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The three layers of Algebraic Geometry

Algebraic Geometry=mathematical discipline that studies the
geometry of the zero loci of polynomials.

Examples:

X"+ Y"-Z"=0

Xg+X2+X3+X3=0

Xg+ X+ X3+ X$=0

X+ X +X+ X3+ X+ X2 =0

X+ XP+ X2+ X2 =0,2X3 + X7 +5X3 +11X3 +7X7 =0



Layer 1: varieties defined by equations

Hierarchy by complication of equation, e.g. the degree of defining
polynomials:

linear equations: part of linear algebra

quadratic equations: when only one equation, then still part of
linear algebra; if more than one equation, becomes more
complicated (Note: any algebraic variety can be described by
quadratic equations!).

one cubic equation in 3 variables: describes elliptic curves,
geometry is understood, arithmetic is very mysterious.

one cubic equation in 4 variables: much studied in the 19th
century

one quartic equation in 4 variables: have been intensely
studied up to the present.



Layer 2: varieties defined by characterization

Study of properties of algebraic varieties (sometimes given by
equations) leads to characterization by properties.

@ nonsingular algebraic curves of genus g: over the ground field
C, these correspond to compact Riemann surfaces of genus g.

@ abelian varieties of dimension g: g-dimensional projective
group varieties.

@ K3-surfaces: nonsingular projective surfaces which are simply
connected, and with a nowhere vanishing holomorphic 2-form.



Layer 3: varieties defined as parameter spaces

Algebraic varieties of one characterization class form an algebraic
variety by themselves.

@ parameter space M of curves of genus g: a quasi-projective
variety of dimension 3g — 3 over the ground field.

@ parameter space of polarized abelian varieties of dimension g:
a quasi-projective algebraic variety of dimension %g(g +1)
over the ground field. Can in fact be defined as a scheme,
even an arithmetic scheme.

@ parameter space of polarized K3-surfaces: a quasi-projective
algebraic variety of dimension 19 over the ground field.



Riemann’s concept of moduli

Riemann (1857, in his first paper on abelian functions):

“Es hangt also [...] die [...] Klasse algebraischer Gleichungen von
3p — 3 stetig verdnderlichen GréBen ab, welche die Moduln dieser
Klasse genannt werden sollen.”

In today's language (analytic):
There exists a moduli space of compact Riemann surfaces of genus
g > 2, which is a complex-analytic variety of dimension 3g — 3.

In today's algebraic language:

There exists a moduli space of smooth projective curves of genus
g > 2, which is a quasi-projective algebraic variety C; of dimension
3g — 3.



Explanation:

This means:

Cg is an algebraic variety with the following universal property: Any
family of curves of genus g over a base S induces a morphism from
S to Cg such that:

@ the morphism only depends on the isomorphism class of the
family of curves over S.

@ this rule is functorial in S.

@ when S = SpecC, the rule induces a bijection between the
sets of isomorphism classes of curves of genus g over C and
the set C4(C).



Also known to Riemann:

There exists a moduli space Az of principally polarized abelian
varieties of dimension g, which is a quasi-projective algebraic
variety of dimension g(g + 1)/2.

Explanation for g = 1: Abelian varieties of dimension 1 are
equivalently

o elliptic curves

@ non-singular cubics in P2 with a distinguished point (the
neutral element for the group operation)

@ over C: E = C/A, for a lattice A in C.
Elliptic curves have an essentially unique principal polarization.
Hence

Ay = SLy(Z)\H.



The various “triangles” are fundamental domains for the

action of SLy(Z).




The moduli scheme of abelian varieties a la
Grothendieck-Mumford

Let g > 1. Fix an integer N > 3. Consider the functor A = A, y
on the category of schemes over Spec Z[1/N],

A(S) = {liso-classes of triples (A, \,7)},

where
@ A an abelian scheme of relative dimension g over S
@ ) a principal polarization

@ 1) a level-N-structure.

Theorem

The functor Ag n is representable by a smooth quasi-projective
scheme of relative dimension g(g + 1)/2 over Spec Z[1/N].




Application: Construction of interesting Galois
representations (g = 1)

Form the Gal(Q/Q)-module

Hy = H* (A1 Xspeczi1/n) Spec Q, Qo).

Let G = GLs. Let 7¢ be an irreducible admissible co-dimensional
representation of G(Ar). Then the 7¢-isotypic component in Hy, is
a multiple of a two-dimensional Galois representation p(7r).

Theorem (Eichler, Shimura, Ihara, Deligne, Langlands, Carayol,
Scholze)

Let p, be the restriction of p(mf) to a decomposition group

Gal(Q,/Qp). Then
pp and mp

are in Langlands correspondence (up to a Tate twist).




Why is this arithmetic?

Application: Consider the Ramanujam function n — 7(n),
appearing in the g-development of the A-function

o0

A(z)=g¢q H (1—q™%*, g=e?% Im(z) >0,
m=1

A(z)=) 7(n)q".

n=1

Theorem (Serre)

The set of prime numbers p with T(p) = 0 has density zero.

Conjecture (Lehmer 1947)
The above set of p is empty.




Variant: Picard moduli scheme

Let E be an imaginary quadratic field.

Let n > 1. Fix an integer 1 < r < n—1. Fix an integer N > 3.
Consider the functor A = Ag , . v on the category of schemes over
Spec Og[1/N],

A(S) = {iso-classes of quadruples (A, ¢, A, )},

where

@ A an abelian scheme of relative dimension n over S.

e . : O — End(A) an action of O, of signature (r,n—r).
@ )\ a principal polarization compatible with ¢,
°

7 a level-N-structure.

Theorem

The functor A is representable by a smooth quasi-projective
scheme of relative dimension r(n — r) over Spec Og[1/2N].




Construction of Galois representation

By a similar procedure as for A1y, get f-adic Galois
representations of Gal(Q/E), of dimension (7).

Using this construction for r = 1, get n-dimensional Galois
representations.

Theorem (Harris/Taylor, Henniart, Scholze)(local Langlands
correspondence)

There exists a one-to-one correspondence between the following
two sets, with all sorts of good properties,

{iso-classes of n-dim. (-adic representations of Gal(Q,/Qp)}
and

{iso—classes of irreducible admissible representations of GL,,(QP)}.




Localization of abelian varieties

@ archimedean localization: associate to an abelian variety over
C its underlying real Lie group, i.e., A= C&/A\ ~» R28 /A

@ p-adic localization: associate to an abelian variety A its
p-divisible group X = A(p*>°), where

A(p>) = lim A[p"].

Big difference:

e all archimedean localizations of elements of A, (C) are
isomorphic.

e not all p-divisible groups of elements of A;(F,) are
isomorphic, not even isogenous (ordinary elliptic curves versus
supersingular elliptic curves).



Local moduli spaces

Let W = W(FF,) be the ring of Witt vectors. Let Nilp = Nilp,, be
the category of W-schemes S such that pOs is a locally nilpotent
ideal sheaf.

Let X be a p-divisible group over I_Fp. Functor on Nilp,
M(S) = { iso-classes of (X, p)},
where
@ X a p-divisible group over_S
© p: X xs55—XXg,.f, S a quasi-isogeny.
Theorem (Rapoport/Zink)

The functor M is representable by a formal scheme locally
formally of finite type over Spf W.

(locally of the form
Spf W{[x1, ..., xa]l{v1,- .., ym)/ideal)



Examples and variants

@ Let X = A(p™), where A € A;1(F,) (hence height(X) = 2).
Then
M =TT spf W([TT],

with index set equal to Z? when A is ordinary, and equal to Z
when A is supersingular.

@ (local analogue of Picard moduli problem) Let E/Q, quadratic
extension. Let W = W.Og. Consider functor on Nilpyy

M(S) = { iso-classes of (X,, A, p)},

where

e X is a p-divisible group of height 4 over S

e (: O — End(X) an action of Of, of signature (1,1)

e ) a polarization compatible with ¢, which is principal when
E/Q, is ramified, and has kernel of order p?, when E/Qp is
unramified.

e p as before, compatible with ¢, A.



Theorem (Kudla/Rapoport)

M is representable by the formal scheme

H ﬁ@p Xsprp ShW,

with index set equal to 7.

Explanation: Here ﬁ@p is Deligne's formal model of Drinfeld's
p-adic halfplane. Properties of ﬁ@P:

@ it is a p-adic formal scheme with semi-stable reduction over
Spf Zp
@ its generic fiber is Drinfeld’s rigid-analytic space

QQP = Pl \]P)l(@P)

e its special fiber is a union of P!'s, organized according to the
Bruhat-Tits tree of PGL2(Q)p).






Various aspects of the theory

@ the theory of local models (Goértz, Pappas, Rapo, Smithling,
X. Zhu).

@ the theory of the period map (Gross/Hopkins, Faltings, Hartl,
Rapo/Zink).

@ the theory of non-archimedean period domains (Dat,
Kottwitz, Orlik, Rapo).

@ the non-archimedean uniformization (Drinfeld, Rapo/Zink).

@ the (-adic cohomology of RZ-spaces (Fargues, Harris,
Mantovan, Kottwitz, Shin, Viehmann).

@ the theory of special divisors on RZ-spaces of local Picard
type (Howard, Kudla/Rapo, Terstiege).

o the relations between different RZ-spaces (Fargues, Faltings,
Scholze).

e the speculative theory of local Shimura varieties (Scholze).
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