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Symplectic manifolds are useful

Definition
A symplectic manifold is a pair (M, ω) of a smooth 2n-dimensional
manifold M and a closed non-degenerate two-form ω.

Symplectic manifolds arise naturally, e.g. as phase space in
Hamiltonian mechanics.

Darboux’ theorem: symplectic manifolds have no local invariants

Can we find global invariants?
Yes: e.g., symplectic homology or Gromov–Witten invariants
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Holomorphic curves are great

They played a role in breakthroughs such as
proof of the Arnold conjecture (Floer et al)
Conley conjecture (Salamon–Zehnder; Hingston, Ginzburg, . . . )
Gromov’s non-squeezing theorem; symplectic capacities
symplectic filling problems

Behind these results: suitable symplectic invariants
defined using holomorphic curves

Defining an invariant involves dealing with a transversality question
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What is a holomorphic curve?
(M, ω) closed 2n-dimensional symplectic manifold.
Definition
A smooth almost complex structure on (M, ω) is a smooth
section J ∈ Γ(End(TM)) such that J2 = − id. J is tame if
gJ := ω(·, J ·) > 0 and compatible if additionally gJ is symmetric.

Definition
Given an acs J on M, a closed genus g pseudo-holomorphic curve
is a smooth map u : (Σg , j) → M such that J ◦ du = du ◦ j .

Definition: moduli space
Given acs J and data g ∈ Z≥0, C ∈ H2(M)

M(J) := Mg(C , J) :=
{

(Σ, j , u) | u : (Σ, j) → M closed genus g

holo. curve, u∗[Σ] = C
}
/reparametrisation,
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How to define an invariant: transversality

Dream transversality result
For generic compatible/tame a.c.s. J , the moduli space M(J) is a
compact smooth manifold of dimension
(n − 3)(2 − 2g) + 2⟨c1(TM),C⟩.
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How to define an invariant: transversality

Dream transversality result
For generic compatible/tame a.c.s. J , the moduli space M(J) is a
compact smooth manifold of dimension
(n − 3)(2 − 2g) + 2⟨c1(TM),C⟩.

The reality
For generic compatible/tame a.c.s. J , the moduli space M(J) is a
compact compatifiable smooth manifold orbifold of dimension
(n − 3)(2 − 2g) + 2⟨c1(TM),C⟩ if transversality holds.

Deeper reason: inherent symmetry, through the automorphism
group of multiple covers
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Dealing with lack of transversality: common strategies

Is ∂J ⋔ 0?

Common strategy 1: avoid it, by assuming suitable geometric
hypotheses

Common strategy 2: use virtual techniques, e.g.
virtual fundamental classes, Kuranishi structures, global Kuranishi
charts, domain-dependent perturbations or polyfolds
Bad news 1: no consensus which is best, or if equivalent
Bad news 2: perturbations destroy inherent symmetry
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Equivariant transversality: a new approach

Accept and embrace the symmetry! Given a group acting on M(J):
1 Decompose M(J) into iso-symmetric strata according to the

stabilisers of the action. Prove each iso-symmetric stratum is
(generically) a smooth manifold.

2 To each curve u in a stratum S, associate an equivariant
Fredholm operator Fu, varying smoothly with u.
Decompose S further into walls

{u ∈ S | dim ker Fu = k, dim coker Fu = c}

3 Prove: each wall is (generically) a smooth submanifold of its
iso-symmetric stratum.

4 Compute the dimension of each stratum and wall.
Goes back to Taubes (’96, “Counting . . . submanifolds”),
extended and generalised by Wendl (’23, “super-rigidity”).
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Setting and standing assumptions

(M, ω) closed 2n-dimensional symplectic manifold
G finite group acting symplectically on M, via g 7→ ψg

Then G acts
. . . on smooth maps u : Σ → M by g · u := ψg ◦ u,
. . . on M(J) by g · [u] := [ψg ◦ u].

Consider the space of G-invariant a.c.s. on (M, ω):

J G(M, ω) := {J ∈ J (M) compatible | ψ∗
gJ = J for all g ∈ G},

Always assume J ∈ J G(M, ω).
Easy to prove: J G(M, ω) is non-empty and contractible.
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Definition of iso-symmetric strata

Fix a closed oriented genus g surface Σ
Consider the moduli space of parametrised curves

M̃(J) := {(j , u) ∈ J (Σ) × C∞(Σ,M) | [(Σ, j , u)] ∈ M(J)}

Consider orbit types w.r.t. suitable group actions:

M̃A
g ,m := {j complex structure on Σ | Aut(Σ, j) ∼=conj. A}

“(parametrised) pre-stratum”, w.r.t. the Diff+(Σ)-action on M̃(J)
by ϕ · (j , u) := (ϕ∗j , u ◦ ϕ−1)

M̃A(J) := {(j , u) ∈ M̃(J) | j ∈ M̃A
g ,m}
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Definition of iso-symmetric strata (cont.)
A × G acts on M̃A(J) by (ϕ, g) · (j , u) := (ϕ∗j , ψg ◦ u ◦ ϕ−1).
Orbit type of H ⩽ A × G is

M̃A,H(J) :={(j , u) ∈ M̃A(J) | (A × G)u ∼=conj. H}

={(j , u) ∈ M̃(J) | Aut(Σ, j) ∼=conj. A and (A × G)u ∼=conj. H}

Full definition of parametrised iso-symmetric strata: positive
integers l = (l1, . . . , lk),

M̃A,H
∗,l (J) :=

{
v ∈ M̃A,H(J) | v somewhere injective,

critical points of v have orders l
}

Unparametrised version:

MA,H
∗,l (J) := {[u] ∈ M(J) | ∃ reparametrisation in M̃A,H

∗,l (J)}
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How to define iso-symmetric strata (cont.)

M̃A,H(J) := {[(Σ,j , u)] ∈ M(J) | (j , u) ∈ J (Σ) × C∞(Σ,M),
Aut(Σ, j) ∼=conj. A and (A × G)u ∼=conj. H}

1 Stabiliser of u differs as parametrised and unparametrised
curve!

parametrised curve/point-wise: have Gu ⩽ Gu(z) for all z ∈ Σ.
Equality need not hold, but is true for almost every point.
unparametrised curve/set-wise: what if g · u is a
reparametrisation of u?

Solution: consider the Aut(Σ, j) × G-action instead; is
inherently parametrised.

2 Aut(Σ, j) is semi-continuous in j , so stratify by Aut(Σ, j) first
3 Using isomorphic instead of conjugate groups also works
4 Strata depend on A and H only up to conjugation
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Defining walls

u : Σ C∞
→ M is J-holomorphic iff ∂J(u) := du + J ◦ du ◦ j = 0

linearised Cauchy–Riemann operator of u ∈ M̃(J) is
Du := D∂J(u) : W 1,p(u∗TM) → Lp(EndC(TΣ, u∗TM))

Have splitting u∗TM = Tu ⊕ Nu, where Nu is the generalised
normal bundle
induces the normal Cauchy–Riemann operator
DN

u := πN ◦ Du|Γ(Nu) : W 1,p(Nu) → Lp(EndC(TΣ,Nu))
Du and DN

u are Fredholm operators, depend smoothly on u



Introduction and motivation Main results Outline of proof Conclusion and outlook

Defining walls

u : Σ C∞
→ M is J-holomorphic iff ∂J(u) := du + J ◦ du ◦ j = 0

linearised Cauchy–Riemann operator of u ∈ M̃(J) is
Du := D∂J(u) : W 1,p(u∗TM) → Lp(EndC(TΣ, u∗TM))
Have splitting u∗TM = Tu ⊕ Nu, where Nu is the generalised
normal bundle
induces the normal Cauchy–Riemann operator
DN

u := πN ◦ Du|Γ(Nu) : W 1,p(Nu) → Lp(EndC(TΣ,Nu))
Du and DN

u are Fredholm operators, depend smoothly on u



Introduction and motivation Main results Outline of proof Conclusion and outlook

Defining walls (cont.)

Normal Cauchy–Riemann operator
DN

u : W 1,p(Nu) → Lp(EndC(TΣ,Nu)) of u ∈ M̃(J)
If u ∈ M̃A,H

∗,l (J), then Du and DN
u are H-equivariant

⇒ ker DN
u and coker DN

u are H-representations
walls in MA,H

∗,l (J) are defined by

M(J ; k, c) := {u ∈ MA,H
∗,l (J) | dim ker DN

u = k, dim coker DN
u = c}
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Main results

Theorem A (R. ’23)
Suppose A and G are finite. There exists a co-meagre subset
Jreg ⊂ J G(M, ω) such that for all J ∈ Jreg, every iso-symmetric
stratum MA,H

∗,l (J) is a smooth finite-dimensional manifold.

Theorem B (R. ’24)
There exists a co-meagre subset J ′

reg ⊂ Jreg such that each wall
M(J ; k, c) ⊂ MA,H

∗,l (J) is a smooth submanifold. Its codimension
near u ∈ M(J ; k, c) is dimR HomH(ker DN

u , coker DN
u ), where DN

u is
the normal Cauchy–Riemann operator of u.

Proposition C (R. ’23)
The number of distinct non-empty iso-symmetric strata is countable;
same for the walls´.
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Proof outline of Theorem A

1 Local model: M̃A,H
∗,l (J) described by (∂H

J )−1(0), for

∂
H
J : T × B → E , (j , u) 7→ du + J ◦ du ◦ j ,

where T is an A-adapted Teichmüller slice through j ,
B = Fix(H) ⊂ W 1,p(Σ,M) and
E(j,u) = Lp

H(EndC((TΣ, j), u∗TM))

2 Universal moduli space
U∗(Jϵ) = {(u, J) | J ∈ Jϵ, u ∈ MA,H

∗,l (J)} is a smooth
separable metrisable Banach manifold, (u, J) → J is smooth

3 Thus: for J ∈ Jϵ a regular value, (∂H
J )−1(0) is a smooth

manifold, and MA,H
∗,l (J) ∼= (∂H

J )−1(0)/A is a smooth manifold
(as simple curves)

4 Sard–Smale theorem: regular values are co-meagre in Jϵ

5 Taubes’ trick: upgrade to a co-meagre subset of J G(M, ω)
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Proof outline of Theorem A (cont.)

Key step: U∗(Jϵ) is smooth
Local model: ∂J : T × B × Jϵ → E , (j , u, J) 7→ du + J ◦ du ◦ j
Fix (j , u, J) ∈ U∗(Jϵ) and consider

L : W 1,p
H (u∗TM) ⊕ CG

ϵ (EndC(TM, J)) → Lp
H(EndC(TΣ, u∗TM)),

(η,Y ) 7→ Duη + Y ◦ du ◦ j

Key Lemma
If u has an injective point, then L is surjective.

Proof sketch (part 1).
1 Use Hahn-Banach theorem: suppose α ∈ (Lp

H)∗ with α ̸= 0 but
α|im L = 0

2 averaging: extend α to (Lp)∗ ∼= Lq, s.t. α is H-invariant
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Proof outline of Theorem A (cont.)
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Proof of Key Lemma, cont.

3 α|im L = 0 implies

⟨Duη, α⟩ = 0 for all η ∈ W 1,p
H (u∗TM) (1)

⟨Y ◦ du ◦ j , α⟩ = 0 for all Y ∈ CG
ϵ (EndC(TM, J)) (2)

4 (1) implies α−1(0) is discrete
(H-invariance of α and pairing, unique continuation)

5 choose Y so ⟨Y ◦ du ◦ j , α⟩ > 0, contradiction to (2)
choose a good injective point z0 ∈ Σ
choose Y (u(z0)) = α(z0)
multiply with bump function so ⟨Y ◦ du ◦ j , α⟩ > 0

6 choose auxiliary sequence ϵ so Y ∈ CG
ϵ (EndC(TM, J))
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Proof outline of Theorem B

If u ∈ MA,H
∗,l (J), the formal adjoint (DN

u )∗ is also H-equivariant
Implicit function theorem: present M(J ; k, c) near
u ∈ M(J ; k, c) as F −1(0) for a suitable map

F : nbhd of u → HomH(ker DN
u , coker DN

u )

Flexibility: if u ∈ MA,H
∗,l (J) is simple, any H-equivariant

section A ∈ ΓH(EndC(TΣ,Nu)) with support within a set of
good injective points satisfies Aη = ∂τ DN

v ,τη|τ=0,
where DN

v ,τ are defined w.r.t. a smooth family
(Jτ ) ⊂ J G(M, ω) with Jτ = J along v .
Petri’s condition: for a co-meagre subset of J G(M, ω), the
operators DN

u for u ∈ M(J ; k, c) satisfy Petri’s condition
Proof by reduction to the non-equivariant case
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Proof outline of Proposition C

To show: number of non-empty distinct iso-symmetric strata/walls
is countable

Iso-symmetric strata: depends on the genus g
g = 0, i.e. spheres: uniformisation theorem implies
(Σ, j) ∼= (S2, i), exactly one stratum
g = 1, i.e. tori: analyse model surface carefully

after reparametrisation, (Σ, j) = (C/(Z + λZ), jλ) for λ ∈ H
conjugation and translation: reduce to Gλ := Aut(T2, jλ, {0})
details on next slide

g = 2: stable surface, so Aut(Σ, j) is finite
J (Σ) is Lindelöf; finiteness, Aut(Σ, j) is semi-continuous

For walls, is clear (as N is countable)
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Details for the g = 1 case

To show: only countably many groups Gλ for λ ∈ H
Lefschetz fixed point theorem: Gλ injects into the mapping
class group M(T2)
the map M(T2) → End(H1(T2) ∼= SL(2,Z), ϕ 7→ ϕ∗
is a group isomorphism
thus, Gλ is discrete
Gλ is compact: A ∈ Gλ preserves basis Bλ,
so A lies in some U(1)
only countably many finite subsets of a given countable set
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Outlook and next steps

strata and walls of multiply covered curves
compute the dimensions of iso-symmetric strata and walls
allow infinite groups A, i.e. unstable domains
punctured holomorphic curves
challenge for applicability: compute Conley–Zehnder indices of
multiply covered Reeb orbits
generalise to infinite groups G
applications, e.g. equivariant super-rigidity, equivariant Gromov
invariant, equivariant Gromov–Witten invariants
beyond symplectic actions
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Beyond symplectic actions

anti-symplectic involutions: ϕ ∈ Diff(M) with ϕ∗ω = −ω
then, want ϕ∗J = −J instead; J G(M, ω) is still contractible
anti-symplectic actions: G = ⟨S⟩, each s ∈ S acts by an
anti-symplectic involution

motivation 1: celestial mechanics
motivation 2: real Gromov–Witten theory studies real
holomorphic curves u : Σ → M, with u ◦ σ = ϕ ◦ u, where σ is
an anti-holo. involution on Σ
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Summary/take-home message

1 Using holomorphic curves involves dealing with a transversality
problem.

2 Traditionally, transversality and symmetry are incompatible;
virtual techniques. New paradigm: equivariant transversality,
through stratification of the moduli space.

3 Implemented for simple curves, w.r.t. a finite symplectic group
action.

Thanks for listening! Any questions?
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Detail: choosing a good injective point

Choose a good injective point z0 ∈ Σ

Several conditions are required
z0 is an injective point
α(z0) ̸= 0
if g · u is not a reparametrisation of u, then u(z0) /∈ im(g · u)
u(z0) is not fixed by some reparametrisation
overall, obtain Gu = Gu(z0)
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Proof outline: Petri’s condition (corrected)

Choose z ∈ Σ with Gu = Gu(z) (open dense set)
Prove: DN

u satisfies Petri’s condition to infinite order at all
such z
If Gu is trivial: reduce to Wendl’s result (as submitted)
Gu non-trivial: an open subset nbhd of z maps into fixed point
set MGu ⊂ M
Gu-action on MGu is trivial → no equivariance constraint
then apply the argument above
(careful to preserve countability)
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Dimension of the iso-symmetric strata

See blackboard
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Iso-symmetric strata of multiply covered curves

Suppose u = v ◦ψ is multiply covered: v is simple, ψ a holomorphic
branched cover
Candidate definition
The iso-symmetric stratum MA,H;K

b,d ,l (J) ⊂ M(J) consists of all
curves u = v ◦ ψ such that

v ∈ MA,H
∗,l (J)

ψ is a degree d holomorphic branched cover,
with branching data b = (b1, . . . , br )
ψ has generalised automorphism group K

This is a 2r + dim MA,H
∗,l (J)-dimensional smooth manifold.

What about (A × G)u? Can g ∈ G act by an automorphism of ψ?
Is (A × G)u smaller or larger than (A × G)v ?
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Iso-symmetric strata of multiply covered curves (cont.)
How do (A × G)u and (A × G)v relate?
Gv ⊂ Gu (easy); g ∈ Gu implies g ◦ v is a reparametrisation of v as

v ◦ ψ = u = g · u = (g ◦ v︸ ︷︷ ︸
simple

) ◦ ψ,

Standard Fact
If u is multiply covered, u decomposes as u = v ◦ ψ for v simple
and ψ a holomorphic branched cover. v is unique up to
reparametrisation.

Compare (A × G)u and (A × G)v :
g ◦ u = u ◦ ϕ implies (g · v) ◦ (ψ ◦ ϕ−1) = v ◦ ψ,
so g · v and v are reparametrisations
Conversely, g ◦ v = v ◦ ϕ implies g ◦ u = v ◦ (ϕ ◦ ψ)...

Upshot: candidate definition looks promising
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Teichmüller slices and A-adapted Teichmüller slices

Recall: Teichmüller slices
A Teichmüller slice through j is parametrised by an injective
smooth map O → J (Σ), τ 7→ jτ such that

im Dj ⊕ TjT = Lp(EndC(TΣ)),

with dim O = dim TjT , where
Dj := D∂J(id) : W 1,p(TΣ) → Lp(EndC(TΣ)) and TjT are . . .

Definition: A-adapted Teichmüller slices
A ⩽ Diff+(Σ) closed subgroup, suppose j ∈ J (Σ) has
Aut(Σ, j) = A. An A-adapted Teichmüller slice through j is
parametrised by an injective smooth map O → J (Σ), τ 7→ jτ such
that

Dj(W 1,p
A ) ⊕ TjT = Lp

A(EndC(TΣ)),

with dim O = dim TjT , where Dj and TjT are as above.

Claim. Adapted Teichmüller slices always exist.



Bonus slides

Existence of adapted Teichmüller slices

Claim. adapted Teichmüller slices always exist.

Intuition/“moral proof”
Choose a Teichmüller slice T through j
which is A-invariant (as a set).
Then TA := Fix(A) ⊂ T is a candidate for an A-adapted T. slice.

Rigorous proof
Assume T is given by the exponential map

O → J (Σ), y 7→ jy := (id +1
2 jy)j(id +1

2 jy)−1

for O ⊂ TjT sufficiently small, contained in some smooth
complement of im Dj . Then the above holds.
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Infinite groups: new challenges

1 Finding a local model: fixed point set no longer works;
slice theorem does not hold (reparametrisation action is not
smooth)

2 Finding a large set of good injective points
3 Counterexample 1: G acts transitively

Then J G(M, ω) is finite-dimensional, too small
4 Counterexample 2: SO(2n + 1) acts on S2n × S2

all equivariant acs are biholomorphic (uniformisation theorem)
5 Candidate condition: Hamiltonian action of abelian Lie group


	Introduction and motivation
	Main results
	Outline of proof
	Conclusion and outlook
	Appendix
	Bonus slides


