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Abstract

Holomorphic curves are an important technical tool in symplectic geometry. They
play an instrumental role in breakthroughs such as the proof of the Arnold and Con-
ley conjectures, Gromov’s non-squeezing theorem and subsequent work on sym-
plectic capacities, as well as symplectic filling problems. In each case, holomorphic
curves are used to define symplectic invariants which show the existence of periodic
orbits or obstruct the symplectic embedding resp. the hypothetical filling. Underly-
ing the definition of an invariant is always a question of transversality: proving that
a suitable moduli space of holomorphic curves is a smooth manifold of the desired
dimension.

A major headache in symplectic topology is the fact that transversality often does
not hold. To circumvent this, common practice is to either avoid this issue by impos-
ing suitable technical assumptions or to use virtual techniques — of which there are
several kinds, with no clear consensus yet which approach is best. This is caused by
an inherent symmetry, namely the action of the automorphism groups of multiply
covered curves.

In this thesis, we investigate a setting with even more symmetry. We study equiv-
ariant closed holomorphic curves into symplectic G-manifolds. For generic G-equi-
variant J, we cannot expect the moduli space of J-holomorphic curves to be a smooth
orbifold, let alone a smooth manifold. Instead, we accept this additional symmetry
as a feature and pursue a different paradigm: we decompose the moduli space into
countably many disjoint iso-symmetric strata and walls, using the stabiliser with re-
spect to the group action. We prove that the number of strata and walls is always
countable, and that for generic equivariant J, every stratum and wall is a smooth
finite-dimensional manifold. The dimension of each strata and wall are explicitly
computable using representation-theoretic data. This is inspired by Wendl’s solu-
tion of the super-rigidity conjecture and bears resemblance to the orbit type and
local action type decompositions of a smooth orbifold. We expect the strata and
walls to possess a similar local structure, though our methods can only partially
prove this.

Our proofs proceed by carefully analysing standard transversality proofs, and
adapting them to the equivariant context as necessary. Often, finding the correct
definition is the most difficult part, and the remaining proof is a relatively straight-
forward adaptation of the classical argument. In several places, our results apply
to the general setting of proper smooth Lie group actions. In its analysis, we use
structural results about Lie groups, such as the existence of the Haar measure and
the countability of conjugacy classes of compact subgroups.



Zusammenfassung

Pseudo-holomorphe Kurven sind ein wichtiges technisches Werkzeug in symplek-
tischer Geometrie. Sie spielten bei verschiedenen Durchbriichen eine wesentliche
Rolle, etwa dem Beweis der Arnold- und der Conley-Vermutung, Gromovs nicht-
Quetschbarkeitssatz (non-squeezing theorem) zu symplektischen Einbettungen und
folgenden Arbeiten zu symplektischen Kapazititen sowie Fragen symplektischer
Fillbarkeit.

Bei allen diesen Fragen dienen holomorphe Kurven dazu, symplektische Inva-
rianten zu definieren: Diese zeigen die Existenz periodischer Orbiten oder bilden
eine Obstruktion fiir eine sympletische Einbettung bzw. die hypothetische Fiillung.
Einer Definition einer symplektischen Invariante liegt immer ein Transversalitéts-
problem zugrunde: Es gilt zu zeigen, dass ein geeigneter Modulraum holomorpher
Kurven eine glatte Mannigfaltigkeit der gewiinschten Dimension ist.

Eine grofie Komplikation ist, dass solche Transversalitdtsprobleme oft nicht 16sbar
sind. Viele Arbeiten vermeiden dieses Problem, etwa durch das fordern geeigneter
technischer Voraussetzungen wie zum Beispiel Semipositivitdt. Eine andere Strate-
gie ist das Verwenden verschiedener virtueller Techniken — derzeit herrscht kein
klarer Konsens, welche der vorgeschlagenen Ansitze der beste ist. Grund dieser
Schwierigkeiten ist eine inhdrente Symmetrie, der Automorphismengruppe multi-
pel tiberlagerter Kurven.

Diese Arbeit behandelt den Fall zusdtzlicher Symmetrie: Wir untersuchen dquiva-
riante abgeschlossene holomorphe Kurven in symplektische G-Mannigfaltigkeiten.
Fiir generische G-dquivariante J ist nicht zu erwarten, dass der Modulraum .J-holo-
morpher Kurven eine glatte Orbifaltigkeit (oder gar eine Mannigfaltigkeit) ist. Da-
her akzeptiert diese Arbeit die Symmetrie als aussagekriftige Information und folgt
einem anderen Paradigma: Der Modulraum wird in abzéhlbar viele disjunkte iso-
symmetrische Straten und Wiille zerlegt, abhdngig von u.a. dem Stabilisator beziig-
lich der Gruppenwirkung. Wir beweisen, dass die Mengen der Straten bzw. Wille
stets abzdhlbar sind und zeigen dass, fiir generische dquivariante J, jedes Stratum
und jeder Wall eine glatte endlich-dimensionale Mannigfaltigkeit ist. Die Kodimen-
sion jedes Stratums und Walles ldsst sich explizit angeben. Dies ist inspiriert von
Wendls Beweis der Superstarrheits-Vermutung und dhnelt den Zerlegungen einer
glatten Orbifaltigkeit in Orbittypen und lokale Wirkungstypen. Wir erwarten, dass
unser Straten und Waille eine dhnliche lokale Struktur haben; dies konnen wir nur
teilweise beweisen.

Zum Beweis dieser Ergebnisse analysieren wir klassische Transversalitdtsbeweise
sorgfaltig und adaptieren sie fiir den dquivarianten Kontext. An mehreren Stellen
ist das aufstellen der korrekten Definition der schwierigste Teil und der restliche
Beweis ist eine relativ direkte Ubertragung des klassischen Arguments. Teilweise



betreffen unsere Ergebnisse den allgemeinen Fall einer eigentlichen glatten Liegrup-
penwirkung. Dort verwenden wir strukturelle Eigenschaften von Liegruppen, bei-

spielsweise die Existenz eines Haarmafies und die Abzahlbarkeit der Konjugations-
klassen kompakter Untergruppen.
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1. Introduction

Background and motivation Holomorphic curves are an important technical tool
in symplectic geometry. They play an instrumental role in several recent and past
breakthroughs, pertaining to various guiding questions. This includes the existence
of periodic Hamiltonian orbits, such as the Arnold conjecture — proven in a series of
papers from Floer’s seminal work [ Flo86; Flo89] until Abouzaid—-Blumberg’s recent
solution of the version with finite field coefficients [AB21] — or the Conley conjec-
ture (see [GG15] for a survey of the solution and recent progress in this area). Other
areas include Gromov’s non-squeezing theorem [Gro85] and subsequent work on
symplectic embeddings and capacities (see e.g. Schlenk’s survey [Sch17]) as well
as symplectic filling problems (recent progress includes [Zho19], [BGM22] and
[BGMZ24]).

In these results, holomorphic curves are witnesses of rigidity phenomena (fol-
lowing Gromov’s terminology [Gro87] of flexibility and rigidity).! For instance,
holomorphic curves underlie the definition of symplectic invariants such as various
kinds of Floer homologies, symplectic homology and Gromov-Witten invariants.
These invariants show the existence of periodic orbits or obstruct the symplectic
embedding resp. the hypothetical filling.

Underlying the definition of a holomorphic curves invariant is always a ques-
tion of transversality: whether a suitable moduli space of holomorphic curves is
a smooth manifold of the expected virtual dimension. A positive answer enables
defining the invariant. A major headache in symplectic topology is the fact that
transversality often does not hold. The underlying reason for the failure of transver-
sality is a well-known conflict of transversality and symmetry. To give an elemen-
tary example, a smooth section of a vector bundle £ — M is generically transverse
to the zero section — but if £ admits a non-trivial group action, generic equivariant
sections need not be. Imposing symmetry constraints shrinks the space of possi-
ble perturbations, often to the effect of transversality being impossible. In the case
of holomorphic curves, one inherent symmetry is the action of the automorphism
groups of multiply covered curves.

Commonly, the failure of transversality is either avoided by imposing suitable
technical assumptions so transversality is still satisfied, or worked around by the
use of virtual techniques, such as virtual fundamental classes, Kuranishi structures,
global Kuranishi charts, domain-dependent perturbations or polyfolds. At the time

"For completeness, let us mention that holomorphic curves also appear in some constructions of sym-
plectic embeddings, providing upper bounds on symplectic capacities [Sch17, Section 7]. Most
interesting results concern the boundary of flexibility and rigidity, and holomorphic curves can
often tell us where the flexibility ends and rigidity begins.
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of writing, there is no clear consensus yet if all of these approaches are equivalent
or which one is best — an unsatisfactory situation.

In this thesis, we pursue a different paradigm, put forward by Wendl [ Wen23d |:
what if we accept the additional symmetry as a feature and study its repercussions
instead? More specifically, the (generalised) automorphism group G of a multi-
ply covered curve u induces a decomposition of the moduli space of holomorphic
curves. The kernel and co-kernel of u’s normal Cauchy—Riemann operator define finite-
dimensional G-representations. Wendl proved that prescribing the representations
of kernel and co-kernel decomposes the moduli space into countably many walls,
each of which is (for generic J) a smooth manifold of computable (co-)dimension.

This stratification result requires no virtual methods, yet is useful when classical
transversality fails. Sometimes, it can be used to recover transversality (say, if each
obstruction lives in a walls of negative dimension). For instance, for generic J, every
unbranched closed holomorphic curve is Fredholm regular [Wen23d, Theorem B].
Beyond transversality, Wendl’s result, via a theorem of Zinger [Zin11] (see also
[LP12]) proves that each embedded index zero curve u with ¢;(u) = 0 in a six-
dimensional closed symplectic manifold (), w) has a well-defined local obstruction
bundle — this does not require virtual techniques. This obstruction bundle can be
used to define local Gromov-Witten invariants.

Avoiding virtual techniques is also useful to preserve symmetry information. The
symmetry inherent in the given setting may provide valuable information, which
we do not wish to perturb away. In celestial mechanics, the equations of motion are
often symmetric — breaking this symmetry by perturbing the equations of motion
is not desirable. For Gromov—Witten invariants, there is a relation between invari-
ants corresponding to a simple curve and its multiple covers, as exemplified by the
Gopakumar-Vafa formula [GV; BP01; PT14; IP18; DIW21]. An inhomogeneous per-
turbation will destroy this symmetry.

Main results In this thesis, we extend Wendl’s paradigm to incorporate additional
kinds of symmetry. Wendl’s solution of the super-rigidity conjecture dealt with
multiply covered curves: we consider the case of an additional external group ac-
tion on a symplectic manifold (M, w). Consider a symplectic G-manifold (M, w), i.e.
the group G acts by symplectomorphisms. For a generic G-equivariant almost com-
plex structure J on M, we cannot expect the moduli space of closed .J-holomorphic
curves into (M, J) to be a smooth orbifold, let alone a smooth manifold. Instead, we
decompose the moduli space into countably many disjoint iso-symmetric strata and
walls and prove that these strata and walls are generically smooth manifolds.

Let us make this more precise. All results in this thesis hold similarly for tame and
compatible almost complex structures; let us state just the compatible case for sim-
plicity. Suppose (M, w) is a symplectic manifold, let &/ C M be an open subset with
compact closure. Fix a G-equivariant compatible almost complex structure Jg, on
(M,w) (see Definition 2.26); denote by J (M, w; U, Jgy) the space of G-equivariant
compatible almost complex structures J which are equal to Jg;, on M \U (see Defini-
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tion 4.2). If M is closed, we may simply take ¢/ = M, so the last condition becomes
vacuous.

Fix parameters C' € Hy(M), integers g, m,k,c > 0 and an [-tuple 1 of positive
integers, 1 < [ < m. For each J € J%(M,w), a marked closed genus g surface
(2,6) with |#| = m marked points and closed subgroups A C Diff, (X, ) and
H < A x G, we will define the iso-symmetric strata MﬁlH (J) (see Definition 3.35)

and walls M(J; k,c) C Mz‘le (J) (see Definition 5.1). Roughly speaking, the stra-

tum MﬁlH (J) consists of simple J-holomorphic curves (%, j, 6, v) with an injective
point mapped into ¢/, such that A is the automorphism group of the domain (3, j,6);
the group H is conjugate to the stabiliser of v under the induced A x G-action on the
space of J-holomorphic curves, and 1 describes the orders of v’s critical points (if
any). We consider also the (point-wise) stabiliser G,, of u; each curve v has an asso-

ciated G,-equivariant? Fredholm operator DY (the restricted normal Cauchy-

Riemann operator, see Definition 5.12). If G, is trivial, the operator DN oin-
cides with the normal Cauchy-Riemann operator of v (see Definition 5.4) and is
H-equivariant. A curve v belongs to M(J; k, ¢) if and only if its associated operator
D™ has k-dimensional kernel and c-dimensional co-kernel.

Stating the dimension of each iso-symmetric stratum involves two more Fredholm
operators. Section 4.2 will define the A-equivariant operator Dy; ¢y, related to the
variation of the complex structure j on the domain. In particular, its co-kernel is a
finite-dimensional A-representation; we denote by m3' the multiplicity of the triv-
ial A-representation in coker D ; 9. The second operator is the linearised Cauchy-
Riemann operator D, (which is used to define D5"™"). For u € MﬁlH (J), it is
an H-equivariant Fredholm operator; let m{’ denote the multiplicity of the trivial

H-representation in its kernel. With all these definitions, the main results of this
thesis are the following.

Theorem A (Smoothness of iso-symmetric strata). Suppose 2g +m > 3 and G is
finite. For every open subset U C M with compact closure, there exists a co-meagre subset
Jreg C TE(M,w;U, Jﬁx) such that forall J € Jieq, every iso-symmetric stratum Mﬁ’lH(J)

is a smooth finite-dimensional manifold, whose dimension near u € Mﬁ{{ (J) is given by

l
dim M;y (" (J) = mi!(coker D(;4)) +mf! (ker D) —= 2> " (nl; — 1).
=1

The analogous result holds for G-equivariant tame almost complex structures.

Theorem B (Smoothness of walls). For 2g +m > 3 and G is finite, Jyeq has a co-

meagre subset Jy, such that for all J € T, all walls M(J;k,c) are smooth subman-

ifolds of M;{{(J ). For each given curve u, the co-dimension of each wall M(J;k, c)

*The stabiliser G, is (isomorphic to) a subgroup of H: an element g € G lies in G, if and only if
(¢,9) € H. Inparticular, there is no need to explicitly include G, in the definition of iso-symmetric
strata, as it is determined by H.
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containing w in MLA}{I (J) is Hompy (ker DY coker DY) if G, is trivial, and is given by

N :
Homg, (ker D2 coker DY) otherwise.

The following two properties of the strata and walls are used to prove Theorems A
and B, but are interesting on their own.

Proposition C. The number of non-empty distinct iso-symmetric strata and walls is count-
able.

Proposition D. Suppose a smooth Lie group G acts smoothly and properly on M. For each
stable curve u € Mﬁ{{ (J), the stabiliser H is a compact Lie group.

The author expects the conditions on g and m to be removable with a more in-
volved proof. If 2g + m > 3, each curve u is stable, hence has finite automorphism
group. When G is also finite, this implies A x G is a finite group, which simplifies
the argument significantly. The assumption on G can probably be weakened: for
instance, the author expects a proper Hamiltonian G-action and G being abelian to
also be sufficient. However, this requires significant technical effort. We will elabo-
rate on this in Section 4.7.

Related work As mentioned, this thesis” overall framework goes back to Wendl'’s
proof [Wen23d ] of the super-rigidity conjecture. Doan and Walpuski [DW23] have
rephrased Wendl’s proof in more algebraic language (replacing, for instance, Wendl’s
use of the generalised automorphism group and “minimal regular presentations”
by local systems). They also place the proof in a more abstract framework, intro-
ducing the terminology of “Petri’s condition” and “flexibility”. We mostly follow
Wendl’s approach, but will use this terminology. See also Bargall6 i Gémez’s expo-
sition [Bar24] for a different phrasing of these proofs.

The core of Wendl’s argument is a stratification theorem of the moduli space of
holomorphic curves. This setting has a natural symmetry, due to the action of each
curve’s automorphism group. Their argument has three parts: firstly, the moduli
space is decomposed into iso-symmetric strata: writing each curve as u = v o ¢ for
v simple and ¢ a holomorphic branched cover, the strata are characterised by the
combinatorial type (number and order of branch points, orders of critical points)
and (generalised) automorphism group H of ¢. For generic J, each iso-symmetric
stratum is a smooth manifold. In Wendl’s setting, this result follows almost imme-
diately from standard facts (this is very different from our setting).

Secondly, each iso-symmetric stratum is further decomposed into walls. The nor-
mal Cauchy-Riemann operator of « is turned into a “twisted” operator, which is H-
equivariant. Its kernel and co-kernel define finite-dimensional H-representations,
which thus decompose as the sum of irreducible H-representations p;. This splitting
induces a corresponding splitting of the twisted Cauchy—Riemann operator into op-
erators D:. The wall corresponding to tuples (k;) and (c;) of non-negative integers
consists of all curves such that D? has k;-dimensional kernel and ¢;-dimensional

14



co-kernel.> Wendl proved that for generic .J, each wall is a submanifold of its cor-
responding stratum (with an explicit expression for the co-dimension). This theo-
rem is much harder, and requires proving that Petri’s condition (see Chapter 5) is
satisfied generically. Finally, results such as generic transversality of unbranched
covers or the super-rigidity conjecture follow from this stratification theorem by
dimension-counting arguments.

In hindsight, this stratification is very similar to the orbit types and local action types
of a smooth and proper group action on a smooth manifold. If a smooth Lie group
G acts smoothly and properly on a smooth manifold M, the orbit type of a closed
subgroup H < G consists of all points p € M whose stabiliser (w.r.t. the G-action)
is conjugate to H. Each orbit type is a smooth submanifold of G. Each orbit type
splits further into local action types: if p has stabiliser GG, = H, the tangent space
T, M is a representation of the group H — we decompose each orbit type according
to the isomorphism class of the H-representation on 7, M.*

Equivariant transversality problems have also been studied in equivariant Morse
theory, previous to and after Wendl’s work. To some extent, this is a finitedimen-
sional analogue of the holomorphic curves situation; some features (such as the
finite-dimensionality of the space acted on) make this situation easier to handle.
For instance, in a smooth manifold with a smooth G-action, generic G-equivariant
smooth functions are still Morse [ Was69; Hep09], but generic G-equivariant gradient-
like vector fields need not be Morse-Smale [HHM19]. Kirilova’s master’s thesis
[Kir21] applies Wendl’s ideas to equivariant Morse theory, proving (for G finite) a
stratification result similar to this case. There is also in-progress work of Fauck,
about equivariant Morse theory (and symplectic homology) without recourse to
such a stratification [Fau].

Bai and Zhang [BZ] discuss equivariant transversality problems in the context
of bifurcation theory. The main result of the paper is a construction of perturba-
tive SU(n) Casson invariants on integer homology spheres for n > 3, but they also
prove an equivariant version of Cerf’s theorem in Morse theory. The key step of
their argument involves proving that a generic 1-parameter family (in the Morse
case, of equivariant functions), crosses a number of walls (on which bifurcations
occur) transversely. Finally, Hirschi [Hir23] has defined an equivariant version of
the Gromov-Witten invariants, using an equivariant global Kuranishi chart.

Outline of this thesis After this introduction, we begin by reviewing the relevant
background about holomorphic curves in Chapter 2. We define the spaces of tame
and compatible equivariant almost complex structures and prove some of their basic
properties. In Chapter 3, we discuss how to define iso-symmetric strata of (simple

3For the pedantic reader, let us emphasize that the p; are real representations, hence their endo-
morphism algebra W; = End(p;) is one of R, C and H. The dimensions k; and c¢; are taken as
W;-algebras, not real dimensions.

*For the pedantic reader: this statement is strictly correct if G is discrete; if has positive dimension, we
quotient out the tangent space a, C T), M of the G-orbit G - p at p and consider the representation
on the quotient 7, M /v, instead.
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and multiply covered) curves in our setting. This definition is more subtle than one
might think. We also prove some basic properties of the stratification, including
Propositions C and D from the introduction. This uses some results from Lie the-
ory, including Montgomery-Zippin’s neighbouring subgroups theorem. In Chap-
ter 4, we prove that for generatic equivariant J, the iso-symmetric strata are smooth,
and determine their dimensions in terms of representation-theoretic data. Next, we
turn to decomposing each iso-symmetric stratum into walls and prove that walls
are generically smooth (Chapter 5). In the final chapter, we mention possible next
steps.
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2. Background and setting

Let us begin by reviewing some background and pre-requisites. This thesis is con-
cerned with pseudo-holomorphic curves in the presence of a symplectic group ac-
tion. Hence, we review the definition of pseudo-holomorphic curves and their mod-
uli space first (Section 2.1). Next, we proceed to the equivariance aspect and re-
view basic aspects of symplectic group actions (Section 2.2). Finally, in Section 2.3
we study equivariant almost complex structures, providing the basis for studying
equivariant pseudo-holomorphic curves.

2.1. Holomorphic curves

Let us review the definitions of holomorphic curves. All material in this section is
standard and can be found in e.g. [MS12] or [Wen15]. This is also why we omit
proofs.

Holomorphic curves are an instrumental tool for studying symplectic manifolds;
they are defined more generally for almost complex manifolds.

Definition 2.1. A smooth almost complex structure J on a smooth manifold M is a
smooth section J € T'(End(TM)) such that J?> = —id, i.e. J defines a smooth family of
linear maps {J,: TyM — T,M }pens with J2 = id for each p € M.

Definition 2.2. An almost complex manifold is a smooth manifold M together with a
smooth almost complex structure J on M. Note that the tangent bundle T'M of an almost
complex manifold (M, J) is naturally a complex vector bundle.

Complex manifolds are the easiest examples of almost complex manifolds, as a
complex structure induces an almost complex structure: each tangent space 7, M
is naturally a complex vector space, and J, is given by multiplication by ¢ on that
tangent space.!

An almost complex structure induced from a complex structure is called integrable.
In (real) dimension two, every almost complex structure is integrable [ Wen15, The-
orem 2.1.6]. In higher dimensions, this is generically false, i.e. an almost complex

"More precisely: a complex chart yields an identification of 1), M with Cdime(M) and this identifica-
tion endows T, M with a complex vector space structure. This a priori depends on the choice of
chart, but any two charts yield the same map on 7}, M as transition maps between complex charts
are holomorphic.
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manifold is generally not complex.> Every symplectic manifold is almost complex
(see Lemma 2.7 below); the converse is not true.

Pseudo-holomorphic curves generalise holomorphic maps to almost complex man-
ifolds (hence the modifier “pseudo”). We will often drop the prefix “pseudo”; this
will not cause confusion since we almost never speak about actually holomorphic
maps. The terms “curve” signifies their domain is complex one-dimensional.

Recall. A Riemann surface is a complex manifold of complex dimension one.

For our purposes, we will consider Riemann surfaces as pairs (3, j) of a smooth
surface with an almost complex structure on ¥J; since j is automatically integrable,
this is an equivalent definition. In general, we will always speak of dimension as
real dimensions, unless specified otherwise.

Recall that a function f: C — C is holomorphic if and only if it is complex differen-
tiable. Equivalently, f is smooth (between real manifolds) and its differential df is
complex linear. This definition generalises to almost complex manifolds, yielding
pseudo-holomorphic curves.

Definition 2.3. Let (X, j) be a Riemann surface and (M, J) be an almost complex manifold.
A pseudo-holomorphic curve is a smooth map u: ¥ — M such that J o du = du o j.
When we want to emphasize J, we will also speak of a J-holomorphic curve.

To study symplectic manifolds, it is usually more helpful to study all its holomor-
phic curves, as this provides geometric information. (For instance, in some cases
M is foliated by holomorphic curves.) Thus, one studies moduli spaces of all curves
(with certain prescribed topological data). Making this precise requires refining the
above definition.

Firstly, allowing any Riemann surfaces as the domain of holomorphic curves is
far too general. Most commonly, one considers closed holomorphic curves, whose
domain is a closed connected Riemann surface: this will also be the scope of this
thesis. (Another common setting are punctured curves, defined on a finite type Rie-
mann surface, i.e. a closed Riemann surface with finitely many punctures.) Recall
that a closed connected Riemann surface 3 has a well-defined genus and a funda-
mental class.

It is often easier to assume the target M to be a closed manifold. This is, however
not required for our thesis: all arguments only need small modifications from the
closed setting to apply in general. Hence, we do not assume M to be closed.

Finally, in all practical applications some constraint on the almost complex struc-
ture J is required: depending on the application, one demands that .J be tame or com-
patible. These notions require M to be symplectic, as it depends on the symplectic
form. Compatibility implies tameness; in most applications, either condition can be

*More precisely: each almost complex structure J on M has an associated Nijenhuis tensor N ; defined
by N;(X,Y) =[JX,JY] - J[JX,Y]| - J[X, JY] - [X, Y] for smooth vector fields X and Y on M.
The Nijenhuis tensor N vanishes identically if and only if .J is integrable [DK90, Chapter 2]. It is
not hard to show that dim(M) = 2 implies N; = 0. In higher dimension, generically N; # 0.
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used and the difference does not matter much. Sometimes, compatibility makes cer-
tain formulas easier to read; on the other hand, tameness is an open condition, and
this flexibility is occasionally useful. There is perhaps one situation where compati-
bility is actually more convenient: in symplectic field theory, the analysis is quite a
bit simpler for compatible almost complex structures — which is why, to date, the
setup has only been fully developed in this context. It seems likely that tame almost
complex structure can also be permitted, but the technical effort to verify this has
not been performed. Further details can be found in e.g. Wendl’s upcoming book
[Wen20, Section 6.7.2]. This thesis will apply to both settings.

Tameness is required for Gromov’s compactness theorem, showing that the mod-
uli space of holomorphic curves has a natural compactification. On a symplectic
vector space E, if a complex structure on E is tame, every complex line (i.e., one-
dimensional complex subspace) is a symplectic subspace. Hence, if .J is tamed by w,
the image of any J-holomorphic curve is a symplectic submanifold (possibly with
singularities). This implies non-constant curves have positive energy, which is im-
portant for the proof.

Definition 2.4. A smooth almost complex structure J on a symplectic manifold (M,w) is
called w-tame or tamed by w if and only if for all p € M and non-zero X € T,,M, we have
wp(X,JX) > 0. The almost complex structure J is called w-compatible or compatible
with w if and only if w(-, J-) defines a Riemannian metric on M. Equivalently, J is com-
patible if and only if J is tame and w(X,JY ) = w(Y, JX) forall X, Y € T,M.

When there is no risk of confusion, we will often omit w from the notation and simply speak
of tame or compatible almost complex structures.

Almost complex structures are an auxiliary object: the exact choice of .J is usually
not important; it is merely important that a choice can be made. To make this precise,
let us consider the space of all tame resp. compatible almost complex structures.

Notation. Let (M, w) be a symplectic manifold. We denote the spaces of tame resp.
compatible almost complex structures on (M, w) by J-(M,w) resp. J (M, w).

Both J;(M,w) and J(M,w) can be equipped with a topology, as subspaces of
I'(End(T'M)). For our purposes, the weak C'*°-topology is the correct choice. We
refer the reader to e.g. Hirsch’s differential topology textbook [Hir76, Chapter 2]
for the details, and just mention the definition and its key properties. (We will not
explicitly use these properties in this thesis.)

Recall. Let X and Y be topological spaces. The compact-open topology on the space

C%(X,Y) of continuous functions from X to Y is generated by the subsets O(K, V) :=
{f € COM,N) | f(K)cC V}for K C M compactand V C N open: neighbour-
hoods are all sets containing the intersection of finitely many such sets. A sequence

(fn) converges to f in the compact-open topology if and only if ( f,,) converges to f

uniformly on each compact subset of X.

Intuitively speaking, convergence in the C}X-topology demands uniform conver-
gence on compact sets, of the functions and each of its derivatives.
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Definition 2.5 (Weak C*-topology). Let M and N be C*-manifolds for 1 < k < oo; con-
sider the space C*(M, N) of all C* maps f: M — N. The compact-open C* topology,
also known as weak C* topology or CF -topology, is the metrizable topology on C* (M, N)
such that a sequence (f,,) converges to f if and only if f, — f in C°(M, N) and for all
K C M compact, charts (¢, U C M) of M and (¢»,V C N) of N with K C U and
fn(K) C V3 the local coordinate representatives 1o fr,0 ¢~ 45y ¢(K) — RIMIY ) and
their derivatives of order < k converge uniformly to 1 o f o ¢[4(k).-

Proposition 2.6 ([Hir76, p. 35, Theorem 2.4.4]). The weak C*-topology has a complete
metric and a countable base. If M is compact, it is locally contractible. O

The above defines a topology on the space of C* maps; it remains to discuss spaces
of sections of a C* vector bundle. There are two ways to endow the space C*(E) of
C* sections of a C* vector bundle £ — M with a topology. Firstly, every section of
Fisalsoa C* map M — E, hence we could endow C*(E) with the subspace topol-
ogy. Secondly, we could choose a system of local trivialisations of E with compact
closures and define a sequence (s,) in C*(E) to converge to s € I'(F) if and only
if in each trivialisation, the local representatives of (s,) converge to the local rep-
resentative of s. Hence, for smooth sections, s,, — s if and only if s, — s in the
C*-norm on I'(E), for all k. Over a compact base, all auxiliary choices yield equiva-
lent norms, hence the same topology. The second option matches matches how the
space of Wk P-gections of a vector bundle of Sobolev class W*? obtains its topology;
see e.g. [Wenl5, Section 3.1] for the details in this case.

If M is compact, these definitions yield the same topology, and the topology
on the spaces J,(M,w) and J(M,w) is the subspace topology in I'(End(T'M)).*
We conclude that 7, (M,w) and J(M,w) are complete metric spaces. If M is non-
compact, the two approaches differ: for this and other reasons, we will work with a
smaller space instead (which is again complete); see Chapter 4 for the details.

A priori, J-(M,w) and J(M,w) could be empty or have very non-trivial topol-
ogy. (For instance, they are generally infinite-dimensional spaces.) The condition
of tameness or compatibility, however, ensures that they are non-empty and con-
tractible.”

Lemma 2.7 ([Wen15, Theorem 2.2.8]). J,(M,w) and J(M,w) are non-empty con-
tractible topological spaces. O

There are (at least) two qualitatively different proofs of this fact. The first proof
is due to Gromov [Gro85]. The case of compatible almost complex structures is

*By definition of the compact-open topology, f. — f in C°(M, N) implies that for any sub-basic
set O(K,V) containing f, we have f, € O(K,V) for all n sufficiently large. Thus, the second
condition is not a real restriction.

*‘In particular, the topology on J(M,w) coincides with the subspace topology induced from
T-(M,w).

>They are even infinite-dimensional manifolds in a precise sense; we will discuss this slightly subtle
question further in Section 4.1.
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treated by an elegant argument, presenting an equivalence to the space of Rieman-
nian metrics (which is non-empty and convex, hence contractible). Contractibility
of tame almost complex structures is reduced to this case using tools of homotopy
theory, including the homotopy exact sequence and Serre fibrations. An alternative
and more elementary proof due to Sévennec [ AL94, Corollary 2.1.1.7] allows treat-
ing both spaces on the same footing: it exhibits 7, (M, w) resp. J (M, w) as the Cayley
transform (at some fixed Jy) of a convex subset of a suitable normed space, which
implies contractibility. This perspective is also useful for studying the manifold
structure on J(M,w) and J(M,w), as this provides a description of the tangent
space at Jy. We will revisit this in Section 4.1.

Lemma 2.7 implies that many constructions do not essentially depend on the par-
ticular choice of J.

Example 2.8. Let J and J' be two compatible almost complex structures on (M, w).
Then (T'M, J) and (T'M, J') are isomorphic complex vector bundles.

Without further ado, this is the definition of the moduli spaces of unparametrised
curves. One can also consider spaces of parametrised holomorphic curves. These
are useful auxiliary objects (we will consider one in Section 3.3), but less relevant
for eventual geometric applications: in practice, one usually cares about the image
of a holomorphic curves, but not about the choice of its parametrisation.

Definition 2.9 (Moduli space of unparametrised holomorphic curves). Consider in-
tegers g,m > 0, a homology class C' € Hy(M) and an almost complex structure J on M.
The moduli space of genus g closed connected® unparametrised holomorphic curves with
m marked points of class C'is given by

Mgm(C,J) = {(E,j, 0,u) | (X,7) closed connected genus g Riemann surface,
0 C X ordered subset with |#| = m,w: ¥ — M smooth
such that J o du = du o j,u,[S] = C’}/N,

where ~ denotes the equivalence relation defined by (X, j,0,u) ~ (X, j',0',u") if and only
if there exists a biholomorphic map ¢: (X,5) — (X', ") such that $(0) = 6" as ordered sets
and u = u' o ¢, and u.[X] denotes the push-forward of the fundamental class [X] of ¥ by the
smooth map u. When g, m and C' are understood, we will abbreviate M(J) := Mg, (C, J).

If M is a single point, this reduces to the moduli space M, of pointed Riemann
surfaces: its elements are equivalence classes [(X, 7, 6)] of a closed connected genus
g Riemann surface (3, j) with an ordered set of m marked points, up to biholomor-
phic maps preserving the points in 6 in order. Both moduli spaces M, ,,(C, J) and
M. have natural topologies, which we will explain in Subsection 3.3.2: for now,
we just consider them as sets.

®In this thesis, we only consider connected curves. This is mainly for bookkeeping reasons; including
multiple components will not make proofs meaningfully harder.
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We need to introduce one last feature about holomorphic curves: the distinction
between simple and multiply covered curves.

Definition 2.10 ([Wen15, Definition 2.15.3, Corollary 2.15.4]). A non-constant con-
nected closed holomorphic curve [(X, j,6,u)] is called simple if and only if there exists a
finite set I' C X such that u is an embedding on ¥\ I'. Otherwise, u is called multiply
covered.

Lemma 2.11 ([Wen15, Theorem 2.15.2]). If (¥, 7, 0, w) is multiply covered, there exists
a factorisation u = v o ¢, where (X', j',0',v) is a simple curve on some closed connected
Riemann surface (¥, j") and ¢: (X, j) — (¥, j') is a holomorphic branched covering map
of degree deg () > 1, such that ¢(0'") = 6 as ordered sets. O

This distinction is meaningful because of the automorphism group of holomorphic
curves.

Definition 2.12 (Automorphism group of a holomorphic curve). The automorphism
group of a pointed Riemann surface (3, j,0) € Mg, is

Aut(X, j,0) := {¢ € Diff(%,0) | ¢ is biholomorphic}.
A holomorphic curve (£, 5,0, u) € Mg (C,J) has automorphism group
Aut(u) :={¢ € Aut(X,7,0) | u=mwuo¢}.

If a curve has non-trivial automorphism group, it must be multiply covered. The
converse is very false; it becomes a true statement when replacing Aut(u) by the
“generalised automorphism group” (see [Wen23d, Definition 2.6]) of .

Simple curves can equivalently be characterised by having an injective point. We
will use this in Chapter 4.

Definition 2.13 (Injective points and somewhere injective maps). Let f: M — N be
a differentiable map of C' manifolds. Then p € M is called an injective point of f if and
only if the differential df,: T,M — Ty, N is injective and f~'(f(p)) = {p}. If f has an
injective point, it is called somewhere injective.

Remark 2.14. For a pseudo-holomorphic curve u: ¥ — M, each differential du, is
complex linear, hence either du, = 0 or du, is injective. Since dim M > 2 in most
cases, du, is usually never surjective.

The crucial fact is that simple and somewhere injective holomorphic curves are,
in our setting, equivalent.

Proposition 2.15 ([ Wenl5, Proposition 4.1.3]). A closed connected holomorphic curve
w is simple if and only if it has an injective point. O

Remark 2.16. If u is not a closed curve, this equivalence is false in general. A some-
where injective curve is always simple; the converse need not be true, e.g. for holo-
morphic curves with totally real boundary [Laz00; KOOO0].
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2.2. Symplectic group actions

Let us now review symplectic group actions. Similarly to Section 2.1, virtually all of
this material is classical and can be found in, for example, McDuff-Salamon’s book
[MS12] or Pelayo’s survey [Pel17].

Recall. A (left) action of a group G on a set X is a group homomorphism A: G —
Sym(X) into the space of bijections on X; in particular, A(g) o A(h) = A(gh) for
all g,h € G. A right action is a group anti-homomorphism A: G — Sym(X), i.e.
A(g) o A(h) = A(hg) for all g,h € G. Every left action A can be converted to a
right action by g — A(g™!), and vice versa. We will often denote this action by

Alg,x) =1 g-x.

Remark 2.17. Whether to work with left or right actions is mostly a question of
notation. In this document, we choose to use symplectic left actions, as this matches
the order of function composition. Unfortunately, the automorphism group Aut(u)
of a holomorphic curve acts on the right, meaning we have to convert it to a left
action. There is no free lunch.

We actually want our group actions to respect the smooth and symplectic struc-
ture on M, hence we consider group actions by diffeomorphisms and symplecto-
morphisms.

Definition 2.18. A smooth left action of a smooth Lie group G on a smooth manifold G is
a group homomorphism G — Diff(M); smooth right actions are defined similarly. Equiv-
alently, a G-action by diffeomorphisms is a smooth action if and only if the corresponding
map G x M — M is smooth.’

Observation 2.19. A smooth G-action g — 1, on M by diffeomorphisms induces a
G-action on its tangent bundle by G 3 g — di), € Sym(T'M); in fact, each map dv,
is a smooth bundle isomorphism over the map 1.

A smooth action on M induces an action on the space of almost complex struc-
tures. If J is equivariant (see Definition 2.26), it also induces an action on the moduli
space of J-holomorphic curves: we will see this in Chapter 3.

Recall (Pull-back and push-forward of almost complex structures). Let f: M — N
be a diffeomorphism of smooth manifolds. Let .J be an almost complex structure on
M. Then, f..J :=df o Jodf ! (ie., (foJ) () = dfpo Jyodf, ! forall p € M) defines
an almost complex structure on N, called the push-forward of J under f. Similarly,
if J' is an almost complex structure on N, f*J' := df ! o J' o df defines an almost
complex structure on M, called the pull-back of the almost complex structure J'.

"This survey is certainly biased towards Pelayo’s interests (and references a lot of their own work),
but to the best of this author’s knowledge, this is the most recent survey on symplectic group
actions.

The “only if” direction uses the finite-dimensionality of M and holds essentially because a con-
tinuously partially differentiable function is totally differentiable. If M were e.g. an infinite-
dimensional Banach manifold, smoothness of each map A(g) a weaker condition smoothness of
the map G x M — M; the latter condition is the correct one.
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Lemma 2.20. Suppose A: G — Diff(M), g — Ay is a left action on a smooth manifold
M. Then g - J := (Ay).J defines a left action on the space of almost complex structures on
M. Similarly, g - J := (Ag)*J defines a right action.

Proof. Since ¢*J = (¢p1)..J for any diffeomorphism ¢ on M, it suffices to consider
the pull-back case. Slightly more generally, we show that ¢*(¢*J) = (¢ o ¢)*J for
any two diffeomorphisms ¢ and ¢ on M. To this end, we simply compute

¢* (") =dp~ o (dyT o Jody)odp =d(¢™ o ) o Jod(vog)
=d((yoy) ) oJodog)=(¥oe) =

Compatible almost complex structures correspond to Riemannian metrics; we
will use this in Section 2.3. To make use of this correspondence, we note that a
G-action on M by diffeomorphisms induces an action on the space of Riemannian
metrics on M.

Recall (Pull-back and push-forward of Riemannian metrics). Let f: M — N bea
smooth map of smooth manifolds. Let i be Riemannian metric on N. Then f*h :=
h(df-, df-) defines a Riemannian metric on M, called the pull-back of gw.r.t. f. If fisa
diffeomorphism and g a Riemannian metric on M, f.g := (f~!)*g = g(df -, df 1)
defines a Riemannian metric on N, called the push-forward of g w.r.t. f.

Notation. Denote the space of smooth Riemannian metrics on M by 9t(M).

Lemma 2.21. Suppose A: G — Diff(M),g — Ay is a (left) action of a group G on a
smooth manifold M. Then g - h := (Ag)*h defines a left action on the space IM(M) of
Riemannian metrics on M, and g - h := (Ay).h defines a right action on IM(M ).

Proof. Analogously to Lemma 2.20, we only show ¢*(1)*g) = (¢o1))*g for all Rieman-
nian metrics g € M(M ) and diffeomorphisms ¢, 1) of M. To this end, we compute

" (Y g) = ¢"(g(dyp-,d¢-)) = g(dp(drp-), dp(dy-)) = g(d(¢p o 1), d(¢ o ¥)-)
= (¢po1)'y. O

In general, a smooth group action need not preserve compatibility or tameness of
an almost complex structure: in contrast, symplectic actions preserve tameness and
compatibility.

Definition 2.22 (Symplectic group action [MS12; Pel17, Definition 3.4]). A left group
action v of a group G on a symplectic manifold (M, w) is called symplectic if and only if G
acts by symplectomorphisms, i.e. v is defined by a group homomorphism G — Symp (M, w).
Symplectic right actions are defined analogously. A symplectic G-manifold is a tu-
ple (M,w,G,v) of a symplectic manifold (M,w), a group G and a symplectic G-action
Y G — Symp(M,w).

Lemma 2.23. If G acts symplectically on (M,w) by G 3 g — 1, € Symp(M,w), the
spaces J(M,w) and J(M,w) are invariant under the G-action: if an almost complex struc-
ture J on M is w-tame or w-compatible, respectively, so is 1y .J.
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Proof. Let J be an arbitrary almost complex structure on M. For any diffeomor-
phism ¢ of M, we show that ¢*J is ¢*w-tame resp. ¢*w-compatible if J is w-tame
resp. w-compatible. In particular, if G acts symplectically, w = ¢jw and 7 J is w-
tame resp. w-compatible once J is.

This is an easy computation: for any X,Y € T),M, we have

(¢"w)(X, (6" ))Y) = w(dppX, ddy((6"T)Y ) = w(ddpX, dep 0 dg, ™" 0 J(dyY))
= w(dgpX, J(dgpY)). (2.1)

Suppose J is w-tame; let X € T,,M be arbitrary. Then we deduce
P w(X, (")) X) = w(dppX, J(dgp X)) > 0,
hence ¢*J is indeed ¢*w-tame. If J is w-compatible, for all X,Y € T,,M we have

(¢"w) (X, (6" T)Y) B w(dg, X, J(de,Y)) = w(de,Y, J(d,X)) 2 (¢"w)(Y; (6°1)X),

hence ¢*J is indeed ¢*w-compatible. O

2.3. Equivariant almost complex structures

We aim to study moduli spaces of holomorphic curves in a symplectic G-manifold
M. This only makes sense if the almost complex structure on M is compatible with
the G-action: this is captured by the following.

Definition 2.24. Suppose a group G acts symplectically on a smooth manifold M by g —
g An almost complex structure J on M is called G-equivariant if and only if it commutes
with the induced G-action on M, that is ¢yJ = J forall g € G. More explicitly, this means
dipgoJ = Jody, forall g € G,ie. forallg € G, p € M and X € T,M we have

dipg(JpX) = Jwg(p)dwg(X)'

Remark 2.25. An almost complex structure J on M is G-equivariant if and only if it
is invariant under the G-action by push-forward (or pull-back) of almost complex
structures.

Thus, in this thesis we will consider the spaces of G-equivariant tame resp. com-
patible almost complex structures.

Definition 2.26. Let (M,w) be a symplectic manifold. Consider

TE(M,w) :={J € J-(M,w) | Jis G-equivariant}
T (M,w) :={J € J(M,w) | J is G-equivariant},

endowed with the subspace topology on J.(M,w).
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Like their non-equivariant counterparts, both spaces are contractible: our proof
follows the argument in the non-equivariant case (outlined in Section 2.1). Recall
that there were two proofs for these facts, due to Gromov and Sévennec. The natural
question is whether Gromov’s or Sévennec’s proofs can be carried out equivariantly:
on its own, each proof is tricky to adapt, but a combination works.

Gromov’s proof for compatible almost complex structures (including existence)
transfers well to the equivariant setting. There is an issue with transforming his
reduction of compatible to tame almost complex structures, as it is based on the
following lemma.

Lemma 2.27 ([Wen15, Lemma 2.2.14]). Suppose w: E — M is a smooth locally trivial
fibre bundle over a manifold M, and the fibres are contractible. Then the space I'(E) of
O

smooth sections is non-empty and contractible (in the C}°-topology).

In our setting, E is endowed with an action by smooth bundle isomorphisms
(over corresponding diffeomorphisms on the base) and we are considering the space
I'“(E) of G-equivariant smooth sections. This makes the picture non-local and
breaks the argument as written. Sévennec’s argument for existence also uses this
lemma, hence suffers from the same issue. Fortunately, Sévennec’s contractibility
proof works for both 7% (M, w) and J% (M, w).

Let us embark on the equivariant proof combining these arguments. We begin the
proof by presenting the equivariant version of Gromov’s proof for 7 (M, w): this will
be used to show non-emptiness.

The core observation for Gromov’s proof that 7 (M, w) is contractible is the fol-
lowing. Let 9M(M) denote the space of Riemannian metrics on M, endowed with
the CX -topology. This is a non-empty convex subset of a vector space, hence con-
tractible.

Lemma 2.28 ([Wen15, p. 34]). There exists a continuous map
j(Maw)_)m(M>7J’_>gJ = w(‘v‘]')a (22)

which has a continuous left inverse given by
-1
MM) = T (M,w),g — Jg:= Ag\JASA, (2.3)

where the bundle map A,: TM — T M is defined by g(A,-,-) = w.? Hence, contractibility
of M(M ) implies contractibility of J (M, w). O

In the remainder of this section, we assume the following.

Convention. Let ) be a symplectic group action of G on (M, w).

°The operator A} A, is positive definite on each fibre w.r.t. g, and /A; A, is its unique positive defi-
nite square root on each fibre.
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We claim that (2.2) and (2.3) descend to a correspondence between 7% (M, w)
and G-invariant Riemannian metrics (with respect to the induced G-action of Lemma 2.21).
The proof is a sequence of small computations, none of them particularly difficult.

Lemma 2.29. If a compatible almost complex structure J € J(M,w) is G-equivariant, the
corresponding Riemannian metric gy = w(-, J-) is G-invariant.

Proof. LetJ € J%(M,w), h € Gand X,Y € T,M be arbitrary. We directly compute

(Vhg1)(X,Y) = gy (dpp X, dypY) = w(dp X, J(dypY))

Y wo(dipn X, dpy (JY)) = (fw) (X, JY)

W (X, JY) = gs(X,Y),

using the G-equivariance of J in step (*) and the fact that G acts symplectically in
step (). O

Lemma 2.30. If a Riemannian metric g € IM(M) is G-invariant, the corresponding com-
patible almost complex structure J, is G-equivariant.

Proof. Let h € G be arbitrary; we want to show v;J, = J,. Since g is G-invariant,
we have Ayxg = Ag and Jy=; = Jy. It remains to show ¢}, Jg = Jyg.

Claim 1. Ayrg = dip, 0 Ag o dipy, "

Proof of Claim 1. Let p € M and X,Y € T,M be arbitrary. Note X = d¢, X’ and
Y = diyY' for X' = d@b;lX and Y’ = dzﬁﬁlY. We compute

g(dp 0 Ago dipy, ' X,Y) = g(dubpAg(X'), dnY’) = (V}9) (A X', Y")

D (A, X" V") = widpi X, dyiY)

()W) (X, ) wix, v)

= w(X,Y) =g(4,X,Y),

using the G-invariance of g in step () and G acting symplectically in step (f). This
implies diy, 0 Ag o diy;, * = Ay, and we conclude

Ayrg = Ag = dipy 0 Agodiy " (2.4)
A

Let us abbreviate B := di), 0 Ay o dqﬂ}:l. Since g is G-invariant, we have ;g = g,
thus dy;; = dw,;l. In particular, (dngl)* = (dy})~! = dipy,. Thus, we compute
B*B = (dipy, 0 Ag o dip; ) *(dipp, 0 Ag o dip; )
= (dip, ") o A% o (dipy; o dipy,) 0 Ag o dpy
= dipp 0 A o (dipy, ' o dipy) 0 Ag o dipy
= dip, 0 A 0 Agodyy; . (2.5)
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To compute Jy: 4, by Claim 1 we need to determine the positive definite square root
of B*Bw.r.t. ¥jg.

Claim 2. vV B*B = di,, /A;Agdw,jl is the positive definite square root w.r.t. 1} g.

Proof of Claim 2. Since A} A, is positive definite w.r.t. g, by (2.5) B* B is positive defi-
nite w.r.t. ¢y _1g = g = ¢;,g. Analogously, di /A;Agdz/;}jl is positive definite w.r.t.
Yy 19 = ¢},g- Finally, a short computation yields

2
(dipny [ Az Agdi V)2 = dupyy [Az A, dv; 2 BB A
Claim 3. ’lﬂ;:Jg = szg
Proof of Claim 3. Claim 2 implies
_ —1
VBB = dip, A4, di;t. (2.6)

Altogether, we obtain

An 4 L (24) v
Jqp;g :Ad,;g Ad);igAw;g = B B B

(2.6) _ -t
=" (dipp 0 Ag o dipy, dipy AL A, diy!
-1
= dipp 0 Ag\JALAg o diyt = diy 0 Jgodyyt =, A
Claim 3 completes the proof. O

Let M(M)% denote the space of G-invariant Riemannian metrics on M. Then,
combining Lemmas 2.29 and 2.30 yields the following.

Proposition 2.31. Suppose 1 is a symplectic group action on (M,w). Then (2.2) restricts
to a continuous map
T (M, w) = MM,

and (2.3) restricts to a continuous map

MM — T (M, w). O

Thus, the proof that 7 (M, w) is contractible is concluded by the following.
Lemma 2.32. The space (M) of G-invariant Riemannian metrics on M is convex.

Proof. Since the space M (M) of all Riemannian metrics is convex, it suffices to check
that G-invariance is preserved under convex combinations. Indeed, for each h, the
map g — ;g is linear, hence linear combinations (in particular, convex combina-
tions) of G-invariant metrics are G-invariant. O
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Corollary 2.33. If G acts symplectically, the space JY(M,w) is contractible when non-
empty. O

Non-emptiness of 7% (M,w) and J¢(M,w) requires an additional hypothesis on
the G-action.

Recall (Proper actions). A continuous action A of a topological group G on a Haus-
dorff topological space X is called proper if and only if the map G x X — X x
X, (g,x) — (g - x,x) is a proper map (i.e., preimages of compact sets are compact).
We say G acts properly at x € X if and only if for every sequence (z,,) in X and (g, ) in
G such that lim,, z,, = z¢ and lim,, g,, - ,, = zo, there exists a subsequence n = n(k)
such that g,,;) converges in G as k — oo. If G acts properly, it acts properly at each
TET.

If G is compact, its action on X is always proper.

Proposition 2.34. If G acts symplectically and properly on (M,w), the spaces J (M, w)
and Jr(M,w) are non-empty.

Proof. Since G acts smoothly and properly, there exists a G-equivariant Riemannian
metric on M (see e.g. [DKO0O, Proposition 2.5.2; AB15, Theorem 3.65]). In light of
Proposition 2.31, the corresponding compatible almost complex structure J := J,
is G-equivariant. Since every compatible almost complex structure is tame, this
completes the proof. O

This completes our discussion of compatible equivariant almost complex struc-
tures. Let us now turn to tameness. As indicated, we adapt Sévennec’s argument
(as presented by Wendl [Wen15]). Its starting point is the following.

Observation 2.35. Let Jy be an almost complex structure on M. For all invertible
¢ € Endgr(T'M), setting Jy := ¢ o Jy o ¢! defines an almost complex structure on
M.

Proof. Clearly, J4 € Endr(7'M) is smooth, so it only remains to show .J 2 — —id.
This is an easy computation: we have

Jo=(9odo0d ) o(podyod ) =dotiog =—gog™' =—id. [
We are interested in the following special case.
Corollary 2.36. Let Jy be an almost complex structure on M. Forall Y € Endc(T'M, Jy),
whenever id +3JoY € Endg(T M) is invertible,
1 1
Jy = (id +§J0Y)J0(id +§J0Y)‘1 (2.7)

defines an almost complex structure on M. O

In the following statement, we call a subset U C E of a vector bundle E fibre-wise
convex if its intersection with every fibre is convex, and we denote by I'(U ) the space
of (smooth) sections of E that are everywhere contained in U.
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Proposition 2.37 ([Wen15, Proposition 2.2.17]). Suppose J € J.(M,w) is tame. There
exists an open and fibre-wise convex subset U C Endc(T M, Jo) such that (2.7) defines a
bijective continuous map I'(U) — J;(M,w). In particular, each tame almost complex
structure on (M,w) is of the form Jy for a unique Y € I'(U).

Let End (T M, w, Jo) C Endg (T M) denote the sub-bundle of linear maps that are symmet-

ric with respect to the metric w(-, Jo-), then J(M,w) = {Jy | Y € T(UNEndg (T M,w, Jo))}
with Y being unique. O

Corollary 2.38 ([Wen15, Proposition 2.2.8]). The spaces J,(M,w) and J(M,w) are
contractible. O

A very similar argument applies to 7 (M, w); we merely consider G-equivariant
sections instead.

Proposition 2.39. Suppose G acts smoothly on M; let Jo € JE(M,w) be arbitrary.
Choose a fibre-wise convex set U C Endc(T'M, Jy) as in Proposition 2.37. Then the map
Y — Jy from (2.7) restricts to continuous bijections

r4w) —» J%(M,w) (2.8)
I¢(U NEnd3 (T M, w, Jy)) = T (M,w). (2.9)

Proof. As the restriction of a continuous bijection, Y — Jy is still continuous and in-
jective. It remains to show this is well-defined and surjective in both cases. Through-
out this proof, we abbreviate ¢y := id +%J0Y.

Consider the tame case first. For well-definedness of (2.8),let Y € I'*(U) be given.
We need to show Jy € J%(M,w). We know Jy € J,(M,w) by Proposition 2.37,
hence only need to show G-equivariance of Jy. Since Jy and Y are G-equivariant,
so is ¢y. This implies ¢! is G-equivariant: for each g € G, we have

(d¢g © ¢)_/l) o gy = dwg = (QZ)}_/l o QZ)Y) o d% = ((;5}_/1 o d%) o ¢y,

hence di, o ¢;1 = ¢;1 o dip4 follows. Combining these, we deduce that each Jy =
¢y o Jyo d);l is G-equivariant.

For surjectivity of (2.9), suppose J € J(M,w). By Proposition 2.37, we have
J = Jy for a unique Y € I'(U); we want to show Y is G-equivariant. To this end,
observe the following.

Claim 1. Forall g € GandY € I'(U), we have 3 Jy = Jyzv, where YgY 1= dwg—l o
Y o di,.

Proof. First, we compute (since .Jy is G-equivariant)

1 1
dipy ' oy o dipy = dip, " o (id +5J0Y) 0 dipy = id +§J0(dwg—1 oY odiy)

1
=id +§J0(d1/J;Y) = @w;y.

30



This implies dip, ! o ¢y o dipy = ¢1Z*1y since
g

Gyzy o (Ao dy dibg) = dib o by o dibg o (dipy ! o Gyt o dihy) = id.

Putting this all together, we compute

dipy M Ty dipg = dipy py dipg o dipy oy dipg = Gyry 0 Jo o dipy py dipg
_ -1 _
= ¢w;YJO¢¢;y = Jysv- A

Since J = Jy is G-equivariant, we have Jy = J = Yy = J¢;y forall g € G. By
uniqueness, this implies ¢7Y =Y forall g € G. Therefore, Y is G-equivariant. This
completes the proof in the case case.

This basically proves the compatible case as well. For well-definedness, for Y €
(U N EndR(TM,w, Jy)), then Jy € J%(M,w) by the tame case. By Proposi-
tion 2.37, U € I'(U N Endg(T'M,w, Jy)) implies Jy is also compatible. For surjec-
tivity, if J € J(M,w), we have J = Jy for a unique Y € I'(U N Endg (T M, w, Jo)):
the same argument as in the tame case shows Y is G-equivariant. O

Corollary 2.40. If G acts symplectically on M, the space J& (M, w) is contractible.

Proof. Proposition 2.39 yields a correspondence with T'%(U). Since U is fibre-wise
convex, I'“(U) is convex, hence contractible. The remaining argument is the exactly
the same as for Corollary 2.38. O

Remark 2.41. This proof also shows that J¢ (M, w) is contractible.
To summarize: altogether, in this section we have shown the following.

Proposition 2.42. Ifa Lie group G acts symplectically and properly on (M, w), then T (M, w)
and JE(M,w) are non-empty and contractible. O
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3. Defining the iso-symmetric strata

In this chapter, we explain the definition of iso-symmetric strata and prove some
basic properties. Recall from the introduction what the purpose of iso-symmetric
strata is: we want to split the moduli space of holomorphic curves into countably
many disjoint finite-dimensional smooth manifolds, taking into account the addi-
tional symmetry through the symplectic G-action on M. More precisely, the sym-
plectic G-action on (M,w) induces an action on the moduli space of holomorphic
curves; we decompose the moduli space according to the stabilisers of this action.
In the next step, each stratum is further split into countably many walls (which are
smooth manifolds as well) according to the representation theory of the stabilisers.
This representation theory allows computing the co-dimension of the walls, in prin-
ciple.

Implementing this idea in practice is somewhat more involved. The correct def-
inition of the strata is subtle; let us mention three features which hint at some of
the underlying complexity. Firstly, our setting involves two group actions: the G-
action on M, but in addition the automorphism group Aut(%, j, 6) of a pointed Rie-
mann surface (%, j,0) acts on the space of J-holomorphic curves (X, j) — M by
reparametrisation. The correct definition of strata needs to take this action into ac-
count as well. Secondly, to make the splitting into walls work, we also need to
include some topological information, about the critical points and their orders. Fi-
nally, the stratification also depends on whether we have a simple or multiply cov-
ered curve: the latter involves extra data. All of this will be detailed in this chapter.

Let us focus on the “stabiliser” aspect of the definition first. In hindsight, iso-
symmetric strata are inspired by the orbit type stratification of proper Lie group
actions. For a proper smooth group action on a smooth finite-dimensional manifold,
such a decomposition is a classical result: the manifold decomposes into so-called
orbit types, determined by the group action’s stabiliser. Each orbit type is a smooth
manifold, and orbit types even form a Whitney stratification of the manifold. We
aim to transfer this construction to our setting: the moduli space M, ,,(C, J) has
finite virtual dimension, but is generally not a manifold. It is (locally) contained
in an infinite-dimensional Banach manifold of maps: this means a more elaborate
argument is needed.

Thus, we begin by reviewing the definition of orbit types in the finite-dimensional
setting (Section 3.1). Turning to our setting, Section 3.2 explains some pitfalls trans-
ferring this to the moduli space M, ,,,(C,J). Then, we are prepared to appreciate
the full and correct definition of iso-symmetric strata (Section 3.3).

We prove that the number of distinct non-empty iso-symmetric strata is count-
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able.! This (and the proof that iso-symmetric strata are smooth, for generic equiv-
ariant J) proceeds differently for stable and unstable holomorphic curves: to some
extent, unstable curves are a simpler edge case, which we treat in Section 3.4. For sta-
ble curves (this is false for unstable curves), the group action is proper (Section 3.5)
— this is a crucial ingredient for proving countability of the strata in Section 3.6. We
close with some elementary properties of our strata (Section 3.7).

The properties in the last sections are much easier to prove for A x G finite (for
instance, each stabiliser (A4 x G),, is always compact, and countability of the number
of strata simplifies as A x G has only finitely many subgroups overall). They are in-
cluded as further motivation and justification for the given definitions, by means of
proving they have reasonable properties. While the author believes that Theorems
A and B extend to infinite groups with the current definitions (perhaps translating
them to an equivalent phrasing in the process), this is not confirmed yet. We view
these properties as evidence that these definitions are a useful starting point for fur-
ther investigation. A reader only interested in the finite case may mostly skip their
proofs (only reading Section 3.7), and continue with the next chapter directly.

3.1. Review: orbit type stratification

Before we dive into the moduli space of holomorphic curves, let us review the orbit
type stratification for proper Lie group actions. This material is classical and well-
known; all results in this section can be found in standard textbooks (e.g. [DK00;
AB15]).

Throughout this section, assume that GG is a smooth Lie group acting smoothly
and properly on a smooth manifold M. This induces a decomposition of M called
the orbit type stratification: loosely speaking, M decomposes according to the sta-
biliser of the G-action into a locally finite collection of smooth submanifolds which
fit together nicely.

Definition 3.1 (Orbit type). Let H < G be a closed subgroup. The orbit type of H is
My ={peM | G, = H},

where G, denotes the stabiliser of p under the G-action, and = denotes conjugate subgroups
of G.

Note that the stabiliser of every point is always a closed subgroup, as the G-action
is continuous. In fact, it must be a Lie subgroup.

Lemma 3.2. Suppose a Lie group G acts continuously on a topological space X. Each
stabiliser subgroup G, is a closed Lie subgroup of G.

"Just to clarify terminology: in this document, a “countable” set is one which is bijective to a subset
of the natural numbers. In other words, a countable set is either finite or countably infinite.
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Proof. Since G acts continuously on X, the stabiliser G, ={g € G | g- 2 =2} C G
is a closed subset. By the closed subgroup theorem [Car30], closed subgroups of
Lie groups are Lie subgroups. O

The principal orbit type Mreg C M is the orbit type of H := () ., G.. If G acts
effectively, M;eg consists of all points with trivial stabiliser.

Proposition 3.3 ([AB15, p. 80, Theorem 3.82]). Let G be a Lie group acting smoothly
and properly on a smooth manifold M.

(1) Each orbit type is a G-invariant smooth submanifold of M different connected com-
ponents may have different dimensions.

(2) The principal orbit type is the unique open orbit type in M. The principal orbit type
is open and dense. O

In addition, the collection of orbit types behaves nicely: if G acts properly on M,
the connected components of the orbit types of G form a topological stratification
and a Whitney stratification (the latter implies the former). We will postpone the
definitions and mention the result and a few corollaries first.

Proposition 3.4 ([ AB15, Theorem 3.102; DK0O, Theorem 2.7.4]). Let G be a Lie group
acting smoothly and properly on a smooth manifold M. The connected components of the
orbit types of M form a Whitney stratification (see Definition 3.10 below). O

In particular, this implies

Proposition 3.5. Let G be a Lie group acting smoothly and properly on a smooth manifold
M.

(1) The collection of orbit types { My} <G closed i locally finite.

(2) Foreach H < G closed, M g is the union of finitely many orbit types {Mp,) }icr
of dimension at most dim M ). O

The proof of Proposition 3.4 also shows the following.

Proposition 3.6. Let G be a Lie group acting smoothly and properly on a smooth manifold
M. Every point p € M has a neighbourhood U C M such that each ¢ € U has stabiliser
conjugate to a subgroup of G,. [

If G is finite, an even stronger version holds.

Lemma 3.7. If G is finite, every p € M has a neighbourhood U C M such that every g € U
has stabiliser contained in Gy, and Mg,y NU = U N Fix(Gp). O

Finally, here are the definitions of topological and Whitney stratifications.
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Definition 3.8 (Topological stratification [ AB15, Definition 3.100]). A topological
stratification of a topological space X is a partition of X into topological manifolds { M, }icr,
called strata, such that

(1) The partition is locally finite, i.e. each compact subset of X intersects only finitely
many strata.

(2) For each stratum M;, there exists a finite set I; C I\ {i} such that M; = M; U
(3) Forall j € I;, we have dim M; < dim M.

Definition 3.9 (Smooth stratification, [Sch03, Remark 4.0.1]). If X is a closed subset of
a smooth manifold M, a smooth stratification of X is a topological stratification {M;}icr
of X such that each stratum is a smooth embedded submanifold of M.

Definition 3.10 (Whitney stratification [DKO00, Definition 2.74; Sch03, Def. 4.1.2]).
A Whitney stratification of a smooth manifold M is a smooth stratification such that for
any two strata M; and M; with j € I, (i.e., M C M; \ M,;), the following two conditions
are met.

(a) For each sequence (xy,) in M; such thatlim, oo , = € Mjandlimy, o Ty, M; =
L in the Grassmann bundle of T' M, we have T, M; C L.

(b) For each sequence (x,) as in (a) and each sequence (y,) in M; converging to x € M,
the secant lines 1, = T;, y; (with respect to some local coordinates) converge to some
limiting line contained in L.

It turns out that condition (b) implies condition (a), but not conversely.

Remark 3.11. Whitney stratifications can also be defined for non-smooth spaces.
(Then, conditions (a) and (b) need to be phrased in terms of a local embedding of
M into Euclidean space.) This generality is not necessary in our context.

Whitney stratifications were introduced by Whitney [ Whi65] and since then, many
further kinds of stratifications have been considered, differing in the local proper-
ties required of the strata. Whitney stratifications are among the strongest possible
conditions. See Schiirmann’s monograph [Sch03, Section 4.2] for an overview of
contemporary definitions. Our Definition 3.10 is a “Whitney b-stratification”” in
Schiirmann’s terminology.

3.2. Finding the right definition of iso-symmetric strata

In this section, we discuss two less obvious aspects of the correct definition, thus
motivating its eventual shape. Readers who are happy to accept the definition may
skip this section. To keep the discussion manageable, in this section we ignore crit-
ical points, their orders and the distinction of simple and multiply covered curves:
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we focus solely on the “stabiliser under the action” aspect. Throughout this section,
let G be a (smooth) Lie group and (M, w, 1) be a symplectic G-manifold such that
the action ¢ of G on M is smooth and proper. Let J always be a G-equivariant
almost complex structure.

Let us begin with an easy observation, relating the stabilisers of a curve u with
the stabilisers of the points in its image.

Observation 3.12. Let H < G be a closed? subgroup and suppose [(%, 7,0, u)] €
Mg m(C,J) such that G, = H. Then H < G, for all p € im(u).

Proof. Let p € im(u) be arbitrary; write p = u(z) for some z € ¥. For each h € H,
we have ¢, o u = u as functions ¥ — M, hence h - p = ¢ (u(z)) = (¢Yn o u)(z) =
u(z) =p. O

This looks like a very nice result, relating the G-action on M(J) with the orbit
type stratification of /M. However, let us caution the reader: this observation does
not imply that im(u) C Mg). There may be “exceptional points” p € im(u) whose
stabiliser is a superset of GG,,. If G is finite, this set of exceptional points is discrete,
so an open dense set of im(u) belongs to M(g; this will be proven in Lemma 4.76.
While this viewpoint does not lead directly to a definition of iso-symmetric strata,
it will be useful in Chapter 5.

Observe (by Lemma 3.13 in the next section) that the G-action on M induces a
G-action on parametrised holomorphic curves u: ¥ — M by g - u := 1)4 o u, which
descends to unparametrised curves as g - [u] := [tb4 o u]. The second key obser-
vation is that the stabilisers w.r.t. this action can differ between parametrised and
unparametrised curves. As a parametrised curve, one would consider the following
definition.

False definition 3.1. Let H < G be a closed subgroup. The corresponding (parametrised)
iso-symmetric stratum of the moduli space of parametrised holomorphic curves consists of
all curves u such that the stabiliser G, of u under the G-action is conjugate to H.

In contrast, g € G stabilises the unparametrised curve [u] € M(J)if [g-u] = [u]. If [g-
u] = [u] while g-u # u, then g acts by a reparametrisation of w. This is geometrically
meaningful; considering this will be necessary for proving smoothness of the iso-
symmetric strata. The proof of Lemma 4.74, a key lemma for proving smoothness,
fails without including reparametrisations.

*In this thesis, we only consider closed subgroups of Lie groups. (Some people even argue that the
only reasonably Lie subgroups to consider are closed, since non-closed subgroups can certainly
be non-well behaved. For instance, taking a line with irrational slope in the torus T? yields R as an
immersed non-closed submanifold — which is dense, so there are no well-behaved slice charts.)
While most definitions, including this, would generalise as written to non-closed groups, this ad-
ditional generality is not useful: in practice, we are only interested in H being the a stabiliser
subgroup, which is always closed (by Lemma 3.2). Hence, if H were not closed, the correspond-
ing set is always empty, which is not interesting. Henceforth, we may mention the word “closed”,
but will implicitly assume it throughout this text.
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Taking a step back, this mismatch occurs because our setting in fact features two
group actions on the moduli space M(J), both of which matter: G acts on M(.J),
but there is also a local action on moduli spaces of parametrised curves, by automor-
phism groups of the domain. Choosing representatives whose domain is a fixed ori-
ented surface ¥ (see Lemma 3.22 later), automorphisms of the domain locally act
by ¢ o [u] := [u o ¢] for each ¢ € Aut(%, j,0) < Diff, (X).2> These actions commute;
the crucial point is that they interact: the stabiliser of v w.r.t. the Aut(%, j,6) x G-
action can be larger than just GG,,. This happens precisely whenever some curve g - u
is just a reparametrisation of u, i.e. im(u) is ¢ 4-invariant as a set, but not point-wise.
The solution is to consider the stabiliser w.r.t. this joint action instead of just the
G-action.

Because of the local action by automorphisms of the domain, the iso-symmetric
strata intrinsically depend on the parametrisation of holomorphic curves: thus, we
proceed by first defining a version of the iso-symmetric strata on parametrised curves,
and take the quotient to stratify the space M(.J) of unparametrised curves.

As a final twist, note that the automorphism group Aut(%, j, ¢) of a marked closed
Riemann surface also depends on the complex structure j; this dependence is upper
semi-continuous, but not continuous. In other words, for j fixed, for each j’ close to
j the group Aut(X, j/, 0) is conjugate to a subgroup of Aut(X, j, §) — but it can “get
smaller suddenly”. Hence, we first stratify the moduli space of marked Riemann
surfaces by the automorphism group Aut(, j,#). This induces a decomposition of
the moduli space of (parametrised) holomorphic curves, which we then refine to
the iso-symmetric strata.

3.3. Definition of iso-symmetric strata

Let us finally give the correct definition of iso-symmetric strata. From this section
onwards, we will have the following standing assumptions. (For clarity, we still
mention them in important lemmas or theorems.)

Convention. Let (M, w) be a 2n-dimensional symplectic manifold, G be a smooth
and 1 be a symplectic and proper G-action on (M, w). Fix positive integers g and
m and a homology class C € Hy(M). Almost complex structures J are always
required to be G-equivariant and tame or compatible.

The starting observation for our analysis is that G-equivariance of almost com-
plex structures has a useful consequence: if J is G-equivariant, the G-action on M
induces a G-action on the space of all J-holomorphic curves.

Lemma 3.13. Let J be a G-equivariant almost complex structure on M. Then G acts on
Uceman Mgm(C, ) by g - [u] = [thg o ul. If (¢g).C = C forall g € G, this G-action
restricts to Mg, (C, J).

3This local action is already present in the classical setting. As it is free for stable curves, this poses
no issue in that context.
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Proof. Letg € Gand [u] € M, (C, J) bearbitrary; we show [¢pgou] € Mg ., ((¢g)C, J).
Since G acts by smooth maps, 1,4 o u is smooth. For any almost complex structure
J, a brief computation shows v, o u is (14).J-holomorphic:

()T 0 d(thg o) = ()] 0 diby 0 du = (diby 0 J 0 diby ") o dify o du
=dpgoJodu=dpgoduoj=d(pgou)oy

Since J is G-equivariant, we conclude ¢ ,0u is J-holomorphic. We compute (¢4 o u) [X] =
(), (s [5]) = (t), C-

It remains to show that this action is well-defined, i.e. independent of the parametri-
sation of u: indeed, for any biholomorphic map ¢: ¥ — X/ we have [g - (u o ¢)] =
[(g-u) o @] = [g - u] since reparametrisation and the G-action commute. O

The strategy of this section was explained in the previous section. First, we stratify
the moduli space of marked Riemann surfaces by the automorphism group Aut(%, 7, 0),
in Subsection 3.3.1: this is necessary as Aut(X, j, #) is not continuous in j. As the
second step, we introduce a suitable moduli space of parametrised holomorphic
curves (Subsection 3.3.2). In Subsection 3.3.3, we define iso-symmetric strata of
this parametrised space and of the moduli space of unparametrised curves.

3.3.1. Stratifying the moduli space of Riemann surfaces

We begin by splitting the moduli space of pointed Riemann surfaces according to
their automorphism group. Recall the moduli space M, ,, of closed connected
genus g Riemann surfaces with m marked points, up to biholomorphic equivalence
which fixes the marked points in order. To be compatible with the parametrised
version of iso-symmetric strata later, we make two bookkeeping choices.

Convention. Fix a closed connected genus g surface 3, an orientation of ¥ and an
ordered set § C ¥ with |#] = m. All complex structures on ¥ will be taken to match
the chosen orientation on X.

This convention will be in effect for the remainder of the thesis: ¥ will be the
domain of parametrised curves, § will be their set of marked points.

Definition 3.14. Let A < Diff (X, 6) be a closed subgroup. The corresponding iso-
symmetric stratum of M, ,, is

MG =11(2,4,0)] € Mgm | Aut(S,j,0) = A},
where = denotes conjugate subgroups of Diff (3, 0).

This definition makes sense and is well-defined: by Lemma 3.22 below, any [¥', 5, 0'] €
Mg m has a reparametrisation [(X, j/, 0)], and different parametrisations of (%, j, )
have conjugate automorphism groups.
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Each iso-symmetric stratum of M, ,,, is a smooth manifold in a natural way. This
follows from general nonsense, since the moduli space M, ,,, is a smooth global quo-
tient orbifold. A folklore fact is that “orbifolds are stratified spaces”, for suitable
interpretations of both words. The author is not aware of any written reference, per-
haps due to the fact that both terms have several definitions. For our purposes, it
suffices to know that every orbit type of a smooth global quotient orbifold is natu-
rally a smooth manifold; this is not difficult to prove by hand.

The correct definition of smooth orbifolds is somewhat subtle; some older defi-
nitions have now been accepted as not quite correct. What is more, most texts in
symplectic geometry gloss over the details of the definition. This thesis is not the
place to rectify this either. However, we refer the interested reader to [McDO06]
for the definition of orbifolds that is commonly accepted in symplectic topology,
to Moerdijk’s survey [Moe02] or to Wendl’s blog [Wen23b] for a less intimidat-
ing overview and introduction to this conundrum. Another common reference is
Adem-Leida-Ruan’s Orbifolds and string topology [ ALRO7].

The classical, more hands-on definition of orbifolds is via an orbifold atlas, a collec-
tion of compatible orbifold charts. Each point p € X of an n-dimensional topological
(resp. smooth) orbifold X has a neighbourhood which is homeomorphic (resp. dif-
feomorphic) to an open subset of a quotient R"/H by a smooth action of a finite
group H. The orbifold X is called effective if it admits an orbifold atlas for which
all these group actions are effective. Many orbifolds are effective, yet non-effective
orbifolds also occur naturally.

A smooth orbifold is called a global quotient if has a presentation as the quotient
space M /G of a smooth manifold M by the smooth action of a compact Lie group
G, with the smooth structure on M /G being uniquely determined by the smooth
structure on M. The moduli space M, ,,, is a global quotient orbifold, as the quotient
of the Teichmidiller space by its mapping class group. It is a well-known fact that
all effective orbifolds are global quotient orbifolds (e.g. [ALR07, Corollary 1.24]).
Recently, Pardon showed that every orbifold satisfying a mild geometric assumption
admits a description as a global quotient orbifold [Par22, Corollary 1.3]. Using this
abstract description would likely be bad mathematical style; we mention this merely
to emphasize that global quotient orbifolds form a fairly large class.

Every point p € X in an orbifold has an associated isotropy group, the equiva-
lence class of a finite group. If X = M /G is a global quotient orbifold, the isotropy
group is unique up to conjugation. Suppose from now on that X is a global quo-
tient orbifold. Suppose ¢: U C X — V C R"/H is an orbifold chart near p € X,
we define the isotropy group of p as the conjugacy class of the stabiliser Hy(,) < H:
choosing two different orbifold charts yields conjugate subgroups of G, hence this is
well-defined. The orbit type of H < G in X is the set X () = {x € X : Stab(z) = H}.

Lemma 3.15. Every orbit type of a smooth n-dimensional global quotient orbifold X admits
an induced smooth manifold structure.

While this lemma it not used in this thesis, it is an immediate consequence of
Lemma 3.16 below, so we indicate a proof anyway. Lemma 3.16 is used to construct
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adapted Teichmiiller slices in Section 4.2, and to apply Taubes’ trick in Section 4.5.

Lemma 3.16. Let X be a smooth global quotient orbifold. Each p € X has a neighbourhood
U such that for all ¢ € U, the isotropy group Stab(q) is conjugate to a subgroup of Stab(p).

Proof. Let H < G and p € X (g be arbitrary. Let n := dim X. Choose an orbifold
chart o: U ¢ X — V C R"/Hj around p. Since p is a fixed point of H by construc-
tion, we know H is isomorphic to some subgroup of H. Since H is finite, it acts
properly discontinuously: thus, shrinking V, we may assume H, is isomorphic to
H. Thus, every ¢ € V has stabiliser contained in H = V) and every ¢ € U has
stabiliser conjugate to a subgroup of H. O

Proof of Lemma 3.15. Let H < G and p € Xy be arbitrary. Choose a neighbour-
hood U of p as in the previous Lemma 3.16. Then every ¢ € U has stabiliser conju-
gate to a subgroup of H, and the orbit type X (g is locally given as the fixed point
set of H on R". This fixed point set is a smooth submanifold of R" (e.g. [AB15,
Proposition 3.93]). O

Proposition 3.17. For every group A, the stratum Mém admits a smooth manifold struc-
ture, induced from the quotient orbifold structure on Mg p,.

Proof of Proposition 3.17. The moduli space M, ,, is a smooth orbifold; the isotropy
group at a point [(X, 7, 0)] is Aut(X, j, ) (see e.g. [Wen15, Theorem 4.2.10]). Hence,
each stratum M;{m is precisely the orbit type for the group A. Hence, Lemma 3.15
implies that each stratum is a smooth manifold. O

Remark 3.18. A lot more can be said about the strata MA : for each (g,m), only
few strata MA are non-empty and there is a clear descrlptlon of these groups A
and the dlmensmn of the corresponding stratum.

Definition 3.19. For any group A < Diff (X, ), the corresponding pre-stratum of the
moduli space My ,,(C, J) of unparametrised holomorphic curves is

MAT) ={[(,5.0,0)] € Mgm(C, J)
={[(2,4,0,0)] € Mgm(C,J)

| [(2,5,0)] € My}
| Aut(X, j,0) = A}.
3.3.2. Parametrised moduli spaces

In this subsection, we define suitable parametrised versions of the moduli space
My m, its stratum M ﬁm and the pre-stratum M*(.J). We begin with the parametrised
moduli space of pointed Riemann surfaces. Recall that we fixed a closed oriented
connected genus g surface ¥ and an ordered set § C X of m points.

Definition 3.20. The parametrised moduli space of pointed Riemann surfaces is given

by Mym = {(£,4,0) | j€T(E)}.
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We endow the space M g,m With the Gromov-Hofer topology. The details of the
construction are a pain (see interested reader may consult [Hum97] or [ Abb14; BE-
HWZ] if they are interested in punctured curves also); for our purposes, it suffices
to know the following properties.

Lemma 3.21 ([Abb14; BEHWZ; Hum97]). The space M g,m admits a separable metriz-
able topology such that a sequence (X, ji, 8) in M, converges to (X, j,0) € Mg, if and
only if ji, — j in the C7°-topology.

loc

The space My ,,, admits a separable metrizable topology such that a sequence [(Xy, ji, Ok )] €
Mg m converges to (X, 7,0)] € Mg, if and only if there are reparametrisations [(X, j;., 6)]
of [(Xk, jk, Ok )] such that j, — j in the C;°-topology. O

The following result is easy to show; we omit the details.

Lemma 3.22. The canonical projection ¢: Mvg,m — Mg m is continuous and surjective.
O

For each closed subgroup A < Diff, (3, ), we define the corresponding stratum
of My, by
Mg = {(2.5,0) € Mym | Aut(,],0) = A}.

The projection ¢ restricts to a map /K/lvg{m — Mﬁm. The stratum /\/lg"m is captured
by the parametrised version M ‘;m:

Lemma 3.23. The restriction |74 : ﬁ/lvg‘m — Mg‘m is surjective.
g,m ) k)

Proof. Let|[(X,7,0)] € Mg"m be arbitrary. By definition, A" := Aut(%, j,0) < Diff(X, )
is conjugate to A, i.e. A = ¢ o Ao ¢! for some ¢ € Diff(3,0). Consider the
reparametrisation (X, ¢.7j,0) of (X, 7,0). Since ¢: (X,j) — (X, ¢«j) biholomorphic,
Lemma 3.24 below shows that Aut(X, ¢.j,0) = A, hence (X, ¢.j,0) € M;m. O

This proof used the following simple computation, whose details we omit.

Lemma 3.24. Suppose (X, j,0) is a pointed Riemann surfaceand ¥ : (X, 5,0) — (X', 5/, 6)
is biholomorphic with ¥|g = ¢'. Then F(¥): Aut(%,j,0) — Aut(¥X,j',0'),¢p — Pogpo
U1 is a group isomorphism. O

Next, we come to the moduli space of holomorphic curves.

Definition 3.25. The moduli space of parametrised closed .J-holomorphic curves of
genus g with m marked points is

MV(J) ={(,75,0,u) | j€TE),u: (X,5) = (M, J) is J-holomorphic, [u] = C'}.

Remark 3.26. This space M(.J) is infinite-dimensional (probably a Fréchet mani-
fold); in subsequent analysis, we will describe the moduli space locally, using a Te-
ichmdiller slice for j — the analytical setup will use a finite-dimensional local model.
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Note that we prescribe both the domain ¥ and the set 6 of marked points. This is
not conceptually relevant: both choices are merely bookkeeping measures to keep

the parametrised space simpler. Fixing ¥ is technically necessary (otherwise, M (J)
were a proper class, which is an unnecessary complication); fixing ¢ avoids having
to differentiate w.r.t. changes in the marked points, and incurring a loss of deriva-
tives which would make certain maps non-smooth. Again, we emphasize that the
parametrised space is an auxiliary object; its precise definition is not important.

Again, the topologies on the modul spaces of parametrised and unparametrised
holomorphic curves are standard; we omit the details.

Fact ([Abb14; BEHWZ; Hum97]). The space M (J) admits a separable metrizable
topology such that a sequence (%, ji, 0, ux) in M(J) converges to (£, 5, 8,u) € M(J)

if and only if j, — j and u; — u in the C}-topology.

The space M(J) admits a separable metrizable topology such that a sequence of
curves [(Xy, jk, 0r)] € M(J) converges to [(X, 7,6, u)] € M(J) if they can be repa-

rametrised as a sequence [(%, ji, 0, uy)] such that jp — j and uj, — win C2. O

If M is a single point, this reduces to the topologies on M, g,m and Mg ., respec-
tively.

Lemma 3.27. The canonical projection M (J) = M(J) is continuous. O

Lemma 3.28. The following diagram of canonical projections commautes. O

This definition behaves well: the parametrised moduli space projects to the unparam-
etrised space. In particular, our bookkeeping choices do not lose information.

Lemma 3.29. The canonical projection M (J) = M(J) is surjective.

Proof. This follows from Lemma 3.22: for [(¥', 5,0, u")] € Mg (C, J), the domain
(X', 4',¢') has a reparametrisation (X, j,60) € Mg . dJ

Finally, we define parametrised versions of the pre-strata M (.J).

Definition 3.30. For a group A < Diff(X, §), consider the parametrised pre-stratum

MAT) = {(2,4,0,u) € M(J) | Aut(X,j,0) = A}.
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Observation 3.31. The projection M(J) = M(J) restricts to a map P: MA(T) —
MA(J); the commutative diagram (x) restricts to a commutative diagram. O

MAT) =T M2,

J» I+

MAT) ——= M,

Lemma 3.23 implies the projection ® is surjective, i.e. MVA(J ) captures the pre-
stratum MA(J).

3.3.3. Correct definition of iso-symmetric strata

Let us now give the correct definition of iso-symmetric strata. The full definition
features several components: we always stratify by the automorphism group A :=
Aut(X, j,0) of the domain (X, 7, ) of the curve u, the stabiliser (A x G),, of u under
the A x G-action given by ¢ - u = u o ¢! and the number and orders of the critical
points of u. The strata also differ for simple and multiply covered curves. For each
open subset U C M, we consider strata of simple curves having an injective point
which is mapped to U. For a multiply covered curve u = vo ¢, we use, in addition to
all the above information on the underlying simple curve v, the degree of ¢ as well
as the number and orders of ¢’s branched points.

Phew, this is quite a mouthful. It is perfectly fine to be a bit intimidated by this
list. Take a deep breath, get a glass of water and bear with the author — we will
examine these features in turn.

The first aspect, the group A, is built into our construction of the strata: each
iso-symmetric stratum refines the corresponding pre-stratum. For the stabilisers
under the A x G-action, the previous subsection is comes in. The advantage of the
parametrised pre-strata is that each M 4(J) enjoys a genuine A-action: A acts from
the left by ¢ - u = u o ¢~ 1; the parametrised pre-stratum is A-invariant because of
Lemma 3.24. -

Observe that G acts on M(J) by g - u := 14 o u. This descends to M(J), and
agrees with the G-action defined in Lemma 3.13. Each parametrised pre-stratum
MA(J) is vacuously G-invariant. The A- and the G-actions on MA(J) commute,
hence induce a left A x G-action on each MVA(J ). Let us consider the orbit types
with respect to this action.

Definition 3.32. For closed subgroups A < Diff (X, 0) and H < A x G, we consider the
subsets N N
MAR(]) = {(2,4.0,u) € MA(T) | (Ax G), = H},

where = denotes conjugate subgroups of A x G, and
MAH(]) = M () € MA),
the image of the projection ®: MA(T) = MA().
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Remark 3.33. Two remarks about this definition are in order. Firstly, by definition,
the unparametrised sets M“¥(.J) only depend on the conjugacy class of A and H,
not on the groups themselves. Secondly, if A x G is finite, we could have equiva-
lently asked for isomorphic instead of conjugate groups. In fact, locally, these sets are
characterised by an equality of subgroups (A x G), = H. In general, the situation
is more subtle: for instance, defining the parametrised strata using an equality of
sub-groups (A x G),, = H would usually yield uncountably many distinct strata.

Lemma 3.34. Each set MAH (]) is G-invariant.

Proof. Observe that MAH (J) is G-invariant: the stabilisers of curves u and g - u are
conjugate by g. O

We have now covered the hardest part of defining iso-symmetric strata. Let us
proceed to the remaining aspects. The first extra data are required to define suitable
walls in Chapter 5: each holomorphic curve u has an associated restricted normal
Cauchy—Riemann operator Dy ™" (see Definition 5.12); this is a Cauchy-Riemann
type operator defined on sections of the restricted generalised normal bundle N, x of u.
(We will define this in Section 5.1.*) We would like N,x to vary smoothly within
each stratum: if u = v o ¢ for a simple curve v and a branched cover ¢, the topology
of N,x depends on the branch points of ¢ and critical points of v, and their orders.
Thus, we need to include these data in the definition of the stratum. A second con-
dition is only relevant if M is not compact: we require curves to have an injective
point mapped to a particular open subset. We will explain the particular reason for
this additional condition on page 65.

Finally, the automorphism group of a multiply covered curve adds additional
symmetries, which our definition does not capture yet. We merely propose a candi-
date definition at this stage. For simple curves, the are no branch points to consider
and prescribing the critical points and their orders is sufficient.

Definition 3.35 (Iso-symmetric strata of simple curves). Let U C M be an open set.
For closed subgroups A < Diff, (£, 0) and H < Ax G and an integer 0 < k < m, consider
the set

Mvé’H(J) = {(2,,0,u) € MM(J) | vhasan injective point mapped to U }

and denote by Mé’H(J) ={[(%,7,0,u)] | (£,7,0,u) € MvéH(J)} its space of equiva-
lence classes.

For k-tuple | = (ly,...,lx) of positive integers, the iso-symmetric stratum M{}IH (J)
corresponding to A, H, U, 1 and J consists of all equivalence classes of simple curves
(2,7,0,v) € Mé’H(J) such that for all i = 1,... k, the marked point (; is a critical
point of v of order [;.

restr

*For the experts, yes we can already confirm that D™ is indeed related to the normal Cauchy—

Riemann operator of u.
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For multiply covered curves, we combine Wendl’s stratification [Wen23d] with
our setup.” We add additional data describing the branch points and their orders.
These are called the branching data of a branched cover.

Definition 3.36 (Branching data [Wen23d, Section 2.2.3]). Let d > 1 and r > 0 be in-
tegers. Branching data of degree d with r critical values are an r-tupleb = (b, ..., b,),
where each b; is a non-empty finite ordered set (b; = b; 1, . .., b; q,) of natural numbers such
that b1 + - - - + b; g, = d and at least one of b; 1, . . ., b; g, is at least two.

The space of all degree d branched covers of ¥ decomposes into strata My, 4(j).
As in the previous definitions, we will use parametrised representatives.

Definition 3.37 ([Wen23d, Section 2.2.3]). Let a complex structure j on ¥, integers
d > 1and r > 0 and branching data b of degree d with r critical values be given. We denote
by My q(j) the moduli space of all closed connected unparametrised curves ¢ of degree d

mapping into (3, 7) with q1 + - - - + g, marked points (1, ..., (I, ..., ¢}, ..., (¥ such that
e there are distinct points wy, ..., w, € ¥ such that 1 (w;) = {¢}, ..., ("} for each
1=1,...,r
o for egzch i=1,...,randj=1,...,q;, ¢is bg -to-one on a punctured neighbourhood
of ¢

e ¢ has no critical points outside of the marked points.

Note that d and b determine the genus h of ¢ via the Riemann—Hurwitz formula. Define
My a(j) C Muo(d[X], j) as the image of My, 4(j) modulo reparametrisations and forget-
ting the marked points. (If h is negative, the space My, 4(j) is simply empty.)

Finally, for a multiply covered curve u = v o 1), where v is a simple curve and
a holomorphic branched cover, the automorphism group of ¢ should be relevant.
It turns out that this is not quite right, as ¢ need not be regular: v could have de-
gree larger than one, but trivial automorphism group — hence, considering just
automorphisms of 1) would not show the full extent of symmetries present. (The
operators defining walls in Chapter 5 should be equivariant under this group: con-
sidering just the automorphism group discards useful and important information.)
One solution is to consider the generalised automorphism group (see e.g. [Wen23d,
Definition 2.6.]) instead. It is a finite group of cardinality deg(v); if ¢ is regular, the
generalised automorphism group and the automorphism group coincide. As we do
not study multiply covered curves yet, we omit further details.
Altogether, we arrive at the following candidate definition for multiply covered
curves.

Candidate Definition 3.38 (Iso-symmetric strata for multiple covers). Given

5 An alternative definition could be given using the language of local systems, following the approach
of Doan and Walpuski [DW23].
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e closed subgroups A < Diff (3,0)and H < A x G,

e an open subset U C M,

e integers d > 1, r > 0 and branching data b of degree d with r critical values,
e a group K of order at most d,

o aninteger 0 < k < mand a k-tuple l = (1, ..., 1) of positive integers,

the corresponding iso-symmetric stratum MélH 5 f(J ) consists of all curves [u] € MAH (.J)

which have representatives factorising as u = v o ¢, where

o ] € M{}IH (J) is a simple curve (intersecting U) whose critical points have pre-
scribed orders I,

° pc /T/thd(j)for some j € J(X), and

o ¢ has generalised automorphism group K.

Whenever the iso-symmetric stratum MﬁlH (J) of simple curves is smooth, the

set MélH I;I;(J ) is also a smooth manifold, of dimension dim Mng I;I;(J ) = 2r +

dim MﬁlH (J). This is a well-known fact: the core idea is that each multiply covered
curve has a unique parametrization as a product u = vo1 (see Lemma 3.39)— up to
reparametrisations, which we quotient by. The space of branched covers My, 4(j) is
locally parametrised by the location of the critical values, hence a smooth manifold
of real dimension 2r.

Suppose u = vo ) € M’SIH ,;g(J ). Playing devil’s advocate, we could ask if the
above definition is really the correct one: could the curve u have larger stabiliser
than v w.r.t. the A x G-action? If so, this should impose another constraint, which
should be incorporated into the stratification. We will see that the answer is no:
there is no need to worry about this, and the current definition looks sensible.

As a warm-up, let us compare the stabilisers of © and v under just the G-action:
every stabiliser of v clearly stabilises u, so G, C G,. There is also a partial converse:
g € G, implies g o v is a reparametrisation of v: observe

voy =u=g-u=(gov)oi,

and — most importantly — that g o v is a simple curve. Thus, vo1 and (g-v) ot are
two different decompositions of u into a simple curve and a holomorphic branched
cover. The following standard fact shows that v and g¢- are reparametrisations of
each other.

Lemma 3.39 (e.g. [Wenl5, Theorem 2.15.2]). If u is multiply covered, u decomposes as
u = v o 1) for a simple holomorphic curve v and 1) a holomorphic branched cover. Moreover,
v is unique up to reparametrisation. O
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Let us now compare (A x G), and (A x G),.. Suppose g acts by a reparametrisation
ofu =vo1,ie gou=uo¢forsome (¢,g) € Ax G. Then we have

vo=u=g-uog~ = (g-v)o (b0 "),

so g - v and v are reparametrisations of each other. In other words, if g acts by a
reparametrisation of u, then so does v. This does not imply a direct relationship
between (A x G), and (A x G),, but a relation between their projections to G. This
should be sufficient for all later arguments. To summarize, the author is optimistic
that this candidate definition will be suitable for proving smoothness of the walls
derived from it. The discussion of Chapter 5 has not been adapted to multiple covers
yet; doing so would give conclusive evidence about the definition being suitable.

To close this discussion of definitions, note that our definitions for simple and
multiply covered curves are consistent.

Observation 3.40. We have MélH (J)= M’SIH 67(1@ (J).

Proof. By convention, empty branching data means a covering is unbranched. An
unbranched degree one holomorphic covering is biholomorphic, hence a reparametri-
sation, and has trivial automorphism group. O

In the remainder of this chapter, we will prove a few basic properties of the iso-
symmetric strata: most importantly, the number of disjoint non-empty strata is
countable. Animportant ingredient of the proof is that the group H is a compact Lie
group whenever u is a stable curve; this is proven via properness of the A x G-action
on M#(.J). Hence, it behoves us to explain stable and unstable curves first.

3.4. Unstable curves and their decomposition

Holomorphic curves can be classified as stable or unstable. For many intents and
purposes, unstable curves are an exceptional case: they must be treated separately,
but their analysis is often much simpler. Since the argument of the next section re-
quires stability, let us analyse unstable curves first. Since connected unstable curves
are constant, they are never somewhere injective — but we can describe them via
the sets MAH ().

Definition 3.41. A pointed closed surface (X, 0) is called stable if and only if x(X\6) < 0.
In other words, if ¥ has genus g and m := |6|, (3, 0) is stable if and only if (2 —2g) —m <
0&29+m > 3.

Definition 3.42. A holomorphic curve (3, j,0,u) is called stable if and only if each con-

nected component of (X, §) on which w is constant is a stable pointed Riemann surface. Oth-
erwise, u is called unstable.
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Remark 3.43. Remember that in this thesis, we assume X to be connected; we chose
the phrasing above since it is also correct for disconnected curves. In our setting,
Definition 3.42 boils down to the following: if 2g+m > 3, every curve in M ,,,(C, J)
is stable; for 2g + m < 3, a curve in M, ,,(C, J) is stable if and only if it is non-
constant.

Stability is useful for several reasons. The second property will be proven as
Proposition 3.56 in the next section.

Lemma 3.44 ([Wenl5, Corollary 4.2.7]). The automorphism group Aut(%, j,0) of a
stable Riemann surface is finite. O

Lemma 3.45. For each closed subgroup A < Ditf (X, 0), the A-action on MA (J) is proper
at each stable curve.

As a corollary, we will obtain the following.

Proposition 3.46. A (possibly constant) holomorphic curve [(X, j, 0, u)] is stable if and
only if its automorphism group Aut(u) is finite.

In our setting of connected curves, constant-ness (hence stability) is determined
by the homology class: since J is tamed, a curve in M, ,,,(C, J) is constant if and
only if C = 0. Thus, unstable curves are precisely the curves in M, ,(0,J) for
29 + m < 3. In these cases, the moduli space M, ,, (0, J) is identified with M via

Mgvm(oﬂj) > [(Z’jaeau Ep)] =D € M, (31)

and trivially a 2n-dimensional smooth manifold.
Stability of a curve u is also reflected by which set M4+ (.J) u belongs to: this will
imply that the unstable curves are partitioned into countably many distinct sets.

Lemma 3.47. Let M and N be smooth manifolds; suppose A < Diff(M) acts transitively
on N. Then a smooth map f: M — N is A-invariant (w.r.t. the action ¢ - u == uo ¢~ 1)
if and only if u is constant.

Proof. Direction “<" is immediate. For direction “=", suppose f: M — N is A-
invariant. Fix p € M and consider ¢ := f(p). For each p’ € M, choose a diffeomor-

phism ¢ € A mapping p to p’; then f(p') = f(¢(p)) = f(p) = ¢ by invariance. O

Observation 3.48. A constant curve u € MA(J) with u = p € M has stabiliser
(Ax G)y=Ax Gy, 0

If 2g + m < 3, the automorphism group of (X, j, §) always acts transitively. Alto-
gether, we obtain the following.

Corollary 3.49. All unstable curves in M(J) necessarily have C' = 0.

Each unstable curve [(X, 7,0, u)] belongs to some set MAAXK (), where A = Aut(%, j,0)
for some complex structure j € J(X) and K < G is some orbit type of M. Conversely, the
set u € MAAXCe(]) consists of constant curves u = q for g € g - p forsome g € G. [
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Remark 3.50. The same result holds for constant curves on a stable domain; so
which set M## (.J) an unstable curve belongs to also determines constant-ness.

Corollary 3.51. For each non-empty set M1 (.J), either all curves in u € MAH () are
stable or all uw € MH (.J) are unstable. O

All sets MA4XH (J) of unstable curves are smooth, since they correspond to the
orbit types of M under the identification (3.1) above.

Observation 3.52. For each orbit type H = G, < G, the set MAAXH( ]} is a smooth
manifold of dimension dim G,,. O

The dimension of the orbit types G, is a classical result; we omit the details. If G
is finite, locally G, is the fixed point set Fix(G),); the dimension of Fix(G,) is easy to
compute using representation theory.

3.5. Compactness of stabilisers

In this section, we show that all stable curves v € M,,,(C, J) have compact stabilis-
ers. This is required for proving that the number of iso-symmetric strata is always
countable. It also simplifies later analysis as the representation theory of compact
Lie groups is much better behaved.

To this end, we prove that A x G acts properly at each stable curve in the pre-
stratum MVA(J ). A Gromov compactness argument shows that A acts properly on
the stable curves in M“(.J); this arguments in fact extends to the action of Diff. (2, 6).
By hypothesis, G acts properly on M, which easily implies the induced action on
M(J) (hence on M*(J)) is also proper, and properness of the product action fol-
lows quickly. Taken together, these results imply the following.

Proposition 3.53. If the set M1 (.]) consists of stable curves,® H is a compact Lie group.

3.5.1. A acts properly

As first step of the proof, we show that A acts properly at each the stable curve in

MVA(J ). For the convenience of a non-expert reader, let us recall the definition of a
proper action from Section 2.3.

Recall. Let H be a topological group acting on a topological space X. The H-action
is called proper if the map H x X — X x X, (h,z) — (h - z,z) is proper. We say
H acts properly at « € X if and only if for every sequence (z,) in X and (h,,) in H
such that lim,, z,, = z¢ and lim,, h,, - z,, = x, there exists a subsequence n = n(k)
such that h,,(;,) converges in H as k — oc. If H acts properly, it acts properly at every
point r € X.

*By Corollary 3.51, either all curves in M***(.J) are stable or all curves are unstable.
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Lemma 3.54. If H acts properly at x, the stabiliser H,, is compact.
Proof. Consider the constant sequence (z,) = x. ]

Recall that stable curves of genus g > 1 are non-constant; this is used in the fol-
lowing technical lemma.

Lemma 3.55. If u is non-constant and u,, — w in C°(L, M ) for all w € X there exist
N € Nand a non-empty open subset V.C M such that U := u~'(V)UU,> y u, ' (V) C 3
contains w as an interior point, while ¥ \ U has non-empty interior.

Proof. Choose z,z € X such that u(z) is distinct from u(z’) and w(w). (This is
possible since u is continuous and non-constant.) Choose disjoint open subsets
V,V C M containing u(z) and {u(2'),u(w)}, respectively. Then U := u~ (V) and
U' :=u~1(V) are disjoint non-empty open subsets of X..

By construction, u(X \ U) € M \ V. Choose an open subset V' C M with u(z) €
V' c V' C V. Now u,, — uimplies u= (V') U,s n un (V') C U for N sufficiently
large: by construction, u(X\U) C M\V7; for N sufficiently large, u,,(X\U) € M\V’
for all n > N, which implies u,, (V') C U.

Thus, we may choose V := V": since each u; is continuous, u = (V/)UU,,» x un (V')
U is open; by construction U and U’ are disjoint, U’ C ¥ is open and contains w. [

Proposition 3.56. The A-action on /WA(J ) is proper at each stable curve .

Proof by contradiction. Let (X, j,0,u) € MA(.J) be stable, in particular non-constant.
Suppose the action is not proper at u: i.e., there exist a convergent sequence u,, — u
of curves (2, jn, 6, u,) € MA(J) and a sequence (¢y,) in A such that u, o ¢, — u,
but (¢,,) admits no convergent subsequence.

We regard the ¢;, as holomorphic curves (X, j) — (X,7) in Myo([X],7). (Each
curve is an orientation-preserving diffeomorphism, hence [¢] = (¢x)«[X] = [X] for
all k.) The complex structure j is compatible with any area form on ¥ inducing
the same orientation.” Thus, by Gromov’s compactness theorem, after passing to a
subsequence, (¢,,) converges to some [(S, j', A, ¢g)] € My o([X],7). By hypothesis,
¢ is nodal.

Since the complex structure j is fixed, the surfaces (X, j,) converge to a smooth
element of Deligne-Mumford space. For g > 1, no bubbling happens because
m2(X) = 0: hence ¢g is smooth, contradicting our hypothesis, and properness of
the action follows.

If bubbling happens for g = 0, as [X] is primitive, there is at most one bubble and
¢ is constant outside of the bubble. Thus, there exist w, w’ € S? such that ¢,, |52\ {w}
converges to the constant map z — w’ in C7°.. This yields a different contradiction.
Since u is non-constant, there exists some 2z € S? \ {w,w’} with u(z) distinct from
u(w) and u(w’). Broadly speaking, we will argue that im(¢,,) will move further and

"This is an easy exercise: if (3, j) is a Riemann surface, j is compatible with any area form on ¥ that
induces the same orientation as j.
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further away from z, hence im(u,, o ¢,,) must avoid a neighbourhood of u(z), con-
tradicting u,, o ¢, — u.

Using Lemma 3.55, choose disjoint open subsets V, V' C M containing u(z) and
u(w'), respectively, such that for some N € N, the complement of U := v~ }(V) U
U,.>n un (V) C X contains an opensubset U” C Y withw' € U”. Thenuog,(z) € V
and ¢,(z) € U for all n > N sufficiently large: by hypothesis, u(z) € V; now
u o ¢, — u implies the first statement; the second statement follows from ¢,,(z) =
uz (un © 6)(2)) € i }(V) C U.

Next, we deduce a contradiction to the convergence ¢y, [s2\ 1,3 — (2 = w'). Choose
a compact subset K’ C ¥ such that u(K’) C V' and u™!(u(w)) € U’ C K’ for some
open subset U’ C X. (By construction, u(w') € V', hence u~!(u(w')) € u=1(V").
Since u~1 (V") is open, we can choose K’ accordingly.) Then u,, o ¢,,(K') C V' forn
sufficiently large, since u,, o ¢, — u.

Choose another compact subset K C Y suchthatw’ € K”,w ¢ K" and K'UK" =
Y. (This is possible since w has an interior point of K”.) By construction, there exists
an open subset U” C ¥ containing w’ which is disjoint from U. Then ¢,,(K") c U”
for n sufficiently large: the constant function ¢ := (z — w’) satisfies ¢(K") C U”,
hence ¢, |x» — ¢|k» (using w ¢ K") implies ¢,,(K") C U” for n sufficiently large.

Now we have a contradiction: z € K’ implies u, o ¢,(z) € V' for n sufficiently
large, but we also have u,, o ¢,(z) € V for n sufficiently large and V N V' = ). On
the other hand, z € K" implies ¢,,(z) € U”, while ¢,,(z) € U for n sufficiently large;
by construction U and U” are disjoint. O

Remark 3.57. In fact, Proposition 3.56 generalises in two ways. Firstly, the same
proof shows that the A-action on C%(X, M) by ¢ u = uo ¢! is proper at each non-
constant curve. So, if k,p € N with kp > 2, the A-action on the Banach manifold
B = WkP(S, M) of maps is also proper at each non-constant curve: by the Sobolev
embedding theorem, there exists a continuous inclusion B — C°(%, M), which is
equivariant.

Secondly, we could also drop the pre-strata and consider the full action by Diff (¥, ).
Consider N'(J) := {(j,u) € T(X)x M(J) | (%,],0,u) is stable}, endowed with the
product topology. Then D := Diff (X, 6) acts on N'(J) by ¢ - (j, u) := (¢sj,uc ¢~ 1).

Observation 3.58. The action of D on N (J) is proper, and the stabiliser of any point
(4,u) € N(J) is the finite group Aut(u).

Proof sketch. Determining the stabiliser is an easy computation. For properness, we
follow the same argument as for Proposition 3.56. Suppose the action is not proper:
then, for some (j,u) € N'(J) and (j/,u/) € N(J), there exist sequences (j,, u,) in
N(J) and (¢,) in D such that (j,,un) — (j,u) and ¢ - (i, un) — (', '), but (¢y,)
has no convergent subsequence.

The ¢y, are holomorphic curves (3, ji) — (X, j) in My o([%], jk). (Since each curve
is an orientation-preserving diffeomorphism, [¢r] = (¢r)«[X] = [¥] for all k.) By
Gromov’s compactness theorem, some subsequence of (¢,) converges to a nodal
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curve [(S, 7,/ 0, 0)] € Mgy o([X], 7). Since j, — j by hypothesis, the surfaces (%, jj,)
converge to a smooth element in Delignhe-Mumford space. By the exact same ar-
gument as for Proposition 3.56, stability of u excludes bubbling, so ¢g is smooth,
contradiction. O

To close the loop, here comes a proof of Proposition 3.46.
Proof of Proposition 3.46. “<=": Suppose Aut(u) is finite. If 2g +m > 3, the curve u is

automatically stable since its domain is. Otherwise, Aut(X, j, #) is explicitly known
and infinite[ Wen15, Section 4.2]: up to isomorphism, we have

PSL(2,C) if (9,m) =0
Aut(S, j, 0) = Aut(C, 1) if (g,m) = (0,1) .

C* if (g, m) = (0,2)

T? x H for some finite group H if (g,m) = (1,0)

If u is constant, Aut(u) = Aut(, j,0); since Aut(u) is finite by hypothesis, u must
be non-constant.

“=": Suppose (%, j, 0, u) is stable. If (X, j, 0) is stable, Aut(X, 7, 0) is a finite group
(Lemma 3.44), hence so is Aut(u). Suppose (X, j,0) is unstable, hence u is non-
constant. Write u = v o ¢ for some simple curve v and a holomorphic degree d > 1
branched cover ¢. Since v is simple, it is embedded (except at finitely many points).
Hence, any automorphism of « is an automorphism of ¢, so |Aut(u)| < d. O

3.5.2. A x GG acts properly
By hypothesis, G acts properly on M: this implies a proper action on M(J).

Observation 3.59. If G acts properly on M, it acts properly on M (J).

Proof. Let u € M(J) be arbitrary and suppose (g,) and (u,) are sequences in G

and M(J), respectively, such that v, — w and g, - u, — v in M(J). We need to
find a convergent subsequence of (g,,). Let z € ¥ be arbitrary. Since convergence in
M (J) implies point-wise convergence, u,(z) — u(z) and g, - un(z) — v(z). Now,
properness of the G-action on M implies that (g,) has a convergent subsequence.

O

Remark 3.60. Again, the same proof shows that G acts properly on B = W*? (%, M).

It remains to deduce properness of the A x G-action from properness of the A and
G-actions. In general, a product of two proper actions need not be proper (unless
e.g. one factor is compact). The A x G-action in our setting, however, always is.

Proposition 3.61. The (A x G)-action on MA(J) is proper at each stable curve .
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Proof. Firstly, observe that the set of stable curves is A x G-invariant: hence, the
A x G-action on M4 (J) descends to an action on the subset of stable curves.
Suppose (jn, un) — (j,u) and (¢n, gn) = (Jn, un) = (Gn"Jns Gn - (Un © ¢n)) — (j',u’).
Pick a point z € X. Since ¥ is compact, by passing to a subsequence we may assume
¢n(z) converges to some point 2z’ € X. Then uy, (¢, (2)) — 2’ and gy, - (un(dn(2))) —
v/ (z) follow, so properness of the G-action (Observation 3.59) implies that, after
passing to another subsequence, the sequence (g,,) converges to some ¢’ € G. Now,
continuity of the action implies (¢}, j,, un 0 ¢y) — (', g ~1-u'), and properness of the
D-action (by Observation 3.58) implies that (¢,,) also has a convergent subsequence.
U

Remark 3.62. Looking at the argument closely, the same proof shows that the D x G-
action on M“(.J) is proper at each stable curve w.

Proof of Proposition 3.53. Combine Lemma 3.54 with Proposition 3.61. O

3.6. Countable number of iso-symmetric strata

In this section, we prove that the number of distinct non-empty iso-symmetric strata
is countable. This is important for a subtle reason: our proof of smoothness (in

Chapter 4) will consider each stratum MélH (J) separately, and exhibits for each

stratum a co-meagre set of equivariant .J such that MélH (J) is smooth. If there are
countably many strata, the intersection of these co-meagre sets yields a co-meagre
set, concluding the existence of a co-meagre subset of 7% (M,w) for which all iso-
symmetric strata are smooth simultaneously.

Proposition 3.63. Fix an open subset U C M. Then, the number of distinct non-empty

iso-symmetric strata MélH (J) of simple curves is countable. The number of distinct non-

empty iso-symmetric strata MélH ,jg(J ) of multiply covered curves is also countable.

Remark 3.64. This proposition depends on our chosen definition of iso-symmetric
strata: if we had defined the sets M“f(.J) (and hence the iso-symmetric strata)
using equality of subgroups instead, the number of strata is generally uncountable.

On the other hand, merely demanding isomorphic groups (A x G),, = H makes
this much easier: up to isomorphism, there are only countably many compact Lie
groups (as they are classified by combinatorial data which are countable).

The proof of Proposition 3.63 splits in three steps: we first show that the number
of non-empty pre-strata M“(.J) is countable. Then, we argue that for given A, there
are countably many non-empty sets M (.J) refining M#(.J). Finally, the set of
possible data d, b and 1 describing critical points and branch points is countable.
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3.6.1. Countability of pre-strata

The first step is showing that the number of pre-strata M“(.J) is countable. In fact,
for later use let us also note that they are locally finite.

Lemma 3.65. There are countably many conjugacy classes of closed subgroups A < Diff, (2, 0)
such that the corresponding pre-stratum M (.J) is non-empty.

Lemma 3.66. The collection { M*(J)} of pre-strata is locally finite. O

The proof is surprisingly hands-on: by the definition of pre-strata, each group
A with whose pre-stratum is non-empty is the automorphism group of a pointed
closed Riemann surface; we can use the classification of closed Riemann surfaces to
handle these explicitly. We treat the cases of spheres, tori with at most one point
and other stable surfaces separately: each case requires different methods.

Proof of Lemmas 3.65 and 3.66. As mentioned, we consider three different cases, de-
pending on the genus g.

Case 1: spheres
Suppose g = 0, i.e. ¥ is diffeomorphic to a sphere.

Claim 1. For each m, there the automorphism group is unique up to conjugation.

Proof of claim. Letj € J(S*) be arbitrary. By the uniformisation theorem (e.g. [Mil06;
FK92]), (S?, 4) is biholomorphic to (S?,i). Hence, conjugating by such a diffeomor-
phism, we may assume (S?,j,6) = (S%,4,6’) for some ¢ C S?. Conjugating by a

suitable automorphism of (S?, ), we may further assume that

0 ifm=0
o — {0} ifm=1
~ {0, 00} ifm=2"

{0,1,00,C4y...,Cm} ifm>3

this uses that Aut(S?,i) = PSL(2, C) acts triply transitively on S?. In particular, for
m > 3, the automorphism group is always trivial; for m < 3 the automorphism
group is uniquely determined up to conjugation. A

In particular, exactly one pre-stratum is non-empty.

Case 2: tori with m <1

Suppose g = 1 and m < 1, i.e. ¥ is diffeomorphic to a torus. In this case, the uni-
formisation theorem does not help much, but we can compute the automorphism
groups rather explicitly.
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Notation. Let us fix an explicit model surface. Since a torus has universal cover
C, its given as a quotient C/A by some lattice A C C. Without loss of generality,
assume A = Z @ A\Z for some A € H. Choosing a real-linear map which fixes 1
and sends ) to i, we identify (C/A, i) with (T? = C/(Z + iZ), j,), where j, is the
translation-invariant complex structure on C whichmaps 1to A (and Ato —1). Every
translation-invariant complex structure is of this form; conversely, every translation-
invariant complex structure descends to a complex structure on the torus [Wen15,
p- 160].

Reduction. We reduce our analysis to the complex structures 7 := {j)} xcm on the
torus given above. Each complex structure j € J(T?) is conjugate in Diffy(T?, ) to
some jy. This result is classical: the collection 7 forms a so-called Teichmiiller slice
for the Teichmiiller space T (T2,0) = J(T?2)/ Diffy(T?,6).2 For each Teichmiiller slice
(in particular, for T), the quotient projection 7 — T (T?2,0) is a diffeomorphism
(e.g. [Wen15, Theorem 4.2.14]). In particular, each complex structure j € J(T?) is
conjugate in Diffy(T?, 6) to some 3.

Thus, after a suitable conjugation, we need to consider only the automorphism
groups Aut(T?, j),0). By conjugating further with a suitable translation, we may
assume the marked point (if any) is 0.7

For unmarked tori, the automorphism groups are known quite explicitly: they
are semi-direct products Aut(T?, j\) = T? x G, of all translations on the torus with
a finite group G, [Wen15, p. 160]. Moreover, G = Aut(T?, jy, {0}), i.e. G, is the
automorphism group of a once-marked torus.

Therefore, it suffices to show that there are only countably many groups G, and
this collection is locally finite (w.r.t. the parameter \). To keep the flow of ideas
moving, we postpone the proof to the end of this section.

Lemma 3.67. The collection {G}xem is countable and locally finite.

Case 3: stable surfaces

Suppose none of the cases above holds, then ¢ = 1 and m > 2 or g > 2. In both
cases, we have a stable surface. Our proof is similar in spirit to case 2, except that
many details simplify. By reparametrisation, we may restrict attention to our fixed
surface (3, 0).

Lemma 3.68. Let (X, 0) be a stable closed pointed surface. Then the collection of conjugacy
classes {[Aut(%, j,0)]} e 7(x) is countable and locally finite.

The starting point of the proof is the following observation.

Observation 3.69. The space of smooth almost complex structures 7 (X) is Lindelof,
i.e. every open cover has a countable sub-cover.

5We will encounter this definition in more detail in Section 4.2.
°For the pedantic: very precisely, we assume the marked point, if any, is the image of 0 € C under
the projection C — C/(Z + \Z) = T?.
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Proof. Recall that 7 (X) is endowed with the C}X -topology, which is second count-
able and metrisable by Proposition 2.6. In particular, it is Lindeldf. O

Proof of Lemma 3.68. By stability, Aut(, 7, #) is a finite group [ Wen15, Corollary 4.2.7].
Hence, it suffices to consider the cases of no (¢ > 2) resp. one universal (g = 1)
marked point p: if there exists a countable family of finite groups {4, } such that
Aut(%, 5, 0) resp. Aut(T?, j, {p}) is conjugate to one of the A;, then Aut(%, j,6) is a
conjugate to a subgroup of one of the A;. However, each A; has only finitely many
subgroups (as it is finite itself).

Suppose 6 is empty (if g > 2) resp. a singleton set (if g = 1). By Lemma 4.28
(provenin Section 4.2), the automorphism group Aut(%, 7, ) decreases locally: each
Jj € J(X) has a neighbourhood U such that Aut(X, j/,6) is conjugate to a sub-
group of Aut(X, j, 6) for all j' € U. In particular, the collection of conjugacy classes
{[Aut(3, 5/, 0)]}jcv is finite. This proves local finiteness. Since [7(X) is Lindelof,
we can cover it by countably many such neighbourhoods; altogether there are only
countably many automorphism groups occurring. O

This completes the proof of Lemma 3.65, up to proving Lemma 3.67. O

Remark 3.70. In fact, for g > 2 the possible number of pre-strata is even finite: by
Lemma 3.72 below, each group Aut(%, j, #) induces a unique finite subgroup of the
mapping class group M (X, ). For g > 2, there are finitely many conjugacy classes
of finite subgroups in M (X, ) [FM12, Theorem 7.14].

Finally, we come to the postponed proof of Lemma 3.67: the collection {G )} em
is countable. This is based on Wendl’s proof that each group G is finite [Wen15,
Proposition 4.2.19]: Wendl shows that G is both discrete and compact. Our ob-
servation is that the argument can be applied “uniformly” for all ), giving a simul-
taneous description of all G; analysing this description shows that there are only
countably many distinct groups Gy.

Discreteness of the groups G, follows by relating them to the homology of T2.

Lemma 3.71. For each A € H, the map f: G\ — SL(2,Z),¢ — ¢. € End(H;(T?)) =
End(Z?) = SL(2, Z) is injective.

Proof. The map f is the composition of the maps G, — M(T?) and M(T?) —
SL(2,Z) below. By Lemmas 3.72 and 3.73 below, both maps are well-defined and
injective, hence so is f. O

Recall. The mapping class group of a pointed smooth surface (3, 6) is
M(%,0) = Diff, (X, 0)/ Diffy (X, 9),
where Diffy (3, 0) = {¢ € Diff(2,0) | ¢ ~p, id}.

Lemma 3.72. If (¥, j, 0) is a stable pointed Riemann surface, the natural map Aut(%, j,0) —
Diff, (X,0) — M(X, 0) is injective.
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Proof. We show that this group homomorphism has trivial kernel. A standard ar-
gument using Lefschetz’ fixed point theorem (e.g. [Wen15, Lemma 4.2.5]) implies
that ¢ € Aut(X, j,0) being homotopic to the identity implies ¢ = id. O

Lemma 3.73 ([FM12, Theorem 2.5]). The map
M (T?) — SL(2,7Z), [¢] — ¢« € End(H;(T?)) = End(Z?) = SL(2, Z)
is a group isomorphism. O
Corollary 3.74. Each group G for A € H is discrete.
Proof. The inclusion G, — M (T?) is continuous by definition; since the mapping

class group M (T?) is discrete, so is G. O

A crucial detail is that map G, — M (T?) is independent of the choice of A: we can
apply this to all groups G at once. Using this slight abuse of notation, we regard
each G as a subgroup of SL(2,Z).

Fact ([Wenl5, p. 160]). Under this identification, Gy = {A € SL(2,Z): A*j
Ja}-
Compactness of each G uses a different argument: we embed G, C SL(2,7Z)

into a compact 1-manifold. Again, this argument can be run “for all parameters A
at once”, yielding the following.

Ol

Proposition 3.75. There exists a smooth family {C} xem of compact submanifolds C C
GL(2,R) such that G\ C C\. In particular, each G is compact.

Proof. Given A\ € H, choose a basis By := (ex1,exz2) of R? such that ex1 € Rey,

ex2 = jaean and area(ey 1,ey2) = 1. In other words, we have By = (cye1, cy\) for
some constant ¢y > 0. In fact, c) is not hard to compute.

Claim 1. ¢y = 1/vIm A

Proof. We compute area(cyer, cy\) = ci Im(\); since ¢y > 0, this implies the claim.
By definition, j is the conjugate of the standard complex structure by the linear
map (;6;1 C — C,1+~ 1,i+— A Hence, j, is described by jx(1) = Aand jx(\) = —1.

Since A = Re A +Im \i, we have i = ’\Imr({i)’\ Iml( N A — Eﬁ:\\ 1 and
o 1 Re \ 1 Re \? , 1+ Re(\)? ‘
=——(-1)—-— A=—-+— """ —Re(N)i = ——~—"— —Re(N)i.
M= 3 Y~ T ma  Ima eV Im A e(V)i
Re )\ — 1+Re(A
Hence, j) has coefficient matrix Jy := Im>\ w.r.t. the standard basis.
Im A\ —Re A
_ 14Re(V)?
Plugging in, we conclude jye; = (Eﬁi - ll(né >;\ ) ( > <Re A) and deduce

(ex1,ex2) = (caer, caM), where ¢y € R is determined by

1 =area(ey 1,€ex2) = det(cy <(1) ﬁi;)) = 3 Im()). A
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Observe that w.r.t. the basis By, A € G, lies in both SL(2,R) and GL(1,C): the
former because det(A) = 1 is basis-invariant; the latter since j) corresponds to mul-
tiplication by ¢ in the basis By and A*j\ = jx. Note that SL(2,R) NGL(1,C) = U(1)
is compact.

1 ReA

In other words, the coefficient matrix M, = c) ( 0 ImA

> of By w.r.t. the standard
basis (e1, e2) of R? satisfies
M\G\M; ' c U(1) 2 S0(2),

ie. Gy C M, 1 SO(2) M, =: Cy. Each C) is a smooth 1-dimensional submanifold of
R?*2; since M, depends smoothly on ), the family {C } xen is a smooth family. Since
SL(2,Z) and the condition A*jy = jy are closed, G, is closed, hence compact. ]

Now, countability of the family {G } »cm follows from the following.

Lemma 3.76. Let P and M be a smooth manifolds. Suppose S C M is a closed discrete
set and (Cp)pep a smooth family of compact submanifolds of M. For p € P, denote G, :=
S N Cy. Then the set of possible G, is countable.

Proof of Lemma 3.76. Each G, is a discrete set (as a subset of S) and compact, hence
finite. Since M is second countable, S is countable, so there are only countably many
finite subsets of S. 0

Perhaps the reader found the above proof a bit underwhelming: after all, the
smoothness of the family ), was not used at all. We do use it, however, for proving
local finiteness: this follows by looking at the structure of the sets G, a little more
carefully.

Lemma 3.77. Let P, M, S and {Cp}pcp be as in Lemma 3.76. Then the collection {G,}
is locally finite.

Proof. Let p € M be arbitrary. Choose an open subset C' of M containing C, such
that C'N S is still finite. By the subsequent lemma, for ¢ sufficiently close to p, the
set C is still contained in C: then Gy C C'N S for each such ¢, and such sets G, take
only finitely many possible values. O

The proof becomes complete by showing the following.

Lemma 3.78. Let M be a smooth manifold, and S, K C M be a closed discrete resp. compact
subset. There exists an open subset U C M such that K C U and U N S is finite.

Proof. By hypotheses, K N S is a finite set. Write K NS = {1, ..., x,} for suitable
x1,...,Ty, € M. For each x;, choose an open set U; C M containing z; such that
UinS = {x;}. LetUy := Uy U...Uy: this is the first component of the desired set
U. By construction, Uy is open and K \ Uy is compact. For each x € K \ Uy, we
have = ¢ S be construction. Choose an open set U, C M containing « such that
U, NS = 0.
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Now U :=Up UU,¢ e\, U= C M has the desired properties: by construction, it is
open, contains K (since K C Up) and we have

UﬂS:U(UiﬂS)U U (L{IQS):U{%}U U 0={x1,...,2,} = KNS. O
i=1 €K \Uo =1 €K \Uy

To close the loop, here is how to specialise this discussion to Lemma 3.67.

Proof of Lemma 3.67. Apply Lemma 3.76 to the collection {C) } e, with P =H, S =
SL(2,Z) and M = R?*2. Observe that G, = SL(2,Z) N Cy; the sets C, consist of
those matrices which satisfy A*j\ = ja. O

3.6.2. Countability of iso-symmetric strata

The second step is showing that for each pre-stratum, at most countably many of
the sets M“-H(.J) refining it are non-empty.

Lemma 3.79. For a closed subgroup A < Diff, (X, 0), there are countably many conjugacy
classes of closed subgroups H < A x G such that the set M (J) refining the pre-stratum
MA(J) is non-empty.

An unstable curve u = p always has stabiliser (A x G), = A x G),, where G, is the
stabiliser of p € M. This is a compact subgroup of G since G acts properly on M. For
stable curves, the set M“:¥(.J) consists (by definition) of those curves [u] € M4(.J)
with (A x G),, conjugate to H. The stabiliser (A x G),, is always a compact Lie group
(Proposition 3.53). Hence, Lemma 3.79 follows from the following.

Theorem 3.80 ([Kha21, Corollary 3.9; AAV12, Theorem 3.1]). A Lie group has count-
ably many conjugacy classes of compact subgroups.’’ O

For compact Lie groups, this result is classical. While it was known before the end
of the second world war [Kha20], the first quotable reference is due to Palais [Pal60,
Theorem 1.7.27]. Palais” proof uses the Peter-Weyl theorem and Yang’s theorem
about local finiteness of orbit types. Khan [Kha21] provides a proof explaining the
classical reasoning, which we sketch here since it is fairly short.

A key building block is the neighbouring subgroups theorem, which we will also
use later. Montgomery and Zippin gave a first proof (for compact Lie groups), using
facts about geodesics in convex spheres and result of Cartan that the space of cosets
G/ K admits a Riemannian metric on which G acts by isometries. Palais [Pal60] has
an alternative proof avoiding differential geometry. Khan [Kha20] has generalised
the result to non-compact groups.

A1l manifolds and Lie groups in this text are tacitly assumed to be Hausdorff and second count-
able. This convention is used here: the theorem requires that G have countably many connected
components; otherwise the result is trivially false.
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Theorem 3.81 (Neighbouring Subgroups Theorem [MZ42; Kha21]). Any compact
subgroup K of any Lie group G admits an open neighbourhood U C G such that every
closed subgroup contained in U is conjugate (in G) to a closed subgroup of K. O

Proof sketch of Theorem 3.80 for compact groups, classical argument. Let K be a compact
Lie group. Choose a bi-invariant Riemannian metric on K, making K into a metric
space. Consider the collections Cpt(K) and CptSgp(K) of compact subsets (resp.
closed, hence compact, subgroups) of K, endowed with the Hausdorff metric. Since
K is compact, so is Cpt(K). By continuity of the group operations, CptSgp(K) C
Cpt(K) is closed in the Hausdorff metric, hence compact as well.

Observe that a proper closed subgroup L < K has positive Hausdorff distance
of K. (Since K and L are Lie groups, L has either lower dimension or fewer con-
nected components than K.) Thus, we obtain a decomposition CptSgp(K) = {K}U
U>2 | Xy, where X, := K \ B(K, %) is the complement of an open ball in the Haus-
dorff topology.

We prove the result by double induction: the trivial group is the base case. As-
sume it holds for all closed subgroups which have smaller dimension or fewer con-
nected components. (As we just argued, this includes all proper Lie subgroups of
K.)

Claim 1. Each X,, has only countably many conjugacy classes of elements.

Proof. By the neighbouring subgroups theorem, each compact subgroup H € CptSgp(K)
admits an e > 0 such that all subgroups contained in B(ep, H) are conjugate to
a subgroup of H. Since X, is compact, it has a finite sub-cover by balls B(e;, H;).
Therefore, any closed subgroup H € X,, is conjugate to a subgroup of some H;. Each
H; is compact and satisfies the inductive hypothesis, hence there are only countably
many conjugacy classes within H;. A

This completes the proof: K is the only subgroup of K conjugate to itself. O

Proof of Proposition 3.63. Combining Lemma 3.65 and Lemma 3.79 above shows that
the number of distinct non-empty sets M“#(.J) is countable. To conclude count-
ability for strata of simple curves, we observe that the set of possible tuples 1 is
countable. For multiple covers, the argument is similar: for given degree d € N,
the overall number of degree d branching data b is countable, and there are only
finitely many groups of order at most d (up to isomorphism). Theorem 3.80 also
implies there are only countably many possible values of H' (up to conjugation),
completing the proof. O

3.7. First properties of iso-symmetric strata

Let us collect a few direct properties of the iso-symmetric strata which we just proved.

Proposition 3.82 (Properties of iso-symmetric strata). Suppose G acts properly and
symplectically. Let U C M be an open subset.
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(1) The iso-symmetric strata M’élH l;f(J ) partition the set of stable simple curves in the

moduli space M., (C, J) of unparametrised curves.

(2) If U is G-invariant, each iso-symmetric stratum M 3{{ ,;Id((J ) is G-invariant.

(3) ue MA’H(J) is unstable if and only if (A x G),, = A x K for some orbit type K of
M.

(4) If [u] € MAH () is stable, H is a compact Lie group.
(5) The number of distinct non-empty iso-symmetric strata is countable.

(6) The collection {MA’H(J)}AgDiff+(Z,9) closed, H< Ax G closed 18 locally finite, as is the col-
lection {Mé’H(J)}.

(7) Every stable curve u € MAH () has a neighbourhood V' C M(J) such that all
v € V have stabiliser (A x G), conjugate to a subgroup of (A x G),.

Proof. Item (1) is true by construction. Items (3), (4) and (5) have been proven in
the previous sections (in Corollary 3.49, Proposition 3.53 and Proposition 3.63, re-
spectively). Item (6) follows from Lemma 3.66 and Proposition 3.5(i). For Item (2),
we already noted in Lemma 3.34 that MAH(J) and MAH (]) are G-invariant. The
degree d and critical orders 1 are G-invariant since A acts by diffeomorphisms. It
remains to show that the branching data are G-invariant. This is apparent since the
G-action on u = v o ¢ only acts on v, but not ¢.

The final item (7) uses the neighbouring subgroups theorem (Theorem 3.81). By
Proposition 3.53, the stabiliser (A x G),, is a compact Lie subgroup of A x G. By
the neighbouring subgroup theorem, there exists an open set U C A x G containing
(A x @), such that each subgroup of A x G contained in U is conjugate to a subgroup
of (A x G),. Now Lemma 3.85 below shows that (A x G), C U for all curves v in a
suitable neighbourhood V' C MA(T) of . O

Remark 3.83. The author suspects that the collections of iso-symmetric strata MélH (J)

resp. MSIH gg(J ) are also locally finite: it remains to prove that the degree d, the

branching data b and the critical orders 1 are locally finite.

Remark 3.84. Properties (6) and (7) are analogues of Propositions 3.5(i) and 3.6.
Currently, showing that the iso-symmetric strata form a smooth stratification is out
of reach, as describing the boundary of the iso-symmetric strata is more involved.!!
However, the consequences (6) and (7) are within reach today.

For unstable curves, item (7) can almost be proven, by arguing with the orbit types
G, instead. One detail is missing: suppose G,, has a neighbourhood U in G such
that each compact subgroup H < G contained in U is conjugate to a subgroup of G,,.
Does it follow that every subgroup H < A x G of A x U is conjugate to a subgroup
of A x G,?

1Gection 4.5 contains the first steps of this investigation, as they are required to apply Taubes’ trick.
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Lemma 3.85. Let u € MA(.J) be a stable curve; suppose V. C A x G is an open neigh-

bourhood of (A x G),. Then u admits a neighbourhood U C MVA(J) such that (A x G)y
is contained in 'V forallu' € U.

A key ingredient in proving Lemma 3.85 holds in greater generality: to make the
proof more transparent and notionally cleaner, let us present that first.

Lemma 3.86. Let G be a topological group acting continuously on a topological space X.
Suppose G acts properly at each y € X in an open neighbourhood of x € X. Suppose G,
is contained in some open subset U C G. Then, x has a neighbourhood V' C X such that
Gy CUforallyeV.

Let us illustrate the main idea by proving a simpler version of this lemma first.
Choose an invariant metric on G' and consider the induced Hausdorff distance d g on
compact subsets of G.

Lemma 3.87. Let G be a topological group acting properly and continuously on a topological
space X. Let x € X and suppose G, is contained in some open subset U C G. Then, x has
a neighbourhood V- C X such that G, C U forally € V.

Proof. By properness, each stabiliser G, is compact. Since G is contained in U, by
compactness the e-collar B.(G;) = | e B.(g) C G of G, is contained in U, for
some ¢ > 0: for each g € G, some ball B, (g) is contained in U. These cover U;
since G, is compact, finitely many of these balls B¢, (g1), ..., Be, (9n) cover Gy, so
we may choose € = mine;.

Suppose the conclusion fails. Pick a sequence y,, in X such that d(z,y,) <  while
du(Gy,,Gy) > e.12 Choose g,, € Gy, such that dg(gn, G;) > €. Observe y,, — z in
X by choice of (y,) and gy, - yn = yn (since y € G,).

Properness of the action implies | J,, Gy, is contained in a compact set K: the set
L := {yn}nen U {z} is compact, hence so is L x L C X x X. Properness of the G-
action implies K := (¢~ (L x L)) is compact. Since K contains all the stabilisers
Gy, by construction, after passing to a subsequence, we may assume g, — g € G.
Now, continuity of the G-action implies

z = lim y, = lim g, -y, = lim g, - lim y, = ¢ -,
n—oo n—oo n—oo n—oo

hence g € G, contradicting the relation dg (g,, Gz) > € for all n. O

Proof of Lemma 3.86. Since G acts properly at z, the stabiliser G, is compact. As in
the proof of Lemma 3.87, U contains the e-collar B.(G,) of the stabiliser G, for some
€ > 0. We argue by contradiction: suppose there exists a sequence (y,) in X such
that d(z, y,) < L while dy(Gy,,G,) > e. Ignoring finitely many terms, assume all
G acts properly at each y,,.

2By hypothesis, noball B(z, 1) satisfies Gy C Be(G.): thatwould imply G, C U. Pick y, witnessing
this.
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Claim 1. Both K := |J,,cn Gy, U Gz and L := (U,eny Gy, X {¥n}) U Gz x {z} are
compact.

Proof. Since K = my(L) for the coordinate projection mp: G x X — X, it suffices
to prove compactness of L. Let z, = (v, wy) be any sequence in L. Consider the
sequence wy, first. Since {y, }neny U {2} is a compact set, w,, has a convergent subse-
quence — either a constant subsequence (i.e. w, = y; for some 7) or a subsequence
converging to x. Passing to a subsequence, assume that either w,, = y; for some
i or w, — x. In the first case, z, C Gy, x {y;}; properness at y; implies this is a
compact set, so a further subsequence is convergent. In the second case, properness
at x applies: w, —  is a convergent sequence in X, v, is a sequence in G with
Uy, - Wy, = Wy, — T, hence properness at « implies a convergent subsequence v,, — v.
Altogether, the corresponding subsequence converges to (v, x). A

The remaining proof works as above: by construction, K contains all the stabilis-
ers Gy, , hence (g,,) has a subsequence converging to some g € G. Now, continuity
of the G-action implies

= lim y, = lim g, -y, = lim g, - lim y, =g -,
n—00 n—o00 n—00 n—o0

hence g € G, contradicting the relation dy (g,, Gz) > € for all n. O

Proof of Lemma 3.85. Suppose u € M*(.J) is stable. By Proposition 3.61, the (4 x G)-

action on M“(.J) is proper at every stable curve. Since Y. is connected, stable curves
are precisely the non-constant ones; these form an open subset of M“(.J). Hence,
Lemma 3.86 implies the claim. O
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4. Smoothness of the iso-symmetric
strata

In this chapter, we prove that for generic equivariant J, all iso-symmetric strata
MélH (J) defined in the previous chapter are smooth manifolds. For technical rea-
sons explained in Section 4.7, we need to assume A and G are finite. There are good
reasons to expect a proof in greater generality, but some technical details need to be
modified substantially. We will expand on this in Section 4.7 at the end.

The precise statement is easiest to state if M is compact: in this case, the result
reads as follows. (The operator D, is the linearised Cauchy—Riemann operator of u; it
is defined in Section 4.4).

Theorem 4.1 (Smoothness of iso-symmetric strata, compact case). Suppose M is
closed and 2g + m > 3 and G is finite. There exists a co-meagre subset Jyeq of T (M, w)
resp. JE (M, w) such that for all J € Jre, all closed subgroups A < Diff, (X, 6) and
H < A x G and all k-tuples I = (l1,...,lx) of positive integers with k < m, the iso-
symmetric stratum Mﬁf(J ) is a smooth finite-dimensional manifold, whose dimension

near u € Mﬁfl{(,]) is given by .
dim MY (J) = mi!(coker D(; 9)) + m{! (ker D) = 2> " (nl; — 1).
i=1

If M isnot compact, we need to modify the statement, by adding a bit of bookkeep-
ing. Instead of allowing .J to vary within all tame resp. compatible G-equivariant
almost complex structures, we fix one equivariant almost complex structure Jg, and
only consider J which match Jg, away from a compact set.

Definition 4.2. Let U C M be open and Jg, € TG (M, w) resp. Jhix € T (M,w) be given.
We consider the spaces

TF (M, w3 U, Jp) := {J € TF (M,w) | J = Jgon M\ U}

and
TNM,w;U, Jg) = {J € T (M,w) | J= Jgcon M\ U},
both of which are complete metric spaces.
Following the argument of Section 2.3 mutatis mutandis shows that jTG (M, w; U, Jgy)
and JY(M,w; U, Jg) are contractible whenever 7 (M, w) resp. 7% (M, w) are. If M

is compact, we may (and often do) take U = M in this case, the choice of Jg, is of
course immaterial.
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This additional constraint is necessary for technical reasons. To apply the Baire
category theorem later, we must work in a complete metric space. The spaces J. (M, w)
and J%(M,w) may not be complete; even defining their topology is subtle in the
non-compact case. Endowing them with the subspace topology from C*(M,T M)
yields a complete space, but this is not the topology we want:! to prove that the
inclusion C,(End¢(TM, J)) < T'(Endc(TM, J)) of the Ce-space Ce(Endc(T'M, J))
(which we will define in Section 4.1) is continuous, we implicitly require the topol-
ogy to be defined using the C*-norm in local trivialisations. This is only equiva-
lent to the other definition if M is compact. (Compactness of M also ensures these
norms are independent of some auxiliary choices in their definition, which is also
desirable.)

The full statement of this chapter’s main result is the following.

Theorem 4.3 (Smoothness of iso-symmetric strata). Suppose 29 + m > 3 and G is
finite. For every open subset U C M with compact closure, there exist co-meagre subsets
Treg.comp C TG (M,w;U, Jhix) and Jreg tame C JE(M,w;U, Jfix) such that for all J €
Treg,comp 1€5p. J € Treg tame, for all closed subgroups A < Diff, (X,0) and H < A x G
and all k-tuples 1 = (11, . .., li) of positive integers with k < m, the iso-symmetric stratum
M;‘{I(J ) is a smooth finite-dimensional manifold. Its dimension near u € MﬁlH(J ) is
given as

k
dim Mﬁ{[(J) = mi'(coker Dy;g)) + mil (ker D,,) — 2nz l;.

i=1

Our proof uses the countability of the iso-symmetric strata: given fixed 4, G, U
and 1, we find a co-meagre subset Jreg (0f TG (M, w;U, Jgy) resp. TE (M, w;U, Jgy))
such that MZ‘,{{ (J) is a smooth manifold for all J € Jies. Moreover, we neglect
the constraint 1 on the critical points at first; adding this in the end only requires
standard adjustments (e.g. [Wen23d, Appendix A]). To summarize, the bulk of
this chapter is devoted to proving the following result.

Theorem 4.4. Let A < Diff, (X,0) and H < A x G be closed subgroups, suppose A and
G are finite. For each open subset U C M with compact closure, there exists a co-meagre
subset Jreq (of T4 (M,w;U, Jfix) resp. JE(M,w;U, Jfix)) such that for all J € Jreg, the
set /\/lz’j’H(J ) is a smooth finite-dimensional manifold, of dimension (near w)

dim Mﬁ{[(J) = mi'(coker Dy g)) + mil (ker D,,).

The proof of Theorem 4.4 follows a standard framework. The main idea is to
allow J to vary in a sufficiently large space of perturbations: the resulting universal
moduli space of holomorphic curves can be shown to be a smooth Banach manifold,
and applying the Sard—Smale theorem yields a co-meagre set Jreg as desired.

lin addition to this being an odd construction, as this completely ignores the additional structure on
T'M as a vector bundle over M
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Thus, we begin by constructing, for each fixed Jof € J&(M,w;U, Jgy) (resp.
Jret € T (M,w;U, Jgsy)), a suitable space J. of perturbations of J, through G-
equivariant tame resp. compatible almost complex structures. We use an equiv-
ariant version of the Floer C.-space; this is detailed in Section 4.1.

Next, we prove that the corresponding universal moduli space U*(Te) := {(u, J) |
u € Mg ’H(J ), J € Jc} is a smooth separable and metrisable Banach manifold. This

is the hardest and most technical part of the proof. We present the sets Mﬁ’H(J )
locally as the zero-set of a suitable section d;: B — & of a Banach space vector
bundle (which we will define in Section 4.3). We begin by finding such a local model
for the parametrised pre-strata MA(.J): one technical detail arising in this process is
handling the non-continuous dependence of Aut(3, j,0) on j. We do so via adapted
Teichmiiller slices in Section 4.2. In Section 4.3, we extend this to local models for
MA(J) and deduce smoothness of the universal moduli space in Section 4.4.

Finally, in Section 4.5 we apply the Sard-Smale theorem to conclude the existence
of a co-meagre subset Jre; C J.. As the topology on J. differs from the C} -
topology, a co-meagre subset of J, is not obviously co-meagre in J (M, w;U, Jgy).
Showing it is dense in J (M, w;U, Jgy) (resp. J¢(M,w;U, Jgy)) is easy; an argu-
ment due to Taubes [ Tau96, Section 5] allows upgrading this to a co-meagre subset.
This completes the proof of Theorem 4.4. We end the chapter by deducing Theo-
rem 4.3 from Theorem 4.4 (Section 4.6).

For the rest of this chapter, we shall make the following convention.

Convention. Fix an open subset &/ C M with compact closure and Jg € JE (M, w)
resp. Jix € J G(M ,w). In addition, recall the set-up we made in the previous chap-
ter: in particular, we fixed a closed connected genus g surface ¥ with an ordered
subset ¢ of m points.

4.1. Equivariant C.-space

Fix a G-equivariant tame resp. compatible almost complex structure J,f € TG (M, w;U, Jay)
resp. Jref € J G(M,w;U, Jgy). The aim of this section is to construct a space J. of
perturbations of J..f — which is suitably large to allow proving smoothness of the
universal moduli space.

A priori, the easiest option is to consider 7% (M, w; U, Jgy) (resp. T (M, w;U, Jgy))
with its natural C}X-topology: however, these spaces are not Banach manifolds as
they are not complete (for the same reasons that the space of smooth functions be-
tween two C* manifolds is not complete). Presumably, they still form a smooth
Fréchet manifold,? but this will not matter: we prefer working in a Banach space so
we can apply the implicit function theorem.

*Without equivariance, this is a statement commonly made in the field, usually without elaborating
on the details (what is a Fréchet manifold? what is a smooth map between Fréchet manifolds?
why is this space a Fréchet manifold; why are the transition maps smooth? These details are more
subtle than one might think [Wen23c]) nor providing a reference. In fact, the author is not aware
of any reference proving this, even in the classical case. In our particular setting, being a Fréchet
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There are two common strategies in the literature for creating a Banach manifold
setup. The first (employed e.g. in McDuff and Salamon’s textbook [MS12]) is to
work with almost complex structures of class C¥, i.e. replacing J G(M,w;U, Jgy)
with its completion in the C* topology: this means the moduli space M, ,,(C, J)
and our strata are (at best) C*-manifolds for large k, but not smooth. Carrying this
out entails having to count derivatives at each step to ensure sufficient smoothness,
which we would like to avoid.

Hence, we will follow a different strategy and replace 7. by a smaller space, con-
sisting of smooth objects only, with a finer topology making it a Banach manifold.
We use the Floer Cc-topology, introduced by Andreas Floer [Flo88]: this depends
on an auxiliary parameter e. As e is not canonical at all, some effort is required to
remove the mention of the Cc-space in final theorem statements.

Let us recall the standard set-up before adapting it to G-equivariant almost com-
plex structures. Our presentation follows the standard approach (e.g. [Wen23d,
Section 5.4] or the less densely written [Wen21] or [Bar24]).

Let E — M be a smooth vector bundle of finite rank. For each &, denote by C*(E)
the space of C*-sections of E; we will abbreviate I'(E) := C®(E). If U ¢ M is
open, we write C*(E; U) resp. I'(E; U) for all C* (resp. smooth) sections vanishing
outside of U.

Recall. Let E — M be a smooth vector bundle of finite rank; suppose M is compact.
Each choice of a connection on E and bundle metrics on E¥ and T'M induces a norm
on C*(E). Since M is compact, different choices yield equivalent norms.

Write £ := {e = (en)nen | € > 0,€, — 0} for the space of positive real sequences
converging to zero.>

Definition 4.5 (C.-space, compact case). Let £ — M be a smooth vector bundle of finite
rank, over a compact manifold M. For each e € E, the corresponding Cc-norm on I'(E) is
defined as

[e.e]

Inllc. == Z Elc||77||ck(E);
k

the Floer C.-space is given as
Ce(E) :={neT(E) | |nlle. < oo}

If M is not compact, we can use a small trick to still define the C.-space. For any
open subset U C M, observe that C.(E;U) := {n € C(E) | suppn C U}isa
closed subspace of C(E).

manifold is easy to define (the topology on the model space is still generated by a single norm),
but that does not prove smoothness of transition maps. In either case, we cannot use the implicit
function anyway.

3Beware: in later sections, £ (which is not bold) will denote a certain Banach space bundle. In most
sections, we use at most one of these symbols.
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Definition 4.6 (C.-space, non-compact case). Let U C M be an open subset with com-
pact closure; we do not assume M to be compact. For each e € €, we define

Ce(B;U) = {n € T(E) | suppn C U, nlm, € Ce(Elar) 5,
where Mo C M is any compact manifold (possibly with boundary) such that U C M.

Let us emphasize that the sequence ¢ = (¢,) is an auxiliary object, as is the C.-
space itself. As advertised, C.(E;U) is a separable Banach space.

Lemma 4.7 ([Wen20, Theorems B.2 and B.5]). Let E — M be a smooth vector bundle
of finite rank, and U C M be an open subset with compact closure. Then C(E;U) is a
separable Banach space. O

Which particular sections belong to C(E;U) is a bit mysterious: however, in any
case, Cc(E;U) is a large space of perturbations (in particular, infinite-dimensional):
for each point p € U, for well-chosen ¢, it contains bump functions with arbitrarily
small support around p.

Proposition 4.8 ([Wen20, Theorem B.6]). Let E — M be a smooth vector bundle of
finite rank, and U C M be an open subset with compact closure. The sequence € € £ can be
chosen such that

(1) C(E;U) is dense in the space of continuous sections vanishing outside U.

(2) Given any point p € U, a neighbourhood N, C U of p, a 6 > 0 and a continuous
section ng of E, there exist a section n € I'(E) and a smooth compactly supported
function 5: Np — [0, 1] such that

Bne C(E;U),  Blp)n(p) =no(p)  and [|n —mollcor)y < 0. O

It is not obvious whether a given smooth section n € I'(E) lies in C.(E;U). How-
ever, this is the wrong question to ask [Wen21]: instead of wondering whether a
givenn € I'(E) lies in the Cc-space, we should choose ¢ to ensure nn € C.(E;U). Later
in this chapter, we would like to ensure a given family of sections Q C I'(E) lies
in C(E;U). For countable families, this is possible by a diagonal argument. This
will suffice for our purposes, since all spaces of sections we are dealing with are
separable.

The starting point of this analysis is defining a pre-order on £, according to which
sequence “converges to 0 faster”.

Lemma/Definition 4.9 ([Wen21]). Fore, ¢ € € wewritee < € ifand only iflimsup , & <
oo. This defines a pre-order on E. O

Clearly, ¢ < € implies Co(E;U) C Ce(E;U): makes e converge to zero faster
enlarges the Cc-space. Slightly stronger, the following holds.
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Lemma 4.10. The natural inclusion Co(E;U) — T'(E) is continuous.*
If e < €, the natural inclusion Cy ((; E);U) — Ce(E;U) is continuous.

Proof. The first item follows since ¢ = (¢,) — 0 by definition. For the second item,
if € < € there exists a constant C' > 0 such that ¢,, < Ce;, for all sufficiently large n.
This implies continuity of the inclusion C (E;U) — Cc(E;U). O

The following simple lemma powers the observation we need.

Lemma 4.11 ([Wen23d, Lemma 5.29]). Every countable subset of € has a lower bound
w.r.t. the pre-order <.

Proof. This follows by a diagonal argument: if S = {¢(¥)} is a countable subset of £,
the sequence ¢ = (¢,) defined by ¢; := min(el(l), 61(2), e ,el(l)) is a lower bound for S:

(k)
for each k € N, by construction we have limsup, <2~ < 1. O

Lemma 4.12 ([Wen23d, Lemma 5.29; Bar24, Proposition 2.2.14]).
One has I'(E;U) = U.cg Cc(E). Moreover, given a countable set Q C I'(E;U) of smooth
sections, there exists a sequence € € £ decaying sufficiently fast so Q C C.(E;U).

Proof. Each smooth section € Q belongs to C, (E;U) for some ¢,: for instance,
we may choose €, := 27"(|n||cr(g). By Lemma 4.11, {¢; },co has some lower bound
n € &; for any such lower bound 7, indeed Q C C.(E;U). O

This completes our review of the classical proof. Adapting this to G-equivariant
almost complex structures is straightforward. Let £ — M be a smooth vector bun-
dle of finite rank, and &/ C M be an open subset with compact closure. Suppose a
group G acts smoothly on E, by bundle isomorphisms A,: £ — E over diffeomor-
phisms ¢,: M — M. Denote the space of G-equivariant sections by I'“(E).

Definition 4.13 (Equivariant C.-space). For ¢ € £, the equivariant C.-space C (E;U)
is defined as

CY(E;U) := C(E;U)NTY(E)
= {n e C(E;U) | nis G-equivariant: Vg € G, Agon =mno ¢g4}.

The equivariant C.-space has analogous properties to its classical counterpart.
Proposition 4.14 (Properties of C%(E;U)). Let ¢ € & be arbitrary.

(1) CE(E;U) isaseparable Banach space, and the natural inclusion CE (E;U) — T'Y(E)
is continuous.

(2) Ife < €, the natural inclusion CS (E;U) — CE(E;U) is continuous.

*In this statement, we implicitly use that the topology on T'( E) is equivalently given by bundle norms
constructed from local trivialisations.
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(3) Given a countable set Q C T'%(E;U) of smooth G-equivariant sections, there exists
a sequence € € € decaying sufficiently fast so @ C CY(E;U).

(4) If G is compact, C%(E;U) contains bump functions with arbitrarily small support
around each point in U: there exists a° sequence ¢ € E such that

e CY(E;U) is dense in (C°)°(E;U) and

o forallp € U, 6 > 0,9 € (C°)Y(E) and any G-invariant neighbourhood
N, C U of p, there exist a smooth equivariant section n € T(E) and a smooth
G-invariant compactly supported function 3: N, — [0, 1] such that

BneCE(E;U)  and  PBn(p) =mo(p) and  |n—molco < 6.

Proof. Using the previous propositions, many proofs are straightforward. Items (2)
and (3) follow from Lemmas 4.10 and 4.12 by restriction. For Item (1), by Lemma 4.7
it suffices to show that C&(E;U) C C.(E;U) is a closed subspace. Let 7; be a se-
quence in C¢(E;U) such that n; — 1 in Cc(E;U). Forany g € G and p € M, we
compute

oc(04(9) = Him 1;(64(p)) = lim A, 0 1,(p) = Ag lim 0;(p) = Agioc(p)

using that n; — 1 in Ce(E;U) also implies C£° -convergence. Hence, 1o, € CE(E;U).
Item (4) needs some technical work. Let p € U, 6 > 0, a G-invariant neighbour-
hood N, C U of p and a G-equivariant section 7y be given. Choose a G-invariant
compactly supported smooth function 5: N, — [0, 1] with 5(p) = 1 and supp 3 C
im(¢).¢
It remains to find a smooth G-equivariant section 7 sufficiently close to 779. Choose
a smooth compactly supported function a: D" — [0, 1] with (0) = 1 and an em-
bedding ¢: D" — N, which maps 0 to p. This embedding will allow us to rescale
a around p, producing functions with arbitrarily small support.
More precisely, for each r € (0, 1), consider the “rescaled” function

-1 . .
ar: Np = [0,1], 0, (q) == {a(rqﬁ (@) ifqe HTWS .
0 otherwise
Observe that () converges to the function f = 1asr — 0.
The functions «, need not be G-invariant, but we can turn them into G-invariant
functions. Since G is compact, we can “average” smooth functions f: NV, — Rusing
the Haar measure on G: the average of f is the smooth function z ~ |, o flg-x)dg,

>This sequence is not special: any ¢ < ¢ has the same property.

SThe existence of /3 is a standard fact: for instance, extend {im ¢} to a G-invariant locally finite open
cover of M (where ¢ is defined below). Choose a G-invariant partition of unity subordinate to that
cover, and pick the function corresponding to im ¢. A G-invariant partition of unity exists since G
acts smoothly and properly on M [DKO00, Lemma 2.5.1].
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where dg is the Haar measure on G. Clearly, averaging is continuous and each
averaged function is G-invariant. Let 3, denote the function obtained by averaging
a, over GG and rescaling so that 3,(0) = 1. Since f = 1 is G-invariant, we deduce
B — f=1lasr — 0.

For each r € (0, 1), consider the G-equivariant section 7, defined by

B(@)m0 g e€im(e)
nr(q) = {

0 otherwise;

we have 7,(p) = no(p) by construction. For each » > 0, we can choose ¢ € £ so
n- € Co(E;U). Observe that 1, — 1y in C° as 7 — 0. Hence, for r > 0 sufficiently
large, we have ||, — no||co < ¢, and we may choose 7 := 7, for one such r. O

Finally, let us describe the actual construction of 7. from the Cc-space: this uses
the exponential map

FG(EndC(TMv Jref)) — jG(M7w;u7 JﬁX)7
1 1
Yo Jy o= (id 45 JoY) Jo(id +§J0Y)*1 (4.1)

from Chapter 2 on the bundle E := (T'M, Jif). We restrict the domain to ensure
the exponential map is a homeomorphism. The definition will be differ in the tame
and compatible cases.

Lemma 4.15. The map (4.1) is a homeomorphism from a C°-small neighbourhood of 0 in
I (Endc(TM, Jryp): U) to a neighbourhood of Jyep in T (M, w;U, Jyy). O

Fix § > 0 sufficiently small so (4.1) restricted to all Y with ||Y||co < J is a home-
omorphism to its image. Then, our space J. is (in the tame case) given as

Je =T = {Jy | Y € CE(Bnde(TM, Jret);U), ||Y [lco < 6}

For compatible almost complex structures, we need to additionally demand that Y
be symmetric w.r.t. w(-, Jo-), and instead define
Jei= JUC = {Jy | Y € CE(Ende(TM, Jret)iU). | lleo < 8;w(Y, ) +w(Y+) = 0}.
Lemma 4.16. The space J. is a smooth, separable metrizable Banach manifold (with one
chart) which embeds continuously into J& (M, w;U, Jhix) resp. TG (M, w;U, Jfix)-
Proof. J. has a single Banach manifold chart, the restriction of (2.7). Since the
space CY(Endc(TM, Jeeg);U) (resp. {Y € CE(Endc(TM, Jeeg);U) | w(Y-,-) +
w(-,Y:) = 0} in the compatible case) is a separable metrizable Banach manifold,
so is J.. Continuous inclusion into J¢ (M, w;U, Jg,) resp. T (M, w; U, Jgy) follows
from Lemma 4.10. O

The tangent spaces of J; are tricky to describe in general, but the tangent space
at Jy is straightforward.

Observation 4.17. The tangent space T, J- is CE(Endc(TM, Jyef);U) in the tame
case resp. {Y € CY(Endc(TM, Juer);U) | w(-,Y:) + w(Y-,-)} in the compatible
case. O
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4.2. Adapted Teichmiiller slices

As the next step for setting up the universal moduli space, we describe the varia-
tion of j among parametrised holomorphic curves (X, j, 6, u): this is an important
ingredient for the local model of MAH(]). In the classical setting (just for curves in
M(J)), this is captured by so-called Teichmiiller slices. We review this construction
and adapt it to the pre-strata MA().

4.2.1. Review: Teichmiiller slices

Let us ignore the group A for a moment, and consider how j varies locally within
the moduli space M(.J). The variation can be described using a Teichmiiller slice.
This is standard; all proofs in this section can be found in [Wen15, §4.2]. The word
“Teichmiiller” comes from a relation to Teichmiiller space; let us explain that first.

Fact. M, ,,, ishomeomorphic to the quotient M (3, §) := J (3, 6)/ Diff (X, 6), where
J (%) is the space of smooth complex structures on ¥ and Diff, (¥, ) consists of all
orientation-preserving diffeomorphisms ¢ of ¥ with ¢(#) = 6 as ordered sets.  [J

Recall. The Teichmiiller space T (X, 6) of (X, 6) is the quotient 7 (X)/ Diff (X, #), where
Diffy (3, 8) = {¢ € Diff (3,0) | ¢ is homotopic to id}.

The mapping class group of (3, 0) is M (3, §) = Diff, (3, 8)/ Diffy(X, #). In particular,
we have M(X,0) = T(X,0)/M(%,0).

In fact, this description is used to show M, ,, is a smooth orbifold: the Teich-
miiller space is a smooth finite-dimensional manifold, the mapping class group is
a discrete group, and (in the stable case) acts properly with finite stabiliser. We
are less interested in the fact that Teichmiiller space is a manifold than we are in its
local charts: these are provided by Teichmiiller slices, which we will adapt for our
purposes.

To construct Teichmdiller slices, we exhibit Aut(X, j, ) locally as the zero set of a
suitable section of a Banach space bundle.

Recall (e.g. [Wenl5, §4.2]). Fixanintegerp > 2and j € J(X). Consider the Banach
manifold By = {¢ € WIP(Z,X) | ¢|g = id}, and the Banach space bundle & — By
with fibres £, = LP(Homc (7%, ¢*TY)). The non-linear operator

0j: By = E,¢9—dp+jodpoj

is a smooth section of €.

Observe that zeroes of 9; are holomorphic maps on (¥, j) which fix ¢: in particu-
lar, a neighbourhood of id in Ej_ ! (0) gives alocal description of Aut(%, j, §). Anellip-
tic regularity argument” shows that the linearisation Dy; g) := D, (id): I/V@1 P(TY) —

"which is standard, or, to quote an old common saying, “well-known to those who know it well”
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LP(Endc(TY)) of 9; atid is a Fredholm operator®, in particular has finite-dimensional
co-kernel.

Definition 4.18. A Teichmdiller slice through j € J(X) is an injective smooth map O —
J(X), T — jrsuchthat jo = j, where O is a neighbourhood of 0 in some finite-dimensional
Euclidean space and im D; gy ® T;T = LP(Endc(TY)), where

T;T = {0tjr(p)lt=0 : 7(t) € O smooth path through 7(0) = 0}

is the “tangent space” to the image T = {j; }reo. In addition, we ask that O and T;T have
the same dimension.

Remark 4.19. The words “smooth map” deserve explanation: after all, we saw in
Section 4.1 that 7 (X) is not a Banach manifold, so the map O — J(X) is not a smooth
map between Banach manifolds. Instead, it is a smooth map in the sense of smooth
families, i.e. 7 defines a family of endomorphisms {j(,.) € End(T.%)} (- .)coxx
which depends smoothly on (7, z) (as measured in a smooth atlas of ). In other
words, 7 defines a smooth section of the bundle £ = TY — O x X with fibres
E(r) = T.5.

We generally identify a Teichmdiiller slice with its image 7 = {j-}rco0 C J(X).
Intuitively, we may consider 7 as a finite-dimensional smooth embedded subman-
ifold of J(X). The co-dimension of the image of D; ¢ is independent of p; again,
this is a standard instance of elliptic regularity results.

Teichmiiller slices exist in abundance: they can be explicitly constructed by hand,
and even make them Aut(Y, j, f)-invariant (as a set).

Lemma4.20 (e.g. [Wen15, Lemma4.3.4]). Forany j € J(X), thereexists an Aut(X, j, 6)-
invariant (as a set) Teichmiiller slice T through j. O

Let us sketch the main idea of the proof, as adapted Teichmiiller slices use the
same argument. We use an exponential map very similar to Equation (2.7) in Sec-
tion 2.3.

Sketch of proof. Letj € J(¥)bearbitrary. Since the linearisation D; g): W91 P(TY) —
LP(Endc(TY)) is a Fredholm operator, we may choose a finite-dimensional comple-
ment C' C LP(End¢(TX)) of im D 9)- By approximation, we may assume C consists
of smooth sections. Given a neighbourhood O of 0 in C, consider the map

. L. 1.
O = J()y =iy =1+ 5)i(1+ 5iy) " (42)
Shrinking O, we can ensure this map is injective; then 7 := {j: },co is a Teichmdiller
slice through j. To ensure 7 is Aut(X, j, #)-invariant, simply choose a complement
C which is Aut(3, j, §)-invariant. O

8The definition of Fredholm operators is recalled in Section 4.5.
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Definition 4.21. A Teichmiiller slice T is called good if it obtained as in the above proof:
for some neighbourhood of 0 in a finite-dimensional subspace C C LP(End¢(TX)), we have
T = {jr }reo, with j; being determined by (4.2).

Teichmdiller slices give local charts for 7 (X, #), via the quotient projection my: J(X) —
T(X,0),j — [j] to the Teichmiiller space of (X, ).

Lemma 4.22 ([Wen15, Theorem 4.2.14]). If T is a Teichmiiller slice through j € J (%),
the quotient projection mo|1: T — T (£, 0) is a local diffeomorphism near j. O

This is closely related to a property we need: Teichmiiller slices capture the local
variation of the complex structure j within M(J). In other words, locally we can
restrict attention to complex structures varying within a Teichmiiller slice.

Proposition 4.23 ([Wenl5, pp. 162+163]). Let j € J(X) and T be an Aut(X, j,0)-
invariant Teichmiiller slice through jo. Any holomorphic curve [(jo,uo)] € Mgm(C,J)
has a neighbourhood U C Mg, (C, J) such that each [(%, j,0,u)] € U has a reparametri-
sation (X, ¢*j,0,u o ¢) with ¢*j € T. O

4.2.2. Adapted Teichmiiller slices

When we consider holomorphic curves in the parametrised pre-stratum MA(), all
complex structures on the domain have automorphism group conjugate to A. Clas-
sical Teichmiiller slices do not capture this feature. Instead, we should take a Teich-
miiller slice consisting only of complex structures with that automorphism group.

Definition 4.24. Let A < Diff (X, 0) be a closed subgroup and j € J(X) such that
Aut(X, j,0) = A. An A-adapted Teichmiiller slice through j is an injective smooth map
O — J(X), T~ jr, where O is a neighbourhood of 0 in some finite-dimensional Euclidean
space, such that jo = j, Aut(%, j-, 0) = A for all T and D(jvg)(le’fé) ®T;T = LY, where

LP = {n € L’(Endc(TY)) | ¢*n=mnae. forall ¢ € A}

is the set of A-invariant sections, and le”é (T%) C I/V(,1 P(TX) is the set of all A-invariant
vector fields. The space T T is defined as in Definition 4.18. Moreover, we ask that O and
T;T have the same dimension.

We generally identify an adapted Teichmiiller slice with its image 7 = {j; }rco C
J(X). For the purposes of intuition only, we may think of 7 as a finite-dimensional
embedded submanifold of J(X). Note that if A = Aut(3,7,6) is trivial, an A-
adapted Teichmiiller slice through j is precisely an ordinary Teichmdiller slice.

The complement condition merits some scrutiny: is it well-defined and indepen-
dent of p? Because of smoothness, T;7 C LP(Endc(TY)) for all p; the complement
condition is independent of the choice of p, for the same reasons as for ordinary
Teichmdiller slices. It remains to verify that the tangent space 7;7 and the image of
the linearisation D; ) consist of A-invariant sections.
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Lemma 4.25. If T = {j; }reco C J(X) is a smooth family with A C Aut(%, j-,0) for all
T, we have T; T C LY.

Proof. This is a simple computation; we omit the details. O

Lemma 4.26. Suppose j € J(X) is A-invariant. Then D; o) is A-equivariant; in particu-
lar, D(M)(Wj"’é(TE)) C L¥ is A-invariant.

Proof. 1t suffices to show the A-equivariance. This is also a simple computation,
whose details we omit for now. O

A-adapted Teichmiiller slices exist in abundance. Intuitively, their construction is
very easy: choose any A-invariant Teichmiiller slice and consider the fixed point set
of A. For good Teichmtdiller slices, this can be made rigorous.

Proposition 4.27. For any j € J(X) with Aut(X, j,0) = A, there exists an A-adapted
Teichmiiller slice through j.

Proof. Let j € J(X) with Aut(, j,0) = A be arbitrary. Using Lemma 4.20, choose
a good A-invariant Teichmiiller slice 7 through j. We show that the fixed point set
Fix(A) C T is an A-adapted Teichmiiller slice through j. By definition, C' := T;7T
is a complement of im(D;g)) in L? (Endc(TY)), consisting of smooth sections (as
7T consists of smooth complex structures). As 7T is good, it is parametrised by a
neighbourhood O C C of 0. Observe that C4 := {y € C' | yis A-invariant} is an
A-invariant complement of Dy; g (WP in LF,.

Now, restricting the exponential map (4.2) to O := O N C* defines an A-adapted
Teichmiiller slice through j. By construction, each j, for 7 € 04 is A-invariant.
Shrinking O further if necessary, we can assume Aut(3, j,,6) is conjugate to a sub-
group of A for all j, (by Corollary 4.29 below), yielding Aut(X, j,,) = A. This
completes the proof. O

In the above proof, we have used the following result.

Lemma 4.28. Every jo € J(X) has a neighbourhood U C J(X) such that for all j € U,
the automorphism group Aut(X, j, 0) is conjugate to a subgroup of Aut(%, jo, 6).

Lemma 4.28 follows from a more general fact: we use that 7 (X) projects into the
moduli space M, ,,, of pointed Riemann surface, which is a global quotient orbifold.

Proof of Lemma 4.28. Recall (e.g. [Wenl5, p. 155, Theorem 4.2.10]) that the moduli
space M ,,, ishomeomorphic to the quotient orbifold M(X%, ) = J(X)/ Diff (X, 6),
with isotropy group G{;) = Aut(%, j, 0).

Consider the canonical projection 7: J(X) — M, . By Lemma 3.16, [jo] has a
neighbourhood U in M, », such that G/;; is conjugate to a subgroup of Gy, for all
[j] € U. Since G|;) = Aut(X, j,0), by continuity the neighbourhood U = =~ !(U) of
J has the desired property. O
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Corollary 4.29. Let P be a manifold and v: P — J(X) continuous. Each py € P has a
neighbourhood O such that for all p € O the automorphism group Aut(X, jy, 0) is conjugate
to a subgroup of Aut(3, jp,,0). O

We conclude this subsection with a formula for the dimension of A-adapted Te-
ichmdiller slices — which is one ingredient for computing the dimension of the iso-
symmetric strata.

Observe that the kernel and cokernel of Dy g): W91 P(TY) — LP(Endc(TY)) are
A-invariant. Since D; g) is a Fredholm operator, its kernel and cokernel define finite-
dimensional A-representations.

Lemma 4.30. The dimension of an A-adapted Teichmiiller slice through j € J(X)4 is
dim T;7 = m4(coker D; g)), the multiplicity of the trivial A-representation in coker D; g).

Proof. Since D; g) is A-equivariant, it maps Wj"f;(TE) to L;‘, thus restricts (and co-
restricts) to a bounded linear operator D4 := D(A}.ﬁ): szg(TE) — L%. An easy
computation’ shows ker D4 = ker D N Wfll”’é and coker D = coker Do) N LY.
In particular, DA is also Fredholm. By definition, im DA T;T = LZ, SO

dim T;7 = dim coker D* = dim(coker D(; gy N L%,).

The right hand side consists precisely of all A-invariant elements in coker D; g), i.e.
is the fixed subspace under the A-action. But the dimension of that fixed subspace
is precisely the multiplicity of the trivial A-representation on coker D 9. O

4.2.3. Adapted Teichmiiller slices and Teichmiiller space

At the end of this section, we want to prove that adapted Teichmiiller slices capture

the variation of the complex structures on ¥ within MVA(J ). The precise statement
is the following.

Proposition 4.31. Let (X, jo,0) € Mﬁm; let T be an A-adapted Teichmiiller slice through

Jo. Any holomorphic curve (jo, ug) € MA(J) has a neighbourhood U C M(J) such that
each (%,7,0,u) € UN MA(J) has a reparametrisation (3, ¢*j, 0y, u o ¢) with ¢*j € T.

The astute reader will notice the similarities to Proposition 4.23, and may wonder
if there is a more direct proof, using the construction of adapted Teichmidiller slices.
Unfortunately, the situation is not as simple. If j € J(X) satisfies Aut(X, j,0) = A
and 7 is a good Teichmiiller slice through j, consider the corresponding A-adapted
Teichmiiller slice 74 = Fix(4) C T. For j' € Mvﬁm sufficiently close to j, we need

to show that ¢*5’ € T for some ¢ € Diff, (,6). By definition of M2

o:ms We know

*Those reader who wish to see more detail may consult the proof of Lemma 4.82, which explains
this step more thoroughly.
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Aut(X, ¢*5',0) = A for some ¢ € Diff, (X, 6). By Proposition 4.23, we also know
q?ﬁ*j/ e T forsome ¢ € Diff (3, 0). If ¢ = ¢, we could deduce ¢*5’ € Fix(A)NT =T,
— but in general, there is no reason this should hold.

Instead, we repeat the classical proof mutatis mutandis. The first step is to ob-
serve that adapted Teichmiiller slices provide charts for corresponding strata of Te-
ichmiiller space, and the projection of the adapted slice to the corresponding stra-
tum is a local diffeomorphism. To begin, observe that Teichmiiller space has a strat-
ification corresponding to adapted Teichmiiller strata.

Definition 4.32. For a closed subgroup A < Diff, (3, 8), the corresponding Teichmiiller
space stratum is the orbit type T (X,0)4 of T(X)? under the Diffy(X, 0)-action. More
explicitly,

TE0)% = {l] € T(3.0) | Aut(Z,5,0) ~ A} C T(2,0),
where A ~ A’ denotes A and A’ being conjugate by an element of Diffy (3, 9).
These strata are well-defined.

Lemma 4.33. Let A < Diff, (3,0) and j € J(X) be arbitrary. We have [j] € T(%,0)4
if and only if Aut(X, ¢*j,0) = A for some ¢ € Diffy(X, 0).

Proof. This is an easy computation, using Lemma 3.24 from the previous chapter.
O

Consider the quotient projection mg: J(3) — T(X,0),j — [j]. We can equiv-
alently describe the Teichmiiller stratum via this projection map: for each closed
subgroup A < Diff, (3, 6), consider the corresponding orbit type J(£)* C J(%)
of complex structures (w.r.t. the Diffy(X, #)-action by ¢ - j := ¢*j). In particular,
J ()4 is Diffy (3, §)-invariant.

Corollary 4.34. The Teichmiiller stratum T (%, 0)* is the image of 7 () under the quo-
tient projection mg.

Proof. The inclusion “C” is obvious: j € J(X)4 implies [j] € T(%,0)4.
“2"1f[j] € T(X,0)4, Lemma 4.33 implies Aut(Y, ¢*j, ) = A forsome ¢ € Diffo(3, 6).
Thus, ¢*j € J(X)4 by definition. Since [j] = [¢*;] we deduce [j] € im(m). O

Recall that the transversality property of Teichmiiller slices has an important con-
sequence for the quotient projection: if 7 is any Teichmiiller slice, the restriction
mol7: T — T(X,0) of the quotient projection is a local diffeomorphism. Adapted
Teichmiiller slices enjoy an analogous property, which features Teichmiiller strata.

Proposition 4.35. Let A < Diff (%, 0) be arbitrary. Then T(X,0)? is a submanifold of
T (%, 6). Moreover, for any j € J(X)4 and any A-adapted Teichmiiller slice T through j,
the restricted quotient projection mg|7: T — T (X, 0)* is a local diffeomorphism near j.
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Proof of Proposition 4.35. Observe that g is well-defined: by definition, 7 C J(X)4,
hence Corollary 4.34 implies im(mg) C T(X,6)". To prove that 7y is a local dif-
feomorphism near j, we consider the cases of spheres with few marked points, an
unmarked torus and stable surfaces separately.

For spheres with m < 3 marked points, the uniformisation theorem implies 7 (S?, ) =
{pt} and M,,, = {pt}. A Teichmiiller slice is just a point: J(X) = Diff(%,0)
means D(; g = LP(End¢(TY)), so T = {i} has the desired properties. This slice is
A-adapted as every j has the same automorphism group. In this case, 7y is a map
of singleton sets, hence vacuously a diffeomorphism.

In the stable case, the classical proof applies mutatis mutandis: intuitively, the tan-
gent space to a Diffy (3, #)-orbit is the image im D ; 4); hence the transversality condi-
tion for the tangent space T;7 implies the local diffeomorphism property. Making
this intuition rigorous works exactly as in the classical case, restricting to Li and
J ()4, More precisely, the argument is the following. We sketch the adapted de-
tails; all omitted parts are exactly as in the classical case (e.g. [Wen15, pp. 162+163]).

e For k € N> and p > 2, we consider the spaces J*? (%) of W*P-smooth com-
plex structures on 2.1 For k > 2, consider the space Dj” c W, (%,%) of
maps ¢ € WFP(X, 22) which are C''-smooth diffeomorphisms and fix 6.

e For any closed subgroup A < Diff (3, ), consider the subspace jj’p (2) =
{j € JFP(Z) : Aut(%,j,0) ~ A}, where ~ denotes conjugation by a C-
smooth diffeomorphism.

e Choose jo € J(¥) with Aut(X,j,0) = A and an A-adapted Teichmiiller slice
T C J(¥) through jo. Then the tangent space Tj,7 C T'(Endc(TY)) is
complementary to the image of Dj, ): WEP(TS) — WE P (Endc(TY)) for
each k.

e Sinceevery j € T is smooth, each j-orbit under the D " *-action is in 757 (2).

e Hence, F: Dgﬂ’p x T — jj’p(Z‘), (¢,7) +— ¢*j is a well-defined map; F is
smooth with derivative

dF(id, jo): Wy TP(TS) @ Tj, T — WP (Endc(TE)), (X, ) = joDjo.n X + y.

e dF is an isomorphism: it is linear by definition, surjective by the transversal-
ity condition, and injective by the transversality condition and injectivity of
D;y.6) (as we are in the stable case).

e Hence, by the implicit function theorem, F' is a smooth diffeomorphism be-
tween neighbourhoods of (id, jo) € D§+1’p x T and jo € j:’p (2).

WOk P s a Sobolev space, of bundle sections with k& weak derivatives in L. We refer the reader to
e.g. [Wen15, §3.1] for a brief treatment sufficient for our purposes, and to e.g. [AF03] for a more
detailed discussion from an analyst’s point of view.
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e Ty is surjective near jo: every j € J(X)“ in some neighbourhood of jy lies in
im(F).

e injectivity of my proceeds as in the classical case: we use properness of the
J (X)-action

e smoothness of transition maps also proceeds as in the classical case

The only remaining case is (g, m) = (1,0), a torus without marked points. This case
will follow from Lemmas 4.36 and 4.38 below. ]

Lemma 4.36. Let (X,0) be a pointed Riemann surface, A a compact Lie group and jo €
J (D)4, Suppose Ty, is an A-adapted Teichmiiller slice through jo such that the quotient
projection ¢: Tyg — TA(X,0) is a local diffeomorphism near jo; let T be any A-adapted
Teichmiiller slice through jo. Then the quotient projection T — TA(%,0) is also a local
diffeomorphism near jo.

-1
Proof. It suffices to show that the composition ®: 7 — T(X,0) 7, Tsta is a local
diffeomorphism near jo. The map @ is the composition of two smooth maps, hence
smooth. Note that ®(jy) = jo.

Claim 1. The linearisation D®(jo): Tj,T — T, Tsta is an isomorphism.

Proof. By definition, we have Tj, 7 @ im D(; gy = L and T}, Tqq ® im D(; 9y = L%,
hence the quotient map j — [j] provides isomorphisms 7,7 — coker D,y and
T, Tsta — coker Dy; 9. We show that coker Dy gy = T}, T D%O) Tj, Tsta = coker Dy g
is the identity.

Let y = Oj-(1)li=0 € T}, T be arbitrary. For each t, we have ®(j,«)) = jz(+), where
€ Tsa such that [j.)] = [jzp] in T(X,0). By definition of 7(X,6), that means
Jz(t) = ®%Jjr(¢) for suitable ¢; € Diff(%, 0) with ¢y = id. Plugging in, we obtain

D®(jo)y = P (jrr))lt=0 = Ofz()lt=0 = Ot ®; Jr(1) lt=0-

We need to show [y] = [D®(jo)y] in coker Dy; gy, i.e. D®(jo)y — y € im D;g).

Indeed, consider the map F': Dgﬂ’p x T — Jj’p (2),(¢,7) — ¢*j from the stable
case (see there for details).!! F is smooth with derivative

dF(id, jo): Wy ™ P(T'S) ® Tj, T — Wi (Endc(TE)), (X, y) = joDgjo.0 X + y-

In particular, we have D®(jo)y = i F(é1, j7(1))[t=0 = dF(id, jo) (X, y) = joD(jo,0) X+
y, where we denote X := ;¢ |1—o. As Dy is complex-linear, its image is invariant
under multiplication with jo and we have D®(jo)y — y = joD(j, 09X € im Dy, g as
desired.

By the implicit function theorem, ® is a local diffeomorphism near jo. O

Note that defining or differentiating F' does not use stability.
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Remark 4.37. The same result holds for classical Teichmdiller slices; the exact same
proof works mutatis mutandis.

Lemma 4.38. For all A < Aut(T?,j) and all j € J(T?)4, there exists an A-adapted
Teichmiiller slice T through j such that the quotient projection T — T(X%,0)% is a local
diffeomorphism near j.

On an unmarked torus, the operator D; 9) is no longer injective, nor can we rely
on the uniformisation theorem. However, we can compute the operator explicitly,
and construct an adapted Teichmidiller slice by hand. To that end, let us recall some
facts about complex structures on the unmarked torus.

Recall ([Wen15, §4.2.3]). The Teichmiiller space on an unmarked torus is 7 (T?,) =
{l7r]: A € H} = H, where j) is (the projection of) the unique translation-invariant
complex structure on C which sends 1 — A (and A to —1).

Consider the natural Cauchy-Riemann operator D;: W?(TT?) — LP(Endc(T'T?))
on (TT?,j). The natural identification of (TT?,j) with T? x C yields a complex
trivialisation of (7T, j); under this identification, D; corresponds to 8 = 95 +
i0y: WHP(T2,C) — LP(T?,C). Its formal adjoint is 0 = 95 — i9;: WHP(T?,C) —
LP(T?,C).

In our setting, constructing an adapted Teichmiiller slice is simplified greatly as
there are only two possibilities for the co-kernel. As above, we identify coker D;
with a subspace of LP(T?,C).

Lemma 4.39. Either coker D; is trivial, or coker D; = C.
In both cases, coker D; = {f € L} (T?,C): f = const.}, where A acts on LF(T?,C) by
¢ f=E&(@) " f(p)E, where &: T? — C* is the principal part of de.

Proof. Because j is A-invariant, the operator D; maps to A-invariant sections, i.e.
into L (Endc(TT?, §)). Under the identification above, D; corresponds to the map
9: Whp(T?,C) — L (T?,C). Here Aactson LP(T?,C) by ¢- f = £(¢) ™! f(¢)¢, where
¢: T2 — C* is the principal part of d¢. As ¢ € A is holomorphic by definition, its
differential d¢ is C-linear. As each tangent space 7, T? is complex 1-dimensional,
the above is just multiplication of C-valued functions.'?

The operator 9 still has formal adjoint & (we simply need to check fewer condi-
tions); the formal adjoint is now defined on Wi’p (T2, C). This identification and the
standard fact coker D; = ker D imply coker D; = ker 0. Observe that 9 f = 0if and
only if f is constant, thus coker D; corresponds to the space of A-invariant constant
functions.

Recall that f € LP(T?,C) is A-invariant if and only if for all ¢ € A (with £: T? —
C* being the principal part of d¢), we have £(¢) "L f(¢)¢ = f. If f is constant, this
is independent of the value of f: the zero function f = 0 is always A-invariant; for

2This is a subtle detail: if ¢ were any smooth map, the linearisation d¢ were only real linear: hence,
A-invariance of f would be an equation of the form AvB = v, for real 2 x 2-matrices A and B and
v being the components of f in a real basis.
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f=ceC*wehave (o) L f(9) = f & £(p) te = ¢ & £(¢p)~1¢ = 1. Thus, we
either have kerd = {f =0} orkerd = {f € L?(T?,C) : f = const.} = C. O

To summarise: a priori, the subspace of A-invariant constant functions could also
have real dimension one. In our case, this cannot happen: complex linearity implies
the real dimension is even, hence zero or two.

Proof of Lemma 4.38. Let A < Aut(T?, j)and j € J(T?)* be arbitrary. By Lemma4.39,
it suffices to consider two cases. In the first case, coker D; is trivial. This implies the
trivial slice {j} is A-adapted. It is parametrised by the 0-dimensional Euclidean
space {0}, its tangent space is trivial and im D; = L%,. The quotient projection is a
map of singleton sets, hence vacuously a diffeomorphism.

Assume coker D; is non-trivial, then Lemma 4.39 shows coker D; = C. This
implies L?(Endc(TT?,j)) = L%, ie., every section in LP(Endc(T?,j)) is in fact
A-invariant: we show that D;: WP(Endc(T?,j)) — LP(Endc(T?,j)) and its co-
restriction to L”) have the same co-kernel. Write C := coker D; C LP(Endc(T?, 5))
and C’ := coker D; C L*. We always have C' C C. By hypothesis, we also have
C'" = C; since always C = C, we conclude that C' = C’.

Choose an A-adapted Teichmdiller slice 7 through j (using Proposition 4.27).
Then, im D; & 7,7 = LY = LP(Endc(TT?,)), so T is in fact a Teichmiiller slice.
Thus, by Lemma 4.22, the projection 7 — T (T?) is a local diffeomorphism near ;.
Since 7 is A-adapted, we obtain im 7" C 7 (T?)# and the claim follows. O

4.2.4. Local variation property

Teichmiiller slices capture the variation of the complex structure j as u varies within
the moduli space M(J). As announced, A-adapted Teichmiiller slices enjoy an anal-
ogous variation property within the pre-strata M (.J).

Proposition 4.40. Let (%, jo,0) € Mv;m; let T be an A-adapted Teichmiiller slice through
Jo. Any holomorphic curve (jo, ug) € MA(J) has a neighbourhood U C M(J) such that
each (%, ,0,u) € U N MA(J) has a reparametrisation (X, ¢* 3, 0y, u o ¢) with ¢*j € T.

The proof is essentially the same as in the classical case, with one small excep-
tion. In the classical case, the proof requires constructing an Aut(3, j, #)-invariant
Teichmiiller slice. For adapted Teichmidiller slices, this invariance is automatic.

Lemma 4.41. Suppose j € J(X) with Aut(%, j, 0) = A. Then any A-adapted Teichmiiller
slice T through j is A-invariant, both as a set and point-wise.

Proof. Let T be any A-adapted Teichmiiller slice through j; let j; € T be arbitrary.
Then j; is A-invariant by definition of 7. In particular, 7 is A-invariant as a set. []

We need one final observation for the proof.

Lemma 4.42. If g > 1 or 29 + 3 > 3, the action of Diffy(X, 0y) on J () is free.
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Proof sketch. If (X, 0) is stable, this is a short argument using the Lefschetz fixed
point theorem (e.g. [ Wen15, Lemma 4.2.5]). For the unmarked torus, the argument
is contained in e.g. [Wen15, Proposition 4.2.17]: if ¢*j = j, without loss of generality
we may assume j = j, for some A € H. Then ¢ is a biholomorphic map of (T2, j,).
Lifting to a translation-invariant automorphism of C and composing with a suitable
translation, we obtain a holomorphic automorphism which fixes 0, 1 and A, hence
is the identity. O

Proof of Proposition 4.40. If g = 0 and m < 2, the uniformisation theorem shows that
(3, ) can be reparametrised as (S?,1), hence so can (X, jy). Hence, we may take
U = M(J) in this case.

Assume g > 1 orm > 3. Then the action of Diffy (X, fy) on J () is proper [ Wen15,
Lemma 4.2.8]. As J (%)% is Diffy(3, fp)-invariant, the action restricts to a proper
action on J (X). It suffices to consider a sequence of curves: if the statement is false,
there exists a sequence of curves (j;.,v;) converging to (jo,uo) without any such
reparametrisation; running the argument of the proof will yield a contradiction.

Suppose (2, ji, 0, u;) € MVA(J) is a sequence with j; — jo and u; — up. Then,
each jj, lies in the stratum [7(X)#, hence (by Corollary 4.34) each [j;] lies in the
Teichmiiller stratum 7(3, 6)# and [j] — [j] in T(%, 6)*. Using Lemma 3.21, choose
diffeomorphisms ¢, € Diffy(3, ) such that ¢} ji, is a sequence in 7" approaching jo.

By properness of the Diffy (X, 6p)-action on 7 (3)4, the sequence (¢;) has a subse-
quence converging to an element ¢ € Aut(X, jo, 0p) N Diffy(X, 6p). Since the action
of Diffy(X,0y) on J(X) is free (Lemma 4.42), we have ¢ = id, hence ¢;, — id and
ug © ¢, — uo. For large k, the curve (¢*ji, u o ¢x) lies in an arbitrarily small neigh-
bourhood of (jg,up) in 5;1(0). Since the projection 7 — T(%,0)4 is a local diffeo-
morphism at jy (by Proposition 4.35), we deduce j;, € 7. Since T is A-invariant (by
Lemma 4.41), we conclude ¢*ji € T. O

4.3. Local models for M“*(J) and Mﬁ’H(J)

Using adapted Teichmiiller slices, we can write down local models of the iso-sym-
metric strata. We begin with a local model for M4 (.J) and refine these to describe
the sets Mﬁ’H(J ). To some extent, these local models will be parametrised.

Lemma 4.43. Let (3, jo, 6, up) € MA(J) be arbitrary; let T be an A-adapted Teichmiiller
slice through jo. Then [ug] has a neighbourhood U C M(J) such that U 0 MA(J) is an
open neighbourhood V' of g in

S =A{[(%,4,0,w)] | j€T,u:(X,j)— M is J-holomorphic, [u] = C'}.
(Recall that ¥ and 6 are fixed bookkeeping choices, so only j and u are allowed to vary.)

Proof. The inclusion D is straightforward since S ¢ M“4(.J). Conversely, choose
U as in Proposition 4.40: then any curve u € U N M#(J) has a reparametrisation
(3,7,0,u") with j' € T, that means [(%, j/, 0, v)] is contained in S. O
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Since the homology group H»(M;Z) is a discrete set, perhaps after shrinking U
further, every curve in U has homology class C. We can further sharpen our local
model and present M“(.J) locally as the zero set of a smooth Banach space bun-
dle section. Fix an integer p > 2. Standard arguments (e.g. [Eli67]) show that
B = W'P(3, M) is a Banach manifold with tangent space T,B8 = W1P(u*TM),
i.e. vector fields of M along u of class W!P. (By the Sobolev embedding theorem,
each tangent vector admits a continuous representative.) In particular, 7 x B is
also a Banach manifold. Furthermore, the vector bundle £ — 7 x B with fibre
Eju) = LP(Home (TS, uw*TM)) is a Banach space bundle, and the bundle section

07: T xB—=&,(j,u) — Joduoj+du
is smooth. Then, the local model can be refined to the following.

Corollary 4.44. Let (X, jo,0,u0) € MA(J) be arbitrary; let T be an A-adapted Teich-
miiller slice through jo. Then [ug] has a neighbourhood U C M(J) such that every U N

MA(J) corresponds to an open neighbourhood V' of (jo, uo) in the zero set 5;1(0): every
[u] € UN MA(J) has a reparametrisation contained' in V.

Proof. Choose U as in Lemma 4.43. Shrinking U if necessary, we may assume each
curve in U has homology class C. The forgetful map [u] ~ (j, ) maps U N MA(.J)
to a subset of 5;1(0). Conversely, for every (j,u) € 5;1(0), elliptic regularity argu-
ments show thatu € Band 8,(j,u) = 0imply u is smooth. Since each curvein U has
homology class C, a suitable open subset of (5o, 1) corresponds to U N MA(J). O

As the next step, let us incorporate the stabilisers (A x G),,, to obtain a local model
for MAH(]). At this stage, it is crucial to become aware again of the two group
actions in our set-up.

Observation 4.45. The group A x G acts...
e ..onBvia(¢,g) - u=1,0uo0pt,
e ...onthebase 7 x Bby (¢,9) - (j,u) := (¢*4, (¢, 9) - u) = (¢*j,pgouo o 1)

e ..on&by(¢,g) n=dp,onodpL.

This action is equivariant, i.e. the actions on 7 x B and £ commute with the bundle
projection £ — T x B.

Proof. Well-definedness follows from standard properties of Sobolev spaces (using
p > 2) and the fact that 7 is A-adapted. It is easy to check that these assignments
define left actions which are equivariant. O

BThis is some mild abuse of notation: we identify [(X,4,0,u)] € U N M#(J) with the pair (j,u),
which has to lie in 9, (0).
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Our local model for M4 (.J) can be improved to capture M (.J) by restricting
0 to a suitable Banach submanifold and sub-bundle. To motivate the details of this
construction better, we may consider a finite-dimensional toy model: since this does
not affect the results in this thesis, it can be found in Appendix A.1.

Definition 4.46. For a closed subgroup H < Ax G, let BY :={u e B | (AxG), = H},
where = denotes conjugate subgroups of A x G.

The omniscient reader will recognise B as the orbit type!* of H w.r.t. the A x G-
action on B. In particular, it is A x G-invariant, and the A x G-action restricts to BH.
Since T is A-adapted, the orbit types of H on T x B is closely related to BY.

Observation 4.47. For each closed subgroup H < AxG,wehave T xBH = {(j,u) €
TxB| (AxG)ju = H}

Proof. Since T is an A-adapted Teichmiiller slice, A acts trivially on 7 forall ¢ € A,
we have ¢*j = j, hence (¢,9) - (j,u) = (j,(¢,9) -u) and (AX G) ) = (AX G)y. O

We need B! to be a Banach submanifold of B: then 7 x B* is a Banach submani-
fold of the base T x B of £. The next step is to argue that 9 ;| -, 3 maps into a suitable
sub-bundle of £. The main observation to this end is that 9 is G-equivariant and
preserves stabilisers w.r.t. the (A x G)-action.

Lemma 4.48. The section 05: T x B — & is G-equivariant: for all g € G and (j,u) €
T x B, we have g - 5(j,u) = (g - (j,u)). Moreover, for all h € (A x G),, we have
h - 8](],U) = 8J(h ’ (jau)) = aJ(j? U)

Proof. Let (j,u) € T x B be arbitrary. For all g € G, we compute

99104, u, J) = dipg 0 95(j,u, J)
= dipg o du + dipg o (J o du o j)
=d(pgou)+ Jod(pgou)oj (4.3)
=94(j,9 - u,J)

In equation (1), we used the G-equivariance of J. Similarly, we use the equivariance
of J to compute, for all (¢, g) € (A x G),,

(¢,9) - 05(j,u) = dipg o (du+ Joduoj)odp
= d(thgouo¢ )+ Jodp,oduodp™to(dpojodpt)
= d((¢,9) - u)+Jod((¢,9)-u)o¢™'j=du+Joduoj=203;(ju)
= 05(¢"4,(6,9) - w) = 0s((d,9) - (4, w))- O

*We caution the reader: we do not assume this action to be differentiable! The definition of orbit types
makes perfect sense without any differentiability; only the properties of the orbit type stratification
require differentiability. In fact, the A x G-action is not differentiable in general, because of the loss
of derivatives. See Section 4.7 for details.
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Lemma 4.49. Forall (j,u) € T x B, we have (A x G)g = (A X G)(

7Gw) = Jyu):

Proof. The inclusion “C” always holds: writing 7: & — 7T x B for the bundle pro-
jection in £, an equality h - 9,(j,u) = 0,;(j,u) implies h - (j,u) = w(h - 0;(j,u)) =
7(05(j,u)) = (j,u). The inclusion “DO” follows from the previous lemma: for all

h € (A% G)(ju), wehave h-9;(j,u) = 9(j,u), hence h € (A x G)(j ). O

We denote the induced G-action on 7 x B¥ by a,: T x BE — T x BH, for each
g € GqG.

Corollary 4.50. 0|y, zs maps into

En={ne(Elyxpu) | (AxG),=AxG),=2H}. O

Finally, a local model for M7 (.J) is given via the zero set of 9 ;| gu-

Corollary 4.51 (Local model for M4 (.])).

Let (3, jo, 0, uo) € MAH(T) be arbitrary; let T be an A-adapted Teichmiiller slice through
jo- Then [ug] has a neighbourhood U C M(J) such that MAH (.J) N U corresponds to an
open neighbourhood of (jo, uo) in O J\}IX i (0). In other words, MAH () s locally given

as the zero set of the restriction 0y = Dyl gu: T x BE = &y

Proof. Choose a neighbourhood U as in Corollary 4.44. Then, a neighbourhood of
[up] in M#A(J) N U corresponds to some neighbourhood of (3o, up) in 5;1(0). In
particular, locally M (.J) N U corresponds to 5;1(0) N{(,u) | (AxG), = H}.
Since the second summand is precisely 7 x B*, the claim follows. O

To make this local model useful, B¥ must be a smooth Banach submanifold of B
and £g must be a smooth Banach sub-bundle of €. If A and G are finite, this is the
case.

Lemma 4.52. If A and G are finite, B is a smooth Banach submanifold of B.

Proof. We begin by showing that B is a smooth submanifold. Let uy € B be arbi-
trary; write K := (A x G),. Consider the fixed point set Bx := {u € B | Vk €
K,k -u=ua.e.} of the (A x G),-action on B. By construction, v € Bg. Then B is
a Banach submanifold (e.g. [DKOO, p. 108; AB15, Proposition 3.93]) of B. We show
that u has a neighbourhood U C B such that U N B = U N B.

Indeed, for each h ¢ K, we have h-ug # ug. As B is metrisable, hence Hausdorff
and both sides vary continuously with v, for each h € A x G\ K there exists an open
neighbourhood around ug with & - v # u, hence n ¢ K. Taking the intersection of
these finitely many neighbourhoods yields a neighbourhood U as desired. O

Lemma 4.53. If A and G are finite, £ is a smooth Banach sub-bundle of £| 1 zn.
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Proof. By Lemma 4.52, B C B is a Banach submanifold, hence |, 31 is a smooth
Banach spacebundle. Letv € £f bearbitrary. Anargumentanalogous to Lemma 4.52
shows that locally, £ agrees with the subset

El={ne&lrup | h-n=mnae. forallhec H}.
Lemma 4.54 below concludes the proof. O

Lemma 4.54. Suppose A is finite and G acts smoothly and properly on M. Then X is a
smooth sub-bundle of €| gu.

Proof. We construct local trivialisations for £ by hand: more precisely, we claim
that the local trivialisations for &, if the auxiliary data in the construction are well-
chosen, restrict to local trivialisations of £X. Let us review how local trivialisations
on & are constructed. For simplicity, let us neglect variation of j at first: fix j and
consider the bundle £’ over B with fibres &, := & ..

As afirst ingredient, we need to relate each fibre £/, = L?(Homc ((T'S, j), (u*TM, J)))
to fibres &, of v near u. This is done using parallel transport on the tangent bun-
dle TM. Choose a complex connection V on T'M. Recall this induces parallel
transport maps: for any path v: [0,1] — M, there exists an induced isomorphism
Py: TyoyM — T,1)yM between tangent spaces of M, whose inverse is the map
P_: T,qyM — T, o) induced by the reverse path ¢ — (1 — t). The same construc-
tion pushed forward to the fibres of £. For any path 7: [0, 1] — B from 5(0) = u to
(1) = v, we have an induced path v,: [0,1] — M,~.(t) := v(t)(z). We obtain an
induced map

P5: LP(Hom(TS,u*TM)) — LP(Hom(TS, v*TM)),n + (z — P, o).

To make this explicit: for all n € LP(Hom(TYX,u*TM)), z € ¥ and X € T.%, we
have P5(n)(z) = X +— P,_on(X).

Since V is a complex connection, each parallel transport map P, is complex lin-
ear, thus P5 maps complex anti-linear sections to complex anti-linear sections, and
descends to a well-defined map

P~: LP(Home (TS, w*TM)) — LP(Home (TS, v*TM)),n + (z — Py_on).

To describe local trivialisations, we need to choose a canonical path between u € B
and v € B close by. To do so, let us recall how charts for B are defined, following
Eliasson’s work.

Recall. To define the Banach manifold structure on B, choose a Riemannian metric
g on M. This defines an exponential map exp,,: T,M — M at each point p € M.

We can also use this to define an “exponential map” exp on B.> For u € B, we

Let us emphasize that this not related to ideas such as a Riemannian metric (or a spray) on the
Banach manifold B. However, it satisfies the same function, without having to think about details
such as whether the tangent spaces 7,5 are self-dual: in our setting, they emphatically are not.
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define the map (expy). : TulB — Bby “following the exponential map at each point”,
Le. (expg)u(X) := (2 = (exp,)u(»X(z) € M). In plain English: a tangent vector
X € T,B = WIP(u*T M) is a vector field along u (of regularity W1?): at each point
p = u(z), we apply the exponential map (in M) at p in direction X (z); this defines
anew map v = exp,(X) € W'?(X, M) =B.

Near 0 € T,,B, this map restricts to a bijection to its image; we define an atlas of B
via these restrictions. In particular, each exponential map (exp), becomes a local
diffeomorphism U C T,,B — V C B between suitable neighbourhoods U of 0 and
V of u.

Having this in mind, a canonical path from u € B to v nearby becomes apparent: if
v = expg X for some unique X € T;, B, then yx: [0,1] — B, — exp,(tX) is a path
in B from u to v. (When there is no risk of confusion, we will write exp; for (expy)u.)
Now we have assembled all ingredients to describe the local trivialisations of £’. A
local trivialisation for £ near u € B is given as

Gy U x €, = Elu, (v = exp X,n) = Pry (1) € E), (44)

where U C B is an open neighbourhood of u so the exponential map (expy),: U C
T, B — B is a diffeomorphism to its image.

Lemma 4.55 (folklore). The maps ¢, (forall u € B) define local trivialisations for £'. O

Having reviewed the classical case, let us indicate how to adapt this to the H-
invariant elements of £'|gu. As a reminder: we use the same construction, just for
a carefully chosen Riemannian metric g on M and a connection V on T'M. The
following lemma is implicitly contained in the computation of the tangent space
T,B* in [ AB15, Proposition 3.93].

Lemma 4.56. Suppose g is a G-invariant Riemannian metric on M."® Then expy is G-
equivariant, and for u € BY, we have v = (expy)u(X) € B if and only if X is H-
invariant, i.e. h - X = X a.e. forall h € H. In particular, restricting exp; to H-invariant
vector fields vields slice charts for BY, and T, B! consists of all X € T, which are H-
invariant. ]

Motivated by this lemma, we will choose a G-invariant Riemannian metric g on M,
and define the charts on B accordingly. Thus, each v € BY near u € B is described
as v = expy X for some X € T,B7,ie. X € W'P(u*TM) is an H-invariant vector
field. We would like to choose the complex connection V on T'M to be G-invariant,
so each parallel transport is G-equivariant.

Lemma 4.57. Suppose G is compact. There exists a complex connection V on T'M which
is G-invariant, i.e., such that the parallel transport maps P, satisfy digo P, = Py, . o di,
forall g € G and each path ~: [0,1] — M.

%Since G acts smoothly and properly on M, such an invariant metric always exists.
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Proof. Observe that G acts linearly on the space A(T'M) of complex connections
onTM,by g-V :=g-V(g~!-s), where g- denotes the G-action on I'(TM) and
M, respectively. Let us check that this in fact defines a complex connection: for
feC>®M,C)and s € I'(TM), we compute

Volfs)=g-V(g ™' -(fs)=g-V(flg7"-s)=g-[df (Vg™ 5)+ fo; V(g™ s)]
=df()g-(g7" - 8)+ (fov, othy)g- V(g™ -s) =df()s+ fVys

using C>°(M, C)-linearity of the G-action. 17 Note that df (X) is a smooth function
for each vector field X.

Since A(T'M) is an affine space and in particular convex, we can take averages of
connections: given any complex connection V € A(T'M), its average Ve = J. a9
V dg w.r.t. the Haar measure on G is a well-defined complex connection on 7M.
Observe that V¢ is G-equivariant: for all g € G and s € I'(T'M), we compute

Vig-s) = /G hVo(h™t g s) = /G g (g~ M)V~ h) - 5)
—/g-ﬁ-Vo(ﬁ_l-s)de—g-/h-Vo(h_l-s)—g-V(s).
G G

Hence, if v is a horizontal path in E w.r.t. V¥, so is g - 7, and parallel transport w.r.t.
V¢ is G-equivariant. O

Choosing g and V as in the two preceding lemmas will yield a local trivialisation
as desired. Choose a G-invariant Riemannian metric g on M and a G-invariant com-
plex connection V on T'M. Use g and V to define the maps exp,; and P, above. Let
u € B be arbitrary. Suppose U C B is an open neighbourhood of u so the expo-
nential map (expg),: U C T,B — B is a diffeomorphism to its image. Consider
the subset &' C &'|zn of all H-invariant € £’|gr. Then local trivialisations of &’
restrict to local trivialisations of .

Lemma 4.58. Every map ¢y, from (4.4) restricts to a bijective map
o (UNBE) x H 5 g,

Proof. We need to prove that ¢/ is well-defined and surjective. For well-definedness,
letv = expy X € UNB7 and n € EF be arbitrary; in particular, X € T,,B”. We
need to prove ¢;(v,n) = P, (n) € EH. Since ¢};(v,n) € &, it remains to prove
P, (n) is H-invariant. To that end, for each h = (¢, g) € H we compute

h-Pyen = dipgo Pyenodd™ =2 = (dipg o (P, om) 0 dp™")
=2 (Plyy). 0 (dipgonodd™)) =z (Pryy). o h-n)

=z (Plyyy. on) = Py

!7This uses that J is G-equivariant: in particular, each map d, is a complex bundle isomorphism.
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since each map P, : Ty)M — T,;)M was G-equivariant by hypothesis. For
surjectivity, suppose (v = expgz X,n) € (U N BH) x &, with ¢};(v, X) € &, ie.
¢y (v, X) is H-invariant: we need to prove that n was H-invariant to begin with. For
all h = (¢,9) € H and z € 3, we compute

Py, on=Pyn(z) = (h-Pyn)(2) = (dibg o Py, onodd™)(z)
= (Pyy). 0 dpgonodd™)(z) = (Plyy). o h - n)(2);

since each P, ), is an isomorphism, this implies /- = 7). Since h € H was arbitrary,
7 is indeed H-invariant. O

Since the ¢y form a system of local trivialisations of £, we deduce that the d)’JI
form local trivialisations for £};, hence £J; is a smooth sub-bundle of &'|zx.

Improving this to a proof of Lemma 4.54, about £ C €|, zu is a standard exer-
cise whose details we omit. This step is fully analogous to improving the statement
“&" — Bis a smooth Banach space bundle” to “the extension & — T x B of £’ isa
Banach space bundle”: the result is not difficult, but I am not aware of any written
reference. This thesis is not the place to change this. O

If A or G are infinite, the trick in Lemmas 4.52 and 4.53 does not work any more,
and a new argument is needed. This is much more involved than one might think;
see Section 4.7 for details.

To close this section, let us note that this description also yields a local model for
the sets MS’H(J). The idea is that if [u] € MS’H(J) (ie., u € MAH(J) has an
injective point mapped to /), every holomorphic curve near v must also be simple.

Proposition 4.59. {[u| | w has an injective point mapped toUd} C M(J) is an open
subset.

Since the topology on M4 (.J) and ./\/lz‘j’H(J ) is the subspace topology from
M(J), we deduce that Mﬁ’H(J ) € MAH(]) is an open subset. In conclusion, we
obtain the following.

Corollary 4.60 (Local model for MS’H(J ). Mﬁ’H( J) is locally given as the zero set of
the restriction 07 = Oglrpn: T x BE — EH. That is, each [(%, j,0,u)] € Miy" (J)
has a neighbourhood U in MS’H(J ) such that the corresponding subset of T x BH is a
neighbourhood of (j,u) in (97 )~1(0).

Proposition 4.59 is classical; let us review its proof since we will use similar ideas
later. The main idea is to use the equivalence of simple and somewhere injective
curves, and show that being somewhere injective is an open condition. In fact, this
result holds in greater generality: being somewhere injective is an open condition
in the space C'(M, N) of C! maps f: M — N. Consequently, the proof uses facts
about differential topology, in particular the C{. -topology'®.

BWe omit its definition in this document: since the analogous statement in C*°(M, N) also holds, the
cautious reader may simply work with smooth maps.
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Lemma 4.61. Let M and N be C manifold. The set of somewhere injective maps f: M —
N is open. Moreover, for any open subset U C N, the set

S:={f € CYM,N) | f hasan injective point z with f(z) € U}
is open in the C}}, ~topology.

Idea of proof. Let f € S be arbitrary; choose an injective point p € M of f with
f(p) € U. This means three conditions are satisfied: df, is injective, f~1(f(p)) = {p}
and f(p) € U. Each of these is an open condition in C_(M, N). O

loc

What is more, injective points are not isolated: the set of injective points is always
open (though perhaps empty), as both defining conditions are open within the set
of smooth maps. Let us record this fact for later use in this section.

Lemma 4.62. Let f: M — N be a C! map. Then the set of injective points of f is open
(perhaps empty). More generally, for any open subset U C N, the set of injective points z
of f with f(z) € U is open. O

Before we close this section, let us mention one last definition, which is very close
to a standard one.

Recall. A bounded linear operator L: X — Y between normed spaces19 is called

a Fredholm operator (or Fredholm for short) if and only if its kernel and co-kernel are
finite-dimensional and it has closed image.

For [(%,4,0,u)] € MAH()), let DO, (j,u): T;T x T,BH — 56{“) be the lineari-
sation of the operator 9;(j,u): T x BE — &H. One can show that D9, (j,u) is
a Fredholm operator. (We will prove in Lemma 4.82 that restricting Dd(j,u) to
the second summand is Fredholm; since 77 is finite-dimensional, D ;(j, ) also is
Fredholm.)

Definition 4.63 (H-Fredholm regular curves). A curve u € MAH(J) is called H-
Fredholm regular?’ if and only if the linearisation

D3y(j,u): T;T x T,B — LF (Homc((TX, j), (W*TM, J))) (4.5)

is surjective.

YMost commonly in symplectic geometry, Fredholm operators are considered between Banach
spaces; this is not required for their definition. Over Banach spaces, however, the theory of Fred-
holm operators is simpler — for instance, the image of a Fredholm operator is always closed and
admits a closed complement. In this thesis, we only encounter Fredholm operators between Ba-
nach spaces: the linearised Cauchy—Riemann operator D,, or the operator L from the next section
are Fredholm operators.

“This is a slight adaptation of standard terminology: conventionally, u is called Fredholm regular if
the linearisation D., of 9 (j,u): T x B — & is surjective (where T is a classical Teichmiiller slice).
This definition is the natural analogue in our setting. I contemplated re-using the term “Fredholm
regular” and decided against it to avoid confusion.
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Standard arguments (similar to e.g. [Wen15, Lemma 4.3.2]) show that being H-
Fredholm regular is independent of the particular choice of the adapted Teichmdiller
slice 7. Like Fredholm regularity, H-Fredholm regularity is an open condition. This
follows from the argument discussed in Section 5.1 to prove Lemma 5.16. For the
overall idea, suppose u is H-Fredholm regular, then D3;(j,u) is a surjective Fred-
holm operator, in particular induces an isomorphism V' — & (Ij )y Where Vis a closed
complement of ker D9 (j,u) in T; T & T,,B. Being an isomorphism is an open con-
dition, hence all Fredholm operators sufficiently close to D9, (j,u) are also surjec-
tive.

Fredholm regular curves have an important property (e.g. [ Wen15, Theorem 4.3.6]):
if [u] € M(J) is Fredholm regular, the set of Fredholm regular curves near u is a
smooth orbifold of dimension vir-dim(u) := (2 — 2g)(n — 3) + 2¢1(C) + 2m. When
restricting to simple curves, it is also a manifold. Proving this result requires no
transversality — but this result could be vacuous, if the set of Fredholm regular
curves is empty. The analogous argument applies in our setting and proves the
following.

Lemma 4.64. Suppose A is finite. If [u] € MS’H(J ) is H-Fredholm regular, then a neigh-
bourhood of [u] in Mﬁ’H(J) is a smooth manifold of dimension ind(D3;(j, u)). O

4.4. The universal moduli space

Having defined the equivariant C.-space and adapted Teichmdiller-slices, we can
now state and prove smoothness of the universal moduli space. In essence, we have
to prove two versions of this result, for tame and compatible almost complex struc-
tures. We will treat the tame case first; the compatible case is very similar; we will
indicate the necessary adjustments later.

For the remainder of this section, fix Jyf € J&(M,w;U, Jg,) and consider the
corresponding spaces C.(End¢ (T M, Jyef);U) and J..

Definition 4.65 (Universal moduli space). The universal moduli space associated to
the sequence € € € and Jy is

U (Je) = {(u,J) | J € Jeue M)}
In this section, we aim to prove the following.

Proposition 4.66. For all € € € decaying sufficiently fast>, the universal moduli space
U*(Je) is a smooth Banach manifold, separable and metrisable, and the canonical projection
m: U (Te) = Te, (u, J) — J is smooth.

We show this locally, using the implicit function theorem: hence, as in the previ-
ous section, the first task is to find a suitable local model for /*( 7).

by this, we mean: there exists a sequence ¢y € € such that for all € < ¢, ...”

92



4.4.1. Local models for the universal moduli space

Fortunately, it is straight-forward to modify the local model for Mﬁ H(J) from the
previous section to obtain a local model for U/*(J): we just need to take the addi-
tional factor J into account.

Let (X,7,0) € /K/lvém be arbitrary. Choose an A-adapted Teichmiiller slice 7

through j. Consider the Banach manifold B = ng P(33, M). We consider the Banach
space bundle & — T x B x J, with fibres £; ,, 7) := LP(Homc ((T'%, j), (u*T'M, J))),
and the smooth section

0;: T xBxTJ. =&, (ju,J)—du+Joduoj.

The A- and G-action on the moduli space M(J) carry over to the bundle £ —
T x B x J.. The proof proceeds exactly as for Observation 4.45; we omit the details.

Observation 4.67. The group A x G acts...
e ...on the bundle € via (¢, g) on = dpyonodp™!;
e ..onthebase T x B x J. by (¢,9) - (j,u, J) := (¢*j, g 0uo ¢, (tby),J = J);
e .onBby (¢,9) - u=1youogl.

The actions on £ and the base are compatible with the projection £ — T xBx J.. [

We consider the restriction of 9 to the sub-manifold 7 x B x 7. of the base: it
will take values in a suitable sub-bundle.

Lemma 4.68. £ := {n € (E|lrxpxg)o | (AXxG)y = (AxG), = H} is a smooth
Banach space sub-bundle of the restriction €|, gr 7.

Proof. Repeat the proof of Lemma 4.53 mutatis mutandis. O
Observation 4.69. 0|7, w7, Maps into .
Proof. Repeat the proof of Corollary 4.50 mutatis mutandis. O

The proof of the previous lemma shows that £x locally agrees with the smooth
sub-bundle

gl .— {ne€&lrxpxg. | h-n=nae forallh e H},

and 0 locally maps into £*/. The zero set of 5? yields a local model for the universal
moduli space: the proof is the same as for Corollary 4.60.

Corollary 4.70 (Local model for U*(J¢)). The universal moduli space U*(J.) is locally
given as the zero set of the restriction 5? = 0lyuprxg: T x BE x J. — . O
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4.4.2. Smoothness of the universal moduli space

Now, let us prove that (5?)*1(0) is a smooth (Banach) manifold near each (j,u, J)
for (2, 4,u,0) € /\/lg’H(J ).22- We do this using the implicit function theorem: we
need to prove that the linearisation Da? (4,u, J) of 5(1]{ at (j, u, J) is surjective with

a bounded right inverse. Since 5{7 maps to the sub-bundle £, so does Dalfi (4, u, J).
Let us prove two related lemmas.

Lemma 4.71. Forallv € M(J) and h € H, we have ;(h - (j,v,J)) = h-d;(j, v, J).

Proof. Write h = (¢,g) € A x G. Since j is A-invariant and J is G-equivariant, we
have

he (4,0, J) = (67j, h- v, (Yg)«d) = (4, b - v, J);
we deduce
Ayl (G,v, Jeer)) = Dy (jspgovo g™, J) = dipgodvodp™ + Jodypgodvody™ o j
= dipg o dv o dp™" + dipy 0 Jeeso dv o (dp~ 0o dp) o dep™?
= dipg o (dv+ Jegodvoj)odd™ = h-Ds(j,v, Jef)- O
Corollary 4.72. Forall h € H we have D,,(h - n) = h - D,n, where D1 := ngmf(u) is

the linearisation of the operator 0 Gt TulB = E(ju,

ef)? U — gjr@f(j, u, Jref) at u.

Proof. Leth = (¢,g) € Handn = 0,(u,)|;=0 € T3 be arbitrary. Using the previous
lemma, we compute

D3y (u)(h-n) =V 0 (h-ur)|r=o = Vih-0; (ur)|r=0
= Virdipg 0 Dy, (ur) 0 ddp™" |70 = dipg © V13, (ur) =0 0 d§ ™"
=h-Ddy(u)n. O

=~H . .
For the operator 9 , a simple computation shows

=H .
DaJref <']’ U, J) : T7T @ TUBH @ j—i]ref‘7E - gé{u,Jref),
(yﬂ?vY) = Jrefoduoy+D£I’l7+Y0du0j,

where DI : T,B2 — [P (Homc (TS, u*TM)) is the restriction of D,. Recall that
locally, B is the fixed point set of H and has tangent space (by e.g. [ AB15, Propo-
sition 3.93])

T B = {ne W,yP(w*TM) | h-n=nae. forallh € H}.

Moreover, T . Je = CE(Endc(TM, Jet); U) by construction. Thus, we have a well-
defined bounded linear operator

L: T,B" & CE(Endc(TM, Jre);U) = €y 5 5, (0,Y) = DiIn+Y oduoj. (4.6)

We better make sure that L also maps into the sub-bundle £: indeed, it does.

ZA posteriori, it will be finite-dimensional.
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Lemma4.73. L is H-invariant: forallh € Hand (n,Y) € T,B2&CE (Endc(TM, Jyy);U),

we have h - L(n,Y) = L(n,Y). In particular, im(L) C Sgu Tp)"

Proof. Let (n,Y) € T,B" @ CY(Endc(TM, Jwef);U) and h = (¢, g) € H be arbitrary.
It suffices to check that the first summand T': (y,n,Y) — Jefoduoy of DI (j,u, J)
is H-invariant. Indeed, we compute

h-T(y,nY) = (¢,9) - Jref 0 duoy = dipgo Jyso duoyodp
= Jret 0 dipg o du o dg o (dp™" oy o dg)
= refod(d}gouo¢_l)oy:Jrefoduoy:T(ya777Y>v

using the G-equivariance of J,f and the A-invariance of y. ]
The key lemma in the proof of smoothness is the following.

Lemma 4.74 (Workhorse Lemma). For ¢ € & decaying sufficiently fast, if u has an
injective point which is mapped to U, then L is surjective and has a bounded right inverse.

Ata key point in the proof of the Workhorse Lemma, we need to use a well-chosen
injective point of u. The following lemma summarises the main requirements posed
on this choice. Denote by 71: A x G — A the projection to the first component,
similarly for m3: A x G — G.

Lemma 4.75 (v has many good injective points). If u has an injective point mapped
into U, the set of injective points 2o of u with u(z20) € U, Gy(zy) = Gy and

im(u) NG - u(z0) = {uog(z0) | ¢ € m(H)} ={g-u(20) | g€m(H)}
is open and non-empty.

The main step in Lemma 4.75 is the following. It uses the following version of the
identity theorem for holomorphic curves.

Fact. Two closed holomorphic curves with non-identical images have only finitely
many intersection points. [

Lemma 4.76. If G is finite, there exists an open dense subset U C X such that G,y = Gy,
forallp e U.

Proof. For each g € G \ G, by the identity theorem either ¢ - © and « has distinct
images (thus, only intersect in finitely many points), or g-u is a reparametrisation of
u. Each reparametrisation of u has only finitely many fixed points (by the identity
theorem again, since we consider closed holomorphic curves). Therefore, for all but
finitely many 2 € 3, we have G, = G;). O

Proof of Lemma 4.75. Since u is simple, its set of injective points is open. Since U is
open, the set of injective points of © mapping to U/ is open. By hypothesis, there
exists such an injective point 2o € X. By Lemma 4.76, we can assume Gy, = G(3)-
Now an easy computation proves im(u) NG - u(zp) = {uo ¢(z) | ¢ € m(H)}. O
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For later use in Chapter 5, let us also note the following phrasing of Lemma 4.75:
the conclusion is exactly the same, just phrased in terms of w2 (H ) instead of 71 (H).

Lemma 4.77. Let u € Mz’j’H(J ) be a simple curve. Then u has a non-empty open set
S C u=H(U) of injective points such that im(u) NG -u(s) = w2 (H) - u(s) foralls € S. [

The core of the proof of Lemma 4.74 is showing that L has dense image: since
D, is a Fredholm operator (by Lemma 4.82), by Lemma 4.88 below, L always has
closed image. We will show im L is dense using the Hahn-Banach theorem: other-
wise, there exists a non-zero linear functional on it which annihilates im L. To make
this argument work, we need to understand such functionals better: we argue a func-
tionalon (£7); . ;... canbe extended to £ ,, .., = LP(Homc (TS, j), (w*TM, Jyet))),
which even corresponds to an H-invariant Li-section of Hom¢ ((T'S, 5), (u*T'M, Jyef))-
Henceforth, let us write F' := Homg (TS, 5), (u*T'M, Jyf)) for brevity.

Observation 4.78. H acts continously and linearly on L”(F) by (¢, g) -1 := dipgono
de~t. O

For the ease of discussion, a section n € LP(F') will be called H-invariant if and
only if h-n = n forall h € H. In other words, (€% ) (Gu, Jr) CONSists of all H-invariant
sections in LP(F).

The main tool for extending a linear map on (£ )Gu,Jweg) t0 LP(F) is an averaging
operation: each section of LP(F') can be continously “averaged” to an H-invariant
section.

Proposition 4.79. There exists a continuous idempotent linear map av: LP(F') — LP(F')

withimav C (gH)(j,u,Jmf)'

To convert a section of F' to one in (£7);,, ;. ), we need to make it H-invariant.

Lemma 4.80. Forall 1 < p/ < oo, the map av: LV (F) — L¥ (F),n — ﬁ Yoherhom
is continuous and linear. Each section av n is H-invariant and av? is idempotent.

Proof. Since H acts continuously linearly on L (F), each map 7 + h -7 and thus av
is continuous and linear. For each n € L¥ (F), the section av 7 is H-invariant: for all
k € H, we compute

1 1 1
k-avn=Fk — h-n=— kh-n=— l-n=avn.
7] 2 T 2 T
Finally, avi preserves H-invariant sections: if 1) is H-equivariant, we compute
avi = S hen = Yo
H| i H| i

In particular, we deduce imav C (¥ )(ju, ) @Nd @V oav = av. O
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Proof of Proposition 4.79. Use the map av from the previous lemma. O
At a later point in the proof, we also need to know that av is H-invariant.
Lemma 4.81 (Averaging is H-invariant). Forall h € H, we have av(h - n) = av(n).

Proof. Indeed, for any h € H we compute

‘1) |H|Z ) ‘H‘Z n= |H|Zl77—av 0

keH keH leH

As a final preparatory lemma, let us prove that the first summand of L is a Fred-
holm operator. For later use, let us also record the Fredholm index of the restricted
operator. Recall that if p is a finite-dimensional H-representation, the multiplicity
of the trivial representation in p by m#(p).

Lemma 4.82. The restricted operator DY : T,BH — LY (Homc (TS, u*TM)) is Fred-
holm. Its Fredholm index is mi! (ker D,,) — m1! (coker D,,). In particular, if DX is surjec-
tive, this simplifies to ind(D) = m# (ker D,,).

Proof. By constructlon DH is the restriction of the linearised Cauchy-Riemann op-
erator D,,: T,B = W, P (u*TM) — LP(Home (TS, u*TM)), which is Fredholm (e.g.
[Wen15, Theorem 3. 3 1]). We prove that

ker DX = ker D,NT,BY and coker DX = coker D, N LY (Home (TS, u*TM)).

Since the kernel and co-kernel of D,, are both finite-dimensional, this will imply Df
is also Fredholm.

The first relation is obvious since D! is the restriction of D,,. The second equa-
tion follows from a small trick. Since D, is H- equlvarlant its kernel is H-invariant.
Choose an H-invariant closed complement V' C W P(u*T M) of ker D,,. Then D,
restricts to an isomorphism from V' to im D,,, and im Du = D, (V) in particular. The
claim now follows by proving that

im DY = im D,, N L2, (Homc¢ (TS, uw*TM)).

Direction C is obvious. For the converse implication DO, consider any w € im D, N
LY (Home (TE, w*TM)). Write w = Dy, for v € V. For each h € H, we observe

Dy(h-v)=h-Dyw=h-w=w

by H-equivariance of D,, hence h-v — v € ker D,,. Since V is H-invariant, we have
h-v—wv€Vandh-v=uvfollows. We deduce w = D,v = D{v € im D

This completes the proof that DX is Fredholm. For its Fredholm index, note that
ker D! = ker D,, N T,,BY is precisely the fixed subspace of ker D,, under the H-
action: thus, its dimension is precisely the multiplicity of the trivial representation
in ker D,,. The formula dim coker DX = m{ (coker D,,) follows similarly. O
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Now, we are prepared to prove Lemma 4.74. One inessential detail of the proof is
the occurrence of the Cc-space, giving rise to the question “is this section of class C.?”
(which will be answered affirmatively by choosing e to make this true). Let us ig-
nore this detail for now and consider the extension of L to all smooth G-equivariant
perturbations of Ji first.

Lemma 4.83. Suppose u has an injective point which is mapped to U, then the natural

extension of L to an operator L: T, B o T'¢(Endc(TM, Jref); U) — 5{;{ ) is surjective.

Proof. By Lemma 4.82, the operator D/ is Fredholm. Therefore, Lemma 4.88 below
shows thatim(L) is closed and ker L has a closed complement. If L is surjective, the
existence of a bounded right inverse follows. Hence, it suffices to show that L has
dense image. Suppose otherwise, then by the Hahn-Banach theorem, there exists a

functional o € (Sgu J f))* with a # 0 such that a|im . = 0.

Claim 1. « extends to a linear functional & on LP(F) = LP(Homc(TE, u*TM)).

Proof. We define by & by combining o with averaging w.r.t. the H-action: for each
section 7 € LP(Homg (T, u*TM)), we define &(n) := a(avn). By Proposition 4.79,
this is well-defined and &| EFry = A

Choosing a suitable L2-pairing of L? and L9, the functional & corresponds to a
section &« € LY(Homc(T%,u*TM)). The construction of & via averaged sections
can be used to ensure & is H-invariant— provided we choose a pairing respecting
the H-action. To make this precise, we begin by reviewing the setup for the pairing.

Recall. Let (E,J) — (X,7) be a complex vector bundle over a Riemann surface
(2,7), let g be a Riemannian metric on ¥ compatible with j and ., be the induced
volume form on ¥. Any bundle metric (,), on Homc (7%, E) defines an L? inner
product on I'(Hom¢ (TS, E)) by (a,8)r2 = [g(, 8)gdug. The functional & €
(L,(Home(T%, E)))” corresponds to a unique section & € LI(Homg (TS, E)) which
satisfies &(n) = (n, &) for all n.

In our case, we consider the complex vector bundle £ = (u*T'M, Jyef). Choose
an A-invariant bundle metric on ¥ and a G-invariant bundle metric on TM — M.
These induce a Hermitian metric on ©*7T'M, and we readily verify that the induced
L%-pairing on T'(u*T' M) is H-invariant: for all n,£ € T'(E) and h = (¢,9) € H, we
compute

(h-n s :/Z<<h-n><z>,<h-z><z>>dz
- / (g6~ (2)), (@) €(671(2))) dz
- / (n(6~1(2)), £ (2))) dz = / (n(2),£(())) dZ = () 2
> >
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using the G- and A-invariance of the metrics on 7'M resp. X. Similarly, the induced
L%-pairing on I'(Homc(T'S, u*T'M)) is H-invariant. An easy computation shows
that the formal adjoint (DX)* of D! is then H-equivariant.

Lemma 4.84. Suppose a group H acts on normed space X and Y. Suppose (-,-)x and
(-, -)y are non-degenerate H-invariant bilinear forms on X and Y, respectively. Let D: X —
Y be a bounded H-equivariant linear operator. Then the formal adjoint D*:Y — X of D
with respect to (-, -)x and (-,-)y is H-equivariant as well.

Proof. Let h € H and y € Y be arbitrary; we need to show D*(h - y) = h - D*y. For
all z € X, writing « = h - £, we compute

(z,h-D*y)x = (%, D*y)x = (DZ,y)y
=(h Dz, h-y)y =(D(h-%),h-y)y = (z,D*(h-y))x

using H-invariance of the pairing, H-equivariance of D and the adjoint property.
Since x was arbitrary and (-, -) x is non-degenerate, we deduce h - D*y = D*hy as
desired. O

Additionally, the section & is H-invariant.

Lemma 4.85. The section & is H-invariant: for all h € H and n € LP(F'), we have
a(h -n) = an. In particular, av & = &.

Proof. Let h € H be arbitrary. Since (, )4 is H-invariant, for each ) € LP(F’), we have
(n,h-&)2 = (h~1-n,&) 2. Using Lemma 4.81, we compute

a(h~'-n) = alav(h™"n)) = afavn) = a(n) = (n,da) 2

<777 h- d)LQ = <h71 1, OV4>L2
foralln € LP(F'), hence & = h - & follows. O

Recall that afim) = 0, ie. (L(n,Y),&)r2 = 0 for all sections n € T.BY and
Y € CE(Endc(TM, Joe);U). Equivalently, that means

(DHp a)p2 =0 forally € T,,B7, and
(Yoduoj,d)2=0 forall Y € C%(Endc(TM, Jye); U).

In particular, the first relation is valid for all H-invariant vector fields » of u*T'M with
nlp = 0. This “almost” implies & is a weak solution of the formal adjoint equation
(DHY*& = 0 on X\ 0: except that the first equation only holds for H-invariant

sections. However, using the H-invariance of D5 (by Corollary 4.72) and &, we
conclude this for all sections. The H-invariance of DX implies, for any n € LP(F),

1 1
Df(avn)ZDf(ﬁZhw)Zﬁsz(’%-n)
heH heH

1
= ﬁ Z h- (Dfn) = av(Dan).
heH
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Next, we observe that the H-invarance of our L?-pairing implies that averaging is
compatible with formal adjoints. Because the map 7 — h - 1 is an isometry, for any
two sections « € LP(F') and 8 € L(F') we have

1 1
(@v(@), Bz = (g D h- Bz = g D (- o B)ie

heH heH
1 1
= H Z<a7 hil : B)LQ = <Oé, ﬁ Z hil : /8>L2 = <Oé,aV(,8)>L2.
heH heH

Putting these together, we obtain the desired result. For any sectionn & ng P(u*TM),
its average av(n) is H-invariant, hence lies in 7;,B7, so hence 0 = (DX av(n), &) 2.
Using the H-invariance of D/, the L?-pairings and ¢, we deduce

0= (Davn,&)2 = (av(Dn),a) 12 = (DFn,ava) 2 = (DI, &) e,

thus (n, (DH)*&) ;2 = 0 forall n € I/Ve1 P(u*T M), in particular for any smooth com-
pactly supported section on X \ 0. Therefore, ¢ is a solution of the formal adjoint
equation (D)*& = 0 on ¥\ 0. By standard elliptic regularity results, this means
that & is smooth on ¥ \ 6; by the similarity principle, & # 0 implies that ¢& has only
isolated zeroes.

Claim 2. There exists a G-equivariant section Y € CS(Endc(TM, Jref);U) such that
(Y(u) oduo j,a) > 0.

Proof of claim. Choose an injective point zp € ¥ of u as in Lemma 4.75, such that
20 ¢ 6 and a(zp) # 0. (The last conditions both hold everywhere except on a finite
set of points, hence can be ensured as well.) Using Lemma 4.89 below, we choose a
smooth section Y € T'(Endc(T'M, Jyef); U) whose value at p := u(zg) is chosen such
that Y (u) o du o j = & at 29 and Y|¢.p is G-equivariant. Note that this step uses the
condition G,y = G4 the inclusion D always holds (by Observation 3.12); if G .,
were a superset of G, the G-equivariance of Y would place a further constraint on
the choice of Y (u(zp)).

Averaging over the G-action, we may assume Y is G-equivariant.

Consider the discrete set

S = U im(u) Nim(g - w) C M.
geG\m2(H)

By construction, u(zy) ¢ S. Using a G-invariant cut-off function, we may assume
Y is compactly supported, and in fact suppY C G - Uj for some open neighbour-
hood Uj of 2 such that G- Uj is disjoint from S. All in all, we obtain a G-equivariant
smooth compactly supported section Y with (Y (u) oduoj(z), &(z))y > 0 onaneigh-
bourhood U of zy such that U N S = 0.

We claim that (Y (u) o du o j, &) 72 > 0. Consider the function f: ¥ — R, f(z) :=
(Y oduo j(z),0(z))y; we have (Y oduo j,&)2 = [5 f(2)dug by definition. Note
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that f is smooth on ¥\  since each component is: /s g and u are smooth by elliptic
regularity; Y, j and the pairing (, ), are smooth by construction.

The idea underlying the remaining computation is simple: away from the nowhere
dense set .S, the orbit of each point p € im(u) is described by the group m1(H) < A.
By construction of Y, the integrand f vanishes outside of u~ (G - Up), and we know
flu, > 0 by construction. The final piece in the puzzle is the invariance of f under
the action of 71 (H).

Lemma 4.86. We have f o ¢ = f forall ¢ € m1(H).

Proof. Let z € ¥ be arbitrary. For (¢, g) € H, we compute

Y oduo j(¢(2)) odp, = Y oduodd, odpIl o j(6(2)) o des
(¢°1)-
=Y odipyodip; " o duodp, o ¢*j(2)
=dygoY od(h, ' ouog)o g i(z)(z)
=dipgoY oduoj(z)

using G-equivariance of Y, A-invariance of j and H-invariance of u. Thus, we have
Y oduoj(¢(z)) =dipgoY oduo jodp t(z).
Similarly, since & is H-invariant, we compute

a(9(2)) 0 dp. = dipg o dipy " 0 &(¢(2)) 0 dg. = dipg 0 G(2),

thus &(¢(z)) = dipy o &(2) o dp; . Combining these and using the H-invariance of
(,)g, We obtain

f(9(2)) = (Y o du o j(6(2)), (¢(2)))g
= (dipg o (Y oduo j)(2) o dd ", diyg o a(z) 0dg ),
= (Yoduoj(z),a(2))y = f(2). A

Since f = 0 on S and supp(Y') C G - Uy by construction of Y, we compute

(Yoduoj,d)re = /Ef(z) dug = /z:\sf(Z) dpg = /u_l(G.UO)fdug.

Since S and Uy are disjoint, every point in z € u~ (G - Uy) satisfies
G- u(z) Nim(u) = {uod(2) | 6 € m(H)}

by Lemma 4.75. Therefore, fufl(GUo) fdug = [y, Xpem ) f(9(2)) dig. By Lemma 4.86,
we have f(¢(z)) = f(z), hence

(Yoduoj,a)rz2 = |ma(H)| f(z)dpg > 0. A
Ug
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The last claim contradicts the second equation, hence L is indeed surjective. This
completes the proof of Lemma 4.83. O

Remark 4.87. This proof is where our chosen definition of the iso-symmetric strata
was really important: had we considered merely the stabiliser w.r.t. the G-action,
the pairing (Y o du o j, &) 2 could have picked up further contributions along the
orbit G - u(2p), spoiling the argument.

See also [Bar24, Proposition 2.2.10] for an alternative proof of this lemma (in the
non-equivariant case).

In the proof of Lemma 4.83, we used the two standard results. The first is a stan-
dard exercise in functional analysis.

Lemma 4.88 ([Wen20, Exercise 8.11]). Given Banach spaces X, Y and Z, a Fredholm
operator T': X — Y and a bounded linear operator A: Z — Y, consider the operator
L:X&Z — Y, (x,2) = Tax + Az Then the kernel of L has a closed complement in
X @ Z, and the image of L is closed in'Y. O

Secondly, we also used an elementary, but slightly non-trivial lemma from linear
algebra. Recall that for a symplectic vector space (V,w) with complex structure J,
one can choose a basis to identify J with ¢ and w with the standard symplectic struc-
ture wgg on R?". Under this identification, the linear maps Y which anti-commute
with ¢ and satisfy wgq (-, Y:) + weg (Y, -) = 0 are precisely the symmetric complex
anti-linear matrices.

Lemma 4.89 ([MS12, Lemma 3.2.2]). For any non-zero vectors v, w € R", there exists
a symmetric matrix Y which anti-commutes with i and satisfies Yv = w. O

Let us upgrade this to a theorem about the actual operator L, hence about the
universal moduli space. The following definition, taken from Wendl’s blog [ Wen21],
will be useful.

Definition 4.90 (e-regular curve). Anelement (u,J) € U*(J.) is called e-regular if and
only if the operator L defined by (4.6) is surjective. Given any almost complex structure J,
a curve u € M(J) is called e-regular if J € J. and the pair (u, J) is e-reqular.??

Clearly, e-regularity is an open condition, so
Ureg(Te) = {(u, J) €U (Te) | (u,J) is e-regular}

is an open subset of U* (7). So far, it could be empty: taking a close look at the
previous proof shows it never is.

Lemma 4.91 ([Wen21]). For any given curve u € M(Jyy), for all € € E with sufficiently
rapid decay, u is e-reqular.

ZFor the experts, we note that an e-regular curve u € M (J) need not be Fredholm regular, as the
latter is a smoothness condition concerning a neighbourhood of « in the moduli space M (.J), while
e-regularity is about (u, J) in the universal moduli space.
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Proof. Lemma 4.83 shows that L: T,,B x T'¢(Endc(T'M, Jyef);U) — € has dense im-
age. Since 55 o) = LP(F) is a separable Banach space, we may choose a dense se-
quence (&) in Egu Jret) together with a sequence (1, Yx) € T; 87T (Endc (T M, Jref))
such that i(nk, Y)) = & forall k. By Lemma 4.11, for some € € £ of sufficiently rapid
decay, all the sections Y}, are of class C., hence are in C¢ (End¢ (T M, Jye); U). Hence,
for such epsilon, the image of L is dense. Since it is closed, the result follows. [

Finally, a change of quantifiers upgrades this to the statement we need. Let us
recall Lemma 4.74 for convenience.

Lemma 4.92. For € € &£ decaying sufficiently fast, if u has an injective point which is
mapped to U, then L is surjective and has a bounded right inverse.

Proof. Since T;T x T,BY @& CY(Endc(T M, Jwf);U) is a separable metrizable space,
so is the zero set (5{]1{)_1(0) C CE(Endc(TM, Jyeg);U). In particular, it is second-
countable and Lindel6f: every open cover has a countable sub-cover. Since e-regularity
is an open condition, we apply the preceding Lemma 4.91: to each (j,u, J) € @IJL)_I (0),
we associate some €* and an open neighbourhood U,, C (5if)_1(0) such that each
(v,J) € U, is €“-regular. Choose a sequence (ug) in (gif)*l(O) such that the open
sets U,, still cover (55;)*1(0). Then, the lemma holds for any € which is a lower
bound for the countable set {e"#}. O
Prg(\)]fo%olg}%lud'et .this4 s6e6ctign by %Ig)vinﬁ PIé)p})si,tion 4.66. ) )

position 4.66. A neighbourhiood of (7, u, J) in the universal moduli space
U*(Je) is described by the zero set of 5?. By Lemma 4.74, for all € decaying suffi-
ciently rapidly, the operator L is surjective at each (u, J) € U*(J), hence in partic-
ular D3’ is surjective. Since 7 is finite-dimensional, T, B &CC (Endc (T M, Jyef); U)
isa closed subspace in T; T &1, B &CE (Endc (T M, Jyef); U) and Dgf hasabounded
right inverse. Thus, the implicit function theorem proves that a neighbourhood of
(4,u,J) in (5{,{)_1(0) is a smooth Banach manifold of 7 x B x ..

Now, standard arguments (similar to e.g. [Wen15, Theorem 4.3.6]) imply that
U*(Je) is a smooth Banach manifold: this exploits that each curve in the universal
moduli space is simple. The zero set (5{,{)_1(0) C T x BH x J.is a closed subset of
a separable metrisable space, hence also separable and metrisable: therefore, so is
U*(Je). Finally, under the above identification, the projection/*(J.) — Je, (u, J) —
J is the restriction of the smooth map 7 x B x J. = Je, (j, u, J) — J, hence smooth
as well. O

4.5. Smoothness of Mﬁ’H(J)

In this section, we use smoothness of the universal moduli space to prove smooth-

ness of each MS’H(J ), for generic J € J.. As mentioned before, the starting point
is Smale’s generalisation of the Morse-Sard theorem to smooth Banach manifolds.
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Theorem 4.93 (Sard-Smale theorem, [Sma65]). Suppose X andY are smooth separable
paracompact Banach manifolds. Suppose f: X — Y is a smooth map whose differential
dfy: Tu X — Ty(y)Y is a Fredholm operator, for every x € X. Then the regular values of f
form a co-meagre subset of Y. O

The following observation shows how the Sard—Smale theorem is useful for our
purposes.

Lemma 4.94. Each linearisation dm(u, J) of the canonical projection U*(Je) > (u, J)
J € J. is a Fredholm operator. If J is a reqular value of m, the pair (u,J) € U*(T.) is
e-regular.

Proof. Let (u,J) € U*(J.). We prove that the linearisation dr(u, J) is a Fredholm
operator with the same index as the linearisation (4.5) that defines H-Fredholm
regularity: therefore, every regular value of 7 belongs to Jreg. In the local identi-

fication of U*(J.) with (5?)_1(0), the smooth projection 7 has derivative at (u, J)
equivalent to the linear projection

ker DA (j, u, J) = T1Te, (y,n,Y) = Y.
This yields a natural identification of ker dr(u, J) with the kernel of the operator
DO(j,u): TjT © T,B" — LP(Homc (TS, u*TM))

which is used to define H-Fredholm regularity. The following general fact from
linear functional analysis shows that the co-kernels of dr(u,J) and D ;(j,u) are
also isomorphic: thus, both are Fredholm operators, with the same index. O

Lemma4.95 ([Wen15, Lemma 4.4.13]). Suppose X,Y and Z are Banach spaces, D: X —
Z is a Fredholm operator, A: Y — Z is another bounded linear operatorand L: X @Y —
Z,(x,y) — Dz + Ay is surjective. Then the projection I1: ker L — Y, (x,y) — y is
a Fredholm operator, and there are natural isomorphisms kerII = ker D and cokerII =
coker D. O

Therefore, the Sard-Smale theorem shows the following.

Corollary 4.96. For all e decaying sufficiently rapidly, there exists a co-meagre set Jreg C T
such that Mﬁ’H(J) is a smooth manifold for all J € Jreg. O

Each Mﬁ’H(J ) is finite-dimensional with explicitly given dimension.

Lemma 4.97. For J € Jyeq, the dimension of/\/lﬁ’H(J) near (4,6, u)] is
m{!(coker Dy; 9)) + mi! (ker D,,).

Proof. Let J € Jreg be arbitrary. Then each u € Mﬁ’H(J ) is H-Fredholm regular.
Thus, Lemma 4.64 shows that Mﬁ’H(J ) is a finite-dimensional manifold, whose
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dimension near [u] € M{}’H(J) is ind(D3d;(j,u)). Let [u] € Mﬁ’H(J) be arbitrary.
Recall that D3 ;(j,u)(0,n) = DXn: since T;T is finite-dimensional, we have

dim M;1(J) = ind D3, (j, u) = dim T;T + ind(DX).

For the first summand, Lemma 4.30 shows dim7;7 = mj!(coker D;g)). Since
u is H-Fredholm regular, the operator DX is surjective, and Lemma 4.82 implies
ind(DX) = mi!(ker D,)). Combining these, we obtain

dim Mﬁ’H(J) = dim T;7 + ind(DX) = m3! (coker D)) + mil (ker D). O

Remark 4.98. If A and H are the trivial group, this reduces to the virtual dimension
(2 —2g)(n — 3) + 2¢1(C) + 2m of the non-equivariant setting. Since A is finite, the
operator D( j,0) s injective [Wenl5, Proposition 4.2.12], thus we have

mi' (coker D;9)) = dimcoker D; gy = —ind Dy; 9y = —(3x(X) —2m) = 6 — 6g +2m.
Since H is trivial, DX = D,; since DX is surjective by H-Fredholm regularity of u,
mil (ker D,) = dimker D, = —ind D, = nx(X) + 2¢(C);

altogether, we obtain

dimMﬁ’H(J) = m4!(coker D)) + mi (ker D,,) = 6 — 6g + 2m + n(2 — 2g) + 2¢1(C)
=(2-29)(n —3)+2c1(C) + 2m = vir-dim(u).

Lemma 4.97 is still a statement about the Cc-space. We can easily deduce that a
dense subset of all equivariant tame (resp. compatible) almost complex structures is
regular.

Corollary 4.99. There exists a dense subset Jreq C JE(M,w;U, Jhix) (resp. Treg C JG(M,w;U, Jfix))
such that M;"H(J ) is a smooth finite-dimensional manifold for all J € Jreg.

Proof. Letus prove the result for JE(M,w;U, Jgy); the compatible case is analogous.
Let Jo € J%(M,w;U, Jgy) be arbitrary; we consider the space 7, defined w.r.t. Jyof =
Jo, for some € as in Corollary 4.96. Since co-meagre subsets are also dense, the
set Jreg Of regular values contains arbitrarily close approximations to Jy in the C.-
topology, and therefore also in the C{X-topology. Since .Jo was chosen arbitrarily,

this implies that Jreg is dense in TG (M, w;U, Jgy). O

The final detail to take care of is upgrading this to a co-meagre subset, i.e. prov-
ing that Jreg is the intersection of countably many open dense subsets. We use an
argument originally due to Taubes [ Tau96, Section 5]. This depends on the fact that
the moduli space of somewhere injective curves, and the sets Mz‘j’H(J ), can be ex-
hausted — in a way which depends continuously on J — by a countable collection
of compact sets. Note that the notion of convergence in M(J) does not depend on
J in an essential way: hence, we can speak of a sequence of curves u; € M(J;) con-
verging, where J, € J (M) are allowed to be different almost complex structures.
The key step we need is the following.
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Lemma 4.100. For every J € J (M) and every positive real number ¢ > 0, there exists a
subset Mﬁ’H(J, c) C Mﬁ’H(J) with the properties

(1) Every curve in Mﬁ’H(J) belongs to Mﬁ’H(J, c) for some ¢ > 0.

(2) Foreachc > 0and any sequence Jy, — J € J (M), every sequence uy, € MS’H(Jk, c)
has a subsequence converging to an element of Mﬁ’H(J, c).

Let us postpone the proof of this lemma for a moment, and prove how to find
a co-meagre set Jreg first. Again, the argument is exactly the same for tame and
compatible almost complex structures; let us just write down the tame case. For
each ¢ > 0, we define an open and dense subset Treg C TJE(M,w;U, Jay), by saying
J € JE(M,w;U, Jgsy) belongs to Treg if and only if every curve u € ./\/l‘;‘,’H(J7 c) is

H-Fredholm regular. Then, Jreg := [,cn kﬂﬁ{; C JE(M,w;U, Jgy) is a co-meagre

subset such that for every J € Jreg, every curve u € M; " (J) is H-Fredholm regu-
lar, and Mﬁ’H(J ) is a smooth finite-dimensional manifold.
Each set Jy, clearly contains Jieg, and is therefore dense. To prove that Jr,
is open, we argue by contradiction. If Jg, is not open, there exists a sequence
Jr € JE(M,w;ld, Jgy) \ T which converges to some J € Jg,. Then, there
also exists a sequence uj, € Mﬁ’H(Jk, ¢) of curves which are not H-Fredholm reg-
ular. By property (2) of the sets M{)’H(J ), a subsequence of (uj) converges to
some u € Mz‘j’H(J, c). Since J € Jyg,, the curve u is H-Fredholm regular. But
H-Fredholm regularity is an open condition, so some u;, must also be H-Fredholm
regular, contradiction!

Let us now prove Lemma 4.100. To begin, we recall the corresponding fact in the
standard setting (without a symplectic group action on (M,w)).

Lemma 4.101 (e.g. [Wenl5, Lemma 4.4.14]). For every J € J (M), there exists a col-
lection of subsets { M(J, ¢) }.cr+ of M(J) with the properties

e Forall J € J(M)and c < ¢, we have M(J,¢') € M(J,c).*

e Every curve in M(J) with an injective point mapped into U belongs to M(J, c) for
some ¢ > 0.

e For each ¢ > 0 and any sequence J, — J € J (M), every sequence uj, € M(Jy, c)
has a subsequence converging to an element of M(J, c). O

To prove Lemma 4.100, we improve the construction in Lemma 4.101 for our pur-
poses. For motivation, let us first consider the possible sources of non-compactness:
suppose (Ji) is a sequence in J (M) converging to J and a sequence [(3, ji, 0, ux)] €
Mﬁ’H(Jk) has no subsequence converging to an element of Mﬁ’H(J ). Then, one of
the following must happen:

*This property is usually not mentioned explicitly, but is implicitly proven in e.g. the proof referenced
above.
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(1) there is bubbling or the domains (3, ji, f) converge to a non-smooth element
of Deligne-Mumford space

(2) some subsequence converges to some curve [u] € M(J), but no subsequence
converges to a curve u with a somewhere injective point mapped into U/

(3) the limit [(X, j, 0, u)] satisfies A C Aut(X, 7, 6).
(The inclusion C always holds, by continuity.)

(4) the limit [(%, j,6,u)] lies in MA(J), but the stabiliser subgroup (A x G), is
larger than H

If we choose the subsets Mﬁ’H(J, c) = Mﬁ’H(J) NM(J,c) forall J € J(M) and
¢ > 0, possibility (1) is already excluded. The standard construction of M(J, ¢)
also includes a condition about having an injective point “at least distance ¢ away
from the boundary of U”, preventing item (2) from happening: for clarity, we ex-
plicitly add this to our definition of Mﬁ’H(J , ¢) below. It remains to add conditions
excluding the last two scenarios.

Let us explain the condition concerning the group A separately. Choose a metric
d metric on J(X). For brevity, we will write Aut(j) (instead of Aut(X, j, 6)), leaving
¥ and 6 understood. For any closed subgroup A < Diff, (3, ), let us abbreviate

TE)a={ieIE) | Aut(%,jo,0) = A}.
For each real number ¢ > 0, consider the set 7 ()4 C J(X)a given by
T(E) = {jo € T(2)a | Vj € Be(jo), A C Aut(S, j,0) implies Aut(X, j,0) = A}.

Intuitively speaking, J(X)4 consists of all A-invariant complex structures j €
J (2) which are “not close to” having automorphism group larger than A. The argu-
ments from the previous chapter imply that the sets J (%) indeed cover J(2) 4.

Lemma 4.102. For every closed subgroup A < Diff(X, 0), we have T (£) 4 = o0 J (Z)2C.

Proof. The inclusion D holds by construction. For D, let j € J(X)4 be arbitrary.
By Lemma 4.28, j has a neighbourhood U C J(X) such that for all j/ € U, the
automorphism group Aut(j’) is conjugate to a subgroup of Aut(j). Choose ¢ > 0
so B.(j) C U; we claim that j € J(X)4. Indeed, let j' € B.(j) be any A-invariant
complex structure. Since j' € U, Aut(j’) is conjugate to a subgroup of Aut(j) = A.
As A C Aut(j'), in fact equality must hold. This proves that j € J(3)4=. O

The following result is the core of why this definition is a useful criterion to apply
Taubes’ trick.

Lemma 4.103. If (j;.) is a sequence in J (X)4¢ converging to some j € J(X), then j €
j(E)A’C.
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Proof. Suppose (ji) is a sequence in J(X)4¢ converging to some j, € J(X); we
need to show jy € J(X)%4. Observe that the set of A-invariant complex structures
in J(X) is closed: hence, A C Aut(X, jo, ). In fact, this inclusion is an equality: we
have jo € B.(ji) for some k (in fact, any sufficiently large k). Since j, € J (%)%, by
definition of 7 (¥)%¢ we conclude Aut(¥, jo, §) = A.

If jo ¢ J(X)4¢, some j € J(X) would satisfy ¢ := d(jo,j) < cand A C
Aut(X, 7,0). Choose k sufficiently large so d(jk,jo) < ¢ — ¢, then the triangle in-
equality implies d(j, j) < c. But then j;, € J(X)4¢ implies Aut(j) = A, contradic-
tion! O

Proof of Lemma 4.100. Choose subsets M(.J,c) C M(J) for each J € J(M) and ¢ >
0 as in Lemma 4.101. To define the sets M&"H(J, c) C MS’H(J), let us introduce
some notation. Fix some metric on M and consider the induced Hausdorff distance
dp of two subsets S, T C M. For all A, H and ¢ > 0, consider the set S(A, H, ¢) of
all parametrised curves (X, 7,6, u) € MAH () such that?®

(1) jeg®*e
(2) dg(imu,imh-u) > cforallh € A x G\ (4 x G),, and

(3) “u is not close to losing an injective point mapped to I/”: there exists a point

20 € Bsuch that dy (u(z0), M\U) > ¢, |[du(zo)|| > candinf, ez (o) L4002
C.

In particular, the last condition ensures that u € S(A, H, ¢) has an injective point
which is mapped into U/. The set S(A, H, ¢) contains the essential conditions to add
to the sets M(.J, c) to make them apply in our setting: for each J € J(M)and ¢ > 0,
we define

M (T ¢) = M(J,e) N {[u] | ue S(A, H,e)}. (4.7)

We claim these sets Mﬁ’H(J, c) enjoy the properties we want. For the first con-
dition, let (3, 7,6,u) € MﬁH(J) be arbitrary; we show [u] € Mﬁ’H(J, c) for some
¢ > 0. Since Aut(X, j, 0) = A by definition, we have j € J(X)4, thus Lemma 4.102
implies j € J(2)4 for some ¢; > 0. Moreover, for each h € A x G\ (A x G),, the
images of v and h - u are distinct closed subsets of M, hence have positive Hausdorff
distance; thus ¢y := min{dy (im(u),im(h - u))|h € A x G\ (A x G),,} is positive.

By definition, u has an injective point zp mapped into /. Let us show that u sat-
isfies item (3) of S(A, H, ') for some ¢ > 0. This argument is exactly the same as
in standard proofs of Lemma 4.101. Denote c3 := dp(u(z0), M \ U); this distance is
positive since U is open. Since du(z) is injective and T, ¥ is finite-dimensional, the
operator norm ¢y := |[|du,|| is positive. Finally, c5 := inf.cx\ (21 % > 0:
for z sufficiently near 2y, say 29 € U for some open neighbourhood U C X of zy, we

dgr (u(zo0),u(z) drr (u(z0),u(2))

) > €2 g . 1 . . .
have 1 (20.2) > F since u is C". The function z — dn(oz) 18 continuous

PRecall that in this chapter, ¥ and 6 are our fixed bookkeeping choices.
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and never zero on the compact set ¥ \ U (since u~!(u(z0)) = {20} by hypothesis
of zp being an injective point), hence has a positive lower bound. Thus, u satisfies
item (3) in the definition of S(A, H, ) for ¢ = min(cs, cy,c5). Altogether, we de-
duce u € S(A, H,min(cy,...,cs5)). By property (3) of the sets M(J,c), we have
[u] € M(J,cg) for some c¢g > 0. Choosing ¢ := min(cy, ¢z, ¢3, ¢4, ¢5, ¢6), We obtain
u e S(A, H,c¢)and [u] € M(J,¢), hence [u] € My (J,¢).

For the second condition, let ¢ > 0 and a sequence J;, — J in J (M) be arbi-
trary; suppose ([X, jk, 0, ux]) is a sequence in MZZ"H(J;C, ¢). Tweaking the chosen
representatives if needed, we assume (X, ji, 0, ux) € S(A, H, c¢). We need to exhibit
a subsequence converging to some u € Mﬁ’H(J, c). By property (3) of the sets
M(J, ¢), by passing to a suitable sub-sequence, we may assume (uj) converges to
some u € M(J,c). By property (1) of S(A, H,c), we have j;, € J(X)4* for all k.
By Lemma 4.103, after passing to a further subsequence, we may assume (jj,) con-
verges to some j € J ()4
By hypothesis, each uy, satisfies the conditions (A x G),, = H and dg(im uy,imh -
ug) > cforallh € Ax G\ (A x G),,. Since A x G is finite, there are only finitely
many subgroups of A x G. Thus, passing to a further subsequence if necessary, we
may assume (A x G),, = Hy for all k, where Hy < A x G is some fixed subgroup
conjugate to H. By hypothesis, each curve u;, has an injective point z;, € ¥ such that

oo d(ur(zr), uk(2))
d(ug(zx), M \U) > ¢, ||dug(z)|| > cand Zeér\l{f%} d(ox,2)
Restricting to a further subsequence, we may assume the sequence (z;) converges

to some z; € 2.

Now, [(%,7,0,u)] € MS’H(J, c) follows: we already proved [u] € M(J,c) and
j € J(¥)*¢. By continuity of the A x G-action, we have Hy C (A x G),. For
h € A x G\ Hy, for each k we have dy(imuy,imh - u;) > ¢ by hypothesis. Since
the Hausdorff distance is continuous, we deduce dy(imu,imh - u) > cfor all h €
A x G\ Hy. This proves item (2) in the definition of S(A, H, ¢), and also implies
(A x G)y = Hyp: in particular, u € MAH (] follows. Ttem (3) defining S(A, H, c)
follows by continuity of dg: using (4.8) and u;, — u, we deduce

d(u(z), u(z))

> > : — 7 > e
dlu(zo), MAU) z ¢;|[dulz0)| z cand _ inf  —=7 5= > ¢ -

> c. (4.8)

4.6. Completing the proof: deducing smoothness of
iIso-symmetric strata

In this section, we complete the proof of Theorem 4.3 by deducing it from Theo-
rem 4.4. We only present the details for compatible G-equivariant almost complex
structures; the argument in the tame case is exactly the same.

The main new feature is including the orders 1 of the critical points: this can be
handled using standard methods (see e.g. [Wen23d, Appendix A].) We omit the
details.
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Theorem 4.104. Suppose Mﬁ’H(J ) is a smooth manifold, then for all k-tuples I of positive
integers, the iso-symmetric stratum Mﬁ’{[(J ) is a smooth submanifold of Mg’H(J ) of co-
dimension 2n Zle l;. O

Proof of Theorem 4.3. Since 2g-+m > 3, for all j the automorphism group Aut(X, j,0)
is finite (by Lemma 3.44). Thus, for all non-empty pre-strata MA(J), the group A
is finite.

By Proposition 3.63, the overall number of distinct non-empty sets Mﬁ’H(J ) is
countable. Denote this collection by {S,,(J)}ner for some subset I C N. For each
stratum S, (j), using Theorem 4.4 we find a co-meagre set Jreg n C J G(M,w;U, Jgy)
such that S,,(.J) is a smooth manifold for all J € Jregn. Then Jreg := Nnerdregn
is a countable intersection of co-meagre sets (hence co-meagre), and for each J €
Jreg, all sets Mﬁ’H (J) are smooth manifolds. For each such J, each iso-symmetric
stratum Mz‘le (J) is a smooth submanifold of Mﬁ’H(J ), by Theorem 4.104 above;
its dimension is

dim M1 (1) = dim M; " () — 20328 1,
k
= m4!(coker D)) + mil (ker D,) — 2n Z l;. O

=1

4.7. Generalising to infinite A or compact GG

The proofs so far require A and G to be finite. There are good reasons to expect
this to be overly restrictive — but more general proofs require further ideas and
substantial effort. Let us comment on this.

The main reason for this restriction is mostly technical and not conceptual: to
write down a local model for the sets Mﬁ’H(J ), we need the base 7 x B and in
particular the orbit type

BE :={ueB| (AxQG), = H)}

of H in B = WYP(32, M) to be a smooth submanifold of B. If A x G is finite, this
was not difficult to show, as B then locally coincides with the fixed point set By of
H. Put differently, the stabilisers of u € BY are, in fact, locally equal to H. If A x G
is a Lie group of positive dimension, this is generally no longer true, and stabilisers
may only be equal up to conjugation.

In the finite-dimensional setting of the orbit type stratification, this is addressed
via the slice theorem: this allows reducing the description of B to considering the
fixed point set By. The slice theorem is a classical fact for finite-dimensional smooth
manifolds with a proper C'! action. It also holds holds in infinite dimensions, for in-
stance for a smooth and proper action of a finite-dimensional Lie group on a smooth
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Banach manifold.2® In our setting, however, this is not useful at all, since the A x G-
action on B is not differentiable, let alone smooth. While G acts smoothly on 5,
the A-action is only continuous and cannot be differentiable, because of the loss of
derivatives.

Therefore, proving smoothness of the iso-symmetric strata for A x G an infinite
group requires new ideas, beyond what is presented in this thesis. One promising
approach is using the global deformation operator of v [Wen23a; Bar24] instead: we
refer the reader to Wendl’s blog ([ Wen23a] and the not yet published part 3 of that
series) for an overview of this idea.

One necessary side effect of this approach — which we consider a positive feature
— is removing the need to construct adapted Teichmiiller slices. This required tech-
nical effort to construct (in particular, for the unmarked torus, where the obvious
adaptation of the standard slice is not obviously a valid construction). It is also a
non-canonical choice, and it requires understanding the moduli spaces M, , first:
one could argue (e.g. [Wen23a]) this should not be necessary.

The global deformation operator dispenses with the adapted Teichmiiller slices
in local models and the pre-strata in the definition; let us briefly indicate how this
is possible. In their stead, we consider just the Diff (X, §) x G-action on the space
N (J) from Observation 3.58. While Diff , (3, §) is not a finite-dimensional Lie group,
this action is still well-defined and continuous. The iso-symmetric stratum M (.J)
corresponding to a closed subgroup H < Diff, (3, 0) x G is then defined as M (J) :=
{lu] | (4,u) € X}, where

X :={(j,u) e N(J) | (Diff.(Z,0) x G), = H}.

As the Diff | (3, §) x G-action is proper on stable curves (by Remark 3.62), H is still
a compact Lie group. Countability of the strata needs additional work: it turns out
that the definition is related to the sets M4 (.J).

Lemma 4.105. For all closed subgroups H < Diff, (X,0) x G, we have

M= M.
A<Diff, (Z,6)

Proof. Observe that (j,u) € J(2) x M(J) lies in X if and only if (X, j,0) is stable
and
(Diff4 (3,0) x G)y "2 (Aut(S, 5,0) x Gy = H.

We prove both inclusions separately.

“=": Suppose [u] € MH(J),i.e.(j,u) € X. Write A := Aut(%, 5, 0); thisis a closed
subgroup of Diff (X, #). By the above, (j,u) € X implies (Aut(X, j,0) x G), = H;
thus (4 x G), = H and u € MAH(.]) follows.

*The author is not aware of any explicit written reference for this setting, but the classical proof
(found in e.g. [AB15, Theorem 3.49] or [DKO00, Theorem 2.3.3]) generalises almost verbatim.
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“«": Suppose [u] € MAH(]) for some closed subgroup A < Diff, (%, 6). Then
(A x G), = H by hypothesis. By definition, u € MA(J) implies Aut(%, j,6) = A4,
so (Diff(X,60) x G), 328 (Aut(X,4,0) x G), = (A x G), = H follows, proving
(j,u) € X and [u] € MH(J). O
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5. Definition and smoothness of walls

In the previous two chapters, we decomposed the moduli space M(.J) into count-
ably many iso-symmetric strata M 3 lH (J) and proved that, for generic G-equivariant
J, every stratum is a smooth finite-dimensional manifold. As the next step, we de-
compose each iso-symmetric stratum further into countable many walls and prove
that these are (generically) smooth manifolds.

Recall that to each curve in M;fl (J), we associate an equivariant Fredholm op-
erator. A fruitful operator to consider was already used in Wendl’s solution of the
super-rigidity conjecture [Wen23d]: in fact, there are two closely related operators,
the linearised Cauchy—Riemann operator D,, of each holomorphic curve u, and its nor-
mal Cauchy—Riemann operator DY . These are Fredholm operators, hence have finite-
dimensional kernels and co-kernels. In Wendl'’s setting (of multiply covered curves,
but no symplectic group action on M), there is a symmetry through the (gener-
alised) automorphism group G of the curve, and the operators are G-equivariant.
Their kernels and co-kernels then define G-representations, which can be used to
define the walls. In our particular situation, we want to obtain G,-equivariant Fred-
holm operators, where G,, is the stabiliser of each curve u € M;{I (J) under the

Gy-action.! The normal Cauchy-Riemann operator is useful, but in general, the
correct operator to consider is the restricted normal Cauchy—Riemann operator.

In Section 5.1, we recall the definition of the normal Cauchy-Riemann operator

and show it is H-equivariant in our setting. We explain how this induces the re-
stricted normal Cauchy-Riemann operator (which is G,,-equivariant), and define
walls using this restricted operator. We state the main result of this chapter and
prove that there are countably many non-empty distinct walls.
The remainder of this chapter is devoted to proving that walls are generically smooth.
Like for the iso-symmetric strata, smoothness of the walls is proved using the im-
plicit function theorem. In Section 5.2, we explain the basic set-up for the proof. The
main argument has two parts: the first one (called “flexibility” in Doan-Walpuski’s
terminology) is carried out in Section 5.3. The second part is the crux of the argu-
ment: we prove that for generic J, the restricted normal Cauchy—-Riemann operators
satisfy a condition known as Petri’s condition (see Definition 5.23). In general, prov-
ing that an equivariant transversality problem satisfies Petri’s condition is the hard-
est part: for H finite, this work reduces to the non-equivariant case. We complete
the proof of smoothness in Section 5.5.

Hf Gy, is trivial, we actually about H-equivariance: this is a more exceptional case.

113



5.1. Definition of walls

In this section, we explain how to split each iso-symmetric stratum MﬁlH (J) into

walls. The basic idea is not difficult: to each curve u € MﬁlH (J), we associate

an equivariant Fredholm operator DY \which varies smoothly with u. Then,

M;fl (J) decomposes into walls according to the dimension of the kernel and co-
kernel of D"t

Definition 5.1. For all J € JY(M,w) and integers k,c > 0, the corresponding wall
M(J;k,c) C Mﬁ’{{(J) is defined as

M(J;k,c) :={[u] € Mng(J) | dimker DY — k. dim coker DY = ¢},

As hinted already, the Fredholm operator D} is the restricted normal Cauchy-

Riemann operator of u (for suitably chosen auxiliary data): let us introduce its defi-
nition. We begin by reviewing the definition of the “unrestricted” normal Cauchy-
Riemann operator.

Recall. If u: ¥ — M is a smooth embedding, the subset T}, := du(T%) C u*T'M is
a smooth sub-bundle of w*T'M, called the tangent bundle to u. Choosing a bundle
metric on v*T'M, the complement N, C ©w*T'M of T, is called the normal bundle to
u. If u is J-holomorphic, T}, is a complex sub-bundle of v*T'M, and so is N,, if we
chose a complex bundle metric.

If u is a simple holomorphic curve, it is embedded away from a finite set of self-
intersections and critical points. In fact, self-intersections are not an issue for defin-
ing the tangent and normal bundles to u; the above definition works verbatim for
immersed curves. If u has a critical point zp € X, however, the space du.,(7%,%) C
Tu(z)M is zero-dimensional, hence we need to tweak the definition. The generalised
tangent bundle and generalised normal bundle to u extend the above to curves with iso-
lated critical points. This idea goes back to Ivashkovich and Shevchishin [IS99]. We
follow Wendl’s presentation [ Wen10], which uses less algebraic language (avoiding,
for instance, any mention of sheaves and exact sequences).

Lemma 5.2 ([Wen10, Section 3.3]). There exists a holomorphic rank one sub-bundle T,, C
u*T'M, called the generalised tangent bundle to w, such that (T,,), = im du, whenever
z is not a critical point of u. O

Since we need to use this information later, let us briefly indicate how to de-
fine (7)), for a critical point z € X of u. The linearised Cauchy—Riemann oper-
ator D,, defines a holomorphic structure on the bundle «*T'M (uniquely charac-
terised by the condition that local holomorphic sections vanish under D,,). This in-
duces a holomorphic structure on Home (7%, w*T'M), and one can show that du €
I'(Homc (7%, w*T'M)) is a holomorphic section. Thus, choose a holomorphic trivial-
isation of Hom¢ (7Y, u*T'M) near zy and express u locally as a C"-valued function
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(where dim M = 2n) of the form (z — 29)*F(z) for some k& > 1 and a C"-valued
meromorphic function F with F(z) # 0. (In fact, k is the order of the critical point
29.) We define (T},)z as the complex subspace spanned, in the trivialisation, by

F(z) € C™\ {0}

Definition 5.3. The generalised normal bundle IV,, C ©*T'M to w is the complement of
T, w.r.t. to some complex bundle metric. In particular, N, is a complex vector bundle.

Thus, we have a splitting u*T'M = T, & N,,. Decomposing the linearised Cauchy-
Riemann operator D,, = D0 ;(u): I'(w*TM) — I'(Homc (TY, w*TM)) according to
this splitting yields a block decomposition

Dl DIN
D=\ oy )

soe.g. DYT: I'(T,) — I'(Homg (T, Ny)).

Definition 5.4. The normal Cauchy-Riemann operator of u is the composition
DY :=7n o Dulr(n,): T(Ny) = T'(Home (TS, Ny)),

where w : T'(w*T M) — I'(N,,) is the quotient projection along N,,.

Recall that D,, and D} are Fredholm operators and vary smoothly with u. An
important observation, leading to the definition of the restricted normal Cauchy-
Riemann operator, is that for curves in a given iso-symmetric stratum, these are
also equivariant: if u € Mvﬁ’H(J ), then D, and DY are H-equivariant Fredholm
operators. Let us begin by proving the equivariance of D,,.

Observation 5.5. For every u € Mvﬁ’H(J ), the stabiliser H acts linearly on I'(u*T'M)
by (¢,9) -1 = dipg ono ¢~1.2 Similarly, H acts linearly on I'(Homc (TS, w*TM)) by
(6,9) - m:=dipgonodp=t?

Proof. We only prove the first part; the second statement is analogous. It is easy to
check by hand that this is well-defined and defines a left action, using h - u = u for
all h € H. A more conceptual proof observes that this action is the linearisation of
the A x G-action on the bundle £ — B from the previous chapter: for n = Jyu|i—o €
I'(u*TM), we compute

(6, 9)-n = dibg(n(¢™")) = dibg(Dpur) =00 ™" = dy(dpgourod™ )|ty = De(¢, g)-utli—o,

thus (¢,9) - 1 = 0:(¢, g) - utlt—0 = Opus|t—0 = 0. O

Note that H does not act on w*T'M (nor on N,,), as G does not act over the identity
map on the base. However, we get a linear action on the space of sections of v*T'M
(and of N,,), which is all we need.

“More explicitly, for each z € ¥ we have ((¢, ) -1)(2) = dig(n(¢7(2))) € Tyuo-1nM = Tuy M.
*More explicitly, we have ((¢, g)1)(2) := (X + dipy 0ng-1((d¢~1(X))) forall z € Land X € T.X.
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Observation 5.6. For all u € Mvzjl’H(J ), the linearised Cauchy—Riemann operator
D, is H-equivariant.

Proof. Let h € H be arbitrary. Recall that h - 9;(u) = d,(h - u). Differentiating and
using the linearity of the H-action, for each = dsu¢|t=o € I'(u*T'M) we obtain

Du(h : 77) = Du(h : 8tut’t:0) = Du(at(h : Ut)\tzo) = Vﬁj(h : Ut)|t:0
= Vth . 5J(ut)|t:0 =h- Vta](ut)h:o =h- Du(&guth:o) =h- Du(n) OJ

Lemma 5.7. The space I'(T,,) is H-invariant.

Proof. Letn € I'(T,,) and h = (¢, g) € H be arbitrary; we must show h - n € I'(T},).
This follows from two observations: they imply & - 7 is tangent to iy, o u(¢p™1) = u
as desired.

e For any n € I'(T,) and g € G, the section di4 o n lies in I'(T.,,).
e Forany n € I'(T,) and ¢ € A, the section n(¢~!) lies in I'(T,,05-1).

At immersed points of u, both observations are obvious. They is also not hard to
prove at critical points; one just needs to unfold the definition of the generalised
tangent bundle 7},. We omit the details. O

Next, we turn to H-equivariance of the normal Cauchy-Riemann operator D7.
To boot, this requires the space of sections I'(V,) and I'(Hom¢ (T, N,,)) to be H-
invariant, wherefore we need to choose our bundle metrics with some care. As in
the previous chapter, choose, once and for all, an A-invariant Riemannian metric
on ¥ and a G-invariant bundle metric on T'M. This induces a bundle metric on
uw*T'M for any u € Mﬁ’H(J ), and also an H-invariant L?-pairings on I'(u*T'M) and
['(Homg (TS, u*TM)). We define N, using this bundle metric. We claim that D
is an H-equivariant Fredholm operator I'(N,,) — I'(Hom¢ (7%, N, )). The first step
is proving that I'(V,,) is H-invariant.

Lemma 5.8. The space I'(N,,), defined using the above bundle metric, is H-invariant.

Proof. This is a general fact about complements of vector sub-bundles and follows
from the H-invariance of I'(7},) and the bundle metric. Observe that I'(N,,) is the
orthogonal complement of T'(T,) with respect to the L2-pairing on I'(u*T'M). Sup-
pose ¢ € I'(N,) and h € H. For all n € I'(T,,), we compute

<777 h - €> = <h71777€> =0
using the H-invariance of the pairing, therefore h - ¢ € I'(IV,,) follows. O
Secondly, I'(Hom¢ (T'Y, N,,)) is H-invariant.

Observation 5.9. I'(Hom¢ (7%, N,,)) is H-invariant.
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Proof. Completely analogously toI'(T},), we prove that I'(Hom¢ (7%, T),) ) is H-invariant.
Observe that I'(Hom¢ (7Y, N,,)) is the complement of I'(Hom¢ (7%, T,)) w.r.t. our
chosen H-invariant pairing: therefore, it must also be H-invariant. O

Corollary 5.10. DY is an H-equivariant Fredholm operator which varies smoothly with u.

Proof. 1t just remains to show H-equivariance. By definition, DY = mn o Dy|r,)-
The operator D, is H-equivariant (as above); 7y is H-equivariant since H acts lin-
early and both I'(7},) and I'(V,,) are H-invariant. O

The normal Cauchy-Riemann operator is almost the right operator to consider:
we have to make one last change, to account for another, better hidden, symmetry
inherent in our setting. So far, we accounted for the stabiliser H = (A x G),, which
corresponds to group elements g € G whose action yields a reparametrisation of
u. However, it is also necessary to note which g € G leave u fixed point-wise: the
reason is that Petri’s condition is a local condition. If a point p € M is fixed under
the G-action, G-equivariance places another constraint on local perturbations near
M: we need to remember this information. We encode this additional constraint
by considering a suitable sub-bundle of the normal bundle N,,. If u has non-trivial
(point-wise) stabiliser G, under the G-action, then v maps into a symplectic sub-
manifold of M, and the normal Cauchy-Riemann operator induces an operator on a
corresponding sub-bundle of N,; we call this operator the restricted normal Cauchy—
Riemann operator.

Let us make this precise. Fix a curve u € /\/lz‘le (J) and consider the stabiliser

G. < G. Then u takes values in the fixed-point set M* := Fix(G,) C M. The
starting observation is that M is a symplectic submanifold, so we may study u as
a holomorphic curve into M.

Observation 5.11. For every finite subgroup Gy < G, the fixed point set M0 :=
Fix(Gp) is a symplectic and almost complex submanifold of M.

Proof. Tt is a classical result that A/“0 is a smooth submanifold; see Lemma 4.52
resp. [DKOO, p. 108; AB15, Proposition 3.93]. Since J is G-equivariant, M Go must
also be an almost complex submanifold: we prove this using Lemma 4.56. For all
X € T,M%,wehaveg-(JX)=J(g-X) = JX forall g € Gy, hence JX € T,M%
as well. Since J is w-tame, M0 is also symplectic: for any X € T,M“°, tameness
implies w(X, JX) > 0, thus w|p,,c, is non-degenerate. O

Let u®: ¥ — M denote the co-restriction of u. Let EX := N,x C u"TM~K
be the generalised normal bundle of u, denote F¥ := Hom¢ (7%, N,x ). Observe
that there are natural injective bundle maps EX — E and FX — F,induced by the
inclusion ¢: M% < M. More precisely, « induces an injective linear bundle map

wpTME — w*TM,n — du(n),
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which maps T, x to T),. (This is easy to verify at the non-critical points, for instance.)
The (image of the) sub-bundle 7'M K js G,-invariant. Since N,, was defined using
an H-invariant bundle metric, the complement N, x of T}« is a sub-bundle of E*.
For FX, we argue similarly, using that (N« ). = (Ny).Nde(T,,;) M*). In Section 5.4,
we prove (in Lemma 5.32) that any H-equivariant Cauchy-Riemann type operator
['(E) — T'(F) maps I'(EX) to T'(FK). In particular, this applies to D.

Definition 5.12 (Restricted normal Cauchy—Riemann operator). The restricted nor-
mal Cauchy-Riemann type operator of u € M;fl (J) is the Cauchy—Riemann type op-
erator D)™ : T(EX) — T(FX) induced from DY, i.e. it is characterised by DY (u(n)) =
W(DY" () for all n € T(EX). Equivalently, D Nmtr is the normal Cauchy—Riemann
operator of u’.

In particular, D} ™" is still a Fredholm operator which depends smoothly on w.

It has equivariance properties analogous to DY.

Lemma 5.13. The restricted normal Cauchy—Riemann operator DY : D(EX) — T'(FK)
is a G-equivariant Fredholm operator.

Proof. This follows from exactly the same reasoning as for the normal Cauchy-Riemann

operator D ; we use that DN TeSt i the normal Cauchy-Riemann operator of the

J -holomorphlc curve u*: ¥ — MK, We merely need to compute that G, is the
stabiliser analogous to H.

Consider C := u/,[%] € Hy(M¥), 50 1,.C = C is the homology class defining the
moduli space M(J) which u lives in. Consider the analogous parametrised moduli
space

M(C,J; M5) = {(2,7,0,0%) | (,],0) € Mym,v™: & — M¥ is J-holomorphic,
o5 (0) = 0,05,]5] = C}

of curves in M¥. This space splits into iso-symmetric strata analogous to M(.J): for
each closed subgroup A < Diff, (¥, 9), there is a pre-stratum

MAC, J; M¥) = {(2,],0,0) € M(C, J; M¥) | (2,5,0) € M2},

which admits an A-action by reparametrisation. The group G/, acts trivially on M K
(since M = Fix(G,) by definition), hence also on ./\/l(C J; MK). In particular,
each pre-stratum has an A x Gy-action by (¢,9) v = ¢py0 (vo¢™1) = vogp L
This implies that for simple curves, each pre-stratum only consists of a single iso-
symmetric stratum: for all simple v € M(C, J; MX), wehave (Ax Gy),x = {id} x
G, since
(¢.9) € (Ax Gu)px & v=(¢,9)ov=v0¢"

implies ¢ = id for v simple.

The curve X has still genus g and m marked points, its domain is the domain of u,
thus has automorphism group A. Therefore, u® € MA(C, J; M¥), and we deduce
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(A x Gy)ux = Gy. Applying Lemma 5.8, Observation 5.9 and Corollary 5.10 to this
setting, we deduce that I'( EX) and T'(FX) are G,-invariant, and that D" : T'(EX)
['(FE)is G,-equivariant. O

One last observation is important. If G, is trivial, the above lemma is correct,
but vacuous. This does not mean D" has no symmetry then — to the contrary,
it is even H-equivariant (not just G,-equivariant). The reason is that in this case,
EX resp. FX agree with E and F, respectively and the restricted normal Cauchy—
Riemann operator D} """ is precisely the normal Cauchy-Riemann operator. Thus,
the correct symmetry to consider depends on whether G|, is trivial or not.

In the remainder of this chapter, we prove the following.

Theorem 5.14. There exists a co-meagre subset Jreg C J G(M,w;U, Jhix) (resp. Treg C
JTG(M,w;L{,Jﬁx)) such that for every J € Ty, each wall M(J;k,c) C Mﬁ:{l(J)
containing a given curve u is a smooth finite-dimensional manifold. Its co-dimension is
Homj; (ker DY | coker DY) if G,, is trivial, and Homg, (ker D" coker DA™ oth-
erwise.

Since the integers are countable, Proposition 3.63 readily implies

Theorem 5.15. For each J, the number of non-empty distinct walls M(J; k, c) is countable.
O

5.2. Setting up the proof of smoothness

The proof of Theorem 5.14 is again an application of the implicit function theorem:
we exhibit each wall as the zero set of a suitable smooth section in a Banach space
bundle. Let us explain this set-up in detail. During this argument, we need to con-
sider how the Fredholm operators D™ vary with w.

In the following, consider a parameter space P, a smooth Banach manifold. (In this
thesis, P is simply an iso-symmetric stratum. Other related settings require a dif-
ferent choice of parameter space: for bifurcation analyses similar to Bai and Swami-

nathan, one studies parametric moduli spaces, with e.g. P being one-dimensional.)
Take a smooth family of curves {[us]}sep in Mﬁfl (J). Choose the representatives
Uy (X, js) = M so that (A x G),, = H and both u, and j, vary smoothly with
o and J. (This is possible by definition of the topology on the iso-symmetric stra-
tum.) As the first step towards the proof, let us locally describe the parameters in
P intersecting a given wall. Intuitively, because the Fredholm index of D" is

locally constant, it suffices to prescribe the dimension of ker D", To make this
precise, consider the subset

P(k,c) == {7 € P | dimker D) = f, dim coker D" = ¢}.

Lemma 5.16. Each o € P(k,c) has a neighbourhood U, C P such that U, N P(k,c) is
the set of all T € U, such that dim ker D" = k.
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Proof. Since o € P(k, c), we have ind Dy™*" = k — ¢. Since the family { Dy""*"} . cp
depends continuously on 7 and the Fredholm index is locally constant, for all =
sufficiently close to o we have ind D)™ = ind D"*". Then, dim ker D™ = £

implies
dim coker D™ = dim ker D" —ind D} ™" = dim ker D))" —ind D}/"*" = ¢,
as desired. O

For the remainder of this section, let K denote the group H if G, is trivial, and
G, otherwise. In the previous section, we have shown that I'(EX) and T'(F¥) are
K-invariant, and that D)% is K -equivariant. The domain of the operators Drestr
depends on u: this is a bitannoying for later analysis, so let us construct local smooth
families of operators on the same domain. For convenience, we abbreviate D, :=
DY for r € P. Shrinking U, if necessary, we can assume that U, is convex,
hence the maps u, and u, are homotopic (for each 7 € U,), hence N, and N,,
are isomorphic. Fix two parameters k and p with kp > 2. Given a smooth family
of bundle isomorphisms ¥, : N, — N, for each 7 € U, with ¥, = id, there are

induced smooth isomorphisms W*?(N,_) — W*P(N,_),n+ ¥, onand
WP (Home (TS, Ny, )) — WH?(Home (TS, N, )),n — ¥ron,

which we will both denote by ¥, for convenience. Thus, we obtain a smooth family
of Fredholm operators

D, =U'oD,oW,: WFP(N,, ) — W*P(Home(TE, Ny, ))

on a fixed domain. If ¥ was just an arbitrary bundle isomorphism, however, there
is no reason why D, would be K -equivariant: we have to work a bit harder to ensure
this.

The final construction proceeds in two steps. First, we find any smooth family of
bundle isomorphisms ¥.: N, — N,_; then, we upgrade these to K-equivariant
isomorphisms. For 7 € P, let us write E; := N, for brevity.

The first step is is straightforward using parallel transport on M. Consider the
smooth finite rank vector bundle E — U, x ¥ with fibres E'([,’Z) = (Nu, )z C Ty, (M.

Choose a connection on E. For each 7, consider the path v;: [0,1] — U, x ¥,t —
((1 — t)o + tr,z) connecting (o, z) to (7,z). Parallel transport along -, yields an
isomorphism (N, ). = E(m) = E’y(()) — Ev(l) = E(m) = (Ny,).. These iso-
morphism combine to a diffeomorphism ¥,: N,, — N,_; these diffeomorphisms
depend smoothly on 7.# Each ¥, induces a linear isomorphism

A WEP(E,) — WRP(E, ), n— W, 07

*For the pedantic reader, let us elaborate on why. Basically, parallel transport is an ODE, and unique
solutions to ODEs depend smoothly on their initial conditions. The map ¥, depends smoothly on
7o = (o, z), hence each V¥, is smooth. The maps ¥, depend smoothly on 7 the coefficients of the
ODE describing parallel transport depend smoothly on 7, hence so do the solutions V..
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with 4, = id. N
Next, we “average” the A, using the K-action to obtain an K-equivariant map A,.
For each k € K, consider the map

Ab =kl Ar ks WhEP(Ey) — WHP(E,),

combining the K-actions on W*?(E,) and WHP(E,). 1t is easy to verify A¥(z) €
(E;), forall z € . We also check that A* is linear — since the differential di/, and
the K-action on W*?(E,) are linear. Consider now the map

A WEP(E,) — WFP(E,), A, :/ Ak dE,
K

where we integrate w.r.t. the Haar measure of the compact group K. We will prove
that A, is a K-equivariant linear isomorphism for all 7 sufficiently close to . Clearly,
A, is linear; the proof of K-equivariance is standard at this point, so we omit the
details.

We observe that A, = id (since A% = id for all k € K) and that the family {A,} is
continuous in 7.° It remains to prove that A, is an isomorphism for 7 near o. This
is the crux of this construction, and boils down to the fact that diffeomorphisms are
an open subset.

Lemma 5.17. If the open neighbourhood U, C P of o is sufficiently small, every map A,
for T € U, is a continuous linear isomorphism.

Proof. Consider the space £ := L(WFP(E,), W*P(E,)) of continuous linear maps
Wkr(E,) — WHFP(E,). Since W*P(E,) is a Banach space, the subset

V:={A € L: Aisanisomorphism} C £
is open and non-empty (since id € V).

This basically proves the claim: we just need to apply a small trick to convert the
family {A,} to one with constant target. Consider the family {B, := A; 0 A7 1}, cp,
in £. Since A, and A, depend continuously on 7, so does B, = A; o AT 1 Since
Ay =1id, also B, = id. Shrinking U,;, we can ensure all B, liein V,i.e. each A; 0 A 1
is an isomorphism. But since A; is an isomorphism itself, then so is A-. ]

Pre- and post-composing D, with A, and the K -equivariant isomorphism

B.: W 1P(Home (2, N, )) — WELP(Home (2, N,..))
induced from A, yields a family of K-equivariant Fredholm operators

D, :=B'oD.oA: WF(N,,) — WF1P(Home(X, Ny, )).

To summarise, on the last two pages we have proven the following result.

>For the latter, note that the family { A%} is continuous in both 7 and k: each A% is just a composition
of linear bundle maps; composition is continuous in the weak topology. The claim follows since
A, is continuous in 7 and K acts continuously by continuous maps. Integration over K is also
continuous.
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Lemma 5.18. Each o € P has a neighbourhood U, C P such that there exists a smooth fam-
ily { D} of K-equivariant Fredholm operators D, : W*P(N,) — W+ L (Homg(E, Ny, ))
with fixed domain and co-domain, such that dim ker ZA)T = dim ker D, and dim coker ﬁT =
dim coker D, for all 7 € U,, in particular U, N P(k,c) = {t € U, | dimker ﬁT =
k}. O

Remark 5.19. A similar argument allows upgrading a family of diffeomorphisms
to equivariant diffeomorphisms: we will not have use for this in this thesis.

Letus present the right hand side as the zero set of a suitable smooth map. Abbre-
viate X, := W*P(N,_ ) and Y, := Wk=1?(Homc (X, N,,)) for brevity, so we have a
smooth map

U, = Lx(Xg,Yy), T — D

into the Banach space L (X, Ys) of K-equivariant bounded real-linear ‘maps Xy, —
Y,. Since D, is Fredholm, we may choose a splitting X, = V5, @ ker D, such that
Vs C X, isaclosed subspace and Dy, maps V,, isomorphically to its image. Standard
arguments (similar to [Wen15, Propos1t10n 3.34] or [Wen23d Proposition 3.13])
show that we can split Y, = im D, @ker D, where ker D7 is equivalent to the space
of all sections in Y, which are L2-orthogonal to im Dy. In terms of these splittings,

we write DT in block form as
- Dll D12
DT <D21 D22)

after shrinking U,, if necessary, we may assume that D!: V, — im D, is invertible
for all 7 € U,. Therefore, there is a well-defined map

F,: Uy — Homg (ker Dy, ker D), 7 — D?* — D?' o (D)~ 0 D2,
Lemma 5.20. A parameter 7 € U, belongs to P(k, c) if and only if F,,(7) = 0.
Proof. This is fully analogous to [Wen23d, Lemma 3.25]. O

The implicit function theorem shows that a neighbourhood of ¢ in P(k,c¢) is a
smooth submanifold of co-dimension dim Hom (ker D, ker 13;) whenever the lin-
earization

dF,(0): T,P — Homg (ker Dy, ker D) (5.1)

is surjective. The remainder of this chapter is devoted to proving this surjectivity.

5.3. The flexibility condition

In this section (and the next one), we establish the mathematical key ideas for
proving surjectivity of the linearisation dF;, from (5.1). The first idea was dubbed
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“flexibility” by Doan and Walpuski: in broad terms, the space of normal Cauchy-
Riemann operators is large enough to exhaust all H-equivariant Cauchy-Riemann
type operators.® This is often much easier than the next step (dealing with Petri’s
condition). The precise statement to prove is modelled after [ Wen23d, Lemma 5.27].
As before, we need to prove two versions of this, for tame and compatible equiv-
ariant almost complex structures.

Lemma 5.21. Assume J € J (M, w;U, Jhx)- Letv € MVS’H(J) be a simple J-holomorphic
curve with generalised normal bundle N, C v*T'M and (A x G), = H, such that N, is
the w-complement of the generalised tangent bundle T, C v*TM. Let S C v (U) be an
open set of injective points such that im(v) NG - v(s) = ma(H) - v(s) forall s € S.

Given any H-equivariant section A € T (Home(TX, Endgr(N,))) with support con-
tained in S, there exists a smooth family

{J’T € jG(Mvw;Z/A Jﬁx)}TG(fe,e)

such that Jo = J, Jr(v(2)) = J(v(2)) for all 7 and z, and the resulting family DY of
normal Cauchy—Riemann operators for v w.r.t. J, satisfy

8TD1])\,ITT7|T:O = TN O VnY oTvoj=An

for n € T'(N,), where V is any connection on M, Y := 0;J;|;=0 € I'(Endc(T'M, J)),
and wy: v*TM — N, denotes the projection along T,,.
An analogous result holds for a smooth family (J,) in T (M, w;U, Jfix)-

Let us begin with a motivational lemma, which is almost obvious: the variation
of G-equivariant compatible (resp. tame) almost complex structures is again G-
equivariant. Intuitively, this follows from the statement 7, 7. (M, w) = I'?(End¢(T%, J))
— but making sense of this statement requires considering J¢(M,w) as a Fréchet
manifold, which we would like to avoid.

Lemma 5.22. Suppose (J;)rc(—c,c) is a smooth family in JE (M, w) with Jy := J. Then
Y := 0, J;|r=0 € T¢(Endc(TM, J)).

Proof. Letg € G and Y = 0, Ji|1—0 € Ty T (M, w) be arbitrary; we show dip, o Y =
Y o di,. By definition, for all ¢ we have di, o J; = J; o dip,. Hence, for any p € M
and X € T,,M, we compute

(dipg oY) (p)(X) = dipg(Y (p) X ) = dipg(0r 4 (p) X ) |t=0 = O (dipg(J:X))]t=0
= Oi(Jy o dipg(X))|t=0 = (9¢Jt)[1=0(drpg (X)) = (Y o dipg)(p)(X)

using linearity of di)4 and the chain rule. O

®Perhaps the reader is wondering why we study the normal Cauchy-Riemann operators: analyzing
DY is a useful intermediate step for proving Petri’s condition. We analyse the passage from D}’
to its restriction DY>** in the next section.
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To prepare the proof of Lemma 5.21, recall that we chose [V, as the complement
of T, C v*T'M w.r.t. some H-invariant bundle metric; in particular, I'(N,) is H-
invariant. In our setting, choose the bundle metric induced by w(-, J-). This metricis
H-invariant, since H acts symplectically. Note that T;, is J-invariant by construction.
Recall that DY : T'(N,) — T'(Endc(T%, N,)) is H-equivariant. Observe that each
operator D) defined using v and J; is also H-equivariant: v is J--holomorphic
w.r.t. each 7 by hypothesis, since J(v(z)) = J(v(2)) for all 7 implies J; o dv =
Jodv=dvoj.

Let A = 6TD{XT77\T:0 =7y o V,Y oTv o j, where V is any connection on M.
Since all Df]\f are H-equivariant, so is A, hence A € ' (End¢ (TS, N,)).

T

Proof of Lemma 5.21. We only prove the compatible case: the tame case is exactly the
same, except with one fewer condition to check. For n € I'(V,,), write V,)Y" in block

form as . .
ViyYy Vv:4VY S
_ n *
Cn) = (vé\?TY vi]\q,) EF(End(C(U le,J)),

with respect to the splitting v*T'’M = T, ® N,. Then, using the definition of the
normal Cauchy-Riemann operator, we compute

aTD’lJ)\,]Tn’T:O =nnvoVyYoTvoj= Vﬁ,VTY oTvoj

for any n € I'(N,).

Let A € I'H(End¢(T%, N,)) with supp(A) C S be arbitrary. We construct a
smooth family {.J;} so the normal derivatives V,]YV 7Y match A on S: i.e., for all
s € S, we have

A(s) =VTY owoj(s). (5.2)

Since v has no critical nor double points on S, this condition determines V”'Y" on
S.

Since N, is the w-symplectic orthogonal complement of T;,, the compatibility of
the J; translates into two separate conditions on V%Y and VnN Y, and another con-
dition linking VINY to VNTY, namely w((VYTY )v, w) + w(v, (VIN)w) = 0 for
all (v,w) € T, & N,. Hence, compatibility of the {.J;} does not prevent us from
freely choosing Vf?V Ty, as long as we choose V%W Y in accordance and only do this
in regions where v has no double points, so the splitting v*T'M = T, & N, is unam-
biguous. By hypothesis, the set S satisfies this constraint.

This choice should be compatible with the G-invariance of the J,. The overall
reason is the following: by G-equivariance, choosing {.J-(v(2))} and Y (v(z)) also
determines each {J-(g - v(2))} and Y (g - v(2)) by J-(g9 - v(2)) = dipgJ(v(2)) and
Y(g-v(2)) = dygY (v(2)). For g € H, this just matches A(g- z) since A is H-invariant.
If g ¢ H, the condition z € S guarantees g - v(z) ¢ im(v), hence the condition
V,]yTY owoj(s) = A(s) is not affected.

"Since J,(v) = J(v) for all 7, we have Y (v) = 0 and VY is well-defined along v, independently of
any connection.
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Let us now make this construction of Y precise, to convince also the very sceptic
reader. We begin by choosing Y (v) = 0. Then, we choose V)Y along y(S) as
determined by A: through Equation (5.2), A(s) determines the value V7Y (y(s))
uniquely. Since S consists of injective points of v, choosing VYY" this way is pos-
sible. Choose V'Y along y(S) as determined by the compatibility condition. By
construction, V%V Ty is H-invariant, hence so is VgN Y. Finally, choose Vflv Y and
VY along y(S) to be H-invariant, and satisfy the constraint from the compatibil-
ity condition. Altogether, we have determined Y along y(S), and the result is H-
invariant. As a final step, we extend Y to all of 3, using a G-invariant partition of
unity. Averaging this extension ensures that the resulting section Y is G-equivariant.
This averaging leaves the value of Y on y(S) unchanged, as argued in the preced-
ing paragraph: Y was already H-equivariant there, and ¢ - v(s) ¢ S for s € S and
g¢H.

The choice of Y determines a smooth family J, whose derivative is Y, using the
exponential map (2.7) from Chapter 2: we set J; := Jyy for all ¢t. By construction
of Y, all J; are compatible. As Y is G-equivariant, so are the resulting almost com-
plex structures J; (as proven in Proposition 2.39); since Y (v) = 0, all J, agree with
J = Jp along v. O

5.4. Petri’s condition is generic

Let us present the main mathematical idea of this section: in Doan-Walpuski’s ter-
minology, this is about Petri’s condition being generically satisfied (for the restricted
normal Cauchy-Riemann operators). Since we only deal with walls for H being
a finite group, we can reduce our theorem to Wendl'’s results: while not trivial, it
means we don't have to re-prove everything.

Let us begin by explaining what Petri’s condition means. While we only consider
Cauchy-Riemann type operators (see Definition 5.26), Petri’s condition is defined
more generally for linear partial differential operators. Let ' and F' be smooth real
vector bundles over the same manifold M. Petri’s condition is related to the so-
called Petri map, which is defined by

II: T(E) 9 ['(F) » T(E® F),Il(n ® &)(p) := n(p) @ £(p).

We will discuss purely local conditions, hence let us consider a local version of this
map: fix a point p € M and consider the space I',(E) := I'(E)/~. of germs of smooth
sections at p, where 7,7’ € I'(E) represent the same germ if and only if they coincide
on some neighbourhood of p. The Petri map descends to a local Petri map at p,

II: T,(E) @ Ty(F) = T,(E® F).

The local Petri map is never injective, for uninteresting reasons: for every smooth
function f: M — R, the section fn ® £ — n ® (f§) lies in the kernel of II. How-
ever, it can become injective when restricted to the space of solutions of suitable
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linear PDEs; this is what Petri’s condition is about. Petri’s condition is some kind of
unique continuation condition. Unlike e.g. the similarity principle, it also contains
an additional “quadratic” local condition. Proving that Petri’s condition is satisfied
(after generic perturbations) is the missing ingredient for completing the proof of
the transversality theorem.

To make this precise, assume D: I'(E) — I'(F) is a linear partial differential oper-
ator with smooth coefficients. Let D*: I'(F') — I'(E) denote its formal adjoint, with
respect to some choice of L2-pairings on I'(E) and I'( F'). These pairings are induced
from a choice of bundle metrics on E and F' and a volume form on M. In the next
section, we will consider more particular choices of pairings, which are invariant
under a group action. For any point p € M, both D and D* descend to linear maps
on spaces of germs of smooth sections at p, which we will denote by

Dp: Ty(E) 5 Ty(F),  Di:Ty,(F) — Ty(E).

We also assume that D and D* uniquely determine (say, via extension or restric-
tion) linear maps

D: X(E)= Y(F) and  D*: X*(F) = Y*(E),

where X (FE), Y*(E), X(F) and Y*(F) are vector spaces of sections (or equivalence
classes of sections defined almost everywhere) of the respective bundles. In our
applications later, these will be suitable Sobolev spaces. Let us add two further
local conditions — both of which are satisfied for a large class of elliptic operators,
including those of Cauchy-Riemann type.

o (Regularity) Every section in ker(D) C X (E) or ker(D*) C X*(F') is smooth.

¢ (Unique continuation) The maps ker D — ker D), and ker D* — ker D;, that
send each section to its germ at p are injective.

Definition 5.23 (Petri’s condition, [Wen23d, Definition 5.1]). Suppose D: X(E) —
Y (F) is a differential operator with formal adjoint D*: X*(F) — Y*(E) satisfying the
conditions specified above, and p € U C M. We say that D satisfies

(1) Petri’s condition if the restricted Petri map ker D @ker D* — I'( E® F) is injective;

(2) Petri’s condition over U if there is no non-trivial element t € ker D ® ker D* such
that I1(t) € I'(E ® F') vanishes identically on U;

(3) the local Petri condition at p if the restricted local Petri map ker D), @ ker D, 2L
I'y,(E ® F) is injective;

(4) Petri’s condition to infinite order at p if there is no non-trivial element t € ker D),®
ker Dy, such that 11(t) has vanishing derivatives of all orders at p.

Let us emphasize that the symbol “®” always denotes real tensor products, even when the
operator D happens to be complex linear.
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Remark 5.24 ([Wen23d, Remark 5.3]). It is clear from the definition that the set of
points p € M at which the local Petri condition is not satisfied is open. In particular,
proving that Petri’s condition is satisfied to infinite order at a dense set of points in
some U C M implies the local Petri condition holds at every point in U.

Regarding the differences between these four conditions, let us quote Wendl di-
rectly [Wen23d, p. 163].

Every condition on the list in [ Definition 5.23 ] implies the previous one;
note that the implication (3) = (2) in particular follows from our reg-
ularity and unique continuation assumptions. The first two conditions
are global in nature, as ker D and ker D* depend on the global proper-
ties of D, including the choice of domains X (E) and X*(F'). These ker-
nels will always be finite dimensional in the cases we consider, so that it
seems unsurprising (if non-obvious) that Petri’s condition might hold.
In contrast, the third and fourth conditions are much stronger and more
surprising because ker D), and ker D}, are in general infinite dimensional,
but the local conditions are also more powerful, e.g., it will be extremely
useful to observe that they are preserved under pullbacks via branched
covers of the base.

We will not yet have use for the invariance under pullback by branched covers; it
will be extremely helpful when including multiply covered curves.

Remark 5.25 ([Wen23d, Remark 5.2]). In general, the global Petri conditions may
depend on only on the operator D, but also on the chosen of L?-pairings onT'(E) and
I'(F'), via the choice of the induced formal adjoint D*. However, let us emphasize
that the local conditions are independent of this choice: indeed, whenever D} and
D3 are two operators arising as formal adjoints of D via different choices of the
L%-pairings, there is a smooth bundle automorphism ®: F — F that maps local
solutions of Dj¢ = 0 to local solutions of D3¢ = 0,so thatid®®: E®Q F — E® F
identifies the two different versions of ker Il C ker D), ® ker D,

Having encountered Petri’s condition, let us now turn to the setting and main
results of this section. Throughout this section, let us fix a Riemann surface ¥ and
a Hermitian bundle metric (-, ), on T%X. We do not require 3 to be compact, as
all discussion will be purely local. Fix a smooth complex vector bundle £ — X
with a Hermitian bundle metric, and denote F' := Hom¢(T'S, E). We only consider
Cauchy-Riemann type differential operators.

Definition 5.26 (e.g. [ Wen15, Definition 2.3.3, Definition 2.3.10]). A complex-linear
Cauchy-Riemann type operator D: I'(E) — I'(F) is a complex linear map D: T'(E) —
I'(F) which satisfies the Leibniz rule

D(fv) = (8f)s + f(Ds) (53)

forall f € C°(X,C)and s € I'(E). A real-linear Cauchy-Riemann type operator
D:T(E) — I'(F) is a real linear map D: I'(E) — I'(F) such that (5.3) is satisfied for all
feC®(E,R)and s € T'(E).
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Let CR(E) denote the space of real Cauchy-Riemann type operators D: I'(E) —
I'(F'). The main result of this section is the following. It uses the results of Sec-
tions 5.3.

Theorem 5.27. There exists a co-meagre subset Jreq C JE(M,w;U, Jfix) resp. Jreg C
TG (M, w;U, Jpix) such that for all J € Jyeq and every curve [u] € Mﬁ’lH(J), the restricted

normal Cauchy-Riemann operator Dy"™"" € CR(N,x ) satisfies Petri’s condition to infinite
order on an open and dense set of points in w='(U). In particular, Dy """ satisfies the local

Petri condition at every point in u=1 ().

The overall idea of the proof is to use the finiteness of H to reduce this result to
the non-equivariant case, where Wendl’s methods can apply. Indeed, this theorem
looks very similar to [ Wen23d, Theorem 5.26 ]. However, there is a subtle difference:
Wendl’s result concerns genericity within the set of all compatible or tame almost
complex structures, whereas we are looking for a co-meagre set of equivariant com-
patible resp. tame almost complex structures. Fortunately, the core argument of
both proofs is the same — our workhorse theorem can re-use some of Wendl’s ma-
chinery.

To set up the proof of Theorem 5.27, we need to go into some more detail about
the setting Wendl used to prove Petri’s condition. Our general set-up is similar to
[Wen23d, §5.1-5.3], except that we need suitable adaptations to take the equivari-
ance in our setting into account.

In all this discussion, we assume E = N, C v*T'M and F = Hom¢ (TS, N,,) for
some holomorphic curve u: ¥ — M with u € /\7311( J). (Usually, we also assume
u lies in some iso-symmetric stratum MﬁlH (J).) In particular, H acts linearly on
I'(E) and I'(F'). We fix an A-invariant metric on ¥ and a G-invariant bundle metric
on T'M; this induces H-invariant L?-pairings on I'(E) and I'(F), for every curve .
Let D* always denote the formal adjoint of some Cauchy-Riemann type operator
D:T'(E) — T'(F), with respect to these pairings. When we speak about Petri’s
condition for D, we always use this formal adjoint D*. Since the L?-pairings on
['(E) and I'(F) are H-invariant, by Lemma 4.84, D* is also H-equivariant.

Recall. For any smooth vector bundle £ — ¥, a point z € ¥ and k € Z, denote by
(T'.(E))* C I',(E) the space of germs of smooth sections at z whose derivatives of
order up to k — 1 all vanish at z. The space of k-jets of sections at z is defined as

JEE =T,(E)/(T.(E))*

Alinear Cauchy-Riemann type operator D: I'(E) — I'(F') inducesamapI',(E) —
I'.(F) between germs of sections at z € ¥; this map descends to a map J*E —
JE~1F between the k-jet spaces at z.

Denote by 9.(E, F) the real vector space of germs of Cauchy-Riemann type opera-
tors I'(E) — I'(F'), and let @f(E, F) C Hom(JFE, J¥=1F) be the real vector space
of induced maps on k-jet spaces. Refining this, let 2H(E, F) denote the real vector
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space of germs of H-equivariant Cauchy—-Riemann type operators I'(E) — I'(F),
and 2% (E, F) c Hom(J¥E, J¥=1F) be the real vector space of induced maps on
k-jet spaces.

5.4.1. A science-fiction proof

To motivate the main ideas of our argument (including the use of restricted nor-
mal Cauchy-Riemann operators), let us start with a simplified version. The expert
reader can safely skip this sub-section. Fix a point z € X. As a first approximation
of the real definition, consider the following. We begin with considering the subset

V= {(D,t) € 2"*(E,F) x (JFE® JFF) | t € ker D ® ker D*}.

Then, let us augment this definition in two ways. Firstly, we prescribe the rank of
t: given a pair of real vector spaces V and W, we say an element ¢t € V' ® W has
rank r if £ = 37", v; ® w; for two linearly independent sets {v1,...,v,} € V and
{wi,...,w,} € W. Secondly, we include the order of vanishing of ¢: altogether, we
consider the subset

Vi, ={(D,t) € V" | rank(t) =r,t ¢ (JFE® JFF)"}

for given integers k,r and ¢ (with ¢ € {1,...,k}). Sometimes, it will be useful to
also consider the following variant, for D & gHF (E,F):

V(D)= {te (JFE® JFF) | (D,t) € Vi)

For all £ € Z, the local Petri map II: I',(E) @ I',(F') — I',(E x F') descends to a
linear map
n*: J*E@ J'F — JHE® F),
which preserves the vanishing orders. As the projection Vﬁ , — JFE®JFF, (D, t) —
t is smooth,8 T1* gives rise to a smooth map

7, VE, = J5E®F),(D,t) — 1I%1)
whose zero set
Pry=105,)710) = {(D,t) € Vi, | TI¥(t) =0}

we will call the universal Petri moduli space. (This is not the fully correct definition
yet, but the real definition will be very similar.)

We would like to prove a result similar to Wendl’s “workhorse lemma” [ Wen23d,
Proposition 5.25]. That Proposition is the main step towards Petri’s condition being
generic among Cauchy-Riemann type operators. It is a statement about 9/? ¢ C

1"

8Tt turns out V,’f, ¢ is a smooth finite-dimensional manifold: we omit the details, but refer the reader
to the analogous argument in the proof of Proposition 5.38.
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Vﬁ , being a C*°-sub-variety’ with a suitable lower bound on its co-dimension. The
following looks like a suitable analogue of Wendl’s proposition.

Pseudo-Proposition 5.28. For every ¢ € N, there exists a constant C; > 0 such that
for all integers £ > ¢ and r € N, the universal Petri moduli space ﬂf ¢ C Vﬁ sisa
C*°-sub-variety of co-dimension at least Cyk?.

Remark 5.29. This result looks almost the same as Wendl’s [ Wen23d, Theorem 5.25].
There are two subtle differences. Firstly, the notations 2%, and V¥, have analo-
gous, but different meaning: in this thesis, it refers to a spac.:e defined using germs
P1H (B, F)of H -equivariant Cauchy-Riemann type operators at z — whereas Wendl’s
setting involves the germs @f(E, F) of all Cauchy-Riemann type operators.

The second difference is already visible in the notation: in Wendl’s setup, the
spaces 2%, and V¥ depend on choices of geometric data used to define the formal
adjoint D* of D: namely, germs at z of bundle metrics on £ and F' and a volume
form on 3. To reflect this dependence, these data even appear explicitly in Wendl’s
notation.

In our context, the data defining the formal adjoint D* is chosen slightly differ-
ently, as we want to ensure that D* is also H-equivariant. Instead of choosing bun-
dle metrics on E and F, we choose (invariant) Riemannian metrics on ¥ and M,
and consider the induced L?-pairings on I'(E) and I'(F'): we make on arbitrary (but
global) choice, and only work with that. Hence, there is no mention of geometric
data in this thesis” notation. Lest the reader worry about this difference creating a
subtle incompatibility with Wendl’s results: by Remark 5.25, Petri’s local conditions
are independent of the chosen geometric data, so fixing data this way does not cause
any issues.

Let us illustrate the main idea of this section with a “science fiction proof” of
Pseudo-Proposition 5.28, under the hypothetical assumptions that 7B, F) equals
the space of all germs Z%(E, F) for all z € %, and DY equals Dy ™"

Science fiction proof of Pseudo-Proposition 5.28. Assume P1M(E, F) = 2%(E, F) holds
for all z € 3, and DY equals the restricted operator Dlyestr,

Let ¢ € Nbe arbitrary. By [ Wen23d, Proposition 5.25], there exists a constant C; >
0 such that for all integers & > ¢ and all r € N, the space @f’e(g, h,u) C V¥(g,h, )
(in Wendl’s notation) is a C°°-sub-variety of co-dimension at least C/k%. Because

of Remark 5.25 and our “science fiction” hypothesis, in fact Wendl’s e@f (g, R, )

equals our space 937’? , and Wendl'’s space V¥ (g, h, ;1) equals our Vﬁ ;- In other words,
there is nothing left to prove. O

*We do not specify the precise definition of C'*-sub-varieties: the interested reader may consult
[Wen23d, Appendix C] or pretend they are smooth submanifolds. A C*°-subvariety of a smooth
Banach manifold need not be a Banach submanifold (though every Banach submanifold is a C*°-
subvariety), but it is “almost as nice” in a precise sense. For instance, the Sard—Smale theorem still
applies to C*°-subvarieties.
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For posterity, let us note that this assumption is satisfied if u has trivial stabiliser
G.: then DY and Dlyrestr agree by definition. By Observation 3.12, all but finitely
many points z € ¥ satisfy G, = G,(,), hence also have trivial stabilisers. The follow-
ing argument proves that our assumption holds for all such points. Hence, Pseudo-
Proposition 5.28 holds if all stabilisers G, are trivial.

Let U/ C X be an open subset with compact closure. Fix one H-equivariant oper-
ator Dg, € CR(F) and denote

CR(E;U, Dgy) := {D € CR(E) | D = Dgon ¥\ U}.

Denote by CRy (E;U, D) the space of H-equivariant Cauchy—Riemann type oper-
ators in CR(E;U, Dyy). Recall that in this section, we always have £ = N,,.

Lemma 5.30. Let u € ﬂg’H(J) such that [u] € M;:{{(J). Suppose z € X is an
injective point of u as in Lemma 4.75 and G, is trivial. Then, for each germ D, €
Hom(T',(Ny), T2 (F)) of some Cauchy—Riemann type operator D € CR(Ny;U, Dyy) at
z, there exists an H-equivariant Cauchy—Riemann type operator D € CRy(Ny; U, D)
with germ D, at z.

Its proof uses the following basic observation.

Observation 5.31. Let Dy, Dy: I'(E) — I'(F') be real Cauchy—Riemann type opera-
torsand ¢: ¥ — R be a smooth function. The convex combination D := ¢ D; + (1 —
1) D3 is a real Cauchy—Riemann type operator.

Proof. Weneed toshow that D(fs) = (0f)s+fDsforalls € I'(E)and f € C*(%,R).
Indeed, for any s and f, we compute

D(fs) = ¢Di(fs)+ (1 —¢)Da(fs) = ((8f)s + fD1s) + (1 — ) ((Df)s + fDas)
=W+ 1—=9)(0f)s+¢fD1s+ (1 =) fDas = (0f )s + f(¢Dys + (1 — ¢) Dys)
— (3f)s+ fDs. 0

Proof of Lemma 5.30. Write H = {ho =1id, h1, ..., h,} = {(id,id), (¢1,91),- .-, (én,9n)};
denote Ay := m(H) = {id, ¢1, ..., ¢, }. Since Gy(2) is trivial, the stabiliser G, also

is trivial, in particular ¢; # id for all i > 0. Stronger yet, we have ¢(z) # z for all

1 > 0: otherwise, one could have

u(z) = (hi - u)(2) = g7 ' - u(di(2)) = g7 ' - u(2),

hence g, le G y(z), contradiction. Choose an open neighbourhood U C ¥ of z such
that the sets {¢;(U)} are pairwise disjoint. Choose a smooth function ¢: U — [0, 1]
such that ¢y = 1 on a neighbourhood of z and supp+ C U. Extend ¢ to Ay - U
by ¥(¢i(z)) := ¥(z); let us denote this extension by v again.!® Observe that 1 is
Apg-invariant.

1%Since the sets ¢;(U) are disjoint, this extension is well-defined without having to prove anything.
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We construct the operator DY in two steps. We begin by writing down a Cauchy-
Riemann type operator Dy whose germ at each ¢;(z) is induced by the germ D,. To
wit, we consider the operator Dy defined by, for any s € I'(E) and 2’ € &,

Dys(e) = 4 Ve 0 Ds(6 (N + (1= 9)Ds(2) if 2/ € 6i(U)
0 " | Ds(p) if 2/ € ¥\ supp(v).

By Observation 5.31, this defines a real Cauchy-Riemann type operator. By con-
struction, the germ (Dys), () of Dos at ¢;(z) is given as

(Do) g;(2)8 = (dipg, © Ds(8; (D)) u(z) = diby, © (Dz)s.

This completes the first step of the construction.
Next, we average Dy to obtain an H-equivariant operator D! whose germ at z is
D,. Consider the operator D¥: I'(E) — I'(F) defined by

DH(s)() = == 3 dyt o Dos(i(+))),

=

for s € I'(E) and 2’ € ¥. Applying Observation 5.31 finitely many times, we de-
duce that D is a real Cauchy—Riemann type operator; it is clearly H-equivariant
by construction. Moreover, its germ at z is given by

(D)o = o 3 ! o (Do)agey(s) = e 3 o dy o (D2}

i et

thus D¥ is an equivariant Cauchy-Riemann type operator with the desired proper-
ties. O

As mentioned above, pseudo-Proposition 5.28 holds at almost all points, if « has
trivial stabiliser. While nice to know, this only helps so much, precisely because the
stabiliser G, need not be trivial in general. This imposes a constraint on the germs
21* (B, F), and is the reason we consider the restricted normal Cauchy-Riemann
operators. Lemma 5.30 can be generalised to curves with non-trivial stabiliser, but
this requires changing the definitions of Vﬁ ,and ﬁff -

5.4.2. The universal Petri moduli space

We end the digression of the previous section, and return to fully rigorous mathe-
matics. As mentioned already, the correct way to encode the additional constraint
imposed by the stabiliser group G, is to consider the sub-bundle EX := N« of
E = N,. Let us recall the relevant notation from Section 5.1.
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Recall. We have u € MﬁlH(J), the fixed point set M* := Fix(G,) C M is a
symplectic and almost complex manifold. u co-restricts to a holomorphic curve

uf: % — MX, and there are injective bundle maps EX := N,x — F and F¥ :=

Homg (T%, EX) — F. Therestricted normal Cauchy-Riemann operator DT D(ER) -
['(F%) is the normal Cauchy-Riemann operator of u*. Let K denote the group G,

if G, is non-trivial, and H otherwise. Then I'(EX) and T'(F¥) are K-invariant, and
D)™ i a K-equivariant Fredholm operator.

The above inclusion descends to germs of sections at any z € ¥, and to k-jets of
sections, yielding an injective linear map

o: JFEE @ JFFE 5 JFE e JFF

There is another way to look at DNrestr, ag DY is H-equivariant, it must send

[(EX) c T(E) toT(FX)!1. In fact, this holds for any H-equivariant Cauchy-Riemann
operator.

Lemma 5.32. An H-equivariant Cauchy—Riemann type operator D: I'(E) — I'(F') maps
[(EX) to T(FK), hence induces a Cauchy—Riemann type operator T(EX) — T\(FK).

Proof. Recall that T,,x M¥ = Fix(G,) C T, M, by Lemma 4.56. Let n € T'(EX) be
arbitrary. We will show that D(di(n)) is G -invariant. Indeed, forallg € G, z € &
and Y € 7.3 we have

g9-((Dn):Y) = (g- Dn).Y = D(g-n).Y = (Dn).Y,
using the G, -invariance of 1 as well as the H-equivariance of D.!? O

In other words, there is a well-defined linear map ®*: CRy(E) — CR(EX). This
map is the proper context for the definition of the restricted normal Cauchy-Riemann
operators: observe that ®*(DX) is precisely the restricted normal Cauchy-Riemann
operator D", The map ®* descends to germs of operators at any z € ¥, and to
k-jets at z, yielding a linear map

o*: k(B F) — 78 (EX, F¥). (5.4)

Remark 5.33. The maps ® and ®* are compatible, in the sense that D(®(t)) =
(®*D)(t) € JFFX for all D € 2"¥E Fyand t € JEEX. In particular, t €
ker ®*(D) iff (t) € ker D.

We also need to study the behaviour of the formal adjoint D* of D € CRy(E) w.r.t.
these sub-bundles. Recall that the formal adjoint D* was defined using choices of an
A-invariant metric on ¥ and a G-invariant bundle metric on M. Since M¥ c Misa
smooth submanifold, the latter induces a bundle metric on TM ¥, hence L2-pairings

"or, for the pedantic, to the image of T'(F*) under the map F¥ — F
Observe that g € G satisfies g € G, if and only if (id,g) € H. Thus, we may regard G, as a
subgroup of H.
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on I'(EX) and T'(F¥). By construction, these are compatible with the pairings on
['(E) and I'(F), w.r.t. the inclusions EX — E and FX — F. (Informally speaking,
“the pairings on I'(EX) and T'(F¥) are the restrictions of the corresponding pair-
ings on I'(F) and I'(F')”.) In particular, the formal adjoint ®*(D)* of the operator
®*(D): T'(EX) — T'(FF) is exactly the operator induced by D* itself. In formulas,
letting W™ : 7 ’k”(F7 E) — @f(FK , EX) denote the analogous map to ®*, we have
O*(D)* = U*(D*).

Since D and D* both descend to EX and FX, we can also study Petri’s condition
for the operators ®*(D). The careful reader will note that our setting involves two
local Petri maps, one for £ and F, the other for EX and FE, (By abuse of nota-
tion, we will denote both by IT%; it will be clear from context, which one is meant.)
Fortunately, these are compatible in a precise sense.

Lemma 5.34. Forallt € J*EX @ JEFX, we have 1(T1F(t)) = T1F(®(t)).

Proof. The analogous statement ¢ oIl = ITo ® holds for the global Petri map. Passing
to germs of sections at z and k-jets yields the claim. O

Corollary 5.35. Suppose D € @ZH]C(E,F) and t € ker ®*(D) @ ker ®*(D)*. Then
IT%(®(t)) = 0 if and only if T*(t) = 0.

Proof. By Remark 5.33, we have ®(t) € ker(D)®ker D*. Now apply Lemma 5.34. [J

The map ® will be extremely useful: while the left hand side consists of (jets
of germs of) H-equivariant operators, the right hand side has no such equivari-
ance constraint any more — so we can apply Wendl’s non-equivariant theory. To
make use of this observation, it is crucial to observe that ® is surjective, for suitable
points z. The following result makes this precise, and is the proper generalisation
of Lemma 5.30.

Lemma 5.36. If z € X is an injective point of w as in Lemma 4.75, the map ® from Equa-
tion (5.4) is surjective.

Proof. Let D, € P%(EX, FX) be arbitrary; choose some Cauchy—-Riemann type op-
erator D: I'(EX) — T'(FX) whose germ at z is D,. We aim to find some operator
DH ¢ .@ZHk(E,F) whose germ (D), at 2 satisfies ®((D),) = D,. We imitate
the proof of Lemma 5.30; unlike in that proof, we need to make auxiliary choices to
extend D to I'(E). The G\,-equivariance of FX will ensure the well-definedness of
the result.

Write H = {hy,...,h,} with h; = (¢;,¢9;) for all i; denote Ay = m(H) =
{¢1,...,0n}. Unlike in Lemma 5.30, the elements g; are not all distinct: instead,
for each ¢ € Ay, the group H contains precisely |G, | distinct elements of the form
(¢, 9), i.e. the multi-set {g1,...,g,} contains each element exactly |G,| times. Ob-
serve further that ¢; # id implies ¢;(z) # z: otherwise, one would have have

u(z) = (hi - u)(2) = g; ' - u(di(2)) = g7 ' - u(2),
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hence gi_1 € Gy(») = Gy and (id, g;) € H, contradicting ¢; # id.13

Choose an open G,-invariant neighbourhood U C ¥ of z such that the sets {¢; (U ) }
are pairwise either identical or disjoint. Choose a smooth G,-invariant function
Uo: U — [0,1] such that ¥y = 1 on a neighbourhood of z and supp ¥y C U. Ex-
tend Uy to a function ¥ on Ay - U by U(¢;(x)) := ¥o(z). This is well-defined since
Uy was Gy-invariant: if z € ¢;(U) N ¢;(U), by construction ¢;(U) = ¢;(U), hence
¢i(U) = ¢i(¢; ' 0 ¢;(U)), thus ¢; 1 0 ¢;(U) = U and (¢; o ¢]—1)(Z) € U follows. By
construction, this implies (¢; o gb;l)(z) = z,ie. g;0 g;1 € Gy(z) = Gu. Since ¥y is
Gy -invariant, this proves well-definedness. By construction, ¥ is Ap-invariant.

The operator D defines a Cauchy-Riemann type operator I'(EX) — I'(F'). Choose
some extension D’ of this operator to a Cauchy—Riemann type operator I'(E) —
['(F). Let Doy, : T'(E) — T'(F) be any Cauchy-Riemann type operator.'* As the next
step, we consider the operator Dy: I'(E) — I'(F') defined by, for any s € I'(E) and
Z ey,

Dos(e) o= 4 V1t 0 D's(@ ()] + (1= ) Damps(2) if 2’ € (V)
T Dans () if 2/ € 3\ supp(¥)).

This definition is well-defined: if ¢;(U) = ¢;(U), we have g; o gj_l € G, (as shown
above), and hence compute

dipg; (D's($i(w))) = dipy, (D's($;(x))) = dibg, © (diy, 051 D's(5(x))) = dipy, (D"s(65(x))),

hence the first branch in the definition of Dy is independent of the index i. Both
branches of the definition agree on their intersection, by construction. Both defin-
ing sets are open, so the joint operator is continuous and smooth. Since supp(v) C
U; ¢:(U), this defines Dy everywhere. Applying Observation 5.31 finitely many
times, Dy is indeed a Cauchy-Riemann type operator. This completes the first step
of the construction.

Next, we average Dy to obtain an H-equivariant operator D whose germ at z is
D,. Consider the operator D : I'(E) — T'(F') defined by

D (5)(2') = ,1H| S dy; ! o Dos(6:(2'),

heH

for s € T'(F) and 2’ € . Applying Observation 5.31 finitely many times, we de-
duce that D is a real Cauchy—Riemann type operator; it is clearly H-equivariant
by construction.

[t remains to verify that ®*((D!),) = D,. Indeed, let us compute the germ of D#
at z. The germ of Dy at ¢;(z) is given by

(Do) g,()5 = (dibg, © D's(¢7 " (2)))g,() = dtby, © (DL)s,

B At this step, we are using that u is simple: if g - u = g - u o ¢ for some (¢,g) € A x G, we have
u = u o ¢ since G acts by diffeomorphisms, and simplicity of u implies ¢ = id.

YEor instance, we could choose D,y = D': we merely use a different name to stress that the choice
of D,y will not matter at all.
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and we deduce that

(DM).s = \H] Z iyt 0 (Do) gy (x) (s |H| Z dip, o (dipg, o (D)s)

heH heH
N
i Z D.)s=D.s
heH
In particular, ®*((DH),) = ®*(D.) = D,, completing the proof. O

Let us now state the main result of this section. The statement might be a big
surprising, as it combines germs of operators (B, F) with sections t € JFEX @
JFFE (so D € 9MM(E, F) is applied to ®(t) € J¥E ® J¥F). The main reason is
that Wendl’s workhorse result applies to the space @f(EK , FK) and sections ¢ €
JEER @ JEFK | and provides a lower bound for the co-dimension of the universal
Petri moduli space in terms of the rank and vanishing order of ¢.

While there is a splitting J*E @ JFF = JYEXK @ JFFX @ R (where R is some
choice of complement of JFEX @ J¥FK, e.g. induced by the L2-pairings on I'(E)
and I'(F)), the rank and vanishing order of a section f € J*E ® J*F are not directly
related to the rank and vanishing order of its projection t € J*EX @ JEFK. As
such, a universal Petri moduli space defined in terms of rank and vanishing orders
of sections J*E ® JFF is not as useful, as there is no clear relation to results about
JFER @ JEFK,

Definition 5.37. Consider the set
VE(u,2) := {(D,t) € I (B, F) x (JEEX @ JFFK) |
®(t) € ker D @ ker D*, 1k(t) = r,t ¢ (JFEX @ JFFR),

a corrected version of V’c Correspondingly, the universal Petri moduli space &2* o(u,2)
is given by
PFy(u,2) = (17 7H0) € Viy(u, 2).

Occasionally, for D € @ZH k(E , '), we will also use the notation

VE,(u,2; D) := {t € JFEX @ JEFEK | (D,t) € V! g(u 2)}.

The key result of this section is the following.

Proposition 5.38 (Workhorse result). Suppose u € //\/lvz’jH(J) with [u] € MﬁlH(J)
Let z € X be an injective point of u as in Lemma 4.75. For every ¢ € N, there exists some
constant Cy > 0 such that for all k > £ and r € N, the set @ﬁz(u, z) CV g(u z)isa

smooth C™-subvariety of codimension at least Cok?.

Proof. As the first step, we prove that fo ,(u, ) is a smooth manifold. The set

VE(u, z) == {(D,t) € ZM*(E,F) x J*'EX @ J*FX | t € ker (D) ® ker ®*(D)*}
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is a smooth finite-dimensional manifold: the kernels of ®*(D) and ®*(D)* depend

smoothly on D, hence fit together to endow V¥(u, 2) — 74 ’k(E, F) with a smooth
vector bundle structure. In particular, the total space V¥(u, z) is a smooth manifold.
Refining this,

VE(u, 2) == {(D,t) € VF(u,2) | 1k(t) =7} € VE(u,2)
is a smooth submanifold of dimension
dimg V¥ (u, z) = dimg 21 (E, F) + r (tke EX + rke FX) (k+ 1) (k +2) — 7°

because of the following lemma.

Lemma 5.39 ([Wen23d, Equation (5.7)]). For finite-dimensional vector spaces V and
W, the set of elements t € V' & W of rank r is a smooth submanifold of dimension

dim{t c VoW | rk(t) = r} = r(dimV + dim W) — % O

Lastly, each VT’?, (u,2) C VE(u,z) is an open subset, as non-vanishing is an open
condition." In particular, V¥ (u, z) is a smooth manifold.
To prove that @f? (u, 2) is a C*°-subvariety of fo’ (u, z), we consider the spaces

VI (u, 2) == {(D,t) € PF(EX F¥) x JEEX @ JEFK |
t € ker D @ ker D*, rk(t) = r,t ¢ (JFEX @ JFFMY

and QZf 7 (u, 2) = (ITF)71(0) Vfi 7" (u, z). Wendl proved [Wen23d, Proposi-
tion 5.25] that there exists a constant Cy > 0 such that for all k > Zand r € N,
z@f 7 (u, 2) C Vﬁ 7 (u, 2) is a C-sub-variety of co-dimension at least Cyk2. This
statement is almost what we want to prove: it remains to relate it to our set-up.

This is where Lemma 5.36 comes in: it implies that ®*: P8R E, F) > .@f (EX FK)
is a surjective linear map. Choose a complement R C 21k (E, F') of ker ®*; consider
the corresponding projection ey ¢+ : Pk (E, F) — ker ®*.

Claim 1. The restriction ®*|p: R — P%(EX | FX) is a linear isomorphism, as is the map
A: PHF(E F) = 28 EX FX) x ker ®*, D — (®*(D), mier o+ (D)).

Proof. By construction, ®*|p: R — .@f (EX FX) is an injective linear map. It is
surjective by Lemma 5.36. Let ¥: 2%(EX FK) — R be its inverse, which is also
linear. Then A is a linear isomorphism, as

B: P%(EX FK) x ker ®* — 2"*(E, F), (D1, Dy) — U(Dy) + Dy

5Regarding the optical difference between t € ker ®*(D) ® ker ®*(D)* and ®(t) € ker D ® ker D*,
we remark that these are equivalent by Remark 5.33.
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is a linear inverse. Indeed, for all (Dy, Dy) € Z¥(EX | FX) x ker ®*, we compute
A(B(Dy, Da)) = A(¥(D1) + D2)
= (2*(¥(D1)) + @*(D2), Mer o+ (¥(D1)) + Tier o+ (D2))
= (D1 +0,0+4 D2) = (D1, Do)

since U(D;) € R. In the other direction, for D € @f’k(EK, FK), write D = D1+ Do
for D1 € R and Dy € ker @*. Then,

B(A(D)) = B(®*(D), myer o+ (D)) = (®*(D1), D2) = ¥(®*(D1)) + D2 = D.
This completes the proof. A
Claim 2. Then ®* induces a (smooth) diffeomorphism

A: V,ﬁie(ﬂ, z) — ker " x Vf,’fStr(mz)? (D, t) = (Tkera= (D), (2*(D),t)),  (5.5)
which maps 2 (u, z) to ker ®* x ﬁﬁerStr(u, 2).

Proof. The map Ais well-defined by careful inspection of the definitions. Itis smooth,
as it is the restriction of the map
VE = {(D,t) € ZF(ERN FX) x JFEX @ J*FK | t € ker ®*(D) @ ker ®*(D)*},
(D, 1) = (Meer o+ (D), (2°(D), 1)),

which is linear, thus smooth. The previous claim essentially furnishes an inverse:
one easily verifies that the map

(D1,t), Do — (¥(D1) + Ds,t) = (B(D1, D2),t)

is smooth (analogously to A) and a two-sided inverse for A. Thus, A is a diffeo-
morphism. Since t € ker ®* ® ker ®*(D)* if and only if ®(¢) € ker D ® ker D* (by
Remark 5.33), the claim follows. A

Therefore, ﬁff /(u, 2) is a C°°-sub-variety of V];f o(u, z), diffeomorphic to ker * x
¥ (u, 2). In particular, the co-dimension of ¥ ,(u, 2) in V¥, (u, 2) equals the

. . k,restr . k,restr
co-dimension of &, (u, z) in V™ (u, 2). O

This proof also yields a formula for the dimension of Vf’ (u, z; DY), which we
explicitly note for later use.
Lemma 5.40. V), (u, z; DY) is a smooth manifold of dimension 4rm(k + 1) — 12, where
m = dim(cMG“ — 1.
Proof. The isomorphism (5.5) shows dim V¥, (u, z; D;)') = dim VETeST (4, 2 DY), The
latter dimension has been computed by Wend1'® [Wen23d, Equation (5.19)] to be
4rm(k + 1) — r?, where

m = rkc EX = rk¢ N¥ = rke uf TME — 1 = dime M — 1. O

'®The assumptions 5.13 and 5.14 in [Wen23d ] are satisfied in our setting, as we only work with normal
Cauchy-Riemann operators [Wen23d, p. 180; Wen23d, Remark 5.15].
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5.5. Completing the proof

Let us now complete the proof of Theorem 5.14. The structure of this argument
largely parallels Wendl’s argument [ Wen23d, §5.4-6]. All new mathematical ideas
have been mentioned in the previous sections already; this section is just putting
them together. For this reason, we leave out some details whose ideas exactly par-
allel Wendl or match previous sections.

5.5.1. Proof of Theorem 5.27

Fix an open subset &/ C M with compact closure. Using countability of the iso-
symmetric strata, let us also fix A and H. We need to exhibit a co-meagre subset
Jreg Of TG (M, w;U, Jay) (resp. TC(M,w;U, Jgy)) depending on A and H such that

for all J € Jreg and all u € M(J;k,c), the restricted normal Cauchy-Riemann
operator D} "' satisfies Petri’s condition to infinite order on an open and dense
set of points in u=(U).
Consider the subset
M) € Mymia(C. )

of simple curves [(X, j, (C1,- - -, Gn+1), w)] such that (X, 7, (G, - .-, (m), u)] € MﬁlH(J)
and the last marked point ¢,,,+1 is an injective point as in Lemma 4.75. By abuse of
notation, we will write elements of M_(J) as pairs (u,(), where u € MélH (J)
and ¢ € X is the last marked point. The subset M (/) inherits a topology from
Mgm+1(C,J): a sequence of pairs (uy,(,) converges iff (u,) is a convergent se-
quence in M(J) and ((,) is a convergent sequence in . At the end of the proof,
we will see why this is useful: a hypothetical counterexample to the theorem gives
rise to such a pair (u, ¢).
For each k,r,¢ € N with & > ¢, we consider the space

MUY = {(,G) | (w0) € M), u € MY (), 8 € Viglu, G DY)}
and are particularly interested in the subset
MUY = {(w, G 1) € METE() | 11 (E) = 0}

To study these better, recall the space J. of G-equivariant perturbations of J.f from
Chapter 4. Similarly to that chapter, we consider suitable universal moduli spaces

UL(Te) = {(u,C. ) | T € Te(u,0) € Mi(I)},
U4 = {(u. ¢t ) | T € Ty (u,(, 1) € MPP(J)}, and
URTH(T) = {(w, G, 1, ) | T € Ter (u,C 1) € M)}

Standard arguments (as in e.g. [MS12]) show that for e € £ with sufficiently rapid
decay, U’ (J.) is a Banach manifold such that the projection U/ (J.) — Je, (u, ¢, J) —
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J is a smooth Fredholm map whose index is the virtual dimension of M (J). An
analogous result holds for Ukt (Je), as the additional k-jet datum ¢ varies in a
smooth finite-dimensional manifold that depends smoothly on the k-jet of the opera-
tor DY at the immersed point ¢; this in turn depends smoothly on (u, ¢, J) € U (Te).

It will be convenient to impose an extra condition defining an open subset of
Z/lk”“’e(je). Recall the constant Cy > 0 from Proposition 5.38; choose, once and for
all, a value C; for every ¢ € N.

Definition 5.41. Given J € JTG(M,w;Z/{,Jﬁx) (resp. J € jTG(M,w;Z/I,Jﬁx)) and € €
E, an element (u,(,t) € MFH(J) is called e-regular if J € J. and (u,(,t,J) has a
neighbourhood © C UM(7.) such that O N UFTL(F,) is a C®-sub-variety of U4 (T, )
of co-dimension at least Cyk>.

By construction, e-regularity is an open condition. Lemma 5.21 implies that it is
generally non-empty.

Lemma 5.42. Forall r,¢ € Nand all k > ¢, any given (u,(,t) € M’“M(J,ef) is e-regular
for all € € € with sufficiently rapid decay.

Proof sketch. We proceed similarly to [ Wen23d, Lemma 5.31]. Observe that Jyf € Je
for every e € £. Given (u,(,t) € M*™(J,), consider the Fréchet space

Vo :={Y e I'Endc(TM, Jp)) | Yy = 0,Y i) = 0,w(-,Y) +w(Y-,) =0},

which we may intuitively think of as the tangent space T);, ,J G(M,w;U, Jgy). For

each € € €, restrict this to the closed subspace r
Yer={Y € | [Ylc, < oo}

of T .Je with the C.-topology.
We apply Lemma 5.21: let Jg_LH(HomR(E, F)) denote the space of all (k — 1)-

jets of germs of H-equivariant sections A € T/ (Hom¢ (7%, Endgr(N,))) at ¢. Then
Lemma 5.21 provides a surjective linear mapping

Wo: Yo — J¢H (Homg (B, F)),Y — JE7! (Ay),

where Ay denotes (the germ near ( of) the zeroth-order term determined by Y
according to the relation Ayn = 7y o V,Y oduo j.!7

The careful reader may wonder about a small detail: Lemma 5.21 only applies to sections H-
invariant sections A whose support is contained in some open subset S C u™" (i) of “good” injec-
tive points. This is not an issue here, as we only care about germs of sections at (: suppose A is any
H-equivariant section. Choose an H-invariant open subset S C u ™" (i) of good injective points, as
in Lemma 5.21. Choose an H-invariant bump function ¢ with ¢ = 1 near ¢ and support contained
in S; then ¢ A is another H-equivariant section, whose support is contained in S'and which defines
the same germ at (. Choosing S as above is possible: ™" (i) is open and H-invariant, as is the set
of injective points of u. Among these, only finitely many points are not “good”, hence a suitable
H-invariant neighbourhood of ¢ contains only good injective points.
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Since the co-domain of ¥y is finite dimensional, Lemma 4.12 implies that ¥ re-
mains surjective when restricted to the subspace Y, for any € € £ with sufficiently
rapid decay.

Now, each Y € Y. induces a 1-parameter family of almost complex structures
Jr = Jry € J. defined via the exponential map (4.1), which match J.f along u
and satisfy Jy = Jyer. This defines a smooth family (u, ¢, J;) in U (J.) that deforms
the normal Cauchy—-Riemann operator of v in the direction of Ay. Therefore, the
linearisation at (u, ¢, ¢, Jief) of the natural projection

UPTHTE) = Vi, Q). (u. .1 ) = (DY 1)
is surjective onto T( é\r’t)Vf’ (4, ¢) and the result follows from Proposition 5.38. [

We apply a Sard-Smale argument to the projection i{*"4(7,) — J.. To this end,
consider the intersection J.® ¢ J. of the sets of regular values for all £, r and /.
Note that J/® ¢ J. is co-meagre again. Then, for each J € T8 < T, for all
r,0 € N,and k > ¢ the subset of e-regular elements in M*™(.J) C /T/l\k’“é(q]) has
co-dimension at least Cyk2. On the other hand, the virtual dimension of M k()
only grows linearly in £, by Lemma 5.40. Thus, for fixed ¢ and r, for k sufficiently
large, the virtual dimension of the set of e-regular elements becomes negative. Thus,

we have proven the following.

Corollary 5.43. For every e € &, there exists a co-meagre subset J.© C J. such that for
all J € J.*° and any given r, ¢ € N, the set of e-reqular elements in M*™(.J) is empty
whenever k is large enough. O

Completing the proof of Theorem 5.27 is another application of Taubes’ trick.
Suppose the normal Cauchy—Riemann operator of [u] € Mz‘le (J) does not satisty
Petri’s condition to infinite order on an open and dense set of points in u=*(i/). By
Lemma 4.75, there must exist an injective point ¢ € u™1 (i) of u with ¢ 0 such that
DA™ does not satisfy Petri’s condition to infinite order at (. Then, (u,¢) € M (J)
by definition. By hypothesis, there exists a non-trivial element ¢ € ker D)™
ker DY™"™ such that I1(¢) has vanishing derivatives of all orders at ¢. Then ¢ has fi-
nite vanishing order (as it’s non-zero) and finite rank . Consequently, ¢t € ij ,(u, ¢ DY)
for some ¢ and sufficiently large k. Since also IT1¥(t) = 0, we deduce (u,(,t) €
Mk,rl ( J)

Now Taubes’ trick and Corollary 5.43 show that, for J in a suitable co-meagre
subset of 7 (M, w;U, Jgy) resp. T (M, w;U, Jgy), this cannot happen. We omit the
details. O

5.5.2. Smoothness of the walls

Proof sketch of Theorem 5.14. Let us sketch how to prove Theorem 5.14: we have seen
the overall idea several times now (though the details are slightly different). We
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write down a universal moduli space with a projection to a suitable Banach manifold
of perturbed data; the regular values of the projection have the property stated in
the theorem. The hard part is, of course, to prove that the universal moduli space is
a smooth Banach manifold. This follows from the implicit function theorem, after
proving that a suitable linearised operator is surjective; this is where the previous
results about Petri’s condition are needed.

For each choice of data U, A, H, and 1 as in the theorem, we define a universal
moduli space

UL = U () = {(u, ]) | T € Teyue Mi{T(J)}.

For non-negative integers k£ and ¢, we decompose this further into universal moduli
spaces
ULk ) ={(u,J) eU(J,]) | uwe M(J;k,c)}.

We would be able to apply a Sard—Smale argument if we proved that/(J,1; k, c) C
U(J,1) was a Banach submanifold whose co-dimension equals the dimension of
Hom (ker D™ coker Di"""). We will prove this holds on a certain open sub-
set; this will suffice since Petri’s condition is generic.

Definition 5.44. A curve u € M(J;k,c) is called Petri regular if and only if DY
satisfies Petri’s condition over u=(U).

We denote the set of Petri regular curves by My (J; k,c) C M(J; k,c) and define
the corresponding universal moduli space

Un(Te, k,e) cU(Te, L Eye)

to be the set of all pairs (u, J) € U(J.,1; k, ¢) such that u € Mp(J; k,c).

Remark 5.45. By Theorem 5.27, there exists a co-meagre subset of TG (M, w;U, Jay)
(resp. (M, w;U, Jgy)) for which My (J; k,¢) = M(J; k, c).

Lemma 5.46. For € € &€ with sufficiently rapid decay, U(Je, 1) carries a smooth Banach
manifold structure such that every (uo, Jo) € U(Je, 1) has a neighbourhood V C U(Je, 1)
with a smooth family of vector bundle isomorphisms

wETM S T MK
for u €V, mapping N, isomorphically to N, and N, x to N,x.

Sketch of proof. Repeat the proof of [Wen23d, Lemma 6.4] mutatis mutandis — ap-
plied to the manifold M. This is where we use the fact that the topology of the
generalised normal bundles IV, x does not change without each iso-symmetric stra-
tum — to enable this argument, we had to prescribe the number and orders of u*’s
(or equivalently, u’s) critical points. O

Lemma 5.47. The subset Ui (Je, I; k,c) C U(Te, I; k, ¢) is open.
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Proof. Lemma 5.46 implies that the operators Dy ™" and (D{""*")* can be under-
stood as varying continuously with (u,J) € U(J.,1), and the dimensions of their
kernels are locally constant as long as (u, J) moves only within (7, 1; k, ¢). Hence,
the family of Petri maps defined on ker D} """ @ ker(Ds"™")* and then restricted
to u~(U) depends continuously on (u,J) € U(T.,1;k,c). Since their domains are

finite dimensional, the injectivity of these maps is an open condition. O

The remainder of the proof is similar to that of Theorem 5.27. Let us merely out-
line the necessary steps.

e Define a notion of e-regular curves, for each € € £. By definition, a curve u €
M(J; k, ¢) is e-regular if a suitable map into Hom (ker D™, coker Dp""")
is surjective.

e Using Lemma 5.21, prove that if u is Petri regular, it is e-regular for all e with
sufficiently rapid decay.

e Apply a Sard-Smale argument and Taubes’ trick. ]
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6. Conclusion and outlook

In this thesis, we have seen the first steps to a well-behaved equivariant transversal-
ity theory of closed holomorphic curves. Given a symplectic G-manifold, we saw
how to decompose the moduli space of simple curves into countably many disjoint
walls. If G is finite and 2g + m > 3, for generic equivariant J all walls are smooth
manifolds of explicit co-dimension in their respective stratum. There are various
follow-up questions and future possibilities for study: let us comment on them in
turn.

6.1. Stratifying multiply covered curves

The first obvious direction is to extend these results to cover (no pun intended) mul-
tiply covered curves as well. Candidate Definition 3.38 suggests how to define iso-
symmetric strata in this case. Proving their smoothness (with explicit dimension)
was straightforward. The next step is adapting the definition of the walls M(J; k, ¢)
and proving that walls are generically smooth. This will entail combining the set-
up for the strata with either Wendl’s notion of twisted Cauchy-Riemann operators
or Doan-Walpuski’s rephrasing of twisted local systems. Since Petri’s local condi-
tion is preserved under pullback by holomorphic branched covers, we expect the
difficulty at this step to be mostly about finding the right definitions, not in proving
smoothness.

Objective 1. Prove that each iso-symmetric stratum decomposes into countably many walls,
each of which is generically a smooth manifold.

6.2. Computing the dimension of each wall

To apply this thesis” paradigm in applications, we would like better control over the
dimension and co-dimension of each wall. (For instance, in the proof of the super-
rigidity conjecture, any hypothetical counterexample is a curve which must live in
a wall of co-dimension larger than its ambient stratum’s dimension: this means the
wall has negative dimension, thus is empty.)

This requires progress on two separate tasks. Firstly, we need to compute the
co-dimension dim Hom g (ker DY coker DY e of each wall more explicitly,
where K is H if G, is trivial, and G, otherwise.

Objective 2. Compute the co-dimension of each wall M(J;k,c) in /\/lz’j’lH(J ) near u €
M(J; k, ), for instance in terms of Fredholm indices of suitable Cauchy—Riemann type
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operators.

. N N
By Schur’s lemma, any map of K-representations ker D, ™" — coker Dy """

must preserve the isotypical decomposition, so knowing the co-dimension requires
computing the multiplicity of each irreducible K-representation in ker Dj ™" and
coker DY Then, we would like to relate these multiplicities to Fredholm indices
of suitable Cauchy-Riemann type operators.

Again, Wendl’s paper can serve as a blueprint to follow. In their case, the nor-
mal Cauchy-Riemann operator DY of u = v o ¢ induced (via a choice of “minimal
regular presentation” associated to the holomorphic branched cover ¢) a twisted
Cauchy-Riemann operator. This twisted operator splits into summands correspond-
ing the irreducible H-representations.

6.3. Beyond symplectic actions

Throughout this thesis, we considered equivariant holomorphic curves with respect
to symplectic group actions. However, there are also some non-symplectic actions to
which our methods could apply.

The simplest such case is a Zo-action induced by an anti-symplectic involution.

Definition 6.1. An anti-symplectic involution on a smooth manifold (M ,w) is a smooth
map o: M — M such that o*w = —w.

Anti-symplectic involutions occur naturally in some problems from celestial me-
chanics, such as the restricted three-body problem (and variants, such as Hill’s lunar
problem). One particular question worth studying is the existence of symmetric pe-
riodic orbits: if (M,{ = da) is a contact manifold and p: M — M an anti-contact
involution (meaning p*a = —«), does there exist a Reeb chord of a with ends on
Fix(p)? Kim [Kim22] proves that for certain tight contact 3-spheres, such symmet-
ric periodic orbits always exist (and gives necessary and sufficient conditions when
these bound a disk-like global surface of section). This result uses automatic trans-
versality results, by virtue of working in dimension three. For higher-dimensional
versions, new ideas are needed. The author expects that this thesis’ methods can be
useful.

Anti-symplectic involutions are also studied in real Gromov-Witten theory (e.g.
[GI21; GZ23], [GI22] and [GZ]). In this case, studying G-invariant almost complex
structures is not quite the correct approach: if J € J(M,w) were invariant under
an anti-symplectic involution ¢ of (M,w), an easy compution shows that the cor-
responding Riemannian metric g := g; = w(-,J-) were to satisfy ¢*g = —g. This
is impossible since ¢*g is still a Riemannian metric, in particular positive definite.
Instead, the correct approach is to require g to be invariant, corresponding to the
condition ¢*J = —J. Real Gromov-Witten theory has another feature, requiring
modifications of this thesis’ setup: these invariants study .J-holomorphic curves de-
fined on a real Riemann surface, i.e. endowed with an anti-symplectic involution o,
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such that w o 0 = ¢ o u (i.e., holomorphic curves which are equivariant w.r.t. the
induced Zs-actions on the domain and target).

Generalising beyond anti-symplectic involutions, a reasonable setting could be
the following.

Definition 6.2. A smooth (left or right) G-action on a symplectic manifold (M ,w) is called
anti-symplectic if and only if there exists a set S C G generating G such that s*w = —w
forall s € S. This implies that each g € G acts either symplectically or anti-symplectically.

The following generalisation also seems within reach; this setting includes e.g. a
commuting symplectic and anti-symplectic action.

Definition 6.3 (Ambi-symplectic group action). An ambi-symplectic group action on
a symplectic manifold (M, w) is a pair (1, €) consisting of a group action G — Diff(M), g —
g by diffeomorphisms and a group homomorphism e: G — {£1} such that ;w = €(g)w
forall g € G.

In all these cases, the non-emptiness and contractability of the equivaraint ver-
sion of J-(M,w) and J(M,w) follow similarly as in this document, as there exists
a G-invariant Riemannian metric. The author expects the remaining ideas in this
document to apply similarly.

6.4. Beyond finite groups

While the set-up in Chapters 2 and 3 has been fairly general (applying to proper sym-
plectic actions of a smooth Lie group on M), the subsequent results about smooth-
ness of the iso-symmetric strata and walls required working with finite G and curves
on a stable domain.

As we already commented briefly in Section 4.7, the reason for this is mostly
technical and less conceptual, owing to the fact that the A-action is not smooth,
and therefore an infinite-dimensional analogue of the slice theorem is not available.
Therefore, proving smoothness of the iso-symmetric strata if A x G is an infinite
group requires new ideas, beyond what is presented in this thesis.

Some indication in this direction was given by Observation 3.58 and Lemma 4.105:
we may in fact avoid using adapted Teichmidiller slices altogether for defining the
iso-symmetric strata. (By Observation 3.58, the current description is useful for
proving that the stabiliser H of the A x G-action is compact — but this does not
require adapted Teichmiiller slices and does not concern the core of the smoothness
argument either.) Following this insight, a new approach to smoothness of the iso-
symmetric strata is using the global deformation operator of v instead: this shall be the
subject of a future article.

Our current argument that all walls are smooth applies whenever the group H is
finite. (In particular, it does not require A x G to be finite — it suffices if each sim-
ple curve u has finite stabiliser.) If the stabiliser H has positive dimension, more
care is required to prove Petri’s condition. For instance, if H has positive dimension,
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the requirement of H-invariance is non-local — and it may seem this invalidates
Wendl'’s proof of Petri’s condition (as that proof uses germs of Cauchy—Riemann
operators and geometric data, which are inherently local). Fortunately, Wendl’s
argument can be strengthened: if all H-orbits are totally real (i.e., they do not con-
tain any non-trivial complex subspace), a tweak of the argument proves that Petri’s
condition is still generic. If the G-action is Hamiltonian, every G-orbit (hence every
H-orbit) is isotropic [Pell7, Remark 4.5], and in particular totally real for any tame
almost complex structure J.

As a final word of caution, expecting a theorem which applies to any proper
symplectic G-action is too ambitious: we need to impose suitable conditions on
the action, to ensure the space J (M, w) is sufficiently large (for instance, infinite-
dimensional). For instance, if G acts transitively on M, any G-equivariant almost
complex structure J on M is determined by prescribing its value at a given point
p € M. The space of complex structures on 7, M is finite-dimensional, hence so are
the spaces JY(M,w) and J%(M,w). These spaces can get even smaller: consider
the action of the unitary group U(n) on complex projective space (CP", wgsg). With
respect to this action, there exists a unique U(n)-equivariant compatible almost com-
plex structure on (CP", wgs).

In both cases, this thesis” argument has no hope of applying: we need our space
of perturbations to contain bump functions with sufficiently small support, which
implies infinite-dimensionality.

At the time of writing, proving smoothness of iso-symmetric strata and walls for
all proper Hamiltonian actions of abelian Lie groups seems plausible.

Obijective 3. Extend the smoothness of iso-symmetric strata and walls to 2g +m < 3 or
G being compact, for instance for all proper Hamiltonian actions of abelian Lie groups.

6.5. Equivariant punctured holomorphic curves

So far, we have only dealt with closed holomorphic curves. This fact, however, was
not essential to our argument — I do not expect any substantial obstacle in gen-
eralising these results to punctured holomorphic curves (for equivariant compatible
almost complex structures). The decomposition into iso-symmetric strata and walls
and their smoothness should only require natural modifications (such as, modify-
ing the spaces of equivariant almost complex structures considered to require ad-
missibility in the sense of SFT).

Objective 4. Generalise the definition of iso-symmetric strata and walls to punctured holo-
morphic curves, and prove that they are smooth manifolds for generic admissible equivariant
compatible almost complex structures.

We should mention Singh’s in-progress work [Sin24 ], which generalises Wendl’s
stratification to punctured multiply covered curves. Thus, this objective is about
generalising Singh’s and this work, to equivariant punctured holomorphic curves.
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Actually applying this framework to punctured curves requires clearing one fur-
ther obstacle: the index of a punctured holomorphic curve depends on the Conley—
Zehnder indices of the Reeb orbits it is asymptotic to. Hence, computing the co-
dimension of these walls of (possibly multiply covered) punctured curves requires
understanding the Conley-Zehnder indices of multiply covered Reeb orbits. For
Reeb orbits which are neither hyperbolic nor elliptic, this can be non-trivial — for
instance, there is no easy closed formula relating the index of the multiply covered
orbit to the index of the underlying simple orbit. Singh has also investigated this
question, for doubly covered curves such that each asymptotic Reeb orbit ; is cov-
ered of order 2% for some positive integer k; [Sin24]. We would like a theory requir-
ing neither of these assumptions.

6.6. Applications

This thesis’ ideas have the potential to apply in any setting with a symplectic G-
action where holomorphic curves are a useful tool. Let us sketch two examples.

Equivariant super-rigidity As the reader has heard sufficiently often by now, this
thesis is based on Wendl'’s solution of the super-rigidity conjecture: a natural ques-
tion is whether a similar statement in the equivariant setting.

Objective 5. Let (M, w) be a closed symplectic G-manifold with dim M > 6. Investigate
whether generic G-equivariant compatible almost complex structures are super-rigid.

By the definition of super-rigidity, this includes genericity of the property “all sim-
ple curves are embedded with disjoint image”. For the purpose of the subsequent
objective, we would like to prove the following, slightly stronger version (which is
a standard fact in the non-equivariant case).

Objective 6. Prove that for all G-equivariant J but a subset of co-dimension at most two,
all simple J-holomorphic curves are embedded and have disjoint images.

Once this second step has been established, attacking Objective 5 requires the
dimension computation from Objective 2. If the indices align, it should then be a
straight-forward short computation.

Equivariant Gromov invariant Genericity of super-rigid compatible almost com-
plex structures was used by Bai and Swaminathan [BS23] to define an analogue
of Taubes” Gromov invariant [Tau96]: their invariant counts embedded closed .J-
holomorphic curves of prescribed genus and homology class, for super-rigid J in
a Calabi-Yau 3-fold. A priori, this count depends on the choice of J; producing an
invariant independent of J requires adding suitable correction terms to account for
wall-crossing phenomena.
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Most types of wall-crossing can be excluded from consideration by a dimension
counting argument: the set of corresponding almost complex structures has co-
dimension at least two, hence a generic 1-parameter family {.J; }+¢[o,1) of almost com-
plex structure will not intersect them. If the class A is twice a primitive class, this
restricts the possible bifurcations to investigate to a small list. In each of these cases,
Bai and Swaminathan construct a local Kuranishi model for the parametrised mod-
uli space of holomorphic curves, and use this to find a suitable correction term.

While a non-trivial theorem in its own right, this analysis requires genericity of
super-rigid almost complex structures to boot: without, the number of embedded
curves one is counting need not be finite. Thus, a positive answer to Objective 5
would unlock progress on the following, more speculative, proposition.

Task 7. Assuming Objective 5 holds, develop an equivariant version of Taubes” Gromov
invariant and prove independence of J via a suitable wall-crossing analysis.
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A. Appendix

A.1. A finite-dimensional toy model for the iso-symmetric
strata

In this appendix, we consider a finite-dimensional toy model to motivate the local
models for the iso-symmetric strata. Consider a smooth vector bundle £ — M
over a smooth (finite-dimensional) manifold M. Suppose the compact Lie group
G acts smoothly on E via linear bundle isomorphisms A,, over diffeomorphisms
a4 € Diff(M) on the base.

Consider the zero set M = ¢71(0) C M of a smooth G-equivariant section
o € T%(E). For generic equivariant o, this is generally not a manifold: because
of equivariance, o is generally not transverse to the zero section. Indeed, the best
we can hope for is a clean intersection condition. More specifically, we decompose
M into iso-symmetric strata M (0) := {x € M | G, = H} for closed subgroups
H < G and show that each stratum (for generic equivariant o) is a smooth manifold.

For a closed subgroup H < G, consider the orbit type M? := {zx € M | G, = H}.
Since G acts smoothly and properly on M, the orbit type M H « M is a smooth
submanifold [DK00, Lemma 2.6.4(ii)]. In particular, the restriction E' = E|x —
MH is a smooth vector bundle.

Denote o' := o|yu: M? — E|yu and observe M (o) = o71(0) n M =
(e)=1(0). Hence, it suffices to show that o/ is transverse to the zero section in £'.
Looking closely, that can never be true (for non-trivial H): the equivariance of o/
implies it takes values in a smaller sub-bundle. However, co-restricting o to that
sub-bundle achieves transversality. More precisely, we want to show that o takes
values in the sub-bundle

Ef ={veFE | G,2H)={veE,:xc M" G, =G, = H}.

The correct definition of E¥ is a bit subtle. We want to consider the subset {v €
E | G, = H}, as the natural analogue of the orbit type M. Because of one
addition wrinkle, we need to be slightly more careful.

The issue is that G acts on both the total space E and the base M, and these actions
are not the same. The projection 7: E — M is equivariant (7 (g - v) = ¢ - 7(v) for all
v € Fand g € G); this implies G, < G, for all v € E. However, the stabilisers
need not be equal: the base point 7(v) could have larger stabiliser (w.r.t. the G-action
on M) than v (w.r.t. the G-action on E)!

Example A.1 (Trivial example). Consider the Zs-action on the trivial line bundle
R x M over any manifold M, by ¢: R x M > (r,p) — (—r,p) € R x M. This action
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covers the trivial Zy-action on M. The zero section in E has stabiliser Z,; every other
v € E has trivial stabiliser. Thus, v € E'\ M has trivial stabiliser, while its base point
has stabiliser Zs.

Fortunately, this issue does not occur when restricting to the sub-bundle E'.
LemmaA2. {vEE: G, 2H}NE|yn ={veE,:xe M1 G, =G, =~ H}

Proof. Inclusion “>” is obvious. “C”: If v € EwithG, = H and x €¢ M H we have
H>~G, C Gy = H,hence G = G,,. O

We have already called E*7 a “sub-bundle” several times.
Lemma A.3. The subset E* C E' is a smooth sub-bundle of E'. O
Lemma A.4. o takes values in EX, hence is a smooth section o' . MH — EFH.

Proof. Let x € MY be arbitrary, then v = o(z) satisfies v = o(z) = o(g-2) =
g-o(x) =g-vforall g € G, by G-equivariance of o. This implies G, < G,. On
the other hand, we have G, < G, forallv € F, as g - v = v implies z = m(v) =
m(g-v) = g m(v) = g- . In total, we conclude G, = G, for all v € im(c). By
definition of M, we have G, = H. O

Finally, the result we are looking for is the following.

Proposition A.5. Fix a closed subgroup H < G. For generic o € T'%(E), the restriction
ol is transverse to the zero section of EX. In particular, M* (o) is a smooth manifold.

Proof sketch. This is an exercise in the Sard—-Smale theorem.

1. We consider the universal moduli space U = {(z,7) € M x T¢(EH) |
7(z) = 0}, where we (by abuse of notation) write I'“(E*?) for a suitable Ba-
nach completion of the space of smooth G-equivariant sections of E.

2. U is smooth: consider the map F: M# x T¢(EH) — Ef (2,7) — 7(2).
Its linearisation at (z,7) € U is given by dF(, ;)(X,Y) = Y (z) + d7(X), for
X € T,M" and Y € TY(*TEM").! Clearly, dF is surjective: given any
Yy € TT(x)EH, choose any equivariant Y with Y (x) = Yy, then dF(0,Y) = Y,.2
Hence, by the implicit function theorem, & = F~1(0) is locally a smooth man-
ifold.

'Note: we are adding the summands, not composing them. This is akin to the directional derivative,
where we take the scalar product of the gradient with the direction vector. We do not apply the
chain rule directly: while o(z(t)) is a composition of functions, both o and « are part of the input
domain! (The directional derivative is computed using a chain rule; that is besides the point.)

’In every vector bundle, there exists a smooth section with prescribed value at each fixed point:
one can construct one in a local trivialisation using an cut-off function. This construction can be
made equivariant: choose a G-equivariant cut-off function ¢: U — R and consider the section
s: U=V xR" uw (u, p(u)vo).
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3. The projection map 7: U — I'%(EH), (x,7) — 7 is smooth and 7!(7) corre-
sponds to 771(0). By the Sard-Smale theorem, regular values of 7 are generic.
Hence, for a co-meagre set of 7, the set 7~!(7) = 771(0) is a smooth manifold.

4. The set of o such that o* lies in such a co-meagre subset is co-meagre.

5. The intersection of co-meagre sets is co-meagre; hence for a co-meagre set of
o all M* (5) are smooth manifolds.

O]
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