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(notes of my talk at the Barcelona conference July 2006)

1. Without level structure

Definition 1.1. Let E be an elliptic curve over a base scheme S. An endomorphism j ∈

EndS(E) is called special if tr(j) = 0

Let V (E) denote the set of special endomorphisms of E. Then, if S is connected, V (E)

is a finitely generated free Z-module equipped with a quadratic form given by

(1.1) q(j) = deg(j) = −j2 (multiple of idE) .

Note that q is positive-definite.

Let M denote the moduli stack of elliptic curves. This is a smooth DM-stack of relative

dimension one over Spec Z.

Let t ∈ Z>0. Let Z(t) be the stack of pairs (E, j) where j ∈ V (E) with q(j) = t. The

forgetful morphism

(1.2) Z(t) −→ M

is finite and unramified. We call Z(t), or its image in M, a special cycle on M.

Proposition 1.2. Z(t) is a relative divisor, i.e., a divisor flat over Spec Z. In other words,

Z(t) is locally for the étale topology defined by one equation which is neither a unit nor

divisible by any prime number p.

Next we want to intersect two special cycles Z(t1) and Z(t2). Let T ∈ Sym2(Z). Let

(1.3) Z(T ) = {(E, j1, j2) | (j1, j2) ∈ V (E)2, q(j1, j2) = T} .

Here

(1.4) q(j1, j2) =

(

q(j1)
1
2(j1, j2)

1
2(j1, j2) q(j2)

)

where

(1.5) (j1, j2) = q(j1 + j2) − q(j1) − q(j2)

is the bilinear form associated to the quadratic form q.
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We now obtain

(1.6) Z(t1) ×M Z(t2) =
∐

T

Z(T ) .

Here the sum is over all T ∈ Sym2(Z) with diagonal terms t1 and t2. Note that if t1t2 is

not a perfect square, all T lie in Sym2(Z)>0. For these T there is the following result.

Theorem 1.3. Let T ∈ Sym2(Z)>0 with Z(T ) 6= ∅. Then Z(T ) is a stack of finite length

with support in the supersingular locus of a fiber M⊗Z Fp, for a unique prime number p.

Furthermore, Z(T ) is the disjoint sum of local Artinian stacks, each of which has identical

length given by the Gross-Keating formula,

lg(OZ(T ),ξ) =















∑

a−1

2

j=0 (a + b − 4j)pj , if a is odd

∑

a

2
−1

j=0 (a + b − 4j)pj + 1
2(b − a + 1)p

a

2 , if a is even.

Here (0, a, b) are the Gross-Keating invariants of the matrix T̃ = diag(1, T ) ∈ Sym3(Zp).

If p 6= 2, this means that T can be diagonalized to diag(upa, u′pb), with u, u′ ∈ Z×
p and

0 ≤ a ≤ b. It turns out that a + b is odd, so that the above formula makes sense.

Let us denote by RHS the formula of the right hand side of the Gross-Keating for-

mula. It can be expressed in terms of derivatives of p-adic representation densities. Let

S0 = M2(Zp)
tr=0, with quadratic form given by the determinant. Let α′

p(T, S0) denote the

derivative at X = 1 of the representation density polynomial A(T, S0)(X) of T by S0 . Then

(1.7) RHS = −
p2

p2 − 1
· α′

p(T, S0) .

Principle of the calculation: The calculation of lg(OZ(T ),ξ) reduces by the Serre-Tate

theorem to the following problem on p-divisible groups.

Let G be the p-divisible formal group of dimension one and height two over Fp. Then

(1.8) End(G) = OD ,

where OD is the maximal order in the quaternion division algebra over Qp. Let

(1.9) V (G) = {x ∈ End(G) | tr(x) = 0} ,

with quadratic form given by q(x) = Nm(x). We change our notation slightly and write

(1.10) M = Spec W (Fp)[[t]]

for the universal deformation space of G. For x ∈ V (G) with q(x) 6= 0, let Z(x) ⊂ M be

the locus (closed formal subscheme) where the endomorphism x deforms. This is a relative

divisor over Spf Zp, comp. Proposition ?? above.

Let now (x, y) ∈ V (G)2 and T = q(x, y) ∈ Sym2(Zp). Let Z(x, y) be the locus inside M

where (x, y) deforms.
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Theorem 1.4. If det(T ) 6= 0, then

lg(Z(x, y)) = RHS .

Proof. (Sketch, see [A] and [KRY] for details.) For simplicity assume p 6= 2. We then may

assume that T = diag(upa, u′pb) with u, u′ ∈ Z×
p and 0 ≤ a ≤ b. By Gross’s theory of

quasi-canonical liftings we have an equality of divisors

(1.11) Z(x) =
∑A

s=0
Ws(k) .

Here k = Qp(x) is the quadratic extension of Qp generated by x inside D, and A = [a
2 ].

Furthermore

(1.12) Ws(k) = Spf Ws(k) ,

where Ws(k) denotes the ring of integers in the ring class field of k with norm group equal

to O×
k,s, where

(1.13) Os = Ok,s = Zp + ps · Ok

is the order of conductor s in k. The quasi-canonical divisiors are regular and prime to each

other, and defined over Spf W0(k).

The decomposition (??) comes about as follows. Over Spec Ws(k) there is the quasi-

canonical lifting Γs of level s with respect to k. This is a p-divisible group which lifts G

and with EndWs(k)(Γs) = Os. Note that Zp[x] = Ok,A, which explains the range of the

summation in (??).

All quasi-canonical liftings with respect to k are isogenous to each other, in a natural

way. Fix a basis of the rational p-adic Tate module of Γ0. Then the p-adic Tate module

Tp(Γs) becomes a lattice in Q2
p, and hence defines a vertex in the Bruhat-Tits building of

PGL2(Qp). The fixed points of k× are either the midpoint of an edge (if k/Qp is ramified)

or a vertex (if k/Qp is unramified). The vertex corresponding to Tp(Γs) has distance s + 1
2

resp. s to this fixed point locus, and conversely any such vertex appears in this way (they

are all conjugate under Gal(W0(k)/W0(k)). The pictures are, depending on whether k is

ramified or unramified over Qp:

HERE THE PICTURE SHOULD GO

Let

(1.14) n(k; b, s) = lg(Ws(k)/I(b)) ,

where I(b) is the ideal defining the locus where any y ∈ V (G) deforms which anti-commutes

with k and with q(y) = upb for some u ∈ Z×
p . This number is explicitly known, cf. [A]. From



4 MICHAEL RAPOPORT

(??) we obtain

(1.15) lg(Z(x, y)) =
∑A

s=0
n(k; b, s) .

Inserting the values for n(k; b, s) then leads to Theorem ??. ¤

Remark 1.5. Similar results hold for Shimura curves corresponding to an indefinite qua-

ternion algebra B over Q and special cycles on them, as long as the prime number p does not

divide the discriminant of B. In fact, by the Serre-Tate theorem this extension is immediate.

2. Γ0(p
n)-level structure

Let n ≥ 1. Let M̃ = MΓ0(pn) be the stack of elliptic curves with Γ0(p
n)-level structure.

Hence M̃ parametrizes cyclic isogenies of degree pn,

(2.1) λ : E −→ E ′ .

In joint work with S. Kudla (in progress) we are trying to generalize the results of section

1. Define

(2.2) V (E
λ
−→ E′) = {(j, j′) ∈ End(E) × End(E ′) | λ ◦ j = j′ ◦ λ} .

For a connected base scheme S, V (E
λ
−→ E′) is again a quadratic space with quadratic

form q((j, j′)) = q(j) = q(j ′). Hence we can again define Z̃(t) for t > 0 and Z̃(T ) for

T ∈ Sym2(Z).

Warning 2.1. Z̃(t) has embedded components and hence is not a divisor.

Let Z̃(t)[ be the associated divisor.

The local version of Z̃(t) resp. of Z̃(t)[ can be defined as well. Up to isomorphism there

is a unique cyclic isogeny of degree pn,

(2.3) λ : G −→ G .

Let x = (x, x′) ∈ O2
D with λ ◦ x = x′ ◦ λ. Let us again slightly modify the notation and

denote now by M̃ the universal deformation space of λ : G −→ G. Then to x = (x, x′)

there is associated the closed locus Z̃(x) ⊂ M̃ where x deforms. Again let Z̃(x)[ be the

associated divisor.

Our first result is the decomposition of Z̃(x)[ into quasi-canonical divisors. Let δ = 0 if

k is unramified, and δ = 1 if k is ramified. For any pair (c, d) of non-negative integers with

c + d = n and any s with c ≤ s + δ, we associate a regular irreducible divisor W̃s(k)(c,d) of

M̃, as follows.

Let s◦ = max{s, s + δ − c + d}. Then as W0(k)-scheme W̃s(k)(c,d) is equal to Spf Ws◦(k).

The closed immersion W̃s(k)(c,d) −→ M̃ is obtained by noting that over Spec Ws◦(k) we

have the cyclic isogeny of degree pn, given by the composition of isogenies of degree p,

(2.4) Γs −→ Γs−1 −→ . . . −→ Γs−c −→ Γs−c+1 −→ . . . −→ Γs−c+d ,
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provided c ≤ s. The cyclicity of this isogeny translates into the condition that the distance

between the vertices in the Bruhat-Tits building corresponding to Γs and Γs−c+d is equal to

n (no backtracking in the path). The first c isogenies are canonical, and the last d isogenies

are non-canonical. If δ = 1 and c = s + 1, then the isogeny of degree pn is the composition

of c canonical isogenies and d non-canonical isogenies, as follows,

(2.5) Γs −→ Γs−1 −→ . . . −→ Γ0 −→ Γ0 −→ Γ1 −→ . . . −→ Γd .

All the closed immersions thus obtained are conjugate over W0(k).

Proposition 2.2. There is the following equality of divisors on M̃,

Z̃(x)[ =
∑

s−c+d≤A

W̃s(k)(c,d) .

Here again A = [a
2 ] when q(x) = upa, and the sum runs over triples of non-negative

integers (c, d, s) with c + d = n, c ≤ s + δ, s − c + d ≤ A.

We now specialize to the case n = 1.

Conjecture 2.3. Let n = 1. Then, at least if p 6= 2,

lg(ker(O
Z̃(x) −→ O

Z̃(x)[)) = 1 .

This is true if a ≤ 1 . If this conjecture holds true, then one can show that for any prime

divisor D on M̃ relatively prime to Z̃(x)[,

(2.6) (Z̃(x)[.D) = lg(Z̃(x) ∩ D) − 1 .

Let us assume this. Let y = (y, y′) ∈ V (G
λ
−→ G) such that T = q(x,y) = diag(upa, u′pb)

with u, u′ ∈ Z×
p and 0 ≤ a ≤ b. Then applying (??) to Z̃(y)[ instead of Z̃(x)[, and writing

Z̃(x)[ as a sum of quasi-canonical divisors according to Proposition ?? we obtain

(2.7)

(Z̃(x)[, Z̃(y)[) =
∑

s−c+d≤A

[lg(W̃s(k)(c,d) ∩ Z̃(y)) − 1]

=
∑A−1

s=1
[(n(k; b, s) − 1) + (n(k; b, s + 1) − 1)]

+ [(n(k; b, 1) − 1) + n(k; b, A) − 1]

+ δ · (n(k; b, 0) − 1) .

Here we used the equality

(2.8) lg(W̃s(k)(c,d) ∩ Z̃(y)) = n(k; b, s◦) .

Inserting the known expression for the quantities n(k; b, s) we can calculate the expression on

the right hand side. On the other hand consider the derivative of the representation density

α′
p(T, S′

0), where S′
0 denotes the quadratic space given by the intersection of M2(Zp)

tr=0

with the Eichler order for Γ(p). Comparing now with Yang’s formulae [Y] for representation

densities, we obtain
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Projected Theorem 2.4. Let n = 1. Let (x,y) ∈ V (G
λ
−→ G)2 with T = q(x,y) ∈

Sym2(Zp) non-singular. Then

(Z̃(x)[.Z̃(y)[) = −
1

p − 1
· α′

p(T, S′
0) − 1 .


