

How geometry meets arithmetic: global and local moduli spaces

Michael Rapoport

<http://www.math.uni-bonn.de/ag/alggeom/rapoport>

25 October 2011

The three layers of Algebraic Geometry

Algebraic Geometry=mathematical discipline that studies the geometry of the zero loci of polynomials.

Examples:

$$X^n + Y^n - Z^n = 0$$

$$X_0^3 + X_1^3 + X_2^3 + X_3^3 = 0$$

$$X_0^4 + X_1^4 + X_2^4 + X_3^4 = 0$$

$$X_0^5 + X_1^5 + X_2^5 + X_3^5 + X_4^5 + X_5^5 = 0$$

$$X_0^2 + X_1^2 + X_3^2 + X_4^2 = 0, 2X_0^3 + X_1^3 + 5X_2^3 + 11X_3^3 + 7X_4^3 = 0$$

Layer 1: varieties defined by equations

Hierarchy by complication of equation, e.g. the degree of defining polynomials:

- *linear equations*: part of linear algebra
- *quadratic equations*: when only one equation, then still part of linear algebra; if more than one equation, becomes more complicated (*Note*: any algebraic variety can be described by quadratic equations!).
- *one cubic equation in 3 variables*: describes elliptic curves, geometry is understood, arithmetic is very mysterious.
- *one cubic equation in 4 variables*: much studied in the 19th century
- *one quartic equation in 4 variables*: have been intensely studied up to the present.

Layer 2: varieties defined by characterization

Study of properties of algebraic varieties (sometimes given by equations) leads to characterization by properties.

- *nonsingular algebraic curves of genus g* : over the ground field \mathbb{C} , these correspond to *compact Riemann surfaces* of genus g .
- *abelian varieties of dimension g* : g -dimensional projective group varieties.
- *K3-surfaces*: nonsingular projective surfaces which are simply connected, and with a nowhere vanishing holomorphic 2-form.

Layer 3: varieties defined as parameter spaces

Algebraic varieties of one characterization class form an algebraic variety by themselves.

- *parameter space \mathcal{M}_g of curves of genus g* : a quasi-projective variety of dimension $3g - 3$ over the ground field.
- *parameter space of polarized abelian varieties of dimension g* : a quasi-projective algebraic variety of dimension $\frac{1}{2}g(g + 1)$ over the ground field. Can in fact be defined as a scheme, even an arithmetic scheme.
- *parameter space of polarized K3-surfaces*: a quasi-projective algebraic variety of dimension 19 over the ground field.

Riemann's concept of moduli

Riemann (1857, in his first paper on *abelian functions*):

“Es hängt also [...] die [...] Klasse algebraischer Gleichungen von $3p - 3$ stetig veränderlichen Größen ab, welche die Moduln dieser Klasse genannt werden sollen.”

In today's language (analytic):

There exists a moduli space of compact Riemann surfaces of genus $g \geq 2$, which is a complex-analytic variety of dimension $3g - 3$.

In today's algebraic language:

There exists a moduli space of smooth projective curves of genus $g \geq 2$, which is a quasi-projective algebraic variety \mathcal{C}_g of dimension $3g - 3$.

Explanation:

This means:

\mathcal{C}_g is an algebraic variety with the following universal property: Any family of curves of genus g over a base S induces a morphism from S to \mathcal{C}_g such that:

- the morphism only depends on the isomorphism class of the family of curves over S .
- this rule is functorial in S .
- when $S = \text{Spec } \mathbb{C}$, the rule induces a bijection between the sets of isomorphism classes of curves of genus g over \mathbb{C} and the set $\mathcal{C}_g(\mathbb{C})$.

Also known to Riemann:

There exists a moduli space \mathcal{A}_g of principally polarized abelian varieties of dimension g , which is a quasi-projective algebraic variety of dimension $g(g + 1)/2$.

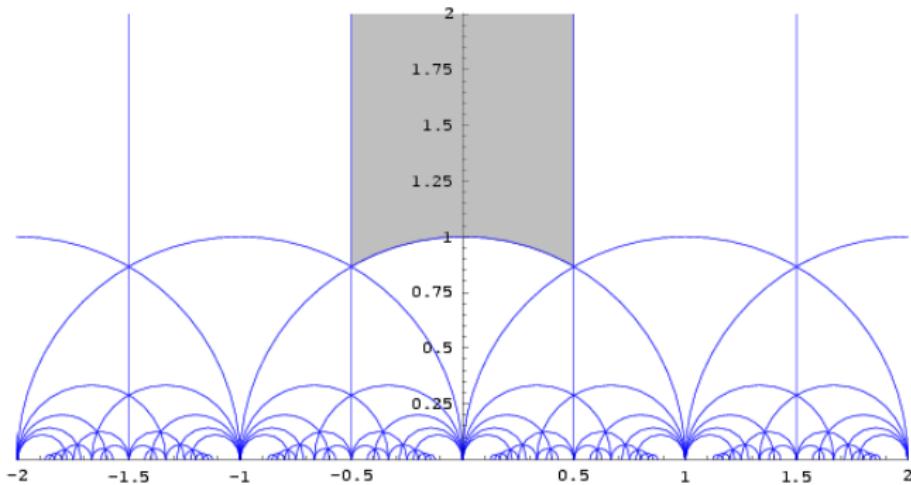
Explanation for $g = 1$: Abelian varieties of dimension 1 are equivalently

- *elliptic curves*
- non-singular cubics in \mathbb{P}^2 with a distinguished point (the *neutral element* for the group operation)
- over \mathbb{C} : $E = \mathbb{C}/\Lambda$, for a lattice Λ in \mathbb{C} .

Elliptic curves have an essentially unique principal polarization.

Hence

$$\mathcal{A}_1 = \mathrm{SL}_2(\mathbb{Z}) \backslash \mathbb{H}.$$



Example

The various “triangles” are fundamental domains for the action of $\text{SL}_2(\mathbb{Z})$.

The moduli scheme of abelian varieties à la Grothendieck-Mumford

Let $g \geq 1$. Fix an integer $N \geq 3$. Consider the functor $\mathcal{A} = \mathcal{A}_{g,N}$ on the category of schemes over $\text{Spec } \mathbb{Z}[1/N]$,

$$\mathcal{A}(S) = \{ \text{iso-classes of triples } (A, \lambda, \eta) \},$$

where

- A an abelian scheme of relative dimension g over S
- λ a principal polarization
- η a level- N -structure.

Theorem

The functor $\mathcal{A}_{g,N}$ is representable by a smooth quasi-projective scheme of relative dimension $g(g+1)/2$ over $\text{Spec } \mathbb{Z}[1/N]$.

Application: Construction of interesting Galois representations ($g = 1$)

Form the $\text{Gal}(\bar{\mathbb{Q}}/\mathbb{Q})$ -module

$$H_N^* = H^*(\mathcal{A}_{1,N} \times_{\text{Spec } \mathbb{Z}[1/N]} \text{Spec } \bar{\mathbb{Q}}, \bar{\mathbb{Q}}_\ell).$$

Let $G = \text{GL}_2$. Let π_f be an irreducible admissible ∞ -dimensional representation of $G(\mathbb{A}_f)$. Then the π_f -isotypic component in H_N^1 is a multiple of a two-dimensional Galois representation $\rho(\pi_f)$.

Theorem (Eichler, Shimura, Ihara, Deligne, Langlands, Carayol, Scholze)

Let ρ_p be the restriction of $\rho(\pi_f)$ to a decomposition group $\text{Gal}(\bar{\mathbb{Q}}_p/\mathbb{Q}_p)$. Then

ρ_p and π_p

are in Langlands correspondence (up to a Tate twist).

Why is this arithmetic?

Application: Consider the **Ramanujam function** $n \mapsto \tau(n)$, appearing in the q -development of the Δ -function

$$\Delta(z) = q \prod_{m=1}^{\infty} (1 - q^m)^{24}, \quad q = e^{2\pi iz}, \text{ Im}(z) > 0,$$

i.e.,

$$\Delta(z) = \sum_{n=1}^{\infty} \tau(n) q^n.$$

Theorem (Serre)

The set of prime numbers p with $\tau(p) = 0$ has density zero.

Conjecture (Lehmer 1947)

The above set of p is empty.

Variant: Picard moduli scheme

Let E be an imaginary quadratic field.

Let $n \geq 1$. Fix an integer $1 \leq r \leq n - 1$. Fix an integer $N \geq 3$.

Consider the functor $\mathcal{A} = \mathcal{A}_{E,n,r,N}$ on the category of schemes over $\text{Spec } \mathcal{O}_E[1/N]$,

$$\mathcal{A}(S) = \{ \text{iso-classes of quadruples } (A, \iota, \lambda, \eta) \},$$

where

- A an abelian scheme of relative dimension n over S .
- $\iota : \mathcal{O}_E \rightarrow \text{End}(A)$ an action of \mathcal{O}_E , of signature $(r, n - r)$.
- λ a principal polarization compatible with ι ,
- η a level- N -structure.

Theorem

The functor \mathcal{A} is representable by a smooth quasi-projective scheme of relative dimension $r(n - r)$ over $\text{Spec } \mathcal{O}_E[1/2N]$.

Construction of Galois representation

By a similar procedure as for $\mathcal{A}_{1,N}$, get ℓ -adic Galois representations of $\text{Gal}(\overline{\mathbb{Q}}/E)$, of dimension $\binom{n}{r}$.

Using this construction for $r = 1$, get n -dimensional Galois representations.

Theorem (Harris/Taylor, Henniart, Scholze) (local Langlands correspondence)

There exists a one-to-one correspondence between the following two sets, with all sorts of good properties,

$\{ \text{iso-classes of } n\text{-dim. } \ell\text{-adic representations of } \text{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p) \}$

and

$\{ \text{iso-classes of irreducible admissible representations of } \text{GL}_n(\mathbb{Q}_p) \}.$

Localization of abelian varieties

- *archimedean localization*: associate to an abelian variety over \mathbb{C} its underlying real Lie group, i.e., $A = \mathbb{C}^g/\Lambda \rightsquigarrow \mathbb{R}^{2g}/\Lambda$.
- *p-adic localization*: associate to an abelian variety A its p -divisible group $X = A(p^\infty)$, where

$$A(p^\infty) = \varinjlim A[p^n].$$

Big difference:

- all archimedean localizations of elements of $\mathcal{A}_g(\mathbb{C})$ are isomorphic.
- not all p -divisible groups of elements of $\mathcal{A}_1(\overline{\mathbb{F}}_p)$ are isomorphic, not even isogenous (**ordinary elliptic curves** versus **supersingular elliptic curves**).

Local moduli spaces

Let $W = W(\bar{\mathbb{F}}_p)$ be the ring of Witt vectors. Let $\text{Nilp} = \text{Nilp}_W$ be the category of W -schemes S such that $p\mathcal{O}_S$ is a locally nilpotent ideal sheaf.

Let \mathbb{X} be a p -divisible group over $\bar{\mathbb{F}}_p$. Functor on Nilp ,

$$\mathcal{M}(S) = \{ \text{iso-classes of } (X, \rho) \},$$

where

- X a p -divisible group over S
- $\rho : X \times_S \bar{S} \rightarrow \mathbb{X} \times_{\text{Spec } \bar{\mathbb{F}}_p} \bar{S}$ a quasi-isogeny.

Theorem (Rapoport/Zink)

The functor \mathcal{M} is representable by a formal scheme locally formally of finite type over $\text{Spf } W$.

(locally of the form

$$\text{Spf } W[[x_1, \dots, x_n]]\langle y_1, \dots, y_m \rangle / \text{ideal}$$

Examples and variants

① Let $X = A(p^\infty)$, where $A \in \mathcal{A}_1(\overline{\mathbb{F}_p})$ (hence $\text{height}(X) = 2$).
Then

$$\mathcal{M} = \coprod \text{Spf } W[[T]],$$

with index set equal to \mathbb{Z}^2 when A is ordinary, and equal to \mathbb{Z} when A is supersingular.

② (local analogue of Picard moduli problem) Let E/\mathbb{Q}_p quadratic extension. Let $\widetilde{W} = W.\mathcal{O}_E$. Consider functor on $\text{Nilp}_{\widetilde{W}}$

$$\widetilde{\mathcal{M}}(S) = \{ \text{ iso-classes of } (X, \iota, \lambda, \rho) \},$$

where

- X is a p -divisible group of height 4 over S
- $\iota : \mathcal{O}_E \rightarrow \text{End}(X)$ an action of \mathcal{O}_E , of signature $(1, 1)$
- λ a polarization compatible with ι , which is *principal* when E/\mathbb{Q}_p is **ramified**, and has kernel of order p^2 , when E/\mathbb{Q}_p is **unramified**.
- ρ as before, compatible with ι, λ .

Theorem (Kudla/Rapoport)

$\widetilde{\mathcal{M}}$ is representable by the formal scheme

$$\coprod \widehat{\Omega}_{\mathbb{Q}_p} \times_{\text{Spf } \mathbb{Z}_p} \text{Spf } \widetilde{W},$$

with index set equal to \mathbb{Z} .

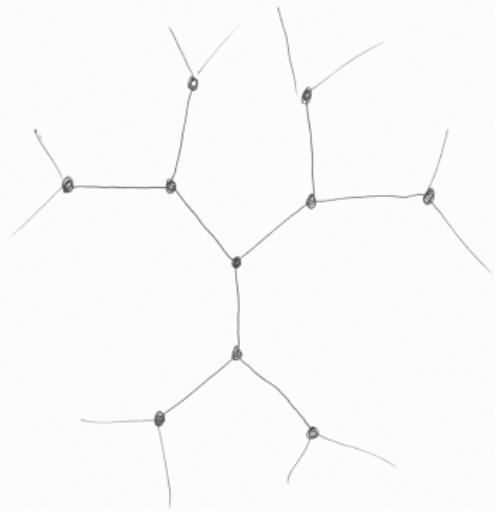
Explanation: Here $\widehat{\Omega}_{\mathbb{Q}_p}$ is Deligne's formal model of Drinfeld's p -adic halfplane. **Properties of $\widehat{\Omega}_{\mathbb{Q}_p}$:**

- it is a **p -adic** formal scheme with semi-stable reduction over $\text{Spf } \mathbb{Z}_p$
- its *generic fiber* is Drinfeld's rigid-analytic space

$$\Omega_{\mathbb{Q}_p} = \mathbb{P}^1 \setminus \mathbb{P}^1(\mathbb{Q}_p)$$

- its *special fiber* is a union of \mathbb{P}^1 's, organized according to the Bruhat-Tits tree of $\text{PGL}_2(\mathbb{Q}_p)$.

Picture of the special fiber of $\widehat{\Omega}_{\mathbb{Q}_2}$



Various aspects of the theory

- the theory of local models (Görtz, Pappas, Rapo, Smithling, X. Zhu).
- the theory of the period map (Gross/Hopkins, Faltings, Hartl, Rapo/Zink).
- the theory of non-archimedean period domains (Dat, Kottwitz, Orlik, Rapo).
- the non-archimedean uniformization (Drinfeld, Rapo/Zink).
- the ℓ -adic cohomology of RZ-spaces (Fargues, Harris, Mantovan, Kottwitz, Shin, Viehmann).
- the theory of special divisors on RZ-spaces of local Picard type (Howard, Kudla/Rapo, Terstiege).
- the relations between different RZ-spaces (Fargues, Faltings, Scholze).
- the speculative theory of local Shimura varieties (Scholze).

the

END