Main results

Outline of proof

Conclusion and outlook

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

Equivariant transversality for closed pseudo-holomorphic curves

Michael B. Rothgang (he/him)

Humboldt-Universität zu Berlin

PhD thesis defence September 20, 2024

Symplectic manifolds are useful

Definition

A symplectic manifold is a pair (M, ω) of a smooth 2*n*-dimensional manifold M and a closed non-degenerate two-form ω .

Symplectic manifolds arise naturally, e.g. as phase space in Hamiltonian mechanics.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Symplectic manifolds are useful

Definition

A symplectic manifold is a pair (M, ω) of a smooth 2*n*-dimensional manifold M and a closed non-degenerate two-form ω .

Symplectic manifolds arise naturally, e.g. as phase space in Hamiltonian mechanics.

Darboux' theorem: symplectic manifolds have no local invariants

Can we find global invariants?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

Symplectic manifolds are useful

Definition

A symplectic manifold is a pair (M, ω) of a smooth 2*n*-dimensional manifold M and a closed non-degenerate two-form ω .

Symplectic manifolds arise naturally, e.g. as phase space in Hamiltonian mechanics.

Darboux' theorem: symplectic manifolds have no local invariants

Can we find **global invariants**? Yes: e.g., symplectic homology or Gromov–Witten invariants

Holomorphic curves are great

They played a role in breakthroughs such as

- proof of the Arnold conjecture (Floer et al)
- Conley conjecture (Salamon–Zehnder; Hingston, Ginzburg, ...)
- Gromov's non-squeezing theorem; symplectic capacities
- symplectic filling problems

Behind these results: suitable symplectic invariants defined using holomorphic curves

Defining an invariant involves dealing with a transversality question

Introduction and motivation Main results Outline of proof Conclu 000000 00000 00000 00000

What is a holomorphic curve?

 (M, ω) closed 2*n*-dimensional symplectic manifold.

Definition

A smooth almost complex structure on (M, ω) is a smooth section $J \in \Gamma(\text{End}(TM))$ such that $J^2 = -\text{ id. } J$ is tame if $g_J := \omega(\cdot, J \cdot) > 0$ and compatible if additionally g_J is symmetric.

Definition

Given an acs J on M, a closed genus g pseudo-holomorphic curve is a smooth map $u: (\Sigma_g, j) \to M$ such that $J \circ du = du \circ j$.

Definition: moduli space

Given acs J and data $g \in \mathbb{Z}_{\geq 0}$, $C \in H_2(M)$

$$\mathcal{M}(J) := \mathcal{M}_g(C, J) := \left\{ (\Sigma, j, u) \mid u : (\Sigma, j) \to M \text{ closed genus } g \right.$$

holo. curve, $u_*[\Sigma] = C \left\} /_{\text{reparametrisation}}$,

Dream transversality result

For generic compatible/tame a.c.s. *J*, the moduli space $\mathcal{M}(J)$ is a **compact smooth manifold** of **dimension** $(n-3)(2-2g) + 2\langle c_1(TM), C \rangle$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

Introduction and motivation Main results Outline of proof Conclusion and outlool

How to define an invariant: transversality

Dream transversality result

For generic compatible/tame a **compact smooth manifold** of $(n-3)(2-2g) + 2\langle c_1(TM), C \rangle$

Introduction and motivationMain results
occoccoccOutline of proof
occoccConclusion and outlook
occHow to define an invariant: transversality

The reality

For generic compatible/tame a.c.s. *J*, the moduli space $\mathcal{M}(J)$ is a compact compatibile smooth manifold of dimension $(n-3)(2-2g) + 2\langle c_1(TM), C \rangle$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

Introduction and motivationMain results
0000000Outline of proof
0000000Conclusion and outlook
000How to define an invariant: transversality

The reality

For generic compatible/tame a.c.s. *J*, the moduli space $\mathcal{M}(J)$ is a compact compatible smooth manifold orbifold of dimension $(n-3)(2-2g) + 2\langle c_1(TM), C \rangle$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

Introduction and motivation

Main results

Outline of proof

Conclusion and outlook

How to define an invariant: transversality

Dream transversality result

For generic compatible/tame a **compact smooth manifold** of $(n-3)(2-2g) + 2\langle c_1(TM), C \rangle$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The reality

For generic compatible/tame a.c.s. J, the moduli space $\mathcal{M}(J)$ is a compact compatifiable smooth manifold orbifold of dimension $(n-3)(2-2g) + 2\langle c_1(TM), C \rangle$ if transversality holds.

Deeper reason: inherent symmetry, through the automorphism group of multiple covers

Is $\overline{\partial}_J \pitchfork 0$?

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨヨ のへで

Common strategy 1: avoid it, by assuming suitable geometric hypotheses

Common stratory 1: avoid it by a

Is $\overline{\partial}_J \pitchfork 0$?

Common strategy 1: avoid it, by assuming suitable geometric hypotheses

Common strategy 2: use virtual techniques, e.g. virtual fundamental classes, Kuranishi structures, global Kuranishi charts, domain-dependent perturbations or polyfolds

Bad news 1: no consensus which is best, or if equivalent

Bad news 2: perturbations destroy inherent symmetry

Accept and embrace the symmetry! Given a group acting on $\mathcal{M}(J)$:

- Decompose *M*(*J*) into iso-symmetric strata according to the stabilisers of the action. Prove each iso-symmetric stratum is (generically) a smooth manifold.
- To each curve u in a stratum S, associate an equivariant Fredholm operator F_u, varying smoothly with u. Decompose S further into walls

$$\{u \in S \mid \dim \ker F_u = k, \dim \operatorname{coker} F_u = c\}$$

Prove: each wall is (generically) a smooth submanifold of its iso-symmetric stratum.

 Compute the dimension of each stratum and wall.
 Goes back to Taubes ('96, "Counting ... submanifolds"), extended and generalised by Wendl ('23, "super-rigidity").

- (M, ω) closed 2*n*-dimensional symplectic manifold
- G finite group acting symplectically on M, via ${m g}\mapsto\psi_{m g}$
- Then G acts
 - ... on smooth maps $u: \Sigma \to M$ by $g \cdot u := \psi_g \circ u$,

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

... on $\mathcal{M}(J)$ by $g \cdot [u] := [\psi_g \circ u]$.

- (M, ω) closed 2*n*-dimensional symplectic manifold
- G finite group acting symplectically on M, via $g\mapsto \psi_g$
- Then G acts
 - \ldots on smooth maps $u \colon \Sigma \to M$ by $g \cdot u := \psi_g \circ u$,
 - \dots on $\mathcal{M}(J)$ by $g \cdot [u] := [\psi_g \circ u].$
- Consider the space of G-invariant a.c.s. on (M, ω) :

 $\mathcal{J}^{\mathsf{G}}(M,\omega) := \{J \in \mathcal{J}(M) \text{ compatible } \mid \psi_g^*J = J \text{ for all } g \in G\},$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Always assume $J \in \mathcal{J}^{G}(M, \omega)$.

• Easy to prove: $\mathcal{J}^{G}(M, \omega)$ is non-empty and contractible.

Fix a closed oriented genus g surface Σ Consider the moduli space of parametrised curves

$$\widetilde{\mathcal{M}}(J) := \{(j, u) \in \mathcal{J}(\Sigma) \times C^{\infty}(\Sigma, M) \mid [(\Sigma, j, u)] \in \mathcal{M}(J)\}$$

Consider orbit types w.r.t. suitable group actions:

$$\widetilde{\mathcal{M}}_{g,m}^{\mathcal{A}} := \{ j \text{ complex structure on } \Sigma \mid \operatorname{Aut}(\Sigma, j) \cong_{\operatorname{conj.}} \mathcal{A} \}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

Fix a closed oriented genus g surface Σ Consider the moduli space of parametrised curves

$$\widetilde{\mathcal{M}}(J) := \{(j, u) \in \mathcal{J}(\Sigma) \times C^{\infty}(\Sigma, M) \mid [(\Sigma, j, u)] \in \mathcal{M}(J)\}$$

Consider orbit types w.r.t. suitable group actions:

$$\widetilde{\mathcal{M}}^{\mathcal{A}}_{g,m} := \{ j \text{ complex structure on } \Sigma \mid \operatorname{Aut}(\Sigma, j) \cong_{\operatorname{conj.}} \mathcal{A} \}$$

"(parametrised) pre-stratum", w.r.t. the Diff₊(Σ)-action on $\widetilde{\mathcal{M}}(J)$ by $\phi \cdot (j, u) := (\phi_* j, u \circ \phi^{-1})$

$$\widetilde{\mathcal{M}}^{\mathcal{A}}(J) := \{(j, u) \in \widetilde{\mathcal{M}}(J) \mid j \in \widetilde{\mathcal{M}}_{g, m}^{\mathcal{A}}\}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

 $A \times G$ acts on $\widetilde{\mathcal{M}}^A(J)$ by $(\phi, g) \cdot (j, u) := (\phi_* j, \psi_g \circ u \circ \phi^{-1})$. Orbit type of $H \leq A \times G$ is

$$\begin{split} \widetilde{\mathcal{M}}^{A,H}(J) &:= \{ (j,u) \in \widetilde{\mathcal{M}}^A(J) \mid (A \times G)_u \cong_{\mathsf{conj.}} H \} \\ &= \{ (j,u) \in \widetilde{\mathcal{M}}(J) \mid \mathsf{Aut}(\Sigma,j) \cong_{\mathsf{conj.}} A \text{ and } (A \times G)_u \cong_{\mathsf{conj.}} H \} \end{split}$$

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨヨ のへで

 $A \times G$ acts on $\widetilde{\mathcal{M}}^A(J)$ by $(\phi, g) \cdot (j, u) := (\phi_* j, \psi_g \circ u \circ \phi^{-1})$. Orbit type of $H \leq A \times G$ is

$$\begin{split} \widetilde{\mathcal{M}}^{A,H}(J) &:= \{ (j,u) \in \widetilde{\mathcal{M}}^A(J) \mid (A \times G)_u \cong_{\mathsf{conj.}} H \} \\ &= \{ (j,u) \in \widetilde{\mathcal{M}}(J) \mid \mathsf{Aut}(\Sigma,j) \cong_{\mathsf{conj.}} A \text{ and } (A \times G)_u \cong_{\mathsf{conj.}} H \} \end{split}$$

Full definition of parametrised iso-symmetric strata: positive integers $\mathbf{I} = (I_1, \dots, I_k)$,

$$\widetilde{\mathcal{M}}_{*,\mathsf{I}}^{A,H}(J) := \Big\{ v \in \widetilde{\mathcal{M}}^{A,H}(J) \ | \ v \text{ somewhere injective},$$

critical points of
$$v$$
 have orders $|$

Unparametrised version:

$$\mathcal{M}_{*,\mathsf{I}}^{\mathsf{A},\mathsf{H}}(J) := \{ [u] \in \mathcal{M}(J) \mid \exists \text{ reparametrisation in } \widetilde{\mathcal{M}}_{*,\mathsf{I}}^{\mathsf{A},\mathsf{H}}(J) \}$$

$$\widetilde{\mathcal{M}}^{A,H}(J) := \{ [(\Sigma, j, u)] \in \mathcal{M}(J) \mid (j, u) \in \mathcal{J}(\Sigma) \times C^{\infty}(\Sigma, M), \\ \operatorname{Aut}(\Sigma, j) \cong_{\operatorname{conj.}} A \text{ and } (A \times G)_u \cong_{\operatorname{conj.}} H \}$$

- Stabiliser of u differs as parametrised and unparametrised curve!
 - parametrised curve/point-wise: have $G_u \leq G_{u(z)}$ for all $z \in \Sigma$. Equality need not hold, but is true for almost every point.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

• unparametrised curve/set-wise: what if $g \cdot u$ is a reparametrisation of u?

Solution: consider the Aut $(\Sigma, j) \times G$ -action instead; is inherently parametrised.

$$\widetilde{\mathcal{M}}^{A,H}(J) := \{ [(\Sigma, j, u)] \in \mathcal{M}(J) \mid (j, u) \in \mathcal{J}(\Sigma) \times C^{\infty}(\Sigma, M), \\ \operatorname{Aut}(\Sigma, j) \cong_{\operatorname{conj.}} A \text{ and } (A \times G)_u \cong_{\operatorname{conj.}} H \}$$

- Stabiliser of u differs as parametrised and unparametrised curve!
 - parametrised curve/point-wise: have $G_u \leq G_{u(z)}$ for all $z \in \Sigma$. Equality need not hold, but is true for almost every point.
 - unparametrised curve/set-wise: what if $g \cdot u$ is a reparametrisation of u?

Solution: consider the Aut $(\Sigma, j) \times G$ -action instead; is inherently parametrised.

- **2** Aut (Σ, j) is semi-continuous in j, so stratify by Aut (Σ, j) first
- Using isomorphic instead of conjugate groups also works
- Strata depend on A and H only up to conjugation

Introduction and motivation	Main results 0000●00	Outline of proof	Conclusion and outlook
Defining walls			

• $u: \Sigma \xrightarrow{C^{\infty}} M$ is *J*-holomorphic iff $\overline{\partial}_J(u) := du + J \circ du \circ j = 0$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

• linearised Cauchy–Riemann operator of $u \in \widetilde{\mathcal{M}}(J)$ is $D_u := D\overline{\partial}_J(u) \colon W^{1,p}(u^*TM) \to L^p(\overline{\operatorname{End}}_{\mathbb{C}}(T\Sigma, u^*TM))$

Introduction and motivation	Main results 0000●00	Outline of proof	Conclusion and outlook
Defining walls			

- $u: \Sigma \xrightarrow{C^{\infty}} M$ is *J*-holomorphic iff $\overline{\partial}_J(u) := du + J \circ du \circ j = 0$
- linearised Cauchy–Riemann operator of $u \in \widetilde{\mathcal{M}}(J)$ is $D_u := D\overline{\partial}_J(u) \colon W^{1,p}(u^*TM) \to L^p(\overline{\operatorname{End}}_{\mathbb{C}}(T\Sigma, u^*TM))$
- Have splitting $u^*TM = T_u \oplus N_u$, where N_u is the **generalised** normal bundle
- induces the **normal Cauchy–Riemann operator** $D_u^N := \pi_N \circ D_u|_{\Gamma(N_u)} \colon W^{1,p}(N_u) \to L^p(\overline{\operatorname{End}}_{\mathbb{C}}(T\Sigma, N_u))$
- D_u and D_u^N are Fredholm operators, depend smoothly on u

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Defining walls (cont.)

Normal Cauchy–Riemann operator $D_u^N : W^{1,p}(N_u) \to L^p(\overline{\operatorname{End}}_{\mathbb{C}}(T\Sigma, N_u))$ of $u \in \widetilde{\mathcal{M}}(J)$ • If $u \in \widetilde{\mathcal{M}}_{*,l}^{A,H}(J)$, then D_u and D_u^N are H-equivariant • $\Rightarrow \ker D_u^N$ and coker D_u^N are H-representations • walls in $\mathcal{M}_{*,l}^{A,H}(J)$ are defined by

 $\mathcal{M}(J; k, c) := \{ u \in \mathcal{M}_{*, \mathsf{I}}^{A, H}(J) \mid \dim \ker D_u^N = k, \dim \operatorname{coker} D_u^N = c \}$

Main results

Theorem A (R. '23)

Suppose A and G are finite. There exists a co-meagre subset $\mathcal{J}_{\text{reg}} \subset \mathcal{J}^{G}(M, \omega)$ such that for all $J \in \mathcal{J}_{\text{reg}}$, every iso-symmetric stratum $\mathcal{M}_{*, \mathsf{I}}^{A, \mathsf{H}}(J)$ is a smooth finite-dimensional manifold.

Theorem B (R. '24)

There exists a co-meagre subset $\mathcal{J}'_{\text{reg}} \subset \mathcal{J}_{\text{reg}}$ such that each wall $\mathcal{M}(J; k, c) \subset \mathcal{M}^{A,H}_{*,I}(J)$ is a smooth submanifold. Its codimension near $u \in \mathcal{M}(J; k, c)$ is $\dim_{\mathbb{R}} Hom_{H}(\ker D_{u}^{N}, \operatorname{coker} D_{u}^{N})$, where D_{u}^{N} is the normal Cauchy–Riemann operator of u.

Proposition C (R. '23)

The number of distinct non-empty iso-symmetric strata is countable; same for the walls '.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

Proof outline of Theorem A

• Local model:
$$\widetilde{\mathcal{M}}_{*,\mathsf{I}}^{A,H}(J)$$
 described by $(\overline{\partial}_J^H)^{-1}(0)$, for

$$\overline{\partial}_{J}^{H}: \mathcal{T} \times \mathcal{B} \to \mathcal{E}, (j, u) \mapsto du + J \circ du \circ j,$$

where \mathcal{T} is an A-adapted Teichmüller slice through j, $\mathcal{B} = \operatorname{Fix}(H) \subset W^{1,p}(\Sigma, M)$ and $\mathcal{E}_{(j,u)} = L^p_H(\overline{\operatorname{End}}_{\mathbb{C}}((T\Sigma, j), u^*TM))$

Proof outline of Theorem A

• Local model: $\widetilde{\mathcal{M}}_{*,l}^{A,H}(J)$ described by $(\overline{\partial}_J^H)^{-1}(0)$, for

$$\overline{\partial}_{J}^{H}: \mathcal{T} \times \mathcal{B} \to \mathcal{E}, (j, u) \mapsto du + J \circ du \circ j,$$

where \mathcal{T} is an A-adapted Teichmüller slice through j, $\mathcal{B} = \operatorname{Fix}(H) \subset W^{1,p}(\Sigma, M)$ and $\mathcal{E}_{(j,u)} = L^p_H(\overline{\operatorname{End}}_{\mathbb{C}}((T\Sigma, j), u^*TM))$

- ② Universal moduli space $\mathcal{U}^*(\mathcal{J}_{\epsilon}) = \{(u, J) \mid J \in \mathcal{J}_{\epsilon}, u \in \mathcal{M}^{A, H}_{*, I}(J)\}$ is a smooth separable metrisable Banach manifold, $(u, J) \rightarrow J$ is smooth
- Solution
 Thus: for J ∈ J_ϵ a regular value, (∂J)^H)⁻¹(0) is a smooth manifold, and M^{A,H}_{*,I}(J) ≅ (∂J)^H)⁻¹(0)/A is a smooth manifold (as simple curves)

Proof outline of Theorem A

• Local model: $\widetilde{\mathcal{M}}_{*,l}^{A,H}(J)$ described by $(\overline{\partial}_J^H)^{-1}(0)$, for

$$\overline{\partial}_{J}^{H}: \mathcal{T} \times \mathcal{B} \to \mathcal{E}, (j, u) \mapsto du + J \circ du \circ j,$$

where \mathcal{T} is an A-adapted Teichmüller slice through j, $\mathcal{B} = \operatorname{Fix}(H) \subset W^{1,p}(\Sigma, M)$ and $\mathcal{E}_{(j,u)} = L^p_H(\overline{\operatorname{End}}_{\mathbb{C}}((T\Sigma, j), u^*TM))$

- ② Universal moduli space $\mathcal{U}^*(\mathcal{J}_{\epsilon}) = \{(u, J) \mid J \in \mathcal{J}_{\epsilon}, u \in \mathcal{M}^{A, H}_{*, I}(J)\}$ is a smooth separable metrisable Banach manifold, $(u, J) \rightarrow J$ is smooth
- Thus: for J ∈ J_ϵ a regular value, (∂
 ^H
 ^J)⁻¹(0) is a smooth manifold, and M^{A,H}_{*,I}(J) ≅ (∂
 ^H
 ^J)⁻¹(0)/A is a smooth manifold (as simple curves)
- **③** Sard–Smale theorem: regular values are co-meagre in \mathcal{J}_{ϵ}
- Solution Taubes' trick: upgrade to a co-meagre subset of $\mathcal{J}^{G}(M,\omega)$

- Key step: $\mathcal{U}^*(\mathcal{J}_\epsilon)$ is smooth
- Local model: $\overline{\partial}_J : \mathcal{T} \times \mathcal{B} \times \mathcal{J}_{\epsilon} \to \mathcal{E}, (j, u, J) \mapsto du + J \circ du \circ j$
- Fix $(j, u, J) \in \mathcal{U}^*(\mathcal{J}_{\epsilon})$ and consider
 - $L: W^{1,p}_{H}(u^*TM) \oplus C^{G}_{\epsilon}(\overline{\operatorname{End}}_{\mathbb{C}}(TM,J)) \to L^{p}_{H}(\overline{\operatorname{End}}_{\mathbb{C}}(T\Sigma, u^*TM)),$ $(\eta, Y) \mapsto D_{u}\eta + Y \circ du \circ j$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

Key Lemma

If u has an injective point, then L is surjective.

- Key step: $\mathcal{U}^*(\mathcal{J}_\epsilon)$ is smooth
- Local model: $\overline{\partial}_J : \mathcal{T} \times \mathcal{B} \times \mathcal{J}_{\epsilon} \to \mathcal{E}, (j, u, J) \mapsto du + J \circ du \circ j$
- Fix $(j, u, J) \in \mathcal{U}^*(\mathcal{J}_{\epsilon})$ and consider
 - $L\colon W^{1,p}_{H}(u^*TM)\oplus C^{G}_{\epsilon}(\overline{\operatorname{End}}_{\mathbb{C}}(TM,J))\to L^{p}_{H}(\overline{\operatorname{End}}_{\mathbb{C}}(T\Sigma,u^*TM)),$ $(\eta,Y)\mapsto D_{u}\eta+Y\circ du\circ j$

Key Lemma

If u has an injective point, then L is surjective.

Proof sketch (part 1).

• Use Hahn-Banach theorem: suppose $\alpha \in (L_H^p)^*$ with $\alpha \neq 0$ but $\alpha|_{im L} = 0$

2 averaging: extend α to $(L^p)^* \cong L^q$, s.t. α is *H*-invariant

Proof of Key Lemma, cont.

3 $\alpha|_{im L} = 0$ implies

$$\langle D_u \eta, \alpha \rangle = 0$$
 for all $\eta \in W^{1,p}_H(u^*TM)$ (1)

$$\langle Y \circ du \circ j, \alpha \rangle = 0 \text{ for all } Y \in C_{\epsilon}^{\mathcal{G}}(\overline{\operatorname{End}}_{\mathbb{C}}(TM, J))$$
 (2)

- (1) implies α⁻¹(0) is discrete
 (*H*-invariance of α and pairing, unique continuation)
- Solution choose Y so $\langle Y \circ du \circ j, \alpha \rangle > 0$, contradiction to (2)
 - choose a good injective point $z_0\in\Sigma$
 - choose $Y(u(z_0)) = \alpha(z_0)$
 - multiply with bump function so $\langle Y \circ du \circ j, \alpha \rangle > 0$

• choose auxiliary sequence ϵ so $Y \in C_{\epsilon}^{\mathcal{G}}(\overline{\operatorname{End}}_{\mathbb{C}}(TM, J))$

<ロト < 団ト < 団ト < 団ト < 団ト 三国 のへで</p>

Proof of Key Lemma, cont.

3 $\alpha|_{im L} = 0$ implies

$$\langle D_u \eta, \alpha \rangle = 0$$
 for all $\eta \in W^{1,p}_H(u^*TM)$ (1)

$$\langle Y \circ du \circ j, \alpha \rangle = 0 \text{ for all } Y \in C_{\epsilon}^{\mathcal{G}}(\overline{\operatorname{End}}_{\mathbb{C}}(TM, J))$$
 (2)

- (1) implies α⁻¹(0) is discrete
 (*H*-invariance of α and pairing, unique continuation)
- Solution choose Y so $\langle Y \circ du \circ j, \alpha \rangle > 0$, contradiction to (2)
 - choose a good injective point $z_0\in\Sigma$
 - choose $Y(u(z_0)) = \alpha(z_0)$
 - multiply with bump function so $\langle Y \circ du \circ j, \alpha \rangle > 0$

• choose auxiliary sequence ϵ so $Y \in C_{\epsilon}^{G}(\overline{\operatorname{End}}_{\mathbb{C}}(TM, J))$

<ロト < 団ト < 団ト < 団ト < 団ト 三国 のへで</p>

- If $u \in \mathcal{M}_{*,\mathsf{I}}^{A,H}(J)$, the formal adjoint $(D_u^N)^*$ is also *H*-equivariant
- Implicit function theorem: present $\mathcal{M}(J; k, c)$ near $u \in \mathcal{M}(J; k, c)$ as $F^{-1}(0)$ for a suitable map

F: nbhd of $u \to \operatorname{Hom}_{H}(\ker D_{u}^{N}, \operatorname{coker} D_{u}^{N})$

- Flexibility: if u ∈ M^{A,H}_{*,I}(J) is simple, any H-equivariant section A ∈ Γ^H(End_C(TΣ, N_u)) with support within a set of good injective points satisfies Aη = ∂_τD^N_{v,τ}η|_{τ=0}, where D^N_{v,τ} are defined w.r.t. a smooth family (J_τ) ⊂ J^G(M, ω) with J_τ = J along v.
- **Petri's condition:** for a co-meagre subset of $\mathcal{J}^{G}(M, \omega)$, the operators D_{u}^{N} for $u \in \mathcal{M}(J; k, c)$ satisfy Petri's condition Proof by reduction to the non-equivariant case

To show: number of non-empty distinct iso-symmetric strata/walls is countable

- Iso-symmetric strata: depends on the genus g
 - g = 0, i.e. spheres: uniformisation theorem implies $(\Sigma, j) \cong (\mathbb{S}^2, i)$, exactly one stratum
 - g = 1, i.e. tori: analyse model surface carefully
 - after reparametrisation, $(\Sigma, j) = (\mathbb{C}/(\mathbb{Z} + \lambda \mathbb{Z}), j_{\lambda})$ for $\lambda \in \mathbb{H}$
 - conjugation and translation: reduce to G_λ := Aut(T², j_λ, {0}) details on next slide
 - g = 2: stable surface, so Aut (Σ, j) is finite $\mathcal{J}(\Sigma)$ is Lindelöf; finiteness, Aut (Σ, j) is semi-continuous
- For walls, is clear (as ℕ is countable)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

Details for the g = 1 case

To show: only countably many groups \mathcal{G}_{λ} for $\lambda \in \mathbb{H}$

- Lefschetz fixed point theorem: G_{λ} injects into the mapping class group $M(\mathbb{T}^2)$
- the map $M(\mathbb{T}^2) \to \operatorname{End}(H_1(\mathbb{T}^2) \cong SL(2,\mathbb{Z}), \phi \mapsto \phi_*$ is a group isomorphism thus, G_{λ} is discrete
- G_λ is compact: A ∈ G_λ preserves basis B_λ, so A lies in some U(1)
- only countably many finite subsets of a given countable set

Outlook and next steps

- strata and walls of multiply covered curves
- compute the dimensions of iso-symmetric strata and walls
- allow infinite groups A, i.e. unstable domains
- punctured holomorphic curves challenge for applicability: compute Conley–Zehnder indices of multiply covered Reeb orbits
- generalise to infinite groups G
- applications, e.g. equivariant super-rigidity, equivariant Gromov invariant, equivariant Gromov–Witten invariants
- beyond symplectic actions

Beyond symplectic actions

 anti-symplectic involutions: φ ∈ Diff(M) with φ*ω = -ω then, want φ*J = -J instead; J^G(M,ω) is still contractible

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• anti-symplectic actions: $G = \langle S \rangle$, each $s \in S$ acts by an anti-symplectic involution

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

Beyond symplectic actions

- anti-symplectic involutions: φ ∈ Diff(M) with φ*ω = -ω then, want φ*J = -J instead; J^G(M,ω) is still contractible
- anti-symplectic actions: $G = \langle S \rangle$, each $s \in S$ acts by an anti-symplectic involution
- motivation 1: celestial mechanics
- motivation 2: real Gromov–Witten theory studies *real* holomorphic curves $u: \Sigma \to M$, with $u \circ \sigma = \phi \circ u$, where σ is an anti-holo. involution on Σ

Introduction and motivation Main results Outline of proof Conclusion and outlook

Summary/take-home message

- Using holomorphic curves involves dealing with a transversality problem.
- Traditionally, transversality and symmetry are incompatible; virtual techniques. New paradigm: equivariant transversality, through stratification of the moduli space.
- Implemented for simple curves, w.r.t. a finite symplectic group action.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Introduction and motivation Main results Outline of proof Conclusion and outlook

Summary/take-home message

- Using holomorphic curves involves dealing with a transversality problem.
- Traditionally, transversality and symmetry are incompatible; virtual techniques. New paradigm: equivariant transversality, through stratification of the moduli space.
- Implemented for simple curves, w.r.t. a finite symplectic group action.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

Thanks for listening! Any questions?

Bonus slides

- Choosing a good injective point
- Proof outline: Petri's condition
- Dimension of the iso-symmetric strata

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回■ のへの

- Including multiply covered curves
- ▶ A-adapted Teichmüller slices
- ▶ Beyond finite G

Detail: choosing a good injective point

Several conditions are required

- z₀ is an injective point
- $\alpha(z_0) \neq 0$
- if $g \cdot u$ is not a reparametrisation of u, then $u(z_0) \notin im(g \cdot u)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

 u(z₀) is not fixed by some reparametrisation overall, obtain G_u = G<sub>u(z₀)
</sub>

Proof outline: Petri's condition (corrected)

- Choose $z \in \Sigma$ with $G_u = G_{u(z)}$ (open dense set)
- Prove: D^N_u satisfies Petri's condition to infinite order at all such z
- If G_u is trivial: reduce to Wendl's result (as submitted)
- G_u non-trivial: an open subset nbhd of z maps into fixed point set $M^{G_u} \subset M$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• G_u -action on M^{G_u} is trivial \rightarrow no equivariance constraint then apply the argument above (careful to preserve countability) Bonus slides

Dimension of the iso-symmetric strata

See blackboard

Iso-symmetric strata of multiply covered curves

Suppose $u = v \circ \psi$ is multiply covered: v is simple, ψ a holomorphic branched cover

Candidate definition

The iso-symmetric stratum $\mathcal{M}_{\mathbf{b},d,\mathbf{l}}^{A,H;K}(J) \subset \mathcal{M}(J)$ consists of all curves $u = v \circ \psi$ such that

• $v \in \mathcal{M}_{*,\mathsf{I}}^{A,H}(J)$

 ψ is a degree d holomorphic branched cover, with branching data b = (b₁,..., b_r)

• ψ has generalised automorphism group K

This is a $2r + \dim \mathcal{M}_{*,I}^{A,H}(J)$ -dimensional smooth manifold. What about $(A \times G)_u$? Can $g \in G$ act by an automorphism of ψ ? Is $(A \times G)_u$ smaller or larger than $(A \times G)_v$?

Iso-symmetric strata of multiply covered curves (cont.)

How do $(A \times G)_u$ and $(A \times G)_v$ relate?

 ${\it G}_v \subset {\it G}_u$ (easy); $g \in {\it G}_u$ implies $g \circ v$ is a reparametrisation of v as

$$\mathbf{v} \circ \psi = \mathbf{u} = \mathbf{g} \cdot \mathbf{u} = (\underbrace{\mathbf{g} \circ \mathbf{v}}_{simple}) \circ \psi,$$

Standard Fact

If *u* is multiply covered, *u* decomposes as $u = v \circ \psi$ for *v* simple and ψ a holomorphic branched cover. *v* is unique up to reparametrisation.

Compare $(A \times G)_u$ and $(A \times G)_v$:

g ∘ u = u ∘ φ implies (g · v) ∘ (ψ ∘ φ⁻¹) = v ∘ ψ, so g · v and v are reparametrisations

• Conversely, $g \circ v = v \circ \phi$ implies $g \circ u = v \circ (\phi \circ \psi)...$

Teichmüller slices and A-adapted Teichmüller slices

Recall: Teichmüller slices

A **Teichmüller slice** through *j* is parametrised by an injective smooth map $\mathcal{O} \to \mathcal{J}(\Sigma), \tau \mapsto j_{\tau}$ such that

im
$$D_j \oplus T_j \mathcal{T} = L^p(\overline{\operatorname{End}}_{\mathbb{C}}(T\Sigma)),$$

with dim $\mathcal{O} = \dim T_j \mathcal{T}$, where $D_j := D\overline{\partial}_J(\mathrm{id}) \colon W^{1,p}(T\Sigma) \to L^p(\overline{\mathrm{End}}_{\mathbb{C}}(T\Sigma)) \text{ and } T_j \mathcal{T} \text{ are } \dots$

Definition: A-adapted Teichmüller slices

 $A \leq Diff_{+}(\Sigma)$ closed subgroup, suppose $j \in \mathcal{J}(\Sigma)$ has Aut $(\Sigma, j) = A$. An A-adapted Teichmüller slice through j is parametrised by an injective smooth map $\mathcal{O} \to \mathcal{J}(\Sigma), \tau \mapsto j_{\tau}$ such that

$$D_j(W^{1,p}_A) \oplus T_j\mathcal{T} = L^p_A(\overline{\operatorname{End}}_{\mathbb{C}}(T\Sigma)),$$

with dim $\mathcal{O} = \dim T_j \mathcal{T}$, where D_j and $T_j \mathcal{T}$ are as above.

Existence of adapted Teichmüller slices

Claim. adapted Teichmüller slices always exist.

Intuition/"moral proof"

Choose a Teichmüller slice \mathcal{T} through *j* which is *A*-invariant (as a set).

Then $\mathcal{T}_A := Fix(A) \subset \mathcal{T}$ is a candidate for an A-adapted T. slice.

Rigorous proof

Assume ${\mathcal T}$ is given by the exponential map

$$\mathcal{O}
ightarrow \mathcal{J}(\Sigma), y \mapsto j_y := (\mathrm{id} + \frac{1}{2} j y) j (\mathrm{id} + \frac{1}{2} j y)^{-1}$$

for $\mathcal{O} \subset T_j \mathcal{T}$ sufficiently small, contained in some smooth complement of im D_j . Then the above holds.

Infinite groups: new challenges

- Finding a local model: fixed point set no longer works; slice theorem does not hold (reparametrisation action is not smooth)
- Finding a large set of good injective points
- Counterexample 1: G acts transitively Then J^G(M,ω) is finite-dimensional, too small
- Counterexample 2: SO(2n + 1) acts on S²ⁿ × S²
 all equivariant acs are biholomorphic (uniformisation theorem)
- Sendidate condition: Hamiltonian action of abelian Lie group