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Abstract

Let F' be a CM number field. We prove modularity lifting theorems for
regular n-dimensional Galois representations over F' without any self-duality
condition. We deduce that all elliptic curves E over F' are potentially mod-
ular; and furthermore satisfy the Sato—Tate conjecture. As an application
of a different sort, we also prove the Ramanujan Conjecture for weight zero
cuspidal automorphic representations for GLa(Ar).
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1. Introduction

In this paper, we prove the first unconditional modularity lifting theo-
rems for n-dimensional regular Galois representations without any self-duality
conditions. A version of these results were proved in [CG18] conditional on
two conjectures. The first conjecture was that the Galois representations con-
structed by Scholze in [Sch15] satisfy a strong form of local-global compatibility
at all primes. The second was a vanishing conjecture for the mod-p cohomology
of arithmetic groups localized at non-Eisenstein primes which mirrored the
corresponding (known) vanishing theorems for cohomology corresponding to
tempered automorphic representations in characteristic zero. We prove many
cases of the first of these conjectures in this paper. Our arguments crucially
exploit work of Caraiani and Scholze [CS19b] on the cohomology of non-compact
Shimura varieties (see also [CS17] for the compact version of these results).
The details of this argument are carried out in §4 and §5. (It turns out that,
in the easier case when [ # p, one can argue more directly using the original
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construction in [Sch15], and this is done in §3.) On the other hand, we do not
resolve the second conjecture concerning the vanishing of mod-p cohomology in
this paper. Rather, we sidestep this difficulty by a new technical innovation; a
derived version of “Ihara avoidance” which simultaneously generalizes the main
idea of [Tay08| as well as a localization in characteristic zero idea first used
in [KT17]. This argument, together with the proofs of the main automorphy
lifting theorems, is given in §6. The result is that we are able to prove quite
general modularity lifting theorems in both the ordinary and Fontaine—Laffaille
case for general n-dimensional representations over CM fields, in particular
Theorems 6.1.1 and 6.1.2. Instead of reproducing those theorems here (which
require a certain amount of notation), we instead reproduce here a few corollar-
ies of our main theorems which are worked out in §7. The first theorem is a
special case of Corollaries 7.1.13 and 7.1.14:

THEOREM 1.0.1. Let E be an elliptic curve over a CM number field F'.
Then E and all the symmetric powers of E are potentially modular. Conse-
quently, the Sato—Tate conjecture holds for E.

For an application of a different sort, we also have the following special
case of the Ramanujan conjecture (see Corollary 7.1.15):

THEOREM 1.0.2. Let F' be a CM field, and let ™ be a reqular algebraic
cuspidal automorphic representation of GLa(AFr) of weight 0. Then, for all
primes v of F', the representation m, is tempered.

This is, to our knowledge, the first case of the Ramanujan conjecture to
be proved for which neither the underlying Galois representation V' nor some
closely related Galois representation (such as V®2 or Symm? V) is known to
occur as a summand of the étale cohomology of some smooth proper algebraic
variety over a number field; in such cases temperedness (at unramified primes)
is ultimately a consequence of Deligne’s purity theorem. Our proof, in contrast,
follows more closely the original strategy proposed by Langlands. Langlands
explained [Lan70] how one could deduce Ramanujan from functoriality; namely,
functoriality implies the automorphy of Symm”(7) and Symm”(7") as well as
the product Symm"(7) X Symm"(7"). Then, by considering standard analytic
properties of the standard L-function associated to Symm”(7) X Symm"(7")
(and exploiting a positivity property of the coefficients of this L-function) one
deduces the required bounds. As an approximation to this, we show that
all the symmetric powers of 7 (and 7v) are potentially automorphic, and
then invoke analytic properties of the Rankin-Selberg L-function (in the guise
of the Jacquet—Shalika bounds [JS81b]) as a replacement for the (potential)
automorphy of their product.
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1.1. A brief overview of the argument. Let F/F* be an imaginary CM
field, let K C GL,(A%) be a compact open subgroup, let X denote the
corresponding (non-Hermitian) locally symmetric space, let E/Q, denote a
finite extension with ring of integers O, and let V = V) denote a local system
on X which is a lattice inside an algebraic representation of weight A defined
over E. (For example, V could be the trivial local system O.) After omitting
a finite set of primes S containing the p-adic places (and satisfying some
further hypotheses), one may define a Hecke algebra T = T as the image of
a formal ring of Hecke operators in Endp ) (RI'(Xk,V)) where D(0O) is the
derived category of O-modules. (This is isomorphic to the usual ring of Hecke
operators acting on H*(X,)V) up to a nilpotent ideal, but for technical reasons
it is better to work in the derived setting, cf. [NT16].) For a non-Eisenstein
maximal ideal m, the main result of [Sch15] guarantees the existence of a Galois
representation

Pm - GF,S — GLn(Tm/J)

characterized, up to conjugation, by the characteristic polynomials of Frobenius
elements at places v € S, where J is a nilpotent ideal whose exponent depends
only on n and [F : Q]. It is crucial for applications to modularity lifting
theorems (following the strategy outlined in [CG18]) to know that this Galois
representation satisfies local-global compatibility at all primes. (As usual, in
order to talk about local-global compatibility at a prime in S, one has to work
with variants of T including Hecke operators at these primes — we ignore all
such distinctions here). Since Ty,/J is (in general) not flat over O, it is not
exactly clear what one should expect to mean by local—global compatibility.
For example, for primes [ # p, a (torsion) representation which is Steinberg at [
need not be ramified at [. Instead, we ask that the characteristic polynomials
of pm(o) for o € I, for v|l € S and | # p have the expected shape. Such a
condition is amenable to arguments using congruences, and we prove a version
of this compatibility in §3 (see Theorem 3.1.1). Note that our theorem only
applies to a limited range of [; in particular, we assume that the level K,
(for v|l € S and [ # p) satisfies the inclusions Iw,; C K, C Iw, (where Iw,
and Iw, ; are the Iwahori and pro-l Iwahori respectively) and additionally !
satisfies various splitting conditions relative to the field F'. This suffices for
applications to modularity, where we make a soluble base change to ensure that
Theorem 3.1.1 applies to both Taylor-Wiles primes and the ramified primes S
away from p. This part of the argument requires only the construction of Galois
representations in [Sch15].

Local-global compatibility for [ = p is more subtle. Indeed, we are
not confident enough to formulate a precise conjecture of what local-global
compatibility means in general in the torsion setting. Instead, we restrict to
two settings where the conjectural formulation of local-global compatibility is
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more transparent; the case when py, should be Fontaine-Laffaille (assuming, in
particular, that p is unramified in F') and the ordinary case (with no restriction
on F); §4 and §5 are devoted to proving such theorems. In both of these cases,
the underlying strategy is as follows. Associated to our data is a quasi-split
unitary group G over F* which is a form of GLo, that splits over F//F*. There
is a parabolic subgroup P of G whose Levi subgroup G over F'* may be identified
with Resp/p+ GLy, and hence associated with the locally symmetric spaces X

as above. The point of this construction is that G may be associated to a
Shimura variety X 7 (and thus to Galois representations of known provenance)
whereas the cohomology of Xy appears inside (in some non-trivial way) a
spectral sequence computing the cohomology of the boundary 0X 7 of the

Borel-Serre compactification of X - One now faces several complications.
The first is that the cohomology of the boundary involves different parabolic
subgroups of G besides P. This is resolved by the assumption that m is
non-Eisenstein. The second is separating inside the boundary cohomology
(associated to P) the contribution coming from G and that coming from the
unipotent subgroup U of P. Fortunately, the unipotent subgroup U is abelian
and well understood, and we show (for p > n?) that the relevant cohomology
we are interested in occurs as a direct summand of the cohomology of 0X s (see
Theorem 4.2.1). Note that, for a general coefficient system V = V) on Xk, there
are a number of different coefficient systems V5 on X 7 for which H *(8% = V5)
can be related to H*(Xg, Vy), and this freedom of choice will be important in
what follows. By these arguments, we may exhibit RT'(Xg, V)\/@™)m up to
shift as a direct summand of RT'(9X 7 V5/@™)&. (Here m is the corresponding

ideal of the Hecke algebra T for G, and P is the corresponding (reducible)
2n-dimensional representation associated to m, from which p,, was constructed.)
Now suppose that d is the complex (middle) dimension of X 7z We now make
crucial use of the following theorem, which is the main theorem of [CS19b] (see
Theorem 4.3.3 for a more general statement.)

THEOREM 1.1.1 (Caraiani-Scholze [CS19b, Theorem 1.1]). Assume that
F* #£ Q, that m is non-Eisenstein, and that pg is decomposed generic in the
sense of Definition 4.3.1. Assume that, for every prime | which is the residue

characteristic of a prime dividing S or Ap, there exists an imaginary quadratic
field Fy C F in which | splits. Then

HZ(XK,Vx/w)ﬁ =0if i <d, and Hz(j\(/l?,V}\“/W)fﬁ =0if i > d.

This immediately gives a diagram as follows:

HY (X, V5[1/pDs = HY (X, Vo)m — HUOX ., V3.
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where the leftmost term can be understood in terms of automorphic forms on

Shimura varieties, and in particular (under appropriate assumptions) gives rise

to Galois representations having the desired p-adic Hodge theoretic properties,

and the rightmost term (by construction) now sees the part of RT'(9X V57"
which (after shifting) contributes in degree d, at least up to a fixed level of

nilpotence.

The idea is then to choose the weight X so that V5 on X 7 1s related to Vy
on Xx by the action of a Weyl group as in Kostant’s formula [Kos61, Theorem
5.14] (to do this integrally, we need to assume that p is sufficiently large),
and that by varying A we may see all of the cohomology of RT'( Xk, V\/@™)m
in the degree d cohomology of RF(@XV 7 V5/@" ). This idea only works for
some weights and degrees, so to get around this, we first deepen the levels K
and K at some other place above p which allows us to modify the weight A
at the corresponding embeddings without changing the Hecke algebra. For
the modified A\, we can then find X and a Weyl group element giving us to
access to H1( X, Vy\)m for ¢ > ng (see Proposition 4.4.1), and we handle the
remaining degrees by taking duals. This part of the argument (including the
invocation of Theorem 1.1.1) requires various local assumptions on F' which can
always be achieved after a soluble base change but are not generally satisfied
(in particular, they are not satisfied when F* = Q). We then extract the
relevant properties of py from those of the determinant associated to m. This
summarizes the argument of §4.

In §5, we prove a different local-global compatibility theorem in the
ordinary case. Although not strictly necessary for our main theorems (for
compatible families, by taking sufficiently large primes, one can aways reduce
to the Fontaine—Laffaille case), this allows us to prove a modularity lifting
theorem which may have wider applicability — in particular, the main local—-
global compatibility result of this section (Theorem 5.5.1) applies to any prime
p, provided F' contains an imaginary quadratic field in which p splits. The
general approach in this section is similar to that of §4. However, instead
of exhibiting RI'(X g, Va/@™)m up to shift as a direct summand (as a Hecke
module) of RF(G)? = V5/@™)a, (whose proof in §4 required p > n?), we make
arguments on the level of completed cohomology, and exploit a version of
Emerton’s ordinary parts functor. A key computation is that of the ordinary
part of a parabolic induction from P to G in §5.3 following arguments of
Hauseux [Haul6]. Because only part of the cohomology of the unipotent radical
U is ordinary, only relative Weyl group elements appear in the degree shifts
(see Theorem 5.4.3) and consequently we only obtain shifts by multiples of
[F* : Q] in this way. We get around this by a trick using the centre of G,
showing that the Hecke algebra acting on H*(X g, V) can be understood in
terms of the Hecke algebra acting only in degrees that are multiples of [F'' : Q]
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(Lemma 5.4.16). As in the Fontaine-Laffaille case, we can then extract the
relevant properties of py from those of the determinant associated to m.

We now turn to the modularity lifting theorems of §6. A key hypothesis
of [CG18] was the truth of a vanishing conjecture for integral cohomology local-
ized at a non-Eisenstein maximal ideal m outside a prescribed range (mirrored
by the characteristic zero vanishing theorems of Borel and Wallach [BW00]).
This conjecture remains unresolved. Instead, we exploit a localization in char-
acteristic zero idea first employed in [KT17]. This requires a slightly stronger
residual modularity hypothesis — namely, that p,, actually comes from an au-
tomorphic representation rather than one merely associated to a torsion class —
but this will be satisfied for our applications, and is at any rate required at other
points at the argument (for example to know that the residual modularity hy-
pothesis is preserved under soluble base change). Two points remain. The first,
which is mostly technical, is to show that the approach of [CG18] and [KT17]
is compatible with the fact that we only have Galois representations to T/.J for
some nilpotent ideal J. The second, which is more serious, is to show that the
localization argument of [KT17] is compatible with the “IThara avoidance argu-
ment” of [Tay08] and the (essentially identical) Iy > 0 version of this argument
in [CG18]. (Here [ is the parameter of [BWO00] which measures the failure
of the underlying real group to admit discrete series and which plays plays a
fundamental role in [CG18].) To explain the problem, we briefly recall the main
idea of [Tay08] in the lp = 0 setting (the difficulties are already apparent in this
case). One compares two global deformation problems which (for exposition)
differ only at an auxiliary prime v with [ = N(v) =1 mod p, and which at
all other primes have smooth local deformation conditions. The corresponding
local deformation rings Rz(,l) and RS,Q) at the prime v are taken to be tame
local deformation rings which the image of tame inertia has minimal polyno-
mial (X—1)"or (X—(3)...(X—(,) respectively for distinct roots of unity ¢; = 1
mod v. The corresponding patched modules H&l)) and Hég) constructed via
the Taylor—Wiles method ([TW95, Kis09]) have the expected depth over Su.

On the one hand, the generic fibre of R1(,2) is geometrically irreducible, which
forces Hg) to have full support over R1()2). On the other hand, there is an iso-
morphism R\ Jw = R /o, and this gives an identification 20 [t~ a? /0.
But now, the ring ngl) has the convenient property that any irreducible com-
ponent of its special fibre comes from a unique irreducible component of the
generic fibre, and from this a modularity result is deduced in [Tay08] using
commutative algebra. Suppose we now drop the hypothesis that the integral
cohomology all contributes to cohomology in a single degree (still in our o = 0

setting), but we continue to assume this holds after inverting p. Now we can
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no longer control the depth of the S,.-modules Héé) and Hég), and so know-
ing Hég)[l/p] # 0 and H&l))/w = Hg)/w does not imply that H(%)[l/p] # 0.
For example, it could happen that H. O Hc%)/ w= fj)/ w. The resolution
of this difficulty is not to simply compare the patched modules in fixed (final)
degree, but the entire patched complex in the derived category. The point
is now that these complexes in characteristic p (which are derived reductions
of perfect So-complexes for the ring of diamond operators Sy, ) remember
information about characteristic zero. As a simple avatar of this idea, if M is a
finitely generated Z,-module, then M|[1/p] is non-zero if and only if M @ F,
has non-zero Euler characteristic over F,. The main technical formulation
of this principle which allows us to prove a version of Thara avoidance in our
setting is Lemma 6.3.4.

Finally, in §7, we apply the results of previous sections to prove Theo-
rems 1.0.1 and 1.0.2. We begin with some preliminaries on compatible systems
in order to show there are enough primes such that the corresponding residual
representations satisfy hypotheses of our modularity lifting theorems. As ex-
pected, the arguments of this section make use of the p-¢ switch ([Wil95], but
first exploited in the particular context of potential automorphy in [Tay03])
and a theorem of Moret-Bailly [MB89].

Acknowledgments. It was realized by two of us (A.C. and P.S.) that the
local-global compatibility for torsion Galois representations should be a conse-
quence of a non-compact version [CS19b] of their recent work on the cohomology
of Shimura varieties [CS17]. This led to an emerging topics workshop at the
Institute for Advanced Study (organized by A.C and R.L.T. and attended by
all the authors of this paper) whose goal was to explore possible consequences
for modularity. It was during this workshop (in November 2016) that the new
Thara avoidance argument was found. The authors gratefully acknowledge the
TAS for the opportunity to run this workshop, and thank Matthew Emerton
for his participation. We are also very grateful to Lambert A’Campo and
Konstantin Miagkov for helpful comments and questions on an earlier draft.

1.2. Notation. We write all matrix transposes on the left; so ‘A is the
transpose of A. We will write char for the characteristic polynomial of a
matrix A. We write GL,, for the usual general linear group (viewed as a
reductive group scheme over Z) and T,, C B, C GL, for its subgroups of
diagonal and of upper triangular matrices, respectively. We will write O(n)
(resp. U(n)) for the group of matrices g € GL,(R) (resp. GL,(C)) such that
t9°g = 1,.

If R is a local ring, we write mp for the maximal ideal of R.

If A is an abelian group, we will let A% denote its maximal torsion
subgroup and A' its maximal torsion free quotient. If A is profinite and
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abelian, we will also write A(l) for its Sylow pro-l-subgroup, which is naturally
isomorphic to its maximal pro-I continuous quotient. If I is a profinite group,
then I'*P will denote its maximal abelian quotient by a closed subgroup. If
p: T — GL,(Q,) is a continuous homomorphism, then we will let p : I' —
GL,,(F,) denote the semi-simplification of its reduction, which is well defined
up to conjugacy (by the Brauer—Nesbitt theorem). If M is a topological abelian
group with a continuous action of I', then by H*(I', M) we shall mean the
continuous cohomology.

If R is a (possibly non-commutative) ring, then we will write D(R) for
the derived category of R-modules. By definition, an object of D(R) is a
cochain complex of R-modules. An object of D(R) is said to be perfect if it is
isomorphic in this category to a bounded complex of projective R-modules.

If R is a complete Noetherian local ring, C' € D(R) is a perfect complex,
and T' — Endpg)(C) is a homomorphism of R-algebras, then the image TofT
in Endpg)(C) is a finite R-algebra, which can therefore be written as a product
T = [1,, T of its localizations at maximal ideals. There is a corresponding
decomposition 1 = > en of the unit in T as a sum of idempotents. Since
D(R) is idempotent complete, this determines a decomposition C' = @y, Cyy, in
D(R). The direct summands Cy, are well-defined up to unique isomorphism.
We usually reserve the symbol C*® to refer to an element in the category of
cochain complexes, although hopefully statements of the form C* =0 in D(R)
will not cause any confusion.

If G is a locally profinite group, and U C G is an open compact subgroup,
then we write H(U, G) for the algebra of compactly supported, U-biinvariant
functions f : G — Z, with multiplication given by convolution with respect
to the Haar measure on GG which gives U volume 1. If X C G is a compact
U-biinvariant subset, then we write [X] for the characteristic function of X, an
element of H (U, G).

If G is a reductive group over a field k and T' C G is a split maximal torus,
then we write W (G, T) for the Weyl group (the set of k-points of the quotient
Ng(T)/T). For example, if F//Q is a number field, then we may identify
W((Resp/q GLn)c, (Resp/q Tn)c) with SHem(FO) "1f P G is a parabolic
subgroup which contains 7', then there is a unique Levi subgroup L C P which
contains 7. We write Wp(G,T) for the absolute Weyl group of this Levi
subgroup, which may be identified with a subgroup of W (G, T).

Suppose that G comes equipped with a Borel subgroup B containing 7.
Then we can form X*(T)* C X*(T), the subset of B-dominant characters.
If P is a parabolic subgroup of G which contains B, with Levi L as above,
then BN L is a Borel subgroup of L and we write X*(T)"* for the subset of
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(B N L)-dominant characters. The set
WG, T) = {we W(G,T) | wX"(T)*) c X*(T)""}

is a set of representatives for the quotient Wp (G, T)\W (G, T).

Galois representations. If F is a perfect field, we let F' denote an algebraic
closure of F and G the absolute Galois group Gal(F/F). We will use ¢, to

th_root of 1. Let ¢ denote the l-adic cyclotomic character

denote a primitive n
and ¢ its reduction modulo I. We will also let w; : Gp — pj_1 C ZlX denote
the Teichmiiller lift of ;. If F/F' is a separable quadratic extension, we will let
dg/r denote the non-trivial character of Gal(E/F'). We will write Brg for the
Brauer group of F.

We will write Q- for the unique unramified extension of Q; of degree r
and Z;- for its ring of integers. We will write Q;" for the maximal unramified
extension of Q; and Z}" for its ring of integers. We will also write Z?r for the
l-adic completion of Z;" and Q?r for its field of fractions.

If K is a finite extension of Q,, for some p, we write K™ for its maximal
unramified extension; I for the inertia subgroup of Gg; Frobg € Gi /I for
the geometric Frobenius; and Wy for the Weil group. If K'/K is a Galois
extension we will write I, for the inertia subgroup of Gal(K'/K). We will
write Artg : KX — Wf(b for the Artin map normalized to send uniformizers to
geometric Frobenius elements. We will write w;, for the character Gq,. — ler
such that w;, o Artq,, sends [ to 1 and sends a € ZZXT to the Teichmiiller lift of
a mod [. This is sometimes referred to as “the fundamental character of niveau
r.” (Thus w1 = w;.)

We will let reck be the local Langlands correspondence of [HT01], so that if
7 is an irreducible complex admissible representation of GL,,(K), then recy ()
is a Frobenius semi-simple Weil-Deligne representation of the Weil group Wi
We will write rec for recg when the choice of K is clear. We write recf( for
the arithmetic normalization of the local Langlands correspondence, as defined
in e.g. [CT14, §2.1]; it is defined on irreducible admissible representations of
GL,,(K) defined over any field which is abstractly isomorphic to C (e.g. Q;).

If (r, N) is a Weil-Deligne representation of Wy, we will write (r, N)¥—s
for its Frobenius semisimplification. If p is a continuous representation of
Gk over Q; with [ # p then we will write WD(p) for the corresponding Weil-
Deligne representation of Wy . (See for instance section 1 of [TY07].) By a
Steinberg representation of GL, (K) we will mean a representation Sp,,(¢) (in
the notation of section 1.3 of [HT01]) where 1 is an unramified character of
K>, If m; is an irreducible smooth representation of GL,, (K) for i = 1,2, we
will write m; B 79 for the irreducible smooth representation of GLy,, 4n, (K)
with rec(m; B mg) = rec(m;) @ rec(me). If K'/K is a finite extension and if =
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is an irreducible smooth representation of GL,(K) we will write BC g/ /g (7)
for the base change of 7 to K’ which is characterized by recy/(BC g/ (7)) =
recr () |w,, -

If p is a de Rham representation of Gk over Qp, then we will write WD(p)
for the corresponding Weil-Deligne representation of Wy, and if 7: K — Qp
is a continuous embedding of fields, then we will write HT(p) for the multiset
of Hodge-Tate numbers of p with respect to 7. Thus HT,(p) is a multiset
of dim p integers. In fact if W is a de Rham representation of Gx over Qp
and if 7: K — Qp, then the multiset HT (W) contains ¢ with multiplicity

dimg (W @r x K (i))¢%. Thus, for example, HT,(e,) = {—1}.

If G is a reductive group over K and P is a parabolic subgroup with
unipotent radical N and Levi component L, and if 7 is a smooth representation
of L(K), then we define Indggg 7 to be the set of locally constant functions
f : G(K) — 7 such that f(hg) = w(hN(K))f(g) for all h € P(K) and
g € G(K). It is a smooth representation of G(K) where (g1f)(g92) = f(g291)-
This is sometimes referred to as ‘natural’ or ‘un-normalized’ induction. We let
O0p denote the determinant of the action of L on Lie N. Then we define the

)™ to be Indg) (7 @ [op ). If P
is any parabolic in GL,,, +p, with Levi component GL,,, x GL,,, then 7 Hm

. . GLn; 1no (K
is a sub-quotient of n—IndP(Kl)Jr 2 )7r1 ® 9.

. . . : G
‘normalized’ or ‘unitary’ induction n-Ind

We will let ¢ denote complex conjugation on C. We will write Artg (resp.
Artc) for the unique continuous surjection

R” — Gal(C/R)

(resp. C* — Gal(C/C)). We will write recc (resp. recr), or simply rec, for the
local Langlands correspondence from irreducible admissible (Lie GL,(R) ®gr
C, O(n))-modules (resp. (Lie GL,,(C)®r C, U(n))-modules) to continuous, semi-
simple n-dimensional representations of the Weil group Wg (resp. W¢). (See
[Lan89].) If m; is an irreducible admissible (Lie GL,,(R) ®r C, O(n;))-module
(resp. (Lie GLp,(C)®rC,U(n;))-module) fori = 1,...,r and if n = ny+- - -+n,,
then we define an irreducible admissible (Lie GL,,(R)®gr C, O(n))-module (resp.
(Lie GL,,(C) ®gr C,U(n))-module) m B - - - B, by

rec(m B ---Bm,) =rec(m) ® - - - @ rec(my).

If 7 is an irreducible admissible (Lie GL,(R) ®r C,O(n))-module, then we
define BC ¢/r(7) to be the irreducible admissible (Lie GL,(C) ®r C,U(n))-
module defined by

recc(BC ¢/r(m)) = recr (m)|we-

If 7 is an irreducible admissible representation of GL,(Afr) and £ €
(Zﬁ)Hom(F ‘C)| we say that 7 is regular algebraic of weight ¢ if the infinitesimal
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character of 7 is the same as that of Vg\/, where V¢ is the algebraic represen-
tation of Resp/q GLy, of highest weight £ (see Section 2.2.1). We say that it is
regular algebraic if it is regular algebraic of some weight.

We will write || || for the continuous homomorphism

=111 lo: A*/Q¢ — R,

where each | |, has its usual normalization, i.e. |p|, = 1/p.
Now suppose that K/Q is a finite extension. We will write || ||x (or simply
[ [I) for || [| o Ng/q- We will also write

Artge = [ [ Art, : Af/EX(KX)0 = GR.

If v is a finite place of K, we will write k(v) for its residue field, ¢, for #k(v),
and Frob, for Frobg,. If v is a real place of K, then we will let [¢,] denote the
conjugacy class in G consisting of complex conjugations associated to v. If
K'/K is a quadratic extension of number fields, we will denote by dx /K the
nontrivial character of Ay /K*Ng/ /A, (We hope that this will cause no
confusion with the Galois character dx//x. One equals the composition of the
other with the Artin map for K.) If K’/K is a soluble, finite Galois extension
and if 7 is a cuspidal automorphic representation of GL, (A k) we will write
BC gk () for its base change to K', an (isobaric) automorphic representation
of GL,, (A k) satisfying

BC kr/k(m)v = BC Ky k(o))

for all places v of K’. If m; is an automorphic representation of GLy,, (Ak)
for ¢« = 1,2, we will write m; H w9 for the automorphic representation of
GLj, 40, (A k) satisfying

(mi B )y =m0 Bray

for all places v of K.

We will call a number field K a CM field if it has an automorphism ¢ such
that for all embeddings i : K < C one has coi =i o c. In this case, either K
is totally real or a totally imaginary quadratic extension of a totally real field.
In either case, we will let K denote the maximal totally real subfield of K.

Suppose that K is a number field and

x:Ap/K* — C*
is a continuous character. If there exists a € ZHom(K.C) guch that

Xl(gzy T — H (tz)",
T€Hom(K,C)
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we will call y algebraic. In this case, we can attach to x and a rational prime [
and an isomorphism 1 : Q, — C, a unique continuous character

ra(x) : Gr — Q
such that for all v /l we have

vor(X)|wy, © Artk, = Xo.
There is also an integer wt(y), the weight of x, such that
—wt(x)/2
Il =11 11072,

(See the discussion at the start of [BLGGT14, §A.2] for more details.)
If K is a totally real field, we call a continuous character

x:Ag/K* — C*
totally odd if x,(—1) = —1 for all v|oo. Similarly, we call a continuous character
p:Gr — Q)
totally odd if u(e,) = —1 for all v|oc.

2. Preliminaries on the cohomology of locally symmetric spaces and
Galois representations

Our main objects of study in this paper are n-dimensional Galois repre-
sentations and their relation to the cohomology of congruence subgroups of
GL,, (equivalently, the cohomology of the locally symmetric spaces attached to
congruence subgroups of GL,,). In this introductory section we establish some
basic notation and definitions concerning these objects, and recall some of their
fundamental known properties. In particular, we will define cohomology groups
associated to an arbitrary weight and level and also define the Hecke algebras
which act on these cohomology groups.

2.1. Arithmetic locally symmetric spaces: generalities.

2.1.1. Symmetric spaces. Let F be a number field and let G be a connected
linear algebraic group over F'. We consider a space of type S — Q for G :=
Resp/qQG, in the sense of [BST73, §2] (see also [NT16, §3.1]). This is a pair
consisting of a homogeneous space X for G(R) and a family of Levi subgroups
of Ggr satisfying certain conditions. From [BS73, Lem. 2.1], the homogeneous
space XC is determined up to isomorphism. We will refer to X as the
symmetric space for G. For example, if G = GL, r, we can take X6 =
GL,(Fx)/KxxR* for Ko C GL,,(Fs) a maximal compact subgroup.

An open compact subgroup K¢ C G(A%) is said to be neat if all of its
elements are neat. An element g = (gy), € G(AY) is said to be neat if the

intersection N,I', is trivial, where I', C QX is the torsion subgroup of the
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subgroup of F: generated by the eigenvalues of g, acting via some faithful
representation of G.

We will call a ‘good subgroup’ any neat open compact subgroup Kg C
G(A%) of the form Kg =[], Kg,v, the product running over finite places v
of F. If K¢ is a good subgroup, then we define

Xi, =GP\ (X¢ x G(AF)/Kg) and Xg = G(F)\ (X x G(AF)),

the latter with the discrete topology on G(A%).

These topological spaces may be given the structure of smooth manifolds,
and G(A%) acts on Xg by right translation. We can identify X%G = Xqg/Kg.
Note that the space X© is diffeomorphic to Euclidean space. The neatness
condition on K¢ implies that X%G can be identified with a finite disjoint union
of quotients of X by the action of torsion-free arithmetic subgroups of G(F).

We let YG denote the partial Borel-Serre compactification of X ¢ (see [BST73,
§7.1]). Define

X = GF)\ (X° x G(AF)/Kc) and X = G(F)\ (X© x G(AF)).

For any good subgroup Kg C G(A%), the space Y?}G, which can be identified

with Xq/Kg, is compact (see [BS73, Theorem 9.3]). More precisely, YS’{G
is a compact smooth manifold with corners with interior X GG; the inclusion

X[%G — YE{G is a homotopy equivalence. We also define 0XC = XY~ XG and

OXF, = G(F)\ (0X° x G(A¥)/Kc) and 0Xc := G(F)\ (0X¢ x G(A¥)) .

2.1.2. Hecke operators and coefficient systems. If S is a finite set of finite
places of F' we set G := G(A%O’S) and Gg := G(Aps), and similarly K& =
[logs Kcp and Ka,s = [[,c5 Ki,o- We also sometimes write G* = G(AF).

Let R be a ring and let V be an R[G(F) x Kg g|-module, finite free as R-
module. We now explain how to obtain a local system of finite free R-modules,
also denoted V, on X[%G, and how to equip the complex RF(X%(}, V) € D(R)
with an action of the Hecke algebra H(G®, K2), following the formalism of
[NT16] (in particular, viewing X% x G(A%) as a right G(F) x G(AS)-space).

The R[G(F') x Kg s]-module V determines (by pullback from a point) a
G(F) x G x K¢ s-equivariant sheaf, also denoted V, of finite free R-modules
on X% x G(A%¥), hence (by descent under a free action, as in [NT16, Lem.
2.17)) a GY x Kg s-equivariant sheaf V on Xg. By taking derived global
sections we obtain RI'(Xq,V), which is an object of the derived category
of R[G® x Kg s]-modules. By taking derived invariants under K we ob-
tain RT'(Kq, RT'(Xq, Vx.)), which is an object of the derived category of
H(G®, K§) ®z R-modules.
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On the other hand, if we only think of V as a Kg-equivariant sheaf on X,
it is equivalent to a sheaf V on XI%G (applying once again [NT16, Lem. 2.17]).
The complex RF(X%G, V) is naturally isomorphic in D(R) to the image of the
complex RI'(Kq, RTI'(Xg, Vx,)) under the exact forgetful functor
cf. [NT16, Prop. 2.18|. In this way, we obtain a canonical homomorphism

(2.1.3) H(G®, K3) ®z R — Endpg)(RT(XF,, V).

The same formalism applies equally well to the Borel-Serre compactification

(because G(F') x Kqg acts freely on X9 x G(A%)). Even more generally, if
Y is any right G° x Kq s-space and C' is any bounded-below complex of
GS x K¢ s-equivariant sheaves of R-modules on Y, there is a homomorphism

H(G®, K§) ®z R — Endp(g)(RT(Kg, RT(Y, C))).

Taking j : X¢ x G(A®) — X x G(A%) to be the canonical open immersion
and V to be an R[G(F') x Kq, s|-module, finite free as R-module, this determines
an action of the Hecke algebra on the cohomology groups with compact support:

H(GS, K§) ©z R — Endp gy (RT(G(F) x K, RU(X® x G(A%), 1))
= Endp ) (R[(XE,,,V)).
We have the following lemma, which is a consequence of the existence of the

Borel-Serre compactification (see [BS73, §11]):

LEMMA 2.1.4. Let Kg be a good subgroup, let R be a Noetherian ring, and
let V be an R[G(F) x Kg]-module, finite free as R-module. Then H*(XIC(;G,V)
is a finitely generated R-module.

A variant of this construction arises when we are given a normal good
subgroup K C K¢ with the property that Ké = (Ké)s Then we write
RT ke /Ky, (X[(?é, V) € D(R[Kq/K(]) for the complex in this category comput-
ing the cohomology of H*(X%},V) with its natural K¢/Kg = Ka,s/Kq g
action. The image of this complex under the forgetful functor D(R[Kq/K(]|) —
D(R) is RF(X[G%, V), and there is a homomorphism

(2.1.5) H(GS, Ké) ®z R — EndD(R[KG/K'G])(RPKG/K'G (XIC(;&, V))
which recovers (2.1.3) after composition with the map
(21.6)  Endp(rixe/xy) (Rl kq /e, (XI%E;: V) = EndD(R)(RP(XI%Ga V)

given by the functor RT'(Kq/K¢,,?).
The following lemma is a strengthening of Lemma 2.1.4:
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LEMMA 2.1.7. Let Kg be a good subgroup, and let K{, C Kg be a normal
subgroup which is also good. Let R be a Noetherian ring, and let V be an
R[G(F) x Kg]-module, finite free as R-module. Then Rl k. (Xgé,V) is a
perfect object of D(R[Kq/K(]); in other words, it is isomorphic in this category
to a bounded complex of projective R[K¢/K(]-modules.

Proof. Pullback induces an isomorphism RI'k, KL (Y?(é V) = Rl K, (X%é, V),
so it suffices to show that RI'g,, KL, (Y%G, V) is a perfect complex. As in [BS73,

§11], we see that YE}G admits a finite triangulation; this pulls back to a

G(F) x Kg-invariant triangulation of X G(A%). Let C, be the corresponding
complex of simplicial chains. It is a bounded complex of finite free Z|G(F') x K-
modules. The lemma now follows on observing that RI'x /K, (Yf(é}, V) is
isomorphic in D(R[K¢/Kg)) to the complex Homgc(r)x iz, (Ce, V). O

Finally we introduce some notation relevant for relating the Hecke operators
of G and of its parabolic subgroups. Let us therefore now assume that G is
reductive, and let P = MN be a parabolic subgroup with Levi subgroup
M. Let Kg C G(AY) be a good subgroup. In this situation, we define
Kp = KgNP(AY), Kn = Kc NN(AY), and define Ky to be the image of
Kp in M(A%). We say that K¢ is decomposed with respect to P = MN if we
have Kp = Ky x Ky; equivalently, if Ky = Kg N M(AY).

Assume now that K¢ is decomposed with respect to P = MN, and let
S be a finite set of finite places of F' such that for all v ¢ S, Kg, is a
hyperspecial maximal compact subgroup of G(F,). In this case, we can define
homomorphisms

rp 1 H(GY, K&) — H(P%, K8) and ry : H(PY, K5) — H(M?, Ky),

given respectively by “restriction to P” and “integration along N”; see [NT16,
§2.2.3, 2.2.4] for the definitions of these maps, along with the proofs that they
are indeed algebra homomorphisms and that integration along N preserves
integrality. We write

(2.1.8) S=ryorp

for the composite map, or S = SI\C/} when we wish to emphasize the ambient
groups. By abuse of notation, we also denote by rp, r\1 and S = 51\(/}1 the same
maps for the local Hecke algebras at v € S.

2.1.9. The Hecke algebra of a monoid. We in fact need a slight generaliza-
tion of the discussion in the previous section, which we outline now in a similar
way to [NT16, §2.2].

We first discuss the local situation. Let /' be a non-archimedean local field,
and let G be a reductive group over F. Let ¢ denote the cardinality of the
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residue field of F. If U C G(F) is an open compact subgroup and A C G(F)
is an open submonoid which is invariant under left and right multiplication
by elements of U, then we can consider the subset H(A,U) C H(G(F),U) of
functions f : G(F') — Z which are supported in A. It follows from the definition
of the convolution product that this subset is in fact a subalgebra. If R is a
ring and M is an R[A]-module (or more generally, a complex of R[A]-modules)
then there is a corresponding homomorphism H(A,U) — Endpg)(RT'(U, M)).
This extends the formalism for the full Hecke algebra described in [NT16, 2.2.5]
and recalled in the previous section.

Now let P C G be a parabolic subgroup with Levi decomposition P = M N,
and let P = MN denote the opposite parabolic. Let U C G be an open
compact subgroup which admits an Iwahori decomposition with respect to P.
By definition, this means that if we define Uy = U NN(F), Uyy = U N M(F),
and Uz; = U N N(F), then the two product maps

UNXUMXUN%UandUNXUMXUN%U

are bijective. In this case, we write Ay C M(F') for the set of U-positive
elements, i.e. those ¢t € M (F) which satisfy tUyt™' C Uy and Uy C tUxt ™1
We define A = UnvApyUg.

LEMMA 2.1.10. Aps and A are monoids. Moreover, Aps is open in M(F),
A is open in G(F), we have UAU = A, and AN M(F) = Ayy.

Proof. 1t is clear from the definition that Ay is closed under multiplication,
and also that Aps, A are open in M (F') and G(F), respectively. To show that
UAU = A, we simply observe that if m € Ay, then the definition of positivity
gives

UmU = UmUNUMUN = UmUMUN = UNUMUNmUMUﬁ
= UNUMmUMUﬁ C UNAMUW = A.

To show that A is closed under multiplication, we must show that UmUmoU C
UApU. Using the definition of positivity, we see that

UmlUmgU = UmlUNUMUngU = UmlUMmgU,

so it is equivalent to show m1Ujprmeo C Ajs; and this is true, since Uy C Ay
Finally, the identity AN M (F') = Ay follows from the following observation: if
ity =m € M(F), for uy € Uy, t € Ay and Uy € Uy, then iy = t_luflm €
P(F)NN(F), so iz must be the identity. Similarly, u; must be the identity,
som=t¢& Ay. O

It follows that the Hecke algebras H(A,U) and H (A, Ups) are defined.
Moreover, Ap = AN P(F) is a monoid, and we can consider also the Hecke
algebra H(Ap,Up).
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LEMMA 2.1.11. Consider the two maps rp : H(A,U) — H(Ap,Up) and
ry o H(Ap,Up) = H(Aw, Unr) given by restriction to P(F') and integration
along Uy, respectively. Then both rp and rys are algebra homomorphisms.

Proof. Tt follows from [NT16, Lemma 2.7] that the map H(P(F),Up) —
H(M(F),Up) is an algebra homomorphism whenever the condition Up =
Un x Uy is satisfied. It remains to show that rp is an algebra homomorphism.
The proof is the same as the proof of [NT16, Lemma 2.4, 1.] once we take
into account the identity, valid for any function f : G(F) — R with compact
support contained in UP(F’) (and a fortiori, any function f € H(A,U)):

dg = dp du. J
/g oo, (010 / . / o [0

It will be helpful later to note that the maps rp and rj; o rp are quite
simple, being given on basis elements by the formulae rp([UmU]) = [UpmUp|
and 7y o rp([UmU]) = #(Un/mUnm™ ) [UymUn] = [6p(m)| 5 [UnmUn),
respectively. As in the unramified case, we will write S or Sﬂcj[ for the composite

™ OTP.

LEMMA 2.1.12. Consider the map t : H(An,Un) — H(A,U) of Z-
modules given on basis elements by t([UyymUpr]) = [UmU]. Then t is an
algebra homomorphism.

Proof. This is [BK98, Corollary 6.12]. O

Thus we have constructed injective algebra homomorphisms
t: H(AM, UM) — H(A, U)

S: H(A,U) — H(AM,UM)

with the property that for any m € Ay, t o S([UmU]) = |dp(m)|z [UmU]
and S o t([UpymUns] = |0p(m)| 2! [UnymUny). In certain circumstances, we can
extend the domain of definition of these homomorphisms. Following [BK98]|, we
say that an element z € Aj; which lies in the centre of M is strongly positive
if for any open compact subgroups Hy, Hy of Uy (resp. Hy, Hy of Uy ), there
exists n > 0 such that z"Hy2~™ C Hy (resp. 2 "H;z" C Hj).

LEMMA 2.1.13. Let z € Ay be strongly positive. Then:
(1) [UnzUpy] lies in the centre of H(Ar, Unr), is invertible in H(M(F'),Upy),
and H(AM, UM)[[UMZUM]fl] = H(M(F), UM).
(2) Let R be a ring in which q is a unit, and suppose that [UzU] is invertible
inH(G(F),U)®zR. Thent®zR and S®z R extend uniquely to algebra
isomorphisms

t: H(M(F),Upy) ®z R — (H(A,U) ®z R)[[U2U] 7]
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and

S: (H(A,U) @z R)|[[UzU]"Y = H(M(F),Uy) @z R.

Proof. The element [Ups2zUps] lies in the centre of H(Ans, Upr) because
z lies in the centre of M (F), by assumption. Its inverse is [Up2~1Ups]. The
equality H(Anr, Un)[[Un2Un] 7] = H(M(F),Uy) holds because for any
m € M(F), there exists n > 0 such that z"m € Ay, hence [UymUy] =
[Un12Up )" [Upr2"mUps] € H(An, Upp)[[Un2Un] Y], This shows the first
part. The second part is elementary. O

LEMMA 2.1.14. Let R be a ring, let W be an R[P(F')|-module, and let V =

Indggg W. Then there is a natural morphism ¢ : VU — r}WU” of H(A,U)®g,
R-modules. Moreover, writing (7)™ for the forgetful functor from H(A,U)®z R-
modules to R-modules, the induced morphism (VU)~ — (rsWUP)™ has a

functorial splitting.

Proof. Let g1,...,9n € G(F') be representatives for the double quotient
P(F)\G(F)/U; we assume that g = 1. Then there is an isomorphism of
R-modules V'V = @?zlwgiUgflmP(F), which sends a function f € VU to the
tuple (f(g1),.-.,f(gn)). This is the desired functorial splitting. We claim that
the map VY — WVUP corresponding given by projection to the first component
is in fact Hecke equivariant (with respect to 7p). To see this, choose f € VU,
and let v = f(1), m € Ap;. We calculate

(WmD)- £)(1) = /  Ho)ds - / . / Ayt F ) dpdu
geUm peE ue

f(p)dp = [UpmUp] - f(1),

/pEP(F)ﬁUmU

as required. O

We now describe how we will apply the above discussion in the global
situation. Let F' now denote a number field, let G be a reductive group over F',
and let P C G be a parabolic subgroup with Levi decomposition P = MN. Let
Kg C G(AY) be a good subgroup of the form K = KG,SKG,TK(:';US, notation
and assumptions being as follows:

(1) T, S are finite disjoint sets of finite places of F.

(2) For each place v ¢ SUT of F, G, is unramified and K, is a hyperspecial
maximal subgroup of G(Fy).

(3) For each place v € T, Kg, admits an Iwahori decomposition with
respect to P. We write Ag, C G(F,) for the corresponding open
submonoid and Ag 7 = [[ e Ag,w- We define Ap 7 and Aypp similarly.
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We thus have a map
S H(GYT x Agr, KE) — HMYT x Apr, K3)).

Let R be a ring. Applying Lemma 2.1.14 (cf. [NT16, Corollary 2.6]), we see
that there is a split morphism in D(R)

RT([Ind§~ Xp]/Kq, R) — RT(X[,. R),

which is equivariant for the action of H(GY" x Aq.r, Ké) ®z R by endomor-
phisms on the source and target (the latter action being via the map rp, and
induction being in the same sense as in [NT16, §3.1]). The splitting need not
be equivariant, but we see that in any case there is a surjective morphism

H*(Ind§= Xp]/Kg, R) = rpH*(X§,, R)

of H(GVT x Ag 1, K&) ®z R-modules. Similarly [NT16, Proposition 3.4] shows
that there is a split morphism in D(R)

RU(X} ,R) = RT(X,, R),

which is equivariant for the action of H(PSYT x Apj,KS ) ®z R by endo-
morphisms on the source and target (the action on the source being via the
map 7). Altogether there is no S-equivariant map between the complexes
RT([Ind$% Xp]/Kg, R) and RF(X}\{/IM, R), these morphisms considered above
will together allow us, in the course of proving Theorem 2.4.8 below, to show
that S descends to a map between the Hecke algebras which act faithfully
on these complexes. Moreover, in the presence of invertible strongly positive
elements as in the statement of Lemma 2.1.13, we will be able to show that
this induced map on Hecke algebras is compatible with localisation.

2.2. Arithmetic locally symmetric spaces: the quasi-split unitary group.

2.2.1. The quasi-split unitary group, the Siegel parabolic, and its Levi
subgroup. We now specialize the above discussion to our case of interest. We
fix an integer n > 1. Let F' be an (imaginary) CM number field with maximal
totally real subfield F'™. Let ¥,, be the matrix with 1’s on the anti-diagonal
and 0’s elsewhere, and set

0 v,
NERY)

We write CNJH = G for the group scheme over Op+ with functor of points
a(R) = {9 € GL2x (R ®0,, OF) | tgdng® = Jn}.

Then G p+ is a quasi-split reductive group over F'T; it is a form of GLs,, which
becomes split after the quadratic base change F//F*. If v is a place of 't which
splits in F, then a choice of place v[v of F' determines a canonical isomorphism
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Ly : 5(F;) > GLg,(F,). Indeed, there is an isomorphism Ff @+ F 2 F, x Fje
and ¢, is given by the natural inclusion G (F; ) C GLay (Fy) X GLay, (Fye) followed
by projection to the first factor.

We write T C B C G for the subgroups consisting, respectively, of the
diagonal and upper-triangular matrices in G. Similarly we write G C P C G
for the subgroups consisting, respectively, of the block upper diagonal and block
upper-triangular matrices with blocks of size n x n. Then P = U x G, where
U is the unipotent radical of P, and we can identify G with Resp,, /Ot GL,
via the map

A0
g= ( 0D ) — D € GLy(R®0,, OF).

We observe that after extending scalars to '™, T and B form a maximal torus
and a Borel subgroup, respectively, of 5, and G is the unique Levi subgroup of
the parabolic subgroup P of G containing T'.

In order to simplify notation, we now write X = X% and X = XC.
Similarly, we will use the symbols K and K to denote good subgroups of
G(A%,) and G(A%,) = GL,(A%), respectively.

We note that the dimensions of these symmetric spaces are
dimR)N(:2n2[F+:Q], dimg X = n?[F": Q] — L.

We now want to describe some explicit (rational and integral) coefficient
systems for these symmetric spaces. The integral coeflicient systems we define
will depend on a choice of a prime p and a dominant weight for either G or G.
We therefore fix a prime p and a finite extension F/Q,, in Qp which contains
the images of all embeddings F' — Qp. We write O for the ring of integers
of F, and w € O for a choice of uniformizer.

We first treat the case of G. Let Q2 be a field of characteristic 0 and large
enough such that Hom(F,2) has [F' : Q] elements. We identify the character
group X*((Resp+/qT)q) with (Zm)Hom(FQ) in the usual way, by identifying

(RespiqGLn)o= J[ GLa
T€Hom(F,Q2)

and by identifying (\1,...,\,) € Z™ with the character
diag(ty, ..., tp) — t}1 .. £}
of the diagonal maximal torus in GL,. The Resp+,q(B N G)q-dominant

(Z:L_)Hom(F,Q)

weights are exactly those in the subset given by those tuples (\r;)

satisfying the condition

>\T,1 2 >\T,2 Z 2 >\Tn

)

for each 7 € Hom(F, Q).



22 P. ALLEN ET AL.

Associated to A\ we have the algebraic representation V) of (Res F/Q GL,)a
of highest weight A. We may identify V = @ cxom(r,0)Va,, where V) is the
irreducible representation of GL,, o of highest weight A\;. If A € (Z’}r)Hom(F 52)
we define \V € (Zi)Hom(F’Q) by the formula \Y; = —X; 1. Then there is
an isomorphism V)Y = Vjv, although this is not true for the integral lattices
defined below without further hypotheses on .

Now take 2 = E. For each 7 € Hom(F, E), we let V\_ C V)_ be the
GL,,(O)-invariant O-lattice defined in [Ger19, §2.2] (and called M) _ there). We
note that this is the integral dual Weyl module of highest weight A\, obtained by
evaluating an algebraic induction on O. (Geometrically, the dual Weyl module
of highest weight A, is obtained as in the Borel-Weil theorem, by taking global
sections of a line bundle determined by A\, over the full flag variety associated
to GL;.) We write V\ = ®@rcHom(rF,£) V2, for the corresponding O-lattice in V).
Thus V) is an O[[],, GLn(OF,)]-module, finite free as O-module.

We next treat the case of G. Let I C Hom(F, ) be a subset such that
Hom(F,Q) = ITUI¢. Given 7 € Hom(F™", F), we will sometimes write 7 for the
unique element of I extending 7. The choice of I determines an isomorphism

(RGSF+/Q 5)9 = H GLQn,Q
T€Hom(F+,Q)

taking (Resp+ /Q T)q to the product of the diagonal maximal tori in the GLg,’s,
and hence an identification of the character group X*((Resp+,qT)q) with
(Z2n)Hom(FT.9) - The (Resp+/q B)o-dominant weights are exactly those in
the subset (ZQ")HOm(F+ ). The isomorphism (Zm)Hom(FQ) o (72n)Hom(F,0)

identifies a weight A with the weight A= ()\m) given by the formula

(222) XT = (_A?C,Tu KRN _)\?C,lv >‘7':,17 )‘T,2) R )\7‘:’”).

Now let 2 = E. We define integral structures under the assumption that each
place T of F't above p splits in F. Let S, denote the set of p-adic places of
F, and let S, denote the set of p—adlc places of F'™. Let S C 5p, be a subset
such that S, = S U S’C Let I = I denote the set of embeddings 7: F — E
inducing an element of Sp. Given v € S, we will sometimes write ¥ for the

unique element of §p lying above v.
The choice of S, determines isomorphisms

G R0,y Op+yp H GLan,0 ot
vES)
The lattice V5 C V5 corresponding to a dominant weight X € X*((Resp+ /Q )

is defined as in the previous paragraph. Thus Vs is an O[[ [, G(Op+)]-module,
finite free as O-module.
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We can now define Hecke algebras. Again, we do this first for G. Let
S be a finite set of finite places of F' containing the p-adic ones, and let
K be a good subgroup of GL,(A%) such that K, = GL,(Op,) if v & S
and K, C GL,(OF,) if v[p. Then for any A\ € (Z7)Hm(FE) the complex
RT'(X g,V ) is defined (as an object of D(Q), up to unique isomorphism), and
comes equipped with an action of Hecke algebras by endomorphisms (see (2.1.3)).
We define T, = H(GL,(F,),CGL,(OF,)) ®z O and T = #(GLS, K°) ®7 O
and, if V is an O[Kg]-module, finite free as O-module, then we write T(K,V)
for the image of the O-algebra homomorphism

T* — Endp (o) (RT (XK, V))

constructed in §2.1.2. If V = V), then we even write TS (K, \) = T (K, V).

We now treat the case of G. Let S be a finite set of finite places of F
containing the p-adic ones and such that S = S¢, and let S denote the set of
places of '™ below a place of S. Let K be a good subgroup of CNJ(A%ﬂ) such
that Ky = é(oFg) for each place o ¢ S, and such that Ky C a((’)F;) for
each place v|p. In order to simplify notation, we set GS =G5 , CNJS = CN¥§, and
similarly KS = K5 and %S = gg.

For any \ € (Zi”)Hom(F+’E) the complex RF(XAI}, V5) isﬂeﬁri(jd, and comes
equipped with an action as in (2.1.3). We define T® = H(G®, K°) @z O and
if Vis an O[%S]—module, finite free as @O-module, then we write TS(I?, 17) for
the image of the (O-algebra homomorphism

T® — Endp (o) (RT(Xz, V)

constructed in §2.1.2. If V = V5, then we even write TS(K,\) = T5(K, Vi)
We also denote by

(2.2.2) S: T - T°

the map induced by (2.1.8).

Note that Lemma 2.1.7 shows that both TS (K, \) and AT/S(ﬁ,X) are finite
O-algebras. We emphasize that the Hecke algebra T (K, \) is defined only
under the assumptions that S contains the p-adic places of F', that K is a
good subgroup such that K, = GL,(OF,) for all v ¢ S, and that X is a
dominant weight for G. The use of this notation therefore implies that these
assumptions are in effect. Similar remarks apply to the Hecke algebra T (K, X)
(in particular, the use of this notation implies that S is stable under complex
conjugation, a condition we do not impose for GL,,).

If K/ ¢ K is a normal good subgroup with (K')® = K° R is an O-
algebra, and V is an R[Kg|-module, finite free as R-module, then we write
T(K/K',V) = TS(RFK/K/ (Xg,V)) for the image of the homomorphism (cf.
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2.1.5):
TS — EndD(R[K/K/])(RFK/K’(XK’y V))

There are canonical surjective homomorphisms T (RL ¢/ g (X, V) — TS (K', V)
and T9(RT g,/ (Xk,V)) — T(K, V), induced respectively by the forgetful
functor D(R[K/K']) — D(R) and the functor RTI'(K/K',?): D(R[K/K']) —
D(R). If further K/K' is abelian, then we define /0 T% = T ®p O[K/K']
and write K/K/TS(RFK/K/ (Xgr,V)) for the image of the homomorphism

K/K/TS — EndD(R[K/K’])(RFK/K’(XK’a V))

The analogous construction is valid as well for G but since we will not use it,
we do not write down the definition.

We will also occasionally encounter other complexes endowed with actions
of the rings TS and T*. (For example, the cohomology RF(@X 7 V5) of the
boundary X 7 of the Borel-Serre compactification of X 7)) If C* € D(R) and
we are given an O-algebra homomorphism T® — Endp ) (C*), then we will
write T(C*) for the image of this homomorphism. More generally, if K/ C K is
a normal good subgroup with (K’)% = K and C* € D(R[K/K']) is a complex
endowed with an ©-algebra homomorphism T — Endpg[x/k)(C*), then
we will write T%(C*®) for the image of T® in Endp g/ (C®). If further
K/K' is abelian, then we will write K/K/TS(C') for the image of K/K/TS in
EndD(R[K/K’])(C.)'

If the complex C* has bounded cohomology, then the map TS(C®) —
TS(H*(C*)) has nilpotent kernel; this is a consequence of the following lemma.

LEMMA 2.2.3. Let R be a (possibly non-commutative) Z-algebra, let C*® €
D(R) be a complex, and let T' C Endp(r)(C*®) be a commutative subring. Let
I = ker(T — Endr(H*(C*))), and suppose that there exists an integer d > 0
such that H'(C*) =0 if i ¢ [0,d]. Then I4F! = 0.

Proof. We show by induction on d > 0 that if ¢o,...,¢q € Endp(g)(C*®)
satisfy H*(¢;) = 0 fori=0,...,d, then ¢ggo ¢y 0---0¢s =0 in Endpg)(C*).
The case d = 0 follows because in this case, C* is isomorphic to H°(C®) in
D(R).

In general, we can assume that 7<4_1(¢g o --- 0 ¢q—1) = 0. There is an
exact triangle

Tea 1O 00 (%) ——

We obtain exact sequences

HomD(R)(Hd(C'), C’)*)HOHID(R) (C', C.)HHOIDD(R) (ng,lC’, C.)
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and
HOHID(R)(C., ng,lC')HHomD(R)(C‘, C')%HomD(R)(C', Hd(C'))

We deduce the existence of elements a € HomD(R)(Hd(C'),C') and f €
Hompp)(C*®,7<4-1C*) such that «og = ¢go---0pg_1 and f o = ¢5. We
thus conclude that ¢go---0o¢g=aogo fof =0. ([

As an illustration of the use of this result, suppose that K/ C K is a normal
good subgroup with (K’)% = K*, so that the Hecke algebra T (K/K’, V) is
defined. We then have a diagram of Hecke algebras

TS(K,a V)\) — TS(K/K,a V)\) — TS(Ka V)\)?

where the kernel I of the left arrow satisfies [9™RX = ( (by Lemma 2.2.3
applied with R = O[K/K']). In particular, if J C T(K,V)) denotes the
image of I, then there exists a canonical map T(K', V) — T(K,V\)/J of
TS-algebras. Similar statements for the Hecke algebras which act faithfully on
cohomology could be proved using the Hochschild—Serre spectral sequence (for
the covering X — Xf).

Nilpotent ideals of Hecke algebras will occur frequently throughout this
paper and they often have their origins in applications of the above Lemma
2.2.3. (Compare, for example, the statement and proof of Proposition 2.3.9
below.) We note that the integer dimg X depends only on n and the degree
[F': QJ; the exponents of the nilpotent ideals we consider will also usually have
this property.

2.2.4. Some useful Hecke operators. In this section we define most of the
Hecke operators that we will need at various points later in the paper. We fix
once and for all a choice w, of uniformizer at each finite place v of F'.

We first define notation for unramified Hecke operators. If v is a finite place
of Frand 1 <i < n is an integer then we write T}, ; € H(GL,(F,), GL,(OF,))
for the double coset operator

Ty = [GL,(Op,) diag(wy, . .., @y, 1,...,1)GL,(OF, )],

where w, appears i times on the diagonal. This is the same as the operator
denoted by Ths,; in [NT16, Prop.-Def. 5.3]. We define a polynomial

Py(X) = X" — Ty X" 4 (—1)igil=027, xm=i 4
+ gy YPT, € H(GLn(F,), GLa(0p,))[X].

It corresponds to the characteristic polynomial of a Frobenius element on
rec, (), where m, is an unramified representation of GLy(F,). We also find
it helpful to introduce, for any o € Wy, , the polynomial P, ,(X) € T,[X] =
(H(GL,,(F,), GL,(OF,)) ®z O)[X], which equals the characteristic polynomial
of o on recf, (my). We write P, o(X) = Y1 ((—1)"€yi(0) X"

(2.2.5)
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If v is a place of F* unramified in F', and v is a place of I above 7, and
1 <i < 2n is an integer, then we write T,,; € H(G(F), G(Opt)) ®7 Z[g; '] for
the operator denoted T¢ ,; in [NT16, Prop.-Def. 5.2]. We define a polynomial

B(X) = X2~ Ty X2 g (—1)igll V2T, 4

(2.2.6) = a G
+ay " VT on € H(G(ES), G(Opy)) @z Za; ']1X].

It corresponds to the characteristic polynomial of a Frobenius element on
rec%v(m,), where 7, is the base change of an unramified representation oy of

the group 5(Fgr) Again if 0 € Wg, then we write

2n

Py (X) = Z(_l)igv,i(U)Xn_i € Ty[X] = (H(G(Fg)a G(OFJ)) ®z O0)[X]
i=0

for the polynomial corresponding to the characteristic polynomial of ¢ on

recg (7).

We next define notation for some ramified Hecke operators. If v is a finite
place of F', and ¢ > b > 0 are integers, then we write Iw, (b, ¢) for the subgroup
of GL,,(OF,) consisting of those matrices which reduce to an upper-triangular
matrix modulo @, and to a unipotent upper-triangular matrix modulo wg. We
define Iw, = Iw(0,1) and Iw,; = Iw,(1,1); thus Iw, is the standard Iwahori
subgroup of GL,,(OFp,). If 1 <i < n is an integer and ¢ > 1, then we will write
Uv,i € H(GL,(Fy),Iwy(b, c)) for the double coset operator

Up,i = [Iwy (b, ¢) diag(wy, . .., @y, 1, ..., 1)Iwy (b, ¢)],

where w, appears i times on the diagonal. Note that this depends both on the
uniformizer w, and on the chosen level. We hope that this abuse of notation
will not cause confusion. We also define

Uy = [Twy (b, ¢) diag(@? ™, @2, ... @y, 1)Iw,(b, c)].

If u e T,,(OF,), then we define
(u) = [Iwy (b, c)ulwy (b, c)].

Note that the subgroups Iw, (b, ¢) all admit Iwahori decompositions with respect
to the standard upper-triangular Borel subgroup of GL,. We write A, C
GL,,(F),) for the submonoid defined by

Ay, = Unezn Iy, diag(wh?, ..., wh™)Iw,.

We now assume that each p-adic place of F'™ splits in F. In this case we set
Ap = Tlyes, Ao I A € (Z™)Hom(FE) " then we define a homomorphism (of
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monoids) ay : A, — E* by the formula

a,\((kmldiag(wg”’l,...,wff " vg veS H H HT avz(wo A)ri ,

veSy T€Homq,, (Fy, E) i=

where w§ is the longest element in the Weyl group W((Resp+,q G)E, (Resp+/q T)E).
If A € (Z7)Hom(PE) s dominant, then GL,,(F}) acts on V\®p E = Vy; we write
(g,x) = g -« for this action. We endow V, with the structure of O[A,]-module

via the formula

gpr=ax(g) g =
This is well defined: the fact that the lattice V) is preserved under this twisted
action follows as in [Gerl9, Definition 2.8] from Lemma 2.2 of loc. cit. - the
point is that wy &\ is the lowest weight vector in Vy, so ¢ - x is divisible by a(g)
when g € A,. Using the construction in §2.1.2, we see that if K C GL,(A%)
is a good subgroup7 and for each place v|p of F' we have K, = Iw,(b, c), then
there is a canonical homomorphism

H(GS7 KS) ®z H(AP7 Kp) - EndD(O) (RF<XK7 V,\)),

and in particular all the Hecke operators U, ; and U, act as endomorphisms of
RT'(Xg,Vy). Note that the action of these operators depends on the choice of
uniformizer w,, because the twisted action -, does.

Now suppose that ¥ is a finite place of F'™ Which splits in F', and let v
be a place of F above it. Then ¢, (Iw, (b, ¢)) = 1 (vac(b ¢)) (where here
the subgroup Iw,(b,c) is inside GLa,(F})), and we write Iwy (b, c) for this
subgroup of é(Fj ). We define a Hecke operator in H(G( ), va(b c)) for
each i = 1,...,2n by the formula

ﬁv,i = 15 [Twy (b, ¢) diag(wy, . . ., @y, 1, . .., 1)Iwy(b, c)],
where w, appears 7 times on the diagonal. We also define

Uy = 1 [Iwy (b, ¢) diag (w21, @22, ... @y, 1)Iwy (b, ¢)].

v

If u € T(Op+ 3), then we define
(u) = [Iwg(b, ¢)ulwz(b, c)].

If wye = @, then Uye; = Uy on iU, 4, and Uye = U, UL 52"

v,2n v,2n
We write Ay C G(FZ) for the submonoid defined by

Ay =1t (I_Iuezinlwy diag(wh?, ... ,w{fzn)lwv)

(which is independent of the choice of v). Now suppose that each p-adic place

of F* splits in F. In this case we set A, =[], 5 Ag. If X € (Z2n)Hom(F*.B)
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then we define a homomorphism as : Zp — E* by the formula

2n _
~ - : ay. ay,2n a5 (WEN)r.q
a5 ((kp,1e; ' (diag(wy™t, ... @y )ks,2)5es,) = | | | I | | 7 (o) 271 (WG Vi

€S, T€Homq, (F,E) i=1

where w((? is the longest element in the Weyl group W ((Resg+/q Q) g, (Resp+/qT)E).
Here we recall that v € §p is a fixed choice of place of F' lying above v, and
that it appears also in the definition of V5. If A € (Zi”)Hom(F TE) is dominant,

then 517 acts on Vy ®o E = Vj; we write (g,z) — g - for this action. We

endow V5 with the structure of O[Ap]-module via the formula
gpr=2a5(9)"'g- .

Using the construction in §2.1.2, we see that if KcaG (A, ) is a good subgroup,

and for each place v|p of F* we have Ky = I;g(b, ¢), then there is a canonical
homomorphism

H(G®, K%) @z H(Ap, Kp) = Endpoy (RU(X 7, V5)),

and in particular all the Hecke operators /(71,72' and ﬁ, act as endomorphisms of
RD(X 7, V3).

If v is a finite place of F, prime to p, and I, is an open compact subgroup
of GL,(F,) satisfying Iw,(1,1) C I, C Iw,(0,1), then Iw,(0,1)/I, can be
identified with a quotient of (k(v)*)™, and we define

Ey = (F))"/(ker(OF )" = (k(v))" = Iwy(0,1)/1,).

The group I, admits an Iwahori decomposition with respect to the para-
bolic subgroup B, = T,N, of GL,, so we may apply the theory of §2.1.9.
Moreover, [Flill, Corollary 3.4] shows that for any g € Z,, the element
[Iygl,] € H(GL,(Fy),I,) ®z O is invertible (this uses our assumption that
¢y is a unit in O). Lemma 2.1.13 thus implies that there is an injective
O-algebra homomorphism

t: =2, - H(GL,(Fy), I,) ®z O,

which sends any positive g € =, to the double coset [I,gI,]. Given any o € F,
we write ¢, ;(a) € H(GLy(Fy), I,) ®z O for the image under ¢ of the element
q;<’\’p+(1_n)/2det>(1, oo Lal .0 1) of O[F,], where A € X, (T),) denotes the
image of a under the natural projection =, — (F;)/Op )" = X.(T;) and
p € X*(T,) is the usual half-sum of positive roots, and where « sits in the
ith position. We write e, ;(a) € H(GLy(F,), I,) ®z O for the coefficient of
(—1)!X™* in the polynomial [[" (X — t,i(a)). If 0 € Wpg,, then we set
tv,i(0) =tyi(a) and e, ;(0) = ey (), where a € F, is such that the restriction
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of o to the maximal abelian extension of F,, equals Artg, (). We define the
polynomial
(2.2.7)

n n

Poo(X) = [[(X —ti(0)) = (~1)'evi(0) X" € H(GLn(F,), I,) 87 O[X].
=1 i=0
PROPOSITION 2.2.8. Let m, be an irreducible admissible Q,[GLy(F,)]-
module.

(1) We have wle # 0 if and only if m, is isomorphic to an irreducible

subquotient of a representation Indgi&(ﬂg”) X, where x = X1 ® - ® Xn :

FX"™ — QX is a smooth character which factors through the quotient
v P
(B )" — .
2) Suppose that wlv £ 0. Then for any o € FX, ey ;(a) acts on wlv as a
v v ) v
scalar e, ;(a, my) € Q;
3) Suppose that wlv # 0, and let (r,, N,) = reck (m,). Then for any o €
v Fy
W, , the characteristic polynomial of () is equal to Y1 (—1)teqi(cr, mp) X1,
where o = Art;ul(a|ng).

Proof. The first part follows from [Flil1l, Theorem 2.1]. The second part
is a consequence of the fact that the elements e, ;(«) lie in the centre of
H(GL,,(Fy), I,) ®z O, which in turn follows from the explicit description of the
centre in [Flil1l, Proposition 4.11]. The final part follows from the description

in [Flill, §4] of the action of this centre on the I,-invariants in the induced
GLy, (Fy) 0

representation n-Ind " |

Now suppose that v is a finite place of F', prime to p and split over
F*, and write p, C GL2,(Opf,) for the parahoric subgroup consisting of
matrices whose reduction modulo w, is block upper-triangular, with blocks
of sizes n,1,1,...,1. Projection to the lower right-hand block determines a
homomorphism p, — By, (k(v)). We write p,1 C p, for the kernel of the
composite homomorphism p,, — By, (k(v)) = T,,(k(v)).

Let q, C GLa,(F),) be an open compact subgroup such that p, 1 C g, C Py,
and set EU = Lgl(pv)’ Ev,l = Lgl(pv,l)v and av = Lgl(qv)' These are open
compact subgroups of CNJ(F;) and we can identify p,NG(Fy ) = GL,(OF,.) xIw,
and py1 N G(Fgr) = GL,(OF,.) x Iwy1. In particular, we may identify the
quotient p,/py1 with (k(v)*)™. The group ¢, admits an Iwahori decomposition
with respect to the parabolic subgroup P = GU, so we may use the theory
developed in §2.1.9.

LEMMA 2.2.9. The element g = (w, ¢ - 15, 1) € GL,,(Fye) X GL,(F,) =

G(F) is strongly positive and the element [q,9q,] € H(G(F),qy) ®z O is
invertible.
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Proof. After applying t,, we see that to prove the lemma it is enough
to explain why [q, diag(wy, ..., @y, 1,...,1)q,] is an invertible element of
H(GL2n(Fy), qv) ®z O (where w,, 1 each occur n times). It follows from
[Flil1, Corollary 3.4] that [Iw, (1) diag(wy, ..., @y, 1,. .., 1)Iw,(1)] is invertible
in H(GLayn(Fy),Iw, (1)) ®z O, while it follows from [F1lil1, Theorem 4.5] that
[Iw, (1) diag(woy, . . ., @y, 1, ..., 1)Iw,(1)] and [q,] commute. We deduce that
[qy diag(wy, . .., @y, 1, ..oy 1)y] = [qo]-[Iwy (1) diag(wy, . . ., @y, 1, ..., 1)Iwy, (1)]
is invertible, as required. O

Lemma 2.1.13 implies that there is an injective O-algebra homomorphism
t : H(GLy(Fye) X GLy(Fy), GLy(Op,.) X L) ©7 O — H(G(FF),q,) ®@7 O.

We write =, for the quotient of (F,)" associated to the group I,. If o €
WE,, then we write, with apologies for the abuse of notation, t¢,;(c) €
H(é(Fgr),ﬁv) ®z O for the image under ¢ of the element ||o||,"t,:(c) €
H(GLy, (Fy), I,) @7 O defined previously. We write e, ;(0) € H(CNJ(F;),HU)(X)z(’)
for the coefficient of (—1)*X™™" in the polynomial
(2210)  Puo(X) = [[(X ~ toalo)) € (HGC(F). ) 92 O)[X].

i=1

If o € Wp,., then we define ey ;(0) € H(G(F ), q,) ®z O to be the image
under ¢ of the element ||0'||2)(n—1)6vc7i(0') € H(GLy(Foe), GL,(OF,.)) ®z O. We
define the polynomial
(2211)  Preo(X) =Y (—1)ieyi(0) X" € (H(G(F)),y) ®z O)[X].

i=0
We finally define for any o0 € Wp, the polynomial

Pyo(X) = Py e (X) Py o (X) € (H(G(FY),T0) ®7 O)[X],

and define elements ¢, (o) € H(CNJ(F;),HU) ®z O by the formula E},U(X) =
Sy (1) ()X

LEMMA 2.2.12. Suppose given an irreducible admissible Q,, [E}’/(Fg)]—module
T such that %%” # 0, and let 0 € Wg,. Then:

(1) Each operator &, (o) acts by a scalar €, (0, T5) € Q, on %g”.

(2) Let (ry, Ny) = rec?y (Fy oty ). Then the characteristic polynomial of

ro(0) is equals Y27 (—1)'€, (o, T5) X0
Proof. We fix a choice of isomorphism ¢ : Qp — C, so that normalized

induction and normalized restriction (i.e. Jacquet module) may be defined
over Q,. The proof uses well-known principles (cf. [Ber84, Lemma 1.17]).

First, there exists a tamely ramified character y : T'(F.Y) — Q; such that 7



POTENTIAL AUTOMORPHY OVER CM FIELDS 31

is a subquotient of an induced representation I = n-Ind

Ot
G(FFE) x. Identifying

B(Fy)
T(FY) = Ton(F,), we may identify y with a tuple of tamely ramified characters
Uiy, Yot B — Qp. To prove the the lemma, it suffices to show that e, ;(o)
acts as a scalar on the subspace of §,-invariants of ﬁ, this scalar being equal to
the degree i symmetric polynomial in 1)y (Alrt;ﬁv1 (@), wgn(Art;Ul(a)).

Let R = Q,[T'(F))/T(Op+)] and let x, : T(F) — R* be the uni-
versal unramified character. We consider the induced representation ﬁu =

o c0 DIt
n-Indgg@;(x ® Xu), a smooth R[G(F)]-module. Then I is a finite free

R-module and for any homomorphism = : R — Qp, corresponding to an
unramified character y, : T(FU+ ) — Q; with induced representation I, =

(et
n-IndG(iZ)
B(F~

F )(X ® Xz), the induced map

(H?Lv) ®ORx Qp — Hgv
is an isomorphism. We may identify x ® x, with a tuple ¥, 1,...,%z 2, : F)C —

Q,, of tamely ramified characters. To prove the lemma, it in fact suffices to show
for a Zariski dense set of points x € Spec R(Q,,) that the Hecke operator €, (o)
acts by a scalar on ﬁi“ which is equal to the degree ¢ symmetric polynomial in
¢x,1(Art}1’1(a)), .. ,¢x,2n(Art}: (0)).

Consider the Jacquet module rp(ﬁm) = (ﬁm) U Q (5;1/27 an admissible
Q,[G(F;)]-module. Then [BK98, Theorem 7.9] asserts that the natural map

q: ()% — rp(Il,)Gn (Ore)x L
is an isomorphism which satisfies the formula

ha(z) = 6% (9)q(t(h)x)

for any = € (ﬁx)a” and Hecke operator h = [(GL,(OF,.) x I,,)g(GL,(OF,.) x
I,)] € H(GLy(Fye) x GL,,(Fy), GLp(OF,.) x I,) ®z O. The geometrical lemma
([Zel80, 1.2, Theorem]) asserts that rp(IL,) admits a filtration by induced
representations oy, . y,, indexed by partitions {1,...,2n} = Y,c UY,, that
may be described as follows:
OrYye Y, = (H-Indgf?}i’f) QicYye ¥y f) ® (D-IHdE:FI:(»S”) ®ieYv¢x,i) .

For a Zariski dense set of points = (including those for which the central element
(wye * 1n, 1) € GLy(Fye) x GL,(F,) acts by a distinct scalar on each induced
representation o,y . y,), this filtration splits and T‘P<ﬁz> is isomorphic to a
sum of induced representations. The Hecke operators e, (o) and eyc i(07¢)
act as a scalar in the subspace of GL,(OF,.) x I,-invariants in each summand
and a calculation shows that the scalar by which 3, .. ) eyi(0)eve j(07°)
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acts in each summand is the degree k elementary symmetric polynomial in
ww,l(Art;Ul(a)), e ,wx’gn(Artgj(a)) — in particular, independent of the choice
of summand.

Transferring this information back along the map ¢ shows that at such
pointfvs z, the element €,x(0) = > ;) €vi(0)epej(07°) acts by a scalar
on (II;)%, which equals the degree k elementary symmetric polynomial in
¢x,1(Art;U1(U)), . ,¢x,2n(ATt}3 (0)). This completes the proof. O

Fix a choice of Frobenius lift ¢, € Wg,. We define Res, € (H(G (FH),q)®z
O) to be the resultant of the polynomials P ;-c(X) and Py ¢, (X).

PROPOSITION 2.2.13. Let 7y be an irreducible admissible Q,[G(F;)]-
module and suppose that 7a® # 0, and let (ry, N,) = rec:}% (7o 1,t). Let Ty
denote the Qp—subalgebm ofEndQ (T2") generated by the images of the elements

P

eve i(0y¢) and ey i(¢py). Then for each mazimal ideal m C Ty, either Res, € m
or Res, € m, Ty = Ty/m = Qp, and for all 7, € If,, NyP, 4, (ry(dy)) =0
and (ry(7y) — 1) Py ¢, (1o(d0)) = 0 in Moy (Ty/m) = Mgn(Qp).

Proof. We use again some of the ideas in the proof of Lemma 2.2.12.

Choose an isomorphism ¢ : Qp — C. For m > 1, let St,,, denote the Steinberg

representation of GL,, (F) (i.e. the square-integrable quotient of Indgi’&%”) Q,).

Then there is an isomorphism recgv (Stmm) = Sp,,, where Sp,,, is the Weil-Deligne
representation on Q;n = @?llép - e; where Wg, acts on e; by the character
|- 1o Artl;v1 and N, acts by Nye; =0, Nye; =e;—1 (i =2,...,m).

Since 7" # 0, we can find an isomorphism

(ros No) 2 B3y Spg, (4] - 172772

1

. -~ X ~ 1 - . .
for some tamely ramified characters ¢; : F;* — Q,,; then 7 o1, " is isomorphic

to a subquotient of the induced representation

I = n—Indgj(ngfv) ®;_1 Sta, (1; 0 Artp,),
where P, is the standard parabolic subgroup of GLg, corresponding to the
partition 2n = a1 +-- -+ ag. Let Il =1l o,. Let Tvi denote the Qp—subalgebra

of Endg (I1%) generated by the images of the elements evei(¢y¢) and ey i(Py).
D

Then T is a quotient of 7o and it suffices to show that the conclusion of the
lemma holds with 7% replaced by To.

By the geometrical lemma, we can find a filtration of rp(ﬁ) with graded
pieces indexed by tuples p = (Mij)i:1,2,j:1,...,s; where the p;; are non-negative
integers such that for each j = 1,...,s, u1; + p2; = a; and for each i = 1,2,

i1 + -+ + wis = n. The representation of G(Fgr) = GLp(Fye) x GL,(Fy)
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indexed by the tuple p is

GLy (Fye - _
Op = (n—IndPl(F(vc) )Stﬂls(glsc) ® -+ @ Styy, (01 C))
GLn (Fy
@ (n-Indp 10 Sty (621) @ -+ © Sty (62))
where 6;; : F) — Q; is the character given by the formulae
01j = il - 1972, 0 = o] - | /2

forj=1,...,s
We recall that the natural projection II% — rp(II) is an
isomorphism. The maximal ideals m C T} correspond to the different factori-

sations ﬁvm(X ) =P . —(X)P, 4, (X) that occur in II%. Each factorisation

vc7¢v
arises from (at least one) p such that (o )GL”(OF e)xlv

factorisation is given by

GL"/(OFUC ) XIU

# 0: the corresponding

1}67(;5 ﬁ ﬁ c . 1 Qn—a]‘+2k—1)/2)(¢50))
7=1k=1
s  Mij
— H (X - (91]“ . ’(172n+aj+172k)/2)(¢v))’
j=1k=1

S

K25
Py, (X) = [TTI(X = b3y] - |02 beamimat 122072 (g, ).
j=1k=1

If (JM)GL”(OFM)XI“ # 0, then we must have p1; € {0,1} forall j =1,...,s
Let us choose therefore a maximal ideal m such that Res, ¢ m and a tuple p
giving rise to m. Combining [Tho21, Proposition 2.2] and Lemma 2.2.12, we
find that T} = To/m = Q,,. Let Q(X) denote the image of P, 4,(X) modulo
m. Examining the action of Q(ry(¢y)) in the summand Sp,_ (¢ - |(1=20)/2) of
(rv, Ny), we see that Q(r,(¢y)) either annihilates this summand (if p1; = 0) or
at least has image contained in the span of the vector e;. In either case we find
that I, acts trivially on the image of Q(ry(¢y)) and N, annihilates this image.
This is what we needed to show. (]

COROLLARY 2. 2.14. Let Ty be an irreducible admissible Q,[G (F+)] module

and suppose that T2 # 0. Let p : Gp, — GLgn(Q ) be a continuous repre-
sentation such that WD( Vs o reclTw (7zouyl). Let Ty be defined as in the
proposition. Then for all T, € If,, we have the equality

Res(?™ (p(7y) = 1) Py g, (p(¢0)) = 0
in M2n<6p) ®6p Ty = M2n(T§)



34 P. ALLEN ET AL.

Proof. We can again take this statement ‘one maximal ideal of T3 at a
time’. The number (2n)! is a crude upper bound for the Q,-dimension of 7.

In particular, if Res, € m then Resz(,gn)! Tsm = 0. We therefore need only show

that for each maximal ideal m such that Res, &€ m, we have the equality

(p(m0) = 1)Q(p(v)) =0

in M>,(Q,) for every 7, € Ir,, where Q(X) denotes the image of P, 4, (X)
modulo m. Let p(¢,) = su be the multiplicative Jordan decomposition (so
that s is semisimple, u is unipotent, and s,u commute). Then 7,(¢,) = s,
by definition of Frobenius semi-simplification. Since Res, mod m is non-zero,
Q(p(dy)) and Q(ry(¢y)) have the same image, which is the the span of the
eigenspaces of r,(¢,) corresponding to eigenvalues which are not roots of Q(X).
Since N,Q(ry(¢py)) = 0, we find that for each 7, € Ir,, p(7,) and r(7,) agree
on the image of Q(r,(¢,)). We finally conclude that

(p(10) = 1)Q(p(dv)) = (ru(mv) — 1)Q(rv(dy)) =0,

as required. O

We now describe the behavior of some of the above Hecke operators under
parabolic restriction, with respect to the Siegel parabolic. We first give the
statements in the unramified case. In order to ease notation, we use the
following convention: if f(X) is a polynomial of degree d, with unit constant
term ag, then fY(X) = ay ' X9f(X71).

PROPOSITION 2.2.15. Let v be a place of F', unramified over the place v
of FT. Let

S H(G(FY),G(Op+)) = H(G(FY ), G(Op+))
denote the homomorphism defined by (2.1.8). Then we have
S(Py(X)) = Py(X)qr "=V Py (q) 7" X).

Proof. See [NT16, Proposition-Definition 5.3]. O

We now discuss the ramified split case. Suppose first that v is a place of F'
which is spht over the place T of F*. Let Iy be a subgroup of G(F+) satisfying
Iwy(1,1) C Iy C Iwy(0,1). Then Iz N G(F:") may be identified with a product

I,e x I, of open compact subgroups of GLy,(Fye) and GL,,(F,), respectively. If
o € Wk, then we define

(2.2.16)
2n 2n

Pyo(X) = [[(X =10 (ti(0))) = D (=1)'1; (ewi(0) X" € H(G(FY), ) 220[X].
=1 =0

The group j% admits an Iwahori decomposition with respect to the parabolic
subgroup P, and the element (w,c' - 1,,1,) € G(FS) = GLy(Fye) x GLy,(F)



POTENTIAL AUTOMORPHY OVER CM FIELDS 35

is strongly positive and defines a Hecke operator [Ig(wy. - 1,, 1,)I5] which
is invertible in H(G(F; ), Iv) ®z O. We can therefore apply Lemma 2.1.13,
allowing us to state the following result.

PROPOSITION 2.2.17. For any o € Wp,, we have
S(PualX)) = Pug (X)o7 Pre (0] ).

Proof. This results from a calculation using the definition of E,U (X) and
the formula for the composite S ot given in §2.1.9. (Let o € F)c be such that
Artp,. (o) agrees with the restriction of o¢ to the maximal abelian extension of
F,c. For the element ((1,...a71,...1),1,) of GL,(Fy) x GL,(F,), the action
of Sot on the corresponding Hecke operator is by multiplication by ||o|;".) O

Suppose next that v is a place of F which is split over the place v of F™ and
that q, C E(FﬁJr ) is an open compact subgroup such that p,1 C §, C p,. Write
Gy NG(F) = GL,(Op,.) x I,. We have already observed that Lemma 2.1.13
applies in this situation, and we have the following analogue of Proposition
2.2.17, which is proved in the same way.

PROPOSITION 2.2.18. For any o € Wg,, we have S(P, (X)) = P, +(X)
1-2 .
and S(Pye g-o(X)) = lo s e g (o 7 X).

2.2.19. Duality and twisting. In this section we record some operations
that relate different cohomology groups and the actions of the corresponding
Hecke operators. We deal with duality first. Let S be a finite set of finite places
of F such that S = S¢. There are anti-involutions

L H(GY,KS) — H(G®, KY)
and (if S = 5°)

T:H(G, K5) = H(G®, K®)
given on double cosets by ’E([ESQIN(S]) = [ng_llN(S] (resp. (([K%gK?®)) =
[K%¢g~1K?®]). In particular we have anti-involutions 7: T® — T and ¢ : T® —

T3 (which are actually involutions, since these Hecke algebras are commutative).
If v ¢ S then we have the formulae

UPo(X)) = 2nCn=VPY (gl X) = Ppe(X),
UPy(X)) = """V PY (gt X).

If m c TS (resp. m C T%) is a maximal ideal with residue field a finite
extension of k, then we define m" = 7(m) (resp. m" = ((m)). The following
lemma describes the action of 7 at ramified split places. The interaction between
these involutions and Poincaré duality is described by the following proposition.
We write D = dimg X (resp. D = dimg X).
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PROPOSITION 2.2.20. Let R = O or O/w™ for somem > 1. Let K C
5(A;,°+) (resp. K C GL,(A%¥)) be a good subgroup, and let V be an R[I?S]—
module (resp. R[Kg]-module), which is finite free as an R-module. Let VV =
Hom(V, R). Then there is an isomorphism

RHomp(RL (X7, V), R) = RI(Xz, V) (D]
(resp.

RHompg(RI'(Xk,V),R) = RI'(Xk,V")[D])
in D(R) that is equivariant for the action of H(GS,KS) (resp. H(GS, K%)),
when this Hecke algebra acts by it (resp. 1t) on the left-hand side and in the
usual way on the right-hand side.

Proof. See [NT16, Prop. 3.7]. O

COROLLARY 2.2.21. Let R = O or O/w™ for some m > 1. Let K C
§(A;?+) (resp. K C GL,(A%¥)) be a good subgroup, and let V be an R[I?S]—
module (resp. R[Kg]-module), which is finite free as an R-module. Let VV =
Hom(V, R). Then 7 (resp. t) descends to an isomorphism

T9(RU(X7,V)) = T9(RL (X7, VY))
(resp. an isomorphism

T%(RTe(Xk, V)) = T°(RI(Xg, V)
of R-algebras. In particular, if m (resp. m) is a mazimal ideal of TS (resp.
TF) in the support of H} (X, V) (resp. Hi (X, V)), then @ (resp. mV) is
in the support of H*( Xz, V) (resp. H*(Xg,VY)).

Proof. We justify the statements for GL,. The proposition implies that
there is a commutative diagram

TS E— EndD(R) (RFC(XK, V))

| |

™ EndD(R) (R (Xg, VV))a

where the horizontal arrows are the canonical ones and the right vertical arrow
is the one induced by the Poincaré duality isomorphism. The statement of
the corollary is equivalent to the assertion that image under ¢ of the kernel of
top horizontal arrow is equal to the kernel of the lower horizontal arrow. This
follows from the commutativity of the diagram. O

We next deal with twisting for the group G. Let K C GL,(AY¥) be a
good subgroup and let ¢ : Gg — O be a continuous character such that
1 o Artp, is trivial on det(kK,) for each place v &€ S of F. We define an
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isomorphism of O-algebras f, : H(G®, K¥) ®7 O — H(G®, K®) @z O by the
formula f(f)(g) = ¥(Artp(det(g))) ' f(g). (It is an isomorphism because it
has an inverse, given by the formula f’ T = fy-1.) If Ky = GL,(OF,) for each
v & S (so that ¢ is unramified outside S and H(G®, K°) ®z O = T®) then we
have the formula fy(7T,;) = 1 (Frob,) T, ; for each finite place v € S of F. If
m C T is a maximal ideal with residue field a finite extension of k, then we

define m(y)) = fy(m).

PROPOSITION 2.2.22. Let K C GL,,(AY) be a good subgroup, and suppose
that S contains the p-adic places of F. Let v : Gp — O* be a continuous
character satisfying the following conditions:

(1) For each finite place v tp of F, 1 o Artp, is trivial on det(K,).
(2) There is m = (m,), € ZHOFE) sych that for each place vlp of F, and
for each k € det(K,), we have

elarte, (k)= [ k)

T€Homq, (Fv,E)

Let p € (Zﬁ)Hom(EE) be the dominant weight defined by the formula u, =
(mr,...,m;) for each 7 € Hom(F, E). Then for any \ € (Zﬁ)Hom(F’E) there is
an isomorphism

RT(Xg,V)) = RI'( X, V/\+M)

in D(O) which is equivariant for the action of H(G®, K¥)®z0 when H(G¥, K)®z,
O acts in the usual way on the left-hand side and and by fy, on the right-hand
side.

Proof. The character ¢ defines a class in H*(X g, V) = Homgpx,)(O, V).
By tensor product this determines a morphism V\ — V\ ®o V, = V4, of
sheaves on X, hence a morphism RI'(Xg,Vy) = RI'(Xk, Vay,) in D(O). In
order to determine how this morphism behaves with respect to the action of
Hecke operators, we will repeat this calculation in D(H(G®, K°) @z O).

Let A= Indgtzgg)?) O = H(Xg, ). There is an isomorphism
H(Xq, V) = A®0 V)

of (’)[GLn(AOFO’S) x Kg)]-modules, and hence a canonical isomorphism in
D(H(G®, K%) @z O):

RT(Xx, V) = RT(K, A@o V).

The same applies when A is replaced by any other dominant weight in (Zﬁ)Hom(F ).
The class v in HY( Xk, V,.) corresponds to the K-equivariant map gy : A —
A ®o V,, which sends a function f : GL,(F)\GL,(AF) — O to g4(f)(9) =
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(det(g))f(g). The map gy becomes GS x Kg-equivariant when we twist the
action on the source, giving

gy A= A®o V(v H5).

By definition, the twist (¢)~1%) means that the action of an element g € G°
is twisted by v (det(g))~!. Taking the tensor product by V, and then taking
derived K-invariants gives a morphism

RT(Xx, Vy) = RU(Xx, Vappu(™ %))
in D(H(G%, K°%) ®z 0), hence a H(G®, K°) ®z O-equivariant isomorphism
RU(Xfe, V) — RU(Xg, Vagu(™19))

in D(O). The proof of the proposition is complete on noting that there is a
canonical isomorphism

RU(X e, Vaiu (™)) 2 RT(X ke, Vaiy)

in D(0O), which is equivariant for the action of H(G*, K¥)®z0 when H(G®, K¥)®z
O acts in the natural way on the source and by fy on the target. O

COROLLARY 2.2.23. Suppose that S contains the p-adic places of F', and
let K C GL,(A®) be a good subgroup such that K, = GL,(Op,) for each
place v € S of F. Let v : Ggp — O* be a continuous character satisfying the
following conditions:

(1) For each finite place vt p of F, 1o Artp, is trivial on det(K,).
(2) There is m = (m,), € ZHOFE) sych that for each place vlp of F, and
for each k € det(K,), we have

elartn, (k)= [ k)

reHomq,, (Fy,E)

Let € (Zi)Hom(F’E) be the dominant weight defined by the formula p, =
(Mr,...,m;) for each T € Hom(F,E). Then for any A € (Z")Hom(EE) " 1,
descends to an isomorphism

TS(K,\) = T(K,\+ p).

In particular, if m is a mazimal ideal of TS which is in the support of
H*(Xk, V), then m(v) is in the support of H*(X g, Vayp)-

Proof. This is an immediate consequence of Proposition 2.2.22. O
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2.3. Some automorphic Galois representations. In the next two sections
of this chapter, we state some results asserting the existence of Galois rep-
resentations associated to automorphic forms. Although the main results of
this paper concern the relation between classical automorphic representations
and Galois representations, we must also consider the Galois representations
associated to torsion classes, and therefore valued in (possibly p-torsion) Hecke
algebras. This goes some way towards explaining the need to state so many
closely related results here. A large part of this paper will be taken up with the
problem of studying the local properties of the Hecke—algebra valued Galois
representations whose existence is asserted in the statement of Theorem 2.3.7.

2.3.1. Existence of Galois representations attached to automorphic forms.
If 7 is an irreducible admissible representation of GL, (A ) and A € (Z% )Hom(FC)
we say that 7 is of weight A if the infinitesimal character of 7w, is the same as
that of V'.

THEOREM 2.3.2. Let 7 be a cuspidal automorphic representation of GL,(AF)
of weight \ € (Z’_}_)Hom(F’C). Then for any isomorphism . : Qp — C, there
exists a continuous semisimple representation v,(7) : Gp — GL,(Q,) satisfying
the following condition: for each prime | # p above which both F and w are
unramified, and for each place v|l of F', v,(7)|ay, is unramified and the char-
acteristic polynomial of r,(mw)(Froby) is equal to the image of P,(X) in QP[X]
under the homomorphism T, — Qp associated to v~ m,,.

Proof. This is the main theorem of [HLTT16]. O

THEOREM 2.3.3. Suppose that F contains an imaginary quadratic field.
Let m be a cuspidal automorphic representation of a(AF+), and let & be an
irreducible algebraic representation of Eic such that m is £-cohomological. Then
there exists a partition 2n = nj + - - - +n, and discrete, conjugate self-dual au-
tomorphic representations Iy, ..., I, of GLy,, (AF),...,GLy,, (AF), satisfying
the following conditions:

(1) Let I =11, 8- --8IL,. Ifl is a prime unramified in F' and above which
7 is unramified, then 11 is unramified above | and for each place v|l of
F lying above a place v of F'™, 11, and w3 are related by unramified base
change.

(2) If Fy C F is an imaginary quadratic field and 1" is a prime which splits in
Fy, then for each place v|l" of F lying above a place v of F*, 11, and 5
are identified under the induced isomorphism i, : (~?(Fﬁ+) =~ GLop (Fy).

(3) The infinitesimal character of I1 is the same as that of the representation
(2 €)" of GLoy(F 2 C).



40 P. ALLEN ET AL.

Consequentlyl, there exists for any isomorphism ¢ : Qp — C a continuous
semisimple representation r,(m) : Gp — GLgn(Qp) satisfying the following
conditions:
(a) For each prime l # p which is unramified in F' and above which m is
unramified, and for each place v|l of F', r.(7)|Gy, is unramified and the

characteristic polynomial of r,(m)(Frob,) is equal to the image of E,(X)
in Q,[X].

(b) For each place v|p of F, r,(m) is de Rham and for each embedding
T:F— Qp, we have

HT, (r.(7)) = {A1+2n— 1, A2 4+20—2,..., Aran},

where \ € (Z%_")Hom(F’QP) is the highest weight of the representation
THE® €)Y of GLay, over Q.

(¢) If Fy C F is an imaginary quadratic field and 1 is a prime which splits
in Fy, then for each place v|l of F lying above a place v of FT, there is

F-55 ~v T

an isomorphism WD(r,(7)|ap, )" = recy, (750 ty).

Proof. We will deduce this from [Shil4]. The main wrinkle is that this
reference gives a case of base change for unitary similitude groups (while our
group Gis a unitary group, with trivial similitude factor). Let [*"* be an
auxiliary prime at which both F' and 7 are unramified. In order to prove the
proposition, it suffices to prove the existence of an automorphic representation
IT of GLg,(AF) satisfying the second and third requirements, and satisfying
the first requirement at almost all rational primes, including [*"*. We can
then use strong multiplicity 1 and our freedom to vary [*** in order to recover
the proposition as stated. The existence and local properties of the Galois
representation are then a consequence of the existence of II (a result due to
many people, but see e.g. [Carl4]).

Let G’ denote the similitude group associated to CNJ; thus there is a short
exact sequence

l——Resp+/q G G’ G,, 1
of reductive groups over Q. By the main result of [Shil4], it suffices to find
an irreducible algebraic representation ' of G and a cuspidal automorphic
representation 7’ of G'(Aq) satisfying the following conditions:
_ " .
e The restriction |G(AF+) contains 7.

e 7’ is ¢’-cohomological.

IThe fact that the II; are not mentioned in these consequences is not an oversight. We use
the Galois representations associated to the II; in order to construct r,(7) and verify that it
has the expected properties.



POTENTIAL AUTOMORPHY OVER CM FIELDS 41

o 7/ is unramified at [2YX.

Arguing as in the proof of [HT01, Thm. VI.2.9], we see that it is enough to
show the existence of a continuous character 1 : A;O /Fo* — C* satisfying the
following conditions:

e The restriction 1| (A% ye=t is equal to the restriction of the central
0

character wy : (Af)=! — C* of w to (Af )"
e 1 is of type Ay, i.e. its restriction to F(fOO arises from a character of the
torus (Resg,/q Gm)c-
® Y|nx is trivial.
Fg,laux

The existence of such a character follows from the algebraicity of w7r|( A% =t
0

itself a consequence of the fact that m is £&-cohomological. O

2.3.4. Existence of Hecke algebra-valued Galois representations. Let S be
a finite set of finite places of F', containing the p-adic places.

THEOREM 2.3.5. Let m C T(K,\) be a mazimal ideal. Suppose that S
satisfies the following conditions:
o §=5°
e Let v be a finite place of F' not contained in S, and let | be its residue
characteristic. Then either S contains no l-adic places of F and [ is
unramified in F, or there exists an imaginary quadratic field Fy C F in
which 1 splits.

Then there exists a continuous, semi-simple representation
P : Grs — QL (T (K, \)/m)

satisfying the following condition: for each finite placev & S of F', the character-
istic polynomial of py, (Froby) is equal to the image of Py(X) in (T (K, X)/m)[X].

We note that our condition on S can always be achieved after possibly
enlarging S.

Proof. Fix an embedding T (K, \)/m < F,. According to [Sch15, Cor.
5.4.3], there is an n-dimensional continuous semisimple Galois representation gy, :
Grs — GL,(F,) such that for each finite place v € S of F, the characteristic
polynomial of 5, (Frob,) is equal to the image of

X" _ ijan—l 4t (_1)iqi(i—1)/2Tv,an—i NI (_1)nq;r)z(n—1)/2Tv’n

in F,[X]. (Our condition on S ensures that we can appeal to the results
of [Sch15] in a case where they are unconditional, cf. Theorem 2.3.3 and
the discussion in [Sch15, Rem. 5.4.6]). Combining the Chebotarev density
theorem, the Brauer—Nesbitt Theorem and the vanishing of the Brauer group
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of a finite field [DS74, Lem. 6.13], we see that p, can in fact be realized over
T3 (K, \)/m. O

DEFINITION 2.3.6. We say that a mazimal ideal m C TF is of Galois
type if its residue field is a finite extension of k, and there exists a continuous,
semi-simple representation py, : Grs — GL, (T /m) such that for each finite
place v ¢ S of F, the characteristic polynomial of p,,(Frob,) is equal to the
image of P,(X) in (T%/m)[X].

We say that a mazimal ideal m C T is non-Eisenstein if it is of Galois
type and p,, is absolutely irreducible.

Note that Theorem 2.3.5 can be viewed as asserting that, under a suitable
condition on S, any maximal ideal of T in the support of H*(Xg, V) is
of Galois type. We observe that if m € T% is of Galois type, then so is m",
and in fact p,v = py ® €!7". In particular, if m is non-Eisenstein, then so is
mY. Similarly, if ¢ : Gpg — O is a continuous character, and m C TS is a
maximal ideal of Galois type, then so is m(¢), and in fact Py y) = P @ . In
particular, if m is non-Eisenstein, then so is m(¢).

THEOREM 2.3.7. Let m C TS(K, A) be a mazimal ideal. Suppose that S
satisfies the following conditions:

e §=5°
e Let v be a finite place of F' not contained in S, and let | be its residue
characteristic. Then either S contains no l-adic places of F' and l is

unramified in F', or there exists an imaginary quadratic field Fy C F in
which 1 splits.

Suppose moreover that py, is absolutely irreducible. Then there exists an integer
N > 1, which depends only onn and [F : Q], an ideal I C TS (K, \) satisfying
IN =0, and a continuous homomorphism

pum: Grs — GLy (T (K, N)w/I)
satisfying the following condition: for each finite placev &€ S of F', the character-
istic polynomial of pm(Frob,) is equal to the image of P,(X) in (T (K, N)m/I)[X].
Proof. This follows from [Sch15, Cor. 5.4.4]. O

THEOREM 2.3.8. Letm C TS(%,X) be a mazximal ideal. Suppose that S
satisfies the following condition:

e Let v be a finite place of F' not contained in S, and let | be its residue
characteristic. Then either S contains no l-adic places of F and [ is
unramified in F, or there exists an imaginary quadratic field Fy C F in
which | splits.
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(Note that the condition S = S¢ is implicit in the use of the notation TS here.)
Then there is a continuous, semi-simple representation

GF5—>GL2n( (K )\)/m)

satisfying the following condition: for each finite place v & S of F, the
characteristic polynomial of pg(Froby,) is equal to the image of P,(X) in
(T5(K, A)/m)[X].

Proof. The existence of a 2n-dimensional group determinant 5,71 valued
in TS (I? ,A)/f and with the given characteristic polynomials on Frobenius
elements at places v ¢ S is implicit in [Sch15] and also follows from [NT16,
Theorem 5.7], as we now explain. The result [NT16, Theorem 5.7] shows that
if the group K is small, in the sense that there is a rational prime g # p such
that %q is contained in the principal congruence subgroup at level ¢ (if ¢ is
odd) or 2q (if ¢ = 2), then there is even a 2n-dimensional group determinant
valued in TS(RI‘(E(VI?,VX/(W))) such that for each finite place v & S of F,

the characteristic polynomial of Frob, is equal to the image of FU(X ). The
surjection
T5(K,)) — T%(RI (X7, V5 / (@)))

is bijective at the level of maximal ideals, so this implies the existence of the
desired group determinant when K is small. When K is not small, we choose
an odd rational prime ¢; which is prime to S, and let K 1 denote the intersection
of K with the principal congruence subgroup of G((’)F+) of level q1. Let S
denote the union of S with the set of gj-adic places of F. Then there is a
diagram of Hecke algebras

TS (K1, \) + T9(K /K1, \) — T5 (K, \) = T3(K, )),
where the left-facing arrow has nilpotent kernel and so induces a bijection at
the level of maximal ideals. Let fﬁl C T%'(K, )\) denote the pullback of m along

the right-hand inclusion. Since K 1 is small, there exists a group determinant
Dg.ll valued in T5! (K )\) /m1 and with the correct characteristic polynomlals

at places outside S;. Let Dm | denote the pushforward of Dy , to TS(K X/
Thus Dﬁi71 is a 2n-dimensional group determinant of G, Wlth the property
that for any finite place v &€ S1 of F, 5;;171(X — Frob,) equals the image of
P,(X).

Choose another odd rational prime g2 # q1 which is prime to S, and
repeat this construction to obtain a group determinant D 2 of GF s, valued in
TS(K X)/f with the property that for any finite place v & Sy of F, Dg 2(X —
Frob,) equals the image of P, (X). Since the Frobenius elements at places
v € S1 U Sy are dense in Grg,us,, the group determinants D~ 1 and Dm2
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have the same characteristic polynomials on all elements of Grgs,us,. By
[Chel4, Lemma 1.12], these group determinants are equal and we can take
Dy = Dg 1 = Dg o

To obtain a true representation from this group determinant, we first
fix an embedding T(K,\)/m < F,. The group determinant determines a
representation over F), by [Chel4, Theorem A]. It follows by the same argument
as in the erogf of Theorem 2.3.5 that this representation can in fact be realized
over T9(K, \)/m. O

A similar argument shows that [NT16, Theorem 5.7] implies the following
result.

PROPOSITION 2.3.9. Suppose that S satisfies the following conditions:
e S =5°
e Let v be a finite place of F not contained in S, and let | be its residue
characteristic. Then either S contains no l-adic places of F and | is
unramified in F, or there exists an imaginary quadratic field Fy C F in
which 1 splits.
Then there exists an ideal I C TS(K )\) satisfying 12dmr X — 0 gnd q 2n-
dimensional group determinant D of Gr.s valued in TS(K )\)/I such that for
each finite place v € S of F, the characteristic polynomial D(X Frob,) is
equal to the image of P,(X) in (TS(K,\)/I)[X].

Proof. When K is small, this is an immediate consequence of [NT16,

Theorem 5.7], together with the observation that the natural map
T(K,\) — lim T(RL (X, V;/(@™)))
m>1
is an isomorphism. Moreover, in this case we can take I = 0. In general,
we introduce an odd rational prime ¢; as in the proof of Theorem 2.3.8 and
consider again the diagram
T (K1, \) « T9(K /K1, \) - T (K, X) < T(K, ).

The map TS (E/%hX) — Tsl(%l,X) has kernel J; satisfying JldimRX =
0 (because the cohomology of RI'(X [?1,]/}) is 0 for degrees not lying in
[0,dimg X — 1]). Taking I, to be the ideal of ’TVS1([A(’ X) _generated by the
image of Jl, we obtain a 2n-dimensional group determinant D1 of Grg, valued
in TS(K X)/I; such that for each finite place v & ) of F, Dl(X Frob,)
equals the image of PU( ), and moreover [ f imp X _ 0.

Introducing an odd rational prime go # g1 which is prime to S, we obtain
similarly an ideal I, ¢ TS (E . \) satisfying IgimRX
Dy valued in T9(K,\)/I> and having properties analogous to D;. We take

= 0 and a group determinant
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I =(I1,I5) and D to be the projection of 51 to TS(’[} X)/I Consideration of
characteristic polynomials at places v ¢ 51 U Sy, as in the proof of Theorem
2.3.8, shows that D equals the projection of Dy to TS(K,X)/I. Tt follows that
D has the property required by the proposition. ([l

2.4. Boundary cohomology. In the remaining section of this chapter we
prove some results about the boundary cohomology of the arithmetic locally
symmetric spaces of G and G. This is made possible by the existence of Galois
representations attached to Hecke eigenclasses in the cohomology of these
groups and of their Levi subgroups. The important observation is usually that
the cohomology of a certain stratum in the boundary can be observed to vanish
after localization at a sufficiently nice (e.g. non-Eisenstein) maximal ideal of a
suitable Hecke algebra.

2.4.1. The Siegel parabolic. Let KcC 5(A%°+) be a good subgroup which
is decomposed with respect to the Levi decomposition P = GU (cf. §2.1.2).
We set K = K N G(A%,) and Ky = Kn U(AZ:).

Let m C T9(K,\) be a non-Eisenstein maximal ideal, and suppose that
S =S¢ Let m C TS denote the pullback of m under the homomorphism
S : TS — TS defined in (2.2.2). In order to state the first main result of this

subsection, we recall that the boundary 0X = X P X 7 of the Borel-Serre
compactification of Xz has a G(A%,)-equivariant stratification indexed by

the parabolic subgroups of G which contain B. See [NT16, §3.1.2], especially
[NT16, Lem. 3.10] for more details. For such a standard parabolic subgroup @,
we denote by Xg the stratum labelled by . The stratum XIQ( can be written
as

X2 = Q(FN)\ (X2 x G(AR)/K).
As discussed in §2.1.2, there is, for any e (Zi”)Hom(F "E) | a homomorphism
T% = Endp(o)(RI(X 2, V3)).

Therefore, we can define the localization RI’(:}\(JIQ(,, Vi)&- (This complex will

be non-zero in D(O) if and only if the maximal ideal m of TS occurs in the
support of the cohomology groups H *(X% VX)')

THEOREM 2.4.2. Let m C TS(K,\) be a non-Eisenstein mazimal ideal
and let m = S*(m) C T, Let \ € (Z%r”)Hom(F+’E). Then there is a natural

TS -equivariant isomorphism
RU(XE Vi) = BO(0X g, Vy)a
in D(O).
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Proof. There is no harm in enlarging S, so we first add finitely many
places to S, ensuring that it satisfies the condition of Theorem 2.3.5. The
proof is similar to the proof of [NT16, Thm. 4.2], which applies to the case
of Resp/qGLy and which shows that the cohomology of the stratum labelled
by any proper parabohc subgroup of Res F/QGLn is Eisenstein. Since P is a

maximal parabolic of G the inclusion X XE ¢ aX ~ is an open embedding, which

induces a natural, Ts—equlvarlant map
RT, (XP Vi)a — RO(0X 7z, V5,
and which fits into an excision distinguished triangle
RT.(XE,V5)q — RU(0X, Vy)s — RUOXp \ X2, Vy)s 3.

We will show that RF(@)Nfg \ X/B,Vx)ﬁ = 0 in D(0O), by showing that for
each standard proper parabolic subgroup @ C G with Q # P, we have
RI“C(XI%,VX)ﬁ1 = 0 in D(0). ANpplying the same argument to the excision
triangle for the inclusion from X g to its closure, this will also show that the
natural map
RT(XE, V5)s — RU(XE, Vy)s

is an isomorphism. N

In order to show this vanishing, it suffices (after possibly shrinking K at
the p-adic places of F'™) to show that if Q # P is a standard proper parabolic
subgroup of G then RF(X JK)m . (We are using here that if C*® is a perfect
complex in D(O), then C* =0 in D(O) if and only if C*®% k = 0 in D(k). We
are also using Poincaré duality to exchange cohomology with compact support
for usual cohomology, as in [NT16, Prop. 3.7].)

We will in fact show that, for any maximal ideal m’ C T in the support
of RF(XIQ(, k), there exists a semisimple residual Galois representation

P - GF,S — GLQTL(T/S/{FL/)

such that for each place v ¢ S of F', the characteristic polynomial of pgz/ equals
the image of P,(X) in (T/m’)[X]. Moreover, assume that the Levi component

M of @ is of the form
Resp/p+ GLn, X -+ X Resp/p+ GLy, X (N;n_s

for integers r > 1,n; > 1,s € {1,...,n} satisfying > . ;n; = s. (More
precisely, that it is the block diagonal subgroup of G associated to the partition
2n=mn1+---+n, +2(n—3s)+n, +---+ny. These describe all the standard
F*-rational Levi subgroups of 5) Then we have

(2.4.3) Prv = ®i—1p; © ' (n — s) By (7)*,



POTENTIAL AUTOMORPHY OVER CM FIELDS 47

where g, is n;-dimensional and p/'(n — s) is (2n — 2s)-dimensional. The non-
Eisenstein condition on m implies that

Pm = P1 D P2,

where both p1, p2 are (absolutely) irreducible n-dimensional representations.
This shows that, unless » = 1 and s = n, RF(X% k) =0. Thecaser =1,s =n
corresponds precisely to the Siegel | parabolic P. N

Let us define Tg = H(QS,Kg) ®z O and T, = H(M®, K3,) @z O.
We recall (cf. §2.1.2) that there are homomorphisms ¢ : TS - Tg and
A T% — T}?@ and that we set SJ\G; = ry org. We first claim that, for
any maximal ideal m’ of TS in the support of H *(f}%, k), there exists a good
subgroup IN(’ C Ky with (IN(’ ) = IN(]% and a maximal ideal m’ of T, in the
support of H*(XM , k) such that m’ = SG 17 (m’). This follows the same steps

as the proof of [NT16 Theorem 4.2], which we outline here.
Firstly, one can describe the cohomology RF(X%IC) together with its

TS_action in terms of the pullback under rg : TS - TS of the cohomology of
finitely many locally symmetric spaces for ). More premsely, using the Iwasawa
decomposition away from S, we can write G( ) =L QA F+)gzK and
obtain r locally symmetric spaces XI%Q,N with KQ,Z- = QAR )N gZK(gz) L
together with an isomorphism

XQ k) @rQ (Rr(x7 ,,k))

in D(TS). The proof in [NT16], which identifies equations (4.2) and (4.3) of
loc. cit., applies verbatim to our situation, so we do not repeat it here.

Secondly, fix a neat compact open subgroup K¢g C Q(A%, ), which can be
any of the Kg; considered above. Let () = M x N be a Levi decomposition of
Q. Let Ky be the image of Kg in M(A%,) and Ky := KgNN(AY,). Let W
be the object in the derived category of sheaves on X %M corresponding to the
object RTI'(Kn,s,k) in D(k[K,s]) under the formalism in section 2.1.2. Then,
using an argument that is formally identical to that on pages 56-58 of [NT16],
we obtain an isomorphism

RU(XP k) ~ i, (RO W)

in D(TCSQ). The corresponding statement in loc. cit. is obtained by combining
the second and fourth displayed equations on page 58.

Finally, we consider the spectral sequence that computes the total cohomol-
ogy of RF(X%M, W). Let W' be the local systems on X%M corresponding to

the cohomology groups H*(K N,s, k). The first two steps above show that there
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exists a maximal ideal m’ of Tf\q/[ in the support of some H*(X I]\?/[, , W% such
M

that m’ = S]\G/[’*(m’ ). It remains to shrink the level K7 g in order to trivialize all
the W*. This could, a priori, cause a problem because the map on cohomology
groups need not be injective. However, we are only interested in keeping track
of a maximal ideal m’ of TJSVI. The Hochschild—Serre spectral sequence shows
that shrinking the level does not cause problems, as in the proof of [NT16,
Lemma 4.3]. (See also the example below Lemma 2.2.3 for an illustration of
the same phenomenon in the derived category.)

In order to complete the proof of the theorem, it therefore suffices to
show that for any good subgroup Ky C M(AY) with KY, = K}?} and for
any maximal ideal m’ of T3, in the support of H*(X%W k), there exists a
semisimple residual Galois representation

pse(m) - Grs — GLan(T5/S*(m'))
such that for each place v ¢ S of F, the characteristic polynomial of g« ()

equals the image of Py(X) in (TS/&/)[X]; and moreover, that this Galois
representation admits a decomposition of the form (2.4.3).

After possibly shrinking Kj; once more, we can assume that it admits
a decomposition Ky = Ky x --- x K, X %S, where K; C GLy,(A%) and
K s C En_ s(A%; ). After possibly enlarging k, we can moreover assume, in the
obvious notation, (by the Kiinneth formula) that there exist maximal ideals

my,...,m,,mg of the Hecke algebras TéLnl""’TéLnr’T%n_s’ respectively,

which are in the supports of the groups H* (ng"l k) H*(X%J"’“ k), H*(Xg:’s, k),
respectively, and such that m’ is identified with (my, ..., m,, m) under the iso-
morphism

T3 — T8, ®o®- - ©o T¢y, ©o T2

We can moreover assume that all of the the maximal ideals my, ..., m,, ms and
m’ have residue field k. _
Let us write P!(X) € TéLn. [X] and P3(X) € T% [X] for the analogues

for the groups GL,, and F;n_s of the Hecke polynomials defined in §2.2.4.
By Theorem 2.3.5 and Theorem 2.3.8, there exist continuous, semi-simple
representations

Pm; : Grs — GLy, (k) (i=1,...,7)
and
Pa. : Grs = GLyg—s) (k)
such that for each finite place v ¢ S of F and for each i = 1,...,7, the
characteristic polynomial of p,,. (Frob,) is equal to P;(X) mod m;; and the

characteristic polynomial of p5_(Frob,) is equal to E;"’(X ) mod my.
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The proof of the theorem is complete on noting that we can take

pS*(m’) — @ (pml ® 6n1+--.+ni—2n @ﬁf&lv ® 61—(711-&-...—&—711')) @pﬁis ® €5,
i=1
That this choice is valid rests on the computation of the image of E,(X ) under

the map Sf;. The details are very similar to the proof of [NT16, Prop.-Def.
5.3], and are omitted. O

We can now state the second main result of this subsection, which takes
Theorem 2.4.2 as its starting point.

THEOREM 2.4.4. Let K C 5(A°F°+) be as at the start of §2.4.1, and let
A € (Zn)Hom(EE) be o dominant weight whose image in (Z2n)Hom(FT.E) g
G-dominant. Let m C TS(K,\) be a non-Eisenstein mazimal ideal, and let
m C TY denote its pullback under the homomorphism S : TS — T5. Then the
homomorphism S : T° — T descends to a homomorphism
T5(RU(0X ,V5)a) — T2 (RL (XK, V\)w).
Proof. The first step in the proof is to note that it suffices to show that S
descends to a homomorphism
T%(RT(0XE, V5)) = T (RT (XK, W),

by Theorem 2.4.2. On the other hand, the discussion at the end of §2.1.9 shows
that S descends to a homomorphism

(2.4.5) T%(RT(OXE, V5)) — TS(RF(XI%P, Vi),

where T acts on the latter complex via 7p. It therefore suffices to show that
S descends to a homomorphism

(2.4.6) TS(RF(X[%P, V5)) = T5(RT (XK, V))),

where T acts on the latter cohomology groups via § = rg o rp. In fact, it
even suffices to show that for each m > 1, § descends to a homomorphism

(2.4.7) TS (RD(XE ,Vy/@™) = TS(RD( Xk, Vy/@™)),
cf. [NT16, Lemma 3.12].

However, arguing in the same way as on [NT16, p. 58], we see that there
is an isomorphism

mN\ ~ - S gy m
RF(X%P,VX/w ) = RU(KP x Kg, RT(Inf(¢ 005 X, RL SV /@™),

where the derived pushforward sends (complexes of) PSx K p,s-equivariant
sheaves on X to P® x Kg-equivariant sheaves on Xg. Suppose we knew that
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V) /w™ was a direct summand of leU’SVX /w™; then we could conclude, by
arguing in the same way as at the top of [NT16, p. 59|, that r&5RI'(X g, Va/@™)
is isomorphic to a direct summand of RT'(X 15; , V5/@™) in the category

P

D(H(P® x Kpg, Kp) ®z O/@™),

implying the existence of the homomorphism (2.4.7).
It remains to construct the desired splitting of V/w™ as a direct summand

of R1LUS V5 /@™. To do this, we recall the following two facts:

o K p is a semidirect product K p = IN(U x K (by assumption: K is
decomposed with respect to the Levi decomposition P = GU).

e There is a K p-equivariant embedding V\ — V5, which splits after
restriction to K. (This follows from [NT16, Corollary 2.11].)

K

The morphism Vy/@w™ — R, "*V;/w™ is the composite of the reduction

m

modulo @™ of the given map V), — V? U5 together with the morphism

(Vs /wm)%lﬁs — leU’SVX /@™ whose existence is assured by the universal
property of the derived functor.

The morphism leU’SVX /@™ — Vy/w™ is the composite of the morphism

leU’SVX /@™ — V5 /@™ (given by restriction to the trivial subgroup) and the
reduction modulo @™ of the K-equivariant splitting V5 — V). This completes
the proof. O

Here is a variant of Theorem 2.4.4 where we now take trivial coefficients
but consider additional Hecke operators at some ramified places.

THEOREM 2.4.8. Let K C 5(A%°+) be as at the start of §2.4.1, and let
m C T9(K,0) be a non-Eisenstein mazimal ideal, and let m C TS denote its
pullback under the homomorphism S : TS — TS, Suppose moreover that there
is a subset R C S satisfying the following conditions:
e Each place v € R is prime to p and is split over F+.
e For each place v € R — R lying over a place v of FT, %g = gy, where
Gy contains py1 and is contained in p,. For each place v € RN RS lying
over a place v of F'T, Kg = .75, where fg contains If{;val and is contained
m If{;va
LetT =S—(R°—R). Let Tg C H(a(A%OJr), I?)@ZO denote the (commutative)
O-subalgebra generated by TS and all the elements tvi(o) (ve R,o € Wg,)
and e, ;(0) (v € R°— R,0 € Wg,). Let TE, C H(GL,(A¥),K) ®z O denote
the (commutative) O-subalgebra generated by TT and all the elements t, ;(o)
(ve R,o € Wg,). Then there is a map S : Tg — T, which descends to an
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O-algebra homomorphism
TH(RT(0X, 0)5) — TH(RT (XK, O)u).

Proof. Let Rg = RUR®, Sy =S5 — Ry. The map S is the one described in
§2.1.2 (at unramified places) and §2.1.9 (see in particular Lemma 2.1.13, which
applies at the ramified places we consider here, cf. the discussion at the end of
§2.2.4). Once again, by Theorem 2.4.2, it will be enough to us to show that S
descends to a homomorphism

TH(RT(XE,0)) = TH(RT(Xk, 0)).

In order to show the existence of this homomorphism we first recall, following
the discussion at the end of §2.1.9, that S arises by localisation from the
composite of homomorphisms

rp H(GT x Ag p K%)= H(PS x Ap g, K2°)

and

rag: H(PS X APVRO,E(J}%O) — H(Gs X AG7RO,KSO).

Moreover, there are morphisms of complexes
P o v P B P
RF(X?(P’ 0) = RF(X[?, 0) = RF(XF(P’ 0)

and

RD(Xk,0) % RO(XE ,0) S RD(Xk,O)

satisfying the following conditions:

e [3 respects the action of H(CNJS X A@,RO’ %SO) (when this algebra acts
by rp on the target of ).

e 7 respects the action of H(P¥ x Apg,, %ﬁo) (when this algebra acts
by 7 on the source of 7).

e Sa and 6 both equal the identity.
Let T%Hr denote the interse~ct10n~of T% with 7{(55 X AF g %SO) ®z O (in-
tersection taken inside H(G°, K0) ®z O). Define T%, . similarly. Then

S(TE ) C Tﬂ + and the above listed properties immediately imply that
S =8 ‘TT descends to a morphism as in the top horizontal arrow of the
R+

following dfagram

T£7+(RF()?§, 0)) — Th , (R(Xg, 0))

§ I

TH(RI(XE,0)) TL(RT (X g, O)).
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By construction, we can find an element z € TTR7+(RF(§(V§,O)) with the
following properties:
o zisaunitin TH(RT(XE, 0)) and TH(RI(XE, 0)) = T}, | (RT(XE, 0))[71].
e Si(z)isaunit in TL(RI(Xk, 0)) and TR(RI(Xk, 0)) = Th , (RT(Xk, O))[S1(2)71].

Indeed, we can take z to be a product (over places of Ry) of strongly positive
Hecke operators, as in the statement of Lemma 2.1.13. We deduce that in fact
S descends to a homomorphism

TH(RT(XZ,0)) = TH(RT(Xk, 0)),
as required. O
2.4.9. Some results on rational cohomology.

THEOREM 2.4.10. Fiz a choice of isomorphism ¢ : Qp — C.

(1) Let 7 be a cuspidal, reqular algebraic automorphic representation of
GL,(AFr) of weight tA. Suppose that there exists a good subgroup
K C GL,(AF) such that (7=)% # 0. Then the map T® — Q,
associated to the Hecke eigenvalues of (1™ 1m>)X factors through the
quotient TS — T3(K, \).

(2) Let qo = [FT: QIn(n—1)/2,lp = [F" : Qn—1. Let K C GL,(AF) be
a good subgroup, and let m C TS(K, V)) be a mazimal ideal such that
Pm 15 absolutely irreducible. Then for each j € Z, the group

H (X, V))ml[1/P]

is non-zero only if j € [qo, qo + lo]; moreover if one of the groups in this
range is non-zero, then they all are.

If f: TS(K, V\)m — Qp s a homomorphism, then there exists a
cuspidal, reqular algebraic automorphic representation © of GLy,(Ar) of
weight L\ such that f is associated to the Hecke eigenvalues of (1= %)X,
In particular, there is an isomorphism r,(w) = by, .

Proof. For the first part, it suffices to show that there is a non-zero
eigenvector for ’H(GLH(A%O’S), K% in H*(Xg,V,)) with the eigenvalue of T, ;
equal to its eigenvalue of T} ; on va.

Likewise, for the second part it suffices to show that the group H’ (X, VoA )m =
HI (X, V\)m ®0,, C is non-zero only if j € [qo, go + o], that if one of the groups
in this range is non-zero they all are, and that if f : H(GLH(A?’S), K% — C
is a system of Hecke eigenvalues appearing in H*(Xg, V,))m then there is a
cuspidal, regular algebraic automorphic representation of GL,,(Ar) of weight
LA giving rise to this system of Hecke eigenvalues.

As a consequence of Franke’s theorem [Fra98, Thm. 18], as in [FS98, §2.2],
we have a canonical decomposition
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K

H*(Xg,Vi\) = EB H*(mg, Koo; Ay, 10} @c Via) (Xn)
{Q}ecC

In this formula, C is the set of associate classes of parabolic Q-subgroups
of Resp/q GLy. The cohomology on the right hand side is relative Lie algebra
cohomology, mg is the Lie algebra of the real points of the algebraic group given
by the kernel of the map Npq o det : Resp;q GL, — GL1, and Ay, (g is a
certain space of automorphic forms (in particular, it is a GL,(A%)-module).
Finally, the (x) denotes a twist of the GL,, (A% )-module structure, determined
by the central character of V), which appears because the automorphic forms
considered in loc. cit. are by definition invariant under translation by R>? c
(Resp/q GLn)(R). We set Eygy = H*(mg, Keo; Ay, 10y ®c Via)(xa)- The
summand E{%} is the cuspidal cohomology group

H:usp(XKa ‘/LA) = @(WOO)K ®c H*(mG, Koo; oo @c VYLA)
s
where the sum is over cuspidal automorphic representations = of GL,(AFr)
with central character ¢ satisfying {|r., = 5;\1\R>O, where &, is the central
character of V.

Let 9t be a maximal ideal of ’I—l(Gan(A});o’S)7 K?%) ®z C in the support
of Eﬁ)}‘ Suppose Q C Resp/q GL,, is the standard (block upper triangular)
parabolic subgroup corresponding to the partition n = nj +---+n,. We denote
its standard (block diagonal) Levi factor by L. In order to simplify notation,
we set

W = W ((Resp/q GLn)c; (Resp/q Tn)c),
Wq = WQ((ReSF/Q GL,)c, (ResF/Q T.)c),

and
W = W®((Resp/q GLn)c, (Resp/q Tn)c)

for the respective Weyl groups (notation as in §1.2). It follows from [FS98,
Prop. 3.3] (see also the proof of [Fra98, Thm. 20]) that 9t corresponds to
the system of Hecke eigenvalues for the (unnormalized) parabolic induction
Indgag‘:‘)%o ) 0>, where 0 = @);_, m; is a cuspidal automorphic representation of
Lo(Aq) =[1;_; GLy, (AFr) whose infinitesimal character matches that of the
dual of the (Lg)c-representation with highest weight w(¢A + p) — p, for some
w in the set W&. Here p denotes half the sum of the (Resp /Q B,,)c-positive
roots, and we note that each w(tA + p) — p is a dominant weight for (Lg)c. In
particular, the m; are regular algebraic cuspidal automorphic representations of
GL,,(AF) (whose weight depends on w).
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We sketch how this statement can be deduced from the proof of [FS98,
Prop. 3.3]. The space Ay, (g} decomposes, as a GL,(A%)-module, into a
direct sum @4,Ay;, 10},,- Each space of automorphic forms Ay, 10y, is the
quotient of a space denoted Wy z @ S (ﬁg) in loc. cit. It is also observed
in the proof of [FS98, Prop. 3.3] that this space, as a GL,(A%)-module,
has a filtration whose quotients are isomorphic as GL, (A% )-modules to a

normalized parabolic induction Indg%zfj;%o)((;@ ® 7). Our notation differs

from [FS98], as we are writing Ind for unnormalized parabolic induction. Here
7 is a cuspidal automorphic representation of Lg(Agq) whose infinitesimal
character corresponds under the normalized Harish-Chandra isomorphism to
a weight in the W-orbit of the infinitesimal character of VY (by [FS98, 1.2
c)]). The normalization is given by the character dg of Ly(Aq) defined by
5o(1) = etera) swhere Hy is the standard height function defined in [FS98,
p.769] and pg is half the sum of the roots in the unipotent radical of Q.
Although 7 will not always be regular algebraic, the twist o := dg ® m will be.
More precisely, we show that the infinitesimal character of o equals that of the
dual of the (Lg)c-representation with highest weight A\, := w(tA + p) — p, for
some w € W¥. Indeed, we have v € W such that the infinitesimal character
Xo = Xr + pg = v(tAY + p) + po, where (A\Y is the highest weight of V{
(which has infinitesimal character (A + p). A short calculation shows that
Xo = )‘mo,vao +pLg, where PLo 18 half the sum of the positive roots for Lg, wo
is the longest element of W and wq ¢ is the longest element of Wg. Note that
since W€ is characterized by taking dominant weights for GL,, to dominant
weights for Lg (equivalently, taking anti-dominant weights to anti-dominant
weights), wo guwy is an element of WC, so this gives the desired statement.

Returning to the proof of the theorem, it now follows from Thm. 2.3.2 that
there is a Galois representation

r,(M) : Gp — GLn(Qp)

such that, for all but finitely many v ¢ S, the characteristic polynomial of
r,(9) (Frob,) equals P,(X) mod 9. Indeed, (cf. the proof of [NT16, Thm. 4.2])

we have
IS

r (M) = @), (ms) @ st
i=1
We can now deduce that if @) is a proper parabolic, then (Ef(Q})m =
Efgg}@)TS(K,VA)TS(K, V) )m vanishes. Suppose 91 is a maximal ideal of H(GLn(A%O’S), K%)®g
C in the support of (E{Ké})m. On the one hand, the representation r,(91) is

reducible in this case, but we have an isomorphism r,(7) = p,,. This con-
tradicts the assumption that p,, is absolutely irreducible, so we deduce that

(Eé})m =0.



POTENTIAL AUTOMORPHY OVER CM FIELDS 55

Finally, we show both parts of the theorem. It suffices to show that if =
is a cuspidal automorphic representation of GL,, (A ) with central character
matching {L_Al on R, then

(1) H*(mg, Koo; Too ® V) is zero unless 7 is regular algebraic of weight
LA.
(2) If 7 is regular algebraic of weight (A then H7 (mg, Koo; Too @V, ) vanishes
for j ¢ [qo, qo + lo] and is non-zero for j € [qo, g0 + lo]-
The first claim follows from [BWO0O0, Ch. II, Prop. 3.1]. The second claim follows
from [Clo90, Lem. 3.14] and the Kiinneth formula for relative Lie algebra
cohomology (in the notation of loc. cit., our Lie algebra m is a direct sum of g,
for each infinite place v of F and an abelian Lie algebra of dimension [F* : Q]—1;
the range of non-zero cohomological degrees is n — 1 for (g,, K,)-cohomology,
so we get range (n — 1)[F* : Q]+ [F*: Q] — 1 = in total). O

THEOREM 2.4.11. Let p € X*(Resp+,qTn) denote half the sum of the
positive roots of Resp+/q G. Fir an isomorphism . : Qp — C. Let A €
(Zi")Hom(FJr’E)) be a highest weight with the following property: for any w €
WP((ReSF+/Q 5)0, (Resp+/qQT)c), there are no (characteristic 0) cuspidal
automorphic representations for G of weight 1Ay, where Ay = w()\ + p) p.

Let m C TS be a mazimal ideal which is in the support of H*(X Vs )
with the property that pg is a direct sum of n-dimensional absolutely Weducible
representations of Gp. Let d = %dimR XG =n?[Ft:qQ].

Then Hd(ff(, lﬁg)ﬁ[l/p]Nis a semisimple Ts[l/p} module, and for every
homomorphism f : TS(Hd(Xf{,]%) ) — Qp, there exists a cuspzdal reqular
algebraic automorphic representation T of G(AE+) of weight U\ such that f s

associated to the Hecke eigenvalues of (117K,

Proof. The proof uses similar ingredients to the proof of Theorem 2.4.10
above. We must understand the systems of T®-eigenvalues occurring in

Hd(Xf(, Vbx)ﬁ = HY (XI?’ Vx)ﬁ1 [1/p] QE, C
As a consequence of [Frad8, Thm. 18], as in [FS98, §2.2], applied to the group
Resp+/qQG, we have a canonical decomposition

K

div d(~ 17 .
{P}eC

Here, C is the set of associate classes of parabolic Q-subgroups of Resp+ /QCNJ.
The cohomology on the right hand side is relative Lie algebra cohomology,

g is the Lie algebra of (ResF+/Q5)(R), and A is a certain space of

V5.{P}
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automorphic forms for Resp+ /Qé. (We note that in this case there is no
additional character twist of the G(A%)-module structure, because the max-

imal split torus in the center of Resp+,QG is trivial; equivalently, the mz

of [F'S98] is equal to g because Resp+ /G has no rational characters.) Set
g (e K- _ N K ; :
E{P} =H (mG,KOO, AVLX»{P} RcC VL/\) The summand E{é} is the cuspidal

cohomology group

ngsp (j(vf(v VLX) = @<%00)§ ®c H? (E: feoo% Too @C VLX) )

K

where the sum runs over cuspidal automorphic representations of a(A r+). We
see that the theorem will be proved if we can establish the following two claims:

(1) 1f Pisa proper standard parabolic subgroup of Resp+ /Q’(i different
from the Siegel parabolic, then

~1pK 1K . mS(T Y
(L E{ﬁ})ﬁ =t E{ﬁ} sy T UG )q = 0.

(2) If P = P is the Siegel parabolic subgroup of ResF+/Q5, then we also
have (1ER ) =0,
ave (LB G )
The same argument as in the proof of Theorem 2.4.10 shows that if M is a
maximal ideal of TS[1/p] which occurs in the support of FlE{Klg}, then 9

corresponds to the system of Hecke eigenvalues appearing in

~ I K
<Ind€(AF+) L_lUOO) )
Pax,)

where o is a cuspidal automorphic representation of L13~(A r+) whose infinitesi-
mal character equals the dual of the infinitesimal character of the irreducible
algebraic representation of Lz of highest weight w(tA + p) — p, for some

~

w € WF((Resp+ /@ G)c; (Respt /@ T)c). The second claim now follows imme-
diately from our hypothesis that there are no such automorphic representations
in the case P = P.

As in the proof of Theorem 2.4.2, we note that the Levi subgroup Lyis
isomorphic to a product Resg/p+ GLy, X -+ X Resp/p+ GLyp, X U(n — 5,1 — 3),
for some decomposition 2n = ny + - -+ + n, + 2(n — s). We can now establish
the first claim: using the existence of Galois representations attached to regular
algebraic cuspidal automorphic representations of GL,, and U(m,m) for m <n
(i.e. using Theorem 2.3.2 and Theorem 2.3.3), we see that there exists a Galois
representation r(ﬁ) :Gp — GLgn(Qp) such that, for all but finitely many

places v of F', r(9M) is unramified at v and (9N) has characteristic polynomial
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equal to FU(X ) mod M. Moreover, this representation has at least 3 Jordan—
Holder factors as soon as (r,s) € {(1,n),(0,0)} (by an argument identical to
the one appearing at the end of the proof of Theorem 2.4.2). Since we are
assuming that pg has 2 irreducible constituents, each of dimension 7, this would

lead to a contradiction, showing that we must in fact have (L_1E§5}> _=0.
m
This completes the proof.

3. Local-global compatibility, [ # p

3.1. Statements. Let F' be a CM field containing an imaginary quadratic
field, and fix an integer n > 1. Let p be a prime, and let E be a finite extension
of Q,, inside Qp large enough to contain the images of all embeddings of F' in
Qp. We assume that each p-adic place © of F'* splits in F.

Let K C GL,(A%) be a good subgroup, and let A € (Z7)Hom(FE) et §
be a finite set of finite places of F', containing the p-adic places, and satisfying
the following conditions:

e §=25°

e Let v be a finite place of F' not contained in S, and let [ be its residue
characteristic. Then either S contains no [-adic places of F' and [ is
unramified in F', or there exists an imaginary quadratic field Fy C F' in
which [ splits.

We recall (Theorem 2.3.7) that under these hypotheses, that if m C T(K, \)
is a non-Eisenstein maximal ideal, then there is a continuous homomorphism

pm : Grs — GLy (T (K, \)w/I)

characterized, up to conjugation, by the characteristic polynomials of Frobenius
elements at places v € S; here I is a nilpotent ideal whose exponent depends
only on n and [F': Q]. Our goal in this chapter is to describe the restriction of
pm to decomposition groups at some prime-to-p places where ramification is
allowed.

To this end, we suppose given as well a subset R C S satisfying the
following conditions:

e Each place v € R is prime to p.

e For each place v € R, there exists an imaginary quadratic field Fy C F
in which the residue characteristic of v splits. In particular, v is split
over F'T,

e For each place v € R, K, contains Iw, ; and is contained in Iw,. For
each place v € R° — R, K, = GL,(Op,). (Note that R° C S since S is
assumed stable under complex conjugation.)

Let T = S — (R° — R). We define Th, ¢ H(GL,(A¥), K) ®z O to be the
(commutative) O-subalgebra generated by TT and all the elements t, (o)
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(v € R,0 € Wg,), as in the statement of Theorem 2.4.8. We define
TR(K, ) C Endp(o)(RT (XK, Vy))

to be the image of TE. Thus there are inclusions
TS(K,\) ¢ TT(K,\) ¢ TL(K,\).

THEOREM 3.1.1. Let notation and assumptions be as above. Then we
can find an integer N > 1 (depending only on n and [F : Q]), an ideal
Ir C Tg(K, ANm satisfying Ig =0, and a continuous homomorphism

Pm,R : GF,T — GLn(TE(K, )\)m/IR)

satisfying the following conditions:

(1) For each place v ¢ T of F, the characteristic polynomial of pm r(Frob,)
is equal to the image of Py(X) in (TH(K,N)m/Ir)[X].

(2) For each place v € R, and for each element o € Wpg,, the charac-
teristic polynomial of pm r(0) is equal to the image of P, s(X) in
(TE(K, N/ Tr)[X].

In the statement of this theorem, T% (K, A)y is the localization of Th(K, \)
as a T9(K, \)-algebra; it is an O-subalgebra of Endp o) (RT'(Xk, Vx)m) which
contains T (K, \)y. Instead of proving this theorem directly, we will in fact
prove the following statement:

PROPOSITION 3.1.2. Let notation and assumptions be as above. Then
there exists an integer N > 1 (depending only on n and [F : Q]), an ideal
Ir C TL(K, N satisfying I§ =0, and a TL(K,\)wm/Ir-valued determinant
Dy r on Ggr of dimension n satisfying the following conditions:

(1) For each place v € T, the characteristic polynomial of Frob, in Dy g is
equal to the image of Py(X) in (TL(K, N)wm/Ir)[X].

(2) For each place v € R, and for each element o € W, , the characteristic
polynomial of o is equal to the image of P, »(X) in (TH(K, N)w/Ir)[X].

Proposition 3.1.2 implies Theorem 3.1.1 by [Chel4, Theorem 2.22]. The
remainder of §3 is devoted to the proof of Proposition 3.1.2. Although Proposi-
tion 3.1.2 is an assertion about determinants, not true representations, we will
still use the assumption that m is non-Eisenstein in the proof, in particular as

it simplifies our analysis of the boundary cohomology (using the results proved
in §2.4.1).

3.2. The proof of Proposition 3.1.2. Let Ry = RN R°. Let R (resp. R;)
denote the set of places of F't lying below a place of R (resp. R;). We begin
with a preliminary reduction.
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LEMMA 3.2.1. Fiz for each v € R a choice of Frobenius lift ¢, € Wg,. In
order to prove Proposition 3.1.2, it is enough to prove it under the following
additional assumptions:

(1) Ky =Iwy for each place v € R. There exists an odd prime q, prime
to R and p, such that K, = ker(GL,(Op4) = GL,(Or/(q))).

(2) For each place v € R, the characteristic polynomials of py(¢v) and
(pa @ €72 () are coprime.

(3) There ezists a character v : G — O of finite prime-to-p order,
unramified above RU R°U S, such that the composite 1) o Artg o det :
K — O is trivial and for each v € R, the characteristic polynomials of
(Froby, ) oy (6y) and h(Frobye) " (5, @ 7%’ @ €1 727)(¢y) are coprime.

(4) A=0.

(5) There exists a good subgroup K C a(A%ﬁ) satisfying the following
conditions: B
(a) K is decomposed with respect to P, and K = K N G(A¥,).
(b) Ky = ker(@(Op+.,) = GO+ /(). B
(¢) If v is a finite place of FT which is prime to S, then Ky =

5(0F+’v). Ifv € Ry, then K, = I;g(l, 1). f € R— Ry and v is

the unique place of R lying above U, then Ky = Py 1.

)

Proof. We first show that if Proposition 3.1.2 holds under assumption (1),
then it holds without this assumption. Let assumptions be as in Proposition
3.1.2, and let ¢1,q2 # p be distinct odd primes not dividing any element of
S. Let K; C K be the normal subgroup with K;, = Iw,(1,1) if v € R,
Ki g = ker(GL,(OFg,) = GL,(Or/(¢))), and K/*% = K. Let S; (resp. T;)
denote the union of S (resp. T') with the set of ¢;-adic places of F. Let m; C T
denote the pullback of m under the inclusion T?* — T7". For each i = 1,2 there
is a diagram of T%—algebras

T (Ki, N, < T (K/Ki, N, = T (K, N, = TR, A

The left-hand arrow has nilpotent kernel of exponent d depending only on
n and [F : Q], by Lemma 2.2.3. By hypothesis, there exists an integer
N > 1, depending only on n and [F' : Q], ideals J; C Tﬁ (K, M, satisfying
Jl-N = 0, and n-dimensional group determinants D; of G 1, with coefficients in
Tﬁ'(Ki, A)m,/Ji satisfying conditions (1) and (2) of Proposition 3.1.2.

Let I; denote the image in Tg (K, N)m, of the pre-image of J; in Tg (K/Kiy N, ,
and let I C TE(K,\)m denote the ideal generated by the images of I; and
I. Then I*N¢ = 0. Let Dy, denote the pushforward of the determinant D; to
TL (K, N)m/I. Then by construction, Dy, is an n-dimensional determinant of
Gr 1, satisfying condition (1) of Proposition 3.1.2 at prime-to-7; places and
condition (2) at each place of R. However, the Chebotarev density theorem and
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[Chel4, Lemma 1.12] imply that Dy, is also equal to the pushforward of Ds to
TL(K, \)m/I. We therefore obtain the required local-global compatibility also
at the gi-adic places of F. The proof of this step is complete on noting that
the exponent 2Nd of I indeed still depends only on n and the degree [F': Q].

We next show that if Proposition 3.1.2 holds under assumptions (1) and
(2) in the statement of the lemma, then it holds under assumption (1). After
possibly enlarging O, we can find characters 91,12 : Gp — O* of finite,
prime-to-p order satisfying the following conditions:

e Both 1,1, are unramified at each place of S.

e There is no rational prime r such that 1,y are both ramified at r.

e For each ¢ = 1,2 and for each place v € R, the characteristic polynomials

of (P ® ¥i)(¢0) and (B ® ¥;))*" @ €' 72")(¢) are coprime.

Let K; =[], ker(+; o Artg, odet : K, — O*) and let T; denote the union of T’
with the set of places dividing a rational prime above which ); is ramified. Let
m; denote the pullback of m to T7:. Proposition 2.2.22 shows that the truth of
Proposition 3.1.2 for Tﬁ' (Ki, N)m, is equivalent to the truth of Proposition 3.1.2
for Tﬁ (Kis Nm, (y;), Which we are assuming. On the other hand, an argument
very similar to the one given in the first part of the proof shows that the
truth of Proposition 3.1.2 for T%(Ki, A)m (2 = 1,2) implies the truth of this
proposition for T? (K, N)m; (i =1,2) and then for TL(K, \)m. A very similar
argument shows that if the Proposition holds under assumptions (1) — (3) in
the statement of the lemma, then it holds under (1) and (2).

We next show that if Proposition 3.1.2 holds under assumptions (1) — (4)
in the statement of the lemma, then it holds under assumptions (1) — (3). Let
K be a good subgroup satisfying assumptions (1) — (3). The natural map

TH(K, X) — lim THRD (X5, V3 /(&™)
m>1
is an isomorphism. For each m > 1, let K (p™) = ker(K — GL,(OFr,/(p™))).
Then K(p™) also satisfies assumption (1). The local system V,/(w™) on
X (pm) is constant, so there is a canonical isomorphism of Hecke algebras

TH(K (™), Va/(@™)) = TRK (™), 0/(=™)).
There is also a canonical surjection
TH(K(p™),0) = TRK(p™), O/(=™)).
We consider the diagram of Hecke algebras
TRE(P™), 0/(@™)) + TRE/K (™), Vz/(@™)) = TH(K, W\ /(@™),

where by Lemma 2.2.3, there is an integer d > 1 depending only on n and
[F' : Q] such that the kernel of the left-hand arrow is nilpotent of exponent
d. By assumption, therefore, we can find ideals I, C TEL(K,V\/(@™))m
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satisfying I,]an = 0 and n-dimensional group determinants D,, of G g1 valued in
TL(K,V\/(@™))m/ I and satisfying the conditions (1) and (2) in the statement
of Proposition 3.1.2. Let

I=%ker | THE, Nm— [ TR VA/(@™))m/Im

m>1

Then IV = 0 and, by [Chel4, Example 2.32], there is a unique n-dimensional
group determinant Dy, valued in T (K, \)m/I whose pushforward to each ring
TL(K, V)/(@™))m/Ln equals D,,. This determinant Dy, necessarily has the
required properties.

We finally show that if Proposition 3.1.2 holds under assumptions (1) —
(5) in the statement of the lemma, then it holds under assumptions (1) — (4).
Assume (1) — (4). We define K = Iz Ky as follows:

e If 5 ¢S, then Ky = G(OFi)‘

e If v € Ry, then KU = ﬁvv(ij 1). If v € R— Ry and v is the unique place
Of R lylng above T, then Kv = Pu1.

o Ky =ker(G(Op+ ) = G(Op+ /(). N

e If T is any other finite place of ™, then fix m > 1 such that ker(G(Op+) —
G(Ops /(@NNG(Ops) € KNG(Ops), and set Ky = ker(@(Os) —
G(Or+ /(@) - (K N G(O).

It is easy to check that K is a good open subgroup of a(A%ﬂ) which is
decomposed with respect to P and which satisfies K N G(A%,) = K. The
group K therefore satisfies condition (5) of the lemma, and the proof of the
lemma, is complete. 0

We henceforth fix a choice of Frobenius lift ¢, € Wg, for each place
v € R and assume that K and m satisfy assumptions (1) - (5) of Lemma 3.2.1,
and prove Proposition 3.1.2 for the Hecke algebra T%(K,0). Let K be the
good subgroup of ET;(AC>o ) as in the statement of the lemma and let TT

’H(G(AOO ), ) ®z O denote the (commutative) O-subalgebra generated by TS
and all the elements t, ;(¢) (v € R,0 € Wg,) and e, i(0) (v € R°—R,0 € Wg,),
as in the statement of Theorem 2.4.8. Thus we have constructed an extension
of the homomorphism S : TS 5 TS to a homomorphism S : Tg — Tg. These
homomorphisms, together with the analogue of Proposition 3.1.2 for the group
G, will be the key to the proof. This analogue is as follows; it makes use of
the resultant Res, € H(é(F;), Kz) ®z O of the polynomials P 4-<(X) and
P, 4,(X) for a place v € R — R®, which was introduced before Proposition
2.2.13.
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PROPOSITION 3.2.2. There exists an integer N > 1, dependmg only on
[F': Q] and n, an ideal IcR C TT(RF (X ,O)) satisfying I = 0, and

a T%(RFC(XI?, (’)))/ICR valued determinant DCR on Gpg of dzmenszon 2n
satisfying the following conditions:

(1) For each place v & S ofF the characteristic polynomzal of Frob, is
equal to the image of P, (X) in (TT(RF (X ,0))/Ip)[X].

(2) For each place v € R, and for each element o € Wg,, the characteristic
polynomial of o is equal to the image ofFvJ(X) in (’Tvg(RFC(Xﬁ, 0))/Ir)[X].

(3) Let trop : TH(RT(Xz, 0))[Grs] = TH(RT(Xz,0))/I.r be the
trace associated to 50,3 (¢f. [Chel4, §1.10]). Then for each place
v € R — R° for each 0 € Gpgs, and for each 7, € Ip,, we have

Resg?n)! EEc,R(U(Tv - 1)Pv,¢>y (¢v)) =0.

We note that this result, in the case where R is empty, is Proposition 2.3.9.
The result in this case is also contained implicitly in the proof of [Sch15, Cor.
5.2.6].

Proof. The proposition can be proved by re-doing the proof of [Sch15, Cor.
5.2.6] to keep track of the action of the additional Hecke operators at R. For
the reader’s benefit, we single out the following essential statement (cf. [Schl5,

Thm. 4.3.1, Cor. 5.1.11)): let C' = Q , and let m > 1 be an integer, and let
T, denote ,Tvﬂ, endowed with the weakest topology for which all of the maps

T% - Ende(H (X, 7 . Kj;K ® 1))

are continuous. (Here the right-hand side, defined as in the statement of [Sch15,
Thm. 4.3.1], is endowed with its natural (finite dimensional C-vector space)
topology and we are varying over all £ > 1 and open compact subgroups
K,cG (F ) such that KPK,, is a good subgroup.) Then for any continuous
quotient Ty — A, where A is a ring with the discrete topology, there is
a unique A-valued determinant D4 of Gpg of dimension 2n satisfying the
following conditions:
e For each place v ¢ S of F', the characteristic polynomial of Frob,, equals
the image of P,(X) in A[X].
e For each place v € R, and for each element o € Wg,, the characteristic
polynomial of o equals the image of ]3;,,0 (X) in A[X].
o Let try : A[GFs] — A denote the trace associated to D4. Then for
each place v € R — R, for each 0 € Gy, and for each 7, € If,, we
have Res{™™" tra(o(ry —1)Py g, (dv)) = 0.
This statement can be proved in exactly the same way as [Sch15, Cor. 5.1.11],
by combining [Chel4, Example 2.32] with the following observation: take a
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cuspidal, cohomological automorphic representation 7 of a(A r+) such that

7K £ 0 and an isomorphism ¢ : Q, — C, and let TL(7) = im(TE ®0

Q,— Endg (¢~ 17%K)). Consider the associated Galois representation (whose
P

existence and local properties are described by Theorem 2.3.3):
TL(%) : GF,S — GLQn(Qp),

and let p : Gps — GLgn(/’fg(%)) denote the composite of r,(7) with the
inclusion GL2,(Q,,) C GLan(TH(7)). Then we have the following properties:

e For each place v € S of F, the characteristic polynomial of p(Frob,)
equals the image of P,(X) in TE(%)[X]

e For each place v € R, and for each element 0 € W, , the characteristic
polynomial of p(c) equals the image of FW,(X) in Tg(%) [X].

e For each place v € R°— R and for each 7, € I,, we have Res\ ™)' p((ry—

l)Pv,tbv (¢v)) =0in MQn(Tg(%))
The first two points follow from Theorem 2.3.3 and Proposition 2.2.8 (note
that the images of P,(X) and E},U(X) in TE(%’) [X] in fact lie in Q,[X]). The
third point follows from the same Theorem and Corollary 2.2.14. (Our appeals
to Theorem 2.3.3 here are the source of our assumption, at the beginning of
this section, that each place of R has residue characteristic which splits in an
imaginary quadratic subfield of F'.) ([l

COROLLARY 3.2.3. There exists an integer N > 1, depending only on
[F : Q] and n, an ideal Iy p C TE(RT(aXf(,O)) satisfying 1), = 0, and
a Tg(RP(@)N([?, O))/TQ,R-Ualued determinant 5@713 on Gpg of dimension 2n
satisfying the following conditions:

(1) For each place v ¢ S of F, the characteristic polynomial of Frob, is
equal to the image of Py(X) in (TH(RL(0X,0))/Is.r)[X].
(2) For each place v € R, and for each element o € W, , the characteristic

polynomial of o is equal to the image ofEW(X) in (Tﬁ(RF(@X§7 O))/T&R)[X].

(3) Let trop : Th(RT(0Xz, O))[Grs] — TH(RL(9X 5, 0))/Ior be the

trace associated to Dy r. Then for each place v € R — R€, for each o €
(2n)!

GF,s, and for each 7, € If,, we have Resy™  tro r(0(To—1)Py ¢, (dv)) =
0.
Proof. There is a /Tvg—equivariant exact triangle in D(O):
Rlo(Xz, O)——RI(Xz, O)——RI(0X 7, 0)—,

and consequently a natural homomorphism

TH(RT (X, 0) ® RT (X, 0)) — TH(RL(0X,0))/J,
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where J is an ideal of square 0. To prove the corollary, it is therefore enough
to show that there is an integer N > 1, depending only on [F' : Q] and n, an
ideal I C TH(RI(X,0)) satisfying I = 0, and a TF(RT(X, 0))-valued
determinant D on G r,s of dimension 2n satisfying the following conditions:
(1) For each place v € S of F, the characteristic polynomial E(X — Frob,)
is equal to the image of P,(X) in TR(RI'(X 5, 0))/1[X].
(2) For each place v € R, and for each element o € Wp,, the characteristic
polynomial of ¢ is equal to the image of P, ,(X) in Tg(RF(Xg, 0))/IX].
(3) Let tr : ’Tvg(}ir()?f(, O)[Grs] — TH(RT(Xz,0))/I be the trace
associated to D. Then for each place v € R — R, for each 0 € GFg,
and for each 7, € I, we have Res\?™)! tr(o (7, — 1) Pyg, (60)) = 0.
By Proposition 2.2.20, there is a commutative diagram (determined by Verdier
duality)

H(G>, K) — Endp (o) (RTe(Xz, 0))

] J

H(G>, K) —— Endp(o(RI (X7, 0)).
Let T(TE)(RFC(X 7> 0)) denote the image of the composite map

Th - H(G®, K) ©7 0 5 H(G™, K) ©z O = Endpo)(RTe(X 5, 0)),

where the first and last maps are the canonical ones. The existence of the above
commutative diagram shows that 7 descends to an isomorphism

H(TH)(RTe(X, 0)) = TH(RI (X7, 0)).

To complete the proof of the corollary, it is therefore enough to show that there
is a determinant 50, r,v of G of dimension 2n with coefficients in a quotient
”E(,'fg)(RFC(X =0))/ fc R,v by some nilpotent ideal fc r,v of exponent bounded
solely in terms of [F': Q] and n, and satisfying conditions analogous to those
required of D. Using the same argument as in the statement of Proposition
3.2.2, it is enough to show the following: let 7 be a cuspidal, cohomological
automorphic representation of G| (Ap+) such that 75K £ 0, and let T(Tg)(%)
denote the image of the composite

T] 90 Q, » H(G®, K®) 97 Q, -+ H(G®, K®) ©7 Q, — Endg (u~'7°5).
Consider the associated Galois representation r,(7) : Gpg — GLa, (Qp), and

let p: Gpg — GLgn(T(Tﬁ)(?T)) denote the composite of ,(7)¥ ® el ~2" with the
inclusion GL2,(Q,) C GL2y (Z(TF)(7)). Then we have the following properties:
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e For each place v € S of F, the characteristic polynomial of p(Frob,)
equals the image of E(X) in Z(T%)(%)[X]
e For each place v € R, and for each element o € Wp,, the characteristic
polynomial of p(o) equals the image of ﬁw(X) in Z(T%)(%) [X].
e For cach place v € R—R* and for each 7, € I, , we have Res\?™)" plo(Ty—
1) Py, (¢0)) = 0 in Mo, ({(TE)(7))-
To see why these properties hold, we note that there is a commutative diagram

H(G>®, K) — Endg ('7"K)

P

1 J

H(G®, K) —— Endap (117K

where the horizontal arrows are the canonical ones and the right vertical arrow

—l%oo,K —17~I.V,oo,K‘

is tranpose with respect to the natural duality between ¢ and ¢
In particular, 7 determines an isomorphism T%(%v) — T(T%)(%) The above
points therefore follow from the analogous points for the cuspidal, cohomological
automorphic representation 7" of G (A p+), already established in the proof of
Proposition 3.2.2, together with the observation that there is an isomorphism

r (7)) 27, (7)Y @72 O

We need one more lemma, which is an analogue of Hensel’s lemma for
group determinants.

LEMMA 3.2.4. Let A be a complete Noetherian local O-algebra with residue
field k and let T" be a group. Fix natural numbers ni,no and set n = ny + no.
Suppose given group determinants D1, Do of I' of dimensions ni,ns with coeffi-
cients in A, and let D = Dy1Do. Suppose moreover that, if D; = D; mod my,
then the semisimple representations p; : I — GLy, (k) with detp; = D; for
i =1,2 have no common Jordan—Hoélder factors.

Then:

(1) For any other group determinants E1, Es of T' of dimensions ny,ny with
E; mod my = D; fori=1,2 and E1Ey = D, we have E1 = Dy and
FEy = Ds.

(2) We have ker D = ker(D7) Nker(D2).

Proof. We will give an expression for D; which depends only on D, Dy,
and Dj. This will establish the first part of the lemma. Let R = A[l'] and let
S = R/ CH(D), where the Cayley-Hamilton ideal CH(D) is defined in [Chel4,
§1.17]. By [Chel4, Lemma 1.21], the homomorphism R — M, (k) x M,, (k)
determined by D1, D5 factors through S. Let €1,€s € M, (k) x My, (k) be the
central idempotents which are the identity in one factor and zero in the other.
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Following [BC09, p. 32, footnote|, we may lift €1, € to idempotents ej, ez € S
such that e; +es =1 and ejeqs = 0.

We now consider the polynomial law D1 ., on e;Sey given by the formula
Di e, () = Di(x+e2). According to [Chel4, Lemma 2.4], D1 ., is a determinant
e1Se; — A of some dimension d; < nj. Reducing modulo m4, we see that
dy = ny. It follows that the polynomial law D1 ., on e2Ses given by the formula
Dy c,(z) = Di(x + e1) is of dimension 0, therefore constant and equal to 1.
Working over A[X], and invoking [Chel4, Lemma 2.4(2)], we have

Dl(X — 62) = Dl,el (X) = an,
hence e5' = ey € CH(D;) C ker(D;). Similarly we deduce that e; € ker(Ds).
We find that for any A-algebra B and any x € S ® 4 B, we have

Di(z) = Dy(e1x + eaz) = Di(e1z),

and so

D(elx + 82) = Dl(xel) = Dl(l’)
Since the expression Di(x) = D(e1x + ez) only depends on D, D1, and D,
this proves the first part of the lemma. For the second, we note that the
inclusion ker(D;) Nker(Dy) C ker(D) follows immediately from the definition.

For the other inclusion, take x € ker(D), an A-algebra B, and y € R®4 B. By
symmetry, it is enough to show that D (1 + zy) = 1. We have

Di(1+zy) = Di(er(1+zy)) = D(1 + erzy) =1,
since ez € ker(D). This concludes the proof. O
We can now complete the proof of Proposition 3.1.2.

Proof of Proposition 3.1.2. Let m = 8*(m) C TS. By Theorem 2.4.8, the
map S descends to a homomorphism

TH(RT(0X,0)z) — THRD (X, O)m).

By Propositions 2.2.15, 2.2.17 and 2.2.18 and Corollary 3.2.3, we see that we
can find an integer N > 1, depending only on [F : Q] and n, an ideal I C
TL(RD(Xk, O)y) satisfying I5 = 0, and a TE(K, 0)n/Ig-valued determinant
D' on Gpg of dimension 2n satisfying the following conditions:

(1) For each place v &€ S of F, the characteristic polynomial of Frob,, under

D' is equal to the image of P,(X)gi™ ™ PY.(¢1=2" X) in (TL (K, 0)m/Ir)[X].

(2) For each v € R and for each 0 € W, the characteristic polynomial of
ST el X)
v v

c C
ve,o

o under D' is equal to the image of P, ,(X)||o||
in (TH(K, 0)m/Ir)[X].

(3) Let t' : TE(RT (X, O)m)[Grs] — TH(RT (XK, O)w) /IR be the trace
associated to D’. Then for each place v € R — R°, for each 0 € Gz,
and for each 7, € Ir,, we have Res\?™)' tr'(o(1y — 1) Py ¢, (¢0)) = 0.
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By Theorem 2.3.7, we can assume (after possibly enlarging Iz and increasing N
in a way still depending only on [F': Q] and n) that there exists a continuous
representation py : Gpg — GL,(TE(K,0)n/Ir) such that for each finite place
v &S of F, det(X — pwm(Frob,)) equals the image of Py(X) in TE(K,0)wm/IR.
Let D = det p. Looking at characteristic polynomials of Frobenius elements for
places v ¢ S, we conclude that D' = det(pm @ pr’ ® €!72") = D(D%Y ® ! 727).
(Note that our notation for twisted determinants is chosen so that it matches
the twisted representation; the polynomial law underlying D%V ® ' ~2" is given
by twisting with det(e!=2") = ¢"(1=27) ) To complete the proof of Proposition
3.1.2, we need to show that D satisfies the following conditions:
e For each place v € R and for each o € W, , the characteristic polyno-
mial of o under D is the image of P, »(X) in ThL(K,0)wn/Ig.
e D factors through Gpr and for each v € S — T, the characteristic
polynomial of Frob, under D is the image of P,(X) in TH(K,0)n/Ir.

We will then (in the notation of Proposition 3.1.2) be able to take Dy g = D.
We take points these in turn. If v € R, then there is a unique n-dimensional
group determinant E, of Wg, with coefficients in T%(K,0)n such that for
each o € Wp,, the characteristic polynomial of ¢ under E, equals the image
of P, ,(X). Similarly if v € R® — R there is a unique n-dimensional group
determinant E, of W, with coefficients in TH(K, 0)y which is unramified and
such that the characteristic polynomial of Frob, equals P,(X). Our assumptions
imply that for each v € R, we have D|y, (D“V @€' ™")|y, = E,(ESY @€l =21,
We would like to deduce that Dy, = E..

We first show that this holds in any quotient of T%(K,0)m by a maximal
ideal. (Recall that m is, by assumption, a maximal ideal of T (K, 0), so that
the ring TH(K,0)y is not necessarily local.) By assumption (i.e. by Lemma
3.2.1(3)), there is a character ¢ : Gpg — O*, unramified above RUR°U.S),, such
that for each place v € R, the characteristic polynomials of ¥(Frob,)p,(¢,) and
(Frobye) ™ (5, ® P @€' =2")(¢,) are coprime. On the other hand, Proposition
2.2.22 implies that we have for any v € R equalities

det(pm @YD (P @)Y @€' 2wy, = (Bu@lw, ) (Boe @1, )oY @' 721).

Looking at the roots of the characteristic polynomial of ¢, in each determinant
and using the bijection between group determinants over a finite field and
isomorphism classes of semisimple representations [Chel4, Theorem 2.12], we
conclude that we must have det py,|w,, = £, mod n for every maximal ideal
n C TE(K,0)m. Lemma 3.2.4 then immediately implies that we have Dy, =
det pm|wy, = Ey.

It remains to check that for each place v € R — R® (hence v¢ € S —T),
pm‘WFvc is unramified and det(X — pm(Frob,e)) equals the image of Py (X)
in TL(K,0)m/Ir[X]. Equivalently, we must check that for each place v €
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R—R¢, p3” ®€' "2y, is unramified and det(X — (pa’ @€' =27)(Frob,)) equals
the image of ¢r®* VY PY.(¢1=2"X) in TE(K,0)m/Ig[X]. The computation of
det(X — (p3" ® €=2")(Frob,)) follows from what we have done already, so
we just need to show that p5’ @ 61*2”|WFv is unramified. (Note that this is
stronger, in general, than the assertion that the associated group determinant
of p" @ €=y, is unramified.) To show this, we use the following set of
relations, which follow on applying S to the corresponding set of relations for
the determinant D’:

e For each place v € R — R, for each 0 € G, and for each 7, € I,

we have

S(Resy) *' tr(pm(0(0 — 1) Poyg, (60)))
+S(Resy) W tr((pY @ €' 72" (0 (10 — 1) Py, (60))) = 0.

We have already seen that if v € R — R® then P, 4, (pm(¢v)) = 0, so we deduce
that for each v € R — R° and for each ¢ € G s and for each 7, € Ir,, we have

S(Res,)® tr((pgY @ €72 (0(m = 1) Py, (60))) = 0.

By definition, Res, € T% is the resultant of the polynomials P, 4, (X) and
P 4-1(X) in TE[X ]. The images of these polynomials in TE[X] under the
map 'S are computed by Proposition 2.2.18; they are (respectively) P, 4, (X)
and qg(%*l)Pvcyqs_cl(q%_Q”X) = qff@n*l)PXC (¢72"X). Thus S(Res,) € TE is
the resultant of these two polynomials, and the image of S(Res,) modulo any
maximal ideal of T%(K,0)y coincides with the resultant of det(X — Py (¢v))
and det(X — 73" ® €'72"(¢,)). These polynomials in k[X] are coprime by
assumption (cf. Lemma 3.2.1), so we find that S(Res,) is a unit in T%(K,0)n
and therefore that we have the stronger identity

tr((p’ @ €72 (0 (10 = 1) Py, (¢0))) = 0.

The matrix (pg” @ €'727)(P,.4,(¢0)) = Py, ((pa’ @ €'72")(¢,)) has unit de-
terminant. Since p,, is absolutely irreducible and ¢ € G is arbitrary, we
conclude that we must have (pg’ @ €!=2")(r, — 1) = 0 for all 7, € I, or,
equivalently, that pm|WFvc is unramified. This is what we needed to show. [

4. Local-global compatibility, | = p (Fontaine—Laffaille case)

4.1. Statements. Let F' be a CM field containing an imaginary quadratic
field, and fix an integer n > 1. Let p be a prime, and let E be a finite extension
of Q, inside Qp large enough to contain the images of all embeddings of F' in
Qp. We assume throughout this chapter that I’ satisfies the following standing
hypothesis:
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e The prime p is unramified in F'. Moreover, F' contains an imaginary
quadratic field in which p splits.

Let K C GL,(A%) be a good subgroup, and let A € (Zﬁ)Hom(F’E). Let S
be a finite set of finite places of F', containing the p-adic places, stable under
complex conjugation, and satisfying the following condition:

e Let v be a finite place of F' not contained in S, and let [ be its residue
characteristic. Then either S contains no [-adic places of F' and [ is
unramified in F', or there exists an imaginary quadratic subfield of F
in which [ splits.

We recall (Theorem 2.3.7) that under these hypotheses, that if m € T(K, )
is a non-Eisenstein maximal ideal, then there is a continuous homomorphism

pm 2 Gps — GLy (T (K, \)m/J)

characterized, up to conjugation, by the characteristic polynomials of Frobenius
elements at places v € S; here J is a nilpotent ideal whose exponent depends
only on n and [F': Q. Our goal in this chapter is to show that under certain
conditions, we can show that the restrictions of p, to decomposition groups
at the p-adic places of F' satisfy conditions coming from p-adic Hodge theory.
More precisely, we can show, after perhaps enlarging the nilpotent ideal J, that
they are Fontaine—Laffaille with the expected Hodge—Tate weights.

Before stating the main theorem of this chapter we first briefly recall some
of the properties of the Fontaine-Laffaille functor [FL82], with normalizations
as in [CHTO8, Section 2.4.1].

Let v be a p-adic place of F. We are assuming that F,/Q,, is unramified.
Let MFo be the category of finite O, ®z, O-modules M equipped with the
following data.

e A decreasing filtration Fil° M of Op, ®z, O-submodules that are direct
summands as Op,-modules. For an embedding 7: F,, — E, define
the filtered O-module M, = M ®OF, ®2z,0 O where we view O as an
OF, @z, O-algebra via 7 ® 1. We assume that for each 7, there is an
integer a, such that Fil*" M, = M, and Fil* P~ M = 0.

. Frob;1 ® 1-linear maps ®: Fil' M — M such that <I>i|Fﬂi+1 M= pditl
and M =), @' Fil' M.

Note that for M € MFp,

Fil' M = [[Fil' M; and & =]]®, with &%: Fil' My — M, pg, -
Given a tuple of integers a = (a,) € ZH™FvE) we let MF% be the full

subcategory of MJF ¢ consisting of objects M such that for each 7, Fil%" M, =
M, and Fil**tP~L M. = 0. We write M]:% for M]:g)"”’o). We let MF;, and
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MUF3 be the full subcategories of MFp and MF¢), respectively, of objects
annihilated by .

When p > 2, there is an exact, fully faithful, covariant functor G from
MF % to the category of finite O-modules with continuous O-linear G, -action
(see [CHTOS8, Section 2.4.1], where G is denoted G). The essential image
of GY is closed under subquotients, and the restriction of G to MF 2 takes
values in the category of continuous G, -representations on finite dimensional
k-vector spaces. Moreover, if M; and M, are objects of M]-'% such that
My ®OF, ®z,0 My also lies in M}%, then

(4.1.0) GO (M) ®0p, 05,0 Ma) = G*(M;) ®0 GO (Mp).

We extend G to a functor G on MFp by twisting as follows. Fix M € MFp
and a = (a,) € ZHomFwE) guch that M € MF%. Define the crystalline
character ¢,: Gp, = O* by

g 0 Artp (z) = HT(x)_“T for z€Of and g0 Artg,(p) =1,

and the object M (a) € M]—"?g by Fil? M(a); = Fil't% M, and q)ZM(a) = q’iﬂ?-
We then set
G(M) = G (M(a)) @0 a.

Using (4.1.0), one checks that this is independent of a such that M € MF¢,.
We will denote by G® the restriction of G to MF¢. Any G® is fully faithful
and its essential image is stable under subquotients, but G is not full on all of
MFo. We note also that the essential image of G is stable under twists by
crystalline characters.

Let M be an object of MJF}. For each embedding 7: F, — E, we let

FL,(M) be the multiset of integers i such that
griM ®0Fv®zpk k 7é 07

counted with multiplicity equal to the k-dimension of this space, where we view
k as a Of, ®z, k algebra via 7 ® 1. If p > 2 and M is a p-torsion free object of
MF o, the representation G(M) ®o E is crystalline and for every embedding
7: F, — E we have

HT.(G(M) ®o E) = FL,(M ®0 k).

Moreover, if W is an O-lattice in a crystalline representation of G, such that
every T-Hodge-Tate weight lies in [a,, a, + p — 2] for some integer a,, then W
is in the essential image of G®.

We can now state the main theorem of this chapter (with the same num-
bering as it occurs again immediately before the proof).
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THEOREM 4.5.1. Let m C T9(K,\) be a non-FEisenstein mazimal ideal.
Suppose that TS (K, \)/m = k has residue characteristic p. Let T be a p-adic
place of FT, and suppose that the following additional conditions are satisfied:

(1) The prime p is unramified in F', and F' contains an imaginary quadratic
field in which p splits.

(2) Let w be a finite place of F not contained in S, and let | be its residue
characteristic. Then either S contains no l-adic places of F and [ is
unramified in F, or there exists an imaginary quadratic field Fy C F in
which | splits.

(3) For each place v|v of F', K, = GL,(OF,).

(4) For every embedding T : F — E inducing the place v of FT,

)\7,1 + )\Tc,l - A7—,n - )\Tc,n <p-— 2n — 1.

(5) p > n?.
(6) There exists a p-adic place V' # v of F such that

S IF Q> Fiq)
v #£v,v
(7) Pu 1s decomposed generic (Definition 4.3.1).
(8) Assume that one of the following holds:
(a) H* (XK, V2)m[1/p| # 0, or
(b) for every embedding T: F — E inducing the place v of F'T,

_ATC,TL - /\T,n <p—2n—-2 and - )\Tc,l - )\T,l > 0.

Then there exists an integer N > 1 depending only on [F : Q] and n, an ideal
J C TS(K, \) satisfying J™ =0, and a continuous representation

pm 2 Grs — GLy (T (K, \)m/J)

satisfying the following conditions:

(a) For each finite place v ¢ S of F, the characteristic polynomial of
pm(Frob,) equals the image of Py(X) in (T (K, \)m/J)[X].

(b) For each place v[v of F, pm|cy, is in the essential image of G* (with
0 = (\rp) € ZHOMEE))

(¢) There is M € MFy, such that pyla, = G(M) and for any embedding
T: Fy — F,

FL,(M)={A1+n—1Ao+n—2,..., A}

The rest of this chapter is devoted to the proof of Theorem 4.5.1. The
proof will be by reduction to known results for automorphic forms on G (in
particular, Theorem 2.3.3).
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4.2. A direct summand of the boundary cohomology. In this section, we
show how to realize the cohomology of Xk as a direct summand of the coho-
mology of the boundary 8X ~ of the Borel-Serre compactification of X . This
is the first step in relating the cohomology of X to automorphic fOI‘IIlb on
G. We must first introduce some new notation, in addition to the notation
introduced in Section 2.4.

We recall (cf. §2.2.1) that we write S, for the set of p-adic places of
F , Sp for the set of p-adic places of F', and that we have fixed a subset

S, ={v | v € S,} with the property that S, = S U SC Moreover, we write I
for the set of embeddings 7 : F' — E inducing a place of Sp. For any v € S,
we write Iy for the set of embeddings 7 : F — F inducing v. Similarly, we
write Iy for the set of embeddings 7 : F* < E inducing v,

These choices determine an isomorphism (Resp+ /Q G)p = er i, GLo,,.
For any embedding 7 : F'™ < E, we set

W; = W(5®F+,T E7T®F+,T E)

and
WP,T = W(G ®F+,T E, T ®F+,T E),

these may be identified with the Weyl groups of GLs,, and GL,, x GL,,, respec-
tively. Since G is equipped with the Borel subgroup B, we may also define the
subset, Wf C W of representatives for the quotient Wp\W, (cf. §1.2). We
write pr € X*(T ®@p+ . E) for the half-sum of the B ® p+ , E-positive roots.

If v € S, then we set Wy = HTGIﬁ Wr, Wpzy = HTGIﬁ Wp, and Wt =
[l ern WFP. We define p; € X*((Rest/Qp T)E) to be the half-sum of the
(ResF;/QP B) g-positive roots; thus we can identify py = ZTeHom(Fgﬂ) pr-
Given a subset T C S, we set We = [lyer Wo, and define WP,T and W%D
similarly. If T" = S),, then we drop 7" from the notation; thus W may be identified
with the Weyl group W ((Resp+/q é)E, (Resp+/q T)k) of (Resp+/q G)g. We
write [ : W — Z>q for the length function with respect to the Borel subgroup
B, and p € X*((Resp+,q 1)) for the half-sum of the (Resp+,q B)g-positive
roots; thus we can identify p = ZEESP 0%

If A e (Zi")Hom(F+’E), and ¥ € S, then we set

Y Y n\Hom (F.
A = ()‘T)TEHome(Fgr,E) € (Z2+ )H (F5 7E)'
IfAe (Zi)Hom(F’E), and v € S, then we set

H F Ft E
)\i = ()\T)TGHOIHQP(FT],E)UHOHIQP(Fgc,E) € (Z’ZL) Ome( Drt )
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THEOREM 4.2.1. Let K C (N;(A%ﬁ) be a good subgroup which is decomposed
with respect to P, and with the property that for each v € Sp, I?Uj = U(OFg')'
Let m C T be a non-Eisenstein mazimal ideal, and let m = S*(m) C TS,

Choose a partition S, = S1 U So. Let X e (Zi")Hom(FJr’E) and \ €
(ZC‘F)Hom(F’E) be dominant weights for G and G, respectively. We assume that
the following conditions are satisfied:

(1) For each® € S1, \g = Ay (identification as in (2.2.2)).

(2) For each v € So, Xg =0.

(3) For each @ € Sy, there exists wy € W such that Ay = wy(py) — po-
(4) p > n? (We recall our blanket assumption throughout §4 that p is

unramified in F'.)
If v € S1, we let wy denote the identity element of Wy, We let w = (’U}ﬁ)ﬁegp.
Then for any m > 1, RI'( Xk, Va/@™)u[—l(w)] is a TS -equivariant direct
summand of RT'(0X, V5 /@™ ).

(If S is a ring and A, B € D(S) are complexes equipped with homomor-
phisms of S-algebras

fa: R — Endp(s)(A), f5: R — Endps)(B),

then we say that A is an R-equivariant direct summand of B if there is a
complex C € D(S) equipped with a homomorphism of S-algebras

fC R — EndD(S)(C)

and an isomorphism ¢ : B = A @& C in D(S) such that for each r € R, we have
fe(r) =971 o (fa(r) ® fc(r)) 0 ¢.)

Proof. By Theorem 2.4.2, it is enough to show that RT'(X g, V) /@™)[—l(w)]
is a T -equivariant direct summand of RI'(X %, Vi/@™). We will argue in a
similar way to the proof of Theorem 2.4.4. N

Looking at the proof of Theorem 2.4.4, we see that there is a T*-equivariant
isomorphism

o ~ =5 PSxK Ky,

RP(XI%P, V5/w™) 2 RU(Kp x Kg, RT(Inf s % Xa, RL "5V /w™))
in D(O/@™), where TS acts on both sides via the map rp, and that the current
theorem will be proved if we can establish the following claim:

o leU’SVX/wm admits V) /@™ [~I(w)] as a direct summand in D(Shps ;. (Xq)),
the derived category of P° x Kg-equivariant sheaves of O /w™-modules
on Xg.
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In fact, leU’SVX/wm is pulled back from RI‘(IN(U,S,VX/W’") € DN(ShKS (pt)),
so it suffices to show that V) /@™ [—I(w)] is a direct summand of RI'(Ky,s, V5 /@™)
in this category. N N
We observe that Ky g = H@e? Ky 3, and that VX admits a corresponding
decomposition V5 = ®§€§pvxv. By the Kiinneth formula, it is therefore enough
to show the following two claims:
(1) If v € Sy, then V,_/w™ is a direct summand of RF(IN(U@ Vi_/@™) in
D(O/wm[Kg X Kgc]).
(2) Ifv € Sg, then Vy_/w™[—1(wy)] is a direct summand of RT(Ky 5, O/w™)
in D(O/wm[Kg X K;,c]).
The first claim can be proved using the same argument as in the end of the proof
of Theorem 2.4.4. The second claim follows from Lemma 4.2.2 and Lemma

4.2.3 below (this is where we use our hypothesis p > n?). This completes the
proof of the theorem. O

LEMMA 4.2.2. Letv € §p’ let K = Fg, and fix an integer m > 1.

(1) For each i € Z>q there is a G(Ok)-equivariant isomorphism
H'(U(Ok),0/w™) = Homg, Ay, U(Ok),0/w™) = Homo (A (U(Ok)®2,0),0/=™)

with G(Og)-action on the right hand side induced by its conjugation
action on U(Ok).

(2) Suppose p > 2n — 1. Given w € WL, let Ay = w(py) — pv €
(Z’}r)HomQP(F@’F*F;’E) (using the identification (2.2.2)). For each i €
Z> there is a G(Ok)-equivariant isomorphism

Homo (AH(U(Ok) ©z, 0),0) = P Wi,

Proof. Note that U(Of) is isomorphic (as an abstract group) to ZZ2[K:Q”].
The usual isomorphism H!(U(Ok), O/w™) = Homg, (U(Ok), O/w™) extends,
by cup product, to a morphism A* Homz, (U(Ok),O/w™) = H*(U(Ok),O/x™).
This can be seen to be an isomorphism using the Kiinneth formula. This proves
the first part of the lemma.

For the second part, given 7 € Homq, (K, E) and w € WP let A\, =
w(pr) — pr € (Z77)%. Tt is enough for us to show that for each i € Z>q there is
a G(Ok)-equivariant isomorphism

Homo (Ao (U(Ok) ®0y.r 0),0) 2 €D Vi,

wewl
(w)=t
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After tensoring up to E we do have such an isomorphism, by [Kos61]:

Homo (Ao (U(Ok) ®oyr 0), E) = D Va,.

wEWP

l(w):i
Since p > 2n — 1, it follows from [Jan03, Cor. I1.5.6] that V), ®p k is a simple
G ®o, + k-module for all w € Wf . It follows that intersecting the lattice
Homo (AL (U(Ok) ®0 .+ 0),0) with a copy of V), arising from the above
decomposition gives a sublattice isomorphic to V,,. By the remark following
[Jan03, Cor. I1.5.6], we know that there are no non-trivial extensions between
the simple modules V), ®o k with varying w. Combining this with the universal
coefficient theorem [Jan03, Prop. 1.4.18a] we deduce that there are also no
non-trivial extensions between the G ®o, » O-modules V), . This implies the
existence of the desired isomorphism. O

LEMMA 4.2.3. Letv € Sy, let K = Fj, and fix an integer m > 1. Suppose
that p > n%. Then we have a natural isomorphism (inducing the identity on
cohomology)

”Z[KQP]
RI(U(Ok), O 5 P H(UOkK),0/=™)i]
=0

in D(O/@™[G(Ok))]).
Proof. We have already observed that there is an isomorphism
RU(U(Ok),0/w™) S HY (U (Ok),O/=™) @ >1RT'(U(Ok), O /w™)

(see claim (1) in the proof of Theorem 4.2.1). Under the assumption that p > n?
we can distinguish the remaining degrees of cohomology appearing in the above
direct sum using the action of central elements of G(Ok). Let f = [K : Q).
The centre of G(Ok) is (OF ®o,,, Ok)* and an element z € (Of ®o,., Ok)*
acts on U(O) as multiplication by (Np/p+ ®id)(2) € Og. We denote by ¢
a primitive p/ — 1 root of unity in Oj. We can choose an element z of the
centre of G(Ok) of order p/ — 1 which acts as multiplication by ¢ on U(Ok).
It follows from Lemma 4.2.2 and the decomposition

U(Ok)®z,0= P U(Ok) @000

0:0Og—0

that, for each degree i, we have a decomposition of H'(U(Ok),O/=™) into a
direct sum of G(Og)-modules

M;,y = Homp <®/\ U(Ok) ®0y o ),(’)/wm>



76 P. ALLEN ET AL.

indexed by f-tuples of integers

{(Z‘U)J:OK‘—KQ :0< 4, < n2, Zia = Z}

g

The action of z on M; ) is multiplication by [],o(¢)~%, so if we fix an
embedding oo and write i; for the jth Frobenius twist of oo then z acts as
F-1, i

multiplication by oo (¢ )72j:0 %P’ Since we are assuming p > n?, the value of
ZL_& zyp] mod pf — 1 determines the integers tj uniquely, with the exception
(only occurring if p = n? + 1) of when this value is 0 mod p/ — 1, in which
case there are two possibilities: i, = 0 for all ¢ and i, = p — 1 for all
0. As a consequence, for each degree 1 < ¢ < n?f we can write down an
idempotent e; € O[z] which induces the identity on H'(U(Ok),O/w™) and
the zero map on other degrees i’ # i. There is a homomorphism O[z] —
Endp0/wm(cox) (T>1RL(U(Ok), O/w™)), so the idempotent-completeness
of the derived category implies the existence of a natural decomposition

n2f
71 RT(U(Ok), 0/w™) = @ e;RT(U(Ok ), 0/=™).
i=1
This completes the proof. O

4.3. Cohomology in the middle degree. In this section we state the funda-
mental result that we need to study cohomology in the middle degree using
automorphic representations of G. We first need to recall a definition ([CS17,
Defn. 1.9] — although note that since our representations are in characteristic p,
the roles of p and [ are reversed).

DEFINITION 4.3.1. Let k be a finite field of characteristic p.

(1) Let I # p be a prime, and let L/Q; be a finite extension. We say
that a continuous representation T : G — GLy (k) is generic if it is
unramified and the eigenvalues (with multiplicity) a1,...,an € k of
7(Froby) satisfy a;/a; # |Or/my| for all i # j.

(2) Let L be a number field, and let 7 : G — GL,(k) be a continuous
representation. We say that a prime | # p is decomposed generic for 7
if 1 splits completely in L and for all places v|l of L, F|a,, is generic.

(3) Let L be a number field, and let 7 : G, — GL,(k) be a continuous
representation. We say that 7 is decomposed generic if there exists a
prime | # p which is decomposed generic for T.

Note that if 7 and 7’ give rise to the same projective representation then
one is (decomposed) generic if and only if the other is.
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LEMMA 4.3.2. Let L be a number field, and let 7 : G — GLy (k) be a
continuous representation. Suppose that T is decomposed generic. Then there
exist infinitely many primes | # p which are decomposed generic for 7.

Proof. Let K'/Q denote the Galois closure of the extension of L((,) cut
out by 7. Let Iy be a prime which is decomposed generic for 7; then any other
prime ! which is unramified in K’ and such that Frob;, Frob;, lie in the same
conjugacy class of Gal(K'/Q) is also decomposed generic for 7. There are
infinitely many such primes, by the Chebotarev density theorem. U

Let d = n?[F* : Q] = 1 dimg X = dimg X + 1.

THEOREM 4.3.3. Suppose that [F* : Q] > 1. Let m C TS(K,)\) be a
maximal ideal, and suppose that ps has length at most 2. Suppose that S
satisfies the following condition:

e Let v be a finite place of F not contained in S, and let | be its residue
characteristic. Then either S contains no l-adic places of F and [ is
unramified in F, or there exists an imaginary quadratic field Fy C F in
which | splits.

Suppose that pg is decomposed generic, in the sense of Definition 4.3.1. Then
we have

HY(X 2 Vi[1/p)s & HYX 5, Vs — HUOX . Vi)a

Proof. This is an immediate consequence of the main result in [CS19b].
This states that

Hi(Xz,Vs/w)q =0if i <d, and H(Xz, V;/w)g = 0 if i > d,

under the assumptions on m in the statement of the theorem. By considering
the short exact sequence of sheaves of O-modules on X

0—>Vx—>VX—>Vx/w—>0

and taking cohomology, we see that Hd(Xf(, V5i)amlw] = 0, since H1 Xz, V5/w) =
0. By considering the excision sequence for

XI? — Xg,

we see thatNthe cokernel of the map Hd(kvf(, V& — Hd((‘)fl?, Vi)m injects
into HI (X, V5) = 0. O

PROPOSITION 4.3.4. Suppose that [F : Q] > 1. Let K C E(A%ﬂ) be a
good subgroup which is decomposed with respect to P. Let \ € (Zi")Hom(FJr’E).
Fix a decomposition Ep = 51U S,y. Suppose that the following conditions are

satisfied:
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(1) For each T € Sa, Ay = 0.

(2) Let v be a finite place of F' not contained in S, and let | be its residue
characteristic. Then either S contains no l-adic places of F' and 1 is
unramified in F', or there exists an imaginary quadratic field Fy C F in
which 1 splits.

(3) p>n? (We remind the reader of our blanket assumption in §4 that p
is unramified in F.)

Let w € Wg;, and let Ay = wX +p) — p € (Zn)Hom(FE)  Let m ¢ T9
be a non-Eisenstein maximal ideal in the support of H*(Xk,Vy, ), and let
m = S*(m) C T, and suppose that g is decomposed generic. Then the map

S: TS = TS descends to a homomorphism
T (H (X, Vi)a — TS (H Xk, Vo)
Moreover, the map
T (H (X Vi)a — T (H (X, V)l /p)
18 injective.
Proof. This results on combining Theorem 4.3.3 and Theorem 4.2.1. [

We introduce some useful language.

DEFINITION 4.3.5. A weight X € (Z*)o™(FE) will be said to be CTG
( “cohomologically trivial for G”) if it satisfies the following condition:

o Given w € WP, define Ay = w(A+p) — p € (zn)Hom(FE) - Then for
all w € WP and for all iy € Z, there exists T € Hom(F, E) such that
)\’w,T - /\2/11,7—(: 7é (iOa 10, - - - 7i0)‘

This definition will be useful to us because Proposition 4.3.4 shows how to
relate a Hecke algebra for G acting on cohomology with integral coefficients to
a Hecke algebra for G acting on cohomology with rational coefficients of weight
Py (say). If the weight X is moreover CTG, then Theorem 2.4.11 (together with
the purity lemma [Clo90, Lemma 4.9]) shows that this rational cohomology can
moreover be computed in terms of cuspidal automorphic forms for 5, which
have associated Galois representations with well-understood local properties.

Exploiting this is not straightforward since the weight for G depends both
on the chosen weight X and the chosen Weyl group element w (which must be
of a suitable length I(w) in order to target a particular cohomological degree
for Xg ). This problem will be dealt with in the next section with a ‘degree
shifting’” argument.

We first state a lemma which shows that there are “many” dominant
weights for G which are CTG:
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LEMMA 4.3.6. Suppose that [F* : Q] > 1. Let A € (Z2*)Hom(F"E) - gpg
fiz a choice of embedding 79 : F* < E. Then there exists = (Zi")Hom(F+7E)
satisfying the following conditions:

(1) Ar = X, for all T # 7.
(2) X is CTG.

Proof. Let T # 19 be another embedding 7 : F* < E. Note that a domi-
nant weight 1 € (Zi”)Hom(F "E) is CTG if it satisfies the following condition:
for all w € WF, we have

n

n
(4'3'7) Z(Mw,?,i - Nw,?’c,i) 7& Z(/Lw,ﬁ),i - Hw,ﬁ)c,i)'

=1 =1

Let a € Z>o, and define N e (Zi")Hom(F+’E) by the formula X’T =\, if T # 70,
Ngd = Al +ay AL = Agy i if @ > 1. Then X' will satisfy condition (4.3.7) as

70,

soon as « is sufficiently large (in a way depending on X) ([

4.4. The degree shifting argument. We are now going to show how to use
Proposition 4.3.4 to control the Hecke algebra of G acting on the cohomology
groups H4(X g, V). We will do this “one place of F* above p at a time”.
The argument will involve induction on the cohomological degree g. Since
the cohomology groups of locally symmetric spaces for G may contain torsion,
one needs an inductive argument to pass from the cohomology groups with
O-coefficients (which appear in Proposition 4.3.4) to cohomology groups with
O /w™-coefficients (where one can use congruences to modify the weight).

The first step is the following proposition. Given a non-Eisenstein maximal
ideal m C T, we will set m = S*(m) € T°. We will use the notation

A(K, X, q) = T9(HY Xk, Va)m),

AK, N, q,m) = TS(HY X g, Vr/@™)m),
and
A(K,X) = TS HY X, V5)q).

Note that there is no natural morphism A(K, X, q) — A(K, A, q,m).

PROPOSITION 4.4.1. Let®, v be distinct places of Sp, and let \ € (ZQ‘_)HOIH(F’E).

(The condition that S, has at least two distinct places implies, in particular,
that F* # Q.) Fiz an integer m > 1. Let K C G(AY,) be a good subgroup.
Suppose that the following conditions are satisfied:

(1) For each embedding 7 : F — E inducing the place v of F*, we have
_)\Tc,l - Ar,l > 0.
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(2) We have
S IF Q> Fiq)

v"eSy
E";ﬁﬂ,?’

(3) For each p-adic place v" of FT not equal to v, we have

~ 1, = m
U(OF;;/) C Kg// C {( 0 1n ) mod wv//} .

We have Ky = (NJ((’)F;)

(4) p > n? (We recall our blanket assumption in §4 that p is unramified
in F.)

(5) Let v be a finite place of F not contained in S, and let | be its residue
characteristic. Then either S contains no l-adic places of F' and 1 is
unramified in F', or there exists an imaginary quadratic field Fy C F in
which 1 splits.

(6) m C T is a non-Eisenstein maximal ideal such that pg is decomposed
generic.

Define a weight X € (Zi”)Hom(FJr’E) as follows: if T € Hom(F™, F) does not
induce either v or v, then XT = 0. If 7 induces U, then we set

XT = (—)\%qm e AR AT L )\F,n)'

(Note that this is dominant because of our assumption on \.) If T induces U,
then we choose XT to be an arbitrary element of Z%_”.

Let q € H%J ,d — 1]. Then there exists an integer m' > m, an integer N >
1, a nilpotent ideal J C A(K,\,q,m) satisfying JN = 0, and a commutative
diagram

TS — 5 A(K(m'), \)

|l

TS —— A(K,\,q,m)/J

where %(m’) C K is the good subgroup defined by setting

K(m/)ﬁ// = %ﬂ// M {( 1(? 1* ) mod W:};} C a/(OFj,)

if v is a p-adic place of FT not equal to v, and IN((m’)gu = f(%u otherwise.

(Thus K = K(m), by hypothesis.) Moreover, the integer N can be chosen to
depend only on n and [FT : Q].

Proof. The idea of the proof is to choose a Weyl group element w = w(q) €
WP such that I(w) = d— g and a weight \ such that A\ = w(\+p) — p, and then
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apply Proposition 4.3.4. The actual argument is more subtle, because we need
to work with O-coefficients in order to access the Hecke algebras E(K ) X), whilst
the Hecke algebras A(K, A, ¢, m) act on cohomology with torsion coefficients.
We argue by descending induction on ¢, the induction hypothesis being as
follows:

Hypothesis 4.4.2. Let q € H%J ,d— 1]. Then the Proposition holds for
every cohomological degree ¢ € [¢+ 1,d — 1] and every m € Z>;. Moreover, the

integer N can be chosen to depend only on n, [F* : Q], and q.

The induction hypothesis is always satisfied when ¢ = d — 1. Assume
the induction hypothesis holds for some ¢ € H%J +1,d— 1]. We will prove
that the induction hypothesis holds for ¢ — 1. Let us fix m, K ,and A as in
the statement of the proposition. Note that the TS-algebra A(K,\,q,m) is
independent of Ay for ¥ € S, " # v, because Kg acts on V,/w™ via the
projection to K3. Modifying A, we can therefore assume that in fact Ay = ng.

Let S1 = {v,v'}, and Sy = S, — S1. Let w = w(q) € Wéz be any element
of length [(w) = d—¢q. Such an element exists because for any 7 € Hom(F*, E),
I(w,) takes all integer values in [0,n?] as w, ranges over elements of W. We
have chosen our totally real field F'* to satisfy

Z [F, - Qp) > %[F"' 1 Q.

T'"€Ss

This means that the desired sum can take any value in [0, % + ”72] On the other
hand, g € H%J ,d], sod—q<d-— L%J Since n > 1, we can indeed make an
appropriate choice of w.

Now we let X'(¢) = w(q)(X + p) — p. This can be different from A precisely
at those embeddings inducing a place of S,. In particular, the Hecke algebras
A(K, N (q),q,m) and A(K, )\, q,m) are canonically isomorphic as T*-algebras,
once again because Kg acts on both Vy (4 /@™ and V) /@™ via projection to
Ky.

There is a short exact sequence of T-modules

0 — HY (XK, Vyg)n/@" = HI( XK, Vg)/T" Im

44.3
(4.43) — HI"Y( Xk, Vyi(g))m[@™] — 0.

Note that the w™-torsion H7™(Xg, Vy(4))m[@™] does not, in general, inject
into H7 (X ¢, Vi () /@™ )m, s0 we cannot reduce to understanding the Hecke al-
gebra A(q+1, K, N (q), m). However, the cohomology group H9!( Xy, Vy(g))m
is a finitely generated O-module, so HI™! (X, Vy(q))m[@™] does inject into
H (X, Vy(g))m/ @™ provided that m’ > m is chosen large enough for @™
to annihilate the torsion submodule of H97! (X[, VX(q))m. This, in turn, injects



82 P. ALLEN ET AL.

into H (X g, Vyv(g)/ @™ ). It follows that we have an inclusion

Annps HY(Xf, Vi (g))m Annps HI (X, V)\,(q)/wm/)m

(4.4.4)
C Annps HY( X, VA /@™ ).

Let K (m') = K(m') N G(A,). Let m" = 1(m) C T (notation as in §2.2.19).
Then m" is a non-Eisenstein maximal ideal. Poincaré duality implies (cf.
Corollary 2.2.21 and [NT16, Thm. 4.2], and noting that O/@™ is an injective
O/w™-module) that there is an equality

Annps H (X, W(g)/@" )m = t(Annps HI (X V;\/,(q)/wm)mv)
of ideals of T®. The existence of the Hochschild—Serre spectral sequence
H' (K/K(m'), H (X g () Vo /™ v ) = H (Xpe, Vi) /™ I
implies that there is an inclusion
d—q—2
H Annps H' (X g (mr), Vx,(q)/wm Jmv C Annps HY7279( X, VX,(q)/wm JmV
i=0
Applying Corollary 2.2.21 once more, we see that there is an inclusion
d—1 A
H AHDTS Hz(XK(m/), V)\/(q)/wm )m - AHIITS Hq+1(XK, V)\/(q)/wm )m,
1=q+1
or equivalently
d—1 .
H Annps H' (X (m), VA/@™ )m C Anngs HI (X, WNi(gy/@"™ m,
1=q+1
Combining this with (4.4.4), we deduce that there is an inclusion

d—1
AnnTqu(XK,VA/(q) H AnnTsH(XK /),V)\/w )
i=q+1
C ADHTS Hq(XK,V)\/wm)m-

(4.4.5)

By induction, we can find an integer N > 1 and foreachi=q¢+1,...,d—1
an integer m, > m’ such that

—~ N . ’
S <AnnTs Hd(Xg(m{), VX)&) C Annps H' (X g (mry, VA/@™ -
Moreover, Proposition 4.3.4 implies that there is an inclusion
S (Annfs Hd(X[?, Vx)ﬁ> C AnnTs Hq(XK, V)\/(q))m.
Let m” = sup, m}, and note that for each i we have

AHHTS Hd(X%(m,,), VX)TE C AHHTS Hd(XIN((mi)’ VX)ﬁl
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(because this is true rationally, and the cohomology groups are torsion-free, by
Theorem 4.3.3). Finally, let N' =1+ (d —¢—1)N, and let J denote the image
of the ideal

S (AnnTS Hd(X[?(m,,), VX)&)
in A(K,q, A\,m). The existence of the inclusion (4.4.5) implies that S descends
to a morphism

A(K(m"),3) = A(K, A q,m) /],
and that the ideal J satisfies JV = 0. This completes the proof. ([l

This proposition has the following consequence for Galois representations.

PROPOSITION 4.4.6. Let v, v be distinct places of Sp, and let X € (Zﬁ)Hom(F’E).

Fiz an integer m > 1. Let KcC a(A%ﬂ) be a good subgroup. Suppose that the
following conditions are satisfied:

(1) For each embedding T : F' — E inducing the place v, we have —A;¢1 —
)\7,1 >0 and _>\~rc,n - )\‘r,n <p—2n-1
(2) We have

1
§ [F Q> 5[F+ : Q.
v'eS,
o' £v,v

(3) For each p-adic place v" of FT not equal to v, we have

U(OF:;/) C IA(/HN C {( 1(;1 1* > mod wfj’ﬁ} )

We have Ky = CNJ((’)F;)

(4) p>n? (We recall our blanket assumption in §4 that p is unramified
in F.)

(5) Let v be a finite place of F' not contained in S, and let | be its residue
characteristic. Then either S contains no l-adic places of F andl is
unramified in F', or there exists an imaginary quadratic field Fy C F in
which 1 splits.

(6) m C T is a non-Eisenstein maximal ideal such that pg is decomposed

generic.

Let q € HgJ ,d— 1]. Then there exists an integer N > 1 depending only on

[F: Q] and n, an ideal J C A(K, )\, q,m) satisfying JN =0, and a continuous
representation

pm : Grs — GL,(A(K, A\, q¢,m)/J)
satisfying the following conditions:

(a) For each place v & S of F, the characteristic polynomial of pm(Frob,)
is equal to the image of Py(X) in (A(K, A, q¢,m)/J)[X].
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(b) For each place v|v of F', pwm|cy, is in the essential image of the functor
G, fora=(\rp) € ZHoma, (Fo,B)

(¢) For each place v[v of F, there exists N € MFy, with pgla,, = G(N)
and

FL(N)={-Xen+2n—1,..., A1+, A1+ (n—1),..., 0}
for each embedding T € Homq, (Fy, E).

Proof. Our hypotheses include those of Proposition 4.4.1. We choose the
weight X of Proposition 4.4.1 to be CTG (as we may, using Lemma 4.3.6 and our
freedom to specify ng). Let Ny be the integer denoted by N in the statement
of that proposition. Thus we can find an integer m’ > m, a nilpotent ideal
Jo C A(q, K, \,m) satisfying Jévo =0, and a commutative diagram

TS — 5 A(K(m'), \)

| |

TS —— A(K, \,q,m)/Jo.

Let us abbreviate A= AK(m),\) and A = A(K, \,¢,m). By Theorem 4.3.3,
A is O-flat, and by Theorem 2.4.11, A®p Qp is semisimple and can be computed

in terms of cuspidal automorphic representations of G. By Theorem 2.3.3, there
exists a continuous homomorphism

p:Grs — GLa(A®0 Q,)

such that for any homomorphism f : A R Qp — Qp, and for any finite place
v & S of F, fo p(Frob,) has characteristic polynomial equal to the image
of P;(X) in QP[X]; and for any place v[v of F, (f o p)|gy, is crystalline of
Hodge-Tate weights

HT:(foplep,) ={-Aren +(2n—1),...,=Are1 + A1+ (n—1),..., A}

In particular, any Gp,-invariant O-lattice in A g crystalline with all 7-Hodge—
Tate weights in the interval [A;,, (2n — 1) — A\r¢,]. Using our hypothesis that
—Aren +(2n —1) — Arpy < p— 2, we see that any G, -invariant O-lattice in
A2 i in the image of the functor G* with a = (Arn) € zHoma, (o, B) (cf. the
discussion of the functor G* at the beginning of §4).

This establishes part (c) of the proposition. Since for each 7 € Homq, (F, E)
the integers

_)\Tc,n + (2n - 1)7 ceey _)\Tc,l +n, )\7-71 + (n — 1), ey )\T,n

are all distinct, and g = b ® (G’ © €727, it follows as well that p,|q p F
(P @ € *)lGp, -



POTENTIAL AUTOMORPHY OVER CM FIELDS 85

Let D = det p, a continuous determinant of G g of dimension 2n valued
in A (by [Chel4, Ex. 2.32]). Its kernel is a 2-sided ideal of A[Grs] (see [Chel4,
§1.17] for the definition of the kernel of a determinant). The formation of kernels
commutes with flat base change over g, so there is an algebra embedding

(A[Grs]/ ker(D)) @0 Q, = (A®0 Q,)[GFs]/ ker(D®0Q,) C Man(A20Q,),

by [Cheld, Thm. 2.12]. This is in particular an embedding of left A[G Fsl-
modules. It follows that (A[G rs)/ ker(lN))) ®0 Q, is a subrepresentation of
p*", hence that for each v|7, the G, -representation Z[GF,S]/ker(]_N)) is in the
essential image of G“.

Theorem 2.3.7 implies that there there is an integer N7 depending only on
[F': Q] and n, a nilpotent ideal J; C A(K, A, g, m) satisfying val =0, and a
continuous representation

Pm - GF7S — GLn(A(Ka )‘7 q, m)/Jl)

such that for each finite place v € S of F', pm(Frob,) has characteristic polyno-

mial equal to the image of P,(X) in (A(K,\, q¢,m)/J1)[X]. Let J = (Jo, J1) C

A(K, X\, q,m); then JV =0, where N = Ny+ N;. We will show that the proposi-

tion holds with this choice of J and this value of N. Let us now write py, for the

projection of py to a representation with coefficients in A(K, \,q,m)/J = A/J.
Set 5A/J = 5®ZA/J' Then EA/J = det(pm @ pe @ €'=2"), hence

(ker det p) N (ker det p%" @ €' 72") C ker 5A/J.

17271)

The representation py, & (pﬁ{v R e induces an A-algebra homomorphism

(A/)|Grs] = Mn(A/J) & Mn(A/J)

which, by [Chel4, Thm. 2.22(i)], is surjective with kernel equal to (ker det pyn) N
(ker det pg” ® €'=2"). We deduce that (A/.J) [GF}S]/ker(ﬁA/J) is a quotient
A/ J-algebra of M, (A/J) x M,(A/J). By [Chel4, Thm. 2.22(ii)], this forces
(A/N)Grs]/ker(Dayg) = Mn(A/J) x Mp(A/J).

The surjection K[GF,S] — (A/J) [GF7S]/ker(5A/J) factors through the
quotient Z[Gpﬁ]/ker(ﬁ) (see [Cheld, Lem. 1.18]). It follows that for each
place v|v of F' that M, (A/J) x M,(A/J), viewed as a left (A/J)[GFE,]-module,
is in the essential image of the functor G* (the essential image is stable
under passage to subquotients). Since M, (A/J) x M,(A/J) contains py as a
subobject, it follows that pm|q,, is in the essential image of G, as desired. [J

Remark 4.4.7. Ideas similar to, and more general than, those used in the
proof above were developed by Wake-Wang-Erickson [WWE19].

We now extend the range of cohomological degrees and allowable level
subgroups to which Proposition 4.4.6 applies.
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COROLLARY 4.4.8. LetT € Sy, and let K C GL,(A%) be a good subgroup.
Let A € (Z7)Hom(PE) " and let m € TS(K, \) be a non-Eisenstein mazimal ideal.
Suppose that the following conditions are satisfied:
(1) For each place v|v of F, we have K, = GL,(OF,).
(2) There exists a place v' € S, such that v' #v and

S FL Q) > %[FhQ].
v"eSy
piE =

(3) For each embedding T : F — E inducing the place v of F, we have
_)\‘rc,l - )\T,l >0 and _)\Tc,n - /\T,n <p—-1-2n.

(4) p > n?. (We recall our blanket assumption in §4 that p is unramified
in F.)

(5) Let v be a finite place of F not contained in S, and let | be its residue
characteristic. Then either S contains no l-adic places of F and [ is
unramified in F, or there exists an imaginary quadratic field Fy C F in
which 1 splits.

(6) P is decomposed generic.

Let g € [0,d — 1] and m > 1 be integers. Then there exists an integer N > 1
depending only on [F : Q] and n, an ideal J C A(K, )\, q,m) satisfying J =0,
and a continuous representation

Pm : GF,S — GLn(A(K, )\, q,m)/J)
satisfying the following conditions:

(a) For each place v & S of F, the characteristic polynomial of py,(Froby,)
is equal to the image of Py(X) in (A(K,\,q,m)/J)[X].

(b) For each place v|v of F', pwl|ay, is in the essential image of the functor
Ga7 f07" a = ()\T,n) € ZHome (FU’E).

(¢) For each place v[v of F, there exists N € MFy, with pgla, = G(N)

and

FL(N)={-Xen+2n—1),...,=Ac1+n, A1+ (n—1),...,\,}.
for each embedding T € Homq, (Fy, E).

Proof. Note that the existence of a py satisfying only condition (a) (local-
global compatibility at unramified places) is already known (Theorem 2.3.5).
We are therefore free to enlarge S if necessary. We first prove the corollary
with hypothesis (6) replaced by the stronger assumption that pg is decomposed
generic. Let K’ C K be the good normal subgroup defined by the formula
K| = K, if v { p or v|v, and K| = K, Nker(GL,(Op,) — GL,(Op,/@"))
otherwise. Let K C 5(A;S+) be a good subgroup satisfying the following
conditions:
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e KNG(AZ,) = K.

o K5=3G(05,).

e For each place ¥"|p of F*, U(Ok) C Ky
o Ky= G(Op).

Let K' = K (m) be the good subgroup defined as follows: if v is a finite place
of F* which is prime to p or equal to v, then K., = Ky». Otherwise, we set

N%// = IA{%// M {( 10n 1*n ) mod ’WZ}/} .

Note that the triple (IN( '\, m) satisfies the hypotheses of Proposition 4.4.6. We
let K’ = K'NG(A%,). There is a Hochschild-Serre spectral sequence

HY(K/K', H (X, Vy/w™)m) = H (X, Vy /™).

It follows that we have an inclusion

q

H Annps H7 Y (X g, Vy /@™ )m € Anngps HY(X g, Va /@™ ).

i=0
Suppose we could show that there is an integer Ny depending only on [FT : Q]
and n and for each i = 0,..., g an ideal J; C A(K', \, q—i, m) satisfying JiNO =0
and a continuous representation pm; : Gps — GLn(A(K', X\, ¢ —i,m)/.J;)
satisfying the conditions the same conditions as py. Then the corollary would
follow, with J equal to the image in A(K, A, g, m) of the intersection of the
pre-images of Jy,...,J,; in TS, and N = ¢Ny. A theorem of Carayol, [Car94,
Théoréme 2|, implies that the product representation

q q
Hpmﬂ‘ : GF,S — GLn (H A(K/, /\, q— z,m)/JZ>
i=0 i=0
can be conjugated to take values in GL,, (im(T% — [[L, A(K', X\, q —i,m)/J;)),
and the ring im(T° — [[_, A(K’,\,q —i,m)/J;) has A(K, ), q,m)/J as a
quotient.

We are therefore free to assume that K = K’ and K = K’ , which we now do.
In this case, we can moreover assume that A\y» = 0 if v € S}, and v # v. Note
that K satisfies the conditions of Proposition 4.4.6, so if ¢ — i > |d/2], there’s
nothing to do. Suppose instead that ¢ —i < |d/2]. Then d—1—q+1i > [d/2].

Our condition on Ay then implies, together with [Jan03, Cor. I1.5.6],
that there is an isomorphism Vyv = VY. Let ng = (2n + 1 — p)/2, and
let po € (Z?F)Hom(F’E) be defined by por = (no,...,np) for each 7. Then the
maximal ideal m" (e7"0) of T¥ (cf. §2.2.19) is in the support of H*(Xx, Vav i)
and the weight AV + o also satisfies the hypothesis (3) of the corollary.
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Proposition 4.4.6 implies the existence of an ideal
Ji C THT (X e, Vv o /™) v (=m0
and a continuous representation
P 2 Grs = GLn (T (H (X Vaviuo /™) v (m0y /)

satisfying the same conditions as pn,. Proposition 2.2.20 and Proposition 2.2.22
together imply that the isomorphism

T — T%, [K¥gK®] — e(Artg (det(g))) " [Kg ' K]
descends to an isomorphism
FrTSHTT (X, Vav i /™))y (e-n0y = AK, N, q — i,m).
The proof in this case is completed by taking J; = f(J;) and pm; = (fopp, ;)" @
el—2n+(p—1)/2
We now remove the assumption that pg; is decomposed generic, assuming

instead only that p,, is decomposed generic. After possibly enlarging k, we can
find a character v : Gp — k> such that

(Pn ©0) & (P @ D)™ @ 1721)

is decomposed generic, and @‘GFU is trivial for each place v € S of F. Let
Y : Gp — O* denote the Teichmiiller lift of ).
Choose a finite set S’ containing S and the set of places where 1 is ramified
and a good normal subgroup K’ C K, all satisfying the following conditions:
° (K/)SLS — KS'-S.
e The quotient K’/K is abelian of order prime to p.
e For each place v of F', the restriction of ¢|g,, o Artr, to det(Kj) is
trivial.
o S’ satisfies the analogue of hypothesis (5) of the corollary.
Then there is a surjection A(K’,\,q,m) — A(K, X, q,m) of T -algebras, so it
suffices to establish the corollary for A(K’, \,q,m). We write m(y)) ¢ TS for
the non-Eisenstein maximal ideal with pg ) = Pn ® 1.

Let m(¢)) = S*(m(¢)). Then pgy) is decomposed generic, so the already
established case of the corollary implies that we can find an integer N > 1
depending only on [F* : Q] and n, and an ideal J' € T (HY(X g, WA ()
satisfying J" = 0, and a continuous representation

() : Grst = GLn(TY (HY (X, VA /™ )mu)) /)

satisfying the conditions (a) — (c) of the corollary. Proposition 2.2.22 implies
that the isomorphism

TS = T, [K'9gK'®] — o(Artp(det(g)))[K'° gK"°]
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descends to an isomorphism
f : TSI(Hq(XK/, V,\/wm))m(w) — A(K,, /\, q, m)
The proof is completed on taking J = f(J') and pm = (f © pm(y)) ® =t O

4.5. The end of the proof. We can now prove the main theorem of this
chapter. (For the reader’s convenience, we repeat the statement here.) To
avoid confusion, we also restate the standing hypotheses for this chapter in the
statement of the theorem.

THEOREM 4.5.1. Let m C T9(K,\) be a non-Fisenstein mazimal ideal.
Suppose that TS (K, \)/m = k has residue characteristic p. Let T be a p-adic
place of FT, and suppose that the following additional conditions are satisfied:

(1) The prime p is unramified in F', and F contains an imaginary quadratic
field in which p splits.

(2) Let w be a finite place of F not contained in S, and let | be its residue
characteristic. Then either S contains no l-adic places of F and [ is
unramified in F, or there exists an imaginary quadratic field Fy C F in
which | splits.

(3) For each place v|v of F', K, = GL,(Op,).

(4) For every embedding T : F — E inducing the place v of FT,

)\7,1 + )\Tc,l - )\T,n - )\Tc,n < P — 2n — 1.

(5) p>nZ
(6) There exists a p-adic place V' # v of F' such that

1
> F Q> SFT QL
v'eS,

@”75673,

(7) pm is decomposed generic (Definition 4.3.1).
(8) Assume that one of the following holds:

(a) H*( Xk, Vx)m[1/p] # 0, or
(b) for every embedding T: F — E inducing the place v of F'T,

~XAen —Arn <p—2n—2 and — A1 — Ar1 > 0.

Then there exists an integer N > 1 depending only on [F™ : Q] and n, an ideal
J C TS(K, \) satisfying J™ =0, and a continuous representation

pm 2 Grs — GLy (T (K, \)m/J)

satisfying the following conditions:

(a) For each finite place v ¢ S of F, the characteristic polynomial of
pm(Frob,) equals the image of Py(X) in (T (K, \)m/J)[X].
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(b) For each place v[v of F, pm|ay, is in the essential image of G* (with
@ = () € ZHOMEE))

(¢) There is M € MFy such that pyla,, = G(M) and for any embedding
T: Fy = F,

FL,(M)={X\1+n—1 2+n—2.... n}

Proof. Note that the existence of a pn satisfying only condition (a) is
already known (Theorem 2.3.5). We are therefore free to enlarge S if necessary.
We first prove the theorem under the assumption that H*(Xg, Vx)m[1/p] # 0.
By Theorem 2.4.10, there exists an isomorphism ¢ : Qp — C and a cuspidal
automorphic representation 7 of GL,(AF) of weight ¢\ such that (7>°)% #0
and such that r,(7) = p,. By [Clo90, Lemma 4.9], there is an integer w €
Z such that for each embedding 7: F' — FE and for each ¢ = 1,...,n, we
have Ar; + Areny1—i = w. Fix an embedding 79 € Homq, (F5, F) such that
Aro,1 + Arge,1 is maximal. (Recall that v is a fixed choice of place of F' lying
above T.)

After possibly enlarging F, we can (cf. [HSBT10, Lemma 2.2]) find a
continuous character 1: Gp — O satisfying

e 1) is crystalline at each v | p,
e ¢ is unramified at v and at each v € S — S,

[ /l,b [©] ArtFﬁ;c ‘O; = HT: Fﬂ‘—}E(Tc)ATO,1+)\TOC’1'
bg

Define a weight = (47,1, -, frn) € (Z’}r)Hom(F’E) by letting i,; be the unique
7-Hodge—Tate weight for 1 for each 1 < ¢ < n. Note that for 7 inducing v,
pri =0 and fire; = —Ary1 — Arpeq forall 1 < <mn.

Choose a finite set S’ containing S and the set of places where 1) is ramified
and a good normal subgroup K’ C K, all satisfying the following conditions:

° (K/)SLS — KSLS.

e The quotient K'/K is abelian.

e For each finite place v { p of F', the restriction of ¥|q, o Artr, to

det(K7) is trivial.

e S’ satisfies the analogue of hypothesis (2) of the theorem.
By an argument with the Hochschild—Serre spectral sequence, just as in the
proof of Corollary 4.4.8, we are free to assume that K = K’ and S = S/, and
we now do this. Let X' = X\ + p. By Proposition 2.2.22, the map

TS - T, [K°gK®] — ¢(Artp(det(g)))[K gK®]

descends to an isomorphism f : T¥(K, N m(w) — T (K, \)m. We observe that
for any 7 € Homgq, (F3, E), we have

/ /
“Are,l T A1 T _)‘7'071 - ATJ + >‘7'0071 + ATOJ >0
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and (using that A\-; + A\r¢nt1-i = w is independent of 7 and 7)
“Noen = N = —Aren — A+ Aged + Argt = Al + Arel — Argn — Arepn
< )\Tg,l + )\’T(]C,l - )\Toc,n - )\T(),TL < p— 1 —2n.
In particular, \’ satisfies the assumptions of Corollary 4.4.8.
We recall (Lemma 2.1.7) that RI'(Xg,Vy) is a perfect complex, with

cohomology concentrated in the range [0,d — 1]. It follows (cf. [NT16, Lemma
3.11]) that the map

T%(K,X) = lim T%(RD (X, Yy /@™))
m>1
is an isomorphism. On the other hand, [KT17, Lem. 2.5] shows that for any
m > 1, the kernel of the map
T%(RT (X, Vv /@™) = [[ TS (H Xk, Va /™))
q
is a nilpotent ideal I satisfying I¢ = 0. Applying Corollary 4.4.8, we see that

we can find an integer N > 1 depending only on [F* : Q] and n, an ideal
J C TS(K, N Jm(w) satisfying (J/ )N =0, and a continuous representation
Pt GFs = GLn (TS (K, N )y / )
satisfying the following conditions:
(a’) For each place v € S of F', the characteristic polynomial of py(y) (Frob,)
is equal to the image of P,(X) in (TS (K, X)) /J")[X].
(b") For each place v[v of I, pu(y)lGp, 18 in the essential image of the functor
G, for a’ = (\.,,) € Homq, (F,, E).
(¢”) For each place v|v of F, there exists N € MF with

(P @ Pty @ €72") lar, = G(V)
and

FL(N) = {=Aoop + (20— 1),y =Ny + Xy + (n— 1), N )

» M
for each embedding 7 € Homgq, (F}, E).

Let us define J = f(J') and ppn = (f © pu(y)) @ 1. We see immediately that
Pm satisfies the requirements (a) and (b) of the theorem; it remains to establish
requirement (c), in other words to recover the Fontaine-Laffaille weights of p,,.
By the above, there is M € MF¢ such that p, = G*(M). Let z: T(K, ) —
Qp denote the homomorphism which gives the action of Hecke operators on
1~ (7>)K. The pushforward p, = = o py via z is a continuous representation
of Grg which is crystalline at v and v, satisfying HT,(p,) = FL, (M) for each
7 € Hom(F, E) inducing the place v of F'*. Tt therefore suffices to show that

HTT(pCC) = {AT,l +n— 17)‘7',2 +n— 27 . ‘7)\7,71}
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for each 7 € Hom(F, E) inducing the place v of '™, or equivalently that
HT,(p, @) = {/\’ﬁ1 +n-—1, )‘,7,2 +n—2,..., )‘/T,n}'

Let wy : A? — C* denote the central character of m. Then w; is a
character of type Ag and for each embedding 7 : F' — FE inducing the place T

of F™, we have
HT,(r,(wr)) {Z)\”}.

Moreover, we have det p, = 7, (wy)e"=/2 hence det(p,®1) = 7, (wy )=/ 2ym,
as this can be checked on Frobenius elements at unramified places. We are now
done: HT,(p, ® v) is an n-element subset of

FL( )_{ )\TCTL (n_1)7""_)‘2'0,14—”7)‘{1',1—’_(”_1)7'”7)\;7n}~
with sum equal to > | (X, ; +n —i). By construction, we have
)‘frcn (2n—1) > > _Afl'c,l+n> )‘;,l—i_(n_l) > > )\fr,n

The only possibility is that HT-(p, ® 1) has the required form. This completes
the proof of the theorem in the case H*(Xg, Va)m[1/p] # 0.

We now treat the second case, assuming that for every embedding 7 €
Hom(F, E) inducing the place v of F'", we have

Aren = Arn $p—20-2 and = Aoy — Ary > 0.

In this case Corollary 4.4.8 applies directly, and it only remains to identify the
Fontaine-Laffaille weights of p,, for each place v|[v of F. There are M, M €
MF¢ such that pylc,, = G(M) and (pn’ ® €727)|q,, = G(M'). We choose
a continuous character ¢: Gp — O satisfying

e 1) is crystalline at each v’ | p,

e 1) is unramified at v,

o YoArtr. =[], p,p(rc) on OF .
After enlarging S, as in the first part of the proof, we can assume that 1 is
unramified outside S, in which case the maximal ideal m(v)) of T is defined
and occurs in the support of H*(X, Vy/), where the weight \' € (Z’_ﬁ)Hom(FvE)
is defined by the formula A, = A\ if 7 does not induce the place v°¢ of F', and
A=A —(1,...,1) if 7 does induce the place v° of F. We observe that the
weight A also satisfies the assumptions of Corollary 4.4.8.

We can now conclude. Let 7 € Hom(F E) be an embedding inducing the
place ¥ of F. The sets FL, (M) and FL,(M’) partition the 2n distinct integers

—Xren+@2n—=1)>--->=Ac1+n>A 1+ (n—1)>---> A,
and FL,(M) and FL (M ) + 1 partition the 2n distinct integers
“QAren F2n> > A1+ m+1) > A0+ (n—1) > > A,
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Using Lemma 4.5.2, this forces

FL (M) = {1+ (n— 1), A2+ (n—2), ... Arn}

and

FL (M) = {=Arem + (2n—1),...,—Are1 +n}.
Since G(Hl) = (%' ® €7y, » this implies that for each place v[v of F,
PmlGr, has the correct Fontaine-Laffaille weights. (]

LEMMA 4.5.2. Let m > 1 be an integer and let A, B,C,D be sets of
integers each of size m. Assume that for any ¢ € C and d € D, we have ¢ > d.
IfAUB=CUD and (A+1)UB = (C+1)UD and both of these sets have
2m elements, then A =C and B = D.

Proof. We induct on m. Let ¢ be the largest element of C' and let d be the
smallest element of D. Since AUB=CUD and (A+1)UB=(C+1)UD,

we must have ¢ € A and d € B. We can then apply the inductive hypothesis to
A=A\ {c}, BB =B\ {d}, C'"=C\{c}, and D' = D\ {d}. ([l

5. Local-global compatibility, [ = p (ordinary case)

5.1. Statements. Let F be a CM field, and fix an integer n > 1. Let p be a
prime, and let £ be a finite extension of Q, inside Qp large enough to contain
the images of all embeddings of F' in Qp. We assume throughout this chapter
that F' satisfies the following standing hypothesis:

e F' contains an imaginary quadratic field in which p splits.

In contrast to §4, we do not assume that p is unramified in F. As in §4,
our goal in this chapter is to establish local-global compatibility for some
Hecke algebra-valued Galois representations at the p-adic places of F'. More
precisely, we will show that after projection to the ordinary Hecke algebra,
these Galois representations satisfy an ordinariness condition (see (b) and (c) in
the statement of Theorem 5.5.1 below — the consequences of this condition will
be explored in §6.2.6). Before formulating the main theorem of this chapter,
we must define these ordinary Hecke algebras.

Let K C GL,(A%¥) be a good subgroup, and let A € (Z7)Hom(FE) et §
be a finite set of finite places of F', containing the p-adic places, stable under
complex conjugation. We assume that the following conditions are satisfied:

e Let v be a finite place of F' not contained in S, and let [ be its residue
characteristic. Then either S contains no [-adic places of F' and [ is
unramified in F', or there exists an imaginary quadratic subfield of F
in which [ splits.

e For each place v|p of F, K, = Iw,. For each finite place v ¢ S of F,
K, = GL,(Op,).
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If ¢ > b > 0 are integers with ¢ > 1, then we define a good subgroup K (b,¢) C K
by the formula K (b, c), = K, if vt p and K, = Iw,(b, ¢) if v|p. Thus K(0,1) =
K. Then there is an isomorphism K(0,¢)/K (b, c) = [],, T,.(OF, /@b). (We
are using here notation for open compact subgroups and Hecke operators that
has been defined in §2.2.4.)

We define a Hecke algebra

oord _ S Ro O[[Tn(OF,p)M{Uv,la o Uy B2 Uy, n}vlp]

(where the U, ; are viewed as formal variables). We write U, = Uy 1Uy 2+ Uy -1 €
T and U, = Hv‘p U,. We observe that there is a canonical surjective O-
algebra homomorphism O[T},(OF,)] — O[K(0,c)/K(b,c)]. This extends to a
homomorphism

T = Endp o[k 0.0/ (b.0)) (R k(0,05 (0.0) (XK (b.c)s VA))s

where each element U, ; of T%°'? acts on the complex RT g (0,0)/K (b,e) (XK (b,e)> VA)
by the Hecke operator of the same name. By the theory of ordinary parts (cf.
[KT17, §2.4]), there is a well-defined direct summand R x(0,¢) /i (5,c) (X K (b,c) Yy )ord
of BRI i (0,¢)/ K (bye) (XK (b,c), VA) in D(O[K(0,¢)/K(b,c)]) on which U, acts in-
vertibly, and we define T (K (b,c), \)°™ to be the image of the associated
homomorphism

T — Endp ok (0.0)/k (b)) (BT (0.0)/ 1 (00) (XK (b.0) V) ™)

or equivalently, extending our usage for the Hecke algebra T?,
T (K (b, ¢), \)" = TR k(0. o)/ K (b,0) (XK (5.0 VA) ™).

We observe that there is a canonical homomorphism T (K (0,¢)/K (b, c), Vy) —
T (K (b,c),\)°"d. The Hecke algebra in the source is defined in §2.2.1. In
general this homomorphism is neither injective nor surjective. However, we do
see from the existence of this homomorphism that for any maximal ideal m of
T(K (b, c),\)°"d, there exists an associated Galois representation py, : Grg —
GL, (T (K (b,c), \)°"d/m). We call a maximal ideal m of T*°' with residue
field a finite extension of k of Galois type (resp. non-FEisenstein) if its pullback
to T is of Galois type (resp. non-Eisenstein) in the sense of Definition 2.3.6.

The Hecke operators U, ; € T¥(K(b,c), \)°'® are invertible (because U,
is). For each place v|p and for each i = 1,...,n, we define a character x,.; :
Gr, — TY(K(b,c), \)"d* as the unique continuous character satisfying the
identities

XowioArtp, (u) = ' (Artp, (u (HT wi'A ) (diag(1,...,u,...,1)) (u € OF )
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(the product being over 7 € Homgq, (£, F)) and
Uv %

)

Uv,i—l

Xow, © Attp, (@) = € ' (Artr, (o))

We can now state the main theorem of this chapter. (As with Theorem 4.5.1
in §4.1, we will repeat the statement immediately before its proof with the
same numbering.)

THEOREM 5.5.1. Suppose that [F* : Q] > 1. Let K C GL,(A%¥) be a
good subgroup such that for each place v € S, of F, K, =Iw,. Letc>b2>0
be integers with ¢ > 1, let A € (Z™)H™EE) - and let m ¢ T9(K (b, c), \)*d
be a non-FEisenstein maximal ideal. Suppose that the following conditions are
satisfied:

(1) Let v be a finite place of F' not contained in S, and let | be its residue
characteristic. Then either S contains no l-adic places of F' andl is
unramified in F, or there exists an imaginary quadratic field Fy C F in
which 1 splits.

(2) pm is decomposed generic.

Then we can find an integer N > 1, which depends only on [F' : Q] and n, an

ideal J C T9(K (b, c), \)o' such that JN =0, and a continuous representation

pum : G — GLn (TS (K (b, ), \)ord/.J)

satisfying the following conditions:

(a) For each finite place v ¢ S of F, the characteristic polynomial of
pm(Frob,) equals the image of Py(X) in (TS (K (b,c), \)ord/J)[X].
(b) For each v € S, and for each g € GF,, the characteristic polynomial of

pm(g) equals Ty (X = Xaw,i(9))-
(¢) For each v € Sy, and for each g1, ...,gn € GF,, we have

(Pm(91) = Xr0,1(91)) (Pm(92) = X20,2(92)) - - - (Pm(gn) — X2, (gn)) = 0.

We refer the reader to Lemma 6.2.11 for the comparison between the
condition (c) and the usual notion of an ordinary Galois representation. In
short, they coincide for representations with coefficients in a field and distinct
diagonal characters.

The rest of §5 is devoted to the proof of Theorem 5.5.1 (after proving
the theorem, we record a local-global compatibility result for a single ordinary
automorphic representation as a corollary). In the rest of the chapter, we make
the following additional standing hypothesis:

e For each place v|p of F, our fixed choices of uniformizer satisfy w,c =

c

Wy,
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This simplifies notation once we introduce the group G. It is important to
note that while the definition of the operators U, ; above depends on the choice
of uniformizer w@,, neither the complex RT k(g c)/k (b.c) (X (b,c)> V) )%, nor the
Hecke algebra T (K (b, c), A)°™, nor the truth of Theorem 5.5.1 depend on this
choice.

5.2. Hida theory. In the previous section we introduced the ordinary Hecke
algebras T (K (b,c), \)°™d. In §5.2, we recall the basic results about these
Hecke algebras and the complexes on which they act: this material goes under
the name “Hida theory”. We also describe how this theory is related to the
corresponding theory for the group G.

5.2.1. The ordinary part of a smooth representation. Our first goal is to
show, following Emerton [Emel0Oa, Emel0b], how to define ordinary parts in
a more representation-theoretic way. We will work throughout with O/w™
coefficients (for some fixed m > 1) in order to avoid topological issues. We first
need to introduce some more notation. If G is a locally profinite group, then
we write Mod(O/w™[G]) for the category of O/w™[G]-modules, and

(5.2.2) Modem (O /w™[G]) € Mod(0/w™[G])

for the full subcategory of smooth modules. More generally, if A C G is an
open submonoid which contains an open compact subgroup of G, then we write

(5.2.3) Modg, (O/w™[A]) € Mod(O/w™[A])
for the full subcategory of smooth modules (by definition, those for which every
vector is fixed by an open subgroup of A). We write
M — M™ : Mod(O/w™[A]) = Modgn (O/ww™[A])
for the functor of smooth vectors; it is right adjoint to the inclusion (5.2.3).

LEMMA 5.2.4.

(1) The category Modsm(O/w™[A]) is abelian and has enough injectives.
(2) Let A" C A be a subgroup which is either compact or open (A’ is
therefore a locally profinite group). Then the forgetful functor

Mod g, (O /@™ [A]) = Mod g (O /™ [A")
preserves injectives.

Proof. The functor M +— M has an exact left adjoint, so preserves
injectives. Since the category Mod(O/@™[A]) has enough injectives, so does
Modgm (O/w™[A]).

For the second part of the lemma, we split into cases. Suppose first that
A’ C A is an open subgroup. Then compact induction c—Indﬁ, is an exact left
adjoint to the forgetful functor. Suppose instead that A’ C A is a compact
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subgroup. In this case, we can find a compact open subgroup of A which
contains A’. Using what we have already proved, we can assume that A = G,
in which case the result follows from [EmelOb, Prop. 2.1.11]. O

We write Dgy (O/w™[A]) for the derived category of Modgy, (O/w™[A]).

We introduce some monoids, with the aim of studying the theory for
G = GL,(F}). We write T,,(F,)* C T,,(F}) for the open submonoid consisting
of those elements t € T;,(F,) with tN,(Opp,)t™' C Ny(Opy), and T, (F,) T =
T, (F,) NT,(F,)". We recall (§2.2.4) that A, C GL,(F},) denotes the monoid
[ L, Iwo T (Fy) *Iw,. If b > 0 is an integer, we define

T(Orp)(0) = ] ker(Tu(Orpw) = Tu(Orpw/@b)),
vES)

Tn(Orp)y = Tn(Orp) [ Tn(Orp) (D),

To(Fp)y = Tn(Fp)"/Tn(Oryp)(b)
and

To(Fp)s = Tn(Fp) /Tn(OFp)(b).
We write u, € T,,(Q,) C Tn(F,) for the element (p"~1,pn=2,... 1). It lies
in T,,(Fp)*. We define B, (F,)" = Nu(Opp) - Tn(Fp)™ C Bp(F,). Note
that B, (Fp)" C A,. We write B,(Opp)(b) for the pre-image in B, (Op,)
of T,(Opp)(b). It will be important for us to note that a complex C €
Dy (O/w™ ([T, (F});]) comes equipped with a functorial homomorphism

OT.(Orp)[{Usis -, Upm, U, n}yesp] — Enstm(o/wm[Tn(Fpm)(C)
via the map which is the canonical homomorphism
O[T (Orp)] = O/@™ [Tn(OFp)/Tn(OFp) ()]
on this subalgebra and which sends U, ; to the matrix
diag(wy, ..., @y, 1,...,1) € T, (Fy) C Ty (F)p)

(with 4 occurrences of w,). Consequently, if T acts on a complex C, then we
can extend this to an action of the algebra TS0,

If A € X*((Resp/qTn)E) = (Z")Hom(FE) - then we write O()) for the
O[T}, (F}p)]-module defined as follows: it is a free rank 1 O-module on which an el-
ement u € T5,(OF,p) acts as multiplication by the scalar [ cgom(r g [T 7 ()M
and on which any element diag(w',...,w%") (a; € Z) acts trivially.

We recall that in §2.2.4 we have defined, for any \ € (Zﬁ)Hom(F’E), a
twisted action (d,v) — 6 -, v of Ap on V. Projection to the lowest weight space
determines an O-module homomorphism V) — (’)(wg A) which is equivariant
for the action of B, (F,)" (where B, (F,)" acts through the -p-action on the

source and through its projection to T),(F)) on the target). We write Ky for
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the kernel of the projection Vy — O(w§ \); it is again an O[B,(F,)*]-module,
finite free as O-module.

We now define various functors that together will allow us to study ordinary
parts using completed cohomology. We write

L(Nn(OFp), =) : Modaw(0/@™[Ap]) = Modsm (O™ [T,(F,) 1)

for the functor of N, (Op,)-invariants. If V€ Modsm (O/@w™[A,]), then the
action of an element ¢ € T,,(F),)" on v € I'(N,(OFy), V) is given by the formula

(5.2.5) t-v= Z ntv
TLGNn(OF’p)/th(OF’p)t_l
(cf. [EmelOa, §3], and note that the action of ¢ is by the ‘double coset operator’
[Nn(OFp)tNy(OFp)]). We write
P(Ba(Orp) (5), —) : Mody(O/m™[Ay]) — Mod(O/w™ [T (Fy); )

for the functor of B, (Op,)(b)-invariants. The action of an element ¢ € T,,(F,);
is given by the same formula (5.2.5).

If ¢ > b > 0 are integers with ¢ > 1, then we define Iw, (b, c) = Hvesp Iwy (b, c) C
GL,,(Fp). We write

L(Iwy(b, ¢), =) : Modgn (O/@w™[A,]) = Mod(O /@™ [T (Fp);f )

for the functor of Iwy,(b, c)-invariants. If V' € Modgm, (O/@w™[A,]), then the
action of an element t € T,,(F,)" on v € I'(Iwy (b, ¢), V) is given by the action
of the Hecke operator [Iwy (b, ¢)tIw,(b, c)] (cf. §2.1.9).

For any b > 0, we consider the functors

D(Th(OFp)(b), —) MOdsm(O/wm[Tn(Fp)+]) - MOd(O/wm[Tn(Fp);—])
and
L(T0(OFp)(b), =) : Modsm (O/@™ [T5(Fp)]) = Mod(O/@™ [T5,(Fp)s])
of T,(OFp)(b)-invariants. Finally, we write
ord : Modgy (O/@™[Tn(F,)]) = Modsm(O/w™ [Th(Fp))])
and
ord, : Mod(O/@w™(T,,(Fp);]) = Mod(O /@™ [T (F})s))
for the localization functors —®o/mm (1, (F,)+|O/ @™ [Tn(Fp)] and =g o m T ()7 ]
O/w™[T,,(Fp)s|, respectively. (As the notation suggests, we will use localization
to define “ordinary parts”. The reader may object that the ordinary part usually
denotes a direct summand, rather than a localization. At least in the context
of O/w™ [T, (F},);]-modules which are finitely generated as O/w™-modules,
the two notions agree (cf. [EmelOb, Lemma 3.2.1] and also Proposition 5.2.15

below). We use localization here since it is easier to define without finiteness
conditions.)
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LEMMA 5.2.6. The following diagram is commutative up to natural iso-
morphism:

F(Tn(OF,P) (b)> _)

Mod (O /@™ (T, (F,)*]) Mod(O/w™(T;,(Fy) 1)
ordJ{ J(ordb
Mod, (O™ [T(Ey)]) Mod(O /=™ [T, (Fy)i))-

D(T0(OFp)(b), —)

Proof. Let M € Modg, (O/@w™[T,,(F,)"]). There is a natural morphism
ordy (T3, (OFp) (b), M) — T(T,(OF,p)(b),ord M),

or equivalently

= (M ®0 jem(r, (1) Q)@ [Tn(Fp)]) T Orr) ),

We must show that it is an isomorphism. It is injective because M7n(Orp)®) _,
M is injective and localization is exact. To show it is surjective, let z € M,
and suppose that * @ 1 € (M ®0 /wm(1,,(F,)+] O /@™ [T (F,)]) T (©Orp)®) We
must show that there exists n > 0 such that ugx e MTn(Orp)®)  Since M is
smooth, there exists ¢ > b such that z € M7(Orp)(©)  On the other hand,
our assumption on z ® 1 means that for any ¢t € T,,(Op,)(b), there exists
n(t) such that ug(t)(t — 1)z = 0 in M. Choosing n(t) to be as small as
possible, we see that n(t) depends only on the image of ¢ in the (finite) quotient
T, (OFp) () /T, (OFp)(c). We can therefore take n = sup; n(t). O

LEMMA 5.2.7.

(1) Each functor I'(Np(OFpp), —), I'(Bn(OFpp)(b), =), and I'(Iwy(b, c), —) is
left exact. For any b > 0, the functor I'(N,(OFyp), —) sends injectives
to (T (OFyp)(b), —)-acyclics.

(2) The functors ord and ord, are exact and preserve injectives.

Proof. Tt is immediate from the definitions that the three functors in the
first part are left exact. We now show that the functor I'(N,,(OF,)), —) sends
injectives to I'(T},(OF,) (), —)-acyclics.
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We have a commutative diagram

Modym (O /@™ [Ap]) —————— Modew (O/@™ [T, (Fp) T]) ——— Mod(O/@w™[T;,(Fp);])

| /| |
Modgm (O /@™ [Bp(OFyp)(b)]) —— Modgm (O /@™ [1,(OF,)(b)]) ———— Mod(O/=™)

where the horizontal arrows are taking invariants and the vertical arrows are
restriction to compact or open subgroups. By Lemma 5.2.4, the vertical arrows
are exact and preserve injectives. We must show that if Z € Modgm (O/@™[A,])
is injective, then for each i > 0, R'T(T,,(Op,)(b), [(Nn(OFp),Z)) = 0. Equiva-
lently (using the formula for a composition of derived functors, [Wei94, Corollary
10.8.3]), we must show that

YR (T (OFp) (0), T(Nu(OFyp), 1)) = RT(T(Ory) (0), (N (Oryp), aZ)) = 0.
However, aZ is injective, so this follows from the fact that the functor
L(Nu(Orp), =) : Modan (O/@"™ [Bn(OF,p)(b)]) = Modsm(O/w™ [T0(OF,)(b)])

preserves injectives (because it has an exact left adjoint, given by inflation).
This proves the first part of the lemma.

We now prove the second part of the lemma. Both ord and ord; are
exact because localization is an exact functor. Since localization preserves
injectives in the case of a Noetherian base ring, ord, preserves injectives. To
show that ord preserves injectives, we go back to the definitions. Let Z be
an injective object of Modgm(O/@™(T;,(F,)t]), let M — N be an inclusion
in Modgm (O/@w™ [T, (F})]), and let o : M — ord(Z) be a morphism. We must
show that a extends to N.

For any b > 0, passing to T, (OFp)(b)-fixed vectors gives a morphism (cf.
Lemma 5.2.6)

a(b) : MTOrp)®) _y ord(7)Tn(Orp)®) o 6r g, (ZTn(OFp) (b))

The object ZT(Or)) € Mod(O/w™[T,,(F,);]) is injective, showing that we
can extend a(b) to a morphism a(b) : NTn(Orp)®) _ ord(Z)Tn(Ore)(0) Zorn’s
lemma implies that there exists a maximal extension o : Lyax — ord(Z)
of a. The preceding argument shows that we can extend the map induced
by o on T,,(OFp)(b)-invariants from LI Or)®) ¢ NTa(Orp)®) | Tt follows
that we can extend o to0 Lmax + NT»(Crp)(0) By maximality, and since
N = UbZONT”(OF»P)(b), we have Ly.x = IV, as desired. O

LEMMA 5.2.8. For any ¢ > b > 0 with ¢ > 1, there is a natural isomor-
phism
ordy oI'(Iw, (b, ¢), —) = ordy oI (B, (OFyp)(b), —)
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of functors
Modgm(O/w™[A,]) = Mod(O/@w™ [T7,(Fp)s))-
Proof. We first show that for any V' € Modgm(O/@™[A,]), the natural
inclusion I'(Iw, (b, ¢), V) C T'(Bn(Op,p)(b), V) is a morphism of O /™ (T,,(F,); ]-
modules. A given element ¢ € Tn(Fp);r acts on the source via the Hecke operator

[Iw, (b, c)tIwy (b, ¢)] and on the target by the formula (5.2.5). We see that we
must show that the map

N(Op7p)/tN((’)F’p)t_1 — Iwp (b, ¢)/(Iwy(b, c) N tIwy (b, c)t_l)

is bijective. This is true, because Iw,(b, c) admits an Iwahori decomposition
with respect to By, (cf. §2.1.9).

The exactness of ord, implies that for any V' € Modgy, (O/@™[A)]), there
is an inclusion ord, I'(Iw, (b, ¢), V') C ordy I'(B,(OFp)(b), V). We must show
that this is an equality.

We have O/w™(T,(F,)}[up]™t = O/w™ [T, (F,)s]. Consequently, the
lemma will follow if we can show that for any v € I'(B,(Op,)(b),V), there
exists n > 0 such that uy - v € T'(Iwy(b,¢),V) = Viwa(be),

Since V is smooth, there exists ¢ > ¢ such that v € Y Iwp (b, By induction,
it is enough to show that U, - v € VIwp(0:¢'=1) © The definition of the Hecke
operator U, shows that this will follow if the double coset Iw, (b, ¢’)u,Iwy (b, ¢)
is invariant under left multiplication by the group Iw,(b,¢’ — 1). This is true,
as proved in e.g. [Gerl9, Lemma 2.19]. O

LEMMA 5.2.9. Let m € Dy, (O/@w™[Ap]) be a bounded below complex.
Then for any ¢ > b >0, ¢ > 1, there is a natural isomorphism

RI(T,(OFp)(b), ord RT'(Np(OFp), m)) = ordy R (Iwy (b, ¢), )
in D(O/=" [T (Fy))).
Proof. We will use [Wei94, Corollary 10.8.3] (composition formula for

derived functors) repeatedly. Since ord preserves injectives, this implies the
existence of a natural isomorphism

RI(T,(OFp)(b), —) cord = R(I'(T,,(OFyp)(b), ord(—))
= R(ordy oI (T(OFp)(b), —))
= ordy RF(Tn(OF,p)(b)7 _)'

It follows that for 7 as in the statement of the lemma, there is a natural
isomorphism

RT(T(OFp)(b),ord RI' (N, (OFyp), 7)) = ordy RI(T,(OFp)(b), RI'(Np(OFyp), T)).
Using the first part of Lemma 5.2.7, we see that there is a natural isomorphism

RU(Tu(OFp)(b), RU(Nu(OFp), 7)) = RT (B (OF(b), 7).
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Lemma 5.2.8 implies the existence of a natural isomorphism

ordy RI'(By(OFp)(b), 7)) = R(ordy I'( B (OFy)(b), —))(m)
R(ord, I'(Iw, (b, ), —)) ()
ordy RT'(Iwp (b, ), m).

12

1%

This concludes the proof. ([l

5.2.10. The ordinary part of completed cohomology. We now apply the
formalism developed in the previous section to the cohomology groups of the
spaces Xg. If K C GL,(A%) is a good subgroup, then there are functors

'k sm : Mod(O/@™[G™]) — Modsm((’)/wm[G(Fp*)})
and
Ckrgm : Mod(O/@w™[GP™ x Ap]) = Modgm (O/w™[A,])
which send a module M to T'(KP, M)™. If X € (Z7)Hom(FE) | then we define
the weight A completed cohomology
m(K?,A\,m) = Rl gr sm RT'(Xq, VA/@™) € D (O/@™[Ay)]).

If KS = vas GL,,(OFy), then m(KP, X\, m) comes equipped with a homomor-
phism

(5.2.11) T® = Endp,,, (0/wm(a,]) (T(K?, A, m))

and, if K;, C Ay, a canonical TS-equivariant isomorphism

(5.2.12) RT(K,, m(KP,\,m)) = RI'( Xk, V\/@™)

in D(O/@w™). We define 7(K?,m) = RT gp» s RT' (X, O /™) € D (O /@™ [G(F,1)]);

this complex comes equipped with a homomorphism

which recovers (5.2.11) in the case A = 0 after applying the forgetful functor to
D (O/@™[A,]). We write T(KP, m) for the image of (5.2.13).

LEMMA 5.2.14. Let K C GL,(AS) be a good subgroup. Then TS (KP,m)
s a semi-local ring, complete with respect to the J-adic topology defined by
its Jacobson radical J. For each mazximal ideal m C TS(KP,m), there is
a unique idempotent en € T3 (KP, m) with the property enwH*(n(KP,m)) =
H*(n(KP,m))m.

Proof. See [GN22, Lemma 2.1.14]. O
One important consequence of Lemma 5.2.14 is that the localization
T(KP,m)m € Dy (O/w™[G(F,")])

is defined.
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We define the ordinary part of completed cohomology
Word(va A, m) = ord RF(Nn(Opr)a W(va A, m)) € Dsm(O/wm [T”(Fp)])

(If A = 0, then we write simply 7°"4(KP,m).) Its relation to the complex
RT g 0,0)/K (b,e) (XK (b,0) > V) )% defined in §5.1 is the expected one:

PROPOSITION 5.2.15. Let K C G™ be a good subgroup with K, = Iw,
for each v|p and K° = [logs GLn(OF,). Let ¢ > b > 0 be integers with ¢ > 1.
Then for any \ € (ZS‘F)Hom(F’E), there is a TS equivariant isomorphism

RT(T,(OFp) (b), ™ (KP, A\, m)) 2 R ie(0.0) /K (be) (XK (b.e)» V2 /™)

in D(O/w™[K(0,c)/K(b,c)]). (Recall that we may identify K(0,c)/K(b,c)
with TTL(OF,p)b-)

Proof. We compute. We have a T®-equivariant isomorphism

RI(T,(OFp)(b),ord RT'(Np(OFyp), 7(KP, X, m))) = ordy, RI'(Iw,(b, c), 7(K?, A\, m))

in D(O/@w™ [T, (Fp)s]). We have a morphism

RT k(0.0 K (b,e) (XK (,0)s VA/T™) " SR k(0.0 K (b,0) (XK (0,0 VA T™)
— ordy RI'(Iwp (b, ¢), m(KP, X\, m))

in D(O/@™[T,(OFyp)s]). Note that we identify RI g (0.c)/x (b,c) (XK (b,c), VN/T™)
and RI'(Iwy (b, ¢), m(KP, X\, m)) in D(O/@™[T,(OFp)s]). To complete the proof,
we must show that our morphism induces an isomorphism on cohomology
groups. This, in turn, reduces us to the problem of showing that if M is an
O/w™[U]-module, finite as O/w™-module, and M° is the maximal direct
summand of M on which U acts invertibly, then the natural map M4 —
M — M ®0/mmp) O/@™ U, U] is an isomorphism of O/w™-modules. This
is true (cf. [EmelOb, Lemma 3.2.1]). O

COROLLARY 5.2.16 (Independence of level). Let K C GL,(AY) be a good
subgroup with K, = Iw, for each v|p and K% = [Togs GLn(OF,). Letc>b>0
be integers with ¢ > 1. Then for any A € (Zi)Hom(F’E), the natural morphism

BT g (0 max(1,6)) /K (bmas(1,6)) (X K (hmax(1,)) VA/T™) ™ = BT i (0.0)/ K (b,0) (XK (b,c)s YA/ @

in D(O/@™ [T (OFp)s)) is an isomorphism.
PROPOSITION 5.2.17. Let K C GL,(A%) be a good subgroup with K° =

[I,¢s GLn(OF). Then there are T -equivariant isomorphisms in D(O /™ [Ty, (F}))):

7Y KP, X, m) = ord RT(N,,(OF,), RU kv smRT (X, O(w§ A) /o™))
=~ 1o (KP m) @0 O(w§'\).

m)ord
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Proof. By definition, we have
7" (KP, \,m) = ord RT'(N,(OF,), RT ke sm RT (X, Va/@™)).
This depends only on the image of RI'gpr s RI'(Xg, Va/w™) in the category

D(O/w™ By (F,)t]. In this category, the B, (F,)*-equivariant morphism V —
O(w§ ) induces a morphism

7 4(K?,\,m) — ord RT(Ny(OF,), RT k» s RT (X, O(w§ \) /™).
To show that this is an isomorphism, we just need to check that
ord RT'(N,(OFp), Rl gp sm R (X, Ky /™)) = 0,

where we recall that K = ker(V) — O(w§')\)). This follows from the observa-
tion that for sufficiently large N > 1, we have uéVIC,\/wm = 0 (cf. the proof of
[Gerl9, Proposition 2.22]). The existence of the second isomorphism follows
from the fact that N,,(OF,) acts trivially on O(w§' ). O

COROLLARY 5.2.18 (Independence of weight). Let K C GL,(AY) be a
good subgroup with K, = Iw, for each v|p and K° = [logs GLn(OF,). Let
¢ > b > 0 be integers with ¢ > 1. Then for any \,\ € (ZZ}_)Hom(F’E) such
that O(w§\) /@™ = O(w§N) /@™ as O/@™ [T, (OF,)(b)]-modules, there is an
TS _equivariant isomorphism

ord

RT k(0,0)/K (b,e) (XK (be)> VA/T™)
> RT k(0,001 (b.e) (XK (be)» Vv /@) @0 O(wlA) @0 O((wiN) ™)
in D(O/@™ [ Tn(Fp)s])-
Proof. Combine Propositions 5.2.15 and 5.2.17. O

5.2.19. Results for the group G. We recall that by assumption each p-adic
place of F'* splits in F, and that we have fixed for each place v € S, of F'™ a
lift v € S, to a place of F. These choices determine an isomorphism

1] w:GF) = [] GLan(Fy).

vES) vES)
We have also fixed a maximal torus and Borel subgroup 7' C B C G which
correspond under this isomorphism to 75, C Ba, C GLs,. The theory of §5.2.1
can thus be easily generalized to study the completed cohomology of G. Since
we will need to do this only in passing on our way to analyzing the complexes
7" KP X\, m), we just give some brief indications. We will use some of the
Hecke operators and open compact subgroups defined in §2.2.4. We define

TS @0 O[T(Op+ U1, - -, U2n, Uyoan boes,)

({ch,i_ v,2n—iU;21n}' vES) )

i=1,....2n

’rfS,ord —
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We define ﬁv = ~v,1ﬁv,2---ﬁv,n_1 and U, = Hvesp ﬁv e TS If K ¢
5(A°° ) is a good subgroup with % = fvvvv for each v € §p, andec>b>0
are integers with c =1, then we define K(b c) to be the good subgroup
with K(b )y = Kz if v ¢ S, and K(b )5 = Iwg(b,c) otherwise. If )\ €

(Zi")Hom(F “E) | then there is a well-defined direct summand RI' ~

(X

of er( I~{(b,c

(0,6)/ R (b,c) ) VX) on which U, acts invertibly, and we define

T(K (b, c), \)d = TSd(RT - (Xz

rd
R(0,)/ K (be) V3)9)

K(b,c)’
(i.e. the image of the TS:°rd in the endomorphism algebra in D(O[I? (0,¢)/ K (b,c)])
of this direct summand).

To compare Hida theory for GG and for GL;,, we recall that the Levi subgroup
G of G is identified with Resp,, /Ot GL,,, which in particular identifies T" with

Reso, 0, Tn- We extend the homomorphism S : TS - TS (defined by

equation (2.1.8)) to a homomorphism TSerd _y mSerd als0 denoted S, using
the identification

O[T(Op+ )] = O[Tw(Orp)l;

and by sending each operator f(jm to the operator chvn_qu;’ln (if 1 <i<n)
and U 2Upin (if n+1 <7 <2n). Note that these respective Hecke operators
are double coset operators for elements of T'(F,") and T,,(F},) which match
under our identification T'(F}") = T;,(F).

We write T'(F,f )" C T(F,}) for the submonoid of elements which are
contracting on N(Op+ ). Under our identification T'(F,f) = T, (F,), we
have T(F,/)* C T, (Fp)* (and the inclusion is strict provided n > 2). Let
f\)vvp(b, c) = H@e@, TIwy(b, c). We recall (§2.2.4) that we have defined Kp =

Tw, (b, c)T(F;)Jrfvvvp(b, ¢), an open submonoid of a(F;), and that we have
defined an action -, of this monoid on V5. If b > 0 is an integer then we
define T(Op+ ,)(b) = Th(OFrp)(b) and write B(Op+ ,,)(b) for the pre-image
in B(Op+,) of T(Op+ ,)(b) under the natural projection to 7. We define
B(FJ)"' = N(Op+ ) - T(F;)+‘

Fixm>1. If K C a(A%i) is a good subgroup with Ky = Iwy for each
v € S, and Xe (Zi")Hom(F+’E), then we define

(5.2.20)  F(KP?,\,m)= RT [(Xg V5/@™) € Dan(O/w™[A,)]).

%P,sm
If K5 = 5(6;), then this complex comes equipped with a homomorphism

(5.2.21) T° — End (F(KP, \,m)).

D (O/w™[Ap))

(Oc)/K(bc)( (bc)

VX ) ord
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We define 7(K?,m) = Rz, _ RI(Xz, O/w™) € Dgy(O/w™[G(F;)]): this
complex comes equipped with a homomorphism
(F(K?,m))

TS
(5.2.22) T = Endp_ 0/mm(@r)

that recovers (5.2.21) after applying the forgetful functor induced by the
inclusion A, C G(FJ ). We also need the completed boundary cohomology. We
thus define

(5.2.23)  Fo(KP,\,m) = RT', _ RT(0Xg, V;/@™) € Dan(O/@™[4,)).

This complex comes equipped with a homomorphism

(5.2.24) T - Enstm(O/wm[ZpD(%a(f?p,X,m)).

We define 75(K?,m) = Rl'z, RI(8%Xz, O/w™) € Dy (O/w™[G(F;)]); this
complex comes equipped with a homomorphism

(5.2.25) TS - Enstm(O/wm[é(F;)D(%3(?{1’,m)).

If ¢ > b > 0 are integers with ¢ > 1, then there are canonical TS’Ord—equivariant
isomorphisms

(5.2.26) RT(Iw, (b, ¢), #(KP, X, m)) = Rr()?mc), Vi/w™)
and
(5.2.27) RT(Iw(b, ¢), o (K?, A, m)) & RU (X, ), V3 /™)

in D(O/w™). We define the ordinary part of completed and completed bound-
ary cohomology:

7 (KP, X\, m) = ord RD(N(Op+ ), 7(KP, \,m)) € Dea(O /™ [T (F;)))

and

7o (KP, X\, m) = ord RO(N(Op+ ), 7o(KP, X, m)) € De (O /™ [T(F;)]).

If A= 0, then we omit it from the notation. We have the following result, which
contains the analogues of some of the results in §5.2.10 for the group G. The
proofs are entirely similar, so are omitted.

PROPOSITION 5.2.28. Let K C CNJ(A%OJr) be a good subgroup with IN(g = ﬂ;\/y
for each S, and K° = G((/’)\f,+) Let ¢ > b > 0 be integers with ¢ > 1. Then for
any N (Z?F”)H‘)m(l‘ﬂr’E)7 there are T equivariant isomorphisms

RD(T(Op+,)(b), 7 (K?, X, m)) & RT(T(Op+ ) (6), O(w§X) @0 7 (KP,m))

~ RFI? m ) ord

(0,¢)/K (bc) (Xz?(b,c)v V5/@
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and

RU(T(Op+,)(b), 73 4(KP, X, m)) & RI(T(Op+ ) (6), O(w§X) @0 74 (KP,m))

= er?(o,c) /z?(b,c)(axf?

ord

(b,c)’ Vi/@™)

in Dgn(O/w™ K (0 c)/K(b o))).

5.3. The ordinary part of a parabolic induction. In this subsection, we
compute the ordinary part (in the sense defined above) of a parabolic induction
from G to G, , with the aim of understanding the ordinary part of the cohomology
of the boundary of the Borel-Serre compactification of X 7 in terms of the
ordinary part of the cohomology of Xg. Our calculations here are purely local;
the global application will be carried out in §5.4 below.

Let ¥ be a p-adic place of F'*'. In this section, we write "W = W(G faug Tp+),
"Wpz = W(G p+,Tp+ ), and ’"WFP W5 for the set of representatives for the
quotient Tngqrwfvwhich is associated to the choice of Borel subgroup B fau
We define "W = HvGS W, "Wp = Hﬁe@; "Wpy, and WP = Hﬁe@, "Wk
Thus "W is the relatlve Weyl group of the group (Resp+ /Q G)q,- Note that
in §4 we made use of the absolute Weyl group W; there is a natural inclusion
"W C W, by which "W acts on e.g. the group X*((Resp+/qT)r). We write
I (w) for the length of an element w € "W as an element of the relative Weyl
group, and [(w) for its length as an element of the absolute Weyl group. Thus
wl’, the longest element of W (equivalently, of "WF) has I, (wt) = |S,|n?
and [(w) = [FT : Qn?. As in §4, we write p € X*((Resp+,QT)E) for the
half-sum of the (Resp+/q B)g-positive roots.

We recall (cf. §2.2.1) that P denotes the Siegel parabolic of 5, which has
unipotent radical U, while the Borel subgroup B has unipotent radical N. We
identify G with Resp/p+ GLy,; this group has standard Borel Resp/p+ By, with
unipotent radical Resp/p+ Np. The parabolic induction functor

%) < Modun (O/™ [P(E)]) = Modun (O/™ G} )

is exact and preserves injectives (it is right adjoint to the exact restriction

G(Fy)
P(E;)
parabolic induction.

functor Res ). We now define several more functors which are related to

We identify "W with the subgroup of permutation matrices of é’V(F‘;r ) =
ngs GLay, (F3). We recall (cf. [BT65, Cor. 5.20]) that there is a (set-theoretic)
decomposmon

GEH= || PEHwBE.

werWwr
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Ifw € "W, then we define Sy, = P(F,f )wN(F;") and S5, = P(EN)wN(Op+,) C
Sw- The closure S, of S, in (N;(F; ) can be described in terms of the Bruhat
ordering of "W

Sw=|] Su-

w’ <w
Note that if w’ < w, then I,.(w') < l.(w). For an integer i > 0, we define
Gei= || Sw
we™Wwr
Ir(w)>1

It is an open subset of G (F; ) which is invariant under left multiplication by
P(F,) and right multiplication by B(F,").
If ¢ > 0, then we define a functor

Is; : Modsm(O/wm[P(FJ)]) — Modsm(O/wm[B(Fer)])
by sending 7 to
Isi(m) ={f: 52i — 7 | f locally constant, of compact support modulo P(F;),

Vp € P(ES),g € Gsi, f(pg) = pf(9)},
where B(F,) acts by right translation. If w € "W, then we define a functor
Ly Moday (O/@™ [P(E)]) = Modyn (0/=" [B(E; )])
by sending 7 to
Iy(m) ={f : Sy — 7 | f locally constant, of compact support modulo P(F;),
Vp € P(F;"),9 € Sw. f(pg) =pf(9)},

where again B (F;r ) acts by right translation. We define a functor
I : Modsm(O/wm[P(F;)]) — Modsm(O/wm[B(F;)J’])
by defining I (7) C I,(m) to be the set of functions with support in Sg,.

PROPOSITION 5.3.1. (1) Iso = Resggf% olndgg;.

(2) Each functor I>;, I, and I, is exact.

(3) For each integer i > 0 and each m € Mod (O /w™[P(F,)]), there is a
functorial exact sequence

0= Ixip1(m) = Isi(m) = DperpprLw(m) = 0.
Ir(w)=t
Proof. The first part is the definition of induction. For the second part,
denote by I any of the functors appearing in the statement. To see the exactness
of I, choose a continuous section to the map E(FI;L) — P(F;)\g(F;r) (the
existence of such a section is explained in [Haul6, §2.1]). This allows us to
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functorially identify I(7) with the space of locally constant and compactly
supported functions from a subset C' C P(F,’ NG (F,F) to m. The formation of
locally constant and compactly supported functions is exact. The third part is
proved in the same way as [Haul6, Proposition 2.1.3]. ([

It follows that for any 7 € Dgyn(O/@w™[P(F;")]), there is a functorial
distinguished triangle
(5.3.2) IZi+1(7T) — Izl’(ﬂ') — @wETWPIw(Tr) — IZi-i-l (7[')[1]
Ir(w)=t

in Dy (O/w™[B(F,1)]).

LEMMA 5.3.3. Let m € Dyn(O/w™[P(F,})]) be a bounded below complex,
and fix an integer b > 0. Let e (Zi”)Hom(F+’E). Then for any i > 0 and any
j € Z, the sequence

0 = RIT(B(Op,)(b), O(wi}) ®0 Tsis1(7))
— RIT(B(Og,)(b), O(wGX) @0 Is(m))
— RIT(B(Op,)(b), &y eryr OWGA) ®0 L(w)) = 0

Ir(w)=t
in Mod(O/@w™[T(F,")]) associated to (5.3.2) is exact.

Proof. 1t suffices to show exactness after applying the exact forgetful
functor to Mod(O/@™). We consider decompositions G>; = Uy U Uy where
Uy, Us are open sets which are invariant under left multiplication by P(FPJr )
and right multiplication by B(Op+ ), and such that U; C CNJZiH. Any such
decomposition determines a functorial decomposition I>;(7) = Iy, (7) & Iy, (7),
where Iy, denotes functions with support in Uj, and similarly for Us. This
decomposition exists in the category Modsw(O/@™[B(Op+ ,)]). We see in
particular that for any bounded below complex 7 € Dy (O/@w™[P(F;")]), the
associated morphism

RIT(B(O,)(b), Ow§X) ®o Iy, (1)) = RIT(B(Or,)(b), Ow§A) ©o Isi(r))

in Mod(O/w™) is injective. Since I>;1; is the filtered direct limit of the I,
(which can be proven by following the same technique as in the proof of [Haul6,
Prop. 2.2.3]), it follows that the morphism

RIT(B(Orp)(b), O(w§3) @0 Isis1 (7)) = RT(B(Oryp)(h), O(w§ X) @0 Isi())

is injective. Since this applies for any j € Z, the exactness of the long exact
sequence in cohomology attached to the distinguished triangle (5.3.2) implies
that the sequence in the statement of the lemma is indeed a short exact
sequence. O
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LEMMA 5.3.4. Let w € "WF. Then:

(1) I takes injectives to T'(N(Op+ ), —)-acyclics.

(2) Let m € Dgy(O/w™[P(F;")]) be a bounded below complex. Then there

1s a natural isomorphism
ord RT'(N(Op+ ), I (7)) = ord RI'(N(Op+ ), Ly(7)).

Proof. For the first part, let 7 € Modsm (O/@™[P(F,})]), and fix an O /w™-

embedding m < I, where [ is an injective O/w™-module. Then there is an
+
F) 1 of O/wm[P(F;)]—modules. We will show that
+

I;(Indf(Fp )I) is an injective smooth O/w™[N(Op+ ,)]-module. By [Emel0b,
Lem. 2.1.10], this will show the first part of the lemma.

Let C*°(P(F,")wN(Op+ ), I) denote the set of locally constant functions
F: P(F)wN(Op+ ;) — I. It is an injective smooth O /@™ [N (Op+ ,)]-module
when N(Op+ ) acts by right translation. There is a natural isomorphism

embedding 7 — Indf

I;(Indf(F;) 1) = C®(P(F} ywN (Op+ ), 1),

+
which sends a function f : P(F;)wN((’)F;) — Indf(Fp )T to the function

F: P(F;r)wN((’)FJ) — I given by the formula F'(z) = f(x)(1). This proves
the first part of the lemma.
For the second part, we note that we may define an exact functor
Juw : Modg (O/@w™[P(F,;)]) = Modsw (O/@w™[B(F,7)*])
by the formula Jy,(7) = I,(7)/I;, (7). Then for a bounded below complex
7 € Dy (O/w™[P(F,)]) there is a natural distinguished triangle
ord RT'(N(Op+ ), I (7)) = ord RT(N(Op+ ), Ly(7)) = ord RT'(N (Op+ ), Ju (7))
— ord RI'(N(Op+ ), I, (m))[1].
To prove the desired result, it is therefore enough to show that
ord RT'(N(Op+ ), Jw(m)) = 0.

It is even enough to show that for any 7 € Modgn(O/w™[P(F,")]) and for
any j € Z, we have ord H/ (N(Op+ ), Ju(m)) = 0, and this can be proved
in the same way as [Haul6, Lemme 3.3.1]. Indeed, it suffices to choose an
clement ¢ € T(F;1)T, as in [Haul6, Lemme 3.1.3], such that Sy, = Up>ot*Sgt*.
It follows that ¢ acts locally nilpotently on J,(7), and consequently that
each element of H*(N(Op+ ), Ju(m)) is annihilated by the Hecke action of a
sufficiently high power of ¢. O

If w e "WP, we define Ny, = P(F,7) NwN(Op+ ,)w". It is a compact
subgroup of P(F,") which contains N,(OFy). We define a functor

L'(Ny, =) : Modsm (O/w"™ [P(F,)]) = Modsn (O/="™ [T'(F,")T]),
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where an element ¢ € T(F,")" acts by the formula t - v = trjwn, ()15, (*0)
(t € T(F;)"). Note that this makes sense because Ny, (t*)~! = P(F;5) N
wtN (Op+ )t 'w™ C Ny. Note as well that wT'(F,5)Tw™ C T,,(F,)" (by
definition of "WF).

LEMMA 5.3.5. Let w € "W¥ and let 7 € Dyy(O/@™[P(F,;)]) be a
bounded below complex. Then there is a natural isomorphism

RU(N(Op+ ), I5(7)) 2 RT(Ny, 7).

Proof. By the first part of Lemma 5.3.4, it’s enough to show that there is
a natural isomorphism of underived functors

F(N(OF+,p)7 IZ}(_» = F(Nwa _)‘

The map sends an N(Op+ p)-invariant function f : P(F, )wN(Op+,) — 7
to the value f(w) € 7N, It is easy to see that this is an isomorphism of
O /w™-modules; what we need to check is that it is equivariant for the action of
T(F,f)*. In other words, we need to check that for any f € T(N(Op+ ), I, (7)),
we have

(5.3.6) Z f(wnt) = Z mwtw ™ f (w).

nEN(Op+ ) /tN(Opy )71 ME Ny, [t Ny, (1)1

Conjugation by w™! determines a map Ny, /t“ Ny, (t*) ™! = N(Op+ ) /tN(Op+ )t 1,
which is easily seen to be injective. On the other hand, if n € N(Op+ ;) and
f(wnt) # 0, then the class of n is in the image of this map; indeed, f(wnt)

can be non-zero only if wnt € P(F, )wN(Op+,), in which case we write
wnt = qwm, with ¢ € P(Fer) and m € N(Op+ ), hence n = wlquttmt L.

As wlqut™! € w_lP(FJ)w N N(Op+ ) this shows that n is in the image of

this map. It follows that we can rewrite the left-hand side of (5.3.6) as

Z flmwt) = Z mwtw ™ f(w),
mMENu /% Nop (£2) 1 ME N /£ Nop (£2) 1
which equals the right-hand side of (5.3.6). O

For the statement of the next lemma, we define, for any w € "W7¥, a
character x,, : T(F,") — O* by the formula

x (t) _ NF;/QZJ detF;_ (Ad(tw)|LieU(Fp+)mwN(F;)wfl)_1
INp /q, det p (AA(E) e p(m yrwon(m yum1) I

Note that there is an isomorphism O(x.,) = O(—p + w™lwl’(p)) ®o O(aw)

of O[T (F,")]-modules, where w{’ = w§w§ is the longest element of "W,
and where a,, : T(F,") — O* is the character which is trivial on T'(Op+ )
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and which satisfies the identity ., (t) = xw(t) for any element of the form
t =1y H(diag(w®, ..., @) (a; € Z). We also write

Tw : Modsm (O/@™ [17,(Fp)]) = Modgm (O /@™ [T, (F))])
for the functor which sends a module 7 to 7,,(7) = m, with action 7, (7)(t)(v) =
—1
(" ) (v).

LEMMA 5.3.7. Let w € "WF and let © € Dn(O/@™([G(F,1)]) be a
bounded below complex. Then there is a natural isomorphism between the
following two complezes in D g (O/w™ [T, (F))]):

P(Ff
ord RI'(Ny, InfGEng )

and
O /@™ (Xw) ®0jem Ty 0rd RT (N (OFp), m)[~[F* : QIn® + I(w)].
Proof. Let Ny x, T(F,7)* denote the monoid N, x T'(F,")*, equipped with
multiplication (t“n(t*)~%, 1)(1,t) = (1,t)(n,1) (where the product t“n(t¥)~*
is formed using the usual multiplication of the group G(F:)) Let Ny v =
Ny NU(F,"). Then there is a short exact sequence

0 = Nyu — Ny = Np(Opp) =0

which is equivariant for the conjugation action of T(F,7)* via the map T'(F,")* —
T, (Fp)*, t — t“. We consider the diagram, commutative up to natural isomor-
phism:
Modgm (O /™ [P(F;)])
Res™
Modsu (/@™ [Nu 3 T(F,)T])

I‘le,U

Modsm (O/@™ [Np(Opp) Xw T(FF)T]) —— Modan (0/@™ [Ny (Orp) % Tr(Fp) 1))

PNy (0 ) JFNMOF,,,)

Modan (O/=™ [T(FH)*+]) ’ Modsn(O/w™ [T (Fy) +)

p
Twoord
ord

Modsm (O /@™ [T, (Fp)]).

In this diagram we have abbreviated e.g. I'(Ny, v, —) = 'y, ;- We also abbrevi-
P _ 1. ¢PED)
ate Inf; = InfG(Fg).

(cf. [Haul6, §3.2]). The exact functor Res® is defined by taking Res"(7) =«

The torus action on e.g. I'y,, ,; is defined in the usual way
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as an O/w™-module, with Res" (7)(nt)(v) = w(nt*)(v). We also use Res” to

denote the functor Res" o Infg. The « is the composite of the equivalence
Modsm((’)/wm[Nn((’)Ep)NwT(FJ)JF]) — Modsm((’)/wm[Nn((’)Rp)NwT(FpJ“)J“w_l])

induced by the map nt € Ny, (Opp) x wT(Ff)Tw™ — (n, 17" € No(OFp) X
T(F,")" with the localization

Modsm(O/wm[Nn(Op,p)wa(F;“)+w_1]) — Modsm (O/@™ [Ny (OF ) X T (F,) 1))

induced by the inclusion wT'(F,})*w™ C T,,(F,)*. Similarly, the functor 3 is
the composite of the equivalence

Modem (O/@™ [T(F,F)*]) = Modew (O /@™ [wT (F; ) Tw™])
with the localization
Modsm (O /@™ [wT'(F,} ) Tw™]) = Modsm (O/@™ [T, (Fp) ).

Note that « takes injectives to I'y, (o )-acyclics; this can be deduced from
[Emel0b, Prop. 2.1.3], using the compactness of N, (OF,) and the observation
that this localization can be thought of as a direct limit. Note that the composite
of all left vertical arrows is the functor I'y, .

Let m now be as in the statement of the lemma. We compute

ord RT'(Ny, Inf§; 7) = ord BRIy, (0, RI'N,,  Res® Inf§

= ord RT'y, (0,)@RT'N,, ;; Res® Infg .
Since U(FJ ) acts trivially on 7, there is an isomorphism
RTy,, , Res” Inf§ m = Res® (1) ® jm RT (N, O/™)

in Dgn (O/@™[Nn(OFyp) X T(F,)*]). To go further, we need to compute the
complex aRT'(Ny, 7, O/w™). To this end, we consider the action of the element

zp:diag(p,...,p,l,...,l)ET(F]D‘F)+

(where there are n entries equal to p and n entries equal to 1; note that this
element depends on our choice of set §p, which determines the identification of
5(F;r) with Hﬂe@, GLon(Fy)). It is in the centre of G(F}"), and is therefore
invertible in T, (F,)". Its action on the cohomology groups H*(Ny 7, O/w™)
is the one induced by its natural conjugation action on N, y; in other words,
multiplication by p on this abelian group. The group NV, has rank n?[F+ :
Q] — l(w) as Z,-module, from which it follows that the Hecke action of 2, on
HY(Nyy,0/w™) factors through multiplication by prETQIw) (0 < <
n?[F* : Q] — I(w)). The cohomology groups below the top degree i = n?[F+ :



114 P. ALLEN ET AL.

Q] — I(w) therefore vanish after applying the functor «, and it follows from
[Haul6, Prop. 3.1.8] that

aRT(Nuy, O/w™) = O/w"™ ((xw)*)[~[FT : QIn* + I(w)]
= a0/w™ (xw)[-[FF : QIn? + U(w)],
hence that
BRIy, Res® Inff 7 = BRU'N, (0,) Res® TR0 /m O /@™ (Xw) [~ [FT Qn*+1(w)).
We finally see that ord RT'(N,,, Inf 7) is isomorphic to
7 ord BRT y, (0r.,) Res” 7 00/ O™ (xu)[-[F* : QJn? + 1(w)
= 0/ () Gojen 7 01d ROy, 0pywl-[F* : Qn? 4 l(w)]. O

PROPOSITION 5.3.8. Let w € "W and let 7 € Dyy(O/@™[G(F;})]) be
a bounded below complex. Then there is a natural isomorphism between the
following two complexes in D gp(O/w™ (T, (Fp)]):

P(Fy)

ord RT'(N(Op+ ), Iw(InfG(F;) ))
and
O/ (Xw) ®0jem Ty-1 0rd RT(Np(Opp), m)[—[F' : QIn® + l(w)].
Proof. This follows on combining Lemma 5.3.4, Lemma 5.3.5, and Lemma
5.3.7. (]

5.4. The degree shifting argument. In this section, we give the analogue
for completed cohomology of the results of §4.2, by relating the completed
cohomology of X to the completed cohomology of the boundary 0X. The
statement is simpler for completed cohomology than for cohomology at finite
level because the contribution of the unipotent radical of the Siegel parabolic
vanishes in the limit.

THEOREM 5.4.1. Let K C 5(A%°+) be a good subgroup which is decomposed
with respect to P. Let m C TS be a non-Fisenstein mazimal ideal, and let

= Q% TS a(sz) D ; TS ; ;
m = S8*(m) C T°. Then the complex IndP(F+) 7(KP,m)n is a T*-equivariant
P

direct summand of the complex %a(ﬁp, m)g in Dy (O/w™ [(NJ(FJ)])

Here and below we have written 7(KP, m)y, for the complex previously

+
denoted Inf Z(F” )

() m(KP, m)y in order to lighten the notation.
p

Proof. We first show that there is a TS -equivariant isomorphism

(R, o BT (IndBZ Xp, O/@™))q = (RT, | RT(0X5,0/@™))g = Fo(KP, m)g.



POTENTIAL AUTOMORPHY OVER CM FIELDS 115

As in the proof of Theorem 2.4.2, it suffices to show that for each standard
proper parabolic subgroup @ C G with Q) # P, we have

H*(RT', _ RT(IndS% Xq, k))g) = QH*(XQ — L k)a=0.

KPsm K?K)

p
This follows from the corresponding finite level statement, which has already
been proved in the course of the proof of Theorem 2.4.2.

We therefore need to compute RI'z, RF(Indgz Xp,0/w™). We will

EF ;er BT (Xg, O/=™) as a

TS-equivariant direct summand in Dy (O/w [G(Fgr )]), where TS acts on the
latter complex via the map S.
To see this, we compute

in fact show that this complex admits Ind

RTf,  RU(IndZ Xp,0/@™) = RT &, | nd% RU(Xp, 0 /w™)
~ g ~ o~ md®B)Rr., Res” RT(Xp,0/w™)
= Dgep(F)\Gs_s,/Ks—s, "ph) 1Y Kos ps- SpxgKp,s— 5,9~ P '

Taking the summand corresponding to g = 1, we see that it will be enough to
exhibit an isomorphism

RTz,  Resh RI'(Xp,O0/w™)

K% sm PS SPxKpg_ Sp

NInf( ") RT v om ResC

ek RI(XG,0/a™).

GS Sp xKg_g

Let us write
I'pgm : Mod(O/@w™[P(F;N)]) = Modaw (O /=™ [P(F;N)]),

Tyosm : Mod(O/@™[P(F;)]) = Mody-sm(O/@™[P(F;))),

and
I'Gosm : Mod((’)/wm[G(Fj)]) — Modsm((’)/wm[G(Fer)])

for the functors of P, U and G-smooth vectors, respectively. The target category
for the second functor is O /@™ [P(F,")]-modules with a smooth action of U(F").
These functors are all right adjoint to forgetful functors, and therefore preserve
injectives. The restriction of I'p_sm to Mody.sm(O/@™[P(F,)]) is the same as
taking G-smooth vectors.

Unpacking the above, we see that it is enough to construct a Hecke-
equivariant isomorphism

(5.4.2)

InfE ;RFGSmHO( (FY\G(A,)/KP,0/o™)

— RUp. HY(P(F)\P(A%,)/ K%, O/™).
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The morphism (5.4.2) is constructed using the canonical natural transformation

P(FF) P(F;H) .
Inf 7 oRlGsm — RI'p.gmolnf 2 (INT16, Lemma 2.1]), and the morphism
G(Fp) G(Fy")

P(FF =~
Inf %) HO(GFF)\G(AR,)/KP, Ow™) — HO(P(F*)\P(A%.)/Kp, O/="™)
given by inflation of functions. The Hecke-equivariance follows from [NT16,
Corollary 2.8].

To show that (5.4.2) is an isomorphism, it will be enough to show that

0 + oo P my A P(FS) 170 + oo D m

RUysm H™(P(FT)\P(AF:)/Kp, O/w™) = Inf , () HY(G(ETN\G(AF)/KP, Ofw™).
Indeed, we can then take the derived functor of G-smooth vectors on both sides
to obtain (5.4.2) — this operation commutes with inflation from G to P, since
(the inflation of) a G-injective is acyclic for the functor of G-smooth vectors.

However, the cohomology groups of the left-hand side here can be computed
as

liy 11 H'(V,, H(U(FM)\U(AR:) /KD, O/=™),

VoCU(F) geG(FH)\G(A%, )/ KP
the limit running over all open compact subgroups V,, C U(Fp+ ).

Using strong approximation, we compute

H'(Vy, H'(U(FF)\U(AEL)/ KD, Ofw™)) = H(U(FT) N (KGV,),0/w™).

Taking the limit, we get a product of copies of O/w™ in degree 0, and 0 in all
higher degrees. This completes the proof. ([

Combining this theorem with the results of the previous section, we obtain
the following.

THEOREM 5.4.3. Let K C 5(A°F°+) be a good subgroup which is decomposed
with respect to P, and such that Ky = Iwz for each place v € §p. Let \ €
(Z2)Hom(FLE) ety € "W and let Ay = w(X + p) — p € (Z7)Hom(EE),
Let m C T® be a non-Eisenstein mazimal ideal, and let m = S*(m). Fiz
integers ¢ > b > 0 with ¢ > 1. Then for any j € Z, S descends to a surjective

homomorphism
THH (0K 0 VOB = T2 00 0, 0807 6, HT (Ko V)i
0 0

Proof. Let m > 1. To save space, we abbreviate functors I'(H, —) of H-
invariants as I'g. By Theorem 5.4.1, Lemma 5.2.6, and Proposition 5.2.28, the
complex

X mord
Rl—‘f{(ovc)/f((byc) (an(b,c)’ VX/W )%
admits the complex
G(Fy)

Ol"db RFT( )(b)(’)(ng) ®O RFN(OF+,p) IndP(FI;") 7T(Kp, 77”&),;1

OF+7P
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as a T%"_equivariant direct summand. These direct sum decompositions are
compatible as m varies, so after passing to the inverse limit we get a surjection
of T9°rd_algebras:

(5.4.4)
T.S,0r (9% or:
T d(Hj (aX]N((bvc)v VX)fﬁd)
~S.ord /1: ; a~ G(F
= T (imord, R'Tr(o,., )nOw§A) ®0 Rlx(o,. ) Indp ) w(KP,m)s).

m

On the other hand, it follows from Lemma 5.3.3 that for any i > 0, we have a

/rfS,ord

short exact sequence of -modules:

0 — ordy RjFT((’)FJr’p)(b)O(w(();X) Ko RFN(OFﬁP)IZ’L#lTr(va ’I?’L)g.l

— ordy RjPT(@F_'_’p)(b)O(wOG}) Ko RPN( IZZ‘TF(KP, m),;l

OF-&-J,)
— @y erpyp Ordy, RjFT(OF+ p)(b)O(woG}\) X0 RFN(@FJr p)IwTr(Kp, m)s — 0.
Ir(w)=i ’ '
These are compatible as m varies, and the cohomology groups are finitely
generated O-modules, so we can pass to the limit to obtain short exact sequences
of O-modules. It follows that for any ¢ > 0 and any element w € "W of length
l.(w) =4, there are surjective homomorphisms of T*°"-algebras

(5.4.5)
'rfS,ord (m ordb RjI‘T(OFtp)(b)O(ng) ®O RFN(

m

Isim(KP,m)z)

OF+7p)

— TS’Ord(yLn ord RjFT(OF+,p)(b)O(w()GX) ®o RFN(OF+,p)IZz'Jr17r(Kp7 m)s)

and
(5.4.6)
TS’OrdG&l Ordb RJFT(OF_'_’p)(b)O(wOGS\/) ®O RFN(OF_‘_J))IZ’LT‘—(KP, m)ﬁi)

— TS’Ord Qﬂl Ol"db RjFT(OFJF‘p)(b)O(w(?)‘) Ko RFN(OFJr’p)IwT"(Kpa m)a)
m

G(F)

P(Fy)

On the other hand, Proposition 5.3.8 shows that there is a TS°*_equivariant

By definition, I>om(KP?,m) is (the restriction to B(F,") of) Ind m(KP,m).

isomorphism
(5.4.7)
ordy RjI‘T(@Ferp)(b)O(wS’VX) =) RFN(OF+7P)Iw7r(Kp, m)am

= ij[F+:Q}n2+l(w)FTn(oFﬁp)(b)(’)/wm(xw) ®0 OW§N) @o 75 ' 7Y KP, m).



118 P. ALLEN ET AL.

~Y

We recall that there is an isomorphism O(xy) = O(—p + wlwl’p) @ O(aw).

We have (—p + wlwl’p + w(;éX)w = w§ Az, where v = wOwa(;é. Here we

write wg for the longest element of Wp, wg for the longest element of W,

and note that the map w wOG wwOG is an involution of "W which satisfies

l(wOwaoé) = [FT : Qn? — l(w). Applying Propositions 5.2.15 and 5.2.17, it
follows that the cohomology group in (5.4.7) may be identified with
Ola & 05) Ko T;é aﬂj_l(x) (XK(b’C),V)\x/wm)%rd.

Wy TW §zw§
Putting all of this together, we see that we can chain together the surjections

(5.4.4), (5.4.5) and (5.4.6) to obtain a surjection homomorphism of TS.ord_
algebras

TSI (0, 0, VIR = TS0 o )om—d  HITO (Xigg 0, V0,039

m w§x G

'LUO wwo
The proof is complete on noting that H*(Xg . ¢), W\, )2 is a T invariant
direct summand of H*(X g ¢, Va, )29 O

In order to apply Theorem 5.4.3, we will make use of the following com-
binatorial lemma. We use the following notation: if A € (Z7)Hem(FE) and
a € Z, then A(a) € (Z7)Hom(FE) i5 the highest weight defined by the formula
Aa)ri = Ari+aforall 7 € Hom(F, E), i =1,...,n. We recall as well that we
have previously fixed the notation §p for a set of p-adic places of F lifting S,
and I~p for the set of embeddings 7 : F' — F inducing a place of §p (cf. §2.2.1).

LEMMA 5.4.8. Fiz m > 1. Then we can find A € (Z7)HomIE) with the
following properties:
(1) There is an isomorphism O(X)/w™ =2 O/w™ of T),(F,)-modules.
(2) The sum > | (Ari+Are,i) is independent of the choice of T € Hom(F, E).
(3) For eachi=0,...,n%, there exists an element w; = (U)i’ﬁ)iegp e"wr,
an integer a; € (p— 1)Z, and a dominant weight \; € (Zi")Hom(FJr’E),
all satisfying the following conditions:
(a) N\ is CTG (cf. Definition 4.3.5).
(b) For each v € Sy, ly(w;5) = n? —i. Consequently, l(w;) = [F* :
QJ(n® —i). _
(¢) We have wi(A\; + p) — p = Aa;).

Proof. Let M > 16n be a non-negative integer which is divisible by 8(p —
1)#(0O/w™)*. We will show that we can take A to be the dominant weight
defined by the formulae

N = (—nM,—2nM, ..., —n>M) ifTEEg;
T 0,-M,...,(1—n)M) ifrcel,
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If A(a) denotes the element of (Z27)Hom(F".E) that corresponds to A(a) under
our identifications, then we have

Xa)=(n—1DM—a,...,—a,—nM +a,...,—n>M + a).

In order to construct the elements w; and a;, we make everything explicit. Our
choice of the set S determines an isomorphism of the group (Resp+/q G)Qp
with the group H,Ue S, Resr, /q, GL2n, hence an identification of "W5 with S,
and of "Wpz with the subgroup S, x S,. We can identify the set ”va of
representatives for the quotient "Wpz\"W5 with the set of n-element subsets
of {1,...,2n}. Given such a subset X, there is a unique permutation 7 of
{1,...,2n} with 7({1,...,n}) = X and with the property that 7 is increasing
on both {1,...,n} and {n + 1,...,2n}. The corresponding element of "W.X
is ox = 77!. The length of a permutation w € Ss, is given by the formula
lw) = #{1 < i< j <20 | w(i) > w(j)}

Given i, we choose integers r,x > 0 with nz+n—r = n2—jand1<r<n
(the choice is unique). We define w; by setting w;7 = ox, for each v € S,,,
where X; ={z+1,2+2,...,z4+r,c+r+2,2+r+3,...,2+n+1}. We have

(wiz(1),... wiz(2n)) =
m+1,n+2,....,n+x,1,2,....r,n+x+1,r+1,
r+2,...,n,n+x+2,n+x+3,...,2n).
We observe that indeed I, (w; ) = n? —i. We need to choose a; so that the
weight \; = w;l(X(ai) + p) — p is dominant. We first calculate ufl(X(ai)).
For any 7 € Hom(F*, E), we have w;l(X(ai)) rj = /\(az)Tw( ), hence the 7

component of w;~ Y(X(a;)) is equal to

(A@i)rn+1s- - M@ rpra A@i)r1s - M@z, M@i)rptat,
Arar1(0)s - Aen(@0), Arinata(ai), - - Aron(ai))
=(—nM +a;,...,—nzM + a;,(n — )M —a;,...,(n —r)M — a;,—n(z + 1) M + a;,
(n—r—1)M —aj,...,—aj,—n(x+2)M+aj,...,—n*M + a;).

We see that w; '(X(a;)) is dominant if and only if the following 4 inequalities
are satisfied:

(5.4.9) —nxM +a; > (n—1)M — a;,
(5.4.10) (mn—r)M —a; > —n(z+ 1)M + a;,
(5.4.11) —n(z+1)M+a; > (n—r—1)M — a;,

(5.4.12) —a; > —n(x + 2)M + a;.
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These 4 inequalities are together equivalent to requiring that a; € [(nx + 2n —
r—1)M/2,(nz 4+ 2n — r)M/2], a closed interval of length M /2. Requiring
instead that w; 1(X(ai) + p) — p is dominant leads to 4 similar inequalities,
where the left-hand side and right-hand side differ to those in (5.4.9)-(5.4.12)
by an integer of absolute value at most 2n — 1. If we choose a; to be the unique
integer in [(nx + 2n —r — 1)M /2, (nz + 2n — r)M /2] which is congruent to
M /8 mod M /2, then w;l(X(ai) + p) — p is dominant.

To complete the proof of the lemma, we just need to explain why XZ =
w7 (A(a;) + p) — p is CTG. Tt suffices to show that for any 7 € Hom(F*, E),
and for any w € WFP (where T is the place of F'* induced by 7), the number

[w(Xi + p) = plrj + [wNi + p) = plransi—j
= w(X’L +p)rj + w(xl +P)r2nt1—j

is not independent of j as j varies over integers 1 < j < n. To show this, it
suffices to show that the multiset

I={+p)rj+ Ni+p)es | 1<j<k<2n}

does not contain any element with multiplicity at least n. We first consider the
multiset

I' = {Xiﬂ—’j —l—f)\viﬂ—,k ‘ 1<j<k< 2n}.
It is a union of the three multisets

I ={(-na+AM[1<a<n0<B<n—1}

I ={-n(a+B)M +2a; |1 <a < g <n},
and
I={(a+B8)M—-2a; |0<a<pB<n-—1}

Note that each element of I] has multiplicity 1. Each element of I} and Ij has
multiplicity at most n/2. Moreover, I1, I, and I} are mutually disjoint (look
modulo M). It follows that no element of I’ has multiplicity at least n. To
show that I has no element of multiplicity at least n, we use the analogous
decomposition I = [} U Iy UI3. The sets I1, I3 and I3 are disjoint (look modulo
M, and use the fact that each entry of p has absolute value at most (2n —1)/2).
Each element of I; appears with multiplicity 1, while each entry of I and I3
has multiplicity at most n/2. This completes the proof. O

Lemma 5.4.8 allows us to express certain cohomology groups of the spaces
Xk in degrees divisible by [F™ : Q] in terms of middle degree cohomology of
the spaces 0xX e (and hence, using Theorem 4.3.3, of the spaces X ]~<) Indeed,
combining the results so far of this section, we obtain the following result.
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PROPOSITION 5.4.13. Suppose that [FT : Q] > 1. Let m > 1 be an integer.
Then there exists a dominant weight A € (Z’}F)Hom(F’E) such that a finite index
subgroup of Of acts trivially on Vy and for each i =0, ... ,n? —1, a dominant
weight \; € (Zi")Hom(FJr’E) which is CTG, an integer a; divisible by (p — 1),
and a Weyl element w; € "W such that the following conditions are satisfied:
Let K C 5(A°F°+) be a good subgroup which is decomposed with respect to P
and such that for each v € Ep, IN(g = fv%. Fix integers ¢ > b > 0 with ¢ > 1,
and also an integer m > 1. Let m C T be a non-Eisenstein mazimal ideal.
Let m = 8*(m) C TS, and suppose that Pa is decomposed generic. Then:

(1) There is an isomorphism O(X\)/w™ = O/w™ of O[T(F,")]-modules.
(2) For eachi=0,...,n%—1, the map S descends to an algebra homomor-
phism

TS,ord (Hd(j(:f( V- )grd) N TS’Ord(O(Oéwi )®O7_1;1Hi[F+:Q} (XK(b,c)> V/\(a,-))ord)'

(be)? VX m i m

Proof. This follows on combining Theorem 4.3.3, Theorem 5.4.3, and
Lemma 5.4.8. O

In order to access all degrees of cohomology, we use a trick based on the
fact that the group G has a non-trivial centre. This is the motivation behind
the next few results.

If K C GL,(AY) is a good subgroup, then we define

A = F*\A%/ det(K) det(Koo)Ro.
The quotient map
Ag = F*\AL/det(K)F%
identifies Ax with an extension of a ray class group by a real torus of dimension
[FT: Q] — 1 (with cocharacter lattice F* Ndet(K), a torsion-free congruence
subgroup of OF). We denote the identity component of Ax by Aj. If g €
GL,(A%), then we set I'y i = GL,(F)NgKg™!, or 'y =Ty  if the choice of
K is fixed.
LEMMA 5.4.14.
(1) The maps x — (x,g) induce a homeomorphism
1T L\ X = Xk
[9]€GLn (F)\GLn (AR)/ K
(2) The determinant gives a continuous map

det
X < Ag

which induces a bijection on sets of connected components.
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(3) Suppose g € GL,(A¥) and the two subgroups det(I'g) and det(F* N K)
of F* are equal. Let F; = SL,(F)NTy. Then the product map
Il x (F*NK) =T,
s a group isomorphism. Decomposing X similarly as
X' x (J] R>0)/Rs0 = X,
v]oo

where X' = SL,(Fy)/ [1,)00 SU(n), we obtain a decomposition

TAX = (CAXY) x (F* 0 K\ (] Rs0)/Rso.
v]oo
(4) Still assuming that det(I'y) = det(F* N K), the map det : F* N K —
F* Ndet(K) is an isomorphism. The composition of maps

(TAXY) x (F* N KN\ (J[Rs0)/Rso =Tg\X < Xg — Ag
v]oo

n

is given by (x,z) — det(g)z", and the map z — det(g)z" is an isomor-

phism from (F* 0 K)\(I Ty
A[;et(gﬂ of Ak containing [det(g)].

R-o)/R=q to the connected component

Proof. The first part can be checked directly. The second part is equivalent
to the statement that det induces a bijection

G(FM\G(AF)/K — F*\(AF)*/ det(K).

This follows from strong approximation for the derived subgroup of G, which is
isomorphic to Resp,p+ SLy. For the third part, injectivity of the natural map
I’; x (F* N K) — Ty follows from neatness of K (since F* N K contains no
roots of unity, and hence no non-trivial elements of determinant 1). Surjectivity
follows from the assumption that det(I'y) = det(F* N K). The remainder of
the third part (on the decomposition of I'j\ X) is an immediate consequence.
Finally, for the fourth part, everything follows from the claim that det :
F*NK — F*Ndet(K) is an isomorphism. Injectivity follows from neatness of
K. Surjectivity follows from strong approximation for SL,, and the assumption
that det(F* NK) = det(I'y). Indeed, suppose we have k € K with det(k) € F'*.
We can find v € GL,(F) such that det(y) = det(k), and strong approximation
implies that we can find v € SL,(F) and k' € gKg~! N SL,(A%) such that
v(gkg™!)~! = +'k'. We deduce that (y')~'y = kK'gkg~! € gKg~' NGL,(F) has
the same determinant as k, which shows surjectivity. O

The following lemma shows how to choose K so that the conditions of
Lemma 5.4.14 are satisfied.
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LEMMA 5.4.15. Let K be a good subgroup of G(AY,). Fir a finite set
T of finite places of F. There exists a good normal subgroup K' C K with
K’ = K1 such that det(T'y ) = det(F* N K') for all g € GL,(A%).

Proof. We begin by choosing an ideal a of O, prime to T, such that
ker(O; — (Op/a)*) is torsion-free and is contained in F* N K. This is
possible by Chevalley’s theorem [Che51, Thm. 1]. Similarly, we can choose
another ideal b of Op, prime to a and T, such that ker(Ox — (Op/ab)*) is
contained in (ker(Oy — (Op/a)*))". We claim that

K" :=ker(Of — (Op/a)*) - K(ab)

has the desired properties, where K(ab) is the intersection of K with the
principal congruence subgroup of level ab. Indeed, by construction we have
det(GL,(F) NgK'g™!) = (ker(OF — (Op/a)*))™ for all g € GL,(A%), whilst
F*N K" =ker(Op — (Op/a)*). O

The next lemma shows how to use Lemma 5.4.14 to understand all cohomol-
ogy groups of a space X i solely in terms of those in degrees divisible by [F'T : Q].
Note that dim(Xg) =d —1=[FT :Q]n? — 1 and dim(Ax) = [F+: Q] — 1.

LEMMA 5.4.16. Let K C GL,(A%¥) be a good subgroup, and let \ €
(ZZ}_)HOI“(F’E). Suppose that the following conditions are satisfied:

(1) det(I'g) = det(F* N K) for all g € GL,(A%).

(2) F*NK acts trivially on Vy.
Recall that we have defined a map det : Xxg — Ag. Then Rdet.(Vy) (a
complex of sheaves of O-modules) is constant on each connected component

of Ak, and we have Rdet.(V)) = @?LIB}(XI) Ridet,(V\)[—i]. We obtain a

T _equivariant isomorphism of graded O-modules

(5.4.17)
dim(Xxk) . dim(A$,) . dim(X1)
P Hxgv=| @ H(A%O0) |eo| € H'(Ak, RFdet.(V)))
i=0 Jj=0 k=0

where the Hecke action on the first factor @?f&m%) HI(AS,, ) is trivial.

As a consequence, the image of TS in Endo(@?i:rg(XK) Hi(Xf,Vy)) is
equal to its image in End@(@"gal HIFQI(X e Vy)).

=

Proof. Tt follows from our first assumption and Lemma 5.4.14 that every
connected component of Xgx decomposes as a product (F;\X by x A[;et(g)],
with the map det given by the projection to the second factor. Our second
assumption implies that the local system V) on this component is pulled back
from a local system on F;\X 1. We deduce that Rdet,(V)) is constant on

A[Icget(g)] (corresponding to RI(T;\ X', V)) and it decomposes as the direct
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sum of its shifted cohomology sheaves (since the same is true for any object in
D(0), such as RI(T,\X',V))). To save space, we now write H*(---) for the
graded cohomology module @, H'(- - - ).

Passing to global sections on Ax we get an isomorphism

* ~ o dim(X ) s i

dim(X1)

= D9 BleGLA(F)\GLn(AF)/K H*(A[;iet 9 Ridet, (V)

im(X?! % e e i
= @?:o(x ) BlgleGLn (F)\GLn (A%)/K H (Aﬁ *91 0) o HO(A[E t9 Ridet,(Vy)).

Note that the cohomology groups H i(A[l(éetg},(’)) are torsion-free. We now

use that the groups H* (A[;etg], O) are canonically independent of g, so can

all be identified with H*(A%, O). We thus obtain an isomorphism of graded
O-modules

im(Xx?! € 7
H*(Xg,V\) & H(Ak, 0) ®0 @?ZO(X ) Blg|eGL, (F)\GLn (A%)/K HO(AE; t9l Ridet, (V)

dim(X1)
> H*(A3%,0) @0 @ H(Ak, R'det.(Vy)).
i=0
We next need to understand the action of Hecke operators. If ¢ € G, then the
action of the Hecke operator [K°gK*®] can be described with the aid of the
diagram

p1 P2
XK — XKﬂgKg—l E— XK

J det J det Jdet

AK (T AngKg—l T AK

Here p; and ¢ are induced by the action of g, while py and ¢o are the natural pro-
jections; the action of [K°gK*] on RT\(Xg, Vy) is given by the formula P2,% 0P
Pushing forward by det, we have a morphism g¢jRdet,V\ — ¢3Rdet. V),
and the induced endomorphism of the complex RI'(Ag, Rdet. Vy) in D(O)
agrees with [K“gK*®] under the natural identification RT'(Ag, Rdet, V) =
RI'(Xk,Vy). We see that the isomorphism (5.4.17) respects the action of
[KSgK®] if [K%gK®] acts in the usual way on the left-hand side, as multipli-
cation by [F* Ndet(K) : F* Ndet(K NgKg™ )] on H'(A%,0), and in the
natural way on H°(Ag, R'det, V). Our assumption det(T'y) = det(F* N K)
implies that F* Ndet(K) = F* Ndet(K NgKg™'), giving the statement in the
lemma.

It remains to check the final statement of the lemma. There is an isomor-
phism H* (A%, O) = Ap Hom(F* Ndet(K), O) of graded O-modules. It follows
that each cohomology group H?(Ag, Rdet.(V))) appears as a direct summand
of H*(Xk, V) in [F' : Q] consecutive degrees. In particular, it appears as a
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direct summand of a cohomology group in a degree divisible by [F'" : Q]. This

completes the proof. O

For the statement of the next proposition, we remind the reader that in
§5.1 we have defined for each X\ € (Zfﬁ)Hom(F’E), veS,andi=1,...,n, a
character

Xowi © Gry, = T H (X g (e, Vo))~

PROPOSITION 5.4.18. Suppose that [F+: Q] > 1. Let K C GL,(A%) be a
good subgroup such that for each v € S,, K, = Iw,. Fiz integers ¢ > b > 0 with
c>1, and also an integer m > 1. Let m C TS be a non-FEisenstein mazimal
ideal, and let m = S*(m). Suppose that the following conditions are satisfied:

(1) pm is decomposed generic.

(2) Let v be a finite place of F' not contained in S, and let | be its residue
characteristic. Then either S contains no l-adic places of F' and [ is
unramified in F', or there exists an imaginary quadratic field Fy C F in
which 1 splits.

Then we can find A € (Zi)Hom(F’E) and an integer N > 1 depending only on
[F*: Q] and n such that the following conditions are satisfied:

(1) There is an isomorphism O(X\) /@™ = O/w™ of O[T (F,’)]-modules.

(2) Foreachi=0,...,d—1, there exists a nilpotent ideal J; ofTS’Ord(Hi(XK(byc), V) )ord)
satisfying JiN =0 and a continuous n-dimensional representation

pu: Grs = GLo (TP H (X g (b0, VW) )/ i)

such that the following conditions are satisfied:

(a) For each place v ¢ S of F, the characteristic polynomial of
pm(Froby) is equal to the image of Py(X) in (T*" Y H (X g (p,0), V)9 [ Ji) [ X].

(b) For each place v|p of F' and for each g € Gp,, the characteristic
polynomial of pm(g) equals H;‘L:1(X — X2,5(9))-

(¢) For each place v|p of F, and for each sequence g1,...,q9n, € GF,,
the image of the element

(91 = xa,1(91))(92 = X20,2(92)) - - (9n = X2 0n(9n))
Of TS(Hi(XK(b,c)v v/\)%rd)[GFu] in MN(TS(Hi<XK(b,c)7 V)\)gfd)/JZ)
under pm 1S zero.

Proof. We choose A using Proposition 5.4.13. Note that, for each cohomo-
logical degree ¢, by Theorem 2.3.7, we can find N, J; and

pm : Grs = GLn (T H (X g0, V)R D) /i)

satisfying condition (a) of the proposition. Indeed, this theorem and the
discussion after Lemma 2.2.3 gives a representation with values in a quotient
of T9(K(0,¢)/K (b, c), Vx)m by a nilpotent ideal, which we compose with the
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canonical homomorphism to T (K (b, c), \)'d. Arguing with the Hochschild—
Serre spectral sequence and twisting with characters as in the proof of Corollary
4.4.8, we are free to enlarge S and to shrink K at the prime-to-p places of S.
We can therefore assume that the following conditions are satisfied:

(1) For each place v € S, the two representations py |y, , (pa’ Qe =) g -
have no Jordan-Holder factors in common.
(2) Pg is decomposed generic.
(3) K satisfies the conditions of Lemma 5.4.16.
After enlarging O, we can assume that there exists a character x : Gpg — k*
satisfying the following conditions:

1) For each place v € S,, x|g is unramified.
p ps» XIGr,
(2) For each place v € S, the two representations (7, ®7pw’ @€' 2")@x|q y
and (P, @ P’ ® €172) ® x*V |G, have no Jordan-Hélder factors in
common.

(3) The representation 7, ® x & g’ ® x&Vel =27

is decomposed generic.

It follows from Lemma 5.4.16 and Carayol’s lemma (applied as in the proof
of Corollary 4.4.8) that it suffices to establish conditions (b) and (c) for cohomo-
logical degrees 0, [F : Q),..., (n2—1)[FT : Q] (Carayol’s lemma then gives us a
Galois representation with coefficients in TS’Ord(EB?ialHi[F+:Q} (XK (b,e)s Vy)ord) =
TS’Ord(@?:_OlH (X K(be)» V))24) modulo a nilpotent ideal with the desired prop-
erties).

We choose a good subgroup KcG (A%) which satisfies the conditions of
Proposition 5.4.13 and such that [N(HG(AC;%) = K. Foreachi=0,1,...,n%>—1,

we let Xi, a; and w; be as in the statement of Proposition 5.4.13. Generalizing
Proposition 2.2.22 slightly, we note that there is an isomorphism (cf. the proof
of Theorem 4.5.1)

F = TF A (X 0, Vo)) = TS (X0, 1)),

m

which carries [K°gK?®] to e=% (Artp(det(g)))[K® gK*°] and satisfies the identity
foXaa)wi = Xawj @€ % (v € Sp). (Note that a; is divisible by p — 1,
by construction, so we have m(e~%) = m in the notation of §2.2.19.) To
prove the proposition, it will therefore suffice to prove the analogue of prop-
erties (b), (c) for the representation (f~!o pn) ® € % with coefficients in
TSord(ilFT:Q] (XK (be)s VA(ai))?‘fd)/f_lJi[F+:Q], which we already know satis-
fies the analogue of property (a). In order to simplify notation, we now write py
for this representation, J; for the ideal f _1JZ-[ F+:q)s and Xy,; for the character

X)\(ai),v,j valued in TS’Ord(Hi[F+:Q] (XK(b,c)a V}\(ai))ord).

m
We obtain from Proposition 5.4.13 a surjective algebra homomorphism

T9 U H X, 00 ViR = T5(Ofaw, )00m, HT (X .0 Va@))n ™).

i



POTENTIAL AUTOMORPHY OVER CM FIELDS 127

Theorem 4.3.3 says that H¢ ( R(be) V5

orem 2.4.11 (or rather its proof) shows how to compute H%(X Ry VX ) ®o

)Ord is a torsion-free O-module, and The-

Qp in terms of cuspidal automorphic representations of G( %+ ). Then [Gerl9,
Lemma 5.4] (which is stated for automorphic representations of GL,, but
which applies here, since G is split at the p-adic places of F*) shows that
TS, Ord(Hd(X R(be)’ Vs )Ord)[l/p] is a semisimple E-algebra. By Theorem 2.3.3

and [Tholb, Theorem 2.4], we can find a continuous representation

p:Grg — GLgn(TSvord(Hd()?g(b7c), V)2 @0 Q,)

satisfying the following conditions:
(1) For each finite place v € S of F', the characteristic polynomial of
p(Frob,) is equal to the image of Fv(X ).
(2) For each place v|p of F, there is an isomorphism

Pu1 * * *
. 0 Q;Z)v,2 * *
(5'4'19) p|GF.U ~ . . . )
N T t. *
0 o 0 Yuon
where for each i = 1,...,2n, ¥y, : Gpy — Q; is the continuous

character defined as follows. First, if v € S, then 9, ; is the unique
continuous character satisfying the following identities:

Yy joArtE, (u) = €I (Artp, (u (HT TF+J> (diag(1,...,Lu,1,...,1)) (u € OF)
(the product being over 7 € Homq,(F,, F)) and

y,j 0 Artp, () = e/ (Artp, (wv))ﬁv,j/ﬁv,j—1~

: Y (-2
Second, if v¢ € Sp, then Yyj = Ve 916

We write D for the 2n-dimensional determinant of G F,s associated to p. By
[Chel4, Example 2.32], D is valued in TS 4(H?(X Rbe) VX )Ord) To conserve
notation, we now write

A TS ord(Hd(XK(b Y in)grd)

m

and
Ao = TS HIEF (X, 0, Vaan) S,

and J = J;. By construction, we are given a homomorphism ﬁo — Ag which
agrees with & on Hecke operators away from p, and such that for each v € S},
the image of the sequence

(w’v,lv v 71/)U,2n)



128 P. ALLEN ET AL.

of characters is the image of the sequence

¢V 1-2n ¢V _1-2n
(Xve,ne yoee 7XvC 16 y Xv,1s -+ Xv,n)

under the permutation w; L

The rings Ag and Ag are semi-local finite O- algebras. Let A be a local
direct factor of Ay, and let A be the corresponding local direct factor of Ap.
Thus there is a map A — A such that A — A/.J is surjective. We will show
that the properties (b), (c) in the statement of the proposition hold in the ring
A/ J; since Ag/J is a direct product, this will give the desired result.

We first verify that for each place v € Sp, we have (py|cp, )™ = 71X, 5
where the overline denotes reduction modulo the maximal ideal of A By

construction, we have

(Pn @75 @ € 7*)|ap, )™ = (Palar,)™ = BJ—i (Xu; © Xoege' ")

Using the existence of the character x and a character twisting argument as in
the proof of Corollary 4.4.8, we see that we also have an isomorphism (over the
residue field of A)

(P @ X © 25 @ X' ") |G, )™ = Bt (XX © Xy x™7e ).

Our conditions on the character x now force (|G, )** = 71X, ;-

We can now argue in a similar way to the proof of Proposmon 4.4.6.
Let DA/J =D®y A/J. Then DA/J = det(pm @ p3’ @ €72"). Just as in
the proof of Proposition 4.4.6, we can identify (A/J) [GRS]/ker(ﬁA/J) with
M, (A)J) x M,(A/J) (where the first projection gives p%’ @ =2, and the
second projection gives pp).

On the other hand, the map E[prs] — (A/J)[GFrs]/(ker 5A/J) factors
through the quotient A[G r.s]/ (ker 5) There is an algebra embedding

AlGrs]/(ker D) C A[Grs]/(ker D) ®0 Q, C Man(A @0 Q).

The explicit form of p|g,, shows that for each v € S, and for each sequence of

elements Y, Y7, ..., Yy, of elements of K[G £,], we have
2n

(5.4.20) det(X —p(Y)) = [ [(X = ¢, (¥))
j=1

in A[X] and

(5.4.21)  (p(Y1) = o1 (V1)) (p(Y2) — Y0 2(¥2)) ... (p(Y2n) — v,2n(Yan)) = 0

in My, (A ®o Q,). It follows that the same identities hold in K[Gp,s]/(ker 5),
hence in

(A/)[GEs]/(ker Dyyy) = Ma(A[fJ) X Mn(A[J).
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More precisely, for any sequence of elements Y,Y7,...,Ys, of elements of
(A/J)|GF,], we have

2n
(5.4.22) det(X — pm(Y)) det(X — p3Ye' >"(Y)) = [[(X — 9 3(Y)
j=1
in (A/J)[X] and
2n 2n
(5.4.23) H(pﬁ{v ® € 7(Y)) = o (Y5)), H(Pm(yj) — 1§ (Y;)) | = (0,0)
j=1 Jj=1

in M, (A/J) x My(A/J) (note that order matters in these products). We need
to show how to deduce our desired identities (b), (c¢) from these ones. We now
fix a choice of place v € S}, for the rest of the proof.

We can find an element e € (A/.J)[Gp,] which acts as 0 on pg" ®e g,
and as the identity in py|c,, (because these two representations have no
Jordan—Hoélder factors in common). By [Bou61, Ch. III, §4, Exercise 5(b)]
(lifting idempotents), we can assume that pg(e) = 1 and p%’ @ €' 72"(e) = 0,
and moreover that 1, j(e) = 1 if v, ; appears in py|a,, (in other words, if
@w‘ = X,y for some 1 < j' < n, or equivalently if j = w;l(n + k) for some
1 <k <n), and 9, ;(e) = 0 otherwise. Then applying the identity (5.4.22) to
ge € (A/J)[Gr,) gives

2n n
X" det(X = pm(9)) = [[(X — tbvj(ge)) = X" J[(X = xv;(9)),
=1 i=1

which is the sought-after property (b) of the proposition. To get property (c),
let g1,...,9n € GF,, and let Y1,...,Ys, € (A/J)[GF,] be defined by Y; = e
if j € w;'({1,...,n}), and Y; = gge if j = w; ' (n + k), k € {1,...,n}. The
identity (5.4.23) then becomes

(0, (pm(g1) — Xv,1(91))(Pm(92) — Xv,2(92)) - - - (Pm(gn) — Xv,n(gn))) = (0,0)
in My(A/J) x M,(A/J). This completes the proof. O

5.5. The end of the proof. We can now complete the proof of the main
result of this chapter (Theorem 5.5.1). For the convenience of the reader, we
repeat the statement here. We recall our standing hypothesis in this chapter
that I’ contains an imaginary quadratic field in which p splits.

THEOREM 5.5.1. Suppose that [F* : Q] > 1. Let K C GL,(A%¥) be a
good subgroup such that for each place v € S, of F', K, =1Iw,. Letc>b>0
be integers with ¢ > 1, let A € (Z™")HoFEE) - gnd let m ¢ TY(K (b, c), \)d
be a non-Fisenstein maximal ideal. Suppose that the following conditions are
satisfied:
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(1) Let v be a finite place of F' not contained in S, and let | be its residue
characteristic. Then either S contains no l-adic places of F and | is
unramified in F, or there exists an imaginary quadratic field Fy C F in
which | splits.

(2) pm is decomposed generic.

Then we can find an integer N > 1, which depends only on [FT : Q] and n, an
ideal J C TS (K (b, c), \)o'd such that JN =0, and a continuous representation

pm s Grs = GLn(T(K (b,¢), N/ )
satisfying the following conditions:
(a) For each finite place v ¢ S of F, the characteristic polynomial of
pm(Frob,) equals the image of Py(X) in (TS (K (b,c), \)ord/J)[X].
(b) For each v € Sy, and for each g € GF,, the characteristic polynomial of

pm(9) equals [Ty (X = Xaw,i(9))-
(¢) For each v € Sy, and for each g1,...,gn € GF,, we have

(Pm(91) — Xr0,1(91)) (Pm(92) — X2,2(92)) - - - (Pm(gn) — X2w.n(gn)) = 0.
Proof. Let 0 < q <d—1, m > 1 be integers, and define
A(K, N, q) = TN HI (X (b0, VW) ?).-

and
A(K7 A g, m) = TS7ord(Hq(XK(b,c)7 V)\/wm)gfd)'

By the same sequence of reductions as in the proof of Theorem 4.5.1, it is
enough to show the existence of an ideal J C A(K, \, ¢, m) satisfying JN =0
and a continuous representation pm : Gps — GL,(A(K, X, q,m)/J) satisfying
conditions (a), (b) and (c) of the theorem. After an application of the Hochschild—
Serre spectral sequence and Corollary 5.2.16, we can assume that ¢ =b > m.
Corollary 5.2.18 allows us to assume that A is the weight whose existence
is asserted by Proposition 5.4.18. The existence of a Galois representation
valued in (quotients by nilpotent ideals of) the Hecke algebras A(K, A, ¢) and
A(K, )\, q+ 1) is then a consequence of Proposition 5.4.18. The existence of
the short exact sequence of T%°"d-modules

0— Hq(XK(b,c)> Vx\)?rfd/wm — Hq(XK(b,c)7 V}\/wm)gird
— H (X .0y, V)R @™ — 0

then implies the existence of a Galois representation p, over a quotient of
A(K, A\, q,m) by a nilpotent ideal with the required properties. O

As suggested by a referee, we finish this section by recording a local-global
compatibility result for a single automorphic representation. This is a partial
generalisation of [Ger19, Proposition 5.10] and [Thol5, Theorem 2.4}, although
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we must impose an assumption on the residual Galois representation. In this
result, we drop the standing hypothesis that F' contains an imaginary quadratic
field in which p splits.

COROLLARY 5.5.2. Let F' be an imaginary CM field, let ¢ : Qp — C be an
isomorphism and let m be a cuspidal automorphic representation of GL,(AF),

Hom(F,Q,)

reqular algebraic of weight (A for A € (Z'}) Suppose that:

(1) For everyv € Sy, m is t-ordinary at v (in the sense of [(Gerl9, Def. 5.3]).
(2) The residual representation r,(m) is decomposed generic and irreducible.

Then r,(7)|ay, is ordinary of weight A, in the sense of [Ger19, §5.2], for
every v € S,. More precisely, for each place v € Sy, there is an isomorphism

Yy 1 * * *
0 o * *
TL(T‘-)|GF1, ~ . . . )
. .. .. *
0 - 0 Pyn
where for eachi =1,...,n, Yy ; : Gpy — Q; is the unique continuous character

satisfying the identities (cf. the definition of xx; in §5.1):

w)\,v,i e} AI'th (U) AI’th (H T wo T,i> <U>L,i (U S O;‘v)

(the product being over T € Home(Fv,Qp)) and, with fived choices of uni-
formizers w, for v € Sy,

u
Yy 0 Artp, (w,) = € (At g, (w,)) /\i’w”

with (u),; and ugf)wv denoting Hecke eigenvalues on (1='7,)°" defined in [Ger19,
Definition 5.5].

Proof. We make a solvable Galois base change to a CM field extension F”'/F

which is disjoint over F' from the fixed field I “(ﬂ), contains an imaginary
quadratic field in which p splits, and in which all the places in .S, split completely.
We will also assume that [F’ : Q] > 2. Using [Gerl9, Lemma 5.7], we see that
7 is t-ordinary at w for every place w|p of F' and it suffices to prove the
corollary under the additional assumptions that [F'* : Q] > 1 and F contains
an imaginary quadratic field in which p splits. Now the result follows from
Theorem 5.5.1 and Lemma 6.2.11. (]
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6. Automorphy lifting theorems

6.1. Statements. In this chapter, we will prove two automorphy lifting
theorems (Theorem 6.1.1 and Theorem 6.1.2) for n-dimensional Galois repre-
sentations of CM fields without imposing a self-duality condition. The first is
for Galois representations which satisfy a Fontaine—Laffaille condition.

THEOREM 6.1.1. Let F' be an imaginary CM or totally real field, let
¢ € Aut(F) be complex conjugation, and let p be a prime. Suppose given a con-
tinuous representation p : Gp — GLn(Qp) satisfying the following conditions:

(1) p is unramified almost everywhere.

(2) For each place v|p of F, the representation p|a,, is crystalline. The
prime p is unramified in F'.

(3) p is absolutely irreducible and decomposed generic (Definition 4.3.1).
The image of ﬁ]GF(Cp) is enormous (Definition 6.2.28).

(4) There exists 0 € Gp — Gp,) such that p(o) is a scalar. We have
p > n?.

(5) There exists a cuspidal automorphic representation © of GL,(AFr) sat-
isfying the following conditions:
(a) m is reqular algebraic of weight X\, this weight satisfying

A7',1 + A7'c,1 - )\’Tﬂ’L - )\Tc,n <p-— 2n

for all T.
(b) There exists an isomorphism v : Q, — C such that p = r () and
the Hodge—Tate weights of p satisfy the formula for each 7 : F —

Q,:
HT (p) ={Ar1+n—1Ar2+n—2,..., A}

(¢) If v|p is a place of F, then m, is unramified.

Then p is automorphic: there exists a cuspidal automorphic representation 11
of GL,(AF) of weight X such that p = r,(II). Moreover, if v is a finite place of
F and either v|p or both p and w are unramified at v, then I, is unramified.

The second main theorem is for Galois representations which satisfy an
ordinariness condition.

THEOREM 6.1.2. Let F' be an imaginary CM or totally real field, let
¢ € Aut(F) be complex conjugation, and let p be a prime. Suppose given a con-

tinuous representation p : Gp — GLn(Q,,) satisfying the following conditions:

(1) p is unramified almost everywhere.
(2) For each place v|p of F, the representation play, s potentially semi-
stable, ordinary with regular Hodge—Tate weights. In other words, there
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exists a weight \ € (Zﬁ)Hom(F’ap) such that for each place v|p, there is
an isomorphism

Yy 1 * * *
0 2 * *
p|GFU ~ . . . ’
: - Lk
0 - 0 Pyn
where for each it =1,...,n the character ¥, ; : Gg, — Q; agrees with

the character

o€ IFv — H T(Art}:vl (0‘)>_()“r,n7i+1+i—1)

TGHom(Fv,Qp)

on an open subgroup of the inertia group IF,.

(3) p is absolutely irreducible and decomposed generic (Definition 4.3.1).
The image of ﬁ’GF(Cp) is enormous (Definition 6.2.28).

(4) There exists 0 € Gp — Gp,) such that p(o) is a scalar. We have
p>n.

(5) There exists a reqular algebraic cuspidal automorphic representation 7
of GL,(AF) and an isomorphism ¢ : Qp — C such that 7 is t-ordinary

and r,(m) = p.
Then p is ordinarily automorphic of weight tA: there exists an t-ordinary
cuspidal automorphic representation I1 of GL,(AFp) of weight '\ such that
p = r,(I). Moreover, if v { p is a finite place of F and both p and 7 are
unramified at v, then IL, is unramified.

Remark 6.1.3. It follows from the existence of II that the weight A is
conjugate self-dual up to twist: there is an integer w € Z such that for all
7:F — C and for each i = 1,...,n, we have A\r; + Ar¢cnt1-; = w. (This in
turn is a consequence of the purity lemma of [Clo90, Lemma 4.9].) However,
we do not need to assume this at the outset. What we in fact prove is that p
contributes to the ordinary part of the completed cohomology; we then deduce
the existence of Il by an argument of “independence of weight”.

Remark 6.1.4. The image of the projective representation Pp coincides
with the image of the adjoint representation adp. Hence the first part of
conditions Theorem 6.1.1 (4) and Theorem 6.1.2 (4) are equivalent to ¢, ¢
erradﬁ

is implied by the non-existence of a surjection (adp)(Gr) — (Z/pZ)*. It

If p is unramified in F' (as in condition (2) of Theorem 6.1.1), it

may be possible to remove the requirement of such a ¢ by using arguments
similar to those of [Thol2], in particular by adding Iwahori level structure at
a prime which is not 1 mod p and then using [Thol2, Prop. 3.17]. However,
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this would (at least) necessitate some modifications to the Thara avoidance
arguments of §6.3, and so we have not attempted to do this, especially because
condition (4) is usually easy to verify in practice.

The proof of these two theorems will occupy the rest of this chapter. Since
this chapter is quite long, we now discuss the structure of the proof. We recall
that the authors of [CG18| implemented a generalization of the Taylor—Wiles
method in situations where the ‘numerical coincidence’ fails to hold, assuming
the existence of Galois representations associated to torsion classes in the
cohomology of arithmetic locally symmetric spaces, and an appropriate form of
local-global compatibility for these Galois representations. They also had to
assume that the cohomology groups vanish in degrees outside a given range,
after localization at a non-Eisenstein maximal ideal. (This range is the same
range in which cohomological cuspidal automorphic representations of GL,
contribute non-trivially.) Under these assumptions, they proved rather general
automorphy lifting theorems; in particular, they were able to implement the
‘Thara avoidance’ trick of [Tay08] to obtain lifting results at non-minimal level.

There are a few innovations that allow us to obtain unconditional results
here, building on the techniques of [CG18]. The first is the proof (in the
preceding sections) of a sufficiently strong version of local-global compatibility
for the torsion Galois representations constructed in [Sch15]. The second is
the observation that one can carry out a version of the ‘Thara avoidance’ trick
under somewhat weaker assumptions than those used in [CG18]. Indeed, in
[KT17], it was shown that one can prove some kind of automorphy lifting
results using only that the rational cohomology is concentrated in the expected
range — and this is known unconditionally, by Matsushima’s formula and its
generalizations (in particular, Theorem 2.4.10). Here we show that the ‘Thara
avoidance’ technique is robust enough to give a general automorphy lifting
result using only the assumption that the rational cohomology is concentrated
in the expected range.

We now describe the organization of this chapter. As the above discussion
may suggest, our arguments are rather intricate, and we have broken them
into several parts in the hope that this will make the individual steps easier to
digest. We begin in §6.2 by giving a set-up for Galois deformation theory. This
is mostly standard, although there are some differences to other works: we do
not fix the determinant of our n-dimensional Galois representations, and we
must prove slightly stronger versions of our auxiliary results (e.g. existence of
Taylor—Wiles primes) because of the hypotheses required elsewhere to be able
to prove local-global compatibility.

In §6.3 and §6.4, we carry out the main technical steps. First, in §6.3,
we give an axiomatic approach to the ‘Ihara avoidance’ technique that applies
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in our particular set-up. Second, in §6.4, we describe an abstract patching
argument that gives as output the objects required in §6.3. We find it convenient
to use the language of ultrafilters here, following [Sch18] and [GN22]. Finally,
in §6.5, we combine these arguments to prove Theorem 6.1.1 and Theorem 6.1.2

6.2. Galois deformation theory. Let E C Qp be a finite extension of Q,,
with valuation ring O, uniformizer w, and residue field k. Given a complete
Noetherian local O-algebra A with residue field k, we let CNLj denote the
category of complete Noetherian local A-algebras with residue field k. We refer
to an object in CNLj as a CNLy-algebra.

We fix a number field F, and let S, be the set of places of F' above p. We
assume that E contains the images of all embeddings of F' in Qp. We also
fix a continuous absolutely irreducible homomorphism p: Gp — GL,, (k). We
assume throughout that p 1 2n.

6.2.1. Deformation problems. Let S be a finite set of finite places of F'
containing S, and all places at which p is ramified. We write Fg for the maximal
subextension of F//F which is unramified outside S. For each v € S, we fix
A, € CNLp, and set A = ®ueg/,, where the completed tensor product is
taken over O. There is a forgetful functor CNLy, — CNLy, for each v € S
via the canonical map A, — A. A lift (also called a lifting) of plg,, is a
continuous homomorphism p: Gr, — GL,(A) to a CNL,-algebra A such that
pmod ma = plgy, -

We let DY) denote the set valued functor on CNLy, that sends A to the
set of all lifts of p|g, to A. This functor is representable, and we denote the
representing object by RL.

A local deformation problem for p|q,, is a subfunctor D, of DY satisfying
the following:

e D, is represented by a quotient R, of RE.
e For all A € CNL,,, p € Dy(A), and a € ker(GL,(A) — GL,(k)), we
have apa~! € D,(A).
The notion of global deformation problem that we use in this paper is the
following:

DEFINITION 6.2.2. A global deformation problem is a tuple

S = (ﬁ, S, {Av}vES; {D’U}Ues)7

where:
e 1, S, and {Ay}ves are as above.
e For each v € S, D, is a local deformation problem for pla,, -

This differs from that of [CG18, §8.5.2] and [KT17, Definition 4.2] in that
we don’t fix the determinant.
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As in the local case, a lift (or lifting) of p is a continuous homomorphism
p: Gp — GL,(A) to a CNLj-algebra A, such that p mod my = p. We say
that two lifts p1,p2: G — GL,(A) are strictly equivalent if there is a €
ker(GL,(A) — GLy,(k)) such that ps = apia=t. A deformation of p is a strict
equivalence class of lifts of p.

For a global deformation problem

S = (ﬁ, S, {Av}v657 {DU}’UGS)7

we say that a lift p: Gr — GL,(A) is of type S if plg,, € Dy(A) for each v € S.
Note that if p; and py are strictly equivalent lifts of p, and p; is of type S, then
S0 is p2. A deformation of type S is then a strict equivalence class of lifts of
type S, and we denote by Dg the set-valued functor that takes a CNLj-algebra
A to the set of deformations p: Gp — GL,(A) of type S.

Given a subset T' C S, a T-framed lift of type S is a tuple (p, {aw }ver),
where p: Gp — GL,(A) is a lift of p of type S and «,, € ker(GL,,(A) — GL,(k))
for each v € T. We say that two T-framed lifts (p1, {cw }ver) and (p2, { By }ver)
to a CNLp-algebra A are strictly equivalent if there is a € ker(GL,(A) —
GLy(k)) such that py = apia™?, and B, = aq, for each v € T. A strict
equivalence class of T-framed lifts of type S is called a T'-framed deformation
of type S. We denote by Dg the set valued functor that sends a CNLj-algebra
A to the set of T-framed deformations to A of type S.

THEOREM 6.2.3. Let S = (5, S, {Av}ves, {Duv}ves) be a global deformation
problem, and let T be a subset of S. The functors Ds and Dg are representable;
we denote their representing objects by Rs and Rg, respectively.

Proof. This is well known. See [Gou0l, Appendix 1] for a proof of the
representability of Dg. The representability of ng can be deduced from this. [

If T = 0, then tautologically Rs = Rg. Otherwise, the relation between
these two deformation rings is given by the following lemma.

LEMMA 6.2.4. Let S = (p,S,{Av}ves,{Dv}ves) be a global deforma-
tion problem, and let T be a nonempty subset of S. Fix some vy € T, and
define T = O[{ Xy, j}tver1<ij<nl/(Xuo,1,1). The choice of a representative
ps: Gp — GL,(Rs) for the universal type S deformation determines a canoni-
cal isomorphism Rg >~ Rs®oT.

Proof. This can be proved in the same way as the second part of [CHT08],
using Schur’s lemma. A representative for the universal T-framed deformation
over Rs®oT is (ps, {1+ (Xv,ij) bver)- O
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6.2.5. Some local deformation problems. We now fix some finite place v of
F' and introduce the local deformation rings that we will use in the proofs of
our automorphy lifting theorems.

6.2.6. Ordinary deformations. Assume that v|p, and that there is an
increasing filtration

0=TFil) c Fil, C --- C Fil| = k"

that is Gr,-stable under p|g, with one dimensional graded pieces. We will
det,ord

construct and study a local deformation ring Ry whose corresponding
local deformation problem D™ will be used in the proof of our ordinary

automorphy lifting theorem.

Consider the completed group algebra O[O (p)"] where O, (p) denotes
the pro-p completion of O . There is an isomorphism Artg, : Op (p) —
Ipab /g, (p)- Fix a non-empty set of minimal prime ideals of O[OF (p)"], and
let a be their intersection. We then set A, = O[O, (p)"]/a.

For each 1 <i <, let X;: Gp, — k* denote the character given by Plap,
on m/ﬁ:}_l, and let X; = X;|1,, . For each 1 < i < n, we have a canonical
character x™V: I, — AX that is the product of the Teichmiiller lift of ; with
the map that sends If, to the ith copy of O (p) in O, (p)" via Art;,vl. The
ideal a corresponds to a fixed collection of ordered tuples of characters of the
torsion subgroup of Ira/p, (p)-

We recall some constructions from [Ger19, §3.1]. We recall that R} €
CNL,, denotes the universal lifting ring of p|g,, . Let F denote the flag
variety over O classifying complete flags 0 = Fil’ ¢ --- c Fil® = O™, and
let G, C F Xspeco Spec RE denote the closed subscheme whose A-points for
an RJ-algebra A consist of those filtrations Fil € F(A) such that for each
i=1,...,n, Fil' is preserved by the specialization of the universal lifting to
A and such that the induced action of Ir, C Gp, on Fil' /Fil'! is by the
pushforward of the character y™".

We now define two ordinary deformation rings:

o We define RvA to be the image of the homomorphism
R, — H(G,,0g,).
e Let A, = O[FX(p)"] Bo[os (pyn) Avs and let R = RJ @, A,. The

characters X;miv naturally extend to characters )“(}mi" :Gp, — 7\5 lifting
X;- Let Ra®™ denote the maximal quotient of RY over which the

relations

n

(6.2.7) det(X — p(9)) = [T(X = X"V (9)
=1
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and

(6.2.8) (p7(g1) = X1"™(91)) (P~ (g2) — X5 (92)) - - - (p7(gn) — X" (gn)) = 0

hold for all ¢,¢1,...,9n € GF,. We define Rdtord ¢4 he the image of
the homomorphism

O pdet,ord
R, = R, .

(A ring similar to Re°""! was also defined in [CS19a].)

LEMMA 6.2.9. RItord 45 g finite Rget’ord—algebm.

Proof. 1t is enough to show that RIYord ig o finite RS-algebra or, by the
completed version of Nakayama’s lemma, that R4 /mpo is an Artinian k-

algebra. This follows from the relation (6.2.7) applied with gv = Artp, (w,). O

For a domain R € CNL,, and K an algebraic closure of the fraction field
of R, an R-point of Spec RY factors through Spec RUA if and only if the following
condition is satisfied:

e Let p: Gp, — GL,(R) be the pushforward of the universal lifting to R.
Then there is a filtration 0 = Fil° € ... C Fil® = K" on p ® K which
is preserved by Gp,, and such that the action of Ir, on Fil’ / Fil'~!
(1 =1,...,n) is given by the push-forward of the universal character
Xju.niv to R.

On the other hand, suppose that R — S is an injective morphism of RJ-
algebras, and suppose that there exist characters ¢1,...,%, : Gg, = S such
that for each i = 1,...,n, 9|1, equals the pushforward of X;mi" to S, and that
for each g,¢1,...,9n € GF,, the analogues of the relations (6.2.7) and (6.2.8)
for the characters v; and the pushforward of the universal lifting hold in S.
Then R — R factors through R We see in particular that there is an
inclusion of topological spaces Spec RvA C Spec Riet-ord, Indeed, applying the
above for R = RS /p, where p is a mininal prime of RS , and S its integral
closure in a sufficiently large finite extension of its fraction field; we see that
R — RS /p factors through R Since the maximal reduced quotient

(R@A )red Of R% is the image of the map R — I, RS /p, we deduce that there
is a surjection of R-algebras Rdetord (R@A )red-

The ring R was introduced in [Ger19]. Its properties in an important
special case are summarized in the following proposition.

PROPOSITION 6.2.10. If [F, : Qp] > @ + 1 and plg,, is trivial, then
RUA 18 O-flat, reduced and equidimensional of dimension 1+n2+%[Fv 1 Q.
Moreover, the map Spec RvA — Spec A, is bijective on the level of generic points,

hence on the level of irreducible components.
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Proof. This is essentially contained in [Thol5, Proposition 3.14]. More
precisely, that reference proves the proposition under the assumption that
A, = O[Og, (p)"], but also shows that minimal prime ideals of A, generate

minimal prime ideals of RvA . The more general case where A, is allowed to
be a quotient of O[O (p)"] by the intersection of an arbitrary collection of

minimal prime ideals follows from this. ([
Our analysis of the ring R3°°" will be coarser. It begins with the following
lemma.

LEMMA 6.2.11. Let K be a field, G a group and p : G — GL,(K) a
representation. Suppose that there exist pairwise distinct characters X1,...,Xn :
G — K* satisfying the following conditions:

(1) For all g € G,
det(X = p(9)) = JJ(X = xil9)).

(2) For all gi,...,9n € G,

(p(g91) = x1(91))(p(g2) — x2(92)) - - - (p(gn) — Xn(gn)) = 0.

Then there is a filtration 0 = Fil° C --- C Fil" = K" by G-stable subspaces such
that for each i =1,...,n, Fil' /Fil'1 = K(x;).

Proof. We define subspaces 0 =V c Vi Cc Vo C --- C V, CV = K"
be declaring that for each i = 1,...,n, V;/V;_; is the maximal subspace of
V/V;_1 where G acts by the character y;. Each V; is G-stable and the second
condition of the lemma implies that V,, = V. On the other hand, each V;/V;_;
is isomorphic to K (x;)4™x Vi/Vi-1 The first condition of the lemma implies
that we must therefore have dimg V;/V;_1 = 1 for each i = 1,...,n. The proof

is complete on taking Fil' = Vj. O

Let U C Spec A, be the open subscheme where the characters x ™1, . .. | xuniv
are pairwise distinct, and let Z denote its complement.

PROPOSITION 6.2.12. Let f : Spec RS — Spec Ay, g : Spec RIetord

Spec A, be the structural maps. Suppose that plgy, is trivial and that [F, :
(1) We have f~5(U) = g~ *(U) as subspaces of Spec R}. Consequently, for
each irreducible component C of Spec A,, there is a unique irreducible
! det,ord
component C' of Spec Ry
+1
n? 414 2R Q).

which dominates C. It has dimension
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(2) Let C' be an irreducible component of R which does not dominate

an irreducible component of SpecA,. Then C' C g='(Z) and C' has
dimension at most n® — 1 + W[Fv : Q.

Proof. We have already observed that there is an inclusion Spec RvA C
Spec R2"°"! We must first show that if s : Spec K — ¢~1(U) C Spec Re"
is a geometric point, then s factors through Spec RvA . By Lemma 6.2.9, s lifts
to a point s : Spec K — Spec RS, Then Lemma 6.2.11 shows that s factors
through RvA . The first part of the proposition now follows from Proposition
6.2.10, which says that f|y induces a bijection on generic points, hence on
irreducible components.

For the second part, let C’ be an irreducible component of Rﬂet"“d which
does not dominate an irreducible component of Spec A,. It follows from the
first part that we must have g(C’) C Z. To bound the dimension of C’, we
claim that there is a permutation o € S,, such that C’ is contained in the closed
subspace h~1(Z) of Spec R5"7, where h : Spec RS — Spec A, is the quotient
of RE which is defined in the same way as RvA , except that we require the
action of I, on the i*" graded piece of the filtration to be by the character
XE?Z‘;’ There is a corresponding surjective morphism G — Spec RvA 7. To
show the claim, it suffices to check that there is a ¢ such that a geometric
generic point of C’ is contained in Spec R, To see this, we observe that
the Galois representation corresponding to a geometric generic point of C’
has semisimplification a direct sum of characters whose restriction to I, is the

n

n MY, Tt follows that this representation has a filtration

push-forward of &
with the Galois action on its graded pieces given by the universal characters in
some order.

We thus have
dim ¢’ < dim h™(Z) < dim G7 Xgpec A, Z-
We can bound dim G Xgpec A, £ by bounding the dimension of the completed lo-
cal rings at its closed points, using essentially the same tangent space calculation
as in [Gerl9, Lemma 3.7] (although over a finite field). This yields
dim GJ X spec A, Z < 1+n%+n(n+1)/24n(n+1)[F, : Qpl/2—[F, : Q) < n®—1+n(n+1)[F, : Qp)/2,

using our assumption [F, : Qp] > n(n; U 4+ 1. This completes the proof. O

6.2.13. Fontaine—Laffaille deformations. We again suppose v|p, but take
A, = O. We assume that F,/Q, is unramified. Recall that in §4.1 we defined
a category MFp and a functor G on MFp that take values in the category
of finite O-modules with continuous O-linear G, -action.
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For each embedding 7: F, — E, let Ay = (Ar1,...,Ary) be a tuple of
integers satisfying

Ar,l > >\T,2 > 2 Arn‘

)

and
)\7',1 - )\T,n <p-—n

We say a representation of G, on a finite O-module W is Fontaine—Laffaille
of type (Ar)reHom(F,,E) if there is M € MFo with W = G(M), and

FL,(M ®ok)={A1+n—1, A2+n—2,..., A}

for each 7: F, < E. The following proposition follows from [CHT08, §2.4.1]
and a twisting argument (see §4.1).

PROPOSITION 6.2.14. Assume that plg,, is Fontaine-Laffaille of type
(Ar)reHom(F,,E)- Then there is a quotient RFY of RY satisfying the following.

(1) REY represents a local deformation problem DEV.

(2) For a CNLp-algebra A that is finite over O, a lift p € DJ(A) lies in
DL if and only if p is Fontaine—Laffaille of type (Ar)reHom(Fy,E)-

(3) RFY is a formally smooth over O of dimension 1+n? + @[Fv 1 Q.

6.2.15. Level raising deformations. Assume that ¢, = 1 mod p, that ﬁ‘GFU
is trivial, and that p > n. We take A, = O.

Let x = (x1,---,Xn) be a tuple of continuous characters x;: OZ% — 0%
that are trivial modulo . We let Dy be the functor of lifts p: Gg, — GL,(A)
such that

n
char, o (X) = [J(X = xi(Artz! ()
i=1
for all ¢ € Ip,. Then Dy is a local deformation problem, and we denote its
representing object by Ry. The following two propositions are contained in
[Tay08, Proposition 3.1].

PROPOSITION 6.2.16. Assume that x; = 1 for all 1 <i < n. Then R}
satisfies the following properties:

(1) Spec R! is equidimensional of dimension 1+ n? and every generic point
has characteristic zero.

(2) Every generic point of Spec RL/w is the specialization of a unique
generic point of Spec R}.

PROPOSITION 6.2.17. Assume that the x; are pairwise distinct. Then
Spec RY is irreducible of dimension 1+ n?, and its generic point has character-
18tic zero.
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6.2.18. Taylor—Wiles deformations. Assume that ¢, = 1 mod p, and that
play, is unramified. We take A, = 0. We assume that p|g, has n-distinct
eigenvalues ai,...,a, € k. For each 1 < i < n, let 7;: G, — k™ be the
unramified character that sends Frob, to «;.

LEMMA 6.2.19. Let p: Gr, — GL,(A) be any lift of p. There are unique
continuous characters v;: Gg, — A*, for 1 <1i < n, such that p is GL,(A)-
congugate to a lift of the form v1 & --- ® v,, where v; mod my =7, for each
1< <n.

Proof. This is similar to [DDT97, Lemma 2.44]. The details are left to the
reader. (|

Let A, = k(v)*(p)", where k(v)*(p) is the maximal p-power quotient of
k(v)*. Let p: G, — GL,(RY) denote the universal lift. Then p is GL,,(R%)-
conjugate to a lift of the form v @ - - - ® 7, with 3, mod mpo =7;. For each
1 < i < n, the character ~; o Afth\o;v factors through k(v)*(p), so we obtain

a canonical local O-algebra morphism O[A,] — RY. Note that this depends
on the choice of ordering «s, ..., a,. It is straightforward to check that this

morphism is formally smooth of relative dimension n?.

6.2.20. Formally smooth deformations. Assume that vt p. The following
is a standard argument in obstruction theory, and the proof is left to the reader.

PROPOSITION 6.2.21. If H*(F,,adp) = 0, then RS is isomorphic to a

2

power series ring over O in n® variables.

6.2.22. Presentations. Fix a global deformation problem

S = (ﬁ, S, {A'U}UES7 {DU}UES)a

and for each v € S, let R, denote the object representing D,. Let T be a
(possibly empty) subset of S such that A, = O for all v € S\ T, and define
Rg’loc = @UeTRv, with the completed tensor product being taken over O. It
is canonically a A-algebra, via the canonical isomorphism @UGTAU ~ @UGSAU.
For each v € T, the morphism D% — D, given by (p, {ow}ver) — oy ' plap, o
induces a local A,-algebra morphism R, — Rg. We thus have a local A-algebra
morphism R:‘g’loc — RE. To understand the relative tangent space of this map,
we use a Galois cohomology complex following [CHTO08, §2] (cf. [KT17, §4.2]).

We let ad p denote the space of n x n matrices My, x,, (k) over k with adjoint
G r-action via p. For each v € S, we let Z!(F,,adp) denote the k-vector space
of continuous 1-cocycles of G, with coefficients in ad p. The map ¢ — (1+¢cc)p
gives an isomorphism

Z'(F,,ad p) = Homenr,,, (RY, k[e]/(e2)).
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We denote by L} the pre-image of
Homent,, (Ro, k[e]/(€%)) € Homent,, (R, k[e]/(€%))

under this isomorphism. Note that £} contains the subspace of coboundaries.
We then let £, be the image of £ in H'(F,,adp).
We define a complex Cg 1-(ad p) by

CO(Fs/F,adp)

C'(Fs/F.adp) ® @,er C°(Fy, adp)

C*(Fs/F,adp) ® @,er C'(Fy,ad p) Duesr C(Fy,adp)/L}
C'(Fs/F,adp) & @,cq C"H(Fy,ad p)

CjS‘,T(ad p) =

with boundary map C’fiT(ad p) — Cstl(ad p) given by

(@, (Wo)o) = (99, (Plar, — Ohv)w)-

We denote the cohomology groups of this complex by HfS’T(ad p), and denote
their k-dimension by hgyT(ad p) (we use similar notation for the k-dimension
of local and global Galois cohomology groups).

There is a long exact sequence in cohomology

(6.2.22)
0 — Hg p(adp) — HO(Fs/F,adp) — @verH(F,,adp)

if 1 =0,
ifi=1,
if i =2,
otherwise,

- Hé,T(adﬁ) — Hl(FS/Fa adﬁ) - @vGTHl(Fvaadﬁ) Dves\T Hl(Fvaadﬁ)/ﬁv

— Hz r(adp) — H*(Fs/F,adp) = ©pesH*(Fy,adp) = - .

Since we are assuming that p > 2, the groups H*(Fs/F,adp) vanish for i > 3,
as do the groups H(F,,adp). So HgT(adﬁ) = 0 for ¢ > 3, and we have a
relation among Euler characteristics

(6.2.23)

xsx(adp) = x(Fs/F,adp) = > x(Fy,adp) — Y (dimg £, — hO(F,,ad ).
veS veSNT

The trace pairing (X,Y) — tr(XY) on adp is perfect and G g-equivariant,

so adp(1) is isomorphic to the Tate dual of adp. For each v € S, we let

Lt C HY(F,,adp(1)) be the exact annihilator of £, under local Tate duality.

We then define

Hg, p(adp(1)) = ker (Hl(FS/F,adp(1))—> 11 Hl(Fv,adp(l))/Ej>.
veS\T

The following is proved in the same way as [KT17, Proposition 4.7], based on
ideas of Kisin [Kis07, Prop. 4.1.5, Rem. 4.1.7].
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PROPOSITION 6.2.24. Let the notation and assumptions be as in the
beginning of §6.2.22, assume further that T is nonempty. Then there is a local
A-algebra surjection Rg’loc [Xi,....Xg] — Rg, with

g = h5(adp) = hL. p(adp(1)) — KO(Fys/F,ad (1))

=) BY(Fyadp) + Y (dimy £, — hO(F,,adp)).

v]oo veSNT
Proof. The first claim with g = h}aT(ad p) follows from showing
1} 1(ad 7) = Homo (RS (mgriee). Kz} /(27))
=~ Homk(ng/(még, ng,loc), k).

To see this, note that any T-framed lifting of p to k[g]/(¢%) can be written as
((1 4+ er)p, (1 + cay)ver), with k € ZY(Fs/F,adp), and a, € adp. It is the
trivial lift at v € T if and only if
(1—eay)(1+ 5”|GFU )ﬁ|GFU (1+eay) = mGFU?
equivalently,
K/’GFU = (adeFv - 1)av‘
Such a lift is further of type S if and only if x|, € L} for all v € S\ T. This
sets up a bijection between the set of 1-cocycles of the complex C% (adp) and
the set of T-framed lifts of type & that are trivial at v € T. Two cocycles
(£, {aptver) and (K',{a'}yer) define strictly equivalent T-framed lifts if and
only if there is 5 € ad p such that
k' =k+(adp—1)8 and o) =a,+ [,
for all v € T, i.e. if and only if they differ by a coboundary. This induces the
desired isomorphism

1Y 7 (ad p) 2 Homont,y (RE/(mrec), K[e]/(€2)).

Since T' is nonempty, h%jT(ad p) = 0. Then (6.2.23) together with the local
and global FEuler characteristic formulas imply

hsr(adp) = hgr(adp)—h§ r(adp)—)  h0(Fyadp)+ Y (dimy £,—h°(Fy,adp)).
v]oo vEST
To finish the proof, we deduce equalities h?s’T(adﬁ) = h} L’T(adﬁ(l)) and
h§7T(ad p) = h(Fs/F,ad p(1)) by comparing the exact sequence
— HY(Fs/F,adp) — ®perH (Fy,ad p) ®vesr H' (Fy,ad p)/L,
— HZ p(adp) — H?(Fs/F,adp) = ©uesH*(Fy,ad )
— H% r(adp) — 0,
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which is part of (6.2.22), with the exact sequence

— HY(Fs/F,adp) = ®perH' (F,,ad D) ®yves-r H (F,,adp)/L,
— H§L7T(adﬁ(1))v — H?*(Fg/F,adp) — ®pesH*(F,,adp)
— HY(Fs/F,adp(1))Y — 0,

which is part of the Poitou—Tate long exact sequence. ([

We will apply this with our choices of local deformation rings as in §6.2.5.
By applying Propositions 6.2.14, 6.2.16, 6.2.17, 6.2.21, and [BLGHT11, Lemma
3.3], we obtain the following:

LEMMA 6.2.25. We assume that our deformation problem S and T C S
satisfy the following.

e 1" is a disjoint union S, U R S,.

e For each v € Sy, we assume that F,/Qy is unramified and that plc,, is
as in Proposition 6.2.14. We take D, = DL .

e For each v € R, we assume that q, = 1 mod p and that p|a,, is trivial.
We take D, = DY for some tuple Xy = (Xv.1,---,Xon) Of characters
Xosi© O;U — OX that are trivial modulo .

e Foreachv € S,, we assume that H*(F,,ad p) = 0 and we take D,, = D"

Then Rg’loc satisfies the following properties.

(1) Assume that x,; =1 for eachv € R and 1 <i <n. Then Spec Rg’loc
is equidimensional of dimension 1 + n?|T| + @[F 0 Q, and ev-
ery generic point has characteristic 0. Further, every generic point
of Spec Rg’loc/w is the specialization of a unique generic point of

Tloc
Spec Rg™.

(2) Assume that Xu.1,. .., Xon are pairwise distinct for each v € R. Then

Spec Rg’loc is irreducible of dimension 1+ n?|T|+ M[F : Q] and its

2
generic point has characteristic Q.
In the ordinary case, we will use the following.

LEMMA 6.2.26. We assume that our deformation problem S and T C S
satisfy the following.

o T is a disjoint union S, U R S,.
e For each v € Sy, we assume that [F, : Qp > n(n2+1) +1 and that plgy, is
trivial. We take A, to be the quotient of O[OF (p)"] by a minimal prime

ideal @, and take D, = Df}et"’rd to be the local deformation problem
classified by RI*°T9.
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e For each v € R, we assume that q, = 1 mod p and that p|a,, is trivial.
We take D, = D" for some tuple Xy = (Xv.1,---,Xvn) Of characters
Xosi: C’);U — OX that are trivial modulo w.

e For eachv € S,, we assume that H*(F,,ad p) = 0 and we take D,, = D"

Then Rg’loc satisfies the following properties.

(1) Assume that x,; = 1 for each v € R and 1 <i < n. Then Spec Rg’loc

has dimension 1 + n?|T| + %[F‘ : QJ, any irreducible component
of maximum dimension has a characteristic O generic point, and any
irreducible component that does mot have maximum dimension has

dimension < n?|T| —1+ n(nT—H)[F : QJ. Further, any irreducible compo-

nent of Spec Rg’loc/()\) of maximum dimension is the specialization of

a unique generic point of Spec Rg’loc.

(2) Assume that Xy 1, ..., Xon are pairwise distinct for each v € R. Then
Spec Rg’loc has dimension 1+ n?|T| + @[F : QJ, it has a unique
wrreducible component of maximum dimension and the generic point of
this irreducible component has characteristic 0. Any other irreducible
component has dimension < n?|T| — 1+ W[F 1 QJ.

(3) If x is a point of Spec Rg’loc lying in an irreducible component of non-
mazimum dimension, then there is some v € S, such that the image of

univ univ

x in Spec A, lies in the closed locus defined by ™V = x;M for some

iF# 7.
Proof. For each v € Sy, Proposition 6.2.12 implies that Spec R, has a
unique irreducible component of dimension dim R, = 1 + n? + W[Fv 1 Qpl,
and this irreducible component has characteristic 0. Let g, be the minimal

prime of R, corresponding to this irreducible component. Then we can apply
[BLGHT11, Lemma 3.3] to

R/ = @veSpRv/qv@veRUSa Rv

together with Propositions 6.2.16, 6.2.17, and 6.2.21 to obtain the following:

(1) If xy; = 1 for each v € Rand 1 < i < n, then Spec R’ is equidimensional
of dimension 1 + n?|T| + n(nTH)[F : QJ, and every generic point has
characteristic 0. Further, every generic point of Spec R'/w is the
specialization of a unique generic point of Spec R'.

(2) If xu,1,-- -, Xon are pairwise distinct for each v € R, then Spec R’ is
irreducible of dimension 1 + n?|T| + @[F : Q] and its generic point

has characteristic 0.

Since any minimal prime p of Rg’loc pulls back to minimal prime ideals p, of

R, for each v € T, and induces a surjection

@verRo/po — RE'/p,
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we see that Spec R’ is a union of irreducible components of Spec Rg’loc. To
finish the proof of the lemma, it suffice to note that if p, # g, for some v € S,
then by Proposition 6.2.12, dim R, /p, < n?—1+ n(nTH)[FU : Qp] and the image

of p, in A, lies in the closed locus defined by y™iv

7

this case, dim R?;’l"“/p <n?|T| -1+ W[F 1 QJ. O

= X}miv for some ¢ # j. In

6.2.27. Taylor—Wiles primes. In this section we show how to generate
Taylor—-Wiles data. We first need to introduce a definition, essentially equivalent
to that of [KT17, Defn. 4.10] and [CG18, §9.2] (see Remark 6.2.30 below). For
the moment, let k be any algebraic extension of F,,.

DEFINITION 6.2.28. Let ad’ denote the space of trace zero matrices in
My, xn (k) with the adjoint GLy,(k)-action. An absolutely irreducible subgroup
H C GL,, (k) is called enormous over k if it satisfies the following:

(1) H has no nontrivial p-power order quotient.

(2) H°(H,ad’) = H'(H,ad’) = 0.

(3) For any simple k[H]-submodule W C ad®, there is a reqular semisimple
h € H such that Wh # 0.

Note that this only depends on the image of H in PGL, (k). If p divides
n, then no subgroup of GL, (k) is enormous (because ad’ contains the scalar
matrices).

LEMMA 6.2.29. Let k' /k be an algebraic extension, and let H C GLy, (k)
be a subgroup. Then H is enormous over k if and only if it is enormous over
K.

Proof. 1t suffices to address condition (3), which is equivalent to the
following statement: for all non-zero k[H]-submodules W C ad®, there is a
regular semisimple element h € H such that W # 0. This makes it clear that
if H is enormous over k', then it is enormous over k.

Suppose therefore that H is enormous over k. The property that a k'[H]-
module V satisfies V* = 0 is closed under taking direct sums and taking
quotients (the latter is true because V" # 0 if and only if V}, # 0). If V C
ad’ ®¢k’, then chv = hov for all o € Gal(k'/k) (since H C GL,(k)) and
so V" = 0 if and only if (¢V)"* # 0. In particular, if W’ is a simple k'[H]-
submodule of ad® ®k” with no invariants by h € H, the same is true for oW’
for all o € Gal(k'/k), as well as the submodule of ad’ @k’ generated by the
sum of all such cW’. But the latter is stable under both H and Gal(k'/k), and
thus (by descent) has the form W @y, k' for some k[H]-submodule of ad’. But
now applying condition (3) to any k[H]-simple submodule of W, we deduce
that W" # 0 for some regular semisimple h, from which it follows that the
same holds for W'. O
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Henceforth we drop the ‘over &’ and refer simply to enormous subgroups
of GL,, (k).

Remark 6.2.30. Assuming that k is sufficiently large to contain all eigenval-
ues of the elements of H, it can be checked that Definition 6.2.28 is equivalent
to [KT17, Definition 4.10].

We now return to the assumptions described at the beginning of §6.2,
assuming further that k contains all eigenvalues of the elements of p(Gr). We
again fix a global deformation problem

S = (ﬁ, S, {Av}0657 {Dv}’uES)'

We define a Taylor—Wiles datum to be a tuple (Q, (ay 1, - ., Qyn)veq) consisting
of:

e A finite set of finite places @ of F, disjoint from S, such that ¢, =
1 mod p for each v € Q.

e For each v € @), an ordering a1, . . ., @y, Of the eigenvalues of p(Frob,),
which are assumed to be k-rational and distinct.

Given a Taylor-Wiles datum (Q, (a1, .., ®yn)veq), we define the augmented
global deformation problem

SQ = (ﬁv Su Qv {Av}UES ) {O}veQa {Dv}vES U {DE}UGQ)'

Set Ag = [[,eqk(v)*(p)". By §6.2.18, the fixed ordering a1, ..., aw,y, for
each v € @), determines a A[Ag]-algebra structure on Rg@ for any subset T
of S. Letting ag = ker(A[Ag] — A) be the augmentation ideal, the natural
surjection Rg@ — Rg has kernel aQRgQ.

LEMMA 6.2.31. Let T C S. Assume that F is CM with mazimal totally
real subfield F*, that (, ¢ F, and that p(Gr,)) is enormous. Let q >
h}sl’T(ad p(1)). Then for every N > 1, there is a choice of Taylor-Wiles datum
(QN, (01, 0 n)veqy) Satisfying the following:

(1) #Qn =q.

(2) For each v € Qn, gy = 1 mod p, and v has degree one over Q.
(3) By (adp(1)) = 0.
N

Proof. Since the augmented deformation datum Sg, has D, = DY for
v € Qu, we have £, = H'(G,,adp) and

HYy  p(0d (1) = ker | HY, p(ad7(1) » [T H'(F.ad7(1))

vEQN
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So by induction, it suffices to show that given any cocycle k representing a
nonzero element of HL, -.(adp(1)), there are infinitely many finite places v of

SL,T
F such that

e v has degree one over Q and splits in F'((,~);
e 5(Frob,) has n-distinct eigenvalues a1, ..., Qyp in k;
e the image of k in H'(F,,adp(1)) is nonzero.

The set of places of F' that have degree one over Q has density one, so it suffices
to show that the remaining properties are satisfied by a positive density set
of places of F'. Then by Chebotarev density, we are reduced to showing that
given any cocycle x representing a nonzero element of H é (adp(1)), there is

o € Gp(c y) such that
P

J—,T

e p(o) has distinct k-rational eigenvalues;

e pok(o) # 0, where p,: adp — (adp)? is the o-equivariant projection.
(The second condition guarantees that the restriction of £ will not be a cobound-
ary.) Since p f n, we have a G p-equivariant decomposition adp = k @ ad’ 7,
and we treat separately the cases where k represents a cohomology class in
H'(Fs/F,ad’5(1)) and in H'(Fs/F,k(1)).

First assume that s represents a cohomology class in H'(Fg/F,ad’5(1)).
Let L/F be the splitting field of p. The definition of enormous implies that the
restriction map

H'(Fs/F,ad’p(1)) = H'(Fs/L(¢yn),ad” p(1)“"

is injective. Indeed, letting H = ﬁ(GF(Cp)), since H has no p-power order
quotients, H = p(GF(CpN)) and H°(H,ad"5) = 0 implies that the restriction
to H! (FS/F(CPN),adO p) is injective. Then the condition H'(H,ad’p) = 0
implies that the further restriction to H 1(FS/L(CPN),adO p(1)) is injective.
So the restriction of x defines a nonzero Gp(
Gal(Fs/L(¢n)) — ad”p.

Let W be a nonzero irreducible subrepresentation in the k-span of x(Gal(Fs/L((,~)).
The enormous assumption implies that there is o9 € G F(¢,n) such that p(og)
has distinct k-rational eigenvalues and such that W70 = 0. This implies that
k(Gal(Fs/L((,~)) is not contained in the kernel of the og-equivariant projection

¢ y)-equivariant homomorphism
P

Doy ad’ D — (ad’ ). If pyur(0p) # 0, then we take o = og. Otherwise, we
choose T € GL(CPN) such that py,k(7) # 0, and we take o = T0g. This does the
job since p(o) = p(op) and k(o) = k(og) + k(7).

Now assume that x represents a cohomology class in H'(Fg/F,k(1)).
The cohomology class of k corresponds to a Kummer extension F'((p,y) with
yP € F((p). Since x is nontrivial and (, ¢ F', this extension F((,,y) is not

abelian over F. It follows that y? ¢ F'((,~) for any N > 1, and the restriction
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of K to GF(CPN) is nontrivial. Since the extension F'((,~,y)/F({,~) has degree
p, it is disjoint from the extension cut out by the restriction of p to G F(C,v) by
the enormous assumption. It follows that we can find o0 € G F(C,n) such that
p(0) has distinct eigenvalues and such that (o) # 0 € k. This completes the
proof. O

PROPOSITION 6.2.32. Tuke T = S, and let ¢ > hg, ,(adp(1)). Assume
that F = FTFy with F* totally real and Fy an imaginary quadratic field, that
Cp & F, and that p(Gp(c,)) is enormous. Then for every N > 1, there is a choice

of Taylor-Wiles datum (Qn, (1, ..., 00 n)veqQy) Satisfying the following:

(1) #Qn =q.
(2) For each v € Qn, gy = 1 mod p™V and the rational prime below v splits
m F().

ere 15 a local A-algebra surjection R Tyenns — , wit
3) Th local A-algeb Rg[X1,..., Xg] = RE, , with

g=qn—n’[F*:Q]

Proof. If v is a finite place of F' that is degree one over Q, then the rational
prime below it must split in Fy. So Proposition 6.2.24 and Lemma 6.2.31 imply
that the proposition holds with

g=—h"(Fs/F,adp(1)) - n’[F": Q]+ ) _(dim L, — dim h°(F,, ad p)).
vEQR

The assumptions that (G F(Cp)) is enormous and that (, ¢ F imply that
H°(Fg/F,adp(1)) is trivial. For each v € Q, we have £, = H'(F,,adp), so

dim £, — dim h°(F,,ad p) = h°(F,,ad p(1)) = n,

where the first equality follows from local Tate duality and the local Euler
characteristic, and the second from the fact that ¢, = 1 mod p and p(Frob,)
has distinct eigenvalues. ([l

6.3. Avoiding IThara’s lemma. In this section we will axiomatically explain
how to deduce a patched automorphy theorem from the result of the patching
process. See section 6.3.5 and particularly Proposition 6.3.8. We begin however
with a little commutative algebra.

6.3.1. Some commutative algebra.

LEMMA 6.3.2. Suppose that T is an excellent local ring with SpecT irre-
ducible, that f € mp and that T/(f) has Krull dimension 0.
If T has dimension O then for every finitely generated T module M we
have
lgr(M/fM) —lgp(M[f]) =0
(and these lengths are both finite).
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Otherwise T has dimension 1 and a unique prime ideal p other than mr.
In this case there is a constant a € Z~qy such that for any finitely generated
T-module M we have

lgp(M/fM) —lgp(M[f]) = alng(Mp)
(and all these lengths are finite).

Proof. If T has dimension 0 then it is Artinian and every finitely generated
T-module has finite length. If the desired length equality holds for two modules
in a short exact sequence it also holds for the third (by the snake lemma). Thus
we are reduced to checking the lemma in the case M = T /myp, in which case it
is obvious.

Now suppose that 7' has dimension 1. Note that 7'/(f) is Artinian and
so any finitely generated T'/(f)-module has finite length over 7. Let T denote
the normalization of T'/p. As T is excellent, Tisa finitely generated T-module.
We will take a = lg4(T/(f)). (This is positive because f is not a unit in 7. In
fact it lies in every maximal ideal.)

Note that the conclusion of the lemma is true for M = T'/m and for M = T.
Also note that, if the conclusion of the lemma holds for two modules in a short
exact sequence, then it holds for the third (again by the snake lemma). In
particular the lemma holds for all finite length T-modules.

Filtering M by the submodules p’ M we reduce to checking the lemma
for M a T/p-module. Write Q for the quotient 7/(T/p). It has support
{mp} C SpecT. If M is any finitely generated T'/p-module we have an exact
sequence

Torl (M, Q) — M — M @7 T — M @7 Q —> (0).

Both M ®7 Q and Tor! (M, Q) are finitely generated T-modules with support
contained in {mr}, and hence of finite length. Thus we are reduced to proving
the lemma for M a finitely generated T-module.

Note that 7 is a Dedekind domain with only finitely many maximal ideals,
and hence a PID. By the structure theorem for finitely generated modules over
a PID it suffices to check the conclusion of the lemma in the two cases: M is
a finite length T-module and M = T. However we have already treated both
these cases. (]

We will really make use of a derived version of this lemma. Suppose that
S is a ring, that T is a noetherian S-algebra and that C' € D®(S) is equipped
with a map 7" — Endpp(g)(C) over S such that the cohomology of C' has finite
length over T. Then we define

lgr(C) =) (~1)'lgp(H'(C)).

%
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Note that if
Cl — 02 — 03 —

is an exact triangle in D?(S) with compatible actions of T', and if two of the C;
have cohomology of finite length over T, then so does the third and we have

lgr(C2) = lgp(C1) +1gp(Cs).

Note also that if f € S and the cohomology of C' is finitely generated over T,
then the cohomology of C ®% S/(f) is also finitely generated over T'. (Look at
the long exact sequence in cohomology coming from the exact triangle

CcLc—ceks/f)—) = caksLs—s/()—) )
Before stating the derived version we need one other remark:

LEMMA 6.3.3. Suppose that A is a noetherian ring and that m is a mazximal
ideal of A that is simultaneously a minimal prime ideal. Then A = Ay x B
for some ring B.

Proof. Let pq, ..., p, denote the other minimal prime ideals of A and set
I'=pn..Npy. Ifm DI then m D p; for some 4, a contradiction. Thus
m+71 =Aand A/(mNI) = A/m x A/I. However m N I is nilpotent
so we can lift the idempotent (1,0) € A/m x A/I to an idempotent e € A.
Then 1 — e € m and e will lie in every prime ideal of A other than m. Thus
m = em x (1 —e)A C eA x (1 —e)A, and every other prime ideal of A
contains e and so has the form eA x q. In particular eA is Artinian local and
Ap = (eA)em = €A. O

Suppose that S is a noetherian ring, that T is a finite S-algebra, that p
is a minimal prime ideal of 7" and that C' € D®(S) is equipped with a map
T — Endpp()(C) over S. Let q denote the contraction of p to S. As T is finite
over S, we see that p is also maximal ideal in Ty, and so by the above lemma
we can write Ty = T, x B for some S-algebra B. Let e, € Ty be the idempotent
corresponding (1,0) € T, x B. Then, perhaps by an abuse of notation, we will
write

Cp = ¢,(C @5 Sy).

It is an object of D(S,) with an action of 7. It is not literally a localization
over T, but if C' (with its action of T') happens to be represented by a complex
of T-modules C?, then Cy is represented by the complex Cg. Moreover if the
cohomology of C'is finitely generated over S, then the cohomology of C; has
finite length over T, (being finitely generated over the Artinian ring 7).

LEMMA 6.3.4. Suppose that S is an excellent local ring and that f € mg
is a non-zero divisor. Suppose also that T is a finite S-algebra with a mazximal
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ideal m such that Spec Ty, is irreducible and Ty /(f) has Krull dimension 0.
Note that Ty has dimension at most 1.

If Ty has dimension 0, then for every C € D(S) such that T — End py()(C)
over S and C has finitely generated cohomology we have

g7, ((C ®§ S/(f))m) = 0.

If not, then Ty has a unique prime ideal p other than m. In this case there
is a € Z~q with the following property:

Suppose that C € DY(S) such that C has finitely generated cohomology,
and that T'— Endpy()(C) over S. Then

g7, ((C ®§ S/(f)m) = algr, (Cp)-

Proof. We will take the a as in lemma 6.3.2 for the ring Tj,. If the lemma
holds for two terms in an exact triangle it holds for the third term too. Thus
one may inductively reduce to the case that C' is quasi-isomorphic to M[i] for
a finitely generated S-module M with a compatible action of T'. In this case

C ®% S/(f) is quasi-isomorphic to (M ENSYE )[—i]. Moreover
g, (C @ S/(f)m) = (1) (e, (M)/fM)n) =gz, (M[f]n))

and
lng (Cy) = (—1)Zlng(Mp)-
Thus the present lemma follows from lemma 6.3.2. [l

We remark that if C' is perfect then the cohomology of C and C ®g S/(f)
will automatically be finitely generated (over S and hence over T'). In this case,
if T is an S subalgebra of Endps(gy(C), then it will automatically be finite over

S.

6.3.5. Application. Let A be a ring which is isomorphic to a power series
ring over 0. We assume given the following objects:

(1) A power series ring Soc = A[[X1, -, X;]] with augmentation ideal
oo = (Xl, ce ,Xr).
(2) Perfect complexes C, CL of Soo-modules, and a fixed isomorphism

Coo ®Y._ Soo/w 2 Cly @ Soo/w

in D(Seo/w).
(3) Two Soo-subalgebras

Ty C EndD(Soo) (Coo)

and
T., C Endp(s..)(CL.),
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which have the same image in
Endps., /) (Coo ®_ Soo/™) = Endp(s., /) (Che R Soo/®);

where these endomorphism algebras are identified using the fixed iso-
morphism. Call this common image T,. Note that T, and T, are
finite Soo-algebras.

(4) Two Noetherian complete local Seo-algebras R, and R, and surjections
R — Too/Io, RS, — T /I, where I, and I are nilpotent ideals.
We write I, and f;o for the image of these ideals in T4,. Note that it
then makes sense to talk about the support of H*(Cw) and H*(CL))
over Ry, R,
rings. These supports actually belong to the closed subsets of Spec Ry,
Spec R given by Spec T, Spec T, and hence are finite over Spec Sx.

(5) An isomorphism R /@ = R, /w compatible with the S-algebra
structure and the actions (induced from T, and T) on

H (Coe 5, Soe/)/(Too + Tog) = H(Cly ©% . Suo/)/(Toe + Iy,

even though they are not genuine modules over these

where these cohomology groups are identified using the fixed isomor-
phism.
(6) Integers qo € Z and ly € Z>p.

Assumption 6.3.6. Our set-up is assumed to satisfy the following:

(1) dim Ry = dim R, = dim So — lp, and dim Roo/w = dim R /w =
dim Sy —lp — 1.

(2) (Behavior of components) Assume that each generic point of Spec Ro/w
of maximal dimension (i.e. of dimension dim R, —1) is the specialization
of a unique generic point of Spec R, of dimension dim R+, and Spec R/
has a unique generic point 2’ of dimension dim R.,. Assume also that
any generic points of Spec Roo, Spec R._, Spec Roo /@ which are not of
maximal dimension have dimension < dim Sy, — lp — 1.

These hypotheses imply every generic point of Spec Ry, and Spec R,

of dimension dim R, has characteristic 0.

(3) (Generic concentration) There exists a dimension 1 characteristic 0
prime p of Sy containing a., such that

. 1
H (Coo ®§oo Soo/p)[i] 7é 07

and these groups are non-zero only for degrees in the interval [go, go + o).

Note that Suppp_ (H*(Cw)) = Spec T and Suppp,_(H*(CL)) = Spec T

(The only point being that the kernel of T, — Endg,_(H*(Cx)) is nilpotent.)
The following result is an immediate corollary of Lemma 6.3.4.
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LEMMA 6.3.7. Suppose that T is a minimal prime of R /(w) of dimension
dim S, —lp — 1 containing a minimal prime x of R of dimension dim Sy — lg.
Note that Roo z has a unique minimal prime ideal x, and that Re z/(w) has
Krull dimension 0. Moreover:

(1) IfT € Spec Tw, and iflgTw,i((Coo%w Soo/(w))z) # 0 then x € Spec T,
and lgr_ ,(Cooz) # 0.

(2) If z € Spec T then T € SpecToo. If moreover lgy,  (Cooz) # 0 then
lgr, - ((Coo ®5,, Soo/(@))z) # 0.

The same is true with R._, T’ , C. replacing Reo, Too and Cu.
We now come to the principal result of this section.

PROPOSITION 6.3.8. With the notation and assumptions just established,
Suppp_ (H*(Cx)) = Spec T C Spec Rog

contains every irreducible component of Spec Roo of mazimal dimension.

Proof. As T, and H*(Cy,) are finite over S, we see that Suppg_ (H*(Cw))
is the image of Spec T, — Spec Sw. Thus Suppg_(H*(Cx)) has dimension
at most dim Roo = dim Ss — lo, and any prime in Suppg__ (H*(Cxop)) has
codimension at least Iy in Spec S .

Since Soop/p = (Soo/p)[%], our assumptions imply that Coop @Y Seo p/p
is non-zero and has cohomology concentrated in degrees [qo,qo + lp]. Thus
Cwop is quasi-isomorphic to a perfect complex of Su, p-modules concentrated in
degrees [qo, go+1o]. (See for instance [KT17, Lemma 2.3].) From the key [CG18,
Lemma 6.2] we deduce that H*(C p) is non-zero exactly in degree gp + [y and
that Suppg,_ , (H w0+ (Cy ) contains a prime of codimension at most Iy in
Spec Soop. Thus Suppg  (H*(Cx)) contains a prime of dimension dim Su, — lo.
Let x1 denote a pre-image of this prime in Spec T, so that x; must be a
generic point of Spec Ro, — Spec Ry /(w) of dimension dim S, — lp. Moreover
Ig7., . (Coowy) # (0). Choose a generic point T of Spec Roo/(21, @), which
must have dimension dim So, —lp —1 and be a generic point of Spec R /(w) in
the image of Spec Tw. Let T} denote the corresponding point of Spec R._/(w).
It can not be generic in Spec R, and so must generalize to z’.

Now let x2 be any other generic point of Spec Ry of dimension dim S, —
lop. We wish to show that it lies in SpecT,,. Choose a generic point Ty of
Spec Ry / (2, w0), which must have dimension dim Sy, — Iy — 1 and be a generic
point of Spec Ry /(w). Let T, denote the corresponding point of Spec R._/(w).
It can not be generic in Spec R and so must generalize to x’.

We now repeatedly use Lemma 6.3.7. As lgp (Cooz) # (0), we

deduce that T) € SpecTs and lgr, _ ((Cso ®%  Se/(w@))z) # 0. Hence
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T) € SpecTl, and lgp  ((Ch, @Y Seo/(@))z,) # 0, from which we de-
00,T7

duce that 2’ € SpecT’, and lgr  (CL /) # 0. We further deduce that

Ty € SpecT), and lgp  ((Cl, ®%_ Seo/(w))z,) # 0. Hence Tz € SpecTi
00,T5

and lgr__ ((Coo ®§ Seo/(w))z,) # 0, from which we finally deduce that
zg € Spec T (and lgr,  (Coc,azy) # (0)). O

COROLLARY 6.3.9. Let x be a prime of Roo lying in an irreducible com-
ponent of Spec Ry of mazimal dimension. Let y be the contraction of x in
Soo- Then the support of H*(Cx ®I§OO Seo/Yy)y over Spec Roo contains x. If
y is one dimensional of characteristic 0 this says that x is in the support of
H(Coe & _ Soc /y)[1/0).

Proof. It follows from Proposition 6.3.8 that x is contained in Spec T, and
occurs in the support of H*(Cx). It also occurs in the support of H*(C y) =
H*(Cx)y. Let r be maximal such that H"(Cuy)s is non-zero. From the Tor
spectral sequence

Tor”" (H? (Cooy)s Sooy/y) = H™ (Cooy ®%.. , Sooiy/Y)

we see that H" (Cooy ®%_ , Sooy/Y)a surjects onto H" (Cocy)z/y # (0), so that
x lies in the support of H"(Cuy ®§Ooy Soow/y) = H"(Cwo ®§Oo Seo/Y)y, as
desired. 0

6.4. Ultrapatching.

6.4.1. Set-up for patching. We begin by fixing a non-principal ultrafilter §
on the set N = {N > 1}. We fix a ring A which is isomorphic to a power series
ring over O.

Let 6, g, q be positive integers and set Ao, = Z,?. We let T be a formal
power series ring over A (it will come from framing variables in our application)
and let Soo = T[[Ax]]. We view Sy as an augmented A-algebra, and denote
the augmentation ideal by a,.. We also suppose we have two rings R'°¢, R'1o¢
in CNL, with a fixed isomorphism R!°°/w = R'1°° /e and denote by R., and
R!_ the formal power series rings in g variables over R°° and R'!°°,

Our input for patching is the following data for each N € N U {0}:

(1) A quotient Ay of Ay such that the kernel of Ay, — Ay is contained
in (pNZ,)" C Aso. If N =0, we let Ag be the trivial group, thought
of as a quotient of Ay. We set Sy = T[Ap].

(2) A pair of perfect complexes Cy, Cly in D(A[Ay]), together with an iso-
morphism Cy ®k[AN] A/w[AN] =CY ®R[AN} A/w[AN] in D(A/w[AN]).
We denote these complexes by Cy/w and Cj/w for short. We more-
over assume that we have commutative A[Ay]-subalgebras Ty C
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Endpaay))(Cn), Ty C Endppja ) (Cyy) which map to the same sub-
algebra

Ty C Endp(a/wmiay))(Cn/@) = Endp(a/wiay)) (Cx /@),

where these endomorphism algebras are identified using our fixed quasi-
isomorphism Cy/w = Cly/w.

(3) A pair of rings Ry, R}y in CNLy(a ) With an isomorphism Ry /o =

'v/@ together with R'°°- and R'1°c-algebra structures on T&xRy
and T@AR& respectively which are compatible modulo w with the
isomorphisms Ry /w 2 Ry /@ and R'°¢/w = R'1°¢ /.

(4) Surjective R'°°- and R''°“-algebra maps R, — T&ARN and R —
T@ARN, which are compatible modulo .

(5) Nilpotent ideals Iy of T and Ij, of T with nilpotence degree < 4,
and continuous surjections Ry — Tn/In, Ry — Tn/I}y. We demand
that these maps are also compatible modulo w, in the following sense:
denote by Iy and T/N the images of Iy and I in T. Then the induced
maps Ry /w — Tn/(In +Ty) and Ry/w—Tn/(IN +Ty) are equal
when we identify Ry /w and Ry /w via the fixed isomorphism between
them.

We moreover assume that for each N > 1 we have isomorphisms my :
Cn ®k[AN}A = Cpand 7wy : Cly ®k[AN}A = C{ in D(A) which are compatible mod
w. We obtain induced maps T RA[AN] A— EndD(A) (Cop) and TJ/V QA[AN] A—
Endp(s)(Cy) which we assume factor through maps Ty ®aja,) A — To and
Ty ® Aay] A — T, which are surjective when composed with the projections to
To/[() and Té/[é

Finally, we assume that we have isomorphisms Ry ®@xay) A = Ro and
Ry ®@p1a5) A = Ry which are compatible mod w and with the maps from R in
part (4). We also also demand compatibility with the maps Ty ® Alan] A = To
and Ty ®4(ay] A — Ty above. More precisely, we denote by In and Iy, the
images of Iy and I}, in Ty/Iy and Tjj/1j), and demand that the surjective maps
Ry ®A[AN] A— (T()/Io)/IN70 and R?V ®A[AN} A — (Té/Ié)/I]/V,O are identified
with the maps Ro — (Tv/1o)/Ino and Ry — (T/15) /Iy o via the isomorphisms
Ry ®A[AN] A = Ry and R?\f ®A[AN] A= R6.

6.4.2. Patched complexes. Apart from Remark 6.4.14 and Proposition
6.4.17, results and definitions in this subsection will be stated just for the
complexes Cn and the associated objects and structures, but they also apply
to the complexes Cl.

DEFINITION 6.4.3. Let J be an open ideal in So. Let I be the (cofinite)
subset of N € N such that J contains the kernel of Soo — Sn. For N € I, we
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define
C(J,N) = Soo/J @ [a CN € D(Sx/J),

let T(J,N) denote the image of Seo/J @ajay] TN in Endps,. /.0y (C(J, N)), and
denote by I(J, N) the ideal generated by the image of In in T(J, N). We have
I(J,N)® =0.

Additionally, for d > 1 we define

R(d,J,N) = Ry/m% @p(ay) S/ -

For every d,J and N we have a surjective R°°-algebra map R, — R(d, J,N),
which factors through a finite quotient Roo/m;(i"]) for some e(d, J) which is

independent of N.

For each pair (J, N) such that C(J, N) is defined, we fix a choice F(J, N)
of minimal complex of finite free S, /J-modules which is quasi-isomorphic to
C(J,N) (cf. [KT17, Lemma 2.3]). Then for any i € Z we have

rks.. /s (F(J,N)') = dimy, H'(Co @} k).

Remark 6.4.4. Recall that we have a surjective map Ry — Tn/In. We
therefore obtain a surjective map Ry ®pjay] Seo/J — T(J,N)/I(J,N). For d
sufficiently large depending on J (but not depending on N) this map factors
through a surjective map R(d,.JJ,N) — T(J,N)/I(J,N). Indeed, it suffices to
show that there is an integer do(.J) such that for any d > do(J), and for any
r € m7,, the image of 2¢ in Endp(s../7)(C(J; N)) (and therefore the image of
2% in T(J, N)) is zero. Since

H*(C(J,N) @%_,; k) = H*(Co @5 k)

is a vector space of finite dimension independent of N and .J, we can find an
integer d; such that z® H*(C(J, N) ®§oo/J k) = 0 (because = acts through a
nilpotent endomorphism). The existence of the spectral sequence of a filtered
complex implies that there is an integer dy such that 292 H*(C(J, N)) = 0 (here
we are using the fact that S./J has finite length as a module over itself).
Finally, the fact that C(J, N) is a perfect complex, with cohomology bounded
in a range which depends only on Cp, implies the existence of the integer dy(J)
(use [KT17, Lemma 2.5]). (A similar argument appears at the start of the proof
of [KT17, Proposition 3.1].)

Remark 6.4.5. If J contains a, then we can identify So/J with A/s(J),
where s(J) is an open ideal of A. For each N € I;, the isomorphism 7y :
Cn ®k[AN} A =2 Cy induces an isomorphism 7y : C(J, N) = Co @% A/s(J).
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Remark 6.4.6. Suppose we have open ideals J; C J2 of Soc and N € I,.
Then we have a natural map C(J;, N) — C(J2, N) which induces a quasi-
isomorphism

Seo/J2 @ 17, C(J1,N) = C(Ja, N).

We obtain a surjective map T'(J;, N) — T'(J2, N) and the image of I(J;, N)
under this map is equal to I(J2, N). So we also obtain a surjective map
T(J17N>/I(J1,N) — T(JQ,N)/I(JQ,N).

For J an open ideal in S,,, § restricts to give a non-principal ultra-
filter on I;, which we again denote by §. This corresponds to a point zz €
Spec([Iyer, Soo/J) by [GN22, Lemma 2.2.2], with localization ([ ¢, Soo/J)ag
canonically isomorphic to So/J.

DEFINITION 6.4.7. We make the following definitions:

C(1,00) = ([ Soc/Das @11ye,, 500 1] CILN) €D (S/ ),

NEIJ NEIJ

R(d, J,00) = ( [ Sec/T)zs OMyey, S/ I1 R 7N,
Nely Nel;
T'(J,00) is defined to be the image of ([ I y¢;, SOO/J)x3®HN€IJ Soo/ 7] Iner, T(J,N)
in Endp (g, /) (C(J,00)), and the ideal 1(J,00) C T(J,00) is defined to be the
image of (IIner, Soo/T)as @ye;, oot ner, 14, N) in T(J,00).

Remark 6.4.8. Since the rings R(d, J, N) are all quotients of Roo/m%(ij)
(and are in particular finite of bounded cardinality), the ultraproduct R(d, J, 00)
is itself a quotient of R/ m%d"]).

(
LEMMA 6.4.9.
(1) I(J,00) is a nilpotent ideal of T(J,oc), with I(J,00)° = 0.
(2) Ford sufficiently large depending on J, the maps R(d, J,N) — T(J,N)/I(J,N)
(see Remark 6.4.4) induce a surjective Sso/J-algebra map R(d, J,o0) —
T(J,00)/1(J,0).

Proof. The first part follows from the fact that [ [, I(J, V) is a nilpotent
ideal of [[y¢;, T'(J, N) with nilpotence degree < 4. The second part follows
by first considering the map [[yc;, B(d, J,N) = [[ye;, (T(J,N)/I(J,N)) =
(Iyer, T(J,N)) /(I ner, I(J,N)), localising at x5 and finally passing to the
image in 7T'(.J, 00)/1(J, 00). O

PROPOSITION 6.4.10.

(1) C(J,00) is a perfect complex of Soo/J-modules.
(2) The maps Roo — T'(J,N)/I(J, N) induce a surjection R — T(J,00)/1(J,0).
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(3) If J contains as, then the isomorphisms my N induce an isomorphism
M0t C(J,50) = Co &% Afs(]).

(4) Suppose we have open ideals J, C Jo of Seo. Then the maps C(J1, N) —
C(J2, N) in D(Se/J1) for N € I, induce an isomorphism

Seo/J2 @45, C(J1,00) = C(Ja,00).

(5) Let Ji, Jo be as in the previous part. The map C(Jy,00) — C(J2,00) in-
duces a surjective map T'(Jy,00) — T'(J2,00) and the image of I(J1,00)
under this map is equal to I(Ja, 00).

Proof. (1) Perfectness of C(J, 00) follows from [GN22, Corollary 2.2.7]
— to apply this Corollary we need to show that there are constants
D, a,b (independent of N) such that the complexes C(J, N) are each
quasi-isomorphic to complexes of finite free S /J-modules of rank
< D concentrated in degrees [a,b]. This follows from the theory of
minimal resolutions, which we have already applied in order to assert
the existence of the complexes F(J, N) above.

(2) By the previous part of the proof, the complexes F(J, N) (N € I;) fall
into finitely many isomorphism classes. Therefore there is an element
Yo of the ultrafilter § on I; such that the F(J, N) are isomorphic for
all N € ¥y. We fix isomorphisms (of complexes) between the F(J, N)
for N € ¥y and a single complex F(J,00). Then for all N € ¥y we
can identify all the finite endomorphism algebras Endps,, /.7)(C(J, N))
with each other. We deduce that there is a subset X1 C Yo with X1 € §
such that, under this identification, the finite Hecke rings T'(J, N)
and their ideals I(J,N) are also identified. So T'(J,00) = T(J,N)
and I(J,00) corresponds to I(J,N) for N € 3;. Since each map
Ry — T(J,N)/I(J,N) is surjective, the map Ro, — T'(J,00)/I(J,0)
is also surjective.

(3) The third part follows immediately from the exactness of products and
localization.

(4) First we consider the map of complexes

II ctn, vy = T ¢t ).

NGI]l NEIJl

Since HNeIJl Soo/J2 is a finitely presented ]_[NelJ1 Seo/Ji-module (as

direct products are exact) the tensor product ([[ye;, Soo/J2)®[ 50 /0
1

commutes with direct products ([Stal3, Tag 059K]). We deduce (using
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Remark 6.4.6) that

(TT Sso/2) @4 syn I COLN)

NEIJl NGIJl
H Soo/J2 ®S /1 J17 H C J27
NEIJl NGIJI

Localizing at zz gives the desired statement — since I, is cofinite in
I;, we can naturally identify the localization of HNEIJ1 C(Jy, N) with
the localization of HN€IJ2 C(J2,N).

(5) The final statement follows from the proof of part (2): thereisa ¥ C I,
with ¥ € § such that T'(J;,00) = T'(J;, N) and I(J;,00) corresponds
to I(J;, N) under these isomorphisms for all N € ¥. Now the desired
statement is a consequence of Remark 6.4.6. U

We write F(J,00) for the minimal complex isomorphic to C(J,00) in
D(S/J) constructed in the proof of the previous proposition.

DEFINITION 6.4.11. We define a complex of Soo-modules
Coo = lim F(mf_, 00),

where the transition maps in the inverse limit are given by making a choice
for each v > 1 of a map of complexes lifting the natural maps C(myg T'H ,00) —
C(mg_,00) in D( C>O/m”'H). To see that such a map of comple:z;es exists,

note that since F(myg H'l ,00) 1s a bounded complex of free Soo/m’n"'1
7“+1)

modules,
viewed as an element of the homotopy category K(Soo/m of chain complezes

of Seo /mrJrl modules, we have

HomK(Sm/mg:Ol)(f(mgﬂ 00), F(mg,,00)) = HomD(Sm/mgi)(C(mg‘;l’ 00),C(mg_,00)).
Similarly, we let Too = @J T(J,00), where the transition maps in the
inverse limit are described in Proposition 6.4.10(5). The inverse system of

ideals I(.J,00) defines an ideal I, of Ts which satisfies I, = 0.

PROPOSITION 6.4.12.

(1) Coo is a bounded complex of finite free Soo-modules and for each open
ideal J of Soo there is an isomorphism Cx ®s,, Seo/J = C(J,00) in
D(Sx/J).

(2) The natural map Endp(g_)(Coo) — lim  Endps., /) (C(J,)) is an iso-
morphism, and we therefore obtain an injective map To — Endps,,) (Cso)-

(3) The surjective A-algebra maps Roo — T'(J,00)/1(J, 00) induce a surjec-
tion Reo — Too/Ino, which factors as a composition of the map Roo —
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@dJR(dv J,00) and the Sx-algebra map @dJR(d, J,00) = Too/Ino
defined by taking the inverse limit of the maps in Lemma 6.4.9(2).

Proof. (1) It follows from the proof of Proposition 6.4.10(1) that

rks jmy, (F(m5, 00)") = dimy H'(Co @ k)

for all . Moreover, it follows from Proposition 6.4.10(4) and the fact that
any quasi-isomorphism of minimal complexes is an isomorphism that

r+1

the transition map F(mg' ", 00) — F(mj_,o0) induces an isomorphism

It is now clear that C, is a bounded complex of finite free S,,-modules.
If J is an open ideal of Soo, then for r sufficiently large so that mg_ C J,
Coo ®5., Soo/J is isomorphic to S /J Do my F(mY_,00), which is
quasi-isomorphic to C(J,00) by Proposition 6.4.10(4).

(2) For the second part, we first note that T, injects into the inverse
limit lim  Endp g, /. (C(J,00)), since inverse limits are left exact. The
natural map Endpg_)(Coo) — m  Endp(s,. /. (C(J,00)) is an isomor-
phism, by the first part of this proposition and (the proof of) [KT17,
Lemma 2.13(3)].

(3) Since the T'(J,00) are finite rings, the inverse system I(J,00); sat-
isfies the Mittag-Leffler condition and the natural map To/lo —
L J T(J,00)/1(J,00) is an isomorphism. For each J the surjective map

Ry — T(J,00)/I(J,0) factors through a finite quotient Roo/mRoo

of Ro. Again, finiteness implies that the Mittag-Leffler condition
holds, so taking the inverse limit over J gives a surjective map R, =
Jim | Roo/mRJ) = Too/Ioo = lim T(J,00)/I(J,o0). The desired factor-
ization of the map Ry — Too/Ioo follows from the fact that the maps
Ry — T(J,00)/1(J,00) factor through R(d,.J,o0) for d sufficiently
large. O

Remark 6.4.13. There is a natural isomorphism H*( = lim | H*(Cx/J) =
lim  H *(C(J,00)), so the cohomology of Co is mdependent of the choices
of transition maps made to construct C,. Moreover, if we denote by Dy
the complex constructed with a different choice of transition maps, we have
Homp g )(Coos Deo) = lim  Homps_, /.7) (C(J,00),C(J,00)) by the argument of
Proposition 6.4.12(2), so there is a canonical isomorphism between Cs, and Dq
in D(Sx).

Remark 6.4.14. Note that the map o : Ry — @d 5 R(d, J,00) is surjec-
tive, and l'gnd J R(d, J,00) is an So-algebra. As S is formally smooth over A,
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we can choose a lift of the map Sy, — a(Rx) to a map Sy, — Rso. In fact, we
can and do make such a choice for Ry and R compatibly mod w since

(lim R(d, J, 00)) /@ = li
d,J d,

=)

(R(d, J, 00) /) = lim(R'(d, J, 0) /=),
d,J

S|

and since the sequence

(y,2)—a(y)—z mod @

. R(d, J, 00)/w

z—(z mod w,a(x))

R

R /w X yindJ R(d, J,0)
(and the analogous one for R, ) is exact. We regard R, as an Sy-algebra from
now on. The map Roo — Too/I is an Syo-algebra map.

LEMMA 6.4.15. The isomorphisms R(d,J,N) ®g_ /7 Seo/(J + 80) =
Ro/(deO, s(J + ax)) induce a surjective map Roo/0o0 — Ro.

Proof. First we note that, following the proof of 6.4.10(4), the isomorphisms
R(d,J,N) ®s.. /7 Seo/(J + ) = Ro/(m% . s(J + aso))
induce an isomorphism
R(d, J,00) ®s., /7 Sec/(J + 8s0) = Ro/(m%b,, s(J + au0)).

In particular, the map Roo /000 — R(d, J,00)®g, /7150/(J+0x) = Rg/(mcf%, s(J+

(
0s)) is surjective, and factors through R/ (m%i"]) + as) for some e(d, J).
Taking the inverse limit, we obtain a surjective map Roo /000 — Rp. O

PROPOSITION 6.4.16. There is an isomorphism Coo /0 — Co in D(A)
which induces a map Too — Ty which becomes surjective when composed with
the projection Ty — Ty/ly. Denoting the image of I under this surjective
map by I o, we obtain a surjective map Roo /000 — (T0/10)/Isc,0. This map
is the composition of the map Rso /0o — Ry in Lemma 6.4.15 with the map
Ry — (Tv/1n)/Isc,0 coming from our original set-up.

Proof. We have Co /oo = lim F(mj_,00)/ts0, and F(mg_,00)/acc is a
minimal resolution of Coo /(M + a) = C(mY_ + oo, 00). By Proposition
6.4.10(3), this is quasi-isomorphic to Co @Y A/ s(myg_ + ax). Replacing Cp by a
quasi-isomorphic bounded complex of finite projective A-modules and applying
[KT17, Lemma 2.13], we see that the quasi-isomorphisms F(m§_,00)/ac =
Co®% A/ s(mG_ + aoo) induce a quasi-isomorphism lim F (my_,00)/ax = Co.

The induced map T — Endp(4)(Co) is the composite of the surjec-
tive map Too — lm T(J,00) and an inverse limit of maps T'(J,00) —
Endpa/s..7))(Co @k A/s(J)). Each of these maps factors through Tp, and if
we denote the image of Ty in Endpa /() (Co @ A/s(J)) by Ty then T(J, 00)
surjects onto Té] /Iy. Passing to the inverse limit gives the desired map T, — Tp.
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The compatibility with the map R, — Ry follows from the compatibility
between the maps Ty — Tp and Ry — Ry in our original set-up. [l

We now separate out the primed and unprimed situations; so we have two
perfect complexes of Sy-modules, Co, and C._.

PROPOSITION 6.4.17.

(1) The quasi-isomorphisms Cn/w = Cy/w induce a quasi-isomorphism
Coo/w = CL .

(2) Teo and T3, have the same image in Endp (g )(Coo/@) and Endp s, )(Ch /@),
via the identification Coo/w = C. /@ of the previous part. Call this
common image T .

(3) Write I, and T;o for the images of 1o and I', in Ty The actions of
Roo/w = R /w (induced from Ta, and T', respectively) on H*(Coo /@) /(Ioot+
1..) and H*(C', /@) /(I + I..) are identified via Cop/ww = C.,, | w.

Proof. (1) The isomorphisms Cy/w = Cj/w in D(A[AN]) induce

= C'(J + w,o0) for all J. Since
Coo/w = lim, F(my_,00)/w and F(my_,o0)/w is a minimal resolution
of C(m_ + @, 00) we have

compatible isomorphisms C(J + w, 00)

HomD(Sw/w) (Coo/w, Céo/w) = @HomD(Sw/(J-f—w))(C(J‘i'w» OO), C’(J—i—w, OO))
J

We therefore deduce the first part of the Proposition.

(2) By the proof of the previous part, it suffices to show that the images of
T and T, in Endp(s__ /(j4+w)) (C(J+w@, o0)) and Endp s, /(4w (C'(J+
w, 00)) respectively (which are T'(J + w, 00) and T"(J + w, x0)), are
identified via the quasi-isomorphisms C(J + w,o0) = C'(J + w, ).
This follows from the fact that for every N € I, T(J + w, N) and
T'(J 4+ w, N) are identified via the quasi-isomorphism C(J + w, N) =
C'(J + @, N), which is a consequence of our original assumptions (see
point (2) in Section 6.4.1).

(3) It suffices to show that the maps Roo/w — T'(J + w,00)/1(J + w, o0)
and R /w — T'(J + w,00)/I'(J + w, o) are equal when we identify
Ry /w with R /w, T(J + w,o0) with T'(J 4+ w,o0), and pass to
the quotient by I(J 4 w,o0) + I'(J 4+ w,o0). This follows from the
compatibility in point (5) of Section 6.4.1. O

6.5. The proof of Theorem 6.1.1. We are now in a position to prove the
first main theorem of this chapter (Theorem 6.1.1). We first establish the result
under additional conditions in §6.5.1, then reduce to this case using soluble
base change in §6.5.12.
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6.5.1. Application of the patching argument (Fontaine—Laffaille case). We
take I’ to be an imaginary CM number field, and fix the following data:

(1) An integer n > 2 and a prime p > n?.

(2) A finite set S of finite places of F', including the places above p.

(3) A (possibly empty) subset R C S of places prime to p.

(4) A cuspidal automorphic representation 7 of GL,,(AF), regular algebraic
of some weight .

(5) A choice of isomorphism « : Q, = C.

We assume that the following conditions are satisfied:

(6) If [ is a prime lying below an element of S, or which is ramified in
F, then F' contains an imaginary quadratic field in which [ splits. In
particular, each place of S is split over F'* and the extension F/F™T is
everywhere unramified.

(7) The prime p is unramified in F.

(8) For each embedding 7 : F' — C, we have

)\T,l + )\TC,l - AT,TL - /\Tc,n <p-— 2n.

(9) For each v € S, let ¥ denote the place of F'* lying below v. Then there
exists a place 7' # U of F* such that ¥’|p and

1
> FL Q> 5[F+ . Q.
v 40,0
(10) The residual representation r,(7) is absolutely irreducible.
(11) If v is a place of F lying above p, then 7, is unramified.
(12) If v € R, then 7¥* # 0.
(13) Ifv € S—(RUS,), then m, is unramified, v ¢ R¢, and H?(F,,adr, (7)) =

0.
(14) S — (RUS,) contains at least two places with distinct residue charac-
teristics.

(15) If v € S is a finite place of F, then 7, is unramified.

(16) If v € R, then ¢, = 1 mod p and Tﬂ')‘GFU is trivial.

(17) The representation r,(m) is decomposed generic in the sense of Defi-
nition 4.3.1 and the image of r, ()

Definition 6.2.28.

|GF( ¢, 1s enormous in the sense of

We define an open compact subgroup K =[], K, of GL,(OF) as follows:
e Ifv ¢S, orve S, then K, = GL,(OF,).
e If v € R, then K, = Iw,,.
e IfveS—(RUS,), then K, = Iw, 1 is the pro-v Iwahori subroup of
GL,(Op,).
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The following lemma shows that K is neat, hence is a good subgroup of
GL,(AY).

LEMMA 6.5.2. Suppose that K =[], K, C GLn((/’)\F) is an open compact
subgroup and that there exists two places v,v" of F such that v,v' have distinct
residue characteristics q,q' and K, = Iwy 1, Ky =Iw, 1. Then K is neat.

Proof. We show that if (gy, gv/) € Iwy1 % Iw, 1, then the group I'y N Ty
(see the definition of neat in §2.1.1) is trivial. Suppose this is not the case, then
it contains a root of unity ¢ of some prime order ¢”.

If o is an eigenvalue of g, in F, then a — 1 is in the maximal ideal of Of,-
The same is then true for ¢, thus ¢” = q. However, running the above for v’
instead of v also shows ¢’ = ¢/, so ¢’ = ¢, a contradiction. O

By Theorem 2.4.10, we can find a coefficient field F C Qp and a maximal
ideal m C T9(K,V,) such that p,, = r,(m). After possibly enlarging E, we
can and do assume that the residue field of m is equal to k. For each tuple
(Xv,i)veR,i=1,..n of characters x,; : k(v)* — O* which are trivial modulo w,
we define a global deformation problem by the formula

SX = (ﬁm’ S, {O}U657 {DEL}'UGSP U {D%(}UGR U {DE}UES—(RUSP))‘

We fix representatives ps, of the universal deformations which are identified
modulo w (via the identifications Rs, /@ = Rs,/w). We observe that the
local deformation problems defining S, are formally smooth away from the
places in R. We define an O[Ks]-module V\(x™!) = V) ®0 O(x '), where Kg
acts on V) by projection to K, and on O(x~ 1) by the projection Kg — K =

HvGR IW'U - HvER(k(U) x )n

PROPOSITION 6.5.3. There exists an integer § > 1, depending only on n
and [F : Q), an ideal J C T(RT(Xg, Vx(x™1)))m such that J® = 0, and a

continuous surjective homomorphism
fsx : R‘SX — TS(RF(XK, V)\(Xfl)))m/J

such that for each finite place v € S of F, the characteristic polynomial of
s, © ps, (Frob,) equals the image of P,(X) in T%(RT (X, VA(x™1)))m/J.

Proof. This is a matter of combining the various local-global compatibility
results we have proved so far. The existence of a Galois representation pp, :
Grsuse — GLy (TS (RT(Xx, VA(Xx™1)))m/J) satisfying the required condition
at finite places v ¢ S U S is contained in Theorem 2.3.7. After conjugation,
we can assume that pn, mod m equals p,,. To prove the proposition, we need
to show that for each v € S, pm|q,, is a lifting of p|g,, of the appropriate
type, and that for each v € S¢ — 5, Pm‘GFU is unramifed and the characteristic
polynomial of py(Frob,) has the correct form. Theorem 4.5.1 shows that the
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Fontaine—Laffaille condition is satisfied for each v|p. We apply Theorem 3.1.1
with the set S of places there equal to S U S¢ and the set R equal to S — 5.
This shows that the appropriate condition on the characteristic polynomials
of elements pn(0) (0 € IF,) is satisfied for each v € R, and that pu|c,, is
unramifed with the characteristic polynomial py(Frob,) of the correct form for
ve S-S5 O

Recall (as in (6.3.5)) that it makes sense to talk about the support of
H*(Xg,V\(1))m over Rg,, even though H*(Xg,Vx(1))m is not literally an
Rs,-module. We can now state our first key technical result, which we will
prove below.

THEOREM 6.5.4. Under assumptions (1)—(17) above, H*(X g, Vx(1))m has
full support over Rs, .

COROLLARY 6.5.5. Under assumptions (1)—(17) above, suppose given a
continuous representation p : Gp — GLn(Qp) satisfying the following condi-
tions:

(1) We have p = r,(m).
(2) For each place v|p of F, plgy, is crystalline. For each embedding
T: F <—>Qp, we have

HTT(p) = {)\LT,l +n—-1,... 7)‘L7,n}-

(3) For each finite place v & S of F, play, 1is unramified.
(4) For each place v € R, plg,, is unipotently ramified.

Then p is automorphic: there exists a cuspidal, reqular algebraic automorphic
representation 11 of weight X\ such that p = r,(II). Moreover, if v is a finite
place of F such that vlp or v & S, then Il, is unramified.

Proof. After possibly enlarging the coefficient field E, and replacing p
by a GLn(Qp)—conjugate, we can assume that it takes values in GL,(O),
and that p mod w = p,. Then p is a lifting of type &1, so determines a
homomorphism f : Rs, — E. Theorem 6.5.4 implies that ker f is in the
support of H*(X g, Va(1))m[1/p]; Theorem 2.4.10 then implies that there exists
a cuspidal, regular algebraic automorphic representation II of weight A such
that p = r,(I1) and (IT®)% # 0. This is the desired result (recall that K, =
GL,(OpF,) if vlp or v ¢ S). O

Before proceeding to the proof of Theorem 6.5.4, we need to introduce
auxiliary level subgroups. These will be associated to a choice of Taylor—Wiles
datum (Q, (a1, ..., n)veq) for Si (see §6.2.27). We assume that for each
v € @, there exists an imaginary quadratic subfield of F' in which the residue
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characteristic [, of v splits. This Taylor—Wiles datum is automatically a Taylor—
Wiles datum for all the global deformation problems S,, and so the auxiliary
deformation problems Sy ¢ are defined, and the deformation ring Rs_, has a
natural structure of O[Ag]-algebra, where Ag = [[,cq Av = [l k(v)*(p)".
The constructions we are about to give necessarily involve a lot of notation.
Accordingly, we invite the reader to review the notation related to Hecke
algebras in §2.2.1 before continuing.

We define two auxiliary level subgroups K1(Q) C Ko(Q) C K. They are
good subgroups of GL,(A%), determined by the following conditions:

o Ifv g SUQ, then K1(Q), = Ko(Q)y = K.

o Ifv € Q, then Ky(Q), = Iw, and K1(Q), is the maximal pro-prime-to-p

subgroup of Iw,,.

Then there is a natural isomorphism Ky(Q)/K1(Q) = Ag, and surjective
morphisms of TSY?-algebras

Ko(@)/ K1 (@ T2 (Ko (Q)/K1(Q), VA(x ™)) = THU9 (Ko (Q), VA(x "))

(656) S TSR ().

The first of these arises by taking Ky(Q)-invariants (cf. §2.2.1 and note
O[Agq] acts trivially on invariants) and the second is given by the formula
t [K: Ko(Q)]tmgsoto 5, where mg @ Xg, (@) — Xk is the canonical
projection; note that [K : Ko(Q)] = (n!)!9l mod p is a unit in O because of our
assumption that p > n. We define

T3 Y (Ko(Q), Va(x ™)) € Endp oy (BT (X ) Valx ™))

as in §3.1; it is the commutative TY?(Ky(Q), Vx(x!))-subalgebra generated
by the operators U,; (v € Q, i =1,...,n), or equivalently the image of the
algebra T()”? defined in §3.1. Similarly we define

Tqu(KO(Q)/Kl(Q), VA(x™) € Endpopag) (BT ko@)/k1(@) (XK1 @) VAXTH));

it is an O[Ag]-algebra, which coincides with the image of the algebra TgUQ.
The first map in (6.5.6) extends to a surjective homomorphism

(65.7)  TE(Ko(Q)/Ki(Q) () = T (Ko(@), Va(x ™))

which takes U, ; to U,; for each v € @ and for each i =1,...,n.
We define m@ C TVYQ(K,V\(x™!)) to be the pullback of m under the

inclusion
T*K W (x 1) € T (E W (x ).
We define
m& c THV9(Ko(Q), Valx ™))
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to be the pullback of m? and
m Cro@)/mi(@) TV(K0(Q)/K1(Q), Ma(x ™)

to be the pullback of mgg , these pullbacks being taken under the maps in (6.5.6).
We define nDQ C TgUQ(KO(Q), Vi(x71)) to be the ideal generated by mOQ and

the elements U, ; — qf,(l_i)/QaU,l ooy, foreach v € Q@ and 7 =1,...,n. We

define n? C TgUQ(KO(Q)/Kl(Q),VA(X_l)) to be the pre-image of nOQ under
the map (6.5.7).

LEMMA 6.5.8. Each ideal m@, mg?, m?, nOQ, and le is a (proper) mazimal
ideal.

Proof. This is clear for the ideals m¥, mOQ, and le. Since n? is the pre-

image of nOQ under a surjective algebra homomorphism, we just need to check
that nOQ is a proper ideal. Equivalently, we must check that

H* (X0, Va(x 1) /@) md]

contains a non-zero vector on which each operator U, ; (v € Q,i=1,...,n) acts
by the scalar a1 - - - @y . This will follow from [KT17, Lemma 5.3] (or rather
its proof) if we can show that H*(X g, VA(x~!))[m?] is annihilated by a power
of m. This follows from the existence of p,, and its local-global compatibility at
the places v € Q. O

We can therefore form the localized complexes
RF<XK7 V/\(Xil))lm RF(XK7 V)\(Xil))m(%
RT(X () VAX ™)) 2 BE(Xiy (@) Valx ™) 0
BTk (@)/5: (@) (X1 (@0 VX)) @ B ko)1 (@) (XK (@) VA X T )y
The first four lie in D(O), the last two in D(O[Ag]).
LEMMA 6.5.9. The natural morphisms
RF<XK7 V/\(Xil))mQ — RF(XK7 V)\(Xil))m
and
RT(Xky (@) VA(X_l))ngz — RT (X, VA(X™))me
and

RT(Aq, RT ky(q)/K1(Q) (XK1(Q)7V)\(X_1))]1?) — RT(X gy (@), V/\(X_l))né?

in D(O) are isomorphisms.
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Proof. We must show that these morphisms in the derived category give
isomorphisms at the level of cohomology. For the first morphism, it is enough to
show that m is the unique maximal ideal of TSY?(Ky(Q), Va(x 1)) lying above
m®, and we have seen this already in the proof of Lemma 6.5.8. It is clear from
the definitions for the third morphism. For the second, it is enough to check
that we have an isomorphism after applying the functor —®gk : D(O) — D(k).
We are therefore reduced to showing that the map of k-vector spaces

tT )/ Ko (Q) ZH*(XKO(Q)aVA(X_l)/w)ng? — H* (X, V(X ")/®)me
is an isomorphism. This is the content of [KT17, Lemma 5.4]. O
We see that there is a surjective homomorphism
K@@ T (BT k@161 (@ (X ka(@)s V(X)) =

(6.5.10) SUQ 1 SUQ 1
T (RU(Xk, VAKX )me) = T7 2 (K VA(XT ) me-

The first ring KO(Q)/Kl(Q)TSUQ(RFKO(Q)/Kl(Q) (XK1(Q)’ VA(X_l))ni;)) is a local
O[Ag]-algebra, its unique maximal ideal being identified with the pre-image of
m® under the surjective homomorphism (6.5.10); indeed, this follows from the
fact that it acts nearly faithfully on H*(Xg, (g, V)\(X_l))n? (We recall ([Tay08,

Def. 2.1]) that a finitely generated module over a Noetherian local ring is said
to be nearly faithful if its annihilator is a nilpotent ideal). We can now state a
result asserting the existence of Galois representations valued with coefficients
in this Hecke algebra.

PROPOSITION 6.5.11. There exists an integer 6 > 1, depending only on n
and [F : Q], an ideal J CKo(Q)/K1(Q) TSUQ(RFKO(Q)/Kl(Q)(XKl(Q)’V)\(X_l))u?)

such that J% =0, and a continuous surjective O[Ag]-algebra homomorphism

Isoo + Bs g ~Ko@/x1@ T (BT ko)1 @) (X (@) YA (XT)0) /7
such that for each finite place v & SUQ of F, the characteristic polynomial of
fs..o © Ps, o(Froby) equals the image of P,(X) in

TSUQ(

Ko0(@)/1:@ T (BT ko(Q) /161 (@) (K (@) VAT ) 0)/ .

Proof. To save notation, let

TSUQ(

T =ko(@/m1(@) RT k(@) /:(Q) (X k1 (@ VA(X ™))

and T' = T, ?(Ko(Q)/K1(Q), VA(X™")),e- Then T € T', and the inclusion
T — T’ is a local homomorphism of finite O[Ag]-algebras. By Theorem 2.3.7,
there is a nilpotent ideal J’ C T and a Galois representation Pu@ Grsug —
GL,(T'/J’) satisfying local-global compatibility at unramified places. After
conjugation, we can assume that Pa@ mod n? equals p,,. We first need to show
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that PaQ is a lifting of p, of type Sy . The necessary conditions at places of S
can be checked just as in the proof of Proposition 6.5.3. There is no condition
at places of @, so we obtain a morphism fs _, : Rs,, — T'/J" (which in fact
factors through the image of T in T’/.J").

It remains to check that fs ., is a homomorphism of O[Ag]-algebras.
Equivalently, we must check that it is a homomorphism of O[A,]-algebras for
each place v € ). To this end, let us fix a place v € Q. Foreachi =1,...,n we
define a character v, ; : Wg, — (T')* by the formula ¢, ;(Artg, (o)) = t,i(a)
(notation as in §2.2.4). Theorem 3.1.1 shows that (after possibly enlarging J')
for each 0 € Wp,, we have the identity

n

det(X = pa(@) = [J(X = o).

i=1

Observe that the characters 1, ; mod n? are pairwise distinct (because they
take Frobenius to ay, ;, and these elements of k are pairwise distinct, by definition
of a Taylor-Wiles datum). We can therefore apply [BC09, Prop. 1.5.1] to
conclude that pn?]WFv is isomorphic to @}ty ;, which shows that fs , is
indeed a homomorphism of O[A,]-algebras (cf. §6.2.18 for the definition of the
O[A,]-algebra structure on Rs, ). The proof is complete on taking J to be
the kernel of the map T — T'/.J'. O

We are now ready to begin the proof of Theorem 6.5.4.

Proof of Theorem 6.5.4. Let
g =h'(Fs/F,adpy(1)) and g=gn—n’[F":Q]

and set Ao, = Zp?. Let T be a power series ring over O in n?|S| — 1 many
variables, and let Soo = T[Ax]. Viewing S as an augmented O-algebra, we
let a denote the augmentation ideal.

Enlarging E if necessary, we can assume that E contains a primitive
pth root of unity. Then since p > n, for each v € R we can choose a tuple
of pairwise distinct characters x, = (Xv,1,-- -, Xon), With xpi: (9;” — O%
trivial modulo w. We write x for the tuple (xy)ver as well as for the induced
character x = [[,cp Xv: [lyer o — O*. For each N > 1, we fix a choice of
Taylor-Wiles datum (Qn, (w1, - .., 0w n)veQy) @s in Proposition 6.2.32 (this

is possible by our assumption that r,(7)(Gp(,)) is enormous; we choose any
imaginary quadratic subfield of F' in the application of Proposition 6.2.32). For
N =0, we set Qo = 0. For each N > 1, we let Ay = Ag, and fix a surjection
Ao — Ap. The kernel of this surjection is contained in (p Z,)", since each
v € Q satisfies ¢, = 1 mod p. We let A be the trivial group, viewed as a
quotient of A.
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For each NV > 0, the auxiliary deformation problems S g, and S, g, are
defined, and we set Ry = RSLQN and R?V = RSX»QN' Note that Ry = Rgs,

and R, = Rs, . Let R'°° = Rg’lloc and R'1°¢ = Rgioc denote the corresponding
local deformation rings as in §6.2.22. For any N > 1, we have R:g’lh;c = Rloc
QN

and Rg’log = R'°¢. There are canonical isomorphisms R!°°/w = R'1°¢ /o and
X-&N

Ry/w = R)y/w for all N > 0. For each N > 1, Ry and Ry are canonically
O[A y]-algebras and there are canonical isomorphisms Ry ®pa ) O = Ro and
R\ Rojay] O = R{,, which are compatible with the isomorphisms modulo .
By Lemma 6.2.4, we have an R'°-algebra structure on Rn®oT and an R''°c-
algebra structure on R?V@OT. The canonical isomorphism R!°/w = R'1°¢ /7 is
compatible with these algebra structures and with the canonical isomorphisms
Ryn/w = Rl /w. We let Ry and R._ be formal power series rings in g variables
over R°® and R'!°°, respectively. Using Proposition 6.2.24 when N = 0 (noting
that H°(Fs/F,ad p,(1)) = 0, because TL(W)’GF(CP) is irreducible and ¢, ¢ F),
and Proposition 6.2.31 when N > 1, there are local O-algebra surjections
Ro — Ry and R, — Ry for any N > 0. We can (and do) assume that
these are compatible with our fixed identifications modulo w, and with the
isomorphisms Ry ®@pjay] O = Ro and Ry ®p(a, O = Ry

Let Co = RHomo (RT(X g, VA(1))m, O)[—d], and let Ty = T (K, Vr(1))m.
Then H(Co)[1/p] = Homp(H* (Xx, Vx(1))u[l/p], E) as To-modules. Simi-
larly, we let C) = R Homo (RT(Xk, Va(x™1))m, O)[—d], and T} = T(K, VA(X™))m-
For any N > 1, we let

Cy = RHomo(a (BT k() k:(Q) (X k1 (@) VA (D) 05 OlAN])[=d]

and
T =ro(@/51(@ TV (BT ko)1 (@) (X k(@) Va(1)0)-

Similarly, we let
Cn = RHomoja ) (BT k(@) k1 (@) (XK1 (@) VA(X ™)) y@: OIAN]) [=d]
and
TN =ko(@/m1(@ TV (BT ko(@)/50(@) (X i (@) YAXT) g0)-

For any N > 0, there are canonical isomorphisms Cy @%[AN]HAN] = Clh ®g[AN]
E[AN] in D(k[AN]). Using this isomorphism to identify Endp ) (Cn ®G k) =
Endpe)(Cy ®8 k), the images of Ty and T} in this endomorphism algebra
are the same, and we denote it by T'y. By Lemma 6.5.9, there are canonical
isomorphisms Cy @%[AN] O = (Cp and Cl, @%[AN] O =y in D(0O), and these
isomorphisms are compatible with our fixed isomorphisms modulo w. By
Proposition 6.5.11 we have nilpotent ideals Iy of T and I of T}, for each N >
0, both of nilpotence degree < §, and local O[A y]-algebra surjections Ry —
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Tn/In and Ry — Ty /I. The surjections are compatible with the canonical
isomorphisms modulo @. Moreover, using the isomorphism Ry /w = Ry /w
and letting Iy and T’N denote the images of Iy and I}, respectively, in Ty,
the induced surjections Ry /@ — Tn/(In + I'y) and Ry/w—Tn/(Iy+ Iy)
agree. The maps Ty ®p[a] O — Tp and Ty ®p[a] O — Tjy induce surjections
onto Ty /Iy and T/ I}, respectively (surjectivity follows from Chebotarev density
and the existence of the Galois representations with coefficients in Ty/Iy and
To/I}).

The objects introduced above satisfy the setup described in §6.4.1. We can
then apply the results of §6.4.2 and obtain the following.

e Bounded complexes Co, and C. of free Sy-modules, subrings T, C
Endpg..)(Coo) and T, C Endps,.)(CL,), and ideals I, and I’ satis-
fying I, = 0 and I’2 = 0. We also have Sy.-algebra structures on R,
and R and Sec-algebra surjections Re — Too/Ioso and RL, — T7 /IL..
(See Proposition 6.4.12 and Remark 6.4.14.)

e Surjections of local O-algebras R /as — Ro and R, /as — R{. We
have isomorphisms Cso ®§Oo Soo/0oo = Co and C. ®%‘m Seo/0c0 = €} in
D(0), inducing maps T, — Tp and T, — T, that become surjective
when composed with the projections Ty — Ty/Iy and T — T§/Ij,
respectively. We let I o and I o denote the images of I, and I,
respectively, under these surjective maps. Then the induced maps
Roo/a0o = (To/10)/ 100 and R /as — (Ty/1)/ 15, o factor through
R /0oo — Ry and R, /as, — Ry, respectively. (See Lemma 6.4.15 and
Proposition 6.4.16.)

e An isomorphism

Coo @8, Soo/™ =2 Chy O, Soc/w
in D(Ss/w). Under this identification, T, and T, have the same
image T in

Endps.. /e)(Coo ®E.. Soc/@) = Endps..)(Ch @Y. Soo/w).

Let I and T;O denote the images of I, and I’_, respectively, in T ..
Then the actions of Ry /w = RL_/w on

H*(Coo @4, @)/(Too + Too) = H*(Cho ®, So/®)/(To + 1)
are identified via Coo ®§‘m Seo/tw = CL, ®gm Soc/w. (See Proposi-
tion 6.4.17.)

Recall that Ro, and R, are power series rings over R°¢ and R'°¢, re-
spectively, in ¢ = gn — n[F* : Q] many variables. By Lemma 6.2.25, we
have:
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e Each generic point of Spec Ry /w is the specialization of a unique
generic point of Spec Ry, and every generic point of Spec Ry has
characteristic zero. Also, Spec R, is irreducible and has characteristic
zero generic point.

e Ry is equidimensional, and R, and R, have the common dimension

14 g+n28) + "2 Q).

Since F' is CM, the quantity [y for the locally symmetric space Xg
is lp = n[FT : Q] — 1. Then since dim Se = n%|S| + gn and g =
gn —n[F* : Q], we have

dim Ry, = dim R, = dim Seo — lp.

Finally, the isomorphism Coo@)goo Soo/ oo = Cp implies that (C°°®§oo Soo/000)[1/p]
has cohomology isomorphic to Hompg(HY* (X, VA(1))m[1/p], E). So Theo-
rem 2.4.10 implies that H*(Cso ®§Oo Soo/0x0)[1/p] # 0 and that the cohomology
is concentrated in degrees [qo, go+lo]. We have now satisfied all the assumptions
of §6.3.5, so we can apply Proposition 6.3.8 to conclude that H*(C) is has full
support over R, hence that H*(Coo @5 Soc/dss) = H*(Co) has full support
over R /(0 ), hence that H*(Cp) has full support over Rs,. This concludes
the proof. ([l

6.5.12. End of the proof (Fontaine—Laffaille case). We now deduce The-
orem 6.1.1 from Corollary 6.5.5. The proof will be an exercise in applying
soluble base change. We first state the results that we need. Note that while
up to now E has denoted the coefficient field of our Galois representations,
having carried out our patching argument we no longer need this notation, and
we find it convenient to use E to denote a number field in the rest of the proof.

PROPOSITION 6.5.13. Fiz an integer n > 2, a prime p, and an isomor-
phism ¢ Qp — C. Let F be an tmaginary CM or totally real number field, and

let E/F be finite Galois extension such that Gal(E/F') is soluble and E is also
imaginary CM or totally real. Then:

(1) Let  be a cuspidal, regular algebraic automorphic representation of
GLn(AF) of weight A = (Ar)reHom(F,c). Suppose that r,(m)|gy is
wrreducible. Then there exists a cuspidal, reqular algebraic automorphic
representation 7 of GL,(Ag) of weight Ag » = A7, such that r,(7g) =
r(m)|ag- If wis a finite place of E lying above the place v of F, then
we have recg,, (Tg) = reck, (7)|wy,, -

(2) Let p: Gp — GLn(Q,) be a continuous representation such that play
is irreducible. Suppose that there exists a cuspidal, reqular algebraic
automorphic representation © of GL,,(Ag) of weight A such that p|a, =
7.(m). Define A\p = (Arr)reHom(F,C) by the formula Ap; = A, where
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7' B — C is any extension of T from F to E. Then \r is independent
of any choices, and there exists a cuspidal, reqular algebraic automorphic
representation mp of GL,(AF) of weight A\ such that p = r,(wp). If
w is a finite place of E lying above the place v of F', then we have
recg,, (m) = recg, (7F).

Proof. In either case we can reduce, by induction, to the case that E/F is
cyclic of prime order. Let o € Gal(E/F) be a generator of the Galois group,
and let n : Gal(E/F) — C* be a non-trivial character. We first treat the first
part of the proposition. We claim that 7 ® (n o Art;l) 2 m. Otherwise, there
would be an isomorphism

r,(7m) ® L_lT] =, (m),

implying that r,(7)|q, is reducible. We can therefore apply [AC89, Ch. 3,
Theorem 4.2] and [AC89, Ch. 3, Theorem 5.1] to conclude the existence of a
cuspidal, regular algebraic automorphic representation IT of GL,(Ag) of weight

Mg such that for almost all finite places w of E such that . is unramified,

w|p
I, is a lift of 7. The Chebotarev density theorem then ‘implies that we
must have r,(IT) = r,(7)|g,, so we can take 7 = II.

We now treat the second part of the proposition. The isomorphism p|q, =
r,(m), together with strong multiplicity one for GL,,, implies that we have
w7 = 7. By [AC89, Ch. 3, Theorem 4.2] and [AC89, Ch. 3, Theorem 5.1],
there exists a cuspidal automorphic representation II of GL,, (A ), which is
regular algebraic of weight Ap, such that for almost all finite places w of E
such that I, w|p- The Chebotarev density

theorem then implies that we must have r,(Il)|q, = r,(7) = p|g,. Using the

is unramified, m,, is a lift of II

irreducibility of p|a,, we conclude that there is a twist Il ® (o Art')’ such
that 7,(TI® (no Art;')?) = p. We are done on taking mp = II® (no Art ') O

Proof of Theorem 6.1.1. For the convenience of the reader, we recall the
hypotheses of Theorem 6.1.1. Let F' be an imaginary CM or totally real
field, and let ¢ € Aut(F') be complex conjugation. We are given a continuous

representation p : Gr — GL,(Q,,) satisfying the following conditions:

(1) p is unramified almost everywhere.

(2) For each place v|p of F, the representation p|q,, is crystalline. The
prime p is unramified in F.

(3) p is absolutely irreducible and decomposed generic (Definition 4.3.1).

The image of E|GF<C;7) is enormous (Definition 6.2.28).

(4) There exists 0 € Gr — Gp(c,) such that p(o) is a scalar. We have
p > n?.

(5) There exists a cuspidal automorphic representation 7 of GL,(Af)
satisfying the following conditions:
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(a)  is regular algebraic of weight A, this weight satisfying
)\7',1 + )\Tc,l - )\T,n - >\‘rc,n < b= 2n.

(b) There exists an isomorphism ¢ : Q, — C such that p = r,(m)
and the Hodge—Tate weights of p satisfy the formula for each
T:F— Qp:

HT:(p) ={ \rpi+n—1LAr2+n—2,..., Arn}.

(c) If v|p is a place of F, then 7, is unramified.

The case where F' is a totally real field can be reduced to the case where
F is totally imaginary by base change. We therefore assume now that F' is
imaginary, and write F'* for its maximal totally real subfield. Let K/F((,) be
the extension cut out by 5|GF< W) Choose finite sets Vy, V1, Vo of finite places
of I having the following properties:

e For each v € Vp, v splits in F'({p). For each proper subfield K/K'/F((,),
there exists v € Vj such that v splits in F'(¢,) but does not split in K’.

e For each proper subfield K/K'/F, there exists v € V; which does not
split in K'.

e There exists a rational prime py # p which is decomposed generic for p,
and V5 is equal to the set of pg-adic places of F.

e For each v € VU VL U Vo, v 12, v1p, and p and 7 are both unramified
at v.

If E/F is any finite Galois extension which is Vy U V; U Va-split, then p|g, has
the following properties:

* p(Ge) =p(Gr) and p(Gp(,)) = P(Gr(,))- In particular, g, has
enormous image and there exists 0 € Gg — Gg(,) such that p(o) is a
scalar.

® p|c, is decomposed generic. Indeed, the rational prime pg splits in E.

Let Ey/F be a soluble CM extension satisfying the following conditions:

e Each place of V) U V7 UV, splits in Ey and the rational prime p is
unramified in Ej.

e For each finite place w of Ej, 7TIEV:;1’”w #0.

e For each finite prime-to-p place w of Fjy, either both g, ., and /’|GE0 .
are unramified or p|GEow is unipotently ramified, ¢,, = 1 mod p, and
p|GEo,w is trivial. 7

e For each place w|p of ES“ , w splits in Ey and there exists a place W’ # w
of Ef such that w'|p and

1
S Bl Q> 51E; Q)

w” 7£@7@/
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We can find imaginary quadratic fields F,, Ey, . satisfying the following con-
ditions:
e Fach rational prime lying below a place of VoUViUVs splits in Ey- By - E..
The prime p is unramified in E, - F}, - E..
e The primes 2, p split in F,.
o If | ¢ {2,p} is a rational prime lying below a place of Ey at which 7g 4,
or p|g,,, is ramified, or which is ramified in E - E, - E¢, then [ splits in
Ey.
o If | ¢ {2,p} is a rational prime which is ramified in Ej, then [ splits in
E..

For example, we can choose any F, satisfying the given condition. Then we
can choose Ey, = Q(y/—pp), where py is a prime satisfying p, = 1 mod 4 and
pp = —1 mod [ for any prime [ € {2, p} either lying below a place w of Ey at
which 7g, . or p|g,,, is ramified, or ramified in Ey - E,, and E. = Q(y/=pc),
where p. = 1 mod 4py is any prime not equal to p. (Use quadratic reciprocity
to show that p. splits in Ej.)

We let E = Ey- E, - Ey - E.. Then E/F is a soluble CM extension in
which each place of V; U V7 U Vs splits, and the following conditions hold by
construction:

e The prime p is unramified in F.

e Let R denote the set of prime-to-p places w of E such that 7g, or
plcy, is ramified. Let S, denote the set of p-adic places of E. Let
S" =S, UR. Then if [ is a prime lying below an element of S, or which
is ramified in F, then E contains an imaginary quadratic field in which
[ splits.

o If w € R then p|g,, is trivial and ¢, = 1 mod p.

e The image of E\GE( ) is enormous. The representation p|g, is decom-
posed generic.

e There exists 0 € Gg — Gp(c,) such that p(o) is a scalar.

e For each place w|p of ET, there exists a place W’ # w of E* such that
w'|p and

Z [E%',, 1 Qp) > é[E"' 1 QJ.
W' W,

By the Chebotarev density theorem, we can find infinitely many places vg
of E of degree 1 over Q such that p(Frob,,) is scalar and ¢,, # 1 mod p,
vp ¢ S' U R and the residue characteristic of vg is odd. Then H?(E,,,adp) =
HY(E,,,adp(1))Y = 0. We choose vy, v, with distinct residue characteristics
satisfying these conditions, and set S = S"U{vp,v{,}. Note that if Iy, [{, denotes
the residue characteristic of vg, v, then Iy, I, splits in any imaginary quadratic
subfield of E.
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We see that the hypotheses (1)—(17) of §6.5.1 are now satisfied for E, mp,
and the set S. We can therefore apply Corollary 6.5.5 to p|q, and Proposition
6.5.13 to conclude that p is associated to a cuspidal, regular algebraic automor-
phic representation II of GL,,(Ar) of weight A. Taking into account the final
sentence of Corollary 6.5.5, we see that Ilg ,, is unramified if w € S.

To finish the proof, we must show that II, is unramified if v is a finite
place of F' such that v t p and both p and 7 are unramified at v. Using our
freedom to vary the choice of places vg, v(), we see that if v { p is a place of F'
such that both p and 7 are unramified at v, then Ilg,, is unramified for any
place w|v of E. This implies that recg, (II,) is a finitely ramified representation
of the Weil group Wpg,. Using the main theorem of [Varl4] and the fact that p
is unramified at v, we see that recp, (II,) is unramified, hence that II, itself is
unramified. This concludes the proof. O

6.6. The proof of Theorem 6.1.2. We proceed to the proof of the second
main theorem of this chapter (Theorem 6.1.2). As in the case of the first theorem,
we begin by establishing the result under additional conditions (§6.6.1), then
reduce the general case to this one by using soluble base change (§6.6.10).

6.6.1. Application of the patching argument (ordinary case). We take F'
to be an imaginary CM number field, and fix the following data:

(1) An integer n > 2 and a prime p > n.

(2) A finite set S of finite places of F', including the places above p.

(3) A (possibly empty) subset R C S of places prime to p.

(4) A cuspidal automorphic representation m of GL, (A ), regular algebraic
of some weight p.

(5) A choice of isomorphism ¢ : Q, = C.

We assume that the following conditions are satisfied:

(6) If [ is a prime lying below an element of S, or which is ramified in
F, then F' contains an imaginary quadratic field in which [ splits. In
particular, each place of S is split over 't and the extension F/F™T is
everywhere unramified.

(7) The residual representation r,(m) is absolutely irreducible.

(8) If v € S, then AN # 0 and 7 is t-ordinary at v (in the sense of
[Ger19, Def. 5.3]).

(9) If v € R, then 7Vv #£ 0.

(10) Ifv € S—(RUS,), then 7, is unramified, v ¢ R°, and H*(F,,adr (7)) =

0.
(11) S — (RUS,) contains at least two places with distinct residue charac-
teristics.

(12) If v € S is a finite place of F, then 7, is unramified.
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(13) If v € R, then ¢, = 1 mod p and 7,(r) )y, is trivial.

(14) The representation r,(7) is decomposed generic and the image of r, ()
is enormous.

(15) If v € S, then [F, : Qp] > = n+1) + 1 and r,(m) ey, is trivial.

|GF<cp>

THEOREM 6.6.2. With assumptions (1)—(15) as above, suppose given a
continuous representation p : Gp — GLn(Q,) and a weight \ (Zi)Hom(Fva)
satisfying the following conditions:

(1) We have p = r,(m).
(2) For each place v|p, there is an isomorphism

Yy 1 * * *
0 2 * *
p‘GFU ~ . . . ;
. - ‘. %
0 - 0 Pyn
where for each i =1,...,n the character 1, ; : Gp, — Q; agrees with

the character

o€ IFu = H T(Art;_,vl (g))_(AT,n7i+1+i—1)
TGHom(Fme)

on the inertia group If,.
(3) For each place v|p of F, for each i =1,...,n, and for each p-power
root of unity x € OF,, we have

H T(x)AT,n+lfi_,quT,n+17i — 1

reHom(F,,Q,)

(4) For each finite place v & S of F, play, 1s unramified.
(5) For each place v € R, plg, is unipotently ramified.

Then p is ordinarily automorphic of weight tA: there exists an t-ordinary cuspidal
automorphic representation 11 of GL,(Afr) of weight 1\ such that p = r,(II).
Moreover, if v is a finite place of F' and v € S, then 11, is unramified.

Note that we do not prove an analogue of Theorem 6.5.4 here, but rather
only an analogue of Corollary 6.5.5. This is due to our poor understanding of
the irreducible components of the local lifting rings of type DI, Before
giving the proof of Theorem 6.6.2, we need to introduce some deformation
rings, Hecke algebras, and complexes on which they act. These complexes will
represent the ordinary part of completed homology with O-coefficients. We will
use the notation for ordinary parts established in §5.1.

We define an open compact subgroup K = [], K, of GLn(ap) as follows:

o If v ¢ S then K, = GL,(OF,).
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o If v € 5, then K, =Iw,(1,1).
e If v € R, then K, = Iw,,.
o IfveS—(RUS,), then K, = Iw, 1 is the pro-v Iwahori subroup of
GL,(Op,).
Then (by Lemma 6.5.2) K is neat, so is a good subgroup of GL,(A%). By
Theorem 2.4.10, we can find a coefficient field £ C Qp and a maximal ideal

m C T9(K, 1)° of residue field k such that p,, = r,(7). If v € S, we let
Ay = (’)[[(’)}X,v (p)"]. We define A; = @UegpALU, the completed tensor product
being over O. The n-tuple of characters

Xuw,i * Op, (p) = OF, @+ 11 (@)~ Werm—etFi=1) (G =1 n)
T€Homq, (Fv,E)

determines a homomorphism p,,, : A1, — O. We define p,, , = kerp,, ., and
write go, for the unique minimal prime of Ay, which is contained in g, ,.
We set Ay = Ay /000 and A = @Uesp/\v. We write p, : A — O for the
homomorphism induced by the p,,, and the universal property of the completed
tensor product, and set g, = kerp,. We use similar notation for p,; note
that condition (3) in the statement of the theorem implies that pg, is also the
unique minimal prime contained in g, , for each v € S).

We define a global deformation problem for each character x : K — O*
which is trivial modulo @ by the formula

SX = (ﬁmv S, {O}UES*SpU{Av}UESpv {Dgetprd}vespU{D%C}UERU{,DE}UGS—(RUSP))'
We fix representatives ps, of the universal deformations which are identified
modulo @ (via the identifications Rs, /@ = Rs,/w). We define an O[K]-
module V,(x™!) =V, ®0 O(x™!), where Kg acts on V, by projection to K
and on O(x~!) by projection to K. After possibly enlarging E, we can assume
that p takes values in O and that p mod w = p,; then p is a lifting of p,, of
type Si.
If ¢ > 1 is an integer, then we define

A =0] H ker(T,,(OF, /@) — Tn(OF, /w@v))];
vES)

it is naturally a quotient of A1. For any ¢ > 1, the complex RT'(X g (c,c), Vu(x~1))erd
is defined, as an object of D(A1,.). We define

Ay (Ma X5 C) = RHomAl,c(RF(XK(C,C)’ VM(X_l))Orda Al,c) [_d]

It is a perfect complex in D(A1.) (because RI(X g (¢, ¢, Vu(x ")) is). The
Hecke algebra T5°' acts on this complex by transpose. Moreover, Corollary
5.2.16 shows that for any ¢ > ¢ > 1 there is a T%°"d-equivariant isomorphism

(6.6.3) i, x, ) %, , Are = Ar(p, x, )
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in D(A1,.). By construction, there are canonical T%°"-equivariant isomor-
phisms

664) Ao 8k, Ae/w = i, 1,0) 8k, Ao/

in D(Aj./w). By [KT17, Lemma 2.13], we can find a perfect complex
A1, x) € D(A1) which comes equipped an action by T*°" and with T%°rd-
equivariant isomorphisms

Ar(p,x) @K, At = Ai(p, X, €)
in D(A; ) (for each ¢ > 1) and

Ar(p,x) @K, Ai/fow = Ai(p, 1) @F, A1/

in D(A;/w). These isomorphisms are compatible with the isomorphisms (6.6.3)
for ¢ > ¢ and with the isomorphisms (6.6.4) for varying characters x, trivial
modulo w. Finally, we define A(u,x) = A1(u, X) ®k1 A e D(A).

Let v € X*((Resp/q T)E) = (Zn)Hom(FE) be defined by

vr=(0,1,...,n—1)

for all 7 € Hom(F, E). We define By (i, x) = A1 (1, X) ®0 O(v+w§ )71, where
O(v + w§p)~! is the O[T},(F,)]-module described in §5.2.1. (In particular,
the action of T,,(Op,) extends uniquely to an action of the completed group
algebra O[T),(Opp)].) Thus Bi(u, x) is a perfect complex in D(A1), on which
the algebra T acts. We define B(u, x) = B1(u, X) ®kl A.

LEMMA 6.6.5. The compler Bi(u,Xx) is independent of u. More pre-
cisely, for any p' € (Zi)Hom(F,E)
Bi(p, x) = Bi(/, x) in D(Ay).

Proof. This follows from Proposition 5.2.17 and [KT17, Lemma 2.13]. O

, there is a TS equivariant isomorphism

COROLLARY 6.6.6. Let p/ € (Z7)Hom(E) Then there is a TSomd-
equivariant isomorphism in D(O):

Bi(p, x) ®F, O(v+wip') ™t = A1 (1, x, 1) ®0 O(v + wi /).

Proof. By the lemma, it suffices to treat the case ' = p. In this case the
left-hand side may be identified with

A1 (1, X) @0 O (v+wl p) T @k, O(v+wl p) ™ = Ay (g, x)®F, 0000 (v+wlp) !

Essentially by definition, this complex admits a T*°*-equivariant isomorphism

to A1(p, x,1) ®0 O(v 4+ w§p)~! in D(O). This completes the proof. O

Let TSA = TS @p Ay ¢ TSord,
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PROPOSITION 6.6.7. There exists an integer 6 > 1, depending only on n
and [F : Q], an ideal J C TSN (A(u, X)m @0 O(v +w§ )™ such that J° =0,
and a continuous surjective homomorphism of A-algebras

fs, : Rs, = TM(A(p, X)m ®0 O(v + w§ p)~1)/J

such that for each finite place v ¢ S of F, the characteristic polynomial of fs, o
ps, (Froby) equals the image of P,(X) in TS (A(p, X)m ®0 O(v +w§ p) 1)/ J.

Proof. We will construct a compatible family of homomorphisms
fSX,c : RSX — TS7A1 (A<,u7 X C)m ®o O(V + w(?u)_l>/‘]07

one for each ¢ > 1. The desired homomorphism fs, is then obtained by passage
to the limit, in a similar way to the proof of Theorem 4.5.1. It even suffices to
construct a family of homomorphisms

Rs, — TSN (RT(X oy Ve )Y /e

in fact, the Hecke algebras are the same (the isomorphism being given by
transpose and twist by O(v + w§p)). Finally, it even suffices to construct a
family of homomorphisms

RSX — TS’Ord(RP(XK(c,c% Vu(Xil))ord)m/Jc;

an application of Carayol’s lemma (cf. [CHTO08, Lemma 2.1.10]) then implies
that the image of Rs, is in fact contained in a nilpotent quotient of the
subalgebra

TS?AI (RF(XK(C,C)7 VH(X_l))?rfd) C TS7ord(RF(XK(c,c)> Vu(X_l))ord)m'

This family of homomorphisms can be constructed exactly as in the proof of
Proposition 6.5.3, with the appeal to Theorem 4.5.1 being replaced instead
with an appeal to Theorem 5.5.1; here we are using the characterization of the

deformation functor DI given in §6.2.6. O

We now need to describe the auxiliary objects associated to a choice of
Taylor-Wiles datum (Q, (ay1,- .., n)veq) for Si (see §6.2.27), where each
place of @) is assumed to have residue characteristic split in some imaginary
quadratic subfield of F'. Once again, this datum is automatically a Taylor—
Wiles datum for all the global deformation problems Sy, and so the auxiliary
deformation problems Sy ¢ are defined, and the deformation ring Rs_, has a
natural structure of O[Aq]-algebra, where Ag = [[,cq Av = [[,eq k(v)* (p)".

If ¢ > 1 is an integer then we define two auxiliary level subgroups

K(c,0)1(Q) C K(c,c)o(Q) C K(c,c).
They are good subgroups of GL,,(A%), determined by the following conditions:
e It g SUQ, then K(c,0)1(Q)u = K(c)o(Q)s = K(c, cho-
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o If v € @, then K(c,¢)o(Q)y = Iw, and K(c,¢)1(Q)y is the maximal
pro-prime-to-p subgroup of Iw,,.

Then there is a natural isomorphism K(c,c)o(Q)/K(c,c)1(Q) = Ag. We
define Al (:ua X5 Qa C) to be

RHomy, o) (BT K (c.0)0(Q)/K e (@) (XK (e (@) Va(X 1)), Are[Ag])[=d],

an object of D(A1 .[Ag]). The algebra TgUQ’Ord = TV @150 TZUQ acts
on A;(u, x, @, c) by transpose. As in the case where @) is empty, we can pass

to the limit with respect to ¢ to obtain a complex A;(u, x, Q) € D(A1[Ag])

which comes equipped with an action of TZUQ’Ord and with TZUQ’Ord—equivariant

isomorphisms
Al(/"? X5 Q) ®k1 Al,c = Al (,U, X5 Q7 C)
in D(A; ) (for each ¢ > 1) and
Ay (X, Q) ®%, M/w =2 Ay (1, 1,Q) ®%, M/

in D(A;/w), all compatible with the similar data at level c. We define m®
to be the contraction of m to TSY2°' and n? to be the ideal of TgUQ’Ord
generated by m@ and the elements U, ; — a1+ (v € Q,i=1,...,n).

LEMMA 6.6.8. The ideal n% occurs in the support of H*(Ai(u,x,Q)).

There are TSV _cquivariant isomorphisms

A1(p, X Q)ne @K, 1ag) M 2 A1 (i X)me = A1 (1, X)m-

Proof. These properties can be established in the same way as in the finite
level (Fontaine-Laffaille) case. See §6.5.1. We omit the details. O

We define A(p, x, Q) = A1(p, x, Q) ®%, A, and a, TV = T5VQA g,
O[Ag]. Note this acts on A(A, x, Q).e via our identifications
K(c,¢)o(Q)/K(c,0)1(Q) = Aq
for each ¢ and passing to the limit. Thus a, TSVQA(A(A, x, Q) @) is a local
A[Ag]-algebra.

PROPOSITION 6.6.9. There exists an integer § > 1, depending only on n
and [F : Q], an ideal J Ca, TSY@AL(A(A, X, Q)ne ®0 O(v + w§ 1)1 such
that J° = 0, and a continuous surjective homomorphism of A[Ag]-algebras

fSX,Q : RSXYQ _>AQ TSUQ7A1 (A<:u7 X5 Q)nQ Ko O(V + w(?:u)_l)/*]

such that for each finite place v € S of F, the characteristic polynomial of
fs, © ps, (Froby) equals the image of P,(X) in AQTSUQ’AI(A(H,X, Q)ne ®o
Oy +wiu))/.J.
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Proof. The existence of a A-algebra homomorphism
Rs, o ~aq ™M (A, X, Q)we ®0 O(v + wip) ™)/ J

satisfying the given condition at finite places v ¢ S U Q of F is proved just
as in the proof of Proposition 6.6.7 above. The key point is to show that
this is a homomorphism of A[Ag]-algebras. This can be proved in the same
way as in the proof of Proposition 6.5.11, by considering the enlarged algebra
5% (Al x. Q) B0 O + uf ) e :

We are now ready to begin the proof of Theorem 6.6.2.

Proof of Theorem 6.6.2. We recall that we have constructed a homomor-
phism f : Rs, — O, classifying the representation p that we wish to show is
automorphic. We will show that ker f is in the support of

H*(B(pt, 1) @% O(v +w§A)71).
By Corollary 6.6.6, this will show that ker f is in the support of
H*(A\ 1, 1)m ®0 O(v + wg2)™)[1/p),
in turn a quotient of
Homp (H™ (X 1.1y, V\)m: O + w§A) "1 [1/p]).

The t-ordinary automorphy of p will then follow from Theorem 2.4.10.
Our proof now closely follows the proof of Thm. 6.5.4. Let

q=h'(Fs/F,adpy(1)) and g=qn—n’[F":Q],

and set Ao, = Zp?. Let T be a power series ring over A in n?|S| — 1 many
variables, and let Sy, = T[Ax]. Viewing S, as an augmented A-algebra, we
let ao, denote the augmentation ideal.

As in the proof of Thm. 6.5.4, we choose a character x = [[,cr Xv: [[oeg IWo —
O* such that for each v € R the n characters x,;: k(v)* — O are trivial
modulo w and pairwise distinct.

Let Rlo¢ = Rgglf’dc and R'!°°¢ = Rg;}ﬁf denote the corresponding local defor-
1 X

mation rings as in §6.2.22. We let Ro, and R, be formal power series rings in
g variables over R°¢ and R'!°¢, respectively.

We can then apply the results of §6.4.2 to complexes A(u, x, Q)ne ®0 O(v+

w§ 1)~ (for choices of Taylor-Wiles data (Q, (a1, - -, Qwn)veq), Proved to
exist using Proposition 6.2.32) and obtain the following.

e Bounded complexes Co and C._ of free Soo-modules, subrings T, C

Endp(s_)(Cx) and T3, C Endps,.)(Ch,), and ideals I, and I’ satis-

fying I go =0 and [ é‘i = 0. We also have Sy-algebra structures on R

and R/ and Sx-algebra surjections R — Too/Io and R, — T2 /1.

e Surjections of local A-algebras Roo /000 — Rgora and Rl /aso — Rgora.
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e Isomorphisms Cy, ®§w Soo/ o0 = A, D@0 O(v+w§ 1) ™! = B, 1)

and Clh, @Y Soo/00 = A(pt, X)m @0 O(v+wf 1)~ = B(p, X)m in D(A).

This gives the necessary input for §6.3.5. Recall that Ry, and R._ are power

series rings over R'°® and R'!°°, respectively, in ¢ = qn — n[F'* : Q] many

variables. It follows from parts (1) and (2) of Lemma 6.2.26 that we have

satisfied assumptions (1) and (2) of §6.3.5. To verify assumption (3), if we let

p denote the inverse image in So, of Annp(O(v + w§ u)~1), then (Corollary
6.6.6) the complex

(Coo @5, Soo/P)[L/p] = (B(, )m @5 O(v +wg ) ~H)[1/p]

has cohomology isomorphic to a quotient of HomE(Hd_*(XK(Ll), Vi)ull/p], E).
Since 7 contributes to this quotient, Theorem 2.4.10 implies that H*(Cwo ®§oo
Soo/P)[1/p] # 0 and that the cohomology is concentrated in degrees [go, o + lo]-

We have now satisfied all the assumptions of §6.3.5, and we apply Corol-
lary 6.3.9 with x € Spec(R«) the inverse image of ker f, so y € Spec(Sx) is
the inverse image of Anny(O(v +w§\)™1). For each v € S,, the inertial char-
acters on the diagonal of p|g,, are distinct, so x lies on a maximal dimension
irreducible component of Spec(R+) by part (3) of Lemma 6.2.26, and this
Corollary does apply. We deduce that the support of

H*(B(p, 1) @% O(v + wiA)™") [1/p]
contains ker f. This completes the proof. O

6.6.10. End of the proof (ordinary case). We can now deduce Theorem
6.1.2, our main automorphy lifting result in the ordinary case, from Theorem
6.6.2. The proof is a minor variation of the proof of our main automorphy
lifting result in the Fontaine-Laffaille case (see §6.5.12).

Proof of Theorem 6.1.2. For the convenience of the reader, we recall the
hypotheses of Theorem 6.1.2. Let F' be an imaginary CM or totally real
field, and let ¢ € Aut(F') be complex conjugation. We are given a continuous
representation p : Gp — GLn(Qp) satisfying the following conditions:

(1) p is unramified almost everywhere.
(2) For each place v|p of F', the representation p|q,, is potentially semi-
stable, ordinary with regular Hodge-Tate weights. In other words, there

exists a weight A € (Zﬁ)Hom(F’ ») such that for each place v|p, there is
an isomorphism

Yy * * *
0 2 * *
GF,U . . . b
plcp, ~
: *

0 R T
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where for each ¢ = 1,...,n the character ¢, ; : Gp, — le agrees with
the character

o< IFU = H T(Art;_,vl (O‘))_(AT,n—i-ﬁ—l-‘r’i—l)
TEHom(Fme)

on an open subgroup of the inertia group I, .
(3) pisabsolutely irreducible and generic. The image of ¢, () is enormous.
There exists 0 € Gr — Gp(c,) such that p(o) is a scalar. We have p > n.
(4) There exists a regular algebraic cuspidal automorphic representation
of GL,(AF) and an isomorphism ¢ : Q, — C such that 7 is s-ordinary

and r,(m) = p.

The case where F' is a totally real field can be reduced to the case where
F is totally imaginary by base change. We therefore assume now that F' is
imaginary, and write F'* for its maximal totally real subfield. Let K/F((,) be
the extension cut out by 5|GF( W) Choose finite sets Vy, V1, Vo of finite places
of I having the following properties:

e For each v € Vp, v splits in F'({p,). For each proper subfield K/K'/F((),
there exists v € Vj such that v splits in F(¢,) but does not split in K’.

e For each proper subfield K/K'/F, there exists v € V; which does not
split in K'.

e There exists a rational prime py # p which is decomposed generic for p,
and V5 is equal to the set of pg-adic places of F.

e For each v € VU V3 UV, v 12, v1p, and p and 7 are both unramified
at v.

If E/F is any finite Galois extension which is Vp U V; U Va-split, then p|g,, has
the following properties:

* p(Ge) = p(Gr) and p(GEg(,)) = P(Gr(,))- In particular, pla,, , has
enormous image and there exists 0 € Gg — Gg((,) such that p(o) is a
scalar.

® p|g, is decomposed generic. Indeed, the rational prime pg splits in E.

Let Ey/F be a soluble CM extension satisfying the following conditions:

e Each place of Vo U Vi U V5 splits in Ej.

e For each finite place w of Ey, Wg;i‘iv £ 0.

e For each finite prime-to-p place w of Ey, either both 7, ,, and p|GEO,w
are unramified or p|GE07w is unipotently ramified, ¢, = 1 mod p, and
mGEo,w is trivial.

e For each place w|p of Ey, ﬁ’GEo,w is trivial and [Ep. @ Qp) > n(n +
1)/2+ 1.
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e For each place v|p of F, for each w|v of Ey, and for each i =1,...,n
the character v, ; : Gp, — Q; agrees with the character

oclp, — H T(Art;,vl(g))—(/\f,n_i+1+i—1)
TEHom(Fmap)

on the whole of the inertia subgroup Ig,,, C IF,.
e Let u denote the weight of mg,. Then for each place w|p of Ey, and for
each p-power root of unity « € Ey,,, we have

Yyi(Artg, , () H ()il
TEHOm(EO,u“ap)

We can find imaginary quadratic fields F,, Ey, E. satisfying the following con-
ditions:
e KEach rational prime lying below a place of VoU Vi UVs splits in E,- By - E..
e The primes 2, p split in E,,.
o If I ¢ {2,p} is a rational prime lying below a place of Ey at which 7g 4,
or p|E,,, is ramified, or which is ramified in Eo - E, - E¢, then [ splits in
Ey.
e If [ ¢ {2,p} is a rational prime which is ramified in Ej, then [ splits in
E..
For example, we can choose any F, satisfying the given conditions. Then we
can choose Ey, = Q(y/—pp), where py is a prime satisfying p, = 1 mod 4 and
pp = —1 mod [ for any prime [ € {2, p} either lying below a place w of Ey at
which 7g,w or p|g,,, is ramified, or ramified in Ey - E,, and E. = Q(y/—pc),
where p. = 1 mod 4py is a prime. (Use quadratic reciprocity to show that p.
splits in Ej.)
We let E = Ey- E, - Ey - E.. Then E/F is a soluble CM extension in
which each place of Vj U Vi U Vs splits, and the following conditions hold by
construction:

e Let R denote the set of prime-to-p places w of E such that 7g,, or
plGg, is ramified. Let S, denote the set of p-adic places of E. Let
S" =S, UR. Then if [ is a prime lying below an element of S, or which
is ramified in F, then E contains an imaginary quadratic field in which
[ splits.

e If w € R then p|g,,  is trivial and ¢, =1 mod p.

e The image of p|¢ .,y is enormous. The representation play is decom-
posed generic.

e There exists 0 € Gg — Gp(c,) such that p(o) is a scalar.

e For each place w(p of E, p|g,, s trivial and [Ey, : Qp] > n(n+1)/2+1.

e Let mg denote the base change of 7w to F, which exists, by Proposition
6.5.13. Then 7g is t-ordinary, by [Gerl9, Lemma 5.7].
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By the Chebotarev density theorem, we can find infinitely many places
vo of E of degree 1 over Q such that p(Frob,,) is scalar and g,, Z 1 mod p,
vo ¢ S’ U R¢ and the residue characteristic of vg is odd. Then H?(E,,,adp) =
HY(E,,,adp(1))Y = 0. We choose v, v, with distinct residue characteristics
satisfying these conditions, and set S = S"U{vg,v{}. Note that if Iy, [{, denotes
the residue characteristic of vy, v, then Iy, {{, splits in any imaginary quadratic
subfield of F.

We see that the hypotheses (1)—(15) of §6.6.1 are now satisfied for E, g,
and the set S. We can therefore apply Theorem 6.6.2 to p|g, to conclude the
existence of a cuspidal, regular algebraic automorphic representation Ilg of
GL,(AEg) such that IIg is t-ordinary of weight A\g and r,(Ilg) = plg,. By
Proposition 6.5.13 and [Ger19, Lemma 5.7], we can descend IIg to obtain a
cuspidal, regular algebraic automorphic representation II of GL,(Ar) such
that II is c-ordinary of weight A and r,(II) = p. Taking into account the final
sentence of the statement of Theorem 6.6.2, we see that Ilg,, is unramified if
w¢S.

To finish the proof, we must show that II, is unramified if v is a finite
place of F' such that v t p and both p and 7 are unramified at v. Using our
freedom to vary the choice of places vy v)), we see that if v { p is a place of F'
such that both p and 7 are unramified at v, then Ilg ,, is unramified for any
place w|v of E. This implies that recg, (II,) is a finitely ramified representation
of the Weil group W, . Using the main theorem of [Varl4] and the fact that p
is unramified at v, we see that recg, (IL,) is unramified, hence that I, itself is
unramified. This concludes the proof. O

7. Applications

7.1. Compatible systems. Suppose that F is a number field. We will
use a slight weakening of the definition of a weakly compatible system from
[BLGGT14]: By a rank n very weakly compatible system R of l-adic represen-
tations of G defined over M we shall mean a 5-tuple

(M7 Sa {Qv(X)}v {TA}v {HT})
where

(1) M is a number field,;

(2) S is a finite set of primes of F;

(3) for each prime v € S of F, Q,(X) is a monic degree n polynomial in
M[X];

(4) for 7: F < M, H, is a multiset of n integers;

(5) for each prime X of M (with residue characteristic [ say),

) - GF — GLn(M)\)
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is a continuous, semi-simple representation such that
(a) if v ¢ S and v /I is a prime of F, then r) is unramified at v and
rx(Frob,) has characteristic polynomial Q,(X).
(b) For [ outside a set of primes of Dirichlet density 0, the representa-
tion T)\‘GFU is crystalline for all v|l, and for any M < M over M,
we have HT;(r)) = H-.
(c) For all A, we have HTr(detr\) = >, gy h.

If we further drop hypothesis (5b), then we say that R is an extremely weakly
compatible system. The only dependence of an extremely weakly compatible
system on H is via the condition on the determinant via hypothesis (5c). The
difference between very weakly compatible systems and the (merely) weakly
compatible systems in [BLGGT14] is that, if v|l, then we only insist that ry|q,,
is de Rham for [ in a set of Dirichlet density 1. The notion of an extremely
weakly compatible system is what used to be known as a compatible system,
but we use this language so as to emphasize that the condition of being a very
weakly compatible system is more stringent than being an extremely weakly
compatible system. (Here we implicitly use the following fact: any compatible
family of one dimensional representations is always de Rham [Hen82].) Of
course, we expect that any extremely weakly compatible system should give
rise to a weakly compatible system for an appropriate choice of H,.. We have
adopted the present definition so that, as a consequence of Theorem 4.5.1, we
can deduce that the Galois representations constructed in [HLTT16] for n = 2
form a very weakly compatible system. (See Lemma 7.1.10.)

We will often write [ for the residue characteristic of a prime A of M
without comment. We shall write 7y for the semi-simplified reduction of r}.
The representation 7y is a priori defined over the algebraic closure of Oy /.
However, because its trace lies in Oy /A and because the Brauer groups of all
finite fields are trivial, it is actually a representation

Ty GF — GLH(OM/)\)

We recall some further definitions from section 5.1 of [BLGGT14] which
apply mutatis mutandis to both very weakly and extremely weakly compatible
families:

A very (or extremely) weakly compatible system R is reqular if, for each 7,
the set H, has n distinct elements.

A very (or extremely) weakly compatible system R is irreducible if there
is a set L of rational primes of Dirichlet density 1 such that, for A|l € L, the
representation ry is irreducible. We say that it is strongly irreducible if for all
finite extensions F'/F the compatible system R|q,, is irreducible.
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LEMMA 7.1.1. If R is an extremely weakly compatible system of rank 2,
then either ry is irreducible for all X or there exist weakly compatible systems
X1 and Xy of rank 1 with ry = x1\ ® Xx2,x for all A.

Proof. Suppose that for one prime )¢ the representation r), is a sum of
characters ry, = x1 @ x2. By the main result of [Hen82|, we see that ry, is
de Rham. Hence each y; is also de Rham and so there are weakly compatible
systems X7 and A5 of rank 1 with x;, = x; for i = 1,2. Then for all A we
have 7y = x1.\ @ X2,1- O

In view of Lemma 7.1.1, we say that an extremely weakly compatible
system of rank 2 is reducible if it is not irreducible, in which case every
representation r) is reducible. Say that a very (or extremely) weakly compatible
system of rank 2 is Artin up to twist if there exists an irreducible Artin
representation p : G — GLo(M) with traces in M (possibly after increasing M)
and a weakly compatible system of one dimensional representations y such

that ry ~ p® x.

LEMMA 7.1.2. If R is an extremely weakly compatible system of rank 2
and R is irreducible, then either

(1) R is strongly irreducible, or

(2) R is Artin up to twist, or

(3) there is a quadratic extension F'/F and a weakly compatible system X
of characters of Gpr such that

R = IndgF, X,
i which case we say that R is induced.

Proof. Suppose that R is not strongly irreducible, so that there exists a
finite extension E/F such that R|g, is reducible. We may suppose that E/F
is Galois. Choose a prime A of M of residue characteristic greater than 2. Write
males = X1 @ xa.

Suppose that xy; = x2 = x. As in the proof of Lemma 7.1.1, we deduce
that x is de Rham. On the other hand, let ¢ denote the determinant of 7, and
let (¢) be the character such that ¢/(¢) is the Teichmiiller lift of the reduction ¢
of ¢. Since ¢ is a finite order character, we may assume (increasing E if
necessary) that this character is trivial after restriction to Gg. By construction,
($) =1 and thus (because ) is assumed to have odd residue characteristic) (¢)
admits a square root character 1 as a representation of G. But then ¥?|g 5
and x? coincide as representations of G, since they are both equal to the
determinant of 7|, In particular, their ratio is a character of order dividing 2.
Increasing E by a finite extension if necessary, we may assume that ¢|g, = x.

Hence |g, is de Rham, and thus ¢ is de Rham and extends to a compatible
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system of characters of Gr. After twisting R by this compatible system, we
may assume that ry|qg, is trivial. In particular, ry factors through Gal(E/F),
and is thus coming from an Artin representation py : Gg — GLy(M)), which
automatically extends to a (strongly) compatible system coming from an Artin
representation p : Gal(E/F) — GLo(M) with traces in some finite extension
of M (specifically, the extension of M coming from the coefficient field of the
compatible family ). Hence R is Artin up to twist in this case.

Now assume that y; # x2. The group Gal(E/F) permutes the two
characters y; and, because r) is irreducible, this action is transitive. Let
F’ denote the the stabilizer of x;. Then y; extends to a character of G
and 7\, = Indgil x1- As in the proof of Lemma 7.1.1, there is a weakly

compatible system of characters X of G with x\» = x1. Then R = Indg; X,
as desired. O

LEMMA 7.1.3. If R is an extremely weakly compatible system of rank 2
and R is irreducible, then for all l in a set of Dirichlet density 1 and all |,
the residual representation Ty is absolutely irreducible.

If moreover R is neither induced nor Artin up to twist and F denotes
the normal closure of F/Q, then one may additionally assume that the image
TA(GE) contains SLa(Fy).

Proof. This is immediate if R is Artin up to twist. If R & Indgi X
then choose a prime v € S of F which splits in F’ and such that Q,(X) has
distinct roots. (If no such prime v existed then we would have X = 7 X, where
1 # o € Gal(F'/F), contradicting the irreducibility of R.) Then for any A
not dividing the residue characteristic of v and modulo which @Q,(X) still has
distinct roots, we see that 7 is irreducible.

Hence we may assume that R is strongly irreducible. In particular, since
the only connected Zariski closed subgroups of GLo which act irreducibly con-
tain SLg, it follows that the Zariski closure of the image of r contains SLo (M )
for all A. We first prove, replacing M by a finite extension if necessary, that
the Galois representations r) can all be made to land inside GLg(M)).

The image of r) contains an element with distinct eigenvalues. Hence, by
the Cebotarev density theorem, there exists an auxiliary prime v € S such
that r)(Frob,) has distinct eigenvalues. These eigenvalues are defined over a (at
most) quadratic extension of M. By enlarging M if necessary, we deduce that
the images of 7y for all A N(v) contain an element with distinct eigenvalues
in M), which allows one to conjugate the representation r) to land in M.
By choosing a second auxiliary prime of different residue characteristic and
enlarging M once again, we may ensure the image of r) lies in GLy(M,) for
all A.
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Let
si=EPrx: Gr — GLypsq(Q),
Al

so that S = {s;} form an extremely weakly compatible system with coefficients
Q. Let G; denote the Zariski closure of the image of s;. It is contained in
(Resj\Q/[ GL2) xq Q;. The pushforward of G; to GL2/Q; via any embedding of
M < Q will contain SLy. We will write G for the connected component of
the identity of Gy, G?d for the quotient of G; by its center and and Gj¢ for the
(simply connected) universal cover of G#4. Then G is unramified for all I € £
a set of rational primes of Dirichlet density 1 (see [LP92, Prop.8.9]). Also over
Q,, we see that G?d is contained in PGL[QM:Q} and surjects onto each factor.

The following facts are either well known or easy to check in the order
indicated:

(1) The only morphisms PGLs — PGLy over Q; are the trivial map and
conjugation by an element of PGL2(Q,).

(2) The only morphisms PGL} — PGLy over Q; are the trivial map and
projection onto one factor composed with conjugation by an element of
PGL2(Q)).

(3) If I and J are finite sets then, up to conjugation by an element of
PGL,(Q,)’, the only morphisms PGL: — PGLJ over Q; are induced
by a pair (Joy, ¢) where Jy C J and ¢ : Jy — 1.

(4) If T is a finite set then the automorphism group of PGLI is PGLE x Sy,
where St is the group of permutations of I.

(5) If J is a finite set and G is a connected algebraic subgroup of PGLy
over Q, which surjects onto PGLy via each projection, then G = PGLJ
and the inclusion PGLL < PGLJ corresponds, up to conjugation by an
element of PGL2(Q;)! to a map ¢ : J — I. (Use induction on #.J and

Goursat’s lemma.)

(6) If M/Qq is a finite extension, then (Resgl PGL2)xq,Q; PGLZHOIHQZ (MQ)

and the action of Gq, is via the map Gq, — SHole (M,Q)) where Gq,
acts by left translation.

(7) Forms of PGL are classified by the middle term of the (split) exact
sequence of pointed sets

H'(Qu, PGLY/Q) — H'(Qu, Aut(PGL3/Q))) — H' (Qu, Sy)

In order to split over an unramified extension, the image in H'(Qy, S,.) =
Hom(Gq,, Sr) must be unramified and hence land in H!(F;, S,). Every
class in H'(Fy, S,) comes from the image of a group of the form G =
I Resgé PGLg, where N;/Q; are unramified extensions. On the other
hand, the fibres of [G] € H'(Q, S,) are inner forms of G, and there is a
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unique quasi-split form amongst all inner forms. Since G is quasi-split,
the only forms of PGLY which are unramified (= quasi-split and split
over an unramified extension) are thus given by [], Resgj PGL;y for
unramified N;.

(8) Suppose that, for j € J a finite set, M;/Qy is a finite extension, and that
G C Hje J Res]\Q/[lj PGLs is an unramified connected algebraic subgroup
over Q; such that, after base change to Q,, the projection of G' onto

j raY H M'77 .
each factor of HjeJ(Reng PGL,) xq, Q; = PGI@HJ omgq, (M;,Q;) i
surjective. Then there are unramified extensions NV;/Q; for i in some

finite set I such that G = [],; Resgj PGLy. Moreover for each j € J
and each 7 : M; — Q; the projection of the base change of G to Q; to

the (j,7) factor of HjeJ(Resglj PGLy) xq, Q; & PGLQHj Homa, (M5,Q)

is conjugate by an element of PGLy(Q;) to projection onto one of the

factors of [[,c; (Resgj PGLs) xq, Q= PGLIQ‘L Homg, (Nl-,Qz).

Thus for [ € £ there are finite unramified extensions N;;/Q; for 7 in some finite
index set I; such that G?d =N I Resgll’i PGLy. Moreover for any prime A of M
there is an index ¢ € I; and an embedding 7 : IV} ; < M y, such that the projection

of G xq, M) to PGLy/M, is conjugate by an element of PGLy(M ) to to

— . H Ny i, M
the projection onto the (i, 7) factor of G xq, M = PGLIQ'LEIZ omay (. A).

Let I'; denote the image of s;, let I'} =1, N G°, let I'*d denote the image
of F? in G?d. By [Lar95, Theorem 3.17], after replacing £ by a smaller set of
Dirichlet density 1, we may suppose that for [ € £ the group F?d contains a
conjugate of [[;.; SLa(On;)/{+£12}. Thus, for [ € £ and A|l, we may suppose
that the image of r)(G ) in PGLg(M ) contains SLa(Z;)/{%12} and the image
?)\(GF) in PGLQ(OM/)\) contains SLQ(F[)/{ilQ}.

Now we may suppose that | € £ implies that [ > 3 so that SLa(F;) is
perfect. Suppose A|l € L. For every g € SLy(F;) the image of 7) contains
an element z(g)g where z(g) € (Op/A)* and is well defined modulo Z =
(Onm/AN)* Nim7. Then z defines a homomorphism SLa(F;) — (On/N)*/Z
which must be identically 1. Thus SLs(F;) is contained in the image of 7).

Finally if we remove finitely many primes from £ we may suppose that
PSLa(F;) is not a subquotient of Gal(F /F) from which the last assertion
follows. O

We now prove some further preliminary lemmas concerning enormous and
decomposed generic representations.

LEMMA 7.1.4. If n > 2 and |l > 2n+ 1 and H is a finite subgroup of
GLo(Fy) containing SL2(F;), then Symm” ' H C GLo(F)) is enormous.
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Proof. The image of H in PGL2(F;) must be conjugate to PSLy(k) or
PGLa(k) for some finite extension k/F;. (See for instance [DDT97, Thm.
2.47(b)].) Thus

F, Symm" ' GLy(k) D H D> Symm"™ ' SLy(k),

and the lemma follows from [GN22, Lem. 3.2.5]. O

LEMMA 7.1.5. Suppose that L is a number field, that k is a finite field
of characteristic | and that 7 : G, — GLp(k) is a continuous representation.
Let M denote the normal closure over Q of FreradT

primitive I*" root of unity, then T is decomposed generic.

. If M does not contain a

Proof. If a rational prime p splits completely in M, but not in M ((;), then
p is decomposed generic for 7. O

LEMMA 7.1.6. Suppose that F//Q is a finite extension with normal closure
F/Q and that m € Z~y. Suppose also that | > 2m + 3 is a rational prime
and that 7 : G — GLo(F)) is a continuous representation such that T(Gx) D
SLo(Fy). Finally suppose that F'/F is a finite extension which is linearly

L —=ker7
disjoint from F over F.

—ker ad Symm™ 7

(1) If I is unramified in F'/Q then { & F

(2) (SyrflvmmF)(GF/(Cl)) is enormous.

(3) Let F' denote the normal closure of F' over Q. Suppose that ad7(G ) D
PSLy(Fy), then Symm™ 7|q ., is decomposed generic.

(4) Suppose that F'/Q is unramified at | and that no quotient of imadT
is unramified at all primes above I, then Symm™ 7|g,, is decomposed

F'.

genem’c.N
(5) Ifl > [F : F], then Symm™ T is decomposed generic.

Proof. The image 7)(GF) in PGLy(F;) must be conjugate to PSLy(k) or
PGLa(k) for some finite extension k/F;. (See for instance [DDT97, Thm.
2.47(b)].)

For assertion (1), it suffices to treat the case m = 1, in which case
the assertion follows because Gal(F'((;)/F') = (Z/1Z)*, while (adT)(Gp/) =
(ad7)(GF) does not surject onto (Z/1Z)*.

For assertion (2), note that 7(Gr/) = 7(Gr) D SL2(F;) and so, because
SLo(F;) is perfect, we have that 7(Gpr(,)) D SL2(F;). The assertion now
follows from Lemma 7.1.4.

For assertion (3), it suffices to prove that Symm™ 7|q,, is decomposed
generic after replacing F’ with some finite extension. We first replace F’
by f’((l), which we can do as PSLa(F;) is perfect. Then, as above, (up
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to conjugacy) the image of (ad7)(Gpr) is PSLy(k) or PGLy(k) for some fi-
nite extension k/F;. Perhaps making a further extension, we may assume
that ad7(Gpr) = PSLa(k) for some finite extension k/F;, while maintaining
the fact that F’/Q is Galois. Let H/F’ denote the finite Galois extension with
Galois group PSLay(k) cut out by this projective representation; and let H’
denote its normal closure over Q. Using the simplicity of PSLy(k), we deduce,
from Goursat’s Lemma, that Gal(H'/F’) = PSLy(k)™ for some n. Moreover the
conjugation action of any o € Gal(H'/Q) on Gal(H'/F") = PSLa (k)" is via an
element of Aut(PSLa(k)") = (PGL2(k) x Gal(k/F;))™ x S,. (To see this note
two things. Firstly PSLa(k) has automorphism group PGLa(k) x Gal(k/F;)
- see for instance [Die51]. Secondly the only normal subgroups of PSLa (k)"
are PSLo(k)! for I C {1,...,n}, as can be seen by induction on n, and so any
automorphism of PSLy (k)™ permutes the n factors of this product.)

There exists an element A € PSLy(F;) C PSLa(k) such that a preimage in
SLo(F;) has two distinct Fj-rational eigenvalues with ratio a satisfying o™ # 1
for 1 < ¢ < m. By the Cebotarev density theorem, there exists a rational
prime p such that (Frob,) in Gal(H'/Q) is (the conjugacy class of) the el-
ement (4,...,A) in PSLy(k)" = Gal(H'/F’). The image of this element is
trivial in the quotient Gal(F’/Q), and thus, in addition, we see that p splits
completely in F’ and (hence) that p =1 mod I. By construction, the ratio
of any two roots of the characteristic polynomial of Frobenius of any prime
above p in Symm™7 is given by ot for i = 1,...,m. In particular, these ratios
are not equal to p =1 mod [. Hence Symm™ 7|g,, is decomposed generic.

Assertion (4) follows from assertion (3), because F’ is unramified above [
—kerad 7 —kerad 7

so that (F'NF )/F is unramified above ! and hence F' N F =F

. 1. C .. —=kerad 7T
and F’ is linearly disjoint from F’ over F.
—kerad7T —=kerad?

For assertion (5), note that [Fﬁ F : F | <1, so that we have
(adT) (G5 gkeraar) D PSLa(Fy). However, being Galois extensions of F', the

—=kerad 7 —kerad 7

fields F and F° are linearly disjoint over FNF , so that again the
result follows from assertion (3). O

LEMMA 7.1.7. Suppose that 7 : Gg — GL,(F;) is decomposed generic and
absolutely irreducible. Let E/Q be a Galois extension which is linearly disjoint
from the Galois closure offkerr(cl) over Q. Then F|g,, is decomposed generic
and absolutely irreducible.

Proof. The irreducibility claim is clear. Write H for the Galois closure
of Fk"”(g) over Q. As in the proof of Lemma 4.3.2, there exists a conjugacy
class of elements o € Gal(H/Q) such that any rational prime unramified in H
whose Frobenius element corresponds to o is decomposed generic for 7. By
assumption, Gal(HE/Q) = Gal(H/Q) x Gal(F/Q), and now any rational
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prime whose conjugacy class in Gal(HE/Q) is of the form (0,1) € Gal(H/Q) x
Gal(E/Q) will be decomposed generic for 7|, . O

LEMMA 7.1.8.

(1) Suppose that K/Qq is an unramified extension and that r : Gg —
GL2a(Z,) is a crystalline representation with Hodge—Tate numbers {0,1}
for each embedding K — Q. Either Tp =1 DE ! or7ly, wZTQl ® wl_QI

(2) Suppose that K is a number field in which | is unramified and that
r: Gxg — GLa(Z;) is a crystalline representation with Hodge—Tate
numbers {0,1} for each embedding K — Q,. If the image of ¥ contains
SLo(Fy), then the only subextension offkerr/K unramified at all primes
above 1 is K itself.

Proof. The first part is presumably well known, but for lack of a reference
we give a proof. (Note the slight subtlety that the result would be false if we
replaced the coefficients Z; with the ring of integers in an arbitrary extension
of Q;, which is one obstacle to finding a suitable reference.) Recall that " arises
from the Tate module of a height 2 I-divisible group G over Ok (see [Bre00]
and [Kis06].) Moreover G # G° # (0), as otherwise we would have Hodge—Tate
numbers {1,1} or {0,0}. Thus there is a finite flat group scheme H over the
ring of integers of the completion of the maximal unramified extension of K
of order 2 killed by I giving rise to 7¥. Moreover H # H° # (0). By [Ray74,
Prop. 3.2.1, Thm. 3.4.3], either 7[5 = 1&¢, ' or 7|, 2 w;) @w,j or 7l = 1a1
or ?|f =~ El_l @ El_l. If ] =2 then 1 = El_l and we are done, so suppose that
I > 2. Then since det r is a crystalline character with all Hodge—Tate weights
equal to 1, we have detr|;, = 6;1, so the last two possibilities cannot occur,
and the first part follows.

Consider the now the second part. It follows from the first part that the
image under det7 of any inertia group above [ is F}*, and so im7 = GLy(F;).
Let A denote the subgroup of GLa(F;) generated by the images of all inertia
groups above [. It is a normal subgroup of GLy(F;) which surjects under the
determinant map onto F;*. But any normal subgroup of GL3(F;) either contains
SLa(F;) or is central, and so A = GLy(F;) and the second part follows. O

A very (or extremely) weakly compatible system R is defined to be pure
of weight w if
e for each v ¢ S, each root a of Q,(X) in M and each 2 : M — C we
have
al® = g';
e and for each 7 : F < M and each complex conjugation ¢ in Gal(M/Q)
we have
Hy;={w—h: heH,}.
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If R is rank one then it is automatically pure. (See [Ser98].) The same is true
if R is induced from an extremely weakly compatible system of characters over
a finite extension of F', or if R is Artin up to twist.

If R is pure of weight w and if + : M — C, then the partial L-function
L3(4R, s) is defined as an analytic function in Rs > 1+ w/2. If R is pure and
regular and if v is an infinite place of F', then the Euler factor L,(:R,s) can be
defined (see [BLGGT14, §5.1]).

The very (or extremely) weakly compatible system R is defined to be
automorphic if there is a regular algebraic, cuspidal automorphic representation
m of GL,(AF) and an embedding + : M < C, such that if v € S, then
7y is unramified and rec(m,| det ]1(,1_”)/ 2)(Flrobv) has characteristic polynomial
1(Qu(X)). Note that if R is automorphic, then L%(+R, s) defines an analytic
function in Rs > 0 which, for n > 1, has analytic continuation to the whole
complex plane. It follows from [Clo90, Thm. 3.13] that if R is automorphic,
then for any embedding 2’ : M < C there is a regular algebraic, cuspidal
automorphic representation m, of GL,(AF) such that if v ¢ S, then 7w, ,

is unramified and rec(my ,| det |1(,1_n)/ 2)(F]robv) has characteristic polynomial
/(Qu(X)).

Suppose that F' is a CM field and 7 is a regular algebraic cuspidal auto-
morphic representation on GL,, (A ) of weight (a,;). From the main theorems
of [HLTT16] and [Varl4] we may associate to m an extremely weakly compatible
system

Ry = (Mz, S, {Qr (X)) {ran}s {Hr o }),
where

e M, C C is the fixed field of {0 € Aut(C) : 77> = 1°°};
e S is the set of primes of F' with m, ramified;
® Qr,(X) is the characteristic polynomial of rec(m,|det ]1()1_”)/ 2)(Frobv);
o Hrr={a;n+n—1,...,a:,}.
We now note that this can be upgraded to a very weakly compatible system
under some hypotheses.

LEMMA 7.1.9. Let F be a CM field and let w be a regular algebraic cuspidal
automorphic representation on GL,,(AF) of weight £ = (ar;). Suppose that the
following hypothesis holds:

(DGI) (decomposed generic and absolutely irreducible) For a set of primes | of
Dirichlet density one, the representations

Tr 't Gp — GLn(OM/)\)

are decomposed generic and absolutely irreducible for all X | 1.

Then Ry is a very weakly compatible system.
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Proof. The lemma follows from Theorem 4.5.1 (taking p there to be our [).
Indeed, the assumption that m is not Eisenstein is implied (for a set [ of density
one) by hypothesis (DGI). Conditions (3), (4), and (5) hold automatically
for large enough [. Similarly, [ will be unramified in F for large enough I.
Conditions (1), (2), and (6), can always be satisfied after after making a
solvable Galois base change F'/F (using [AC89]) which is disjoint over F
from the Galois closure of F~""" over Q and in which all primes dividing
either S or [ are unramified. (We are free to make a different such base change
for each prime [.) In particular, one can take the compositum of F' with a
Galois extension F/Q that is the compositum of various imaginary quadratic
fields in which all primes dividing S or [ split completely for (1), (2), and
the compositum with a large totally real cyclic extension E/Q in which [
splits completely for condition (6), where F may be easily be chosen to be

linearly disjoint over Q from T (¢1)- By Lemma 7.1.7, hypothesis (DGI)
is preserved under such base extensions. Condition (8a) holds by the existence
of 7, and finally, condition (7) holds for [ for a set of [ of density one, by
hypothesis (DGI). O

LEMMA 7.1.10. Let F be a CM field and let m be a regular algebraic
cuspidal automorphic representation on GLa(AFp) of weight & = (ar;). Then
the extremely weakly compatible system Ry is irreducible. Moreover hypothesis
(DGI) of Lemma 7.1.9 holds and Ry is a very weakly compatible system.

Proof. If R, were reducible then, by Lemma 7.1.1 and the automorphy of
all weakly compatible systems of rank 1, we see that there would be grossen-
characters x1 and x2 of A%/F* such that m, = x1,, H x2, for all but finitely
many v. By [JS81a], this would contradict the cuspidality of 7. Thus R, is
irreducible.

By Lemma 7.1.9 it only remains to verify hypothesis (DGI). The absolute
irreducibility condition follows from Lemma 7.1.3. For the decomposed generic
condition, we treat the three possibilities of Lemma 7.1.2 separately.

Suppose first that R is strongly irreducible. By Lemma 7.1.3 and part (5)
of Lemma 7.1.6, we deduce that hypothesis (DGI) holds and so R, is very
weakly compatible.

Suppose second that R, = Indgg X for some quadratic extension E/F

and some very weakly compatible system of characters X of Gg. Let r (resp.
E) denote the normal closure of F' (resp. E) over Q, so that Gal(E/F) is an
elementary abelian 2-group. Let 1 # 7 € Gal(E/F). Then Gal(E/F) acts

on Gal(Eker /x5 /E) via the non-trivial character Gal(E/F) — {#£1}. If L)

denotes the normal closure of Eker%/ X3 over Q, then LW / E is the compositum
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of abelian Galois extensions on which some subgroup of Gal(E /Q) acts by a
non-trivial character of order 2. N N

Suppose that a rational prime [ is unramified in . Then a(Gal(L()‘) /E))
can have order at most 2 (as any subgroup of Gal(E /Q) will act trivially on
it). Thus, if [ > 3 then (; ¢ L™ for any A. It follows from Lemma 7.1.5 that
if A lies above a rational prime [ > 3 which is unramified in E, then 7  is
decomposed generic.

Finally suppose that R, is Artin up to twist, i.e. there exists an irreducible
Artin representation p : Gg — GLo(M,) such that for all A the representation

. . . —ker ad 7, —ker ad
T is the twist of p by some character. In particular F' HATmA L,

Let L denote the normal closure of F*° *** over Q. If [ > 2 is unramified in L,

then ¢; ¢ L and by Lemma 7.1.5 we see that 7 ) is decomposed generic for all
AL O

If 2 is the canonical embedding M, < C, then L°(1gR, s) = L% (x, s). If
moreover R is pure, and hypothesis (DGI) of Lemma 7.1.9 holds, then for each
infinite place v of F' we have L,(xRx,s) = Ly(m,s). (This follows from the
definition of L,(1Rx,s) in [BLGGT14, §5.1] together with the determination
of the Hodge—Tate weights of R, in Lemma 7.1.9, and, in the case that F' is
totally real, the main result of [CLH16].)

The following is our main theorem.

THEOREM 7.1.11. Suppose that F/Fy is a finite Galois extension of CM
fields. Suppose also that F@"Oid s a finite Galois extension of F' and that Ly is
a finite set of rational primes. Suppose moreover that I is a finite set and that
for i € T we are given m; € Z~qo and a strongly irreducible rank 2 very weakly
compatible system of l-adic representations of Gp

Ri - (Miv Sia {Qi,v(X)}7 {Ti,)\}a {{07 1}})

with S; disjoint from Ly.

Then there is a finite set L O Lo of rational primes; a finite CM Galois ex-
tension FSUHees | [ ynramified above L, such that Fuffices 5o CQalois over Fy; and
a finite Galois extension F*°/F containing F[?"Oid, which is linearly disjoint
from FsUfices oyper F with the following property: For any finite CM extension

Fsufﬁces

F'/F containing which is unramified above L and linearly disjoint from

Favoid over F| the representations Symm™ Rila,, are all automorphic, and

each arises from an automorphic representation unramified above L.

We have phrased this in a rather technical way in the hope that it will be
helpful for applications. However let us record a simpler immediate consequence.

COROLLARY 7.1.12. Suppose that F' is a CM field and that the 5-tuple
R = (M, S, {Q.(X)},{rr},{{0,1}}) is a strongly irreducible rank 2 very weakly
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compatible system of l-adic representations of Gp. If m is a mon-negative
integer, then there exists a finite Galois CM extension F'/F such that the
weakly compatible system Symm™ R|q,, is automorphic.

Before proving Theorem 7.1.11 in the next section, we record some conse-
quences.

COROLLARY 7.1.13 (Potential modularity and purity for rank two compati-
ble systems over CM fields of weight zero and their symmetric powers). Suppose
that F is a CM field and that the 5-tuple R = (M, S,{Qv(X)}, {rx}, {H:}) is
an irreducible rank 2 very weakly compatible system of l-adic representations of
Gr such that Hr = {0,1} for all 7. Suppose further that m is a non-negative
integer. Then:

(1) R is pure of weight 1.

(2) The partial L-functions L° (1 Symm™ R, s) have meromorphic continua-
tion to the entire complex plane.

(3) For v € S there are Euler factors L,(1Symm™ R, s) = Pp,.(q,°) 7,
where Pp, , . is a polynomial of degree at most m+1 and g, is the order

of the residue field of v, such that

A(2Symm™ R, s) = L° (2 Symm™ R, s) H L,(:Symm™ R, s) H L,(:Symm™ R, s)

v]oo ves
satisfies a functional equation of the form
A(2Symm™ R, s) = AB*A(2 Symm™ RY,1 — s).

Suppose further that R is strongly irreducible and that m > 0. Then
L#(2 Symm™ R, s) is holomorphic and non-vanishing for Re(s) > m/2+ 1, and
in particular has neither a pole nor a zero at s =m/2 + 1.

Proof. If R is not strongly irreducible, then by Lemma 7.1.2 there is a
quadratic extension F’/F and a weakly compatible system X of characters of
Gpr such that R = Indg? . &X. In this case X' is pure, necessarily of weight 1,
and automorphic. The corollary follows easily.

So suppose that R is strongly irreducible. Then for any positive integer m
we see from Theorem 7.1.11 that there is a finite Galois CM extension F,,/F
and, for any embedding 2 : M — C, a cuspidal automorphic representation
T,m of GLy+1(AFR,,), such that for each w|v ¢ S the roots of the characteristic

polynomial of rec(m, .| det |;m/ 2)(Flrobw) are the images under ¢ of the roots

of QSymmm RIGFm ;W (X)

For the first part of the corollary we combine the ‘Deligne-Langlands
method’ with our theorem: because det R is pure of weight 2, it suffices to
show that for every v € S, for every root a of Qgr(X), and every ¢+ : M — C,
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we have

o] < qzl/ 2,
It even suffices to show that for every m > 0, for every v € S, for every root 3
of Qsymm™ r,v(X) and every o : M — C we have

‘25’ < q1(}m+1)/2_

(For then || < qi/ 2+1/ (2m).) Equivalently, it suffices to show that for every

m > 0, for every wlv € S, for every root v of Qgymmm Rlcg, w(X), and every
1: M — C, we have

‘27’ < q1(Um+1)/2_
If X, ,, denotes the central character of 7, ;,,, then we see that det Symm™ R|q,, |

is equivalent to R, and so

ma,m | det || ~7/2

|X7T7,,'m ($)| = 1

for all x € A;m. Thus 7, ,, is unitary and, applying the bound of [JS81b, Cor.
2.5] (which applies since each local factor of 7, ,, is generic, by the final Corollary
of [ShaT74]), we see that the image under ¢ of all the roots of the characteristic
polynomial of rec(m, ) (Frob,,) have absolute value < q}v/ 2. Thus the absolute
value of the image under + of any root of Qgymmm | . w(X)is < q&mﬂ)/ 2,
The first part of the corollary follows.

The rest of the corollary follows on using the usual Brauer’s theorem
argument (together with known non-vanishing properties of automorphic L-
functions as in [JS77]) as in [HSBT10, Thm. 4.2]. O

COROLLARY 7.1.14 (Sato-Tate for Elliptic curves over CM fields). Suppose
that F is a CM field and that E/F is a non-CM elliptic curve. Then the numbers

(1 + #k(v) — #E(k(v)))/2y/ #k(v)
are equidistributed in [—1,1] with respect to the measure (2/m)v/1 — t2 dt.

Proof. This follows from Corollary 7.1.13 and the corollary to [Ser98, Thm.
2], as explained on page I-26 of [Ser98]. O

COROLLARY 7.1.15 (Ramanujan conjecture for weight 0 automorphic
representations for GL(2) over CM fields). Suppose that F' is a CM field and
that 7 is a regular algebraic cuspidal automorphic representation of GLa(AF)
of weight (0);. Then, for all primes v of F, the representation m, is tempered.

Proof. The result is immediate for all primes v such that =, is a twist of
the Steinberg representation. At the remaining places, since m, is not a twist
of the Steinberg representation, it follows from the main theorems of [HLTT16]
and [Varl4], together with [TY07, Lem. 1.4 (3)], that it suffices to prove that
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if v {1, then the restriction to G, of any of the [-adic Galois representations
associated to 7 is pure in the sense of [TY07, §1]. By [TYO07, Lem. 1.4 (2)] and
solvable base change, we can reduce to the case that m, is unramified, in which
case the result follows from Corollary 7.1.13 (1), after noting by Lemma 7.1.10
that the compatible system R associated to 7 is very weakly compatible of the
expected Hodge—Tate weights. ([

COROLLARY 7.1.16. Suppose that F' is a CM field and that the 5-tuples
R = (M, S {Qu(X)}, {rx}, {{0,1}}) and R" = (M", 5", {Q;(X)}’ {T/)\}7 {{0,1}})
are a pair of strongly irreducible rank 2 very weakly compatible systems of l-adic
representations of Gpr. Suppose further that m and m’ are non-negative inte-
gers, and that R and R’ are not twists of each other. Then L(1Symm™ R ®
Symm” R/, s) is meromorphic for s € C, has no zeroes or poles for Re(s) >
1+m/2 +m'/2, and satisfies a functional equation relating L° (2 Symm™ R &
Symm™ R’,s) and L°(1Symm™ RY @ Symm™ (R)V,1+m +m’ —s).

Proof. This follows from Theorem 7.1.11 by the same argument as [Har09]
(for example Theorem 5.3 of ibid). (As usual, this argument involves the
known non-vanishing results of Rankin—Selberg convolutions as established in
Theorem 5.2 of [Sha81]). O

7.2. Proof of the main potential automorphy theorem.

7.2.1. Preliminaries. Before turning to the proof of Theorem 7.1.11, we
record some preliminaries.

If L/Qq is a finite extension and Y (resp. x) is an unramified character of G,
valued in F/* (resp. Z;°), we will write H}(GL,FI(QY)) (resp. H}(GL, Zi(€e1x)))
for the kernel of the composite

HYGp,Fi(@X)) — HY (G, Fi(g)) = L% /(LX) — Z/IZ
(resp.

HYGp,Zi(e1x)) — HY(Gproe, Zy(g))) = 1<i_r£1Lnr’X/(Lnr’X)lT — 7)),
where the latter maps are induced by the valuation map. Note that if y (resp.
X) is non-trivial, then

H}(Gr, Fi(&x)) = H' (G, Fi(@X))

(resp.
H}(Gr, Zi(ex)) = H'(GL, Zi(ex)))-
Also note that
HY(GL,Fi(a))/H{(GL,Fi(&)) = F,.
LEMMA 7.2.2. The map

H{(Gr, Zi(ex)) — H}(GL,Fi(@X))
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1s always surjective.

Proof. We will consider three cases. If the reduction of y is non-trivial,
we may suppress the f and the cokernel is simply H2(G', Z;(e;x))[l]. Because
H°(GpL,Qi/Zi(x™ 1)) = (0), Tate duality shows that this cokernel is zero.

Suppose now that x is non-trivial but that ¥ is trivial. Using duality as
above, we have an exact sequence

Hl(GL,Zl(ElX)> — Hl(GL,Fl(EZ)) —F; — (0)

The image of H'(Gr, Zi(e1x)) = H}(GL, Z(e1x)) in HY(Gp,F;(§)) is contained
in H}(GL,FZ(EI)). As Hl(GL,Fl(El))/H}(GL,Fl(El)) =~ F;, we conclude that
this image equals H}(G L, Fi(€)), as desired.

Suppose finally that y = 1. In this case the assertion of the lemma is just
the surjectivity of

: X xX\I" X X\
IEEOL/(OL) — 01 /(O7)". 0

We will need a slight strengthening of [BLGGT14, Thm. 3.1.2], which we
now state. We will use the notation and definitions from [BLGGT14]. The
proof of this theorem given in [BLGGT14]| immediately proves this variant also.

PropPOSITION 7.2.3. Suppose that:

e F/Fy is a finite, Galois extension of totally real fields,

e 7 is a finite set,

o for each i € L, n; is a positive even integer, l; is an odd rational prime,
and 1; :Qli = C,

o FaVOld /[ s g finite Galois extension,

o L is a finite set of rational primes which are unramified in F and not
equal to l; for any i € Z, and

o 7;: Gr — GSp,, (Fy,) is a mod l; Galois representation with open kernel

ng

and multiplier Elli_ , which is unramified above L.

Then we can find finite Galois extensions FS'HS | Fy and Ff‘VOid/Q, such that

o Fsuffices contains F'and is linearly disjoint from F a"Oide"Oid over F,

° Ff“’Oid and F& gre linearly disjoint over Q, and

o [ufices s totally real and unramified above L;

and which has the following property: For each finite totally real extension
FyJFsuffices which is linearly disjoint from Favod pavoid e [ and for each
1 € L, there is a regular algebraic, cuspidal, polarized automorphic representation
(i, xi) of GLy,(Ap,) such that

(1) (Flmi (ﬂ—i)vﬂi,li (Xi)glli_ni) = (?7;|GF1 7Elli_ni)3
(2) m; is v-ordinary of weight 0.
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(In the notation of the proof of [BLGGT14, Thm. 3.1.2] one must choose
N not divisible by any prime in £; M;/Q unramified at primes in £ and primes
dividing N; ¢ unramified in F2v°9(¢,y) and not in £; ¢; unramified above £
and all rational primes that ramify in F2"°d; and I’ ¢ £ and not ramified in
Favoid We get Favoid = ler I r;((l/). It is linearly disjoint from F2v°d over Q
because no rational prime ramifies in both these fields. We choose F'/F((n)™
to be linearly disjoint from Favold pavoid p(c )+ over F((n)* with F'/F(¢y)™T
unramified above £. The last choice is possible because 7; and 7 are unramified
above £, so that 7; becomes isomorphic to Vp, [A]((N — 1 —n;)/2)¢ and 7
becomes isomorphic to Vi, [N]((N — 1 —n;)/2)o over some unramified extension
of F(¢y); for any prime v above £. We take F*ufices to be the field F'. The
fields fsuffices and pravoid pavoid are Jinearly disjoint over F' because Favoid avoid
and F(¢y)" are linearly disjoint over F, because, in turn, all primes dividing
N are unramified in Favoid pavoid  The point P € f(F ") also provides a point
of T(Fy). Moreover 7:(Gr (¢,)) is adequate because F1 is linearly disjoint from

err?i (Cl’) over F)

COROLLARY 7.2.4. Suppose that M is a finite set of positive integers, that
E/Q is a non-CM elliptic curve, and that L is a finite set of rational primes at
which E has good reduction. Suppose also that F*°9/Q is a finite extension.

Then we can find

e a finite Galois evtension F¥°4/Q linearly disjoint from F*°4 over Q,
and

e a finite totally real Galois extension F=1S /Q unramified above L such
that Fsices gs linearly disjoint from FaVOide“’Oid over Q;

which have the following property:

For any finite totally real extension F'/FSH<es which is linearly disjoint
from F;"Oid over Q, and for any m € M, there is a regular algebraic, cuspidal,
polarizable automorphic representation © of GLy11(Apr) of weight (0),; such
that for some, and hence every, rational prime | and any 1 : Q; = C we have

v
Symm™ rg |G, = ri.(T).
Moreover, w is unramified above any prime where E has good reduction.

Proof. We may, and will, suppose that F2°4/Q is Galois. Choose a
rational prime [ > max,,ea 2(m + 2) such that E has good ordinary reduction
at [, T, has image GLo(F}), | € £, and [ is unramified in F27°d, (By [Ser81,
Thm. 20], the condition that E is ordinary at [ excludes a set of primes of
Dirichlet density 0. By the main result of [Ser72], each of the other conditions

errp,

. . —k .
excludes a finite number of primes.) Note that Q contains (; and, by part

2 of Lemma, 7.1.8, is linearly disjoint from F2¥°'d gver Q.
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Choose an imaginary quadratic field L which is unramified at all primes
in £, at all primes where E has bad reduction, and all primes which ramify in
Favoid " and in which [ splits. Also choose a rational prime ¢ ¢ £ U {I} which

splits as qu(’z in L, which is unramified in F2"'4 and at which E has good

reduction.
If m € M is even also choose a character
— X
Y G — Qq
such that

® 1, is crystalline above | with Hodge—Tate numbers 0 at one place above
[ and m + 1 at the other.

o ql# (/05 (Gryr).

e 1, is unramified above £ and all primes which ramify in F2¥°'4 and all

primes at which E has bad reduction.
o Y, =¢ "™
([BLGGT14, Lem. A.2.5] tells us that this is possible.) The representation
Indg;Q m has determinant el_(m+1)

of v¢,,, and true on complex conjugation because m is even.)

— kerIndS
Let Lo denote the compositum of the Q o GQ m for m € M even. Let L4

denote the maximal sub-extension of Ly ramified only at [ and let T" denote the
set of primes other than [ that ramify in L. Then Lo ler "Bl LN ler e
Let L3 = LngerTEl is linearly disjoint from L3
over Q; the argument is somewhat involved, and the reader may find it helpful

. (This is true on Gy, by the construction

We will now show that Faveid

to refer to the diagram of field extensions below.
Let M; denote the maximal subfield of Lg in which the primes of T" are all
unramified. Then M; D lerTEl (

places where E has bad reduction), and My N Ly = Ly and My = L1Q
Thus

Gal(My /(L N Q77

because T, can only be ramified at [ and
ker7Tg

12

Gal(@" 7" /(Ly N Q™)) x Gal(Ly /(LN Q™))
>~ Gal(M; /L) x Gal(M; /Q"" ™).

ker7g ker?EYZ)

As Gal(L1/Q) is soluble, we see that L1NQ C Q(¢) and that Gal(M;/Q
is soluble and hence that Gal(M;/(Li N ler "21)) contains a unique copy of
SLo(F;) (because this latter group is perfect, and in particular admits no solv-
able quotient) and this copy is therefore normal in Gal(M;/Q). Its fixed field

is L1(Q)-
Let H be the subgroup of Gal(M1/Q) generated by the inertia groups

above [. The group H maps surjectively to Gal(@kerrm/ Q) (because H is

—~kerrp

normal, and the only subfield of Q unramified at [ is Q itself, by Lemma
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7.1.8) and so must contain the unique copy of SLy(F;). Thus the maximal
sub-extension M of L3 in which [ and all elements of T are unramified is
contained in L;i((;). This latter field is only ramified above [ and so My = Q.
Finally we deduce that F2v°ld is linearly disjoint from L3 over Q (using that
all of the primes in 7'U {I} are unramified in Fvoid),

e
N

kerrEl Ll Cl

SLQ\/\/
N

Ll N lerrEl

Q
If m € M is odd, set

T = Symm”™ r}éJ : Gq — GSp,,11(Q))-

It has multiplier ¢, ™, is unramified above £, and is crystalline and ordinary at
[ with Hodge—Tate numbers {0, 1,...,m}. If m € M is even, set

Tm = (Symm™ TYEJ) ® Indg? U

As the representation (Symm™ rY,,) is orthogonal with multiplier ¢, ™, we see
that

T'm : GQ — GSpQ(erl) (Ql)

with multiplier e;(2m+1). It is unramified above £ and it is crystalline and

ordinary at [ with Hodge-Tate numbers {0,1,...,2m + 1}.

We apply Proposition 7.2.3to F = Fy = Q, {r,, : m € M}, £ and F2vid L,
producing fields F#void and psuffices Qe favoid — pavoldp, = Then Fveid ig
linearly disjoint from F2¥°id over Q, and FsUffices ig linearly disjoint from
FavoidFQavoid over Q.

Suppose that F’/Fsuffices is g finite totally real extension linearly disjoint
from F§Vold over Q. Then Symm™ SLy(F;) C Symm™ 75 (GLri(¢)), and so for
m € M the tautological representation of the subgroup of Symm™ Fﬁl(G LF'(G))
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generated by its elements of [-power order is absolutely irreducible. If m €

M is even, then Tp|q, ., @ is the direct sum of two absolutely irreducible

constituents. The group Gal(LsF’ /ler?E‘lLF ") acts by different characters on

these two constituents, and Gal(ler "PLLF!) ler "2'F') interchanges these two
characters (consider the action of inertia above ¢). Thus Tn|q ., o 18 absolutely
irreducible. It follows from [BLGGT14, Prop. 2.1.2] that, for m € M odd or
even, Tm (G pr(¢,)) is adequate.

Combining Proposition 7.2.3 with [BLGGT14, Thm. 2.4.1], we deduce
that r,, is automorphic for m € M. It follows (using, in the case that m is
even, [BLGGT14, Lem. 2.2.4] and the argument of [CHTO08, Lem. 4.2.2]) that
Symm™ rﬁﬂg » is automorphic. This finishes the proof of the corollary. O

7.2.5. The main proof. Finally we turn to the proof of Theorem 7.1.11.

Proof of Theorem 7.1.11. Choose a non-CM elliptic curve E/Q with good
reduction above Ly. Choose distinct rational primes /; and Il and a prime A;|ly
of M; for each ¢ € Z such that:

Assumption 7.2.6.

(1) Iy splits completely in each M;.

(2) The image of G on E[l;] contains SLy(Fy,), and 7; ,(Gr) contains
SLo(Fy,) for each i € 7.

(3)

(4)

(5) {1 and [y lie under no prime of any S;.

(6) l1,19 > 2m; + 3 for all 4.

{1 and [y are unramified in F'.
F has good reduction above /3 and [o.

This is possible because all the conditions are satisfied for a set of primes
of Dirichlet density 1 (using Lemma 7.1.3), except for the first condition for [y,
which is satisfied for a set of primes of positive Dirichlet density.

Set L = Ly U{l1,l2}. The weakly compatible system of characters

(M, Si, 1, {g, ' Qin(0)}, {er detri n}, {{0}})

has all Hodge-Tate numbers 0 and so there is a character ¢; : Gp — M, with
open kernel unramified outside S; such that detr; \ = wiel_l for all A (a prime
of M; with residue characteristic ). There is a sequence

Hom(Gp, M) -2 Hom(Gp, M) -2 H2(Gp, {£1}) = Brp[2] < @,Brp, [2],

which is exact at the second term. The element 0v; is non-trivial only at
places v € S;. We can find a soluble Galois totally real extension F"/Q,

unramified above £ and linearly disjoint over Q from the normal closure Fveid

. —ker(7 T .
of Fg"mdF e xILiTix) over Q, such that for each v € (J;c7 Si, the rational
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prime p, below v has inertia degree in Fy" divisible by 2[F, : Qp,]. (See for
instance [CHTO08, Lem. 4.1.2].) Then we see that, for each i € Z, 8¢i|GFF+ is
1

trivial so that there is a continuous homomorphism
w5 X

such that ¢? = wibpﬁ' For v|l € L we see that gbiﬁFFJr = 1. By the
1 ARY

Grunwald-Wang theorem (see Theorem 5 of Chapter X of [AT09]), we can find
a continuous character §; : G FEF {#1} such that ¢;0; is unramified at all
places above L. Replacing ¢; by ¢;0; we may suppose that ¢; is unramified at
all places above L. Set

R;=Rle . @¢;"

FF
with S; =5;.

We apply Corollary 7.2.4 to {m; : i € T}, E, £ and F*°4F,". We obtain
a finite Galois extension FQB“’Oid /Q linearly disjoint from Ff""ide over Q and
a finite totally real Galois extension F1suffices /Q_ which is unramified above £
and linearly disjoint from Fvold pavoid it gyer Q. Set Favold = pavoid pavoid |
is Galois over Q, and certainly contains chr(rE’ll L) C F laVOid by definition.
Moreover it is linearly disjoint from F"F Hsuffices oyer Q (see the diagram of
field extensions later in this proof).

Let VF;,M denote the vector space underlying F;;,Ai and give it a non-
degenerate symplectic pairing, which 7, A, Will then preserve up to multiplier

6;21. Let Y; /FFl+ denote the moduli space of elliptic curves D along with
isomorphisms a; : E[ly] — D[l;] and oy : V.Y — Dlly], which preserve
i

symplectic pairings. Let X;/F *Ffr denote the restriction of scalars of Y.
If v is an infinite place of F¥F|", then a point of X;((F+F}"),) is the same

as an (FF;"),-point of ¥; and hence X;((FTF;"),) # 0.

Suppose that w is a place of FI+F above Lo U {l1}. Then we can find a
positive integer f such that 77 ). (Froby,) ™/ ~ 7, (Froby,)/. Thus E gives rise
to a point of ¥; over the unramified extension of degree f of (F; F),. Hence
X; has a point over an unramified extension of (F;"FT), for every place v
above Lo U {l1}. Moreover this point corresponds to an elliptic curve with good
reduction.

Now suppose that v is a place of F1+ FT above ly. We will show that X;
has a rational point over an unramified extension of (F;"F*), corresponding
to an elliptic curve with good reduction. It suffices to show that Y; has a point
over an unramified extension of (F; F),, for every prime w of F;"F over v and
that this point corresponds to an elliptic curve with good reduction. Because
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Qi, = M, 5, part 1 of Lemma 7.1.8 implies that the restriction F;)‘i|G(F1+F)w
must have one of the following two forms:
(1) The induction from the unramified quadratic extension of (Fj" F),, of
wy, 125 , where ¢ is the unramified quadratic character.

(2) >(§ Yi:}_l ) where ¥ is unramified and where the extension class
lo

is peu ramifié in the sense that it lies in
H}”(G(FfF)wv Fi,(e,X%) C Hl(G(FfF)wa Fi, (e,X%))-

(While the statement of Lemma 7.1.8 does not prescribe the direction of the
extension in the second possibility, nor specify that it is peu ramifié, these follow
easily from the connected—étale sequence for the finite flat group scheme H
considered in the proof of Lemma 7.1.8.) In the first case, let D/(F;" F),, be an
elliptic curve with good supersingular reduction. Choose a positive integer f
such that 7, (Frob,)?f = (=13)f mod ;. Then D provides a point of ¥; over
the unramified extension of (F; F),, of degree 2.

In the second case, let D/k(w) be an ordinary elliptic curve and let
Y Grw) — ZZX2 denote the character by which Gy, acts on the Tate module
T,,D. If L/F,, is a finite extension then, by Serre-Tate theory, liftings of D to
Oy, are parametrized by H* (G, Zy,(e,1072)) = H}(GL, Zy,(e1,972)), and we
shall write D, for the lifting corresponding to a class e. (Note that ¢ =2 always

has infinite order.) Then
_ =1
TDls = ( 6121(/; % )

and the extension class is the image of e in H}(G L, Fi, (éba_Q)). Choose a
positive integer f such that ¥/ = 1 and ¢/ = 1 mod I, and FE,ll(Frobb)f =1
and Frob/, = 1 on D[l}](k(w)). Let L/F,, denote the unramified extension of
degree f, and let e € H}(GL, Z1,(e1,9~2)) lift the negative of the class of TG
in H}(GL, k(w)(€,X?)) (the existence of such an e follows from Lemma 7.2.2).
Then D./L has De[l1] = E[li] and 7p, 1, = (7], )"

It follows (for instance, by [BLGGT14, Prop. 3.1.1]) that there is a finite
extension Fy"/F;" F* such that:
F,f is Galois over Fy'.
F; is totally real.

All primes above £ are unramified in F2+ /FT, and D; has good reduction

at all primes in L.

e I is linearly disjoint over Fj" F* from favold ptsuffices pi

e [[; X; hasan F2+ -rational point, i.e. there exist elliptic curves D; over F5
such that Dz[ll] = E[l1]|GF2 and Dz[lz] = F;7/\i|éF2.
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Set preuffices — @ +’SufﬁceSF2+ F, a CM extension of F' which is unramified
above £ and Galois over Fyp. We now show that this is linearly disjoint
from Fa°d gyer F; the reader may find it helpful to consult the diagram of
field extensions below. As FT=suffices is Jinearly disjoint from Fjf Faveld oyer
Q, we see that F+ [T Frsuffices g Jinearly disjoint from F;" F2°d over F+F}",
and so Fy” Frsulicss g linearly disjoint from FjFFav°id over FTF". Thus
Frsuffices g Jinearly disjoint from Ffr Favoid gyer F Ffr . On the other hand F! 1+
is linearly disjoint from F2¥°id gver Q and so F2¥°id is linearly disjoint from
F Ffr over F. We conclude that Fuies ig linearly disjoint from F2¥°id over F.

Fsufﬁces F+ Favoid

7O\
N

+,suffices -+
F B ———

N\

F+F+F+ suffices F1+ F

Ffr Favoid

F—i—,sufﬁces - Q

Suppose that F’/F is a finite CM extension containing F"1°s and which is
unramified above £ and linearly disjoint from F2v°d gver F. By Corollary 7.2.4,
there are regular algebraic, cuspidal, polarizable automorphic representations
m; of GL14pm, (A pr) unramified above £ and of weight (0);; such that for any
1 Qll = C we have

Symm™ rg |\C/¥F/ = 1y ().
Applying Theorem 6.1.1 (the conditions on the residual representations are
satisfied by parts (1), (2) and (4) of Lemma 7.1.6 and Lemma 7.1.8), we see
that there are regular algebraic, cuspidal automorphic representations 7, of
GL14m, (Ap/) unramified above £ and of weight (0), and ¢ : Q;, = C such that

m; vV /
Symm™* D, 1 ‘GF/ = Tllﬂ(”i)?
and so, for some 7 : 612 = C, we have
m; V /
Symm™" TDiJZ‘GF/ = T1271(7Ti)'

Applying Theorem 6.1.1 again (the conditions on the residual representations
again being satisfied by parts (1), (2) and (4) of Lemma 7.1.6 and Lemma 7.1.8)
we see that there is are regular algebraic, cuspidal automorphic representations
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7! of GL14m, (A p) unramified above £ and of weight (0)7;, and +: Q;, = C

such that
SyII]'HlWL2 T’E,)\i |GF/ = TlZ,l(Trg/)'
Untwisting completes the proof of Theorem 7.1.11. O
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