Formalisation overview

Outlook 000

Formalising bordism theory

Michael B. Rothgang (he/him)

Formalised mathematics group Universität Bonn

Leaning in! 2025 March 13, 2025

Michael Rothgang (Uni Bonn)

Formalising bordism theory

Leaning in! 2025

∃ ⇒

1/28

三日 のへの

Outline of today's talk

What is bordism theory?

2 Motivation

- Existence of exotic spheres
- Homology theories

Formalisation overview

- Existing work and new contribution
- Formalisation design decisions

🕖 Outlook

Motivation

Formalisation overview

Outlook 000

What is bordism theory?

The study of smooth manifolds up to bordism

Michael Rothgang (Uni Bonn)

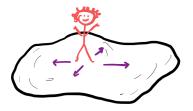
三日 のへの

What	is	bordism	theory?
0000	00	000	

Formalisation overview

Outlook 000

Manifolds



三日 のへで

イロト イヨト イヨト

What	is	bordism	theory?		
0000000					

Formalisation overview

Outlook 000

Manifolds

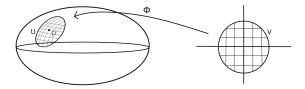
surface of a potato is a manifold: locally looks like a disk

= nac

Formalisation overview

Smooth manifolds

- manifold: second countable Hausdorff topological space M locally homeomorphic to open ball in \mathbb{R}^n
- every p ∈ M has a coordinate chart: p ∈ U ⊂ M open, homeomorphism φ: V → U for V ⊂ ℝⁿ open ball
- smooth manifold: all coordinate transformations from overlapping charts are smooth



Picture courtesy of Dominik Gutwein.

Michael Rothgang (Uni Bonn)

- (E) k

Formalisation overview

Examples of smooth manifolds

- empty set (of any dimension)
- 0-dimensional: isolated points
- 1-dimensional: \mathbb{R} , \mathbb{S}^1
- *n*-dimensional: open disc $\mathbb{D} \subset \mathbb{R}^n$
- $n=2: \mathbb{R}^2, \mathbb{S}^2, \mathbb{T}^2, \Sigma_g$ for $g\geq 1$

$$(\mathbf{w}) \quad (\mathbf{w}) \quad ($$

ELE SQC

Formalisation overview

Examples of smooth manifolds

- empty set (of any dimension)
- 0-dimensional: isolated points
- 1-dimensional: \mathbb{R} , \mathbb{S}^1
- *n*-dimensional: open disc $\mathbb{D} \subset \mathbb{R}^n$
- $n=2:\ \mathbb{R}^2,\ \mathbb{S}^2,\ \mathbb{T}^2,\ \Sigma_g$ for $g\geq 1$

n ≥ 3: complicated; classification for n ≥ 4 impossible
not a manifold: letter "X"

Manifolds with boundary

- interior points locally look like (open ball in) ℝⁿ,
 boundary points look like (open ball in) upper half of ℝⁿ
- closed manifold = compact and without boundary

Motivation

 manifolds with boundary and corners: details omitted examples: S² is closed; D
 ⊂ R² has boundary; [0, 1]² ⊂ R² has corners

Formalisation overview

Fact

What is bordism theory?

00000000

The boundary ∂M of a smooth n + 1-dimensional manifold M is a smooth *n*-manifold.

Question

Is every closed smooth *n*-dimensional manifold the boundary of a smooth n + 1-dimensional manifold?

ELE NOR

Outlook

Question

Is every closed smooth *n*-dimensional manifold the boundary of a smooth n + 1-dimensional manifold?

Answer: Yes, for stupid reasons: $M = \partial([0,\infty) \times M)$.

∃▶ 差|= のへの

Question

Is every closed smooth *n*-dimensional manifold the boundary of a smooth n + 1-dimensional manifold?

Answer: Yes, for stupid reasons: $M = \partial([0, \infty) \times M)$.

Better question

Is every closed smooth n-dimensional manifold M the boundary of a compact smooth n + 1-dimensional manifold W?

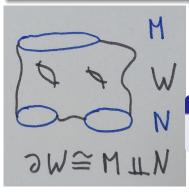
Answer

No, e.g. $M = \mathbb{CP}^2$ is not (by Poincaré duality).

⇒ ↓ ≡ ↓ ≡ ⊨ √ Q ∩

Definition

A smooth bordism between smooth *n*-manifolds M and N is a compact n + 1-dimensional manifold W such that $\partial W = M \sqcup N$.



We call M and N **bordant** if there exists a smooth bordism between them.

Fact

Being bordant is an equivalence relation.

= 900

Definition

The *n*-th unoriented **bordism group** is

 $\Omega_n^O := \{ closed smooth n-manifolds \} / bordism.$

 $\Omega^O_* := \bigoplus_{n \ge 0} \Omega^O_n$ is called the unoriented **bordism ring**. Binary operations pass to bordism classes: disjoint union resp. product of manifolds.

Theorem

Each Ω_n^O is an abelian group; Ω^O is a (graded commutative) ring.

▲□▼▲∃▼▲∃▼ 三日 のなべ

Why study bordism theory?

- it's beautiful
- great test case of the library
- exotic spheres and the Hirzebruch signature theorem
- defines an (extraordinary) homology theory

What		bordism	theory?	

Motivation: existence of exotic spheres

Question

Are there topological manifolds without a smooth structure?

- Low dimensions: no, e.g. by explicit classification
- Dimension 4k: yes!

Theorem (Milnor '56)

There exists a smooth manifold S which is homeomorphic, but not diffeomorphic to \mathbb{S}^7 .

Every smooth manifold *M* has intersection form with signature $\sigma(M) \in \mathbb{Z}$

Theorem (Hirzebruch signature theorem)

Each closed oriented smooth 8-manifold M satisfies

$$\sigma(M) = \frac{1}{45} \langle 7p_2(M) - p_1(M) \cup p_1(M), [M] \rangle.$$

Existence of exotic spheres: outline of proof

Theorem (Milnor '56)

There exists a smooth manifold S which is homeomorphic, but not diffeomorphic to \mathbb{S}^7 .

- Clever construction ("plumbing of spheres") of a smooth 8-manifold X with simply connected boundary Y = ∂X such that σ(X) = 8, p₁(X) = p₂(X) = 0 and H₂(Y) = H₃(Y) = 0
- **②** Compute: Y is homotopy equivalent to $\mathbb{S}^{7} \stackrel{\text{smale}}{\Rightarrow} Y$ homeomorphic to \mathbb{S}^{7}
- If Y were diffeomorphic to S⁷, consider M := X ∪_{S⁷} D⁸. Compute σ(M) = 8 and p₁(M) = 0, so

$$45\sigma(M) = 45 \cdot 8 = 7\langle p_1(M), [M] \rangle \in 7\mathbb{Z},$$

contradiction!

Michael Rothgang (Uni Bonn)

<<p>A 目 > A 目 > A 目 > 目 = のQQ

Ingredients for the Hirzebruch signature theorem

- The signature defines a ring homomorphism $\Omega^{SO}_* \to \mathbb{Z}, [M] \mapsto \sigma(M)$.
- $\Omega^{SO}_* \otimes \mathbb{Q}$ is (graded ring) isomorphic to $\mathbb{Q}[x_4, x_8, \dots]$, where each generator x_{4k} is represented by \mathbb{CP}^{2k}
- Computation: $\sigma(\mathbb{CP}^{2n}) = 1$ for all n
- Corollary: any ring homorphism $\Psi: \Omega^{SO}_* \to \mathbb{O}$ satisfying $\Psi([\mathbb{CP}^{2n}]) = 1$ for all *n* satisfies $\Psi([M]) = \sigma(M)$ for every closed oriented smooth manifold M
- Algebraic trick ("L-genus") to deduce the theorem

Motivation: homology theories

Question

When are two topological spaces "the same" (homeomorphic)? How can we prove two spaces are different?

Algebraic invariants: different values means spaces are non-homeomorphic Common algebraic invariants

- homotopy groups: really hard to compute
- (singular, simplicial, cellular, Morse) homology groups: $(X, A) \mapsto \{H_n(X, A)\}_{n \in \mathbb{N}}$, abelian

A = N A = N = |= 900

Motivation: homology theories

Question

When are two topological spaces "the same" (homeomorphic)? How can we prove two spaces are different?

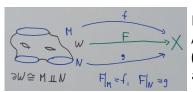
Algebraic invariants: different values means spaces are non-homeomorphic Common algebraic invariants

- homotopy groups: really hard to compute
- (singular, simplicial, cellular, Morse) homology groups: $(X, A) \mapsto \{H_n(X, A)\}_{n \in \mathbb{N}}$, abelian
- Eilenberg-Steenrod axioms characterise homology theories
- Singular homology: widely used, but proving the axioms is painful
- Bordism theory: proving the axioms is really easy

Dream goal

Bordism theory as first proven homology theory in mathlib

What is bordism theory? Motivation Formalisation overview Outlook Bordism theory as a homology theory



Fix a topological space X. A singular *n*-manifold on X is a pair (M, f) of a smooth closed *n*-manifold M and a continuous map $f: M \to X$.

A **bordism** between singular *n*-manifolds (M, f) and (N, g) is a compact n+1-manifold W with a continuous map $F: W \to X$ such that $\partial W \cong M \sqcup N, F|_M = f$ and $F|_N = g$.

Definition

The *n*-th unoriented bordism group of X is $\Omega_n^O(X) := \{ singular n-manifolds on X \} / bordism. \}$

Example. For $X = \{*\}$, we recover the bordism groups Ω_n^O .

Existing work and new contribution

- Building on mathlib's differential geometry library
- Everything in a branch of mathlib/aiming for mathlib
- Lots of ground-work already existed
 - general theory of smooth manifolds
 - interval [a, b] (for a < b) is a manifold; products of manifolds
 - disjoint unions of top. spaces

17 / 28

1 - nan

New contributions to mathlib

- discrete spaces are 0-dimensional manifolds (and conversely)
- disjoint union of manifolds
- interior and boundary of a manifold
- boundary of a disjoint union, product; $\partial[a, b] = a, b$
- disjoint union of two embeddings is an embedding (with Aaron Liu)
- new notion "this manifold has smooth boundary", basic instances

- singular n-manifolds and basic constructions
- unoriented cobordisms and bordism classes
- bordism relation is an equivalence relation: done except transitivity
- (absolute) bordism groups; proof of abelian group: virtually done

 ${\sf Missing}/{\sf next\ steps}$

- differential of the inclusion, at a product (easy)
- proof of the collar neighbourhood theorem (hard; omit)
- transitivity of the bordism relation
- finish proving the group laws (easy)

Mathlib's manifold design

• mathlib has a very general definition of manifolds

- infinite-dimensional case included (e.g. Banach manifolds)
- over any field: e.g. \mathbb{R} , \mathbb{C} or *p*-adic numbers
- allows boundary, corners (and even more)

EL SQA

Mathlib's manifold design

- mathlib has a very general definition of manifolds
 - infinite-dimensional case included (e.g. Banach manifolds)
 - over any field: e.g. \mathbb{R} , \mathbb{C} or *p*-adic numbers
 - allows boundary, corners (and even more)
- the data of a manifold (example: $\overline{\mathbb{D}}$)
 - *M*: the manifold (e.g. D̄)
 - H: the local model, a topological space (e.g. \mathbb{H})
 - E: normed space (e.g. \mathbb{R}^2)
 - I: model with corners, continuous map $H \rightarrow E$ (e.g. canonical inclusion)
 - charts on *M* (one preferred chart at each point)
 - compatibility condition: transition maps lie in structure groupoid
- why? abstract to clarify, re-usability

▲ 国 ▶ - 国 国 - ∽ Q ()


```
[TopologicalSpace H] (I : ModelWithCorners R E H) where
M : Type u
f : M \rightarrow X
hf : Continuous f
```

- bundled design, to allow using in the definition of bordism groups
- include smoothness exponent explicitly: allow smooth manifolds, but also C^k or analytic
- model with corners as a type explicit parameter disjoint union and bordism needs matching model on components
- non-ideal: type parameter in the definition with new universe variable but: X need not be related to M, want to enable functoriality

```
def map (s : SingularNManifold X k I)
     \{\varphi : X \rightarrow Y\} (h\varphi : Continuous \varphi) : SingularNManifold Y k I where
  f := \phi \circ s.f
  hf := h\omega.comp s.hf
```

- initial design: consider the set of boundary points, endow with smooth structure
- painful to work with, because of propositional equality of types
 - e.g. if *M* is closed, $\partial(M \times N) = M \times \partial N$ is not def-eq, so cannot re-use a general product construction
 - closed manifolds have empty boundary: only propositionally
- better design: consider boundary as **embedded smooth submanifold**, i.e. choose a smooth manifold M_0 with a smooth embedding $f: M_0 \to M$ s.t. range $f = \partial M$

▲ Ξ ► Ξ Ξ Ξ < < < </p>

Abridged definition:

- no mathlib definition of immersions/smooth embeddings yet; infinite-dimensional definition is different
- type field is needed; choose to align universe to M

(日本)

Definition of unoriented bordisms

```
structure UnorientedBordism.{u, v} {X E H E' H' : Type*}
    [TopologicalSpace X] [TopologicalSpace H] [TopologicalSpace H']
    [NormedAddCommGroup E] [NormedSpace R E] [NormedAddCommGroup E'] [NormedSpace R E']
    (k : WithTop N∞) {I : ModelWithCorners R E H} [FiniteDimensional R E]
    (s : SingularNManifold.{u} X k I) (t : SingularNManifold.{v} X k I)
    (J : ModelWithCorners ℝ E' H') where
  /-- The underlying compact manifold of this unoriented bordism -/
  W : Type (max u v)
  [compactSpace : CompactSpace W]
  [isManifold: IsManifold J k W]
  /-- The presentation of the boundary `W` as a smooth manifold -/
  -- Future: we could allow bd.Mo to be modelled on some other model, not necessarily I:
  -- we only care that this is fixed in the type.
  bd: BoundaryManifoldData W J k I
  /-- A continuous map `W → X` of the bordism into the topological space we work on -/
  F : W \rightarrow X
  hF : Continuous F
  /-- The boundary of `W` is diffeomorphic to the disjoint union `M ⊔ M'`. -/
  φ : Diffeomorph I I (s.M ⊕ t.M) bd.M₀ k
  /-- `F` restricted to `M ↔ ∂W` equals `f`: this is formalised more nicely as
  `f = F \circ \iota \circ \omega^{-1} : M → X`, where `\iota : \partial W \to W` is the inclusion. -/
  hFf : F \circ bd, f \circ \phi \circ Sum, inl = s, f
  /-- `F` restricted to `N \leftrightarrow \partial W` equals `g` -/
  hFa : F · bd.f · ø · Sum.inr = t.f
```

- bundled design, like SingularNManifold
- note: no requirement dim $W = \dim M + 1$ yet (just for transitivity)
- model parameters I (for the boundary) and J (for the bordism) later applications take J as the product of I and the model for [0, 1]
- universe choice: take W in universe max $u v \to \langle \mathcal{P} \rangle \land \mathbb{P} \land \mathbb{P}$

Michael Rothgang (Uni Bonn)

ELE SOC

What is bordism theory?	Motivation 000000	Formalisation overview	Outlook ●00

Outlook: future possibilities

- define the bordism ring, multiplication: not hard
- prove it's a ring: distributivity requires the inverse function theorem (in progress)
- relative bordism groups
 - generalise both singular *n*-manifolds and bordisms
 - describe the boundary of manifolds with corners
 - define a homology functor (probably easy)
 - show the Eilenberg-Steenrod axioms: mostly easy interesting: boundary is a smooth manifold (false without co-dimension condition)
- oriented bordism groups: mostly straightforward, but requires oriented manifolds and induced boundary orientation (missing)
- for mathlib: need a general definition of smooth immersions and embeddings

3 D D C E E 1 E 1

Summary

- Bordism theory is an extra-ordinary homology theory.
- **2** Applications: Hirzebruch signature theorem, existence of exotic spheres
- Formalisation is a good test of mathlib's differential geometry section
- Be patient and prepared to fill in missing API. Avoid propositional equality of types. Be careful with your universes.
- Thanks for listening! Any questions?

ELE SQC

Formalisation overview

Thanks for listening! Any questions?

- (日)

三日 のへの

What is bordism theory?	Motivation 000000	Formalisation overview	Outlook 00●
Thanks for listening	! Any ques	stions?	

Where did I cheat?

Image: A matrix and a matrix

ミト ▲ ヨト 三日日 のへ⊙

Formalisation overview

Outlook 00●

Thanks for listening! Any questions?

Where did I cheat?

Dream goal

Bordism theory as first proven homology theory in mathlib

⇒ ↓ ≡ ↓ ≡ ⊨ √ Q ∩

Thanks for listening! Any questions?

Where did I cheat?

Dream goal

Bordism theory as first proven homology theory in mathlib

Answer: boundary map for homology requires proving " ∂M is a dim M - 1-dimensional manifold".

• Uses: interior and boundary are independent of the chosen chart.

▲ ∃ ► ∃ =

Thanks for listening! Any questions?

Where did I cheat?

Dream goal

Bordism theory as first proven homology theory in mathlib

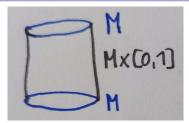
Answer: boundary map for homology requires proving " ∂M is a dim M - 1-dimensional manifold".

- Uses: interior and boundary are independent of the chosen chart.
- Uses: invariance of domain, e.g. via singular homology of spheres

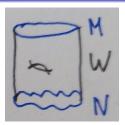
Upshot: this requires singular homology (or similar) first

⇒ ↓ ≡ ↓ ≡ ⊨ √ Q ∩

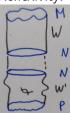
Some proof sketches about bordism classes

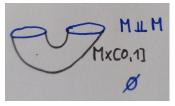


Reflexivity: the trivial bordism



Symmetry: turn upside down





Transitivity: glue bordisms along Every element has order two in their common boundary $\Omega_n^O(X)$

Michael Rothgang (Uni Bonn)

Leaning in! 2025