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Abstract. We show how the Langlands-Kottwitz method can be used to determine
the semisimple local factors of the Hasse-Weil zeta-function of certain Shimura va-
rieties. On the way, we prove a conjecture of Haines and Kottwitz in this special
case.
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1. Introduction

The aim of this paper is to extend the method used in [19] for determining the zeta-
function of the modular curve to the case of the unitary group Shimura varieties with
signature (1, n− 1), considered e.g. in the book of Harris-Taylor, [12]. These are proper
Shimura varieties for which endoscopy does not occur and for which particularly nice
integral models exist by the theory of Drinfeld level structures.

Our first main result is of a general geometric nature. Let O be the ring of integers in
a local field K. Assume X/O is a separated scheme of finite type. Then we denote by
Xηur the base-change of X to the maximal unramified extension Kur of K and by XOur

the base-change to the ring of integers in Kur. Also let Xs be the geometric special
fibre. We get maps ι : Xs −→ XOur and j : Xηur −→ XOur .

Now assume that X is regular and flat of relative dimension n over O and that the
special fibre Xs possesses a stratification Xs =

⋃
i Z̊i into locally closed strata Z̊i whose

closures Zi are regular. We call the Zi special fibre components. Let c(Z) be the
codimension of Z in X, for any special fibre component Z in X.

To any special fibre component Z, we associate a Q`-vector space WZ together with
maps WZ −→ WZ′ whenever c(Z) = c(Z ′) + 1, by induction on c(Z). If c(Z) = 1, we
simply set WZ = Q`. In general, we define WZ to be the kernel of the map⊕

Z⊂Z′
c(Z′)=c(Z)−1

WZ′ −→
⊕
Z⊂Z′

c(Z′)=c(Z)−2

WZ′ ,

where in the case c(Z) = 2, the target has to be replaced by Q`. We make the following
assumption:

(∗) The sequence

0 −→WZ −→ . . . −→
⊕
Z⊂Z′
c(Z′)=i

WZ′ −→
⊕
Z⊂Z′

c(Z′)=i−1

WZ′ −→ . . . −→ Q` −→ 0

is exact for all special fibre components Z.

Theorem A. Assume that the condition (∗) holds. Then for any x ∈ Xs(Fq) with
geometric point x over x, there are canonical isomorphisms

(ι∗Rkj∗Q`)x ∼=
⊕

Z,c(Z)=k
x∈Z

WZ(−k)

for all k.

This generalizes Theorem A of [19], and again makes use of Thomason’s purity theo-
rem, [21], a special case of Grothendieck’s purity conjecture.

It is worthwhile noting that this theorem implies the (nontrivial) fact that the groups

(ι∗Rkj∗Q`)x
are pure (of weight 2k). Also, the description is analogous to results of Brieskorn, [3],
Lemma 5, on the cohomology of complements of hyperplane arrangements. Indeed, one
may think of the special fibre components of maximal dimension as hyperplanes, and the
cohomology groups can be thought of as the cohomology groups of a small neighborhood
of x in the complement of the geometric special fibre Xs in XOur .

In order to formulate our other results, we need to introduce certain Shimura varieties.
Fix an imaginary quadratic field k and a central division algebra D over k of dimension
n2, with an involution ∗ of the second kind. Further, let an R-algebra homomorphism

h0 : C −→ DR
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be given such that h0(z)∗ = h0(z) and such that the involution x 7−→ h0(i)−1x∗h0(i) is
positive. These data give rise to an algebraic group G over Q whose R-valued points
are

G(R) = {g ∈ (D ⊗Q R)× | g∗g ∈ R×} ,
and a homomorphism

h : RC/RGm −→ GR .

Taking any small compact open subgroup K ⊂ G(Af ), one gets a smooth and proper
Shimura variety ShK associated to (G, h−1,K), canonically defined over k, although the
reflex field may be even smaller, i.e. Q.

We make the assumption that G ∼= GU(1, n− 1). It is well-known that under these
assumptions the associated Shimura varieties ShK have good integral models at primes
p above primes p which split in k and such that D splits at p, if the level is given by a
principal congruence subgroup. In fact, these integral models satisfy the hypotheses of
Theorem A, as proved in Theorem 3.4 and Lemma 5.5.

For any r ≥ 1 and any h ∈ C∞c (GLn(Zp)), we define a function φh = φr,h in the
Hecke algebra of GLn(Qpr), cf. Definition 5.8. Its values encode the semisimple trace of
Frobenius on the vanishing cycles, cf. Theorem 5.9.

Finally, let fn,p be the function of the Bernstein center of GLn(Qp) such that for all
irreducible admissible smooth representations π of GLn(Qp), fn,p acts by the scalar

p
n−1

2
rtrss(Φr

p|σπ) ,

where σπ is the representation of the Weil group WQp of Qp with values in Q` associated
to π by the Local Langlands Correspondence, cf. [12].

Assume that the Haar measures give maximal compact subgroups measure 1.

Theorem B. For all h ∈ C∞c (GLn(Zp)), the functions φh and fn,p ∗ h have matching
(twisted) orbital integrals.

This theorem furnishes a comparison between a purely geometric expression, φh, and
a purely automorphic expression, fn,p ∗ h. It is analogous to Theorem B in [19] for the
case of modular curves, with some notable differences. Usually, one first compares φh
with a function in the Bernstein center of GLn(Qpr) and then invokes a base-change
identity as in the case of a hyperspecial maximal compact subgroup. Our Theorem B
does both steps at once.

To get the comparison with the twisted orbital integrals of a function in the Bernstein
center of GLn(Qpr), we prove the following base-change identity. In Section 2, we
define a certain class of smooth group schemes G = GM,I over Zp, whose generic fibre
is isomorphic to GLn. They include the case of principal congruence subgroups and
parahoric subgroups. As a general piece of notation, we let Z(G,K) be the center of
the Hecke algebra H(G,K) of compactly supported K-biinvariant functions on G, for
any compact open subgroup K of G = GLn(Qp) or G = GLn(Qpr).

Theorem C. Let f ∈ Z(GLn(Qp),G(Zp)) and φ ∈ Z(GLn(Qpr),G(Zpr)) be given. For
every tempered irreducible smooth representation π of GLn(Qp) with base-change lift Π,
the set of invariants πG(Zp) is nonzero only if ΠG(Zpr ) is nonzero. Assume that for all π
with πG(Zp) 6= 0, the scalars cf,π resp. cφ,Π through which f resp. φ act on πG(Zp) resp.
ΠG(Zpr ), agree: cf,π = cφ,Π.

Then f and φ have matching (twisted) orbital integrals.

Remark 1.1. In fact, we prove this theorem for any local field of characteristic 0 in place
of Qp.

This theorem generalizes, for the special case of the group GLn, the classical base-
change fundamental lemma as well as the results of Haines about parahoric subgroups
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G in [11]. The proof of Theorem C makes strong use of (unramified) base change for
GLn and hence does not generalize to arbitrary groups.

Using Theorem C, one arrives at an expression for the semisimple Lefschetz number
as a sum of a volume factor times an orbital integral away from p times a twisted orbital
integral of a central function in a certain Hecke algebra at p, cf. Theorem 7.4, procing
a general conjecture of Haines and Kottwitz in this special case.

Our last main theorem calculates the semisimple local factor of the Hasse-Weil zeta-
function of ShK/k in terms of automorphic L-functions. Recall that p is a prime of k
lying above a rational prime p that splits in k and such that D splits at p. In particular,

GQp
∼= GLn ×Gm .

Theorem D. Let K ⊂ G(Af ) be any small compact open subgroup of the form

K = K0
p × Z×p ×Kp ⊂ GLn(Qp)×Q×p ×G(Ap

f ) ∼= G(Af ) .

As in [15], p.656, there is a representation r of the local L-group LGkp. Then the
semisimple local factor of ShK at p is given by

ζss
p (ShK , s) =

∏
πf

Lss(s− n−1
2 , πp, r)

a(πf )dimπKf ,

where πf runs over irreducible admissible representations of G(Af ) and where a(πf ) ∈ Z
is given by

a(πf ) =
∑
π∞

m(πf ⊗ π∞) tr(f∞|π∞) .

Here m(πf ⊗ π∞) is the multiplicity of πf ⊗ π∞ in L2(G(Q)AG(R)0\G(A)), where AG

is the split component of the center of G. Finally, f∞ is the function defined by Kottwitz
in [15]. It is up to sign a pseudo-character of a discrete series representation with trivial
central and infinitesimal character.

Remark 1.2. For a discussion of the semisimple local factor, we refer e.g. to [8], cf. also
[19].

Note that under the assumptions, the local group GQp
∼= GLn × Gm. Therefore

the local Langlands Correspondence for GQp is known and hence one can define the
semisimple L-factor Lss(s, πp, r) as the semisimple L-factor Lss(s, r ◦ σπp) of the Weil
group representation σπp associated to πp through the Local Langlands Correspondence,
see e.g. [12]. However, unraveling all the definitions, one sees that one could define this
L-factor directly, without appealing to the work of Harris-Taylor, cf. Remark 6.2.

Note that Theorem D is essentially known by the work of Harris-Taylor, [12]. The
emphasis of this paper lies in the method of proof. It is an extension of the method
used by Kottwitz in [15] for a hyperspecial maximal compact level structure at p, and
more classically by Langlands in [17] to prove a local-global compatibility statement
for the cohomology of modular curves in the case that the local representation is not
supercuspidal. In a similar spirit is the proof of Theorem 11.7 in [10] in the case that Kp

is an Iwahori subgroup (but without restriction on the signature of G) and the article
of Haines and Rapoport, [9], for the case that the level structure at p is given by the
pro-unipotent radical of an Iwahori subgroup. Here, as in [19], which discusses the case
of GL2, we show that this method can be applied for arbitrarily small level structures
at p.

In the paper [20], we use the methods and results of this paper to give a new proof
of the Local Langlands Correspondence for p-adic local fields, avoiding the use of the
numerical Local Langlands Correspondence of Henniart, [13].

We now describe the content of the different sections. In Section 2, we prove the base-
change identity, Theorem C. It makes strong use of base-change for GLn. Afterwards, we
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review in Section 3 the geometric results concerning the Shimura varieties, particularly
their interpretation as moduli spaces of abelian varieties and a description of the special
fibre. In Section 4, we recall some of the aspects of Kottwitz’ work on the description of
isogeny classes in the special fibre of these Shimura varieties, for a hyperspecial maximal
compact level structure at p. The main geometric result, Theorem A, is then formulated
and proved in Section 5 along with the application to the Shimura varieties in question.
We remark that the result is closely related to the cohomology of Drinfeld’s upper half
plane, as determined by Schneider-Stuhler, [18]. These results are then reinterpreted as
orbital integrals in Section 6 to prove Theorem B, again making use of base-change for
GLn. Finally, Section 7 concludes with the proof of Theorem D.

Remark 1.3. Throughout the paper we fix a rational prime ` different from p and an
isomorphism Q`

∼= C.

Acknowledgments. I thank my advisor M. Rapoport for introducing me to this
area, his constant encouragement during the process of writing this paper, and his
interest in these ideas.

2. A base change identity

Let K be a local field of characteristic 0 with ring of integers OK and uniformiser
$ and let L be an unramified extension of K with ring of integers OL. Consider the
group G = GLn over K. We give a construction of compact open subgroups of G(K)
and G(L).

Start with an OK-subalgebra M of Mn(OK) such that M ⊗K = Mn(K). Further,
take a (two-sided) ideal I ⊂M such that M/I is finite. Then one gets the smooth group
scheme G over OK defined by

GM,I(R) = {x ∈ I ⊗OK R | g = 1 + x ∈ (M ⊗OK R)×} .
In particular, we get compact open subgroups GM,I(OL), resp. GM,I(OK), of G(L), resp.
G(K). We write GM = GM,M .

Let us give two examples. First, taking M = Mn(OK) and I = $mMn(OK), we get
the principal congruence subgroups

GM,I(OK) = ker(GLn(OK) −→ GLn(OK/$mOK)) .

Second, one may fix a lattice chain

Λ0 = OnK ( Λ1 ( · · · ( Λk = $−1OnK
and consider the subalgebra

M = {m ∈Mn(OK) | mΛi ⊂ Λi for all i} ⊂Mn(OK) .

Then GM is the parahoric group scheme given by the lattice chain (Λi)i.
We begin by proving the following comparison of conjugacy and σ-conjugacy classes.

Proposition 2.1. There is a unique map N from the set of σ-conjugacy classes in
GM (OL)/GM,I(OL) to the set of conjugacy classes in GM (OK)/GM,I(OK), satisfying the
requirement that if δ ∈ GM (OL) has the property δδσ · · · δσr−1 ∈ GM (OK), then the
σ-conjugacy class of δ is sent to the conjugacy class of δδσ · · · δσr−1

.
Moreover, the map N is a bijection, and the size of the σ-centralizer of some element

δ ∈ GM (OL)/GM,I(OL) equals the size of the centralizer of Nδ ∈ GM (OK)/GM,I(OK).

Proof. Let γ ∈ GM (OK). Consider the subalgebra Rγ = OK [γ] ⊂ M . Note that this is
a finite free OK-algebra, so that the functor

Zγ(R) = (Rγ ⊗OK R)×

describes a smooth commutative group scheme over OK .
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Lemma 2.2. The norm homomorphism

N : Zγ(OL) −→ Zγ(OK)

δ 7−→ δδσ · · · δσr−1

is surjective.

Proof. The proof is identical to the proof of Lemma 3.4 of [19]. �

Hence, given γ ∈ GM (OK)/GM,I(OK), choose some lift γ ∈ GM (OK) and δ ∈ Zγ(OL)
with Nδ = γ, with reduction δ ∈ GM (OL)/GM,I(OL). We claim that

{x ∈ GM (OL)/GM,I(OL) | x−1δxσ = δ} = {x ∈ GM (OK)/GM,I(OK) | x−1γx = γ} .

Take x ∈ GM (OL)/GM,I(OL) with x−1δxσ = δ. Then x−σ
i
δ
σi
xσ

i+1
= δ

σi for all
i = 0, . . . , r − 1 and multiplying these equations gives

x−1Nδx = Nδ ,

hence x commutes with γ, i.e. x commutes with γ modulo I. But then x commutes with
δ modulo I, because δ ∈ OL[γ], i.e. x commutes with δ. Therefore x−1δx = δ = x−1δxσ,
and hence x = xσ, whence x ∈ GM (OK)/GM,I(OK). The other direction is clear.

This proves that the size of centralizers equals the size of σ-centralizers. Now a
counting argument finishes the proof, cf. proof of Proposition 3.3 of [19]. �

We use this proposition to prove the following identity.

Corollary 2.3. Let f be a conjugation-invariant locally integrable function on GM (OK).
Then the function φ on GM (OL) defined by φ(δ) = f(Nδ) is locally integrable. Further-
more,

(eGM,I(OL) ∗ φ)(δ) = (eGM,I(OK) ∗ f)(Nδ)

for all δ ∈ GM (OL).

Proof. Assume first that f is locally constant, say invariant by GM,I′(OK) for some ideal
I ′. Of course, φ is then invariant under GM,I′(OL) as well and in particular locally
integrable. The desired identity follows on combining the above Proposition for the
ideals I and I ′: Using it for I, we see that we may average over the σ-conjugacy class
of δ. Then we get the sum over all

δ′ ∈ GM (OL)/GM,I′(OL)

which are congruent to δ modulo I of the averages of φ, resp. f , over the σ-conjugacy
class of δ′, resp. the conjugacy class of Nδ′, which agree by the Proposition for I ′.

The corollary now follows by approximating f by locally constant functions. �

Let tempered representations π, Π of G(K), G(L), resp., be given. Further, let
σ ∈ Gal(L/K) be the lift of Frobenius.

Definition 2.4. In this situation, Π is called a base-change lift of π if Π is invariant
under Gal(L/K) and for some extension of Π to a representation of G(L) o Gal(L/K),
the identity

tr(Ng|π) = tr((g, σ)|Π)

holds for all g ∈ G(L) such that the conjugacy class of Ng is regular semisimple.

It is known that there exist unique base-change lifts by the work of Arthur-Clozel,
cf. [1]. Write Z(G1, G2) for the center of the Hecke algebra of compactly supported
G2-biinvariant functions on G1, for any parameters G1, G2 occuring in the sequel.
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Theorem 2.5. Let f ∈ Z(G(K),GM,I(OK)) and φ ∈ Z(G(L),GM,I(OL)) be given. For
every tempered irreducible smooth representation π of G with base-change lift Π, the set
of invariants πGM,I(OK) is nonzero only if ΠGM,I(OL) is nonzero. Assume that for all π
with πGM,I(OK) 6= 0, the scalars cf,π resp. cφ,Π through which f resp. φ act on πGM,I(OK)

resp. ΠGM,I(OL), agree: cf,π = cφ,Π.
Then f and φ have matching (twisted) orbital integrals.

Proof. First, because (twisted) characters are locally integrable, cf. [1], Proposition 2.2,
we find that Corollary 2.3 implies

tr(eGM,I(OK)|π) = tr((eGM,I(OL), σ)|Π) ,

taking f to be the character of π and δ = 1. This implies that πGM,I(OK) 6= 0 only if
ΠGM,I(OL) 6= 0.

Further, we see that

tr(f |π) = cf,π tr(eGM,I(OK)|π) = cφ,Π tr((eGM,I(OL), σ)|Π) = tr((φ, σ)|Π) .

We may find a function f ′ ∈ C∞c (G(K)) that has matching (twisted) orbital integrals
with φ, cf. [1], Proposition 3.1. This implies that tr((φ, σ)|Π) = tr(f ′|π) by the Weyl
integration formula, cf. [1], p. 36, for the twisted version. Hence tr(f − f ′|π) = 0
for all tempered irreducible smooth representations π of G(K). By Kazhdan’s density
theorem, Theorem 1 in [14], all regular orbital integrals of f − f ′ vanish. Hence f and
φ have matching regular (twisted) orbital integrals. By [5], Prop. 7.2, all semi-simple
(twisted) orbital integrals of f and φ match. �

3. The Geometry of some simple Shimura Varieties

We briefly recall the construction of integral models for the Shimura varieties consid-
ered, as explained in [10], p. 597-600. As in the introduction, fix an imaginary quadratic
field k and a central division algebra D over k of dimension n2 and an involution ∗ on
D of the second kind. Let G be the algebraic group over Q representing the following
functor on Q-algebras R:

G(R) = {g ∈ (D ⊗Q R)× | g∗g ∈ R×} .
Then the kernel G0 of the map G −→ Gm sending g to g∗g is an inner form of the unitary
groups associated to the extension k of Q. We assume that an R-algebra homomorphism

h0 : C −→ DR

is given such that h0(z)∗ = h0(z) and the involution x 7−→ h0(i)−1x∗h0(i) is positive.
By restriction to C×, it gives rise to

h : RC/RGm −→ GR .

One can describe the Shimura variety associated to (G, h−1) as a moduli space of abelian
varieties, of the type considered by Kottwitz in [16], cf. also [10].

In the notation of that paper, let B = Dop and V = D as a left B-module through
right multiplication. Then one gets a natural identification C = EndB(V ) = D. We are
given h0 : C −→ DR = CR.

Further, there is some ξ ∈ D× with ξ∗ = −ξ such that the involution ∗B on B = Dop

given by x∗B = ξx∗ξ−1 is positive: Simply take ξ close to h0(i) in DR to achieve the
second condition. Then, defining the hermitian form (·, ·) : V × V −→ Q by

(x, y) = trk/QtrD/k(xξy
∗) ,

where trD/k is the reduced trace, we have (bx, y) = (x, b∗By) for all b ∈ B. One can
further assume that the form (·, h(i)·) is positive definite, where we recall that h(i) ∈ D
acts by left multiplication on V .
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To summarize, we have a simple Q-algebra B equipped with a positive involution ∗B,
a left B-module V equipped with a ∗B-hermitian form (·, ·), and a homomorphism

h0 : C −→ CR = EndB(V )⊗ R

such that the form (·, h0(i)·) is positive-definite. This is precisely the basic set-up of
[16].

Using the homomorphism h0, we get a decomposition of

DC = V1 ⊕ V2

under the action of C ⊗R C ∼= C × C. This decomposition is stable under right multi-
plication of DC = D ⊗k,v C⊕D ⊗k,v∗ C, where v, v∗ : k −→ C are the two embeddings.
We make the assumption that as a right DC-module, V1 is isomorphic to

W ⊕ (W ∗)n−1 ,

where W and W ∗ are the simple right modules for D ⊗k,v C resp. D ⊗k,v∗ C. Up to
exchanging v and v∗, this is equivalent to asking GR to be isomorphic to GU(1, n− 1).
In section I.7 of the book [12], it is discussed how to achieve this situation.

These assumptions imply that the cocharacter

µ : Gm −→ DC = D ⊗k,v C⊕D ⊗k,v∗ C ∼= Mn(C)⊕Mn(C)

associated to h is given by

µ(z) = diag(z, 1, . . . , 1)× diag(1, z, . . . , z) .

Then µ is already defined as a cocharacter

µ : Gm −→ Gk .

Let p be a prime which splits in k as p = pp and such that D splits at p (and p). We
fix isomorphisms kp

∼= kp
∼= Qp and Dp

∼= Mn(Qp). This induces an isomorphism

GQp
∼= GLn ×Gm .

Under the induced isomorphism

Gkp
∼= GQp

∼= GLn ×Gm ,

the cocharacter µ takes the form

µ(z) = diag(z, 1, . . . , 1)× z .

Lemma 3.1. The representation r of the local L-group LGkp
∼= GLn(C) × C× ×Wkp

defined by Kottwitz in [15], p. 656, is given by

r : GLn(C)× C× ×Wkp −→ GLn(C)

(g, x, σ) 7−→ (g−1)tx−1 .

Proof. It clearly satisfies both conditions (a) and (b) in [15], p. 656. �

It remains to fix the integral data. Note that the isomorphism Dp
∼= Mn(Qp) gives

a natural lattice Mn(Zp) ⊂ Mn(Qp), which extends to a unique self-dual lattice Λ ⊂
V ⊗ Qp. The stabilizers of Λ give rise to Z(p)-orders OB, resp. OC , in B, resp. C.
Locally at p, we have an isomorphism OB,p ∼= Mn(Zp)op. Using the involution ∗B, this
gives rise to an isomorphism

OB ⊗ Zp ∼= Mn(Zp)op ⊕Mn(Zp)op ,

such that ∗B is given by (X,Y ) 7−→ (Y t, Xt).
Fix a compact open subgroup Kp of G(Ap

f ). We consider the following moduli scheme.
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Proposition 3.2. Let M be the functor from schemes over Okp
∼= Zp to sets, which

maps a locally noetherian scheme S to the set of equivalence classes of abelian varieties
(A, λ, ι, ηp), where

(1) A is projective abelian scheme over S up to prime-to-p-isogeny;
(2) λ is a polarization of A of degree prime to p;
(3) ι : OB −→ EndS(A) such that the Rosati involution restricts to ∗B on OB and

the Kottwitz condition

detOS (T − b|LieA) = detD/k(T − b|V1)

holds for all b ∈ OB, where detD/k is the reduced norm for D/k. Note that this
equation makes sense because Ok is mapped to OS via Ok −→ Okp

∼= Zp −→ OS;
(4) ηp is a level-Kp-structure on A.

Here, (A, λ, ι, ηp) and (A′, λ′, ι′, ηp′) are said to be equivalent if there exists an OB-linear
isogeny α : A −→ A′ of degree prime to p such that α∗(λ′) = cλ for some c ∈ Z×(p) and
α∗(ηp) = ηp′.

Then M is representable by a smooth projective scheme M over Zp of relative dimen-
sion n − 1, if Kp is sufficiently small. Furthermore, if K = KpK

p for the hyperspecial
maximal compact subgroup

Kp = GLn(Zp)× Z×p ⊂ GLn(Qp)×Q×p ∼= G(Qp) ,

then there is an isomorphism

ShK ⊗k kp
∼=M⊗Okp

kp .

Proof. This follows from [16], once one checks that ker1(Q,G) = 1. By the discussion
of Section 7 of [16], this is automatic if n is even; for n odd, one has ker1(Q, Z(G)) ∼−→
ker1(Q,G), where Z(G) is the center of G. But, as explained there, for n odd, the
center of Z(G) is isomorphic to Resk/QGm, which has trivial cohomology. �

Associated to A we get a p-divisible group XA, which decomposes under the action
of

OB ⊗ Zp ∼= Mn(Zp)op ×Mn(Zp)op

as
XA = Xn

p ×Xn
p .

Furthermore, Xp is a p-divisible group of dimension 1 and height n because of the
Kottwitz condition and the assumption of signature (1, n − 1). Hence the notion of a
Drinfeld level structure on Xp makes sense.

Proposition 3.3. Fix m ≥ 1. Let MΓ(pm) be the Galois covering of M which parametri-
zes Drinfeld level-pm-structures on Xp, i.e. sections P1, . . . , Pn : S −→ Xp such that

Xp[pm] =
∑

(i1,...,in)∈(Z/pmZ)n

[i1P1 + . . .+ inPn]

as relative Cartier divisors. Then MΓ(pm) is representable by a projective schemeMΓ(pm),
if Kp is sufficiently small. Further, if K = KpK

p, where Kp is the compact open sub-
group

(1 + pmMn(Zp))× Z×p ⊂ GLn(Qp)×Q×p ∼= G(Qp) ,

then
ShK ⊗k kp

∼=MΓ(pm) ⊗Okp
kp .

Proof. We refer to the discussion in the book of Harris-Taylor, [12], sections III.1 and
III.4. �
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For any direct summand H of (Z/pmZ)n, let MH
Γ(pm) be the reduced subscheme of

the closed subscheme of MΓ(pm) where∑
(i1,...,in)∈H⊂(Z/pmZ)n

[i1P1 + . . .+ inPn] = |H|[e] .

The following theorem is known to the experts, and is easy to deduce from the explicit
description of the completed local rings of MΓ(pm) also used by Yoshida in [22].

Theorem 3.4. (i) For all H, the scheme MH
Γ(pm) is regular.

(ii) The special fibre of MΓ(pm) is the union of MH
Γ(pm) over all H 6= 0.

(iii) MH1

Γ(pm) ⊂M
H2

Γ(pm) if and only if H2 ⊂ H1.
(iv) This induces a stratification

MΓ(pm) =
⋃
H

M̊H
Γ(pm)

into locally closed strata

M̊H
Γ(pm) =MH

Γ(pm) \
⋃

H(H′
MH′

Γ(pm) .

Proof. We may pass to the formal complection at a geometric point x of the special fibre.
Then we get a deformation space of the p-divisible group Xp of dimension 1 and height
n: Deforming (A, ι, λ, ηp, P1, . . . , Pn) is the same as deforming (A[p∞], ι, λ, P1, . . . , Pn)
by the Serre-Tate theorem and rigidity of level structures away from p. As λ : A[p∞] ∼=
A[p∞]∨, this is the same as deforming (A[p∞], ι|Mn(Zp)op , P1, . . . , Pn). But this reduces
to deforming (Xp, P1, . . . , Pn), as A[p∞] ∼= Xn

p through the action of ι|Mn(Zp)op .
Let Xp = Xinf × Xet be the decomposition into étale and infinitesimal part, where

Xinf has height k. Applying some element of GLn(Z/pmZ) if necessary, we can assume
that P1 = . . . = Pk = e and Pk+1, . . . , Pn generate Xet. Then the deformation space
of (Xp, P1, . . . , Pn) maps to the deformation space of (Xinf , P1, . . . , Pk) and this map
is formally smooth, as shown in [12], p.80. If x lies in MH

Γ(pn), then necessarily H ⊂
(Z/pmZ)k ⊕ 0n−k. Further, these strata MH

Γ(pm) are pullbacks of the corresponding
strata for the deformation space of (Xinf , P1, . . . , Pk), as their equations only involve the
deformation of Xinf and P1, . . . , Pk. We are reduced to the case of the deformation of a
1-dimensional formal group Xinf with Drinfeld-level-structure P1, . . . , Pk.

By the results of Drinfeld, [6], Proposition 4.3, the deformation ring R of

(Xinf , P1, . . . , Pk)

is a complete regular local ring with parameters X1, . . . , Xk. There is a group structure
+Σ on the maximal ideal m of R given by the universal deformation Σ of the formal
group law of Xinf , after the choice of a formal parameter on the universal deformation
of Xinf . We may assume that H = (Z/pmZ)j ⊕ 0n−j ⊂ (Z/pmZ)n for some j ≤ k. The
condition

|H|[e] =
∑

i1,...,ij∈Z/pmZ

[i1P1 + . . .+ ijPj ]

is equivalent to

T p
mj

= (unit)
∏

i1,...,ij∈Z/pmZ

(T − ([i1](X1) +Σ . . .+Σ [ij ](Xj)))

as power series in the formal variable T . It follows that all symmetric polynomials in the
variables xi1,...,ij = [i1](X1) +Σ . . . +Σ [ij ](Xj) vanish, hence on the reduced subscheme
all xi1,...,ij vanish. This implies X1 = . . . = Xj = 0 on the reduced closed subscheme,
and conversely if X1 = . . . = Xj = 0, then |H|[e] =

∑
[i1P1 + . . . + ijPj ]. Because
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X1, . . . , Xk form a regular sequence, the closed subscheme given by X1 = . . . = Xj = 0
is regular and in particular reduced. This describes the closed subscheme corresponding
to H locally and claims (i)-(iii) are clear.

For claim (iv), it is enough to check that for any point x ∈MΓ(pm), there is a unique
maximal H such that x ∈MH

Γ(pm). This is also clear from our description. �

4. Description of isogeny classes

We recall some results from [16] that we will need. In that paper, Kottwitz associates
to any point x ∈M(Fpr) a triple (γ0, γ, δ) consisting of

(1) a semisimple element γ0 ∈ G(Q), elliptic in G(R) and well-defined up to G(Q)-
conjugation;

(2) an element γ ∈ G(Ap
f ), well-defined up to conjugacy;

(3) an element δ ∈ G(Qpr), well-defined up to σ-conjugacy;
satisfying certain compatibilities, e.g. the image of γ0 in G(Q`) is stably conjugate to the
`-adic component of γ and the image of γ0 in G(Qp) is stably conjugate to Nδ. Roughly,
these parametrize Fpr -isogeny classes in M(Fpr), cf. [16] for precise statements.

Let us briefly recall how δ is defined, as this is what is used below, cf. [16], p. 419.
Let x correspond to (A, ι, λ, ηp). The dual of the rational crystalline cohomology

Hp = Hom(H1
cris(A/Zpr),Qpr)

has an action of B, a semilinear Frobenius F and a principal polarization λ. As shown
in [16], p.430, there is an isomorphism of B-modules Hp

∼= V ⊗Q Qpr , preserving the
hermitian forms up to a scalar. Choosing such an isomorphism, F is mapped to an
endomorphism δσ for some skew-hermitian B-linear automorphism δ of V ⊗Q Qpr , i.e.
δ ∈ G(Qpr), which is well-defined up to σ-conjugacy.

In the following lemma, this is computed more directly.

Lemma 4.1. Let x ∈ M(Fpr). One has the associated p-divisible group Xp,x and
hence a (contravariant) rational Dieudonné module Nx, abstractly isomorphic to Qn

pr .
Fixing such an isomorphism, the Frobenius operator F takes the form δ0σ, and under
the isomorphism

GQp
∼= GLn ×Gm ,

the element δ is sent to ((δ−1
0 )t, p−1). Moreover, δ0, resp. δ, is uniquely determined as an

element of GLn(Qpr)∩Mn(Zpr), resp. GLn(Qpr)×Q×pr , up to GLn(Zpr)-σ-conjugation,
resp. G(Zpr)-σ-conjugation.

Remark 4.2. This stronger normalization of δ will be essential.

Proof. Fix an isomorphism ι : Nx −→ Qn
pr . Recall that the p-divisible group XA of the

universal abelian variety A decomposes as

XA = Xn
p ×Xn

p ,

equivariant for action of OB ⊗Zp ∼= Mn(Zp)op×Mn(Zp)op, and the polarization λ gives
an isomorphism

λ : Xn
p
∼= (Xn

p )∨ .

In particular,
Hp
∼= Hom(Nn

x ⊕ (N∨x )n,Qpr) ,

compatible with OB-action and polarization. Hence

Hp
∼= Hom(Nn

x ⊕ (N∨x )n,Qpr) ∼= Mn(Qpr)⊕Mn(Qpr) ∼= V ⊗Q Qpr
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is compatible with the action of OB and the hermitian forms, up to the scalar p. The
scalar p enters, because by the definition of N∨x , there is a perfect pairing of Dieudonné
modules

Nx ×N∨x −→ Qpr(1) .

This implies the first part of the lemma.
One gets the stronger normalization of δ0 by picking an isomorphism of the integral

Dieudonné module of Xp,x with Znpr . �

5. Calculation of the nearby cycles

In this section we consider the following general situation. Let O be the ring of
integers in a local field K. Let X/O be a separated scheme of finite type. Let Xηur be
the base-change of X to the maximal unramified extension Kur of K and let XOur be
the base-change to the ring of integers in Kur. Also let Xs be the geometric special fibre
of X. Then we have ι : Xs −→ XOur and j : Xηur −→ XOur . Let RIK be the derived
functor of taking invariants under the inertia group IK .

Lemma 5.1. For any sheaf F on the generic fibre Xη,

RIK (RψF) = ι∗Rj∗Fηur .

Proof. Both sides are the derived functors of the same functor, cf. [19], Lemma 8.1. �

We now make further assumptions. We assume that X is regular and flat of relative
dimension n over O and that the special fibre Xs possesses a stratification Xs =

⋃
i Z̊i

into locally closed strata Z̊i whose closures Zi are regular. We call the Zi special fibre
components. Let c(Z) be the codimension of Z in X, for any special fibre component
Z in X.

To any special fibre component Z, we associate a Q`-vector space WZ together with
maps WZ −→ WZ′ whenever c(Z) = c(Z ′) + 1, by induction on c(Z). If c(Z) = 1, we
simply set WZ = Q`. In general, we define WZ to be the kernel of the map⊕

Z⊂Z′
c(Z′)=c(Z)−1

WZ′ −→
⊕
Z⊂Z′

c(Z′)=c(Z)−2

WZ′ ,

where in the case c(Z) = 2, the target has to be replaced by Q`. We make the following
assumption:

(∗) The sequence

0 −→WZ −→ . . . −→
⊕
Z⊂Z′
c(Z′)=i

WZ′ −→
⊕
Z⊂Z′

c(Z′)=i−1

WZ′ −→ . . . −→ Q` −→ 0

is exact for all special fibre components Z.

Remark 5.2. By definition of WZ , this sequence is exact at the first step. It is not clear
to the author whether the condition (∗) is automatic in general. Using a combinatorial
result of Folkman on the homology of geometric lattices, [7], one can check that it is
fulfilled if the reduced intersection of any two special fibre components is again a special
fibre component. Note that in the general case, this intersection will only be a union of
special fibre components.

Finally, let x ∈ Xs(Fq) be a point of the special fibre, with geometric point x ∈ Xs(Fq)
over x.
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Theorem 5.3. Assume that (∗) holds. Then for all k, there are canonical isomorphisms

(ι∗Rkj∗Q`)x ∼=
⊕

Z,c(Z)=k
x∈Z

WZ(−k) .

Proof. Let bZ : Z −→ X be the closed embeddings, for all special fibre components Z.
Let I• be an injective resolution of the constant sheaf Q` on X. Consider the following
complex

0 −→ . . . −→
⊕

Z,c(Z)=i

WZ ⊗ bZ∗b!ZI• −→ . . .

. . . −→
⊕

Z,c(Z)=1

WZ ⊗ bZ∗b!ZI• −→ ι∗I• −→ ι∗j∗j
∗I• −→ 0 .

Proposition 5.4. The hypercohomology of this complex vanishes.

Proof. We prove the proposition for any complex of injective sheaves I•. This reduces
the problem to doing it for a single injective sheaf I. Recall that for any injective sheaf I
on a scheme X = U ∪Z with j : U −→ X an open and i : Z −→ X a closed embedding,
one gets a decomposition I = j∗IU ⊕ i∗IZ for certain injective sheaves IU and IZ on U ,
resp. Z. In our situation, we get a decomposition of I as

I =
⊕
Z

fZ∗IZ ,

where IZ is an injective sheaf on Z̊ and where fZ : Z̊ −→ X is the natural locally closed
embedding. But that the complex is exact for

I = fZ∗IZ

is a direct consequence of the condition (∗) on the vector spaces WZ . �

As in [19], proof of Theorem 8.2, this implies the Theorem, using cohomological purity,
as proved by Thomason, [21]. �

As a corollary of Theorem 5.3, we can compute the semisimple trace of Frobenius
on the nearby cycles in our situation. We start by analyzing the combinatorics of the
situation that will arise. Recall from Theorem 3.4 that the special fibre components
are parametrized by (nontrivial) direct summands of (Z/pmZ)n. The next lemma shows
that the condition (∗) holds in this case. Note that if a group G acts on X preserving
the stratification of the special fibre, then all vector spaces WZ acquire an action of the
stabilizer of Z in G. In our case

MΓ(pm) ⊗ Fp =
⋃
H 6=0

M̊H
Γ(pm) ,

and the stabilizer of M̊H
Γ(pm) is GL(H) ∼= GLk(Z/pmZ), if H ∼= (Z/pmZ)k.

Lemma 5.5. Let the rank of H be k. Then the representation WH of GL(H) on the
Q`-vector space of functions f : {0 = H0 ( H1 ( · · · ( Hk = H} −→ Q` on complete
flags of direct summands of H satisfying∑

H′i direct summand
H0(···(Hi−1(H′i(Hi+1(···(Hk=H

f(H0 ( · · · ( H ′i ( · · · ( Hk) = 0
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for all i = 1, . . . , k−1 is isomorphic to the Steinberg representation StH of GL(H) given
by

StH = ker

IndGL(H)
B 1 −→

⊕
B(P

IndGL(H)
P 1

 ,

where B ⊂ GL(H) is a Borel subgroup, P ⊂ GL(H) runs through parabolic subgroups
and 1 denotes the trivial representation. Moreover, if H ′ ⊂ H is a direct summand of
rank k − 1, then there are natural transition maps WH −→WH′ defined by

f ′(H0 ( · · · ( Hk−1 = H ′) = f(H0 ( · · · ( Hk−1 ( Hk = H) .

Finally, the complex

0 −→WH −→ . . . −→
⊕
H′⊂H

rank H′=i

WH′ −→
⊕
H′⊂H

rank H′=i−1

WH′ −→ . . . −→ Q` −→ 0

is exact.

Proof. Under the standard identifications of the homogeneous spaces with spaces of
flags, the first assertion is immediate.

For the last assertion, assume that H = (Z/pm)k, so that GL(H) = GLk(Z/pm). Let
Pi ⊂ GLk be the standard parabolic with Levi GLi×GLk−i for i = 1, . . . , k− 1. Let Sti
be the Steinberg representation of GLi(Z/pm). Then the complex gets identified with

0 −→ Stk −→ IndGLk(Z/pm)
P1(Z/pm) 1⊗ Stk−1 −→ · · · −→ IndGLk(Z/pm)

Pi(Z/pm) 1⊗ Sti −→ · · ·

· · · −→ IndGLk(Z/pm)
Pk−1(Z/pm)1⊗ 1 −→ 1 −→ 0 .

This is the complex of 1 + pmMk(Zp)-invariants in a corresponding complex

0 −→ Stk −→ IndGLk(Qp)
P1(Qp) 1⊗ Stk−1 −→ · · · −→ IndGLk(Qp)

Pi(Qp) 1⊗ Sti −→ · · ·

· · · −→ IndGLk(Qp)
Pk−1(Qp)1⊗ 1 −→ 1 −→ 0 .

of GLk(Qp)-representations. But note that IndGLk(Qp)
Pi(Qp) 1 ⊗ Sti is an extension of two

irreducible representations πi−1 and πi of GLn(Qp), cf. e.g. Lemma I.3.2 of [12]. Let
di denote the i-th differential of this complex. As all differentials of the complex are
nonzero, one sees by induction that im di+1 = πi = ker di, whence the complex is
exact. �

Corollary 5.6. The condition (∗) holds for the scheme MΓ(pm), and WZ = WH if
Z = MH

Γ(pm). In particular, let x ∈ MΓ(pm)(Fq) be a point such that the infinitesimal
part of the associated p-divisible group Xp,x has height k, i.e.

x ∈ M̊H
Γ(pm)(Fq)

for some direct summand H ⊂ (Z/pmZ)n of rank k. Fix an isomorphism H ∼= (Z/pmZ)k.
Then

(RjIFRψMΓ(pm)
Q̄`)x ∼=

(
IndGLk(Z/pmZ)

Pj,k(Z/pmZ) Stj ⊗ 1
)

(−j) ,

where Pj,k ⊂ GLk is the standard parabolic with Levi GLj ×GLk−j. �

Fix a positive integer r and let 1 ≤ k ≤ n. We define certain (virtual) representations.
First, we define the virtual representation

I0
k =

1
1− pr

k∑
j=0

(−1)jprjIndGLk(Zp)
Pj,k(Zp) Stj ⊗ 1
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of GLk(Zp), where Stj is the Steinberg representation of GLj(Zp). Note that I0
k is self-

dual. In the situation of the corollary, it follows from Lemma 7.7 of [19] that for all
g ∈ GLk(Z/pmZ) we have

trss(Φpr × g|(RψMΓ(pm)
Q̄`)x) = tr(geΓ(pm)|I0

k) ,

where eΓ(pm) is the idempotent associated to Γ(pm) = 1+pmMn(Zp). Moreover, the long
exact sequence in Lemma 5.5 shows that I0

k can be rewritten as a Z-linear combination
of representations:

I0
k =

k−1∑
j=0

prj
j∑
i=0

(−1)iIndGLk(Zp)
Pi,k(Zp) Sti ⊗ 1 .

We remark without proof that the virtual representation
j∑
i=0

(−1)iIndGLk(Qp)
Pi,k(Qp) Sti ⊗ 1

is up to the sign (−1)j the irreducible subquotient of IndGLk(Qp)
B(Qp) 1 corresponding to

{1, . . . , j + 1} ⊂ {1, . . . , k} in the standard enumeration of the irreducible subquotients.
These representations also show up in the cohomology of Drinfeld’s upper half space, cf.
[18].

Consider the standard parabolic Pk ⊂ GLn with Levi subgroup GLk × GLn−k and
define the virtual representation

Ik = IndGLn(Zp)
Pk(Zp) I0

k ⊗ C∞c (GLn−k(Zp))

which carries a left action of GLn(Zp) and a left action of g ∈ GLn−k(Zp) through
multiplication by g−1 on the right.

Next, we use these representations to define the test functions φh whose twisted orbital
integrals will appear in the formula for the Lefschetz number. We need to introduce
some terminology.

Definition 5.7. An element δ0 ∈ GLn(Qpr)∩Mn(Zpr) is said to be of height k if vp(δ0) =
1 and δ0 is GLn(Zpr)-σ-conjugate to an element (δ1, δ2) ∈ (GLk(Qpr) ∩ Mk(Zpr)) ×
GLn−k(Zpr) such that Nδ1 is elliptic.

It is clear that if δ0 is of height k, then

δ0 ∈ GLn(Zpr)diag(p, 1, . . . , 1)GLn(Zpr) .

On the other hand, it is easy to see that one-dimensional p-divisible groups X of height
n over Fpr are in bijection with GLn(Zpr)-σ-conjugacy classes

δ0 ∈ GLn(Zpr)diag(p, 1, . . . , 1)GLn(Zpr) ,

and under this bijection, δ0 is of height k if and only if the infinitesimal part of X has
height k. In particular, this shows that any δ0 ∈ GLn(Zpr)diag(p, 1, . . . , 1)GLn(Zpr) is
of height k for a unique k = 1, . . . , n.

Definition 5.8. Let h ∈ C∞c (GLn(Zp)). Let φh ∈ C∞c (GLn(Qpr)) be the unique function
with support in GLn(Zpr)diag(p, 1, . . . , 1)GLn(Zpr) and invariant under GLn(Zpr)-σ-
conjugation, such that if δ0 = (δ1, δ2) ∈ (GLk(Qpr)∩Mk(Zpr))×GLn−k(Zpr) is of height
k, then

φh(δ0) = tr(h×Nδ2|Ik) .

This function will take the place of the characteristic function, often called φr, of

GLn(Zpr)diag(p, 1, . . . , 1)GLn(Zpr)
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whose twisted orbital integrals intervene in the proof of the Theorem D for the case that
Kp is a maximal compact subgroup.

Recall that we associated an element δ0 ∈ GLn(Qpr) ∩Mn(Zpr) to any point x ∈
M(Fpr), well-defined up to GLn(Zpr)-σ-conjugation. Fix a geometric point x over x.
We have the covering

πm :MΓ(pm) −→M
and the sheaf Fm = πmη∗Q` on the generic fibre of MΓ(pm). Define the vector space

(RψF∞)x = lim
−→

(RψFm)x .

It carries a natural smooth admissible action of GLn(Zp) and a commuting continuous
action of Gal(Qpr/Qpr).

Finally, fix h ∈ C∞c (GLn(Zp)) and define a new function h∨ ∈ C∞c (GLn(Zp)) by
h∨(g) = h((g−1)t).

Theorem 5.9. In this situation,

trss(Φpr × h∨|(RψF∞)x) = φh(δ0) .

Proof. We can assume that h equals geΓ(pm) for some g ∈ GLn(Z/pmZ). Let us describe
the fiber π−1

m (x) over x ∈ M(Fpr). The Drinfeld level-pm-structures are parametrized
by n-tuples

(P1, . . . , Pn) ∈ Xet,x[pm](Fpr)
generating Xet,x[pm](Fpr). The action of Φpr on π−1

m (x) is given by the action of Φpr on
Xet,x[pm](Fpr), which is given by right multiplication with (Nδ2)−1.

Further, Lemma 7.7 of [19] says that

trss(Φpr × (g−1)t|(RψFm)x) =
1

1− pr
tr(Φpr × (g−1)t|RIQp (RψFm)x) .

But one can rewrite
RIQpRψMFm = RIQpRψMπmη∗Q` = πms∗RIQpRψMΓ(pm)

Q`

= πms∗ι
∗
MΓ(pm)

RjMΓ(pm)∗Q` ,

because πm is finite. Here subscripts for Rψ indicate with respect to which scheme the
nearby cycles are taken, and ιMΓ(pm)

and jMΓ(pm)
are as defined before Lemma 5.1, for

the scheme MΓ(pm).
Now the theorem follows from Corollary 5.6 and the definition of Ik. �

6. Orbital integrals for GLn

Fix an integer r ≥ 1 throughout this section. First, we construct the function fn,p
which will turn out to have the correct orbital integrals.

Lemma 6.1. There is a function fn,p of the Bernstein center for GLn(Qp) such that
for all irreducible smooth representations π of GLn(Qp), fn,p acts by the scalar

p
n−1

2
rtrss(Φr

p|σπ) ,

where σπ is the representation of the Weil group WQp of Qp with values in Q` associated
to π by the Local Langlands Correspondence.

Proof. The proof is identical to the proof of Lemma 9.1 in [19]. �

Remark 6.2. The definition as given needs the existence of the Local Langlands Cor-
respondence. However, one can give a direct definition of fn,p, because it is easy to
evaluate trss(Φr

p|σπ): If π is a subquotient of the normalized induction of a supercus-
pidal representation π1 ⊗ · · · ⊗ πt, then take the sum of πi(pr) over all πi which are
unramified characters. This is the definition that we are going to use.
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Theorem 6.3. Let h ∈ C∞c (GLn(Zp)). Then fn,p ∗ h and φh have matching (twisted)
orbital integrals.

Remark 6.4. All Haar measures are normalized by giving a hyperspecial maximal com-
pact subgroup measure 1. For the case h = eGLn(Zp), this is exactly the usual base
change identity, used e.g. in [15].

Proof. Arguing as in the proof of Theorem 2.5, it is enough to check that for any
tempered irreducible representation π of GLn(Qp) with base-change lift Π, the equality

tr(fn,p ∗ h|π) = tr((φh, σ)|Π)

holds. We begin with a computation of the right hand side.
Let Pk be the standard parabolic with Levi GLk×GLn−k and let Nk be its unipotent

radical. For any admissible representation π of GLn(Qp) of finite length, let πNk be its
(unnormalized) Jacquet module with respect to Nk. Assume that

πNk =
tπ,k∑
i=1

π1
Nk,i
⊗ π2

Nk,i

as elements of the Grothendieck group of representations of GLk(Qp) × GLn−k(Qp).
Let ΘΠ be the distribution on GLn(Qpr) given by ΘΠ(δ) = Θπ(Nδ), where Θπ is the
character of π. Define ΘΠ1

Nk,i
in the same way. For any f ∈ C∞c (GLn(Qpr)), we will

write ΘΠ(f) as tr((f, σ)|Π), thinking of Π as the base-change lift of π.

Lemma 6.5. In this situation,

tr((φh, σ)|Π) =
n∑
k=1

tπ,k∑
i=1

p(n−k)r tr((χBk , σ)|Π1
Nk,i

) tr(h|IndGLn(Zp)
Pk(Zp) I0

k ⊗ π2
Nk,i

) ,

where χBk is the characteristic function of the set Bk of all elements δ of GLk(Qpr) ∩
Mk(Zpr) with vp(δ) = 1 such that Nδ is elliptic.

Proof. Let V k
n be the set of δ ∈ GLn(Qpr)∩Mn(Zpr) which are of height k. It is clearly

enough to prove that

tr((φhχV kn , σ)|Π) = p(n−k)r

tπ,k∑
i=1

tr((χBk , σ)|Π1
Nk,i

) tr(h|IndGLn(Zp)
Pk(Zp) I0

k ⊗ π2
Nk,i

) .

But by the twisted Weyl integration formula, cf. [1], p. 36,

tr((φhχV kn , σ)|Π) =
∑

Tk⊂GLk,Tn−k⊂GLn−k
Tk anisotropic

|W (Tk × Tn−k,GLk ×GLn−k)|−1

×
∫
Tk(Qpr )1−σ×Tn−k(Qpr )1−σ\Tk(Qpr )1×Tn−k(Zpr )

∆2
GLn(Qp)(Nt)TOtσ(φh)Θπ(Nt) .

Here Tk(Qpr)1 denotes the set of elements t ∈ Tk(Qpr) with vp(det t) = 1. Also recall
that

∆2
GLn(Qp)(t) = | det(1−Ad t|Lie gln)|p .

We can make several simplifications. First of all, writing t = (t1, t2) ∈ Tk(Qpr) ×
Tn−k(Qpr),

Θπ(Nt) = ΘπNk
(Nt) =

tπ,k∑
i=1

Θπ1
Nk,i

(Nt1)Θπ2
Nk,i

(Nt2)

by a result of Casselman, [4]. We may use this result because of the conditions t1 ∈
Tk(Qpr)1 with Tk anisotropic and t2 ∈ Tn−k(Zpr).
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Second,
∆2

GLn(Qp)(Nt) = p(n−k)r∆2
GLk(Qp)(Nt1)∆2

GLn−k(Qp)(Nt2) ,
because the action of Ad Nt on the Lie algebra of Nk is by multiplication through p,
and on the opposite nilpotent Lie algebra by multiplication through p−1.

Third, we have the following lemma.

Lemma 6.6. Let φ ∈ C∞c (GLn(Qpr)) have support in the elements which are of height
k and assume that φ is invariant under GLn(Zpr)-σ-conjugation. Then for t = (t1, t2) ∈
GLk(Qpr)×GLn−k(Zpr) with Nt1 elliptic, vp(det t1) = 1, we have

TOtσ(φ) = TO
GLk×GLn−k
tσ (φ) ,

where the right-hand side is the twisted orbital integral on the Levi subgroup GLk ×
GLn−k.

Proof. We apply Proposition 3.12 of [1] with P being the opposite parabolic of Pk. We
have to check that the constant term φP of φ along P equals φ. Let N be the nilpotent
radical of P . It is enough to see that for any GLk(Qpr)×GLn−k(Qpr)-σ-conjugate t′ of
t and n ∈ N(Qpr),

φ(t′n) =
{
φ(t′) n ∈ N(Zpr)
0 else .

This holds true, because both sides vanish unless t′ ∈ (GLk(Qpr)∩Mk(Zpr))×GLn−k(Zpr)
and n ∈ N(Zpr), in which case, t′ and t′n are easily seen to be GLn(Zpr)-σ-conjugate. �

If one defines hn−k ∈ C∞c (GLn−k(Zpr)) by

hn−k(δ2) = tr(h×Nδ2|Ik) ,
then inserting φ = φhχV kn in this lemma implies that for t = (t1, t2) ∈ Tk(Qpr)1 ×
Tn−k(Zpr) as above,

TOtσ(φh) = TOt1σ(χBk)TOt2σ(hn−k) .

Now, it is clear that the Weyl integration formula factors as a sum over i = 1, . . . , tπ,k
of products of the Weyl integration formulas for GLk(Qpr) and GLn−k(Qpr). To finish
the proof, we only need to show that

tr(hn−k|Πn−k) = tr(h|IndGLn(Zp)
Pk(Zp) I0

k ⊗ πn−k)

for any irreducible smooth representation πn−k of GLn−k(Qp). If h′n−k ∈ C∞c (GLn−k(Zp))
is defined by

h′n−k(γ2) = tr(h× γ2|Ik) ,
then tr(hn−k|Πn−k) = tr(h′n−k|πn−k) by Corollary 2.3 and Proposition 2.1, taking M =
Mn(Zp) and I small. We need to see that

tr(h′n−k|πn−k) = tr(h|IndGLn(Zp)
Pk(Zp) I0

k ⊗ πn−k) .

But for this we can replace Zp by Z/pmZ for m large and πn−k by an irreducible rep-
resentation of GLn−k(Z/pmZ). Now, the computation is easy, using the orthogonality
relations:

#GLn−k(Z/pmZ) tr(h′n−k|πn−k)

=
∑
γ2

tr(h× γ2|IndGLn(Z/pmZ)
Pk(Z/pmZ) I

0,Γ(pm)
k ⊗ C[GLn−k(Z/pmZ)]) tr(γ2|πn−k)

=
∑
γ2

tr(h× γ2|IndGLn(Z/pmZ)
Pk(Z/pmZ) I

0,Γ(pm)
k ⊗ (

⊕
π′n−k

π′n−k ⊗ π′∨n−k)) tr(γ2|πn−k)

= #GLn−k(Z/pmZ) tr(h|IndGLn(Z/pmZ)
Pk(Z/pmZ) I

0,Γ(pm)
k ⊗ πn−k) ,
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where π′n−k runs through irreducible representations of GLn−k(Z/pmZ). �

Lemma 6.7. Let π be an irreducible smooth representation of GLn(Qp) which is a
subquotient of a parabolic induction from a supercuspidal representation π1 ⊗ · · · ⊗ πt
with no πi being an unramified character. Then tr((χBn , σ)|Π) = 0.

If π is the trivial representation of GLn(Qp), then tr((χBn , σ)|Π) = 1.

Proof. Consider the first assertion. Put h = eGLn(Zp) in Lemma 6.5. The left hand
side vanishes, because φh is bi-GLn(Zpr)-invariant and π, hence Π, is not unramified,
e.g. by Theorem 2.5 for G = GLn. Further, for all k < n, we have by induction
tr((χBk , σ)|Π1

Nk,i
) = 0. Hence also the term for k = n vanishes, which gives exactly the

desired identity.
The same inductive computation also works if π is the trivial representation, using

that the left hand side is now the volume of

GLn(Zpr)diag(p, 1, . . . , 1)GLn(Zpr) ,

which can be determined to be 1+pr+. . .+p(n−1)r, e.g. by interpreting it as the number
of neighbors of the vertex corresponding to GLn(Zpr) in the building of PGLn. �

It is enough to show that for all tempered irreducible representations π of GLn(Qp)

p
n−1

2
rtrss(Φr

p|σπ)π =
n∑
k=1

tπ,k∑
i=1

p(n−k)r tr((χBk , σ)|Π1
Nk,i

)IndGLn(Zp)
Pk(Zp) I0

k ⊗ π2
Nk,i

(1)

as virtual representations of GLn(Zp). We prove the theorem by induction on n, knowing
that the equation (1) holds true for all irreducible smooth representations of GLn′(Qp)
with n′ < n.

Lemma 6.8. Assume that π is not necessarily irreducible, but is the parabolic induction
of an irreducible smooth representation. Then equation (1) holds true.

Proof. We first remark that the equation (1) makes sense for π of this form, because by
Remark 6.2,

trss(Φr
p|σπ)

has a definitive meaning. Assume that π = IndGLn(Qp)
Pm(Qp) π

′⊗π′′, where Ind denotes unnor-
malized induction. We remark that in this case, we have equalities in the Grothendieck
group of admissible representations:

π = IndGLn(Qp)
Pm(Qp) π

′ ⊗ π′′ = n-IndGLn(Qp)
Pm(Qp) π

′[m−n2 ]⊗ π′′[m2 ]

= IndGLn(Qp)
Pm(Qp) π

′′[m]⊗ π′[m− n] ,

where [x] means twisting by |det |xp and n-Ind denotes normalized induction. In partic-
ular,

trss(Φr
p|σπ) = p

m−n
2 trss(Φr

p|σπ′) + p
m
2 trss(Φr

p|σπ′′) .
Further, assume by induction that the equation (1) holds true for π′ and π′′. Note that
by the restriction induction formula of Bernstein-Zelevinsky, [2], Lemma 2.12, we have

πNk = IndGLk×GLn−k(Qp)
(Pm∩GLk×GLn−k)(Qp)π

′
Nk
⊗π′′+IndGLk×GLn−k(Qp)

(Pn−m∩GLk×GLn−k)(Qp)π
′′
Nk

[m]⊗π′[m−n]+R ,

where the rest R is a sum of representations of the form πk ⊗ πn−k with πk properly
induced. Let

π′Nk =
tπ′,k∑
i=1

π′1Nk,i ⊗ π
′2
Nk,i

.
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By induction, we have an equality of virtual representations of GLm(Zp):

p
m−1

2
rtrss(Φr

p|σπ′)π′

=
m∑
k=1

tπ′,k∑
i=1

p(m−k)r tr((χBk , σ)|Π′1Nk,i)IndGLm(Zp)
(Pk∩GLm)(Zp)I

0
k ⊗ π′2Nk,i .

Hence, defining Pk,m to be the parabolic with breakpoints k ≤ m,

p
2n−m−1

2
rtrss(Φr

p|σπ′)π

=
m∑
k=1

tπ′,k∑
i=1

p(n−k)r tr((χBk , σ)|Π′1Nk,i)IndGLn(Zp)
Pk,m(Zp)I

0
k ⊗ π′2Nk,i ⊗ π

′′

=
m∑
k=1

tπ′,k∑
i=1

p(n−k)r tr((χBk , σ)|Π1
Nk,i

)IndGLn(Zp)
Pk(Zp) I0

k ⊗ π2
Nk,i

,

as virtual representations of GLn(Zp), where π1
Nk,i

= π′1Nk,i and π2
Nk,i

= Indπ′2Nk,i ⊗ π
′′.

This definition is useful, since

IndGLk×GLn−k(Qp)
(Pm∩GLk×GLn−k)(Qp)π

′
Nk
⊗ π′′ =

tπ′,k∑
i=1

π1
Nk,i
⊗ π2

Nk,i

expresses the first part of πNk for k ≤ m. Note that for k > m,

IndGLk×GLn−k(Qp)
(Pm∩GLk×GLn−k)(Qp)π

′
Nk
⊗ π′′

is also of the form πk ⊗ πn−k with πk properly induced. Repeating this with π′ and π′′

exchanged, we are left to show that any representation of the form πk ⊗ πn−k in πNk
with πk properly induced contributes trivially to (1). This follows from the fact that if
πk is properly induced, then tr((χBk , σ)|Πk) = 0, as χBk is supported in elements whose
norm is elliptic, and the character of πk vanishes on elliptic elements. �

Further, the equation (1) is trivial for representations which are subquotients of the
parabolic induction of a supercuspidal representation π1 ⊗ · · · ⊗ πt with no πi being
an unramified character, as both sides vanish. Hence we are left to check it for an
unramified twist of the Steinberg representation, or equivalently by Lemma 6.8 for an
unramified character χ ◦ det. The equation (1) reduces to

(1 + pr + . . .+ p(n−1)r)χ(pr)(χ ◦ det) =
n∑
k=1

p(n−k)rχ(pr)IndGLn(Zp)
Pk(Zp) I0

k ⊗ (χ ◦ det) .

We see that we may assume χ = 1. Then this is a trivial consequence of the definition
of I0

k and the long exact sequence in Lemma 5.5. �

7. Comparison with the Arthur-Selberg trace formula

We now conclude the proof of Theorem D, i.e. the determination of the semisimple
local factor of the Shimura varieties ShK at the place p in terms of L-functions of
automorphic forms, cf. the introduction for the precise statement.

The main ingredients are the work of Kottwitz on the number of points of the Shimura
variety over finite fields, cf. [16], with the refinements in the case at hand in [15], and the
Arthur trace formula, which is very simple in our case, because our Shimura varieties
are proper. Let

H∗ =
∑

(−1)iH i
et(ShK ⊗k Qp,Q`)
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in the Grothendieck group of representations of Gal(Qp/Qp). Write fp = eKp and
h̃p = eKp . We know that Kp has the form

Kp = K0
p × Z×p ⊂ GLn(Qp)×Q×p ∼= G(Qp) .

We may assume that K0
p ⊂ GLn(Zp). Let hp = eK0

p
, so that hp ∈ C∞c (GLn(Zp)). Note

that hp = h∨p , where we recall that by definition h∨p (g) = hp((g−1)t).

Lemma 7.1. Let fp,hp be the function defined by

fp,hp : G(Qp) ∼= GLn(Qp)×Q×p −→ C

(g, x) 7−→
{

(fn,p ∗ hp)((g−1)t) vp(x) = −r
0 else .

Then for any irreducible smooth representation πp of G(Qp),

p
n−1

2
r tr(h̃p|πp)trss(Φr

p|r ◦ σπp) = tr(fp,hp |πp) .

Remark 7.2. We apologize for the two different uses of r in this paper.

Proof. Let ep−rZ×p be the characteristic function of p−rZ×p divided by its volume. Since
πp is an irreducible smooth representation of GLn(Qp)×Q×p , it can be written as πp =
π0
p ⊗χπp for some irreducible smooth representation π0

p of GLn(Qp) and a character χπp
of Q×p . We compute

tr(fp,hp |πp) = tr(fn,p ∗ hp|π0∨
p ) tr(ep−rZ×p |χπp)

= p
n−1

2
rtrss(Φr

p|σ∨π0
p
) tr(hp|π0

p) tr(ep−rZ×p |χπp)

= p
n−1

2
r tr(h̃p|πp)trss(Φr

p|r ◦ σπp) .
�

The equation
ζss
p (ShK , s) =

∏
πf

Lss(s− n−1
2 , πp, r)

a(πf )dimπKf

we want to prove reduces by standard methods to showing that for all r ≥ 1 the equation

trss(Φpr |H∗) =
∑

πf=πpf⊗πp

p
n−1

2
ra(πf ) tr(fp|πpf ) tr(h̃p|πp)trss(Φr

p|r ◦ σπp)

holds true: Indeed, take the logarithms of both sides and use the Lefschetz trace formula
for the left-hand side. Using Lemma 7.1, this is equivalent to

trss(Φpr |H∗) =
∑

πf=πpf⊗πp

a(πf ) tr(fp|πpf ) tr(fp,hp |πp) .

This equation is proved in exactly the same way as the expression [15, (5.4)] for the
corresponding trace on a Galois representation. We just note the necessary changes in
the argument.

First, a modification has to be done in Section 16 of [16], where the number of points
within one Fpr -isogeny class is computed. The function φr occuring there counts the
number of lattices Λ that give rise to Fpr -points of the moduli problem. More concretely,
the set of such lattices is in bijection to

Yp = {x ∈ G(Qpr)/G(Zpr) | x−1δxσ ∈ G(Zpr)µ(p−1)G(Zpr)} ,

cf. [16], p.432, noting that in our case µ(p−1) is defined over Qp, hence σ acts trivially.
But note that then x−1δxσ up to G(Zpr)-σ-conjugation is exactly the refined δ of the
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corresponding point of M(Fpr) as established in Lemma 4.1. Hence, when computing,
using Theorem 5.9,

trss(Φpr |H∗) =
∑

x∈M(Fpr )

trss(Φpr × hp|(RψF∞)x)

=
∑

x∈M(Fpr )

φhp(δx,0) ,

we have to weight the corresponding point with the factor φhp(δx,0). As the second
component of δx always has valuation −1, this shows that we get the correct result if
we replace φr with φ∨hp × ep−1Z×pr

in [16], where φ∨hp(g) = φhp((g
−1)t).

We simply record the intermediate result.

Proposition 7.3. The semisimple Lefschetz number trss(Φr
p|H∗) equals∑

γ0

∑
γ,δ

c(γ0; γ, δ)Oγ(fp)TOδσ(φ∨hp × ep−1Z×pr
) ,

in the notation of [16], p.442. In particular, c(γ0; γ, δ) is a certain volume factor.

With this modification, the argument of [15] works, if instead of the base-change
fundamental lemma at the end of p.662, one uses Theorem 6.3. Note that the extra
Gm-component of δ causes no trouble. This finishes the proof of Theorem D.

As a last point, we give a reformulation of the last proposition. Let φn,p be the function
of the Bernstein center of GLn(Qpr) that acts on any irreducible smooth representation
Π of GLn(Qpr) through the scalar

p
n−1

2
rtrss(Φpr |σΠ) .

Its existence is proved as usual and it is readily checked that for any tempered irreducible
representation π of GLn(Qp) with base-change lift Π, the scalar through which fn,p acts
on π is the same as the scalar through which φn,p acts on Π. Indeed, it is enough to do
this for representations unitarily induced from supercuspidal (which are preserved under
base change), and use that representations cannot become unramified after unramified
base change if they were not from the start, cf. proof of Lemma 10.2 in [19].

Fix a group scheme G = GM,I over Zp with generic fibre GLn as in Section 2 and
assume K0

p = G(Zp). Noting that the function

φG,r = (φn,p ∗ eG(Zpr ))
∨ × ep−1Z×pr

lies in the center of the Hecke algebra H(G(Qpr),G(Zpr)× Z×pr), the following theorem
proves a conjecture of Haines and Kottwitz in the case at hand.

Theorem 7.4. The semisimple Lefschetz number trss(Φr
p|H∗) equals∑

γ0

∑
γ,δ

c(γ0; γ, δ)Oγ(fp)TOδσ(φG,r) .

Proof. We have seen that this is correct if we replace TOδσ(φG,r) by TOδσ(φ∨hp×ep−1Z×pr
).

However, both functions have matching (twisted) orbital integrals with (fn,p ∗eG(Zp))∨×
ep−rZ×p : For the first function, this is a consequence of Theorem 2.5, and for the second
function, it follows from Theorem 6.3. Therefore the twisted orbital integrals agree, as
desired. �
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