Geometrically defined cycles on moduli spaces of curves

Johannes Schmitt

May 2019
Table of Contents

1 Moduli spaces of curves and their cohomology

2 Cycles of twisted k-differentials

3 Admissible cover cycles
Table of Contents

1. Moduli spaces of curves and their cohomology

2. Cycles of twisted k-differentials

3. Admissible cover cycles
The moduli space of smooth curves

Definition

Let $g, n \geq 0$ be integers (with $2g - 2 + n > 0$).
The moduli space of smooth curves

Definition

Let \(g, n \geq 0 \) be integers (with \(2g - 2 + n > 0 \)).

\[
\mathcal{M}_{g,n} = \left\{(C, p_1, \ldots, p_n): \right\}
\]

\(C \) smooth, compact complex algebraic curve

\(p_1, \ldots, p_n \in C \) distinct points

\(\ast \) alternatively: Riemann surface

complex manifold

of dimension 1
The moduli space of smooth curves

Definition

Let $g, n \geq 0$ be integers (with $2g - 2 + n > 0$).

$$\mathcal{M}_{g,n} = \left\{ (C, p_1, \ldots, p_n) : C \text{ smooth, compact complex algebraic curve}^* \text{ of genus } g \right\}$$
The moduli space of smooth curves

Definition

Let \(g, n \geq 0 \) be integers (with \(2g - 2 + n > 0 \)).

\[
\mathcal{M}_{g,n} = \left\{ (C, p_1, \ldots, p_n) : \begin{array}{l}
C \text{ smooth, compact complex curve} \\
\text{of genus } g
\end{array} \right\}
\]

* alternatively:
 - Riemann surface
 - complex manifold of dimension 1
The moduli space of smooth curves

Definition

Let $g, n \geq 0$ be integers (with $2g - 2 + n > 0$).

\[
\mathcal{M}_{g,n} = \left\{ (C, p_1, \ldots, p_n) : \begin{array}{l}
C \text{ smooth, compact complex algebraic curve}^* \text{ of genus } g \\
\end{array} \right\}
\]

* alternatively:
 - Riemann surface
 - complex manifold of dimension 1
The moduli space of smooth curves

Definition

Let \(g, n \geq 0 \) be integers (with \(2g - 2 + n > 0 \)).

\[
M_{g,n} = \left\{ (C, p_1, \ldots, p_n) : \begin{array}{l}
C \text{ smooth, compact complex algebraic curve}^* \\
\text{of genus } g \\
p_1, \ldots, p_n \in C \text{ distinct points}
\end{array} \right\}
\]

\(*\) alternatively:

- Riemann surface
- complex manifold of dimension 1
The moduli space of smooth curves

Definition

Let $g, n \geq 0$ be integers (with $2g - 2 + n > 0$).

$$\mathcal{M}_{g,n} = \left\{ (C, p_1, \ldots, p_n) : \begin{array}{l} C \text{ smooth, compact complex} \\ \text{algebraic curve* of genus } g \\ p_1, \ldots, p_n \in C \text{ distinct points} \end{array} \right\} / \text{iso}$$

* alternatively:
 - Riemann surface
 - complex manifold of dimension 1
The moduli space of smooth curves

\[M_{g,n} \]

\(M_{g,n} \) is smooth, connected space of \(C \)-dimension \(3g - 3 + n \), but not compact.
The moduli space of smooth curves

Fact

$\mathcal{M}_{g,n}$ is a smooth, connected space of C^∞-dimension $3g - 3 + n$, but not compact.
The moduli space of smooth curves

Fact

\(\mathcal{M}_{g,n} \) is smooth, connected space of \(C \)-dimension \(3g - 3 + n \), but not compact.
Fact

$M_{g,n}$ is smooth, connected space of \mathbb{C}-dimension $3g - 3 + n$,

$M_{3,2}$
The moduli space of smooth curves

Fact

$\mathcal{M}_{g,n}$ is smooth, connected space of \mathbb{C}-dimension $3g - 3 + n$, but not compact.
The moduli space of smooth curves

Fact

$\mathcal{M}_{g,n}$ is smooth, connected space of \mathbb{C}-dimension $3g - 3 + n$, but not compact.
The moduli space of smooth curves

Fact

\(\mathcal{M}_{g,n} \) is smooth, connected space of \(\mathbb{C} \)-dimension \(3g - 3 + n \), but not compact.
The moduli space of smooth curves

Fact

$M_{g,n}$ is smooth, connected space of \mathbb{C}-dimension $3g - 3 + n$, but not compact.
The moduli space of smooth curves

Fact

\(\mathcal{M}_{g,n} \) is smooth, connected space of \(\mathbb{C} \)-dimension \(3g - 3 + n \), but not compact.
The moduli space of smooth curves

Fact

\[\mathcal{M}_{g,n} \text{ is smooth, connected space of } \mathbb{C}\text{-dimension } 3g - 3 + n, \text{ but not compact.} \]
The moduli space of smooth curves

Fact

\(\mathcal{M}_{g,n} \) is smooth, connected space of \(\mathbb{C} \)-dimension \(3g - 3 + n \), but not compact.
The moduli space of stable curves

Definition (Deligne-Mumford 1969)
Let $g, n \geq 0$ be integers (with $2g - 2 + n > 0$).

$$\overline{M}_{g,n} = \left\{ (C, p_1, \ldots, p_n) : \text{Aut}(C, p_1, \ldots, p_n) \text{ finite} \right\} / \text{iso}$$
Definition (Deligne-Mumford 1969)

Let $g, n \geq 0$ be integers (with $2g - 2 + n > 0$).

\[
\overline{M}_{g,n} = \left\{ (C, p_1, \ldots, p_n): \begin{array}{c}
C \text{ compact complex algebraic curve of arithmetic genus } g \\
\text{with at worst nodal singularities}
\end{array} \right\} / \text{iso}
\]
The moduli space of stable curves

Definition (Deligne-Mumford 1969)

Let \(g, n \geq 0 \) be integers (with \(2g - 2 + n > 0 \)).

\[
\overline{M}_{g,n} = \left\{ (C, p_1, \ldots, p_n): \begin{array}{c}
C \text{ compact complex algebraic curve of arithmetic genus } g \\
\text{with at worst nodal singularities} \\
p_1, \ldots, p_n \in C \text{ distinct smooth points}
\end{array} \right\} / \text{iso}
\]
The moduli space of stable curves

Definition (Deligne-Mumford 1969)

Let \(g, n \geq 0 \) be integers (with \(2g - 2 + n > 0 \)).

\[
\overline{M}_{g,n} = \left\{ (C, p_1, \ldots, p_n) : \begin{array}{l}
C \text{ compact complex algebraic curve of arithmetic genus } g \\
\text{with at worst nodal singularities} \\
p_1, \ldots, p_n \in C \text{ distinct smooth points} \\
\text{Aut}(C, p_1, \ldots, p_n) \text{ finite}\end{array} \right\} / \text{iso}
\]
The moduli space of stable curves

Facts

1. $\overline{M}_{g,n}$ is a smooth, connected, compact space of \mathbb{C}-dimension $3g - 3 + n$.

2. The boundary $\partial \overline{M}_{g,n} = \overline{M}_{g,n} \setminus M_{g,n}$ is a closed subset of \mathbb{C}-codimension 1 (normal crossing divisor), parametrized by products of smaller-dimensional spaces \overline{M}_{g_i,n_i}.
Recursive boundary structure

To \((C, p_1, \ldots, p_n) \in \overline{\mathcal{M}}_{g,n}\) we can associate a stable graph \(\Gamma(C, p_1, \ldots, p_n)\).
Recursive boundary structure

To \((C, p_1, \ldots, p_n) \in \overline{\mathcal{M}}_{g,n}\) we can associate a stable graph \(\Gamma_{(C, p_1, \ldots, p_n)}\).

Conversely, given a stable graph \(\Gamma\) we have a gluing map

\[
\xi_{\Gamma} : \prod_{v \in V(\Gamma)} \overline{\mathcal{M}}_{g(v), n(v)} = \overline{\mathcal{M}}_{1,3} \times \overline{\mathcal{M}}_{2,1} \to \overline{\mathcal{M}}_{3,2}
\]
Recursive boundary structure

Proposition

The map $\xi : \Gamma$ is finite with image equal to

$\{(C, p_1, \ldots, p_n) : \Gamma(C, p_1, \ldots, p_n) = \Gamma\}$.
The map ξ_Γ is finite with image equal to

$$\{(C, p_1, \ldots, p_n) : \Gamma(C, p_1, \ldots, p_n) = \Gamma\}.$$
The cohomology $H^*(\overline{M}_{g,n})$ of $\overline{M}_{g,n}$
The cohomology $H^*(\overline{M}_{g,n})$ of $\overline{M}_{g,n}$

- $\overline{M}_{g,n}$ compact space $\implies H^*(\overline{M}_{g,n})$ finite-dimensional \mathbb{Q}-algebra
The cohomology $H^*(\overline{M}_{g,n})$ of $\overline{M}_{g,n}$

- $\overline{M}_{g,n}$ compact space $\implies H^*(\overline{M}_{g,n})$ finite-dimensional \mathbb{Q}-algebra
- (Poincaré duality) For all $0 \leq k \leq \dim = 2(3g - 3 + n)$, the cup product defines a nondegenerate pairing

$$H^k(\overline{M}_{g,n}) \otimes H^{\dim-k}(\overline{M}_{g,n}) \to H^{\dim}(\overline{M}_{g,n}) \cong \mathbb{Q}.$$
The cohomology $H^*(\overline{M}_{g,n})$ of $\overline{M}_{g,n}$

- $\overline{M}_{g,n}$ compact space $\implies H^*(\overline{M}_{g,n})$ finite-dimensional \mathbb{Q}-algebra
- (Poincaré duality) For all $0 \leq k \leq \dim = 2(3g - 3 + n)$, the cup product defines a nondegenerate pairing

$$H^k(\overline{M}_{g,n}) \otimes H^{\dim-k}(\overline{M}_{g,n}) \to H^{\dim}(\overline{M}_{g,n}) \cong \mathbb{Q}.$$

- For $S \subset \overline{M}_{g,n}$ a closed, algebraic subset of \mathbb{C}-codimension d, there exists a fundamental class

$$[S] \in H_{\dim-2d}(\overline{M}_{g,n}) \xleftarrow{\text{PD}} H^{2d}(\overline{M}_{g,n}).$$
Definition: ψ-classes

Let $L_i \to M_{g,n}$ be a complex line bundle, $L_i|_{(C,p_1,...,p_n)} = T^*_{p_i}C$. Then $\psi_i = c_1(L_i) \in H^2(M_{g,n})$.

Definition: κ-classes

Forgetful morphism $F: M_{g,n+1} \to M_{g,n}$, $(C,p_1,...,p_n,p_{n+1}) \mapsto (C,p_1,...,p_n)$. Then $\kappa_a = F^*(\psi_{n+1})_a \in H^2_a(M_{g,n})$.
Natural cohomology classes on $\overline{M}_{g,n}$

Definition: ψ-classes

Let $\mathbb{L}_i \to \overline{M}_{g,n}$ be a complex line bundle, $\mathbb{L}_i|_{(C,p_1,\ldots,p_n)} = T_{p_i}^*C$

$$
\psi_i = c_1(\mathbb{L}_i) \in H^2(\overline{M}_{g,n}).
$$
Natural cohomology classes on $\overline{\mathcal{M}}_{g,n}$

Definition: $ψ$-classes

Let $\mathbb{L}_i \to \overline{\mathcal{M}}_{g,n}$ be a complex line bundle, $\mathbb{L}_i|_{(C,p_1,...,p_n)} = T^*_p C$

$$ψ_i = c_1(\mathbb{L}_i) \in H^2(\overline{\mathcal{M}}_{g,n}).$$

Definition: $κ$-classes

Forgetful morphism $F : \overline{\mathcal{M}}_{g,n+1} \to \overline{\mathcal{M}}_{g,n}, (C, p_1, \ldots, p_n, p_{n+1}) \mapsto (C, p_1, \ldots, p_n)$ [C smooth]

$$κ_a = F_*((ψ_{n+1})^{a+1}) \in H^{2a}(\overline{\mathcal{M}}_{g,n}).$$
The tautological ring

Definition: the tautological ring

The tautological ring $RH^*(\overline{M}_{g,n}) \subset H^*(\overline{M}_{g,n})$ is spanned as a \mathbb{Q}-vector subspace by elements

Example

$[\kappa_1 \kappa_2] = (\xi_\Gamma)^* (\kappa_1 \otimes \psi_h) \in RH^*(\overline{M}_3, 2)$, for $\xi_\Gamma : M_{1,3} \times M_{2,1} \to M_{3,2}$ and $\alpha = \kappa_1 \otimes \psi_h \in H^*(M_{1,3} \times M_{2,1})$.
The tautological ring

Definition: the tautological ring

The tautological ring $RH^*(\overline{M}_{g,n}) \subset H^*(\overline{M}_{g,n})$ is spanned as a \mathbb{Q}-vector subspace by elements

$$(\xi\Gamma)^* \left(\prod_{\nu \in V(\Gamma)} \overline{M}_{g(\nu),n(\nu)} \right)$$

Example $\left[\kappa_{11}^{12} \right] = (\xi\Gamma)^* (\kappa_{1} \otimes \psi_{h}) \in RH^*(\overline{M}_{3,2})$, for $\xi\Gamma : M_{1,3} \times M_{2,1} \to M_{3,2}$ and $\alpha = \kappa_{1} \otimes \psi_{h} \in H^*(M_{1,3} \times M_{2,1})$.
The tautological ring

Definition: the tautological ring

The tautological ring $RH^*(\overline{M}_{g,n}) \subset H^*(\overline{M}_{g,n})$ is spanned as a \mathbb{Q}-vector subspace by elements

$$(\xi_\Gamma)_* \left(\text{product of } \kappa, \psi \text{-classes on } \prod_{\nu \in V(\Gamma)} \overline{M}_{g(\nu), n(\nu)} \right)$$
The tautological ring

Definition: the tautological ring

The tautological ring $RH^*(\overline{M}_{g,n}) \subset H^*(\overline{M}_{g,n})$ is spanned as a \mathbb{Q}-vector subspace by elements

$$[\Gamma, \alpha] = (\xi_\Gamma)_* \left(\text{product of } \kappa, \psi \text{-classes on } \prod_{\nu \in V(\Gamma)} \overline{M}_{g(\nu), n(\nu)} \right)$$
The tautological ring

Definition: the tautological ring

The tautological ring $RH^*(\overline{M}_{g,n}) \subset H^*(\overline{M}_{g,n})$ is spanned as a \mathbb{Q}-vector subspace by elements

$$[\Gamma, \alpha] = (\xi \Gamma)_* \left(\text{product of } \kappa, \psi\text{-classes on } \prod_{\nu \in V(\Gamma)} \overline{M}_{g(\nu), n(\nu)} \right)$$

Example

$$\begin{bmatrix}
1 & 1 \\
2 & 2
\end{bmatrix}$$
The tautological ring

Definition: the tautological ring

The tautological ring $RH^*(\overline{M}_{g,n}) \subset H^*(\overline{M}_{g,n})$ is spanned as a \mathbb{Q}-vector subspace by elements

$$[\Gamma, \alpha] = (\xi_{\Gamma})_* \left(\text{product of } \kappa, \psi\text{-classes on } \prod_{\nu \in V(\Gamma)} \overline{M}_{g(\nu), n(\nu)} \right)$$

Example

$$\begin{bmatrix} 1 & \kappa_1 \\ 1 & 2 \end{bmatrix}$$

for $\xi_{\Gamma} : \overline{M}_{1,3} \times \overline{M}_{2,1} \to \overline{M}_{3,2}$
The tautological ring

Definition: the tautological ring

The tautological ring $RH^*(\overline{M}_{g,n}) \subset H^*(\overline{M}_{g,n})$ is spanned as a \mathbb{Q}-vector subspace by elements

$$[\Gamma, \alpha] = (\xi_\Gamma)_* \left(\text{product of } \kappa, \psi\text{-classes on } \prod_{\nu \in V(\Gamma)} \overline{M}_{g(\nu), n(\nu)} \right)$$

Example

$$\begin{bmatrix}
1 & \kappa_1 \\
\downarrow & \downarrow \\
1 & 2
\end{bmatrix}$$

for $\xi_\Gamma : \overline{M}_{1,3} \times \overline{M}_{2,1} \to \overline{M}_{3,2}$ and $\alpha = \kappa_1 \otimes \psi_h \in H^*(\overline{M}_{1,3} \times \overline{M}_{2,1})$
The tautological ring

Definition: the tautological ring

The tautological ring \(RH^* (\overline{M}_{g,n}) \subset H^* (\overline{M}_{g,n}) \) is spanned as a \(\mathbb{Q} \)-vector subspace by elements

\[
[\Gamma, \alpha] = (\xi_\Gamma)_* \left(\text{product of } \kappa, \psi\text{-classes on } \prod_{\alpha \in V(\Gamma)} \overline{M}_{g(v), n(v)} \right)
\]

Example

\[
\begin{bmatrix}
1 \\
2
\end{bmatrix}
\begin{bmatrix}
\kappa_1 \\
1 \\
2
\end{bmatrix} = (\xi_\Gamma)_* (\kappa_1 \otimes \psi_h) \in RH^* (\overline{M}_{3,2}),
\]

for \(\xi_\Gamma : \overline{M}_{1,3} \times \overline{M}_{2,1} \to \overline{M}_{3,2} \) and \(\alpha = \kappa_1 \otimes \psi_h \in H^* (\overline{M}_{1,3} \times \overline{M}_{2,1}) \)
Properties of the tautological ring

- explicit, finite list of generators $[\Gamma, \alpha]$ as \mathbb{Q}-vector space
- combinatorial description of cup product $[\Gamma, \alpha] \cdot [\Gamma', \alpha']$ (Graber-Pandharipande, 2003)
- list of many linear relations between the generators (Faber-Zagier 2000, Pandharipande-Pixton 2010, Pixton 2012, Pandharipande-Pixton-Zvonkine 2013)
- effective description of isomorphism $RH^{\dim}(\overline{M}_{g,n}) \cong \mathbb{Q}$ (Witten 1991, Kontsevich 1992)
Geometrically defined cycles

Heuristic

For many algebraic-geometric properties \mathcal{P} of smooth pointed curves (C, p_1, \ldots, p_n) (e.g. $\mathcal{P}(C) = \text{"C is hyperelliptic"}$):

$$S_{\mathcal{P}} = \{(C, p_1, \ldots, p_n) \in \mathcal{M}_{g,n} : \mathcal{P}(C, p_1, \ldots, p_n) \text{ is true}\} \subset \mathcal{M}_{g,n}$$
Geometrically defined cycles

Heuristic

For many algebraic-geometric properties \mathcal{P} of smooth pointed curves (C, p_1, \ldots, p_n) (e.g. $\mathcal{P}(C) = "C \text{ is hyperelliptic}"$):

$$S_{\mathcal{P}} = \{(C, p_1, \ldots, p_n) \in \mathcal{M}_{g,n} : \mathcal{P}(C, p_1, \ldots, p_n) \text{ is true}\} \subset \mathcal{M}_{g,n}$$

Goal

Decide if $[S_{\mathcal{P}}] \in H^*(\overline{\mathcal{M}}_{g,n})$ lies in $RH^*(\overline{\mathcal{M}}_{g,n})$. If so, compute formula in terms of generators.
1. Moduli spaces of curves and their cohomology

2. Cycles of twisted k-differentials

3. Admissible cover cycles
Meromorphic differential k-forms on smooth curves
Meromorphic differential k-forms on smooth curves
Meromorphic differential k-forms on smooth curves

\[(T^*_PC)^\otimes_k \]

\[\omega_c^\otimes_k\]
Meromorphic differential k-forms on smooth curves
Strata of meromorphic k-differentials

Definition

Given $g, n, k \geq 0$ and $\mu = (m_1, \ldots, m_n) \in \mathbb{Z}^n$ with $\sum_i m_i = k(2g - 2)$, let

$$\mathcal{H}^k_g(\mu) = \left\{ (C, p_1, \ldots, p_n) : \exists \text{ meromorphic } k\text{-differential } \eta \text{ on } C \text{ with zeros/poles at } p_i \in C \text{ of orders } m_i \right\} \subset \mathcal{M}_{g,n}.$$
Strata of meromorphic k-differentials

Definition

Given $g, n, k \geq 0$ and $\mu = (m_1, \ldots, m_n) \in \mathbb{Z}^n$ with $\sum_i m_i = k(2g - 2)$, let

$$H^k_g(\mu) = \left\{ (C, p_1, \ldots, p_n) : \exists \text{ meromorphic } k\text{-differential } \eta \text{ on } C \text{ with zeros/poles at } p_i \in C \text{ of orders } m_i \right\} \subset \mathcal{M}_{g,n}$$
Strata of meromorphic k-differentials

Definition

Given $g, n, k \geq 0$ and $\mu = (m_1, \ldots, m_n) \in \mathbb{Z}^n$ with $\sum_i m_i = k(2g - 2)$, let

$$\mathcal{H}_g^k(\mu) = \begin{cases}
(C, p_1, \ldots, p_n): & \exists \text{ meromorphic } k\text{-differential } \eta \text{ on } C \text{ with zeros/poles at } \ p_i \in C \text{ of orders } m_i \\
\omega_C^k \cong \mathcal{O}_C(\sum_i m_i p_i) \end{cases} \subset \mathcal{M}_{g,n}$$
Compactifying $H^k_g(\mu)$: twisted differentials

\[\tilde{H}^k_g(\mu) = \left\{ (C, p_1, \ldots, p_n) : \text{equality of line bundles on partial normalization of } C \right\} \subset M_g, n \]
Compactifying $H^k_g(\mu)$: twisted differentials

Definition (Farkas-Pandharipande 2015)

$\tilde{H}^g_k(\mu) = \{ (C, p_1, \ldots, p_n) \} \subset \overline{M}_{g,n}$
Compactifying $\mathcal{H}_g^k(\mu)$: twisted differentials

$\mathcal{H}_g^k(\mu)$ is the moduli space of twisted differentials for a curve of genus g. The compactification is given by

$$\mathcal{H}_g^k(\mu) = \{ (C, p_1, \ldots, p_n) : \text{equality of line bundles on partial normalization of } C \} \subset \overline{\mathcal{M}}_{g,n}.$$
Compactifying $\mathcal{H}_g^k(\mu)$: twisted differentials

$\tilde{\mathcal{H}}_g^k(\mu) = \{ (C, p_1, \ldots, p_n) : \text{equality of line bundles on partial normalization of } C \} \subset \mathcal{M}_g$.

Diagram:
- $\overline{\mathcal{M}}_{3,2}$
- $\mathcal{H}_3^1(2,2)$
- $\mathcal{H}_1^1(2,2,4)$
- $\mathcal{H}_2^1(2)$
- normalization
Compactifying $\mathcal{H}_g^k(\mu)$: twisted differentials

Definition (Farkas-Pandharipande 2015)

$$\tilde{\mathcal{H}}_g^k(\mu) = \left\{ (C, p_1, \ldots, p_n) : \left(\text{equality of line bundles on partial normalization of } C \right) \right\} \subset \overline{M}_{g,n}$$
Definition (Farkas-Pandharipande 2015)

$$\tilde{\mathcal{H}}_g^k(\mu) = \left\{ (C, p_1, \ldots, p_n) : \text{(equality of line bundles on partial normalization of } C) \right\} \subset \overline{M}_{g,n}$$
Compactifying $\mathcal{H}_g^k(\mu)$: twisted differentials

Definition (Farkas-Pandharipande 2015)

$$\tilde{\mathcal{H}}_g^k(\mu) = \left\{ (C, p_1, \ldots, p_n) : \text{equality of line bundles on partial normalization of } C \right\} \subset \overline{M}_{g,n}$$
Dimension of moduli space of twisted k-differentials

Theorem ($k = 1$: Farkas-Pandharipande 2015, $k > 1$: S. 2016, Bainbridge-Chen-Gendron-Grushevsky-Möller 2016, Mondello)
Theorem ($k = 1$: Farkas-Pandharipande 2015, $k > 1$: S. 2016, Bainbridge-Chen-Gendron-Grushevsky-Möller 2016, Mondello)

For $k \geq 1$, all components of $\tilde{H}_g^k(\mu)$ are of codimension g in $\overline{M}_{g,n}$
For $k \geq 1$, all components of $\tilde{H}_g^k(\mu)$ are of codimension g in $\overline{\mathcal{M}}_{g,n}$, except if $\mu = k \cdot \mu'$ for some $\mu' \geq 0$. In this case, the sublocus

$$\overline{H}_g^1(\mu') \subset \tilde{H}_g^k(\mu)$$

is a union of components of codimension $g - 1$.

Theorem ($k = 1$: Farkas-Pandharipande 2015, $k > 1$: S. 2016, Bainbridge-Chen-Gendron-Grushevsky-Möller 2016, Mondello)
For $k \geq 1$, all components of $\tilde{H}_g^k(\mu)$ are of codimension g in $\overline{M}_{g,n}$, except if $\mu = k \cdot \mu'$ for some $\mu' \geq 0$. In this case, the sublocus

$$\overline{H}_g^1(\mu') \subset \tilde{H}_g^k(\mu)$$

is a union of components of codimension $g - 1$.

Note

We have $\mathcal{H}_g^1(\mu') \subset \mathcal{H}_g^k(\mu)$ since

$$\omega_C \cong \mathcal{O}_C(\sum_i \frac{m_i}{k} p_i) \quad \implies \quad \omega_C^\otimes k \cong \mathcal{O}_C(\sum_i m_i p_i).$$
Conjectural relation to Pixton’s cycle

Let $k \geq 1$ and assume μ is not of the form $\mu = k \mu'$ for $\mu' \geq 0$, so $\tilde{H}_k g(\mu)$ has pure codimension g. Then we have

$$\sum_{Z \text{comp. of } \tilde{H}_k g(\mu)} \left[Z \right] = 2 - g P_{g, k} g(\tilde{\mu}) \in H_{2g}(M_g, \mathbb{A})$$

for $\tilde{\mu} = (m_1 + k, \ldots, m_n + k)$. Note Pixton’s cycle $P_{g, k} g(\tilde{\mu})$ is explicit sum of generators of $RH_{2g}(M_g, \mathbb{A})$. Explicit list of components $\left[Z \right]$, each parametrized by products of $H_{k_j} g_j(\mu_j)$.
Conjectural relation to Pixton’s cycle

Conjecture ($k = 1$ Janda-Pandharipande-Pixton-Zvonkine [FP-Appendix], $k \geq 1$ S.)
Conjectural relation to Pixton’s cycle

Conjecture (k = 1 Janda-Pandharipande-Pixton-Zvonkine [FP-Appendix], k ≥ 1 S.)

Let $k \geq 1$ and assume μ is not of the form $\mu = k\mu'$ for $\mu' \geq 0$, so $\tilde{H}_g^k(\mu)$ has pure codimension g.

Note Pixton’s cycle $P_g^k(\tilde{\mu})$ is explicit sum of generators of $R^g H_{2g}(M_g, n)$ explicit list of components $[Z]$, each parametrized by products of $H_{k_j}^g(\mu_j)$.
Conjectural relation to Pixton’s cycle

Conjecture ($k = 1$ Janda-Pandharipande-Pixton-Zvonkine [FP-Appendix], $k \geq 1$ S.)

Let $k \geq 1$ and assume μ is not of the form $\mu = k\mu'$ for $\mu' \geq 0$, so $\tilde{\mathcal{H}}^k_g(\mu)$ has pure codimension g. Then we have

$$
\sum_{Z \text{ comp. of } \tilde{\mathcal{H}}^k_g(\mu)} [Z] = \tilde{\mathcal{H}}^k_g(\mu) \in H^{2g}(\overline{M}_{g,n}),
$$

Note: Pixton’s cycle $P^g_{g}(\tilde{\mu})$ is explicit sum of generators of $\mathcal{R}H^{2g}(M_{g,n})$.
Conjectural relation to Pixton’s cycle

Conjecture (k = 1 Janda-Pandharipande-Pixton-Zvonkine [FP-Appendix], k ≥ 1 S.)

Let \(k \geq 1 \) and assume \(\mu \) is not of the form \(\mu = k\mu' \) for \(\mu' \geq 0 \), so \(\tilde{H}_g^k(\mu) \) has pure codimension \(g \). Then we have

\[
\sum_{Z \text{ comp. of } \tilde{H}_g^k(\mu)} \left(\begin{array}{c} \text{combinatorial factor} \\ \end{array} \right) [Z] = \quad \in H^{2g}(\overline{M}_{g,n}),
\]

Note Pixton's cycle \(P_g, k_g(\tilde{\mu}) \) is an explicit sum of generators of \(RH^{2g}(M_{g,n}) \).
Conjectural relation to Pixton’s cycle

Conjecture \((k = 1 \text{ Janda-Pandharipande-Pixton-Zvonkine [FP-Appendix], } k \geq 1 \text{ S.})\)

Let \(k \geq 1\) and assume \(\mu\) is not of the form \(\mu = k\mu'\) for \(\mu' \geq 0\), so \(\tilde{H}_{g}^{k}(\mu)\) has pure codimension \(g\). Then we have

\[
\sum_{Z \text{ comp. of } \tilde{H}_{g}^{k}(\mu)} \left(\begin{array}{c} \text{combinatorial factor} \\ \end{array} \right) [Z] = 2^{-g} P_{g}^{k}(\tilde{\mu}) \in H^{2g}(\overline{M}_{g,n}),
\]

for \(\tilde{\mu} = (m_{1} + k, \ldots, m_{n} + k)\).
Conjectural relation to Pixton’s cycle

Conjecture \((k = 1 \text{ Janda-Pandharipande-Pixton-Zvonkine [FP-Appendix], } k \geq 1 \text{ S.})\)

Let \(k \geq 1\) and assume \(\mu\) is not of the form \(\mu = k\mu'\) for \(\mu' \geq 0\), so \(\tilde{H}_g^k(\mu)\) has pure codimension \(g\). Then we have

\[
\sum_{Z \text{ comp. of } \tilde{H}_g^k(\mu)} \left(\text{combinatorial factor} \right) [Z] = 2^{-g} P_g^{g,k}(\tilde{\mu}) \in H^{2g}(\overline{M}_{g,n}),
\]

for \(\tilde{\mu} = (m_1 + k, \ldots, m_n + k)\).

Note

- Pixton’s cycle \(P_g^{g,k}(\tilde{\mu})\) is explicit sum of generators of \(RH^{2g}(\overline{M}_{g,n})\)
Conjectural relation to Pixton’s cycle

Conjecture ($k = 1$ Janda-Pandharipande-Pixton-Zvonkine [FP-Appendix], $k \geq 1$ S.)

Let $k \geq 1$ and assume μ is not of the form $\mu = k\mu'$ for $\mu' \geq 0$, so $\tilde{H}_g^k(\mu)$ has pure codimension g. Then we have

$$\sum_{Z \text{ comp. of } \tilde{H}_g^k(\mu)} \left(\begin{array}{c} \text{combinatorial factor} \\ \end{array} \right) [Z] = 2^{-g} P_{g}^{g,k}(\widetilde{\mu}) \in H^{2g}(\overline{M}_{g,n}),$$

for $\widetilde{\mu} = (m_1 + k, \ldots, m_n + k)$.

Note

- Pixton’s cycle $P_{g}^{g,k}(\widetilde{\mu})$ is explicit sum of generators of $RH^{2g}(\overline{M}_{g,n})$
- explicit list of components $[Z]$,
Conjectural relation to Pixton’s cycle

Conjecture \((k = 1 \text{ Janda-Pandharipande-Pixton-Zvonkine [FP-Appendix], } k \geq 1 \text{ S.})\)

Let \(k \geq 1\) and assume \(\mu\) is not of the form \(\mu = k \mu'\) for \(\mu' \geq 0\), so \(\tilde{H}^k_g(\mu)\) has pure codimension \(g\). Then we have

\[
\sum_{\text{combinatorial factor}} [Z] = 2^{-g} P^g,k(\tilde{\mu}) \in H^{2g}(\overline{M}_{g,n}),
\]

for \(\tilde{\mu} = (m_1 + k, \ldots, m_n + k)\).

Note

- Pixton’s cycle \(P^g,k(\tilde{\mu})\) is **explicit** sum of generators of \(RH^{2g}(\overline{M}_{g,n})\)
- **explicit** list of components \([Z]\), each parametrized by products of \(\overline{H}^{k_j}_{g_j}(\mu_j)\)
Applications and Evidence

Application : Recursion for $[\mathcal{H}_g^k(\mu)]$

The conjecture effectively determines the classes $[\mathcal{H}_g^k(\mu)]$.
Applications and Evidence

Application: Recursion for $[\mathcal{H}_g^k(\mu)]$

The conjecture effectively determines the classes $[\mathcal{H}_g^k(\mu)]$.

Evidence

Conjecture is true for

- $g = 0$ trivial ($1 = 1$)
Applications and Evidence

Application: Recursion for $\overline{H}_g^k(\mu)$

The conjecture effectively determines the classes $\overline{H}_g^k(\mu)$.

Evidence

Conjecture is true for

- $g = 0$ trivial ($1 = 1$)
- $g = 1$ (FP-Appendix)
Applications and Evidence

Application : Recursion for \([\mathcal{H}_g^k(\mu)] \)

The conjecture effectively determines the classes \([\mathcal{H}_g^k(\mu)] \).

Evidence

Conjecture is true for
- \(g = 0 \) trivial \((1 = 1)\)
- \(g = 1 \) (FP-Appendix)
- \(g = 2 \)
Applications and Evidence

Application : Recursion for $\left[H^k_g(\mu) \right]$

The conjecture effectively determines the classes $\left[H^k_g(\mu) \right]$.

Evidence

Conjecture is true for

- $g = 0$ trivial ($1 = 1$)
- $g = 1$ (FP-Appendix)
- $g = 2$
 - $k = 1$ and $\mu = (3, -1), (2, 1, -1)$ (FP-Appendix)
Applications and Evidence

Application: Recursion for $\overline{H}_g^k(\mu)$

The conjecture effectively determines the classes $\overline{H}_g^k(\mu)$.

Evidence

Conjecture is true for

- $g = 0$ trivial ($1 = 1$)
- $g = 1$ (FP-Appendix)
- $g = 2$
 - $k = 1$ and $\mu = (3, -1), (2, 1, -1)$ (FP-Appendix)
 - $k = 2$ and $\mu = (3, 1), (2, 1, 1)$ (S)
1. Moduli spaces of curves and their cohomology

2. Cycles of twisted k-differentials

3. Admissible cover cycles
Ramified covers of smooth curves: hyperelliptic case
Ramified covers of smooth curves: hyperelliptic case

\[\Phi \downarrow \mathbb{P}^1 \]

\[C \]
Ramified covers of smooth curves: hyperelliptic case
Ramified covers of smooth curves: hyperelliptic case

\[\varphi \downarrow \mathbb{P}^1 \]

\[C \]

\[\mathbb{P}^1 \]
Ramified covers of smooth curves: hyperelliptic case
Ramified covers of smooth curves: hyperelliptic case

\[\mathcal{C} \xrightarrow{\varphi} \mathbb{P}^1 \]

Points of ramification:

Points of branch:

\[\mathbb{P}^1 \]
Ramified covers of smooth curves: hyperelliptic case

\[\varphi : 2:1 \]

\[\mathbb{P}^1 \cdot \cdot \cdot \cdot \cdot \]

\[\text{ramification Points} \]

\[\text{branch points} \]
Ramified covers of smooth curves: hyperelliptic case

Diagram:

- **C**: Smooth curve
- **\mathbb{P}^1**: Projective line
- **γ**: Ramified cover
- **Ramification Points**: Points where the covering ramifies
- **Conjugate Pair**: Points in the conjugate pair
- **Branch Points**: Additional points on the projective line

The diagram illustrates a 2:1 ramified cover γ from a smooth curve C to the projective line \mathbb{P}^1. The ramification points and conjugate pair are indicated on the curve, while the branch points are shown on the projective line.
Loci of hyperelliptic and bielliptic curves

Definition

Let $g, n, m \geq 0$ be integers with $0 \leq n \leq 2g + 2$. Define

$$
\text{Hyp}_{g, n, 2m} = \left\{ (C, (p_i)_i^{n}, (q_j, q'_j)_j^{m}) : \begin{array}{l}
C \text{ hyperelliptic} \\
\text{ram. points } p_i, \\
\text{conj. pairs } q_j, q'_j
\end{array} \right\} \subset \mathcal{M}_{g, n+2m}.
$$
Loci of hyperelliptic and bielliptic curves

Definition

Let $g, n, m \geq 0$ be integers with $0 \leq n \leq 2g + 2$. Define

\[\text{Hyp}_{g,n,2m} = \left\{ (C, (p_i)_{i=1}^n, (q_j, q'_j)_{j=1}^m) : \begin{array}{l} \text{C hyperelliptic} \\ \text{ram. points } p_i, \\ \text{conj. pairs } q_j, q'_j \end{array} \right\} \subset \mathcal{M}_{g,n+2m}. \]

Definition

Let $g, n, m \geq 0$ be integers with $0 \leq n \leq 2g + 2$. Define

\[\text{B}_{g,n,2m} = \left\{ (C, (p_i)_{i=1}^n, (q_j, q'_j)_{j=1}^m) : \begin{array}{l} \text{C bielliptic} \\ \text{ram. points } p_i, \\ \text{conj. pairs } q_j, q'_j \end{array} \right\} \subset \mathcal{M}_{g,n+2m}. \]
Compactification via admissible covers

Goal

Study admissible cover cycles like $Hyp_{g,n,2m}$ and $Bhyp_{g,n,2m} \in H^\ast(M_{g,n+2m})$.

$\overline{M}_{3,1}$
Compactification via admissible covers

Goal

Study admissible cover cycles like \([\text{Hyp}, n, 2m] \) and \([\text{Bhyp}, n, 2m] \) \(\in H^*(\overline{M}_{g,n} + 2m)\).
Compactification via admissible covers

Goal

Study admissible cover cycles like $Hyp_{3,1}$ and $B_{3,1}$, $2m \in H^*(\bar{M}_{3,1}, \mathbb{Z})$.

[Diagram showing $\bar{M}_{3,1}$ and an admissible cover with a 2:1 map]
Compactification via admissible covers

Goal

Study admissible cover cycles like $\text{Hyp}_{g,n,2m}$ and $\text{Bhyp}_{g,n,2m} \in H^\ast(M_g, n + 2m)$.
Goal

Study admissible cover cycles like $[\overline{\text{Hyp}_{g,n,2m}}]$ and $[\overline{\mathcal{B}_{g,n,2m}}] \in H^*(\overline{\mathcal{M}_{g,n+2m}})$.
Theorem (Faber-Pandharipande 2005)

The fundamental class $[\text{Hyp}_{g,n,2m}] \in H^{2g+2n+2m-4}(\overline{M}_{g,n+2m})$ lies in the tautological ring $RH^{2g+2n+2m-4}(\overline{M}_{g,n+2m})$.

Note: For small (g,n,m) the cycle $[\text{Hyp}_{g,n,2m}]$ is tautological, since $H^*(\overline{M}_{g,n+2m}) = RH^*(\overline{M}_{g,n+2m})$.

Johannes Schmitt
Cycles on moduli spaces of curves
May 2019 26 / 33
Admissible cover cycles

Theorem (Faber-Pandharipande 2005)

The fundamental class \([\text{Hyp}_{g,n,2m}] \in H^{2g+2n+2m-4}(\overline{M}_{g,n+2m})\) lies in the tautological ring \(RH^{2g+2n+2m-4}(\overline{M}_{g,n+2m})\).

Theorem

The fundamental class \([\text{B}_{g,n,2m}] \in H^{2g+2n+2m-2}(\overline{M}_{g,n+2m})\) does not lie in the tautological ring \(RH^{2g+2n+2m-2}(\overline{M}_{g,n})\) for

- \((g, n, m) = (2, 0, 10)\) (Graber-Pandharipande 2003)
- \(g \geq 2\) and \(g + m \geq 12\) (van Zelm 2016)
Admissible cover cycles

Theorem (Faber-Pandharipande 2005)

The fundamental class $[\text{Hyp}_{g,n,2m}] \in H^{2g+2n+2m-4}(\overline{M}_{g,n+2m})$ lies in the tautological ring $RH^{2g+2n+2m-4}(\overline{M}_{g,n+2m})$.

Theorem

The fundamental class $[\overline{B}_{g,n,2m}] \in H^{2g+2n+2m-2}(\overline{M}_{g,n+2m})$ does not lie in the tautological ring $RH^{2g+2n+2m-2}(\overline{M}_{g,n})$ for

- $(g, n, m) = (2, 0, 10)$ (Graber-Pandharipande 2003)
- $g \geq 2$ and $g + m \geq 12$ (van Zelm 2016)

Note

For small (g, n, m) the cycle $[\overline{B}_{g,n,2m}]$ is tautological, since $H^*(\overline{M}_{g,n+2m}) = RH^*(\overline{M}_{g,n+2m})$.

Strategy for computation

Lemma (Arbarello-Cornalba 1998)

For the inclusion \(i: \partial M_g^n \to M_g^n \), the pullback \(i^*: H^k(M_g^n) \to H^k(\partial M_g^n) \) is injective for \(k \leq d(g,n) \) with

\[
d(g,n) = \begin{cases}
 n - 4 & \text{if } g = 0, \\
 2g - 2 & \text{if } n = 0, \\
 2g - 3 + n & \text{if } g > 0, n > 0.
\end{cases}
\]
Lemma (Arbarello-Cornalba 1998)

For the inclusion $i: \partial M_g, n \to M_g, n$ the pullback $i^*: H^k(M_g, n) \to H^k(\partial M_g, n)$ is injective for $k \leq d(g, n)$ with

$$d(g, n) = \begin{cases} n - 4 & \text{if } g = 0, \\ 2g - 2 & \text{if } n = 0, \\ 2g - 3 + n & \text{if } g > 0, n > 0. \end{cases}$$
Lemma (Arbarello–Cornalba 1998)

For the inclusion $i : \partial \bar{\mathcal{M}}_{g,n} \to \bar{\mathcal{M}}_{g,n}$ the pullback

$$i^* : H^k(\bar{\mathcal{M}}_{g,n}) \to H^k(\partial \bar{\mathcal{M}}_{g,n})$$

is injective for $k \leq d(g,n)$ with

$$d(g,n) = \begin{cases}
 n - 4 & \text{if } g = 0, \\
 2g - 2 & \text{if } n = 0, \\
 2g - 3 + n & \text{if } g > 0, \\
 n > 0.
\end{cases}$$
Computer package admcycles

Written in Sage (Python) with Jason van Zelm, Vincent Delecroix; based on earlier implementation by Pixton

Features
- Computations with tautological classes (products and intersection numbers)
- Verification of tautological relations
- Pullbacks and pushforwards of tautological classes under gluing morphism
- Identification of admissible cover cycles in terms of tautological cycles
Computer package admcycles

Written in Sage (Python) with Jason van Zelm, Vincent Delecroix; based on earlier implementation by Pixton
Computer package `admcycles`

Written in Sage (Python) with Jason van Zelm, Vincent Delecroix; based on earlier implementation by Pixton

Features

- computations with tautological classes (products and intersection numbers)
- verification of tautological relations
- pullbacks and pushforwards of tautological classes under gluing morphism
- identification of admissible cover cycles in terms of tautological cycles
Computer package *admcycles*

Written in Sage (Python) with Jason van Zelm, Vincent Delecroix; based on earlier implementation by Pixton

Features

- computations with tautological classes (products and intersection numbers)
- verification of tautological relations
- pullbacks and pushforwards of tautological classes under gluing morphism
- identification of admissible cover cycles in terms of tautological cycles
Computer package admcycles

Written in Sage (Python) with Jason van Zelm, Vincent Delecroix; based on earlier implementation by Pixton

Features

- computations with tautological classes (products and intersection numbers)
- verification of tautological relations
- pullbacks and pushforwards of tautological classes under gluing morphism
- identification of admissible cover cycles in terms of tautological cycles
Computer package admcycles

Written in Sage (Python) with Jason van Zelm, Vincent Delecroix; based on earlier implementation by Pixton

Features

- computations with tautological classes (products and intersection numbers)
- verification of tautological relations
- pullbacks and pushforwards of tautological classes under gluing morphism
- identification of admissible cover cycles in terms of tautological cycles
Computer package admcycles

Written in Sage (Python) with Jason van Zelm, Vincent Delecroix; based on earlier implementation by Pixton

Features

- computations with tautological classes (products and intersection numbers)
- verification of tautological relations
- pullbacks and pushforwards of tautological classes under gluing morphism
- identification of admissible cover cycles in terms of tautological cycles
Computer package admcycles

Written in Sage (Python) with Jason van Zelm, Vincent Delecroix; based on earlier implementation by Pixton

Features

- computations with tautological classes (products and intersection numbers)
- verification of tautological relations
- pullbacks and pushforwards of tautological classes under gluing morphism
- identification of admissible cover cycles in terms of tautological cycles
Computer package admcycles

Written in Sage (Python) with Jason van Zelm, Vincent Delecroix; based on earlier implementation by Pixton

Features

- computations with tautological classes (products and intersection numbers)
- verification of tautological relations
- pullbacks and pushforwards of tautological classes under gluing morphism
- identification of admissible cover cycles in terms of tautological cycles
Results

$$[\text{Hyp}_2] = 1 \quad (\approx 19\text{th century})$$
\[[\text{Hyp}_2] = 1 \]
\[[\text{Hyp}_3] = \frac{3}{4} \kappa_1 \]
\[-\frac{9}{4} \begin{array}{c}
 \circ \\
 2
\end{array} - \frac{1}{8} \begin{array}{c}
 \circ \\
 2
\end{array} \]
\[\approx 19th \text{ century} \]
\[\left(\begin{array}{c}
 \text{Harris-Mumford} \\
 1982
\end{array} \right) \]
\[
[Hyp_2] = 1 \\
[Hyp_3] = \frac{3}{4} \kappa_1 \\
[Hyp_4] = \frac{17}{2} \kappa_2 \\
\]

\[
+ \frac{11}{12} \begin{bmatrix} \kappa_1 \\ 2 \\ 2 \end{bmatrix} - \frac{49}{8} \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix} + \frac{31}{24} \begin{bmatrix} \kappa_1 \\ 1 \\ 2 \\ 2 \\ 1 \end{bmatrix} - \frac{163}{24} \begin{bmatrix} 3 \\ 1 \\ 1 \end{bmatrix} \\
+ \frac{1}{12} \begin{bmatrix} \kappa_1 \\ 3 \\ 2 \\ 1 \end{bmatrix} + \frac{5}{8} \begin{bmatrix} 3 \\ 3 \\ 2 \\ 1 \\ 1 \end{bmatrix} + \frac{1}{12} \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix} \\
- \frac{3}{8} \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}
\]

\(\approx 19th \text{ century} \) \\
\(\text{Harris-Mumford } 1982\) \\
\(\text{Faber-Pandharipande } 2005\)
Results

\[
[Hyp_5] = \frac{13307}{380} \kappa_3 - \frac{1583}{288} \kappa_2 \kappa_1 + \frac{37}{144} \kappa_3^3 - \frac{1943}{288} \kappa_2 \kappa_1 + \frac{5}{72} \kappa_1^2 \kappa_1 + \frac{407}{96} \kappa_2
\]
$[\text{Hyp}_6] =$
\[[\text{Hyp}_{6}] = \left(\text{sum of } 376 \text{ terms} \right) \]
Results

\[
[Hyp_6] = \left(\text{sum of} \right. \\
\left. 376 \text{ terms} \right) \left(\text{van Zelm-S.} \right. \\
\left. 2018 \right)
\]
Other hyperelliptic and bielliptic cycles

Using `admcycles` one can compute the following cycles

Hyperelliptic cycles $[\text{Hyp}_{g,n,2m}]$

<table>
<thead>
<tr>
<th>g</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>m</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- (Faber-Pagani '12)
- (Harris-Mumford '82)
- (Faber-Pandharipande '05)
- (Vermeire '02)
- (Cavalieri-Tarasca '17: $n=1, \ldots, 5$)
- (Chen-Tarasca '15)

Bielliptic cycles $[\overline{B}_{g,n,2m}]$

<table>
<thead>
<tr>
<th>g</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>m</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- (Faber '96)
- (Faber-Pagani '12)
\(\overline{M}_{g,n} \) smooth, compact moduli space

\(RH^*(\overline{M}_{g,n}) \subset H^*(\overline{M}_{g,n}) \) tautological ring, explicit generators \([\Gamma, \alpha]\)

\(\tilde{H}^k_g(\mu) \) moduli space of twisted \(k \)-differentials

- generalizes condition \(\omega_C^\otimes k \cong \mathcal{O}_C(\sum_i m_i p_i) \)
- Theorem about dimension of the components of \(\tilde{H}^k_g(\mu) \)
- Conjecture about formula for weighted fundamental class of \(\tilde{H}^k_g(\mu) \) as tautological classes

\(Hyp_{g,n,2m} \), example of admissible cover cycle

- generalizes condition \(C \) hyperelliptic with ramification points \(p_i \), conjugate pairs \(q_j, q'_j \)
- Algorithm for restriction of \([Hyp_{g,n,2m}] \) to boundary of \(\overline{M}_{g,n} \)
- Computation of new examples of formulas for \([Hyp_{g,n,2m}] \)

Crucial ingredient: recursive boundary structure of moduli spaces

Thank you for your attention!