SOME REMARKS ON SPECIAL CYCLES ON SHIMURA CURVES

MICHAEL RAPOPORT

(notes of my talk at the Barcelona conference July 2006)

1. WITHOUT LEVEL STRUCTURE

Definition 1.1. Let *E* be an elliptic curve over a base scheme *S*. An endomorphism $j \in$ End_{*S*}(*E*) is called *special* if tr(*j*) = 0

Let V(E) denote the set of special endomorphisms of E. Then, if S is connected, V(E) is a finitely generated free \mathbb{Z} -module equipped with a quadratic form given by

(1.1) $q(j) = \deg(j) = -j^2 \qquad (\text{multiple of } \mathrm{id}_E) \;.$

Note that q is positive-definite.

Let \mathcal{M} denote the moduli stack of elliptic curves. This is a smooth DM-stack of relative dimension one over Spec \mathbb{Z} .

Let $t \in \mathbb{Z}_{>0}$. Let $\mathcal{Z}(t)$ be the stack of pairs (E, j) where $j \in V(E)$ with q(j) = t. The forgetful morphism

(1.2)
$$\mathcal{Z}(t) \longrightarrow \mathcal{M}$$

is finite and unramified. We call $\mathcal{Z}(t)$, or its image in \mathcal{M} , a special cycle on \mathcal{M} .

Proposition 1.2. $\mathcal{Z}(t)$ is a relative divisor, i.e., a divisor flat over Spec Z. In other words, $\mathcal{Z}(t)$ is locally for the étale topology defined by one equation which is neither a unit nor divisible by any prime number p.

Next we want to intersect two special cycles $\mathcal{Z}(t_1)$ and $\mathcal{Z}(t_2)$. Let $T \in \text{Sym}_2(\mathbb{Z})$. Let

(1.3)
$$\mathcal{Z}(T) = \{ (E, j_1, j_2) \mid (j_1, j_2) \in V(E)^2, \ q(j_1, j_2) = T \} .$$

Here

(1.4)
$$q(j_1, j_2) = \begin{pmatrix} q(j_1) & \frac{1}{2}(j_1, j_2) \\ \frac{1}{2}(j_1, j_2) & q(j_2) \end{pmatrix}$$

where

(1.5)
$$(j_1, j_2) = q(j_1 + j_2) - q(j_1) - q(j_2)$$

is the bilinear form associated to the quadratic form q.

Date: 21. September 2006.

We now obtain

(1.6)
$$\mathcal{Z}(t_1) \times_{\mathcal{M}} \mathcal{Z}(t_2) = \prod_T \mathcal{Z}(T) \; .$$

Here the sum is over all $T \in \text{Sym}_2(\mathbb{Z})$ with diagonal terms t_1 and t_2 . Note that if t_1t_2 is not a perfect square, all T lie in $\text{Sym}_2(\mathbb{Z})_{>0}$. For these T there is the following result.

Theorem 1.3. Let $T \in \text{Sym}_2(\mathbb{Z})_{>0}$ with $\mathcal{Z}(T) \neq \emptyset$. Then $\mathcal{Z}(T)$ is a stack of finite length with support in the supersingular locus of a fiber $\mathcal{M} \otimes_{\mathbb{Z}} \mathbb{F}_p$, for a unique prime number p. Furthermore, $\mathcal{Z}(T)$ is the disjoint sum of local Artinian stacks, each of which has identical length given by the Gross-Keating formula,

$$\lg(\mathcal{O}_{\mathcal{Z}(T),\xi}) = \begin{cases} \sum_{j=0}^{\frac{a-1}{2}} (a+b-4j)p^j, & \text{if } a \text{ is odd} \\ \\ \sum_{j=0}^{\frac{a}{2}-1} (a+b-4j)p^j + \frac{1}{2}(b-a+1)p^{\frac{a}{2}}, & \text{if } a \text{ is even} \end{cases}$$

Here (0, a, b) are the Gross-Keating invariants of the matrix $\tilde{T} = \text{diag}(1, T) \in \text{Sym}_3(\mathbb{Z}_p)$. If $p \neq 2$, this means that T can be diagonalized to $\text{diag}(up^a, u'p^b)$, with $u, u' \in \mathbb{Z}_p^{\times}$ and $0 \leq a \leq b$. It turns out that a + b is odd, so that the above formula makes sense.

Let us denote by RHS the formula of the right hand side of the Gross-Keating formula. It can be expressed in terms of derivatives of *p*-adic representation densities. Let $S_0 = M_2(\mathbb{Z}_p)^{\text{tr}=0}$, with quadratic form given by the determinant. Let $\alpha'_p(T, S_0)$ denote the derivative at X = 1 of the representation density polynomial $A(T, S_0)(X)$ of T by S_0 . Then

(1.7)
$$\text{RHS} = -\frac{p^2}{p^2 - 1} \cdot \alpha'_p(T, S_0) \; .$$

Principle of the calculation: The calculation of $\lg(\mathcal{O}_{\mathcal{Z}(T),\xi})$ reduces by the Serre-Tate theorem to the following problem on *p*-divisible groups.

Let G be the p-divisible formal group of dimension one and height two over $\overline{\mathbb{F}}_p$. Then

(1.8)
$$\operatorname{End}(G) = O_D ,$$

where O_D is the maximal order in the quaternion division algebra over \mathbb{Q}_p . Let

(1.9)
$$V(G) = \{x \in \text{End}(G) \mid \text{tr}(x) = 0\}$$

with quadratic form given by q(x) = Nm(x). We change our notation slightly and write

(1.10)
$$\mathcal{M} = \operatorname{Spec} W(\overline{\mathbb{F}}_p)[[t]]$$

for the universal deformation space of G. For $x \in V(G)$ with $q(x) \neq 0$, let $\mathcal{Z}(x) \subset \mathcal{M}$ be the locus (closed formal subscheme) where the endomorphism x deforms. This is a relative divisor over Spf \mathbb{Z}_p , comp. Proposition ?? above.

Let now $(x, y) \in V(G)^2$ and $T = q(x, y) \in \text{Sym}_2(\mathbb{Z}_p)$. Let $\mathcal{Z}(x, y)$ be the locus inside \mathcal{M} where (x, y) deforms.

Theorem 1.4. If $det(T) \neq 0$, then

$$\lg(\mathcal{Z}(x,y)) = \mathrm{RHS}$$
.

Proof. (Sketch, see [A] and [KRY] for details.) For simplicity assume $p \neq 2$. We then may assume that $T = \text{diag}(up^a, u'p^b)$ with $u, u' \in \mathbb{Z}_p^{\times}$ and $0 \leq a \leq b$. By Gross's theory of quasi-canonical liftings we have an equality of divisors

(1.11)
$$\mathcal{Z}(x) = \sum_{s=0}^{A} \mathcal{W}_{s}(k)$$

Here $k = \mathbb{Q}_p(x)$ is the quadratic extension of \mathbb{Q}_p generated by x inside D, and $A = \begin{bmatrix} \frac{a}{2} \end{bmatrix}$. Furthermore

(1.12)
$$\mathcal{W}_s(k) = \operatorname{Spf} W_s(k) ,$$

where $W_s(k)$ denotes the ring of integers in the ring class field of k with norm group equal to $\mathcal{O}_{k,s}^{\times}$, where

(1.13)
$$\mathcal{O}_s = \mathcal{O}_{k,s} = \mathbb{Z}_p + p^s \cdot \mathcal{O}_k$$

is the order of conductor s in k. The quasi-canonical divisions are regular and prime to each other, and defined over Spf $W_0(k)$.

The decomposition (??) comes about as follows. Over $\operatorname{Spec} W_s(k)$ there is the quasicanonical lifting Γ_s of level s with respect to k. This is a p-divisible group which lifts G and with $\operatorname{End}_{W_s(k)}(\Gamma_s) = \mathcal{O}_s$. Note that $\mathbb{Z}_p[x] = \mathcal{O}_{k,A}$, which explains the range of the summation in (??).

All quasi-canonical liftings with respect to k are isogenous to each other, in a natural way. Fix a basis of the rational p-adic Tate module of Γ_0 . Then the p-adic Tate module $T_p(\Gamma_s)$ becomes a lattice in \mathbb{Q}_p^2 , and hence defines a vertex in the Bruhat-Tits building of PGL₂(\mathbb{Q}_p). The fixed points of k^{\times} are either the midpoint of an edge (if k/\mathbb{Q}_p is ramified) or a vertex (if k/\mathbb{Q}_p is unramified). The vertex corresponding to $T_p(\Gamma_s)$ has distance $s + \frac{1}{2}$ resp. s to this fixed point locus, and conversely any such vertex appears in this way (they are all conjugate under $\operatorname{Gal}(\overline{W_0(k)}/W_0(k))$). The pictures are, depending on whether k is ramified or unramified over \mathbb{Q}_p :

HERE THE PICTURE SHOULD GO

Let

(1.14)
$$n(k;b,s) = \lg(W_s(k)/I(b)) ,$$

where I(b) is the ideal defining the locus where any $y \in V(G)$ deforms which anti-commutes with k and with $q(y) = up^b$ for some $u \in \mathbb{Z}_p^{\times}$. This number is explicitly known, cf. [A]. From (??) we obtain

(1.15)
$$\lg(\mathcal{Z}(x,y)) = \sum_{s=0}^{A} n(k;b,s)$$

Inserting the values for n(k; b, s) then leads to Theorem ??.

Remark 1.5. Similar results hold for Shimura curves corresponding to an indefinite quaternion algebra B over \mathbb{Q} and special cycles on them, as long as the prime number p does not divide the discriminant of B. In fact, by the Serre-Tate theorem this extension is immediate.

2. $\Gamma_0(p^n)$ -level structure

Let $\tilde{\mathcal{M}} = \mathcal{M}_{\Gamma_0(p^n)}$ be the stack of elliptic curves with $\Gamma_0(p^n)$ -level structure. Hence $\tilde{\mathcal{M}}$ parametrizes cyclic isogenies of degree p^n ,

$$(2.1) \qquad \qquad \lambda: E \longrightarrow E' \; .$$

In joint work with S. Kudla (in progress) we are trying to generalize the results of section 1. Define

(2.2)
$$V(E \xrightarrow{\lambda} E') = \{(j, j') \in \operatorname{End}(E) \times \operatorname{End}(E') \mid \lambda \circ j = j' \circ \lambda\}.$$

For a connected base scheme S, $V(E \xrightarrow{\lambda} E')$ is again a quadratic space with quadratic form q((j, j')) = q(j) = q(j'). Hence we can again define $\tilde{\mathcal{Z}}(t)$ for t > 0 and $\tilde{\mathcal{Z}}(T)$ for $T \in \text{Sym}_2(\mathbb{Z})$.

Warning 2.1. $\tilde{\mathcal{Z}}(t)$ has embedded components and hence is not a divisor.

Let $\tilde{\mathcal{Z}}(t)^{\flat}$ be the associated divisor.

The local version of $\tilde{\mathcal{Z}}(t)$ resp. of $\tilde{\mathcal{Z}}(t)^{\flat}$ can be defined as well. Up to isomorphism there is a unique cyclic isogeny of degree p^n ,

$$(2.3) \qquad \qquad \lambda: G \longrightarrow G \ .$$

Let $\mathbf{x} = (x, x') \in O_D^2$ with $\lambda \circ x = x' \circ \lambda$. Let us again slightly modify the notation and denote now by $\tilde{\mathcal{M}}$ the universal deformation space of $\lambda : G \longrightarrow G$. Then to $\mathbf{x} = (x, x')$ there is associated the closed locus $\tilde{\mathcal{Z}}(\mathbf{x}) \subset \tilde{\mathcal{M}}$ where \mathbf{x} deforms. Again let $\tilde{\mathcal{Z}}(\mathbf{x})^{\flat}$ be the associated divisor.

Our first result is the decomposition of $\tilde{\mathcal{Z}}(\mathbf{x})^{\flat}$ into quasi-canonical divisors. Let $\delta = 0$ if k is unramified, and $\delta = 1$ if k is ramified. For any pair (c, d) of non-negative integers with c + d = n and any s with $c \leq s + \delta$, we associate a regular irreducible divisor $\tilde{\mathcal{W}}_s(k)^{(c,d)}$ of $\tilde{\mathcal{M}}$, as follows.

Let $s^{\circ} = \max\{s, s + \delta - c + d\}$. Then as $W_0(k)$ -scheme $\tilde{W}_s(k)^{(c,d)}$ is equal to Spf $W_{s^{\circ}}(k)$. The closed immersion $\tilde{W}_s(k)^{(c,d)} \longrightarrow \tilde{\mathcal{M}}$ is obtained by noting that over Spec $W_{s^{\circ}}(k)$ we have the cyclic isogeny of degree p^n , given by the composition of isogenies of degree p,

(2.4)
$$\Gamma_s \longrightarrow \Gamma_{s-1} \longrightarrow \ldots \longrightarrow \Gamma_{s-c} \longrightarrow \Gamma_{s-c+1} \longrightarrow \ldots \longrightarrow \Gamma_{s-c+d}$$
,

provided $c \leq s$. The cyclicity of this isogeny translates into the condition that the distance between the vertices in the Bruhat-Tits building corresponding to Γ_s and Γ_{s-c+d} is equal to n (no backtracking in the path). The first c isogenies are canonical, and the last d isogenies are non-canonical. If $\delta = 1$ and c = s + 1, then the isogeny of degree p^n is the composition of c canonical isogenies and d non-canonical isogenies, as follows,

(2.5)
$$\Gamma_s \longrightarrow \Gamma_{s-1} \longrightarrow \ldots \longrightarrow \Gamma_0 \longrightarrow \Gamma_1 \longrightarrow \ldots \longrightarrow \Gamma_d$$
.

All the closed immersions thus obtained are conjugate over $W_0(k)$.

Proposition 2.2. There is the following equality of divisors on \mathcal{M} ,

$$ilde{\mathcal{Z}}(\mathbf{x})^{\flat} = \sum_{s-c+d \leq A} ilde{\mathcal{W}}_s(k)^{(c,d)}$$

Here again $A = \begin{bmatrix} \frac{a}{2} \end{bmatrix}$ when $q(\mathbf{x}) = up^a$, and the sum runs over triples of non-negative integers (c, d, s) with c + d = n, $c \leq s + \delta$, $s - c + d \leq A$.

We now specialize to the case n = 1.

Conjecture 2.3. Let n = 1. Then, at least if $p \neq 2$,

$$\lg(\ker(\mathcal{O}_{\tilde{\mathcal{Z}}(\mathbf{x})} \longrightarrow \mathcal{O}_{\tilde{\mathcal{Z}}(\mathbf{x})^{\flat}})) = 1 \ .$$

This is true if $a \leq 1$. If this conjecture holds true, then one can show that for any prime divisor D on $\tilde{\mathcal{M}}$ relatively prime to $\tilde{\mathcal{Z}}(\mathbf{x})^{\flat}$,

(2.6)
$$(\tilde{\mathcal{Z}}(\mathbf{x})^{\flat}.D) = \lg(\tilde{\mathcal{Z}}(\mathbf{x}) \cap D) - 1$$

Let us assume this. Let $\mathbf{y} = (y, y') \in V(G \xrightarrow{\lambda} G)$ such that $T = q(\mathbf{x}, \mathbf{y}) = \text{diag}(up^a, u'p^b)$ with $u, u' \in \mathbb{Z}_p^{\times}$ and $0 \le a \le b$. Then applying (??) to $\tilde{\mathcal{Z}}(\mathbf{y})^{\flat}$ instead of $\tilde{\mathcal{Z}}(\mathbf{x})^{\flat}$, and writing $\tilde{\mathcal{Z}}(\mathbf{x})^{\flat}$ as a sum of quasi-canonical divisors according to Proposition ?? we obtain

(2.7)

$$\begin{aligned}
(\tilde{\mathcal{Z}}(\mathbf{x})^{\flat}, \tilde{\mathcal{Z}}(\mathbf{y})^{\flat}) &= \sum_{s-c+d \leq A} [\lg(\tilde{\mathcal{W}}_{s}(k)^{(c,d)} \cap \tilde{\mathcal{Z}}(\mathbf{y})) - 1] \\
&= \sum_{s=1}^{A-1} [(n(k;b,s) - 1) + (n(k;b,s+1) - 1)] \\
&+ [(n(k;b,1) - 1) + n(k;b,A) - 1] \\
&+ \delta \cdot (n(k;b,0) - 1) .
\end{aligned}$$

Here we used the equality

(2.8)
$$\lg(\tilde{\mathcal{W}}_s(k)^{(c,d)} \cap \tilde{\mathcal{Z}}(\mathbf{y})) = n(k;b,s^\circ) .$$

Inserting the known expression for the quantities n(k; b, s) we can calculate the expression on the right hand side. On the other hand consider the derivative of the representation density $\alpha'_p(T, S'_0)$, where S'_0 denotes the quadratic space given by the intersection of $M_2(\mathbb{Z}_p)^{tr=0}$ with the Eichler order for $\Gamma(p)$. Comparing now with Yang's formulae [Y] for representation densities, we obtain **Projected Theorem 2.4.** Let n = 1. Let $(\mathbf{x}, \mathbf{y}) \in V(G \xrightarrow{\lambda} G)^2$ with $T = q(\mathbf{x}, \mathbf{y}) \in Sym_2(\mathbb{Z}_p)$ non-singular. Then

$$(\tilde{\mathcal{Z}}(\mathbf{x})^{\flat}.\tilde{\mathcal{Z}}(\mathbf{y})^{\flat}) = -\frac{1}{p-1} \cdot \alpha'_p(T,S'_0) - 1 \; .$$