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1. Introduction

Two remarks on Arnaud:
1) Fast talker: my terror in Raynaud’s course on algebraic curves.
2) Excellent Expositions: Paper by Beauville-Laszlo is the origin and primary source for

the theory of algebraic loop groups.
This theory was further developed by Beauville, Laszlo, Sorger, Faltings. The results

today are inspired by the paper of Faltings.
The theory has applications in the theory of vector bundles on algebraic curves, in geo-

metric Langlands theory, and in the theory of local models of Shimura varieties.
Joint work with G. Pappas.

2. Definitions

Let G be a linear algebraic group G over k((t)).

Associated algebraic loop group=the ind-group scheme LG over k, with points with
values in a k-algebra R equal to G(R((t))).

If P is a parahoric subgroup of G(k((t))), Bruhat and Tits have associated to P a
smooth group scheme with connected fibers over Spec k[[t]], with generic fiber G and with
group of k[[t]]-rational points equal to P . Denoting by the same symbol P this group
scheme, there is associated to it a group scheme L+P over k, with points with values in a
k-algebra R equal to P (R[[t]]).

The fpqc-quotient FP = LG/L+P is representable by an ind-scheme, and is called the
partial affine flag variety associated to P .

Examples 2.1. a) Let G = GLn. Then LG = LGLn with R-points GLn(R((t)). An
example of a parahoric subgroup is P = GLn(k[[t]]), and then the corresponding group
scheme over k is Resk[[t]]/k(GLn). The corresponding partial affine flag variety is the affine
Grassmannian G with G(R) equal to the set

G(R) = {R[[t]]-lattices in R((t))n} .
1
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Another parahoric subgroup is the Iwahori subgroup B = π−1(B), where π : GLn(k[[t]]) →
GLn(k), and where B is the Borel group of upper triangular matrices. The corresponding
partial affine flag variety is the full affine flag variety F with F(R) equal to the set

F(R) = {complete periodic chains of R[[t]]-lattices in R((t))n} .

(write down)

b) Let G = SLn. Then can consider the same kind of objects. For instance, the corre-
sponding affine Grassmannian G parametrizes normalized lattices, i.e.,

∧n L = R[[t]].

c) More generally, we can start with a reductive group G0 over k and take G = G0 ⊗k

k((t)). We call this the classical case.

d) Here is a non-classical case: Let K = k((t)) and let K ′ = k((u)) with u2 = t. Let
G be the special unitary group defined by a K ′/K-hermitian vector space of dimension n.
In this case the full affine flag variety F parametrizes normalized complete periodic lattice
chains in R((u))n which are selfdual(when n is odd; otherwise F is one of two connected
components of this functor).

3. Structural results

In [PR3] we studied these partial affine flag varieties. The main structural results are
as follows. We assume that G is a connected reductive algebraic group and that k is
algebraically closed.

1) π0(LG) = π0(FP ) = π1(G)I . Here π1(G) denotes the algebraic fundamental group
of G in the sense of Borovoi, and I = Gal(k((t))/k((t))) the inertia group.

In the classical case, this is due to Beauville-Laszlo-Sorger, and to Beilinson-
Drinfeld.

2) If G is semi-simple and splits over a tamely ramified extension of k((t)), and if
(char(k), |π1(G)|) = 1, then LG and FP are reduced ind-schemes.

In the classical case this is due to Beauville-Laszlo, Laszlo-Sorger in characteristic
0, in positive characteristic for G = SLn to PR, and in the general case to Faltings.

Note that LPGL2 is non-reduced in characteristic 2.
3) If G splits over a tamely ramified extension of k((t)), then all Schubert varieties in
FP are normal projective algebraic varieties, with only rational singularities.

In characteristic 0, this is due to Kumar, Littelmann, Mathieu (with an a priori
different definition of loop groups). In arbitrary characteristic, this is due to Faltings
in the classical case.

4) Let G be semi-simple and simply connected and absolutely simple. If G splits over a
tamely ramified extension of k((t)), then

Pic(FP ) =
⊕

Z · εi ,
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where the sum ranges over the affine roots corresponding to the walls not bounding
the facet in the Bruhat-Tits building fixed by P .

( This identification is given by the degree morphism in all cases, except if G

is a ramified special unitary group as in the previous section in an odd number
of variables, in which case the surjectivity of the degree morphism has not been
established.

Same references as for 3).

I gave a sketch of the proofs of these theorems in the fall of 2005 in Orsay.

4. The conjectures

Let k be an algebraically closed field, and let X be a smooth connected projective curve
over k. Let G be a smooth affine group scheme over X. We assume that the generic fiber Gη is
a connected reductive group scheme over K = k(X), and that for every x ∈ X(k), denoting
by Ox the completion of the local ring at x and by Kx its fraction field, Gx = G×X Spec(Ox)
is a parahoric group scheme for Gηx = Gη ⊗K Kx.

Examples 4.1. a) A particular class of examples arises in the following way. Let G be
connected reductive group scheme over k. Then G = G×Spec k X is an example of the kind
of group schemes we will consider (constant group scheme).

b) We may generalize this as follows. Let x ∈ X(k). Then the parahoric subgroups in
G(Kx) contained in G(Ox) are in one-to-one correspondence with the parabolic subgroups
of G. More precisely, if P ⊂ G is a parabolic subgroup, then the corresponding parahoric
subgroup P is equipped with a morphism of group schemes over SpecOx,

(4.1) P −→ G×Spec k SpecOx

which in the generic fiber is the identity of Gηx and which in the special fiber has image
equal to P .

Suppose now that G is a group scheme equipped with a morphism G → G ×k X which,
when localized at x is of the previous nature for all x ∈ X(k). Hence there is a finite set of
points {x1, . . . , xn} such that this morphism is an isomorphism outside this finite set, and
parabolic subgroups P1, . . . , Pn such that the localization of G at xi corresponds to Pi in
the sense explained above. Then there is an equivalence of categories:

{G-torsors on X} ⇐⇒

{G-torsors on X with quasi-parabolic structure of type (P1, . . . , Pn) with respect to (x1, . . . , xn)}

in the sense of [Laszlo-Sorger].
c) Another example is given by a special unitary group corresponding to a double cover

X ′ of X. �

Let MG/X denote the algebraic stack of G-torsors on X.
4 conjectures on the geometry of MG/X
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Conjecture 4.2. (I,Uniformization) Let x ∈ X(k). Let P be a G-torsor over X × S. If
Gη is semi-simple, then after an fppf base change S′ → S, the restriction of P ×S S′ to
(X r {x})× S′ is trivial.

From this conjecture we would obtain a uniformization of MG/X . Namely, assuming Gη

semi-simple, and choosing a uniformizer at x, we would have an isomorphism

(4.2) MG/X = ΓXr{x}(G)\L(Gηx)/L+(Gx).

Here ΓXr{x}(G) denotes the ind-group scheme with k-rational points equal to

ΓXr{x}(G)(k) = Γ(X r {x},G) .

More precisely, (4.2) presents the affine partial flag variety Fx = L(Gηx)/L+(Gx) as a
ΓXr{x}(G)-torsor over MG/X . We will denote by px the uniformization morphism,

(4.3) px : Fx →MG/X .

Remarks 4.3. In the constant case G = G ×Spec k X, this is the theorem of Drinfeld and
Simpson [DS]. In the case S = Spec k, this statement in this special case was proved much
earlier by Harder [H]. Even for the Examples 4.1b) the conjecture is not trivial. �

Heinloth(in a recent letter): True if G is either simply connected or quasisplit.

The second conjecture concerns the set of connected components, and is of Kottwitz
style.

Conjecture 4.4. (II, Connected components) Denote by π1(Gη̄) the algebraic funda-
mental group of Gη̄ in the sense of Borovoi. Then

π0(MG/X) = π1(Gη̄)Γ.

Here on the right hand side are the co-invariants under Γ = Gal(η̄/η).

Remarks 4.5. a) In particular, if Gη̄ is semi-simple and simply connected, then MG/X

should be connected. This would follow from the uniformization conjecture and the fact
that LG is connected for any semi-simple simply connected group over k((t)), cf. result 1)
above. Hence the conjecture II holds in this case by Heinloth.

b) If G is constant, i.e comes by extension of scalars from a group scheme G over k,
then the action of Γ on π1(Gη̄) is trivial. Over C Conjecture II follows from the topological
uniformization theorem, [Sorger-Triest], Cor. 4.1.2.

c)Heinloth(same letter): Conjecture II holds if G is quasisplit.

The third conjecture concerns the Picard group of MG/X . For this we assume that Gη

is semi-simple, simply connected, and absolutely simple. Let us also assume that Gηx splits
over a tamely ramified extension of Kx = k((t)). In [PR3] we construct an exact sequence

(4.4) 0 −→ X∗(G(x)) −→ Pic(Fx) −→ Z −→ 0 .
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Here X∗(G(x)) is the character group of the fiber of G in x, and cx : Pic(Fx) → Z is
the central charge homomorphism.

Note that if Gx is a special maximal parahoric group, then X∗(G(x)) is trivial; and this
applies to all but finitely many points x ∈ X. Let us denote by Bad(G) the set of points x

where Gx is not special.

Conjecture 4.6. (III, on Pic(M)) Let Gη be semi-simple, simply connected and absolutely
simple. We also assume that Gηx splits over a tamely ramified extension of Kx, for all
x ∈ X(k).

(i) For any x ∈ X(k), consider the homomorphism

p∗x : Pic(MG/X) −→ Pic(Fx)

induced by the uniformization morphism. Composing with the homomorphism cx, we obtain
a homomorphism Pic(MG/X) −→ Z. This homomorphism is surjective and independent of
x. Let us denote this homomorphism by c or cG/X .

(ii) Denote the kernel of cG/X by Pic(MG/X)0. There is a natural isomorphism

Pic(MG/X)0 '
⊕

x∈X(k)

X∗(G(x)).

(iii) Consider all group schemes G as above on X with a common generic fiber. Then
there is a unique section of cG/X which is functorial in homomorphisms G → G′ which
induce the identity homomorphism in the generic fiber.

Remarks 4.7. a) In the case of a constant group scheme, (i) and (ii) are due to Sorger [S]
for k = C and to Faltings [F1] for arbitrary k, and (iii) is trivial.

b) In the case that G is of the type described in Examples 4.1 b), the point (ii) is proved by
Laszlo and Sorger in [LS]. In this case, G comes with a morphism to G×Spec k X. Therefore
the positive answer to (i) for G×Spec k X implies that (iii) is true as well, via the splitting
Z = Pic(MG×X/X) → Pic(MG/X). �

We now come to the conformal blocks. Before this, we recall some facts from [PR3]
about the Picard group of a partial affine flag variety F = LG/L+P . Here we are assuming
that char(k) = 0 and that the group G over k((t)) is semi-simple, simply connected and
absolutely simple. A line bundle L on F is called dominant if its image deg(L) ∈

⊕
Z · εi

has all coefficients ≥ 0. Then the Lie algebra of the universal extension L̃G acts on the
space of global sections H0(F ,L), and if L is dominant, this representation is the dual of
the integrable highest weight representation corresponding to the element deg(L).

We now return to the global situation and a general group scheme G. A line bundle L
on MG/X is called dominant if p∗x(L) is a dominant line bundle on Fx for every x.

Conjecture 4.8. (IV, Conformal blocks) Let char k = 0, and assume as before that
Gη is semi-simple, simply connected and absolutely simple. Let S be a non-empty finite
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subset of X(k) containing Bad(G). Let L be a dominant line bundle on MG/X . There is a
canonical isomorphism of finite-dimensional vector spaces

H0(MG/X ,L) '
[⊗

x∈S
H0(Fx, p∗x(L))

]H0(X\S,Lie(G))

.

It is known (Faltings) that if S is enlarged to S′ ⊃ S, the RHS does not change.

Remarks 4.9. In the ‘classical’ theory where G = G ×Spec k X, one considers data which
formally look very similar to the data above. One also fixes a finite set S of points, and
dominant integral weights, one for each point xi ∈ S. These are written traditionally as
above in the form λi = (λ(0)

i , `), where λ
(0)
i is a dominant weight for G and ` ∈ Z is the

central charge with 〈θ∨, λ
(0)
i 〉 ≤ `. These additional points and dominant integral weights

are introduced to formulate and prove the fusion rules, which ultimately lead to an explicit
determination of the dimension of the vector spaces in Conjecture 4.8.

On the other hand, in [Laszlo-Sorger] the set S and the dominant integral weights λi

appear for essentially the same reason as here, except that here the situation is more general.
�

In the classical case, when G = G ×Spec k X, the dimension of the RHS in Conjecture
4.8 has been calculated by Faltings [Fa2] by using the factorization rules and the fusion
algebra, at least when G is a classical group or of type G2. We have not thought about how
to generalize these further developments.
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