SOME REMARKS ON SPECIAL CYCLES ON SHIMURA CURVES

MICHAEL RAPOPORT

(notes of my talk at the Barcelona conference July 2006)

1. WITHOUT LEVEL STRUCTURE

Definition 1.1. Let E be an elliptic curve over a base scheme S. An endomorphism j €
Endg(F) is called special if tr(j) =0

Let V(FE) denote the set of special endomorphisms of E. Then, if S is connected, V(E)
is a finitely generated free Z-module equipped with a quadratic form given by

(1.1) q(j) = deg(j) = —j> (multiple of idg) .

Note that ¢ is positive-definite.

Let M denote the moduli stack of elliptic curves. This is a smooth DM-stack of relative
dimension one over Spec Z.

Let t € Z~o. Let Z(t) be the stack of pairs (F,j) where j € V(E) with ¢(j) = ¢. The
forgetful morphism

(1.2) Z(t) — M
is finite and unramified. We call Z(t), or its image in M, a special cycle on M.

Proposition 1.2. Z(t) is a relative divisor, i.e., a divisor flat over Spec Z. In other words,
Z(t) is locally for the étale topology defined by one equation which is neither a unit nor

divisible by any prime number p.

Next we want to intersect two special cycles Z(t1) and Z(t3). Let T' € Symy(Z). Let

(1.3) Z(T) ={(E, j1,j2) | (j1,42) € V(E)?, q(j1,j2) =T} .
Here
ety 50 de)
(1.4) andz) = <%(j1,j2) 2(1(]'2) )
where
(1.5) (J1,J2) = q(d1 + j2) — q(j1) — q(j2)

is the bilinear form associated to the quadratic form gq.
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We now obtain

(1.6) Z(t) xm 2(t2) =[] 2@) .
T

Here the sum is over all T' € Sym,(Z) with diagonal terms ¢; and t5. Note that if t1t9 is
not a perfect square, all T" lie in Sym,(Z)~¢. For these T there is the following result.

Theorem 1.3. Let T € Symy(Z)~¢ with Z(T) # 0. Then Z(T) is a stack of finite length
with support in the supersingular locus of a fibker M @z Fy,, for a unique prime number p.
Furthermore, Z(T) is the disjoint sum of local Artinian stacks, each of which has identical
length given by the Gross-Keating formula,

a—1

Zj:To(@+b—4j)Pj; if a is odd
1g(OZ(T),§) =
jgz_ol(a+b—4j)pj—i—%(b—a—l—l)p%, if a is even.

Here (0,a,b) are the Gross-Keating invariants of the matrix T = diag(1,T) € Symy(Z,).
If p # 2, this means that T' can be diagonalized to diag(up®, u/p®), with u,u’ € Z) and
0 < a <b. It turns out that a + b is odd, so that the above formula makes sense.

Let us denote by RHS the formula of the right hand side of the Gross-Keating for-
mula. It can be expressed in terms of derivatives of p-adic representation densities. Let
So = Ma(Z,,)"=, with quadratic form given by the determinant. Let (T, Sp) denote the
derivative at X = 1 of the representation density polynomial A(T, Sp)(X) of T' by Sp . Then

2
P2 —
Principle of the calculation: The calculation of 1g(Oz(7) ¢) reduces by the Serre-Tate

(1.7) RHS = — - a}(T, 50) .

theorem to the following problem on p-divisible groups.
Let G be the p-divisible formal group of dimension one and height two over Fp. Then

(1.8) End(G) =Op ,

where Op is the maximal order in the quaternion division algebra over Q,. Let

(1.9) V(G) = {x € End(G) | tr(xz) = 0},

with quadratic form given by ¢(z) = Nm(z). We change our notation slightly and write
(1.10) M = Spec W (F,,)[[t]]

for the universal deformation space of G. For x € V(G) with g(x) # 0, let Z(x) C M be
the locus (closed formal subscheme) where the endomorphism x deforms. This is a relative
divisor over Spf Z,, comp. Proposition ?? above.

Let now (z,y) € V(G)? and T = q(w,y) € Symy(Z,). Let Z(x,y) be the locus inside M
where (z,y) deforms.
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Theorem 1.4. If det(T') # 0, then
lg(Z(z,y)) = RHS .

Proof. (Sketch, see [A] and [KRY] for details.) For simplicity assume p # 2. We then may
assume that T = diag(up®, u'p®) with u, v’ € Z; and 0 < a < b. By Gross’s theory of
quasi-canonical liftings we have an equality of divisors

A
(1.11) Z(z) = S s(k) .
Here k = Q,(x) is the quadratic extension of Q, generated by x inside D, and A = [§].
Furthermore
(1.12) W, (k) = Spf Wi(k) ,

where W (k) denotes the ring of integers in the ring class field of k£ with norm group equal
to Oy ., where

(1.13) Os = O s = Zyp +p° - O

is the order of conductor s in k. The quasi-canonical divisiors are regular and prime to each
other, and defined over Spf Wy (k).

The decomposition (?7) comes about as follows. Over Spec W(k) there is the quasi-
canonical lifting I'y of level s with respect to k. This is a p-divisible group which lifts G
and with Endyy,x)(I's) = Os. Note that Z,[z] = Ok 4, which explains the range of the
summation in (?7).

All quasi-canonical liftings with respect to k are isogenous to each other, in a natural
way. Fix a basis of the rational p-adic Tate module of I'g. Then the p-adic Tate module
T,(I's) becomes a lattice in @12), and hence defines a vertex in the Bruhat-Tits building of
PGL2(Qp). The fixed points of £* are either the midpoint of an edge (if £/Q,, is ramified)
or a vertex (if k/Q, is unramified). The vertex corresponding to 7,(I's) has distance s + 3
resp. s to this fixed point locus, and conversely any such vertex appears in this way (they

are all conjugate under Gal(Wy(k)/Wy(k)). The pictures are, depending on whether k is
ramified or unramified over Q,:

HERE THE PICTURE SHOULD GO

Let
(1.14) n(k;d,s) =1g(Ws(k)/1(b)) ,

where I(b) is the ideal defining the locus where any y € V(G) deforms which anti-commutes
with k and with ¢(y) = up® for some u € ZX. This number is explicitly known, cf. [A]. From
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(??7) we obtain

(1.15) lg(Z(x,y)) = Zj:o n(k;b,s) .

Inserting the values for n(k;b, s) then leads to Theorem ?7?. O

Remark 1.5. Similar results hold for Shimura curves corresponding to an indefinite qua-
ternion algebra B over Q and special cycles on them, as long as the prime number p does not
divide the discriminant of B. In fact, by the Serre-Tate theorem this extension is immediate.

2. To(p™)-LEVEL STRUCTURE

Let n > 1. Let M = M, () be the stack of elliptic curves with I'g(p")-level structure.
Hence M parametrizes cyclic isogenies of degree p™,

(2.1) N E—FE.

In joint work with S. Kudla (in progress) we are trying to generalize the results of section
1. Define

(2.2) V(E S E')={(j,j) € End(E) x End(E") | Aoj = 7' o A} .

For a connected base scheme S, V(E LN ) is again a quadratic space with quadratic
form q((4,7)) = q(j) = q(j'). Hence we can again define Z(t) for t > 0 and Z(T) for
T € Symy(Z).

Warning 2.1. Z(t) has embedded components and hence is not a divisor.

Let Z(t)” be the associated divisor.
The local version of Z(t) resp. of Z(t)° can be defined as well. Up to isomorphism there
is a unique cyclic isogeny of degree p™,

(2.3) NG —G.

Let x = (z,2') € O% with Aoz = 2’ o A\. Let us again slightly modify the notation and
denote now by M the universal deformation space of A\ : G — G. Then to x = (z, ')
there is associated the closed locus Z(x) C M where x deforms. Again let Z(x)? be the
associated divisor.

Our first result is the decomposition of Z(x)” into quasi-canonical divisors. Let § = 0 if
k is unramified, and § = 1 if k is ramified. For any pair (¢, d) of non-negative integers with
c+d=n and any s with ¢ < s+ 9, we associate a regular irreducible divisor VNVS(k:)(C’d) of
M, as follows.

Let s° = max{s, s + 0 — ¢+ d}. Then as Wy(k)-scheme W, (k)(©% is equal to Spf Wi (k).
The closed immersion Wy (k)(©% — M is obtained by noting that over Spec Wo (k) we
have the cyclic isogeny of degree p”, given by the composition of isogenies of degree p,

(2.4) s —Ilsg— ... —Tse—Tscy1— ... — Ts_qa,
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provided ¢ < s. The cyclicity of this isogeny translates into the condition that the distance
between the vertices in the Bruhat-Tits building corresponding to I'y and I';_ .44 is equal to
n (no backtracking in the path). The first ¢ isogenies are canonical, and the last d isogenies
are non-canonical. If § =1 and ¢ = s + 1, then the isogeny of degree p" is the composition

of ¢ canonical isogenies and d non-canonical isogenies, as follows,
(2.5) rn—Iry4—...—Ig—I0y—I0I1—...—Ty.
All the closed immersions thus obtained are conjugate over Wy(k).

Proposition 2.2. There is the following equality of divisors on M,
Zx) = > Wik .
s—c+d<A

Here again A = [§] when ¢(x) = up®, and the sum runs over triples of non-negative
integers (c¢,d, s) withec+d=mn,c<s+J,s—c+d<A.

We now specialize to the case n = 1.
Conjecture 2.3. Let n = 1. Then, at least if p # 2,

This is true if a < 1 . If this conjecture holds true, then one can show that for any prime
divisor D on M relatively prime to Z(x),

(2.6) (Z2(x)>.D) =lg(Z(x)ND) —1.

Let us assume this. Let y = (y,¢') € V(G 2, G) such that T = q(x,y) = diag(up?, u'p’)
with u,u’ € Z); and 0 < a < b. Then applying (??) to Z(y) instead of Z(x)’, and writing

Z(x)” as a sum of quasi-canonical divisors according to Proposition ?? we obtain

(Zx)Zy)) = Y, leWVsk) D nZ(y) —1]
s—c+d<A
(2.7) = Z::[(n(k; b,s) = 1)+ (n(k;b,s + 1) — 1)]
+ [(n(k;0,1) = 1) + n(k; b, A) — 1]
+9- (n(k;b,0)—1) .
Here we used the equality
(2.8) lg(Ws(k) D 0 2(y)) = n(k; b, s°) -

Inserting the known expression for the quantities n(k; b, s) we can calculate the expression on
the right hand side. On the other hand consider the derivative of the representation density
ar, (T, 8p), where Sj denotes the quadratic space given by the intersection of Ma(Z,)"=°
with the Eichler order for I'(p). Comparing now with Yang’s formulae [Y] for representation

densities, we obtain
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Projected Theorem 2.4. Let n = 1. Let (x,y) € V(G 2, G)? with T = q(x,y) €
Symy(Zy) non-singular. Then

(Z(x).Z(y)) = o1 (T, Sp) = 1.



