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The three layers of Algebraic Geometry

Algebraic Geometry=mathematical discipline that studies the
geometry of the zero loci of polynomials.

Examples:
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Layer 1: varieties defined by equations

Hierarchy by complication of equation, e.g. the degree of defining
polynomials:

linear equations: part of linear algebra

quadratic equations: when only one equation, then still part of
linear algebra; if more than one equation, becomes more
complicated (Note: any algebraic variety can be described by
quadratic equations!).

one cubic equation in 3 variables: describes elliptic curves,
geometry is understood, arithmetic is very mysterious.

one cubic equation in 4 variables: much studied in the 19th
century

one quartic equation in 4 variables: have been intensely
studied up to the present.



Layer 2: varieties defined by characterization

Study of properties of algebraic varieties (sometimes given by
equations) leads to characterization by properties.

nonsingular algebraic curves of genus g : over the ground field
C, these correspond to compact Riemann surfaces of genus g .

abelian varieties of dimension g: g -dimensional projective
group varieties.

K3-surfaces: nonsingular projective surfaces which are simply
connected, and with a nowhere vanishing holomorphic 2-form.



Layer 3: varieties defined as parameter spaces

Algebraic varieties of one characterization class form an algebraic
variety by themselves.

parameter space Mg of curves of genus g : a quasi-projective
variety of dimension 3g − 3 over the ground field.

parameter space of polarized abelian varieties of dimension g :
a quasi-projective algebraic variety of dimension 1

2 g(g + 1)
over the ground field. Can in fact be defined as a scheme,
even an arithmetic scheme.

parameter space of polarized K3-surfaces: a quasi-projective
algebraic variety of dimension 19 over the ground field.



Riemann’s concept of moduli

Riemann (1857, in his first paper on abelian functions):

“Es hängt also [...] die [...] Klasse algebraischer Gleichungen von
3p − 3 stetig veränderlichen Größen ab, welche die Moduln dieser
Klasse genannt werden sollen.”

In today’s language (analytic):

There exists a moduli space of compact Riemann surfaces of genus
g ≥ 2, which is a complex-analytic variety of dimension 3g − 3.

In today’s algebraic language:

There exists a moduli space of smooth projective curves of genus
g ≥ 2, which is a quasi-projective algebraic variety Cg of dimension
3g − 3.



Explanation:

This means:

Cg is an algebraic variety with the following universal property: Any
family of curves of genus g over a base S induces a morphism from
S to Cg such that:

the morphism only depends on the isomorphism class of the
family of curves over S.

this rule is functorial in S .

when S = Spec C, the rule induces a bijection between the
sets of isomorphism classes of curves of genus g over C and
the set Cg (C).



Also known to Riemann:

There exists a moduli space Ag of principally polarized abelian
varieties of dimension g , which is a quasi-projective algebraic
variety of dimension g(g + 1)/2.

Explanation for g = 1: Abelian varieties of dimension 1 are
equivalently

elliptic curves

non-singular cubics in P2 with a distinguished point (the
neutral element for the group operation)

over C: E = C/Λ, for a lattice Λ in C.

Elliptic curves have an essentially unique principal polarization.
Hence

A1 = SL2(Z)\H.



Example

The various “triangles” are fundamental domains for the
action of SL2(Z).



The moduli scheme of abelian varieties à la
Grothendieck-Mumford

Let g ≥ 1. Fix an integer N ≥ 3. Consider the functor A = Ag ,N

on the category of schemes over Spec Z[1/N],

A(S) =
{

iso-classes of triples (A, λ, η)
}
,

where

A an abelian scheme of relative dimension g over S

λ a principal polarization

η a level-N-structure.

Theorem

The functor Ag ,N is representable by a smooth quasi-projective
scheme of relative dimension g(g + 1)/2 over Spec Z[1/N].



Application: Construction of interesting Galois
representations (g = 1)

Form the Gal(Q̄/Q)-module

H∗N = H∗(A1,N ×Spec Z[1/N] Spec Q̄, Q̄`).

Let G = GL2. Let πf be an irreducible admissible ∞-dimensional
representation of G (Af ). Then the πf -isotypic component in H1

N is
a multiple of a two-dimensional Galois representation ρ(πf ).

Theorem (Eichler, Shimura, Ihara, Deligne, Langlands, Carayol,
Scholze)

Let ρp be the restriction of ρ(πf ) to a decomposition group
Gal(Qp/Qp). Then

ρp and πp

are in Langlands correspondence (up to a Tate twist).



Why is this arithmetic?

Application: Consider the Ramanujam function n 7→ τ(n),
appearing in the q-development of the ∆-function

∆(z) = q
∞∏

m=1

(1− qm)24, q = e2πiz , Im(z) > 0,

i.e.,

∆(z) =
∞∑

n=1

τ(n)qn.

Theorem (Serre)

The set of prime numbers p with τ(p) = 0 has density zero.

Conjecture (Lehmer 1947)

The above set of p is empty.



Variant: Picard moduli scheme

Let E be an imaginary quadratic field.
Let n ≥ 1. Fix an integer 1 ≤ r ≤ n − 1. Fix an integer N ≥ 3.
Consider the functor A = AE ,n,r ,N on the category of schemes over
Spec OE [1/N],

A(S) =
{

iso-classes of quadruples (A, ι, λ, η)
}
,

where

A an abelian scheme of relative dimension n over S .

ι : OE → End(A) an action of OE , of signature (r , n − r).

λ a principal polarization compatible with ι,

η a level-N-structure.

Theorem

The functor A is representable by a smooth quasi-projective
scheme of relative dimension r(n − r) over SpecOE [1/2N].



Construction of Galois representation

By a similar procedure as for A1,N , get `-adic Galois
representations of Gal(Q/E ), of dimension

(n
r

)
.

Using this construction for r = 1, get n-dimensional Galois
representations.

Theorem (Harris/Taylor, Henniart, Scholze)(local Langlands
correspondence)

There exists a one-to-one correspondence between the following
two sets, with all sorts of good properties,{

iso-classes of n-dim. `-adic representations of Gal(Qp/Qp)
}

and{
iso-classes of irreducible admissible representations of GLn(Qp)

}
.



Localization of abelian varieties

archimedean localization: associate to an abelian variety over
C its underlying real Lie group, i.e., A = Cg/Λ R2g/Λ.

p-adic localization: associate to an abelian variety A its
p-divisible group X = A(p∞), where

A(p∞) = lim−→A[pn].

Big difference:

all archimedean localizations of elements of Ag (C) are
isomorphic.

not all p-divisible groups of elements of A1(Fp) are
isomorphic, not even isogenous (ordinary elliptic curves versus
supersingular elliptic curves).



Local moduli spaces

Let W = W (F̄p) be the ring of Witt vectors. Let Nilp = NilpW be
the category of W -schemes S such that pOS is a locally nilpotent
ideal sheaf.

Let X be a p-divisible group over F̄p. Functor on Nilp,

M(S) =
{

iso-classes of (X , ρ)
}
,

where

X a p-divisible group over S
ρ : X ×S S̄ → X×Spec F̄p

S̄ a quasi-isogeny.

Theorem (Rapoport/Zink)

The functor M is representable by a formal scheme locally
formally of finite type over Spf W .

(locally of the form

Spf W [[x1, . . . , xn]]〈y1, . . . , ym〉/ideal)



Examples and variants

1 Let X = A(p∞), where A ∈ A1(Fp) (hence height(X ) = 2).
Then

M =
∐

Spf W [[T ]],

with index set equal to Z2 when A is ordinary, and equal to Z
when A is supersingular.

2 (local analogue of Picard moduli problem) Let E/Qp quadratic

extension. Let W̃ = W .OE . Consider functor on NilpfW
M̃(S) =

{
iso-classes of (X , ι, λ, ρ)

}
,

where
X is a p-divisible group of height 4 over S
ι : OE → End(X ) an action of OE , of signature (1, 1)
λ a polarization compatible with ι, which is principal when
E/Qp is ramified, and has kernel of order p2, when E/Qp is
unramified.
ρ as before, compatible with ι, λ.



Theorem (Kudla/Rapoport)

M̃ is representable by the formal scheme∐
Ω̂Qp ×Spf Zp SpfW̃ ,

with index set equal to Z.

Explanation: Here Ω̂Qp is Deligne’s formal model of Drinfeld’s

p-adic halfplane. Properties of Ω̂Qp :

it is a p-adic formal scheme with semi-stable reduction over
Spf Zp

its generic fiber is Drinfeld’s rigid-analytic space

ΩQp = P1 \ P1(Qp)

its special fiber is a union of P1’s, organized according to the
Bruhat-Tits tree of PGL2(Qp).



Picture of the special fiber of Ω̂Q2



Various aspects of the theory

the theory of local models (Görtz, Pappas, Rapo, Smithling,
X. Zhu).

the theory of the period map (Gross/Hopkins, Faltings, Hartl,
Rapo/Zink).

the theory of non-archimedean period domains (Dat,
Kottwitz, Orlik, Rapo).

the non-archimedean uniformization (Drinfeld, Rapo/Zink).

the `-adic cohomology of RZ-spaces (Fargues, Harris,
Mantovan, Kottwitz, Shin, Viehmann).

the theory of special divisors on RZ-spaces of local Picard
type (Howard, Kudla/Rapo, Terstiege).

the relations between different RZ-spaces (Fargues, Faltings,
Scholze).

the speculative theory of local Shimura varieties (Scholze).
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