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1. Definitions

Let G be a reductive group over Fq. Let B be a Borel subgroup defined over
Fq, and let T be a maximal torus contained in B. We denote by a tilde the groups
defined over Fq obtained by base change, i.e.,

(1.1) G̃ = G⊗Fq
Fq , B̃ = B ⊗Fq

Fq , T̃ = T ⊗Fq
Fq .

Let W = Norm(T̃ )/T̃ be the Weyl group. Then W gives the relative position of
two Borel subgroups of G̃, i.e.,

(1.2) B̃\G̃/B̃ = W.

Hence we obtain the map inv as the composition

(1.3) inv : G̃/B̃ × G̃/B̃ −→ G̃\[G̃/B̃ × G̃/B̃] = B̃\G̃/B̃ = W.

Since B̃ is defined over Fq we have an action of the Frobenius σ ∈ Gal(Fq/Fq) on
G̃/B̃.

Definition 1.1. The Deligne-Lusztig variety associated to w ∈ W is the locally
closed subvariety of G̃/B̃,

Xw = {x ∈ G̃/B̃; inv(x, σ(x)) = w}.

This is a smooth algebraic variety, equidimensional of dimension equal to `(w)
[2]. The finite group G(Fq) acts on Xw.

A variant of this construction is obtained as follows. Replace B by a parabolic
subgroup P defined over Fq and containing B. Let WP = (Norm(T̃ )∩ P̃ )/T̃ . Then

(1.4) P̃\G̃/P̃ = WP \W/WP .

Correspondingly we define the generalized Deligne-Lusztig variety associated to P
and w ∈ WP \W/WP which we denote by Xw,P , comp. [3]. This is a smooth locally
closed subvariety of G̃/P̃ of dimension `(w) (length of the Kostant representative
of w).

Now let F be a local field, i.e., a finite extension of Qp or of Fp((t)). Let L be the
completion of the maximal unramified extension of F . We denote by σ the relative
Frobenius automorphism in Gal(L/F ). Let G be a reductive group over F . Let
K0 ⊂ G(F ) be an Iwahori subgroup defined over F and denote by K̃0 ⊂ G(L) the
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corresponding Iwahori subgroup over L. Let W̃ be the extended affine Weyl group
of G(L), which may be defined as follows.

Let S̃ be a maximal split torus in G̃ such that K̃0 fixes an alcove in the apartment
corresponding to S̃. Let T̃ be the centralizer of S̃, a maximal torus by Steinberg’s
theorem. Let T̃ (L)1 be the unique Iwahori subgroup of T̃ (L). Then

(1.5) W̃ = Norm(T̃ )(L)/T̃ (L)1.

Then

(1.6) K̃0\G̃(L)/K̃0 = W̃ .

Hence we obtain as in (1.3) a map

(1.7) inv : G̃(L)/K̃0 × G̃(L)/K̃0 −→ W̃ .

The following definition is taken from [13].

Definition 1.2. Let b ∈ G(L) and w ∈ W̃ . The affine Deligne-Lusztig variety
associated to b and w is the set

Xw(bσ) = {x ∈ G̃(L)/K̃0 ; inv(x, bσ(x)) = w}.

Let

(1.8) J(F ) = {g ∈ G(L) ; g−1bσ(g) = b}.

Then J(F ) acts on Xw(bσ).
It is clear that if b, b′ are σ-conjugate in G(L), then there is a bijection between

the corresponding affine DL-varieties Xw(bσ) and Xw(b′σ). (This, incidentally,
explains the absence of b in the original definition of DL-varieties over a finite field:
any element b ∈ G(Fq) is σ-conjugate to the unit element.)

Remark 1.3. So far, Xw(bσ) is just a set. But it is expected that Xw(bσ) is the
set of Fp-points of an algebraic variety over Fp which is of finite dimension and
locally of finite type. This holds at least in the function field case, compare also the
example below. This also holds if G = GLn or G = GSp2n and the σ-conjugacy
class [b] of b lies in B(G, µ), where µ is minuscule, cf. (2.3) below. In fact, in this
case the corresponding affine DL-variety can be identified with the reduced scheme
underlying a formal moduli space of p-divisible groups, cf. [15].

A variant of the above definition is obtained as follows. Let K ⊂ G(F ) be
a parahoric subgroup defined over F containing K0 and let K̃ ⊂ G̃(L) be the
corresponding parahoric subgroup of G̃(L). Let

(1.9) W̃K = (Norm(T̃ )(L) ∩ K̃)/T̃ (L)1.

Then

(1.10) K̃\G̃(L)/K̃ = W̃K\W̃/W̃K .

Hence we obtain as in (1.3) a map

(1.11) inv : G̃(L)/K̃ × G̃(L)/K̃ −→ W̃K\W̃/W̃K .

Correspondingly we define the generalized affine DL-variety associated to K and to
w ∈ W̃K\W̃/W̃K , which we denote by Xw(bσ)K .
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Example 1.4. Let G = GL2 and K = GL2(OF ) and K̃ = GL2(OL). Then

(1.12) W̃K\W̃/W̃K = (Z2)+ = {(µ1, µ2) ∈ Z2;µ1 ≥ µ2}.
If b = 1, then

(1.13) X(0,0)(σ)K = {Λ̃ ⊂ L2 ; Λ̃ a OL-lattice with Λ̃σ = Λ̃}
= {Λ ⊂ F 2 ; a OF -lattice}.

This is the set of vertices in the building of GL2(F ), which is a discrete set.
More generally, let µ = (µ1, µ2) ∈ (Z2)+. Then it is easy to see that in the

function field case Xµ(σ)K is empty if µ1 + µ2 6= 0 and that dim Xµ(σ)K = 1
2 (µ1−

µ2) if µ1 + µ2 = 0.

The fact that an affine DL-variety can be empty should be contrasted to the
finite field case. We are led to the following questions.

(1) When is Xw(bσ)K 6= ∅ ?
(2) Is Xw(bσ)K equi-dimensional, and is there a formula for its dimension?
(3) What is the global structure of Xw(bσ)K , e.g., what is its singular locus,

what are its irreducible components, etc.?
Of course, in questions 2 and 3, we need the structure of an algebraic variety

on Xw(bσ)K . Question 1 has been investigated, in part with the help of computer
calculations, in cases when K is an Iwahori subgroup by Reuman [16], Görtz, and
Lau.

2. Hyperspecial K

To simplify the exposition, we will assume that G is split over F . Denoting by
the same letter the canonical integral model of G over OF , we take K = G(OF )
and K̃ = G(OL).

We first recall some facts from Kottwitz’s description of the set B(G) of σ-
conjugacy classes in G(L)[6][7]. We fix a maximal split torus A and a Borel subgroup
B containing A. Let

(2.1) a = X∗(A)⊗Q , a+ = a ∩ C,

where C is the closure of the positive Weyl chamber relative to the choice of B. In
the sequel we shall need two maps

ν : B(G) −→ a+ , the Newton map
κ = κG : B(G) −→ π1(G) , the Kottwitz map.

Here π1(G) = X∗(A)/X∗(Asc) is Borovoi’s algebraic fundamental group of G.
For this choice of K we have

(2.2) W̃K\W̃/W̃K = X∗(A)dom

(the set of dominant cocharacters for this choice of B). Hence to any µ ∈ X∗(A)dom

and any b ∈ G(L) we have associated the corresponding generalized affine DL-
variety XG

µ (bσ) = Xµ(bσ)K . To µ there is associated its image µ\ ∈ π1(G). Let

(2.3) B(G, µ) = {[b] ∈ B(G) ; ν[b] ≤ µ , κ([b]) = µ\}.

Here ≤ is the customary partial order on a+. Then B(G, µ) is a finite subset of
B(G). It is partially ordered, with a unique minimal element (the unique basic
element in B(G, µ)) and a unique maximal element (the µ-ordinary element).
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Proposition 2.1. If XG
µ (bσ) 6= ∅, then the σ-conjugacy class [b] of b lies in

B(G, µ).

This is the group-theoretic version of Mazur’s inequality [14]. Recently Kottwitz
[8] gave a purely group theoretic proof based on the positivity lemma of Harish-
Chandra and Arthur.

Conjecture 2.2. The converse holds.

This is known to be true in the following cases:
(i) G a classical group (Kottwitz, Rapoport [9] for GLn and Sp2n; Leigh [10]

for the orthogonal groups; Fontaine, Rapoport [4] for GLn)
(ii) G arbitrary, but µ minuscule (Wintenberger [18]).

So much for question 1 in this context. Next we turn to question 2 (dimension).
The following formula is inspired by a formula of Chai [1].

Conjecture 2.3. Let b ∈ G(L) with [b] ∈ B(G, µ). Then XG
µ (bσ) is equi-dimensional

of dimension

dim XG
µ (bσ) = 〈2ρ, µ− ν[b]〉+

∑̀
i=1

[〈ωi, ν[b] − µ〉].

Here ω1, . . . , ω` are the fundamental weights of the adjoint group Gad.
This is known in a few cases:
(i) Let b = 1. Then the formula above predicts

(2.4) dim XG
µ (σ) = 〈ρ, µ〉.

This has been proved by Kottwitz and Reuman, in somewhat greater generality,
comp.[17]. In fact, they apparently prove a reduction theorem which shows the
validity of the conjecture for (G, b, µ), provided it is known to be true for (M, b, µ),
where M is a Levi subgroup of G and b ∈ M(L) defines an element of B(M,µ).

(ii) Let G = GLn, µ minuscule. Then the formula has apparently been proved
independently by Chai and Oort, cf.[12] and by Mierendorff [11]. Perhaps it would
be more prudent to say that Chai and Oort, and Mierendorff have performed (inde-
pendently, and by completely different methods) a parameter count which supports
the conjecture.

There is the following remarkable example. Let G = GLn and let µ = (1, 0, . . . , 0).
Then for b ∈ B(G, µ) basic, i.e., ν[b] = 1

n · (1, . . . , 1), we get from the above formula
the prediction

(2.5) dim XG
µ (bσ) = (n− 1) +

n−1∑
i=1

(−1) = 0.

It is easy to check directly that this is indeed correct. The question arises as to
how often this can happen.

Proposition 2.4. Let G = GLn. Let b ∈ G(L) such that [b] ∈ B(G, µ) is basic.
Then dim XG

µ (bσ) = 0 if and only if

µ =


r · 1
(1, 0, . . . , 0) + r · 1
(1, . . . , 1, 0) + r · 1 , some r ∈ Z.
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Here 1 = (1, . . . , 1). We call the last two alternatives the Drinfeld case.
This is an indication as to how rare this is. For instance,

Conjecture 2.5. Let G be simple, adjoint, and fix µ. Let b ∈ G(L) such that
[b] ∈ B(G, µ). Then dim XG

µ (bσ) > 0 unless either [b] is µ−ordinary or G is PGLn

and µ is of Drinfeld type..

Even assuming the validity of Conjecture 2.3, this seems difficult to establish.

Remark 2.6. One may expect that dim XG
µ (bσ) = 0 if and only if J(F ) acts tran-

sitively on XG
µ (bσ), cf. Conjecture 2.8 below. As Laumon has pointed out, the

transitivity of this action is related to the question in which cases one can calcu-
late in an elementary way the twisted orbital integrals occuring in the fundamental
lemma for base change. Taking into account Proposition 2.4 and Conjecture 2.5,
one may expect that Drinfeld found the essentially unique cases when such an
elementary proof of the fundamental lemma can be expected.

We finally turn to question 3.

Conjecture 2.7. (Mierendorff) Let b ∈ G(L) such that [b] ∈ B(G, µ). Let M be the
unique standard Levi subgroup of G minimal with the property that b is σ-conjugate
to an element in M(L) which determines a class in B(M,µ). Then

π0(XG
µ (bσ)) = π1(M)〈σ〉 = π1(M)

(the last equality because G and hence M is split).
Mierendorff [11] has proved this when G = GLn and µ is minuscule.

Conjecture 2.8. (Mierendorff) The group J(F ) acts transitively on the set of
irreducible components of Xµ(bσ).

It seems that Mierendorff [11] will be able to prove this in the case when G = GLn

and µ is minuscule.
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