

Abstract

We will describe a parameter space for the morphisms $\mathbb{CP}^1 \to \mathbb{CP}^1$ and compactify it. Then we divide out the simultaneous action of $\operatorname{Aut}(\mathbb{CP}^1)$ on domain and target to obtain compactifications of the moduli space of self-maps of \mathbb{CP}^1 . Several properties of this new space are given.

The space of morphisms $\mathbb{CP}^1 \to \mathbb{CP}^1$

We identify an algebraic map $\varphi : \mathbb{CP}^1 \to \mathbb{CP}^1$ of degree d with its graph

 $\Gamma_{\varphi} = \{ (x, \varphi(x)) : x \in \mathbb{CP}^1 \} \subset \mathbb{CP}^1 \times \mathbb{CP}^1.$

 Γ_{φ} is a complex curve of class $(1, d) \in H_2(\mathbb{CP}^1 \times$ \mathbb{CP}^1,\mathbb{Z}). Thus Γ_{φ} is the vanishing set of a global section s of the line bundle $\mathcal{O}(d, 1)$ on $\mathbb{CP}^1 \times \mathbb{CP}^1$, unique up to scaling. This gives a unique element

 $[s] \in \mathbb{P}(H^0(\mathbb{CP}^1 \times \mathbb{CP}^1, \mathcal{O}(d, 1))) =: Z_d.$

The set of [s] obtained like this forms an open subset $\operatorname{Rat}_d \subset Z_d.$

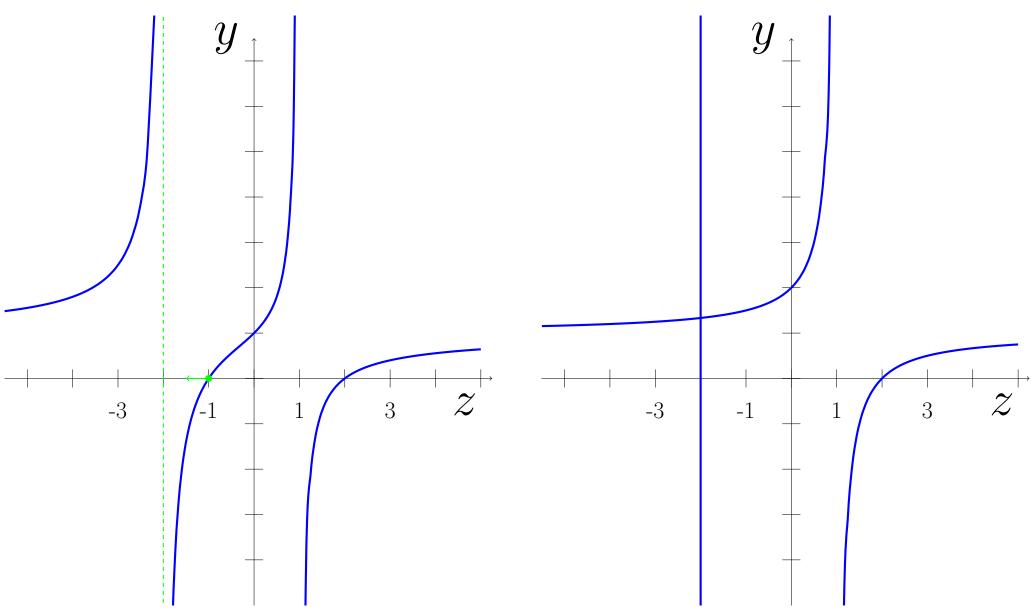


Figure 1: Degeneration in Z_2 as pole and zero collide

Alternatively, we can add to a graph Γ the structure of a **parametrization**. For this consider the moduli space

 $\overline{M}_{0.n}(\mathbb{CP}^1 \times \mathbb{CP}^1, (1, d)) =: Y_{d, n}$

of stable maps $f : C \to \mathbb{CP}^1 \times \mathbb{CP}^1$ from an *n*pointed genus 0 curve C. For such a map there is a unique $[s] \in Z_d$ with $f_*[C] = \operatorname{div}(s)$. This gives a natural morphism $j: Y_{d,n} \to Z_d$ and for n = 0it induces an isomorphism from the locus of maps with $C = \mathbb{CP}^1$ to Rat_d .

A compactification of the space of self-maps of \mathbb{CP}^{\perp} Johannes Schmitt ETH Zurich

The conjugation action of $\mathbf{PGL}_2(\mathbb{C})$

Identifying domain and target of a map $\varphi : \mathbb{CP}^1 \to$ \mathbb{CP}^1 to be the same \mathbb{CP}^1 we want to study such maps up to *simultaneous* choice of coordinates on \mathbb{CP}^1 . A coordinate change then corresponds to the **conjugation** by an element $\psi \in \operatorname{Aut}(\mathbb{CP}^1) = \operatorname{PGL}_2(\mathbb{C})$. The induced action

 $\mathrm{PGL}_2(\mathbb{C}) \times \mathrm{Rat}_d \to \mathrm{Rat}_d, (\psi, \varphi) \mapsto \psi \circ \varphi \circ \psi^{-1}$ extends naturally to Z_d and $Y_{d,n}$. On those (parametrized) graphs it is induced by the usual action of $\mathrm{PGL}_2(\mathbb{C})$ on the factors of $\mathbb{CP}^1 \times \mathbb{CP}^1$.

Main definition

 $M_d := \operatorname{Rat}_d /\!\!/ \operatorname{PGL}_2(\mathbb{C}) \subset M_d^s := Z_d^{ss} /\!\!/ \operatorname{PGL}_2(\mathbb{C})$

First properties

Let $d \geq 2$ even and $n \geq 0$, then we know	T
- $M(d, n)$ is a normal, projective variety over \mathbb{C}	pa ins
• the map $\phi: Y^{ss}_{d,n} \to M(d,n)$ is a geometric quotient	m se
 M(2,0) ≈ CP²; in general M(d, n) is rational the action of PGL₂(C) on Y^{ss}_{d,n} is free away from a locus of codimension ≥ 2 (unless (d, n) = (2,0)). 	we tri pa C
Due to this last point, if $M(d, n)$ is \mathbb{Q} -factorial then the pullback $\phi^* : \operatorname{Pic}(M(d, n)) \otimes_{\mathbb{Z}} \mathbb{Q} \to \operatorname{Pic}(Y^{ss}_{d,n}) \otimes_{\mathbb{Z}} \mathbb{Q}$	ess ur me
is an isomorphism. Using methods adapted from [1] we were able to compute the space on the right. The Picard group is generated by the boundary divisors of $Y_{d,n}$ lying in the semistable locus together with $\operatorname{ev}_1^*(\mathcal{O}(1,0))$ for $n = 1, 2$. Intersecting with ex- plicit test curves we showed that all relations among these generators are pullbacks of boundary relations in $\overline{M}_{0,n}$ under the forgetful map $Y_{d,n} \to \overline{M}_{0,n}$.	As are pc "s ing uli pr

Stability conditions

We can then define the quotient of Z_d and $Y_{d,n}$ by this action using Geometric Invariant Theory (GIT). In order for the quotient to have an algebraic structure, we must restrict ourselves to points $Z_d^{ss} \subset$ Z_d and $Y_{d,n}^{ss} \subset Y_{d,n}$ that are **semistable**. This notion is defined canonically for Z_d and for d even it pulls back well to $Y_{d,n}$ via the map $j: Y_{d,n} \to Z_d$. Roughly a (parametrized) graph is (semi)stable iff none of the vertical components have multiplicity (as an algebraic cycle) greater than d/2. In particular $\operatorname{Rat}_d \subset Z_d^{ss}$.

 $M(d, n) := Y_{d, n}^{ss} /\!\!/ \mathrm{PGL}_2(\mathbb{C})$

Modular interpretation

The space M_d of degree d self maps and its comactification M_d^s have been studied before, see for istance [2]. There it was shown that M_d is a **coarse noduli space** for families $\mathbb{P}_S \to \mathbb{P}_S$ of degree d elf-maps over S up to S-automorphisms of \mathbb{P}_S . We vere able to show that the locus M_d^* of points with rivial $PGL_2(\mathbb{C})$ -isotropy is a **fine moduli space** arametrizing self maps of flat, projective families $\to S$ with geometric fibres \mathbb{CP}^1 that are not necssarily the trivial family \mathbb{P}_S . The corresponding niversal family is the restricition of the forgetful norphism $M(d, 1) \to M(d, 0)$ to M_d^* .

As for the compactification, closed points of M(d, n)re in bijection with stable degree d self-maps of nointed genus 0 curves (for a suitable definition of stable self-map"). However, defining a correspondig modular property making M(d, n) a coarse modi space requires more care and is still work in rogress.

M(1|0,0,1)

[1] Rahul Pandharipande. Intersections of Q-divisors on Kontsevich's moduli space $\overline{M}_{0,n}(\mathbb{P}^r,d)$ and enumerative geometry. Transactions of the American Mathematical Society, 351(4):1481-1505, 1999.

[2] Joseph H. Silverman. The space of rational maps on \mathbb{P}^1 . Duke Math. J., 94(1):41-77, 07 1998.

• Email: johannes.schmitt@math.ethz.ch • Phone: +41 44 632 3406

Recursive boundary structure

Consider the boundary divisor $D_{B,k}$ of M(d,n) of maps $f: C \to \mathbb{CP}^1 \times \mathbb{CP}^1$ where one component of C carries the markings $B \subset \{1, \ldots, n\}$ and maps with degree (0, k). By removing this component and putting a new marking q at the intersection point with the other component, we obtain the graph of a degree d-k self-map with n-|B|+1 markings. This leads to a generalization $M(d|d_1, \ldots, d_n)$ of M(d, n)where markings can have a **weight** playing a role in the definition of semistability in the GIT quotient.

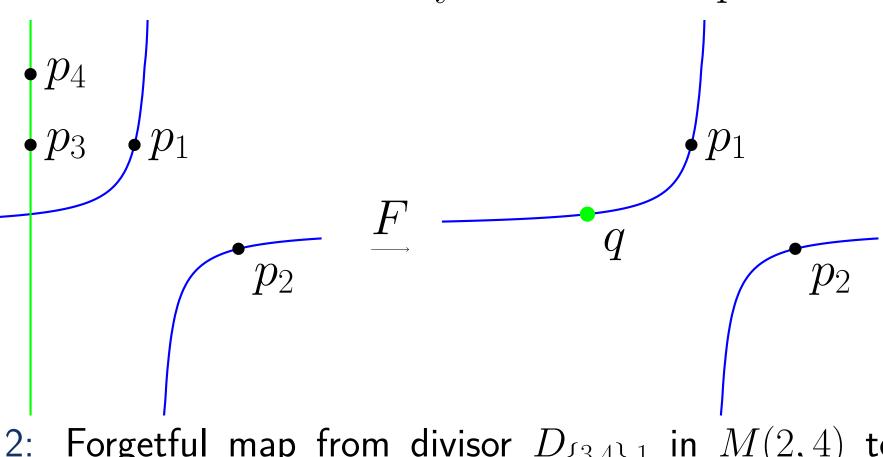


Figure 2: Forgetful map from divisor $D_{\{3,4\},1}$ in M(2,4) to

The forgetful map F illustrated above exhibits the divisor $D_{B,k}$ as a fibration above M(d - d) $k|0,\ldots,0,k\rangle$. This recursive structure might be used in exploring the intersection theory on the spaces $M(d|d_1,\ldots,d_n)$.

References

Contact Information