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Symplectic manifolds arise naturally, e.g. as phase space in
Hamiltonian mechanics.
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Symplectic manifolds are useful

Definition
A symplectic manifold is a pair (M,w) of a smooth 2n-dimensional
manifold M and a closed non-degenerate two-form w.

Symplectic manifolds arise naturally, e.g. as phase space in
Hamiltonian mechanics.

Darboux’ theorem: symplectic manifolds have no local invariants

Can we find global invariants?
Yes: e.g., symplectic homology or Gromov—Witten invariants
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Holomorphic curves are great

They played a role in breakthroughs such as

proof of the Arnold conjecture (Floer et al)
Conley conjecture (Salamon—Zehnder; Hingston, Ginzburg, ...)

Gromov's non-squeezing theorem; symplectic capacities

symplectic filling problems

Behind these results: suitable symplectic invariants
defined using holomorphic curves

Defining an invariant involves dealing with a transversality question
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What is a holomorphic curve?

(M, w) closed 2n-dimensional symplectic manifold.

Definition

A smooth almost complex structure on (M,w) is a smooth
section J € [(End(TM)) such that J?> = —id. J is tame if
gy = w(-,J-) > 0 and compatible if additionally g; is symmetric.

V.

Definition

Given an acs J on M, a closed genus g pseudo-holomorphic curve
is a smooth map u: (Xz,j) = M such that Jodu=duoj.

Definition: moduli space
Given acs J and data g € Z>q, C € Hy(M)

M(J) = Mg (C,J) = {(Z,j, u) | u:(X,j) — M closed genus g

holo. curve, U*[Z] = C}/reparametrisatiom
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How to define an invariant: transversality

Dream transversality result

For generic compatible/tame a.c.s. J, the moduli space M(J) is a
compact smooth manifold of dimension

(n—3)(2 —2g) + 2{(c1(TM), C).
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Dream transversality result
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For generic compatible/tame a.c.s. J, the moduli space M(J) is a
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Introduction and motivation
[e]e]e] le]e]

How to define an invariant: transversality

Dream transversality result

For generic compatible/tame a
compact smooth manifold off
(n—3)(2 - 28) + 2(cr(TM), G

For generic compatible/tame a.c.s. J, the moduli space M(J) is a
eompaet compatifiable smooth manifeld orbifold of dimension
(n—3)(2 —2g) + 2{c1(TM), C) if transversality holds.

Deeper reason: inherent symmetry, through the automorphism
group of multiple covers
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Dealing with lack of transversality: common strategies

2
PN Is 5_/ h 07

Common strategy 1: avoid it, by assuming suitable geometric
hypotheses
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Dealing with lack of transversality: common strategies
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Common strategy 1: avoid it, by assuming suitable geometric
hypotheses

Common strategy 2: use virtual techniques, e.g.
virtual fundamental classes, Kuranishi structures, global Kuranishi
charts, domain-dependent perturbations or polyfolds

Bad news 1: no consensus which is best, or if equivalent

Bad news 2: perturbations destroy inherent symmetry
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Equivariant transversality: a new approach

Accept and embrace the symmetry! Given a group acting on M(J):

@ Decompose M(J) into iso-symmetric strata according to the
stabilisers of the action. Prove each iso-symmetric stratum is
(generically) a smooth manifold.

@ To each curve v in a stratum S, associate an equivariant
Fredholm operator F,, varying smoothly with u.

Decompose S further into walls

{ue S| dimker F, = k,dim coker F, = c}

@ Prove: each wall is (generically) a smooth submanifold of its
iso-symmetric stratum.

@ Compute the dimension of each stratum and wall.

Goes back to Taubes ('96, “Counting . ..submanifolds"),
extended and generalised by Wend| (23, “super-rigidity”).
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Setting and standing assumptions

@ (M,w) closed 2n-dimensional symplectic manifold
@ G finite group acting symplectically on M, via g — 1
@ Then G acts

...on smooth maps u: ¥ — M by g-u:=1gou,

...on M(J) by g - [u] := [thg o u].
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Setting and standing assumptions

@ (M,w) closed 2n-dimensional symplectic manifold
@ G finite group acting symplectically on M, via g — 1

@ Then G acts
...on smooth maps u: ¥ — M by g-u:=1gou,
...on M(J) by g - [u] := [thg o u].

e Consider the space of G-invariant a.c.s. on (M,w):

T(M,w) := {J € J(M) compatible | 95J = J for all g € G},

Always assume J € J (M, w).
@ Easy to prove: jG(I\/I,w) is non-empty and contractible.
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Definition of iso-symmetric strata

Fix a closed oriented genus g surface &
Consider the moduli space of parametrised curves

M(J) = {(,u) € () x C(£, M) | [(Z.).u)] € M(J)}
Consider orbit types w.r.t. suitable group actions:

/\72’,,, := {j complex structure on ¥ | Aut(X, ) Zconj. A}
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Definition of iso-symmetric strata

Fix a closed oriented genus g surface &
Consider the moduli space of parametrised curves

M(J) = {(,u) € () x C(£, M) | [(Z.).u)] € M(J)}
Consider orbit types w.r.t. suitable group actions:

/\72’,,, := {j complex structure on ¥ | Aut(X, ) Zconj. A}

“(parametrised) pre-stratum”, w.r.t. the Diff | (X)-action on M(J)
by ¢ - (j, u) i= ($fyu 0 ¢71)

MAU) = {(,u) e M(J) | je ML}
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Definition of iso-symmetric strata (cont.)

A x G acts on MA(J) by (¢,8) - (j, 1) = (¢ufs thg 0 0 ¢7Y).
Orbit type of H< AX G is

MAP() ={(j,u) € MAJ) | (AX G)y Zeonj. H}
={(j,u) € M(J) | Aut(Z,}) Zeonj. A and (A X G)y Zeonj. H}
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Definition of iso-symmetric strata (cont.)

A x G acts on MA(J) by (¢,8) - (j, 1) = (¢ufs thg 0 0 ¢7Y).
Orbit type of H< AX G is

MAP() ={(j,u) € MAJ) | (AX G)y Zeonj. H}
={(j,u) € M(J) | Aut(Z,}) Zeonj. A and (A X G)y Zeonj. H}

Full definition of parametrised iso-symmetric strata: positive

integers | = (h, ..., k),
Mv:"lH(J) = {v e MAH(J) | v somewhere injective,
critical points of v have orders I}

Unparametrised version:

MA() = {[u] € M(J) | 3 reparametrisation in M2 (J)}

| E |
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How to define iso-symmetric strata (cont.)

MAH(Y = {[(ZJ,u)] € M) | (j,u) € T(X) x C°(Z, M),
Aut(X,j) Zconj. A and (A x G)y Zconj. H}

@ Stabiliser of u differs as parametrised and unparametrised
curvel
o parametrised curve/point-wise: have G, < Gy, for all z € L.
Equality need not hold, but is true for almost every point.
e unparametrised curve/set-wise: what if g- u is a
reparametrisation of u?

Solution: consider the Aut(X,j) x G-action instead; is
inherently parametrised.
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How to define iso-symmetric strata (cont.)

MA (D) = {[(Zg, u)] € M(J) | (j,u) € T(T) x CZ(E, M),

o

© 00

Aut(X,j) Zconj. A and (A x G)y Zconj. H}

Stabiliser of u differs as parametrised and unparametrised
curve!

o parametrised curve/point-wise: have G, < Gy, for all z € L.
Equality need not hold, but is true for almost every point.

e unparametrised curve/set-wise: what if g- u is a
reparametrisation of u?

Solution: consider the Aut(X,j) x G-action instead; is
inherently parametrised.

Aut(X, ) is semi-continuous in j, so stratify by Aut(X, ) first
Using isomorphic instead of conjugate groups also works
Strata depend on A and H only up to conjugation
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Defining walls

o u: ¥ S M is J-holomorphic iff 3,(u) := du+ Joduoj=0
o linearised Cauchy—Riemann operator of u € MV(J) is
D, := D3 (u): WYP(u* TM) — LP(Endc(TX, u* TM))
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Defining walls

u: ¥ S5 M is J-holomorphic iff 9,(u) := du+ Joduoj =0
o linearised Cauchy—Riemann operator of u € MV(J) is
D, := D3 (u): WYP(u* TM) — LP(Endc(TX, u* TM))
e Have splitting v* TM = T, ® N, where N, is the generalised
normal bundle
@ induces the normal Cauchy—Riemann operator
DN = 7y 0 Dulr(n,): WP(N,) — LP(Endc(TXZ, N,))

e D, and Dl’,V are Fredholm operators, depend smoothly on u
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Defining walls (cont.)

Normal Cauchy—Riemann operator N
DN: WlP(N,) — LP(Endc(TX, N,)) of u e M(J)

o Ifue va’lH(J), then D, and DY are H-equivariant
o = ker DV and coker D) are H-representations
e walls in /\/l:"’lH(J) are defined by

M(J;k,c) == {ue M}N(J) | dimker D) = k,dim coker D} = c}
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Main results

Theorem A (R. '23)

Suppose A and G are finite. There exists a co-meagre subset
Jreg C T € (M, w) such that for all J € Jreq, every iso-symmetric
stratum Mf’lH(J) is a smooth finite-dimensional manifold.

Theorem B (R. '24)

There exists a co-meagre subset jr'eg C Jreg such that each wall
M(J; k,c) C M:‘;,H(J) is a smooth submanifold. Its codimension
near u € M(J; k, c) is dimg Homy(ker DY, coker DV), where DV is
the normal Cauchy—Riemann operator of u.

v

Proposition C (R. '23)

The number of distinct non-empty iso-symmetric strata is countable;
same for the walls”.

— = = = ==
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Proof outline of Theorem A

@ Local model: M:’IH(J) described by (5’])_1(0), for

3 TxB— & (j,u)— du+Joduoj,

where T is an A-adapted Teichmuiller slice through j,
B = Fix(H) € WHP(Z, M) and
Ewy = Ly(Endc((TZ, j), u* TM))
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Proof outline of Theorem A

@ Local model: M:’IH(J) described by (5’])_1(0), for

)T xB—&(,u)— dut Joduoj,

where T is an A-adapted Teichmuiller slice through j,
B = Fix(H) ¢ WYP(Z, M) and
g(j,u) = LZ(WC((TZJ): u* TM))
@ Universal moduli space
UJe) ={(u,J) | J€Teyue M)} is a smooth
separable metrisable Banach manifold, (u,J) — J is smooth
@ Thus: for J € J. a regular value, (5’])_1(0) is a smooth

manifold, and M::’,H(J) = (57)_1(0)/A is a smooth manifold
(as simple curves)
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Proof outline of Theorem A

@ Local model: M:’IH(J) described by (5’])_1(0), for

)T xB—&(,u)— dut Joduoj,

where T is an A-adapted Teichmuiller slice through j,
B= Fix(H);leP(Z, M) and
g(j,u) = LZ(EHCI((:((TZ,_/), u* TM))
@ Universal moduli space
UJe) ={(u,J) | J€Teyue M)} is a smooth
separable metrisable Banach manifold, (u,J) — J is smooth
@ Thus: for J € J. a regular value, (5’])_1(0) is a smooth
manifold, and M::’,H(J) = (57)_1(0)/A is a smooth manifold
(as simple curves)
@ Sard-Smale theorem: regular values are co-meagre in J.

@ Taubes’ trick: upgrade to a co-meagre subset of 7¢(M,w)
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Proof outline of Theorem A (cont.)

o Key step: U*(Je) is smooth
e Local model: 9;: T x Bx J. = &,(j,u,J) — du+Joduoj
e Fix (j,u,J) € U*(Je) and consider

L: WEP(u* TM) @ CE(Endc(TM, J)) — LP(Ende(TE, u* TM)),
(n,Y)~ Dun+ Yoduoj

If u has an injective point, then L is surjective.
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Proof outline of Theorem A (cont.)

o Key step: U*(Je) is smooth
e Local model: 9;: T x Bx J. = &,(j,u,J) — du+Joduoj
e Fix (j,u,J) € U*(Je) and consider

L: WEP(u* TM) @ CE(Endc(TM, J)) — LP(Ende(TE, u* TM)),
(n,Y)~ Dun+ Yoduoj

If u has an injective point, then L is surjective.

Proof sketch (part 1).

© Use Hahn-Banach theorem: suppose « € (LF;)" with o # 0 but
a’imL =0

@ averaging: extend « to (LP)" = L9, s.t. v is H-invariant

™ = - =
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Proof of Key Lemma, cont.

@ alimr =0 implies

(Dyn, ) =0 for all n € W,},’p(u* ™) (1)
(Yoduoj,a)=0forall Y € C°(Endc(TM,J)) (2)

Q (1) implies a~1(0) is discrete
(H-invariance of « and pairing, unique continuation)
@ choose Y so (Y oduoj,a) >0, contradiction to (2)

e choose a good injective point zg € ¥
e choose Y(u(z)) = a(z)
o multiply with bump function so (Y oduoj a) >0

@ choose auxiliary sequence € so Y € C¢(Endc(TM, J))
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Proof of Key Lemma, cont.

@ alimr =0 implies

(Dyn, ) =0 for all n € W,},’p(u* ™) (1)
(Yoduoj,a)=0forall Y € C°(Endc(TM,J)) (2)

Q (1) implies a~1(0) is discrete
(H-invariance of « and pairing, unique continuation)
@ choose Y so (Y oduoj,a) >0, contradiction to (2)

e choose a good injective point zg € &
e choose Y(u(z)) = a(z)
o multiply with bump function so (Y oduoj a) >0

@ choose auxiliary sequence € so Y € C¢(Endc(TM, J))
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Proof outline of Theorem B

o lfue Mfy’,H(J), the formal adjoint (DY)* is also H-equivariant

e Implicit function theorem: present M(J; k, ¢) near
ue M(J;k,c)as F71(0) for a suitable map

F: nbhd of u — Homp(ker DY, coker D)

o Flexibility: if u ./\/li]H(J) is simple, any H-equivariant
section A € IM(Endc(TX, N,)) with support within a set of
good injective points satisfies An = 8TD",\{T77|T:0,
where D",\{T are defined w.r.t. a smooth family
(J;) € T¢(M,w) with J, = J along v.

o Petri’s condition: for a co-meagre subset of J¢(M,w), the
operators DN for u € M(J; k, c) satisfy Petri's condition
Proof by reduction to the non-equivariant case
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Proof outline of Proposition C

To show: number of non-empty distinct iso-symmetric strata/walls
is countable
@ Iso-symmetric strata: depends on the genus g
e g =0, i.e. spheres: uniformisation theorem implies
(X,j) = (S?, i), exactly one stratum
e g =1, i.e. tori: analyse model surface carefully
e after reparametrisation, (X,)) = (C/(Z + A\Z),j») for A € H
o conjugation and translation: reduce to G := Aut(T?, jy, {0})
details on next slide
o g = 2: stable surface, so Aut(X,j) is finite
J(X) is Lindelof; finiteness, Aut(X, ) is semi-continuous

e For walls, is clear (as N is countable)



Outline of proof
O0000e

Details for the g = 1 case

To show: only countably many groups Gy for A € H
@ Lefschetz fixed point theorem: G injects into the mapping
class group M(T?)
o the map M(T?) — End(H1(T?) = SL(2,Z), ¢ +— ¢
is a group isomorphism
thus, G, is discrete

@ Gy is compact: A € G, preserves basis B),
so A lies in some U(1)

@ only countably many finite subsets of a given countable set
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Outlook and next steps

strata and walls of multiply covered curves
compute the dimensions of iso-symmetric strata and walls
allow infinite groups A, i.e. unstable domains

punctured holomorphic curves
challenge for applicability: compute Conley—Zehnder indices of
multiply covered Reeb orbits

@ generalise to infinite groups G

@ applications, e.g. equivariant super-rigidity, equivariant Gromov
invariant, equivariant Gromov—Witten invariants

@ beyond symplectic actions
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Beyond symplectic actions

e anti-symplectic involutions: ¢ € Diff(M) with ¢*w = —w
then, want ¢*J = —J instead; J¢(M,w) is still contractible

@ anti-symplectic actions: G = (S), each s € S acts by an
anti-symplectic involution
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Beyond symplectic actions

e anti-symplectic involutions: ¢ € Diff(M) with ¢*w = —w
then, want ¢*J = —J instead; J¢(M,w) is still contractible

@ anti-symplectic actions: G = (S), each s € S acts by an
anti-symplectic involution

@ motivation 1: celestial mechanics

@ motivation 2: real Gromov—Witten theory studies real
holomorphic curves u: ¥ — M, with uo o = ¢ o u, where o is
an anti-holo. involution on
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Summary /take-home message

@ Using holomorphic curves involves dealing with a transversality
problem.

@ Traditionally, transversality and symmetry are incompatible;
virtual techniques. New paradigm: equivariant transversality,
through stratification of the moduli space.

© Implemented for simple curves, w.r.t. a finite symplectic group
action.
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Summary /take-home message

@ Using holomorphic curves involves dealing with a transversality
problem.

@ Traditionally, transversality and symmetry are incompatible;
virtual techniques. New paradigm: equivariant transversality,
through stratification of the moduli space.

© Implemented for simple curves, w.r.t. a finite symplectic group
action.

Thanks for listening! Any questions?
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Detail: choosing a good injective point

Choose a good injective point zp € &

. 3 2 g4
( \“5“] o > : ] u
T I
need ! Ul & im g heei.t Gu = Gut:o)

Several conditions are required
@ Zzy is an injective point
e a(z) #0
e if g uis not a reparametrisation of u, then u(z) ¢ im(g - u)
°

u(zp) is not fixed by some reparametrisation
overall, obtain G, = G,
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Proof outline: Petri's condition (corrected)

o Choose z € T with G, = G,(;) (open dense set)

@ Prove: D! satisfies Petri's condition to infinite order at all
such z

e If G, is trivial: reduce to Wendl's result (as submitted)

@ G, non-trivial: an open subset nbhd of z maps into fixed point
set MG c M

e G,-action on M% is trivial — no equivariance constraint
then apply the argument above
(careful to preserve countability)
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Dimension of the iso-symmetric strata

See blackboard
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|so-symmetric strata of multiply covered curves

Suppose u = v o1 is multiply covered: v is simple, ¢ a holomorphic
branched cover

Candidate definition

The iso-symmetric stratum M()‘;‘IJ{;K(J) C M(J) consists of all
curves u = v o 1) such that
e veE M:"]H(J)
@ 1 is a degree d holomorphic branched cover,
with branching data b = (b1, ..., b,)
@ 1 has generalised automorphism group K

This is a 2r + dim M:’,H(J)—dimensional smooth manifold.
What about (A x G),? Can g € G act by an automorphism of 7
Is (A x G), smaller or larger than (A x G),?
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Iso-symmetric strata of multiply covered curves (cont.)

How do (A x G), and (A x G), relate?
G, C G, (easy); g € G, implies g o v is a reparametrisation of v as

voy=u=g-u=(gov)oy,

simple

Standard Fact

If uis multiply covered, u decomposes as u = v o ¢ for v simple
and % a holomorphic branched cover. v is unique up to
reparametrisation.

Compare (A x G), and (A x G),:
@ gou=uo¢implies (g-v)o(Poopt)=vor,
so g - v and v are reparametrisations
e Conversely, gov =vo ¢ implies gou=vo(po)..
Upshot: candidate definition looks promising
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Teichmiiller slices and A-adapted Teichmiuiller slices

Recall: Teichmuller slices

A Teichmiiller slice through j is parametrised by an injective
smooth map O — J(X), 7 + j; such that

imD; @ T;T = L”(W@(TZ)),

with dim O = dim T;7, where
D; := Dd,(id): WLP(TX) — LP(Endc(TX)) and T;T are ...

Definition: A-adapted Teichmiiller slices

A < Diff(X) closed subgroup, suppose j € J(X) has

Aut(X,j) = A. An A-adapted Teichmiiller slice through j is
parametrised by an injective smooth map O — J(X), T > j such
that

Dj(Wa®) @ TjT = L4(Ende(TE)),
with dim O = dim T;7, where D; and T;7 are as above.
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Existence of adapted Teichmiiller slices

Claim. adapted Teichmiiller slices always exist.

Intuition/“moral proof”

Choose a Teichmiiller slice 7 through j
which is A-invariant (as a set).

Then Ta := Fix(A) C T is a candidate for an A-adapted T. slice.

Rigorous proof

Assume 7T is given by the exponential map
. R T S
O — J(X),y— j, = (id +§Jy)1(|d +§Jy)

for O C T;T sufficiently small, contained in some smooth
complement of im D;. Then the above holds.
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Infinite groups: new challenges

@ Finding a local model: fixed point set no longer works;
slice theorem does not hold (reparametrisation action is not
smooth)

@ Finding a large set of good injective points

© Counterexample 1: G acts transitively
Then J¢(M,w) is finite-dimensional, too small

© Counterexample 2: SO(2n + 1) acts on S?" x §?
all equivariant acs are biholomorphic (uniformisation theorem)

© Candidate condition: Hamiltonian action of abelian Lie group
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