8 Questions

Question 8.1 (see Exercise 2.8). Let $\pi_X : X \to Z, \pi_Y : Y \to Z$ be morphisms of schemes. For any scheme S define

$$h(S) = (h^X \times_{h^Z} h^Y)(S) = \left\{ (\sigma_X, \sigma_Y) : \begin{array}{c} \sigma_X : S \to X, \sigma_Y : S \to Y \\ \text{such that } \pi_X \circ \sigma_X = \pi_Y \circ \sigma_Y \end{array} \right\}$$

- a) Show that h defines a moduli functor.
- b) Prove that the fibre product $X \times_Z Y$ is a fine moduli space for h (you can use standard properties of the fibre product). What is its universal family?
- Question 8.2 (see Exercise 2.17). a) Show that every fine moduli space is also a coarse moduli space (in particular, make precise what this statement means).
 - b) Show that given a moduli functor h having a coarse moduli space (M, Φ) , this space is unique up to isomorphism.

Question 8.3. Let $E \subset \mathbb{P}^2$ be a smooth, irreducible cubic curve.

- a) Compute the geometric and arithmetic genus of E.
- b) Let $L \subset \mathbb{P}^2$ be a line in general position and consider the curve $C = E \cup L$. You can use without proof that C is a nodal curve. Is C stable? If so, draw its dual graph and compute its arithmetic and geometric genus.

Question 8.4 (see Exercise 3.12). Let C be a smooth, complex, irreducible projective curve of genus g and $p_1, \ldots, p_n \in C$ be distinct points.

- a) Show that $Aut(C, p_1, \ldots, p_n)$ is finite if and only if 2g 2 + n > 0.
- b) For $C = \mathbb{P}^1$ and n = 3, compute the orders of the groups $\operatorname{Aut}(\mathbb{P}^1, p_1, p_2, p_3)$ and

$$\operatorname{Aut}(\mathbb{P}^1, \{p_1, p_2, p_3\}) = \{\varphi \in \operatorname{Aut}(\mathbb{P}^1) : \varphi(\{p_1, p_2, p_3\}) = \{p_1, p_2, p_3\}\}$$

Question 8.5 (see Exercise 4.4). Explain the isomorphism

$$M_{0,n} = (\mathbb{P}^1 \setminus \{0, 1, \infty\})^{n-3} \setminus \Delta \tag{135}$$

that we discussed in the lecture. In particular, for n = 4 compute which point of $\mathbb{P}^1 \setminus \{0, 1, \infty\}$ is associated to the point

$$(\mathbb{P}^1, \infty, 42, 0, \pi) \in M_{0,4}.$$

What is the universal family over $M_{0,n} = (\mathbb{P}^1 \setminus \{0, 1, \infty\})^{n-3} \setminus \Delta$?

- **Question 8.6** (see Exercise 4.11). a) Show that a stable graph of genus g with n legs has at most 3g 3 + n edges.
 - b) Compute the number of isomorphism classes of stable graphs with exactly one edge for g = 5, n = 4.

- **Question 8.7** (see Exercise 4.19). a) Show that the graph Γ from Figure 35 has trivial automorphism group.
 - b) Compute the order of the automorphism group $\operatorname{Aut}(\Gamma')$ of Γ' . Let (C, p_1) be a stable curve with dual graph Γ' . Does the automorphism group $\operatorname{Aut}(C, p_1)$ have the same order as $\operatorname{Aut}(\Gamma')$?

Figure 35: Stable graphs Γ and Γ'

Question 8.8 (see Exercise 4.28). Figure 36 illustrates the forgetful morphism $\pi : \overline{M}_{1,2} \to \overline{M}_{1,1}$ with the boundary of both spaces marked in red. For each of the points marked in blue, draw their corresponding curves and their dual graphs.

Figure 36: The forgetful morphism $\pi: \overline{M}_{1,2} \to \overline{M}_{1,1}$

Question 8.9. Let $f : \mathbb{P}^1 \to \mathbb{P}^1$ be a morphism of degree d. Compute

$$f_*: H^*(\mathbb{P}^1) \to H^*(\mathbb{P}^1) \text{ and } f^*: H^*(\mathbb{P}^1) \to H^*(\mathbb{P}^1)$$

on the basis 1, H of $H^*(\mathbb{P}^1)$.

Question 8.10. Consider the stable graphs Γ_1, Γ_2 in Figure 37.

- a) What is the genus g and number of legs n of these graphs. What are the cohomological degrees $k_1, k_2 \in \mathbb{Z}_{\geq 0}$ such that the decorated stratum classes $[\Gamma_i, 1]$ (with $\alpha = 1 \in H^0(\overline{\mathcal{M}}_{\Gamma_i})$) are contained in $H^{k_i}(\overline{\mathcal{M}}_{g,n})$?
- b) The set $\mathcal{G}_{\Gamma_1,\Gamma_2}$ of generic (Γ_1,Γ_2) -structures $(\Gamma,\varphi_1,\varphi_2)$ has precisely 3 elements. Draw the three possible graphs Γ that appear. You don't have to prove that these are the only ones.
- c) Compute the cup product $[\Gamma_1, 1] \smile [\Gamma_2, 1]$ as a sum of decorated stratum classes.

Figure 37: Two stable graphs