. Since F (hence also F) is countable, there exists a cofinal sequence (Ap)nen
in £(F/F). To see this, choose an enumeration F' = {aj,as,as,...} and choose
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the A, inductively in such a way that A, C A,.; and aq,...,a, € A,. Hence
Xr — lgln Xr(A,) is is also a homeomorphism, and it suffices to show that

b (X, x) = I 7™ (Xp(A,), xa,)
neN
is an isomorphism.
For each n € N there is a commutative diagram

Xp(Apgr) —— Xp(A,)

l |

Xp(Ant1) ——= Xp(An)

where p is a fibration and the vertical maps are finite coverings. Therefore p is also
a fibration.

In general if (X,)nen is & projective system of pointed topological spaces where
the transition maps are fibrations, then there is a short exact sequence

1 — RIL path(X ) s 7_{_{>ath( ) — L path(Xn) 1
neN neN
of abstract groups (compatible choice of basepoints understood), see [13] (see also
[24, Theorem 2.1| for a more elementary exposition). Hence in our case there is a
short exact sequence

1= R'im 3™ (X (4,)) = 7P (Xp) = lim 7™ (Xp(4,)) = 1.
neN neN

Since the X (A,,) admit finite covering spaces which are tori, their second homotopy
groups vanish. O

Proposition 6.20. The loop topology turns m}* th(XF, X) into a topological group
with a basis of open neighborhoods of the identzty given by open subgroups, hence
it is equal to the 7- and o-topologies. If we endow each ﬂpath(X(/l),XA) with the
discrete topology, then (17) becomes an isomorphism of topological groups.

Moreover, 77" (X p, x) is complete for this topology, hence 72" (Xp, x) = 76 (Xp, x)
15 a Noohi group.

Proof. Since the Xp(A) are manifolds, their classical fundamental groups are dis-
crete for the loop topology. Consider the commutative diagram

QXp, x) —  lm  Q(Xp(4),xa)

A€L(F/F)

path

path
™ (XF,X)WAE%/F)M (XE(A),x4)-

Here the upper horizontal map is a homeomorphism and the vertical maps are open.
Hence (17) is a bijection which is continuous and open, hence also a homeomorph-
ism.
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A quasi-topological group which is a projective limit of topological groups is itself
a topological group, and hence the loop and 7-topologies on Wfath(X F,X) agree.

Since W{’ath(X ,X) is a projective limit of discrete groups its 7- and o-topologies

agree, and it is complete. O

In particular we find that the loop topology turns Wfath(X r), which we may

identify with a subgroup of Gal(F/F), into a complete topological group whose
topology is strictly finer than the subspace topology induced from the Krull topology
on Gal(F'/F), because it has infinite discrete quotients.

7. COHOMOLOGY

We will next show how to realise Galois cohomology groups with constant coeffi-
cients as suitable cohomology groups of the spaces Xz and the schemes 2.

7.1. The Cartan—Leray spectral sequence. Consider the following situation:
X is a compact Hausdorff space and G is a profinite group operating freely and
continuously on X, with quotient space Y = G\X. We will construct a spectral
sequence relating the (sheaf) cohomologies of X and Y with the continuous group
cohomology of G.

Continuous group cohomology. Let G be a profinite group. A continuous G-module
is an abelian group A with a G-operation which becomes continuous when A is
endowed with the discrete topology. The continuous G-modules form an abelian
category G-Mod in an obvious way; this category has enough injectives. The
functor (—)¢: G-Mod — Ab sending a G-module A to its invariant submodule A¢
is left exact. Hence we obtain a total derived functor between derived categories
R(—-)¢: 2(G-Mod) — P(Ab), and derived functors in the classical sense which

we call continuous group cohomology:
HP(G, A) = RP(—)9(A).

Note that this may well differ from the classical group cohomology HP(G%, A) where
(Y is G as an abstract group. However, there is a canonical isomorphism

li%an(G/H, Ay = HP(G, A),

where the limit is over all normal open subgroups H of G, cf. the discussion in [40,
section 2.2].

For a field F with separable closure F//F and a continuous Gal(F/F)-module A
we write shortly

H™(F, A) = H™(Gal(F/F), A);

these groups are called Galois cohomology groups. Note that if A is an abelian group
interpreted as a constant module for the Galois group, then H”(F, A) does not
depend on the choice of a separable closure of F', i.e. for another separable closure
F'/F there is a canonical isomorphism H™(Gal(F'/F), A) = H™(Gal(F/F), A); this
justifies the notation H™(F, A).
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Equivariant sheaves and their cohomology. Let X be a compact Hausdorff space
and G a profinite group operating continuously and freely on X. There are several
ways to define the category Shg(X) of G-equivariant abelian sheaves on X.

For instance, a sheaf of abelian groups &/ on X corresponds to an espace étalé
m: A — X, which is a topological space A with a local homeomorphism 7: A — X
and an abelian group structure in the category of X-spaces. Here 77 !(z) = &, (the
stalk), and for an open set U C X sections of & on U are the same as continuous
sections of the map 7=*(U) — U. Then we define a G-equivariant sheaf on X to
be a sheaf of of abelian groups on X together with a lift of the G-action on X to a
continuous G-action on A. For a more ‘modern’ definition that is more amenable
to generalisations see e.g. [37, section 1].

Again the G-equivariant sheaves on X form an abelian category Shg(X) with
enough injectives; there is a canonical equivalence Shg(x) ~ G-Mod, where x*
denotes the one-point space.

For a G-equivariant sheaf of the group I'( X, /) of global sections comes naturally
with a continuous G-action. Hence we obtain a left exact functor

Ixc: She(X) = G-Mod, o — I'(X,d).

For a G-equivariant sheaf o/ on X we then obtain a complex RI'x (/) € D(G-Mod);
but we may also forget its G-structure and apply the derived functor of the usual
global sections functor I'x: Sh(X) — Ab to it.

Lemma 7.1. For o € Shg(X) the complex of abelian groups underlying RU x () €

P2(G-Mod) (i.e. its image in D(Ab)) is canonically isomorphic to the complex
Rl x ().

In particular, the cohomology groups of either of these complexes become continu-

ous G-modules whose underlying abelian groups are the ordinary sheaf cohomology
groups HP(X, o).

Proof. This follows directly from the fact, proved in [37, Corollary 3|, that the
forgetful functor Shg(X) — Sh(X) sends injective objects to soft sheaves, hence

sends an injective resolution of & in Shg(X) to an acyclic resolution of & in Sh(X).
U

Sheaves on the quotient. Let X and G as before, and consider the quotient map
p: X = G\X =Y. There is a canonical equivalence of abelian categories between
She(X) and Sh(Y'), which can again be described rather simply in terms of espaces
étalés:

If & is a sheaf of abelian groups on Y with espace étalé¢ B, then 77'% has a
natural G-structure since its espace étalé is the fibre product B xy X, where G
operates on the second factor. Vice versa, if & is a G-equivariant sheaf on X with
espace étalé A, we may form the quotient G\ A — Y which is the espace étalé of a
sheaf on Y. It is not hard to see that these two constructions are mutually inverse.

Proposition 7.2. Let X be a compact Hausdorff space and let G be a profinite
group acting continuously and freely on X, with quotient Y = G\X. Let A be an
abelian group, and denote the constant sheaves on X and Y modelled on A by Ax
and Ay, respectively; endow Ax with the tautological G-operation. Then there is a
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natural isomorphism in D(Ab):
R(—)% (RT'x,¢(Ax)) = RTy(Ay).

Proof. Consider the following diagram of left exact functors between abelian cat-
egories:
Sh(Y) —— Shg(X)

Fyl J/FX,G

Ab W G-Mod

It is easy to see that it is commutative up to isomorphism of functors.

The equivalence on the upper horizontal line sends Ay to Ax, as can be seen on
their espaces étalés, which are simply A x Y and A x X with G operating trivially
on A. The claim then follows by the chain rule for derived functors R(F o G) =
RF o RG. O

Corollary 7.3. With the same assumptions as in Proposition 7.2 there is a spectral
sequence with

EY" =HP(G,HY(X, A)) = HPTI(Y, A),
where HP (G, —) denotes continuous group cohomology, and H1(X, A) and HP*T4(Y, A)
denote sheaf cohomology. O

Proposition 7.2 and Corollary 7.3 have analogues in étale cohomology. We content
ourselves with stating the analogue of the latter.

Proposition 7.4. Let & — ¥% be a pro-étale Galois covering of schemes, with a
profinite deck transformation group G, and let A be an abelian group. Then there
1s a natural spectral sequence with

qu = HP(G7 Hgt(*%‘vA)) = ngq(?’ A)

Proof. This is shown in [31, Chapter III, Remark 2.21.(b)|. Here is a brief summary
of the proof.

First we assume that G is finite. Then & is an object of the small étale site of
% on which G acts by automorphism, hence the functor

Sh(%s) — G-Mod, % — (X, %),

is well-defined. Its composition with the forgetful functor G-Mod — Ab is the
usual global sections functor. Hence we obtain a spectral sequence relating the
derived functors of these functors.

We deduce the general case by passing to the limit over all coverings H\Z — ¥
with H C G an open normal subgroup. Il

7.2. The cohomology of Xy and 2. We can now compute some cohomology
groups of these spaces using the Cartan—Leray spectral sequence. We discuss the
topological case in detail, the étale case for torsion coefficients is analogous.

We begin by computing the cohomology of X when F' is algebraically closed.

Proposition 7.5. Let F be an algebraically closed field containing Q((u).
(i) Let A be an abelian torsion group. Then H*(X#z, A) = A and HP (X7, A) =0
for all p > 0.
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(i1) There is a canonical isomorphism of graded algebras

~Y p inl
Bwoe.a =@ N, Fi
p=>0 p>0
(iii) H*(X#,Z) = Z, and for each p > 0 the inclusion Z < Q induces an
isomorphism HP (X5, Z) = HP (X7, Q).

Proof. Recall that Xz is a translate of the subgroup (F%)¥ C (F*)V. Hence for any
X € X7 we obtain a homeomorphism t,: (F%)¥ — Xz by ¢, (w) = yw, and there-
fore an isomorphism of cohomology groups ¢} : H*(Xz, A) — H*((F;)", A). These
depend continuously on x € X4, but since X is connected, they must be independ-

ent of x. Hence we obtain a canonical isomorphism H®(Xz, A) = H*((F')Y, A), and
the statements follow from Proposition 3.8. U

Theorem 7.6. Let F' be a field containing Q((s).

(i) For every abelian torsion group A and every m > 0 there is a natural
1somorphism
H™(Xp, A) = H™(F, A).
(i1) For each m > 0 there are natural isomorphisms

m N\ Gal(F/F)
B (Xr, Q) = (N, F) .

In low degrees this simplifies to
H'(Xr,Q) =Q and H'(Xr,Q) = F*®zQ.
(i1i) The cohomology groups with integral coefficients begin with
H'(Xp,Z)=7Z  and H'(Xp,Z) X Fj.
Proof. We consider the Cartan-Leray spectral sequence as in Corollary 7.3 for X =
X, G=Gal(F/F) and Y = Xp:
EY? = HP(Gal(F/F),HY( X7, A) = HPY( X, A). (18)

(i) If A is torsion then HY(Xz, A) = 0 for all ¢ > 0 by Proposition 7.5, hence the
spectral sequence (18) degenerates at E, and we obtain an isomorphism H?(Gal(F/F), A) =
HP (X, A).

(ii) Consider the spectral sequence (18) for A = Q. All cohomology groups HY(X 7, Q)

are Q-vector spaces, hence have trivial Galois cohomology, so E¥? = 0 for p # 0.

Again the spectral sequence (18) degenerates at Fy and we obtain isomorphisms

H°(Gal(F/F),H (X7 Q) = HY( X, Q).

Using Proposition 7.5.(ii) we can rewrite this in the desired form. It is clear that
H°( X5, Q) = Q; for the calculation of H!' (X, Q) we need that the Galois invariants
in F are isomorphic to F* ® Q. To see this consider the short exact sequence of
Galois modules

0= foo = F* = FX =0
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and the associated long exact Galois cohomology sequence
0 = fioe — F* — (F)SNF/T) 5 Hom(Gal(F/F), jiog) — - - -
which shows that the cokernel of the inclusion Fif — (F, 2)GalF/F) i a torsion group.
Hence F* @ Q — (F;)%F/F) must be an isomorphism.
(iii) Consider the long exact cohomology sequence for the short exact sequence of
coefficient groups 0 = Z — Q — poo — O:
e Q> i > HY(Xp, Z) = HY (Xp, Q) = HY (X g, frog) — -+ -

We see that H' (X, Z) is the kernel of the map H'(Xr, Q) — H (X, pioo). By (ii)
the domain of this map is isomorphic to F* ® Q = (F. )i, by (i) the target is
isomorphic to HY(Gal(F/F), jis,) = Hom(Gal(F/F), jiss). A tedious but straight-
forward calculation shows that this map

(Fa)u — Hom(Gal(F/F), i)
is given by a — (—, @), where (—, —) is the Kummer pairing discussed in section 6.2.
Hence its kernel is precisely Fi}. O

Remark 7.7. Even for A = Z the spectral sequence (18) gets somewhat simplified,
namely then E5Y = 0 whenever p # 0 and ¢ # 0. This is because then HY( Xz, Z) is
a Q-vector space by Proposition 7.5.(iii), hence all higher Galois cohomology groups
for this space vanish.

In a similar vein we can identify Galois cohomology with constant torsion coeffi-
cients with étale cohomology of Xp:

Theorem 7.8. Let F' O Q((x) be a field and let A be an abelian torsion group,
viewed as a trivial Galois module. Then for every m > 0 there is a canonical
1somorphism

HE (2, A) = H(F, A).
Proof. Consider the Cartan—Leray spectral sequence as in Proposition 7.4:

B} = HY(Gal(F/F), Hiy (¥r, A)) = HE(Zr, A).

Since X5 = SpecC[F] as a scheme, HY (27, A) = 0 for all ¢ > 0 by Proposi-
tion 3.14. Hence the spectral sequence degenerates at s, and the claim follows. [J

The Galois symbol. Recall that for a field /' and an integer m > 0 the m-th Milnor
K-group KM(F) is defined as the quotient of the m-th exterior power A7 F* by
the subgroup generated by all expressions of the form a A (1 —a) A By A=+ A B,
for a € F . {0,1} and 8; € F*. In other words, the graded algebra €D, -, KM (F)
is the quotient of the exterior algebra A® F* by the two-sided homogeneous ideal
generated by all a A (1 — «) with a € F' . {0,1}. See [32] for more information.
The Milnor K-groups are related to the more universal and well-known Quil-
len K-groups K,,(F) as follows. There are canonical isomorphisms Ko (F') = Z and
K, (F) = F*. There is therefore a unique multiplicative extension A F* — K,(F);
it factors degreewise through a homomorphism KM(F) — K,,(F). This is an iso-

morphism for m = 0,1 by construction and for m = 2 by Matsumoto [29], see
also 32, §12].
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For n prime to the characteristic of F' there is a canonical homomorphism
0: F* — HYF,Z/nZ(1)) = H(Gal(F/F), )
that sends o € F'* to the cohomology class da defined by the crossed homomorph-

ism Gal(F/F) — u, sending o to o(3/a)//a. Taking cup products this extends
to a homomorphism of graded rings

@/\mFX%@Hm(F,Z/nZ(m)), A A Ay = 0ag U=+~ Uday,.  (19)
m>0 m>0

For any o € F \ {0,1} the relation da U (1 — ) = 0 holds in H*(F,Z/nZ(2)).
Hence (19) factors through the Milnor K-groups of F, defining the Galois symbols

o™ KM(F) — H™(F, Z/nZ(m)).

The Bloch—Kato conjecture |7, p. 118|, now a theorem due to Voevodsky [45, The-
orem 6.1], asserts that for every field F', every integer m > 0 and every n € N prime
to the characteristic of F' the induced group homomorphism

KM(F)® Z/nZ — H™(F, Z/nZ(m))

is an isomorphism.
Assume now that F' contains Q((..); then we may ignore Tate twists. By The-
orem 7.6.(i) we obtain therefore an isomorphism

om: KM(F)® Z/nZ — H™(Xp, Z/n7Z); (20)
taking an inductive limit over all n € N we can also construct an isomorphism
o KM(F) © Q/Z - H™(Xp, Q/Z).

Note also that 9} lifts canonically to an isomorphism 9 : KM(F) = F* — HY(Xp, Z)
by Theorem 7.6.(iii). However, for o € F \ {0, 1} the element 9'(a) Ud' (1 — ) €
H?(XF,Z) is nonzero since its image in H*(Xp, Q) is nonzero by Theorem 7.6.(ii).
In particular the resulting homomorphism

/\’;FX S H™Xp,Z), a1 A Aam s 0 (ar) U--- U (am)
does not factor through KM(F) for any m > 2 and any field F O Q((x ).
Proposition 7.9. Let F O Q((s) be a field.

(i) For every m > 0 the homomorphism

18 surjective.
(ii) For every m >0 the group H™(Xg,Z) is torsion-free.

Proof. Consider the commutative diagram
No(F* ® Q) — KL (F) © Q/Z
Hm(XFa Q) — Hm(XF7 Q/Z)

Here the upper horizontal map is surjective by construction, and the right vertical
map is surjective by the Bloch—Kato conjecture. Hence the lower horizontal map
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has to be surjective as well, which proves (i). The map from (i) is part of a long
exact sequence

oo H™(Xp, Z) — H™(Xp, Q) — H™(Xp,Q/Z)
H™ (X, Z) — H™(Xp, Q) = H™ (X5, Q/Z) "5 -+
By (i) the connecting homomorphisms ™ have to vanish, hence the short sequences
0—H"Xp,Z) > H"(Xr,Q) - H"(Xr,Q/Z) — 0

are also exact. Therefore H" (X, Z) injects into a Q-vector space, which proves (ii).
U

8. THE CYCLOTOMIC CHARACTER

In this section we develop a variant of the preceding constructions that works also
for fields which do not contain all roots of unity, provided their absolute Galois
groups are pro-f-groups. We will summarise the necessary structural results, the
proofs being very similar to the case treated before, and then discuss in more detail
some actions on cohomology groups that only become nontrivial in this new case.

8.1. A variant with (some) roots of unity. Throughout this section we fix a
rational prime ¢ and a perfect field /' with algebraic closure F' whose characteristic
is not equal to ¢ (but may well be positive) such that Gal(F¥'/F) is a pro-(-group.

We write u,, for the group of all n-th roots of unity in F', where n € N. We also
set

oo = U pn and oy = U Fon.-
neN neN~/N

The groups pe for n < oo are cyclic of order ¢*. There is a continuous group
homomorphism

Xer: Gal(F/F) — Aut pige 5 7

called the l-adic cyclotomic character and characterised by U(_C) = (xer(9) for all
o € Gal(F/F) and ( € py~. Its kernel is the group Gal(F/F((s~)), and the
possibilities for its image are rather restricted.

Proposition 8.1. Let n be mazimal such that jien C F. If € is odd or if n > 1, the
image of Gal(F'/F) under the (-adic cyclotomic character is equal to the subgroup

Un © 1402, 2}
If ¢ = 2 and n = 1, there is some m € {2,3,4,...,00} such that the image is
generated by Uym C Z5 and —1 € Z, where we set Uy = {1}.

Proof. By assumption, this image H = im x,r is a closed subgroup of Z; which
is contained in Uy but not contained in Up+i. If £ is odd or n > 1, the f-adic
exponential series defines an isomorphism of topological groups ¢"Z;, — Upn. Any
closed subgroup of Z, is an ideal, hence of the form ¢"Z, for 0 < m < oo, and an
ideal contained in ¢"Z, but not contained in ¢**'Z, must be equal to ("Z,.
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The case £ = 2 and n = 1 remains. Here the exponential series defines an
isomorphism 4Z, — Uy, hence by the previous argument we find that HNU, = Upm
for some 2 < m < co. From the short exact sequence

0—4Zy DU, — {£1} = 0
and the assumption that H Q U, we conclude that H = £Uym. ]

By considering algebraic extensions of finite fields we see that all of these pos-
sibilities do occur. For another example, if I is a real closed field, then ¢ = 2 and
n =1, and the image of xo p: Gal(F/F) < Z5 is simply {+1} C Z5.

We will only formulate our main results in this section for the case where im x, p =
U, the case im x5 p = £Usm being similar.

The spaces Ym . For each n € NU {oo} and each perfect field F of characteristic
different from ¢ with u» C F and each injective character ¢: pp — S* we will now
define a topological space Yjn p(t). We start with the algebraically closed case and
let
Yo 7(1) = {x € Hom(F™/p1er, ) | X = ¢}
where ‘Hom’ denotes group homomorphisms; this space is endowed with the compact-
open topology. The Galois group Gal(F/F) operates continuously on Y}, 7(¢), and
we set ’
Yin (1) = Gal(F/F)\Y (1),

Proposition 8.2. Let ¢ be a rational prime and F' a perfect field of characteristic
different from { such that Gal(F/F) is a pro-f-group. Let n € NU {oo} such that
pen C F and let v: pign — St be an injective character.

(1) Yon (1) is a nonempty compact Hausdorff space.

(ii) Gal(F'/F) operates freely and properly on Y, 5(1).

Proof. The proof is essentially analogous to that of Proposition 5.1.(i) and (ii).
For the freeness in (ii) we use Lemma 8.3 below, which is similar to Lemma 4.12
above. O

Lemma 8.3. Let ¢ and F be as in Proposition 8.2, and let k be a field. Then
Gal(F'/F) operates freely on the set Fy(F, k) of all group homomorphisms F'* — k*
which are injective on g and trivial on i .

Proof. Let ¢ € Gal(F/F) be different from the identity element, and let x €
Ji(F, k). We need to show that o(x) # x.

Replacing F' by the fixed field of ¢ we may assume that o topologically gener-
ates Gal(F/F). Since Gal(F/F) is a pro-f-group, it is then either finite cyclic or
isomorphic to Z,.

In the first case it has to be cyclic of order 2 by the Theorem of Artin—Schreier,
and F has to be real closed. Then x((4) is a primitive fourth root of unity in k,
and o(x)(Ca) = x(0(¢a) = x(¢ 1) = x(Ca) ™" # x(Ga), hence x # o (x).

In the second case we let F be the fixed field of ¢*, so that E/F is a cyclic
extension of degree ¢. By Hilbert’s Theorem 90 we find some a € E with o(a)/a =

o, and since x({y) # 1 we then find o(x)(«) # x (), i.e. x # o(x). O
It is here that the assumption that Gal(F/F) is a pro-f-group is used.
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Lemma 8.4. Let ¢ and F as before, and assume that the image of x¢r: Gal(F/F) —
Z} is equal to Upm for somen € NU{oo}. Let v: pupm — S be an injective character
and let T: puo — S be an injective character with i),,, = .

Then the spaces Yon (1) and Yy pc,.) (L) are canonically homeomorphic.

Proof. There is a tautological inclusion Yy 7#(7) < Yy 7(¢), which is equivariant

for the group inclusion Gal(F/F((y)) — Gal(F/F). It therefore descends to a

continuous map Yy p(c,.0)() = Yin p(t), and since the spaces under consideration

are compact Hausdorff spaces, it suffices to show that this map is a bijection.
Note that Y}, #(¢) is the disjoint union (as sets, not as topological spaces!)

U YEOO ,F(j)J
jE€Hom (ppo0 ,ST)

j|#en =t

and the subgroup Gal(F/F((w~)) C Gal(F/F) preserves each summand while the
quotient Gal(F((s=)/F) = U permutes the summands simply transitively. There-
fore the quotient of each summand by its stabiliser Gal(F/F((s~)) maps bijectively
to the quotient of the whole set by Gal(F/F). O

Proposition 8.5. Let { and F' be as before with im xy p = Upn and let v: jipn — St
Then Ypm g(1) is connected.

Proof. By Lemma 8.4 we may assume that n = oo. Then Y« () is homeomorphic
to the Pontryagin dual of the torsion-free group F* /g jige = F*/jios, hence it is
connected. Therefore its quotient Yy~ p(¢) is also connected. 4
Proposition 8.6. Let ¢, F', n, v and I as before.

(i) The étale fundamental group of Y 5(7) is trivial.

(ii) The étale fundamental group of Y p(1) is isomorphic to Gal(F/F(());

this isomorphism is canonical up to inner automorphisms.

Proof. For (i) note that Y. 5(Z) is homeomorphic to the Pontryagin dual of F* /i,
a Q-vector space. Hence Yo 7(7) is the universal profinite covering space of Y p(¢,00)

by Proposition 8.2. It follows that the deck transformation group Gal(F/F((p))
is isomorphic to the étale fundamental group of Yy r(c,e)(2); by Lemma 8.4 this
space is canonically homeomorphic to Y p(¢). O

Theorem 8.7. Let ¢, F', n and v as before, and let A be an abelian torsion group.
Then there are canonical isomorphisms

H"™(Yin g, A) = H™(F((pee), A)
and
m —_\ Gal(F/F(Coo))
H" (Yo, @) = (N Fi)
for each m > 0.

Proof. The proof is similar to that of Theorem 7.6. U
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There is also again a scheme-theoretic version of these constructions. For a perfect
field F of characteristic different from ¢ with algebraic closure F such that Gal(F/F)
is a pro-f-group, an n € NU {oo} with g C F and an embedding ¢: pupn (F) < S
we set _

B — (C[FX/W/]/])GM(F/F)
where I C C[Fx /up] is the ideal generated by all [¢] — ¢(¢) - [1] with ¢ € pue (F).
Note that if n < oo then this ideal is generated by a single element [(on] — ¢((pn) - [1]
with (s a primitive £"-th root of unity.

Then we set % p = Spec By p. Note that this still depends on ¢, but we suppress
this to lighten the notation. In complete analogy to the schemes 27 we obtain the
following properties:

Y

Theorem 8.8. Let ¢ be a rational prime and let F be a perfect field of character-
istic other than (. Assume that Gal(F/F) is a pro-(-group and that the image of
Xen: Gal(F/F) — Z) is equal to Up for some n € NU {oo}.

Then the scheme Ym p is connected, and its étale fundamental group is iso-
morphic to Gal(F/F((s)), the isomorphism being canonical up to inner auto-
morphisms. For abelian torsion groups A we obtain natural isomorphisms

HE (Yn ry A) = H™ (F (G ), A).

The space Y g can be identified with a subspace in Ym p(C) with the complex
topology; it is a strong deformation retract.

Proof. In analogy to Lemma 8.4 there is a canonical isomorphism % p = %ec p(¢,e0 ),
hence we may assume that n = oo. The proof is then analogous to those of Corol-
lary 4.15, Theorem 5.7.(ii) and Theorem 7.8. O

8.2. Three actions on cohomology. We assume that ¢ is a prime, F' a perfect
field of characteristic other than ¢ with algebraic closure F such that Gal(F/F) is
a pro-f-group and such that the image of x, r: Gal(F/F) — Z is equal to U for
some (finite!) n € N. We have seen that then for each abelian torsion group A and
each m > 0 there are canonical isomorphisms

H"(Yen p, A) = Hg (Yn p, A) = H" (F(Gee), A). (21)

On each of the groups in (21) there is a natural action from the left by a certain
group; we will show below that these three actions are compatible.

The topological action. By construction Y. r is a closed subset of the Pontryagin
dual (F* /)Y, more precisely a translate of (F;)". The group F*/u, is divisible
and has no torsion elements of order prime to ¢, therefore it is a Z-module in a
unique way (here Z) C Q is the ring of rational numbers whose denominators are
prime to £). Therefore the group of units Zg, acts on (F*/ue) by group automorph-
isms from the left: u- (o mod pp) = (o mod ). Hence it acts on the Pontryagin
dual (F*/pug)Y from the right: (y - u)(a) = x(a®).
This action does not preserve the subspace Y, 7 C (F*/ug), but its restriction
to the subgroup
U(gn) =1+ f”Z(@) C Z(XZ)
will, because elements of Uy operate trivially on pien.
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This action of Uy on Y  commutes with that of Gal(F/F), hence it descends
to a right action of Uyny on Yim p.

Then by functoriality we obtain a left action of Uy on the cohomology group
H"™ (Y p, A) for any abelian torsion group A and any m > 0.

The arithmetic action. The scheme % r admits a natural model over the ring of
cyclotomic integers Z[(s]|. To be precise, let

?F, int = Spec BF, int
with B
= _17\ Gal(F/F)
B = (Z[F* /ug) [([G] = 1)7])
where (; € F is an (-th root of unity. Each embedding ¢: pen (F) < S! induces a
ring embedding
et Z[Cen| = Zpn (C)] = Bp,int

with e,(¢(¢)) = [(] for each ¢ € pm(F). This ring embedding turns % in¢ into a
Z[(ym]-scheme, and there is a natural isomorphism

?F, int Xeb,SpecZ[Qn] SpeC(C = %”,F(I’>‘

There are then also a natural isomorphisms
HZé(%",F) A) = HZE(?E int XeL,SpecZ[Qn} Spec@; A)

Now Gal(Q/Q((s)) operates from the left on BF int Qe,, z(¢om] Q (trivially on the
first factor and tautologically on the second factor), hence from the right on the
spectrum of this algebra, hence from the left on the cohomology of the latter. Thus

we obtain a left action of Gal(Q/Q((pm)) on HE (Y, A).

The group-theoretic action. This is the simplest to describe: from the short exact
sequence of profinite groups

1 — Gal(F/F(()) — Gal(F/F) S Up — 1
we obtain an action from the right of Gal(F'/F) on its normal subgroup Gal(_F JF (o))
by h9 = g~ 'hg, hence an action from the left on H™ (F({p), A) = H™(Gal(F/F ((s=)), A).
Since inner group automorphisms act trivially on cohomology, this descends to a

left action by Upm = Gal(F(()/F).

Theorem 8.9. Let ¢ be a rational prime, F' a perfect field of characteristic other
than ¢ with algebraic closure F such that Gal(F/F) is a pro-f-group and such that
imx,r = Upm for some n € N. Let A be an abelian torsion group. Then the
following claims hold for each m > 0:

(i) The arithmetic action of Gal(Q/Q((m)) on HEH(Ym 1, A) factors through

the (-adic cyclotomic character

Xe = Xeom): Gal(Q/Q(¢em)) — Um C Zj.

Hence it defines an action by Upm on HIH(Ym p, A) which we also call arith-
metic.

(ii) The topological action of Uny on H™(Yim p, A) extends uniquely to a con-
tinuous action of Upm = 1+ ("Zy on the same space. Here continuity refers
to the (-adic topology on Upn.
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Moreover the isomorphisms in (21) are U -equivariant up to a sign. More precisely,
the isomorphism
H (Y py, A) = H™ (F(C), A)

1s equivariant for the identity Um — U, while the other two isomorphisms
H™(Yen p, A) = HE (Yn py A) and H"(Yin g, A) = H™(F((e), A)
are equivariant for the inverse map Upm — U, u > u™t.

Proof. Broken up into smaller pieces, this is proved below in Proposition 8.13,
Corollary 8.16 and Proposition 8.25 below. O

The proof of Theorem 8.9 will fill up the remainder of this section. More precisely,
for each two of the three actions we will establish equivariance for these two actions,
and prove along the way that the actions factor through U,.. From a strictly logical
point of view this is redundant, but we believe each of the three proofs reveals
something particular about the objects under consideration.

8.3. Compatibility of the arithmetic and group-theoretic actions. For each
field F satisfying the conditions of Theorem 8.9 and each ‘coefficient field’ k£ we set
Yrk = Yr int Xspecz Speck. The scheme %p ), is not necessarily connected, but for
k= Q it is. We will now determine the étale fundamental group of %r .

There is a pro-étale but possibly disconnected normal covering #zg. Its deck

transformation group can be identified with Gal(F/F) x Gal(Q/Q) which operates
in the obvious way on ¥rg (from the right, however). The space of connected

components 7(%#g) is canonically homeomorphic to Isom (e (F), pie= (Q)), with
its obvious left action by Gal(Q/Q) and its obvious right action by Gal(F/F). The

space Isom(pp (F), pe(Q)) is a two-sided principal homogeneous space for the
abelian group Z;, and the Galois actions respect this structure.

Lemma 8.10. Let Gal(F/F)xGal(Q/Q) act on Isom (g (F), o= (Q)) by (or, 0g)-
v = xe(or)xe(og) " e. Then the homeomorphism WO(?F@) — Isom(puges (F), preeo (Q))
is equivariant for Gal(F/F) x Gal(Q/Q).

Proof. This follows from the previous discussion. As to the different signs, note
that Gal(Q/Q) operates most naturally from the left on Isom (e (F), pre=(Q)) and
from the right on %5, whereas Gal(F'/F) operates most naturally from the right
on both spaces. O

Corollary 8.11. Fiz some group isomorphism i: jig=(F) — g (Q), and denote
the corresponding component of ¥zg by ?FB@. Then ?Ff@ — Yro 15 a uniwersal
profinite covering space, and its deck transformation group is

{(oF, 0q) € Gal(F/F) x Gal(Q/Q) | xe.r(or) = Xe(0g)}-

Hence there is a natural isomorphism 78 (¥%rq) = Grg, canonical up to inner
automorphisms. O

def
Grg =

Now take an isomorphism ¢: g (F) — pem(Q), and extend it to an isomorphism

I g (F) = 114 (Q). We wish to find our space %m r and its model over Q((m)
back as a quotient of ?Ff@
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We construct two intermediate coverings of %2@ — Yro.

e First note that there is a continuous epimorphism
Xe: Grog = Z, (op,00) = xe(or) = Xe(oq).
Then Gro(f") = x; ' (Usm) is an open normal subgroup of Gro = 75 (¥r0),
and the corresponding intermediate covering is equal to %S’Q(Qn), the con-
nected component of %r q(c,.) determined by ¢. This is precisely the model

of Ym o over Q((m) used to define the Gal(Q/Q((sm))-action on its étale
cohomology.

e The closed normal subgroup Gal(F/F({;~)) x {1} C Gro C Gal(F/F) x
Gal(Q/Q) defines the normal profinite covering space 4 (o) T ?I%Q( )

Yro; as a ?ﬁQ(Qn)—scheme this is isomorphic to ¥rg(¢n) @g(em) Q.

Lemma 8.12. There are natural isomorphisms of cohomology groups
H™ (F(G)s A) & H Y 30 A) S HE Yo g A)
equivariant for the group homomorphisms (natural projections)
Gal(F/F) «+ Gro(f") — Gal(Q/Q({m)).

Proof. The isomorphism Hgg(%;( (o) T A) — H™(F((=), A) is obtained from the
Cartan—Leray spectral sequence applied to the universal covering ?I%@ =Y, (Coo) T
note that all the higher cohomology groups of ?FO@ with torsion coefficients vanish.

The rest follows from the preceding discussion. O

Proposition 8.13. Let o € Gal(F/F) and og € Gal(Q/Q({)) be such that
Xe(or) = Xe(og). Then under the isomorphism H™(F((), A) = H (Ypn g, A) in
(21) the actions of op and og correspond to each other.

Proof. This follows from Lemma 8.12: just note how the element (o5, 0g) € Gro(f")
acts. U

8.4. Compatibility of the group-theoretic and topological actions. We shall
consider diverse Galois categories and exact functors between them:

Upm-FSet ——— FEt(Spec F') —— FEt(Spec F/({y~)) (22)

l l |

Uieny-FSet —— FCovy,., (Yin p) —— FCov (Yin r)

Though we have suppressed this in the notation, this diagram will depend on a
choice of ¢: g < S! and of an extension i: pg~ < S*. The functors in (22) are as
follows:

e Um-FSet — FEt(Spec F) is the composition of two functors
Upm-FSet — Gal(F/F)-FSet — FEt(Spec F),

the first of which is induced by the group homomorphism y, r: Gal(F/F) — Ug
and the second of which is ‘Grothendieck’s Galois theory’. For an explicit descrip-
tion, let S be a finite set with a continuous left action of Gal(F'/F'), then Gal(F'/F)
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acts from the left on the F-algebra I by

U((QS)SES) = (aa*18)5657

and the ring of invariants E(S) = (F5)G(F/F) is a finite étale F-algebra. Then the
functor can be described as S +— Spec E(.5).

o FEt(Spec F) — FEt(Spec F((s~)) is the functor X — X Xgpec p Spec F/({p=).

e The two functors in the lower horizontal line are obtained from the Un-action
on Yy as on page 20, that is, the first one sends a finite Ugny-set S to the product
Yn p xS with the diagonal U)-action, and the second one is the obvious forgetful
functor.

o Upm-FSet — Uny-FSet is induced by the f-adic completion map Uyny — Upn.

e FEt(Spec ') — FCovy,,, (Yin r) sends Spec E for a finite extension £/F to Y g,
and more generally for an étale F-algebra E we set

Yor= [[ Yesp
pESpec E
Note that in the basic case where F is a field we need to choose an algebraic
closure E/E to even define Y;n g, and an isomorphism E — F to obtain a map
Y g — Yo p. However, as for the spaces Yy we check that Yim p and Y p — Yin p
are independent up to canonical isomorphism from the choices of F, E and E — F.

o FEt(Spec F((s~)) = FCov(Yn r) is the composition
FEt(Spec F((s~)) = FCov (Y= p(¢,e)) = FCoV(Yin 1)

where the first functor sends Spec E to Y~ g and the second functor is induced by
the homeomorphism Yjn 7 = Yieo p(¢,00)-

Lemma 8.14. The diagram of exact functors between Galois categories (22) com-
mutes up to isomorphism of functors.

Proof. The commutativity of the right square is straightforward but tedious.
For the commutativity of the left hand side, let S be a finite set endowed with a
continuous left action by Usm. We will construct a natural isomorphism

Yinp X S = Y ps)

of Ugmy-equivariant finite covering spaces of Yy p.

First we may assume that the Usn-action on S is transitive, because all the func-
tors involved respect finite direct sums. Hence E(S) is a finite field extension of F.
As explained above, to construct the covering Yyn sy — Yy p we need to choose
an embedding of E(S) into F, and later check that the choice of this embedding
changes everything by canonical isomorphisms only (we omit that later part). By
definition, F(S) = (F°)%F/F) and hence

Homp(E(S), F) = Homz(F° F) = S.

Therefore the choice we need to make is that of a particular element sy € S,
which then allows us to trivialise the Gal(F'/F)-set S as Gal(F'/F)/H, where H =
Gal(F'/E(S)) is the stabiliser of sy.
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Note that
Hom, (s, §') = {j: prse — S* | flppn = 1}

is a Uspm-torsor, and it is trivialised by the choice of i € Hom, (s, S") (which is
implicit in the construction of the rightmost vertical functor in (22)). There is then
a unique Upn-equivariant map

q: Hom, (g, S') — S
with ¢(7) = so. We define a continuous map

Yinr = Yo g xS, x> 06 (X))

which is equivariant for the group inclusion Gal(F/E(S)) — Gal(F/F) (trivial
Galois action on S), hence it descends to a continuous map

nnvE(S) — ngn’F X S
It is straightforward to check that this last map is a bijection, hence a homeomorph-
ism, and that it is Uggn-equivariant. U
Choosing a point in Yy (Z) we obtain a compatible family of fibre functors on all
the categories in (22), hence a commutative diagram of profinite groups.

Proposition 8.15. The diagram of profinite groups and continuous group homo-
morphisms

A~

1 ——— 7' (Yon p) ——— 75 ([Yer 2 /Uieny)) Uen) 1
1 —— Gal(F/F(¢)) —— Gal(F/F) ———— Upn 1

(where U(gn) denotes the profinite completion of the abstract group Ugmy) commutes,
and the rows are exact. The leftmost vertical map is an isomorphism, the other two
vertical maps are surjective but not injective.

Proof. The commutativity follows from Lemma 8.14. The lower row is exact by
Galois theory and our assumptions on F’; the upper row is exact except possibly
at (Y ) by Proposition 2.22. The map 75 (Yen r) — Gal(F/F((pe)) is an
isomorphism by Proposition 8.6.(ii). Combining the last two observations we also
obtain exactness of the upper row at 7¢"(Y;» ). Finally, the rightmost vertical map
is clearly surjective but not injective, hence the same holds for the middle vertical
map. U

Corollary 8.16. For each abelian torsion group A the natural isomorphisms of
cohomology groups

H™(Yon r, A) = H™ (28 (Yo 1), A) = H™(F (), A)
are equivariant for the canonical group homomorphisms
U(gn) — U(gn) — U,

up to an exponent which is 1 for the first map and —1 for the second map.
In particular the Ugny-action on H™ (Yin p) extends uniquely to a continuous Ugn-
action.
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Proof. This follows from Proposition 8.15. The exponent —1, i.e. inversion, on the
acting groups for H™(n$"(Yyn p), A) — H™(F({=), A) occurs because Uy operates
on Y p from the right, see Remark 2.23.(ii). O

8.5. Compatibility of the topological and arithmetic actions. This argu-
ment is technically much more difficult than the other two, so considering its logical
redundancy we will be very sketchy here.

The essential ingredient is the fact that %p i, is a A-scheme in the sense of Borger
[9]. The general definition of A-schemes is rather involved, but a naive variant
suffices for our purposes.

Definition 8.17. Let X be a scheme which is flat over Z. A A-structure on L is a
family of mutually commuting endomorphisms ¢,: & — &, indexved by the rational
primes p = 2,3,5,7,..., such that for all p the base change

op x id: X x SpecF, — Z x SpecF,

is the absolute Frobenius of X, = & x SpeclF,, i.e. the morphism which is the
identity on the topological space underlying X, and which is f — fP on sections of
the structure sheaf.

For example let M be an abelian group in multiplicative notation. Then there is
a canonical A-structure on Spec Z[M] given by

b Z[M] — Z[M], [m] — [m?]. (23)
We will now construct a A-structure on gy, = Spec Bpiy, by writing down the
corresponding endomorphisms gpfj of Brjnt. Recall that

Brine = (Z[F* /pe][([¢) — 1)—1])G31(F/F)

We begin by setting 902 =id (or anything)(m, and next consider the case p # (.
Here we define @ on Z[F*/uy] by (23). This descends to an endomorphism

b ZIF* [puel[((6 = D)7 = Z[F /ue][([6] = D7
Lemma 8.18. Let p # ¢. The canonical ring homomorphism

Bran ©F, > (B, [F/uell(16] - 7)) 7

18 an isomorphism.

Proof. For F = F this is clear. For the general case, we use that By, — BF it

is a pro-finite étale Gal(F/F)-cover (cf. Theorem 4.17), so that forming quotients
under Gal(F'/F') commutes with base change. O

Corollary 8.19. The family of endomorphisms ¢,: Ypint — YFint given on rings
by the gpfo as constructed above define a A-structure on Ypin;. O

(H)Note that inverting [¢¢] — 1 in particular inverts ¢, so the condition that gog lifts Frobenius
is vacuous.
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Note that for p # ¢ the ¢, are even automorphisms of %pi,. They can be
described in a different way as follows:
The group £ /up is a Zy-module, hence Z(XK) acts by automorphisms from the

left on F* /iy and also on Z[F* /ue][([¢] — 1)7!]. Since this action commutes with
Gal(F/F), it restricts to a left Zé)—action on Bpint; hence a right Z(Xg)—action on
Yrnt-
Lemma 8.20. Consider the Zé)—action on Yrint as just described. For each prime
p # U the element p € Z(XZ) acts by the automorphism p,, and the element —1 € Z(Xe)
acts by the automorphism [a] — [a™Y] on Z[F*/uy]. O
Note that Z(Xe) is generated by —1 and the primes different from ¢, hence the
Z(Xé)—action on Yrns is uniquely determined by Lemma 8.20.

Extending scalars from Z to C we then obtain a right Z(Xe)-action on

Yrint X Spec C = H Yn r(0).
L Mgn‘—)Sl
The stabiliser of each component is Uy, and the quotient Z(Xe) JUny = (20 L)~
operates simply transitively on the set of components. Hence there is a canonical
Z@)—equivariant isomorphism of cohomology groups

H™ (Y int ® Q, A) = H™(Ypimt © C, A) = @ H™ (Y r (1), A),

and each summand on the right hand side is stable under Uy»). By unravelling
definitions we see that the Uyn)-action on each summand corresponds to the ‘topo-
logical action’ described above under the canonical isomorphism H™(%m (1), A) =
Hm(Y’é”,FU A)

We now draw some consequences from the fact that the ¢, constitute a A-
structure on ¥p ;.

Proposition 8.21. For each p # { and each abelian torsion group A the automorph-
ism of Hi (Ypims X Spec Fy, A) induced by ¢, mod p is the inverse of the ‘arithmetic’
automorphism induced by the canonical generator o, € Gal(F,/F,) with o,(a) = da”.

Sketch of proof. This follows from the fact that a; and ¢, mod p commute, their

product is the absolute Frobenius endomorphism of the F,-scheme %p ., X Spec Fp,
and this absolute Frobenius acts trivially on étale cohomology. The latter is clear for
HY, and then follows formally for HZ! by the universal property of sheaf cohomology.
See |14, Rapport, section 1.8| for a detailed discussion in the finite type case. O

Proposition 8.22. Fiz an algebraic closure @p of Q, and an embedding Q= @p.
Then for any abelian torsion group A and any m > 0 the natural maps

HQ(?F,int ®Fp7 A) A HgtL(?F,int@)@@pa A) - Hgtl(?F,int ®@p7 A) — Hgtl(?F,int ®@7 A)

are isomorphisms, and they are equivariant for the action of Z(XE) and the homo-
morphisms of absolute Galois groups

Gal(Fp/]Fp) = Gal(@p/(@p) = Gal(@p/Qp) — Gal(Q/Q).
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Sketch of proof. This can be shown identifying each of the étale cohomology groups
with H™(F((px ), A). 0

The next proposition is a variant of a result of Borger, [8, Theorem 6.1].

Proposition 8.23. The action of Gal(Q/Q) on HIN (Y @ Q, A) factors through
the (-adic cyclotomic character x1o: Gal(Q/Q) — Z).

Proof. By Proposition 8.22 and Proposition 8.21, the action of any two Frobenius
elements commute, as they can be identified with the action of the commuting
operators p,. By Chebotarev, we see that the action of Gal(Q/Q) factors through
its maximal abelian quotient; also, it is unramified at all primes different from ¢ by
Proposition 8.22. This implies that it factors through the quotient Gal(Q((s~)/Q),
which is precisely the quotient defined by the ¢-adic cyclotomic character.

Proposition 8.24. (i) Let p # { be a rational prime, and let o, € Gal(Q/Q)
be such that x,(o,) = p € Z). Then o, operates on HE(Yrim ® Q, A)
through the inverse of ¢,.

(ii) Let o_y € Gal(Q/Q) be such that x¢(c_1) = —1 € Z). Then o_; operates
on HI (Y ins @ Q, A) through the involution induced by the involution [a] —

[a™] on Z[F* /py].

Proof. (i) follows from the conjunction of Propositions 8.21, 8.22 and 8.23. For (ii),
by Proposition 8.23 we may assume that o_; is complex conjugation, whose action
on cohomology is easily determined by contemplating the isomorphisms

HE (Yrine © Q, A) 2= HE (Ypim ® C, A) = H™ (Yt (C), A) =2 @ H™ (Yo £(1), A).
L O

Proposition 8.25. The canonical isomorphism

Hm(Yen,F(L), A) — Hgg(?F,int XeL,SpecZ[Qn} Spec@u A)

is equivariant for the inverse inclusion Ugny — U, u — u™t, in the sense that for

any u € Ugny and any o € Gal(Q/Q((m)) with xeo(o) = u™! the action by u on
the left hand side agrees with the action by o on the right hand side.

Proof. 1t suffices to show that the canonical isomorphism

@ Hm(n",FO)a A) — Hg(?F,int XSpecZ SpeC @7 A)

L yn St

1

is equivariant for the inverse inclusion Z(XL,) — Z,, u — u ", where the Z/-action

on the right hand side is given by Proposition 8.23. Since Z(XK) is generated by —1
and the primes different from ¢ it is sufficient to check this for these elements. The
combination of Lemma 8.20 and Proposition 8.24 yields the desired result. U
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