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Abstract. This is a largely expository article based on our paper [31] on arithmetic diagonal

cycles on unitary Shimura varieties. We define a class of Shimura varieties closely related to

unitary groups which represent a moduli problem of abelian varieties with additional structure,
and which admit interesting algebraic cycles. We generalize to arbitrary signature type the results

of loc. cit. valid under special signature conditions. We compare our Shimura varieties with other

unitary Shimura varieties.
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1. Introduction

In [3], Deligne gives the definition of a Shimura variety (S(G, {h})K) (a tower of quasi-projective
complex varieties indexed by sufficiently small compact open subgroups K ⊂ G(Af )) starting from
a Shimura datum (G, {h}). He defines the associated Shimura field E(G, {h}) and proves that there
is at most one canonical model of (S(G, {h})K) over E(G, {h}). He then goes on to construct the
canonical model for some Shimura varieties associated to classical groups, by giving an interpretation
of the varieties in the tower as moduli spaces of abelian varieties with additional structure. The
basic example is given by the group G of symplectic similitudes with its natural conjugacy class {h}
(the Siegel case)—this case leads to the moduli space of principally polarized abelian varieties. Let p
be a prime number. For open compact subgroups K of the form K = Kp ×Kp, where Kp ⊂ G(Apf )

and where Kp ⊂ G(Qp) is the stabilizer of a self-dual lattice (i.e., Kp is hyperspecial), this moduli
description allows one to extend the model over Q of (S(G, {h})K) to a model over the localization
Z(p) with good reduction modulo p.

Another class of examples is related to unitary groups. The case of the group of unitary similitudes
is treated briefly by Deligne in [3] and in detail by Kottwitz in [14]. It is considerably more difficult
than the Siegel case due to the failure of the Hasse principle for these groups. A special case of these
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Shimura varieties is used in all proofs of the local Langlands conjecture for p-adic fields (the Harris-
Taylor case). It turns out that if n is even, the Shimura variety represents a moduli problem of
abelian varieties with additional structure; if n is odd, the analogous moduli problem is represented
by a finite disjoint sum of copies of the Shimura variety. If K = Kp×Kp, where Kp is hyperspecial,
Kottwitz defines a p-integral model of the corresponding model over E(G, {h}).

Another case is given by the unitary groups. This case is considered in [6], in the fake Drinfeld
signature case (see Example 2.3 below), and is used in the formulation of the Arithmetic Gan–
Gross–Prasad conjecture. This class of Shimura varieties is not of PEL type, i.e., is not represented
by a moduli problem of abelian varieties with additional structure. It is, however, of abelian type.
This entails that its canonical model is defined in Deligne [4]. It also implies that, by Kisin–Pappas
[13], it has a p-integral model when K = Kp ×Kp, where Kp is an arbitrary parahoric subgroup.
However, both constructions are rather indirect and yield models which are difficult to analyze. This
seems to be a major impediment to progress on these Shimura varieties.

In this paper, following [31], we formulate a new variant of the Deligne–Kottwitz Shimura varieties
and compare it with the previous two classes. Our variant has the advantage of always representing
a moduli problem of abelian varieties. By extending the moduli problem, we also define p-integral
models when K = Kp ×Kp, with Kp a parahoric subgroup. In fact, under certain special circum-
stances, we even define global integral models (in the fake Drinfeld case). Another advantage of our
variant is that it always accommodates the algebraic cycles that appear in the Gan–Gross–Prasad
intersection problem and in the Kudla–Rapoport intersection problem. We refer to [31], where we
give a variant of the Arithmetic Gan–Gross–Prasad conjecture and solve it in certain low-dimensional
cases. In the case of an imaginary quadratic field, our variant Shimura variety appears also in [2],
with similar aims. However, this special case does not bring out all the features of our definition; in
particular, the sign invariant of [31] does not play any role in that case, comp. the table in Section
4.3 below.

Our paper is largely expository. One of our aims is to show that the definitions in [31] extend
from the fake Drinfeld signature case to the case of general signature. We also go beyond [31] in
that we also discuss the problem of flatness, resp. of smoothness, resp. of regularity, of the p-integral
models in general. Our hope is that the global integral models constructed here will find applications
in arithmetic intersection problems in analogy with those mentioned above.

The lay-out of the paper is as follows. In Section 2, we set the stage by recalling the Shimura
varieties attached to groups of unitary similitudes and to unitary groups. In Section 3, we introduce
the variant of these Shimura varieties introduced in [31]. In Section 4, we define p-integral models
of these last Shimura varieties. In Section 5, we discuss flatness and smoothness of these p-integral
models. In Section 6, we discuss global integral models. In Appendix A, we show how the formalism
of the local model diagram of [32] holds for all primes p (including p = 2) in the case of unramified
PEL data of type A.

The paper is a vastly extended version of the talk with the same title given by one of us (M.R.)
at the SuperAG in Bonn 2017, at the occasion of his retirement from the University of Bonn. It
is also related to his talk at the 2018 Simons conference Periods and L-values of motives, and to
Appendix C in Y. Liu’s article [22].

We dedicate the paper to D. Mumford on the occasion of his 81st birthday. He is the founder of
the theory of moduli spaces of abelian varieties and has been a main force in moving this subject to
the forefront of mathematics. On a personal level, one of us (M.R.) owes more to him than can be
said in a few lines; he is happy to express here his gratitude. We also thank the referee for his/her
remarks on the paper.

Notation. In order to deal with all congruence subgroups K, not only ones that are small enough,
we consider the tower (S(G, {h})K) as a tower of orbifolds. However, abusing language, we continue
to refer to this tower as a Shimura variety.
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We write AF , AF,f , and ApF,f for the respective rings of adeles, finite adeles, and finite adeles

away from p of a number field F . When F = Q, we abbreviate these to A, Af , and Apf , respectively,

and we set A := A⊗QQ. Here Q denotes the algebraic closure of Q in C. We fix once and for all an
element

√
−1 ∈ C.

We take all hermitian forms to be linear in the first variable and conjugate-linear in the second,
and we always assume that they are nondegenerate.

When working with vector spaces over F , we use a superscript ∗ to denote F -linear dual spaces
and homomorphisms. We also use a superscript ∗ to denote dual lattices (in both the global and
local contexts) with respect to a hermitian form. By contrast, we always use a superscript ∨ to
denote dual lattices with respect to a Q- or Qp-valued bilinear form. The following situation (say, in
the global context; the local context is completely analogous) will arise repeatedly throughout this
paper. Let (W, ( , )) be a hermitian space for F with respect to an order 2 automorphism (in the
paper, F will always be a CM field), let ζ ∈ F be a traceless element for this automorphism, and
consider the alternating Q-valued form trF/Q ζ( , ) on W . Then for any OF -lattice Λ ⊂W , we have

Λ∨ = ζ−1D−1Λ∗, where D denotes the different of F/Q.
In the context of abelian schemes, we use a superscript ∨ to denote the dual abelian scheme

and dual morphisms. A quasi-polarization (sometimes called a Q-polarization in the literature) on
an abelian scheme A is a symmetric quasi-isogeny λ : A → A∨ such that, Zariski-locally on the
base, nλ is an honest polarization for some positive integer n. We denote the Rosati involution
of a quasi-polarization λ : A → A∨ by Rosλ. We denote by Hom0(A,B), resp. Hom(p)(A,B), the
Zariski-sheafification of U 7→ Hom(AU , BU ) ⊗Z Q, resp. U 7→ Hom(AU , BU ) ⊗Z Z(p), for U an
open subscheme of the base (the homomorphism group in the isogeny category, resp. the prime-to-p
isogeny category). We similarly define End0(A) and End(p)(A). When the base S locally noetherian,

we denote by T̂(A) =
∏
` T`(A), resp. V̂(A) = T̂(A)⊗Q, resp. V̂p(A) = (

∏
` 6=p T`(A))⊗Q, the Tate

module, resp. the rational Tate module, resp. the rational Tate module prime to p, all regarded as

smooth sheaves on S (assuming that S is a Q-scheme in the case of T̂(A) and V̂(A), and a Z(p)-

scheme in the case of V̂p(A)). Similarly, when a number field acts on A up to isogeny and v is a
finite place of the number field whose residue characteristic ` is invertible on S, we denote by Vv(A)
the v-factor of V`(A). When furthermore the localization at ` of the ring of integers of the number
field acts on A up to prime-to-` isogeny, we denote by Tv(A) the v-factor of T`(A).

We often use a subscript S to denote base change to S, and when S = SpecA, we often use the
subscript A instead. Similarly, we sometimes write X ⊗B A to denote X ×SpecB SpecA.

We write (LNSch)/R for the category of locally noetherian schemes over SpecR for a ring R.

2. The Shimura varieties of Deligne and Kottwitz, and of Gan–Gross–Prasad

2.1. The group of symplectic similitudes. As motivation, we start with the Siegel case. Let
(W, 〈 , 〉) be a nonzero symplectic vector space of dimension n = 2m overQ. Let GSp = GSp(W, 〈 , 〉)
be the group of symplectic similitudes. Choose a symplectic basis of W , i.e., a basis with respect to
which the matrix of 〈 , 〉 is given by

Hn =

[
0m −1m
1m 0m

]
,

where the displayed entries are m×m block matrices. The conjugacy class {hGSp} in the Shimura
datum is the GSp(R)-conjugacy class of the homomorphism

hGSp : C× GSp(R)

a+ b
√
−1 a1n + bHn.

Let K ⊂ GSp(Af ) be a compact open subgroup. Let FK be the category fibered in groupoids
over (LNSch)/Q which associates to each Q-scheme S the groupoid of triples (A, λ, η), where
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• A is an abelian scheme over S;

• λ is a quasi-polarization on A; and

• η is a K-orbit of symplectic similitudes

η : V̂(A)
∼−→W ⊗ Af , (2.1)

where K acts via the tautological representation of GSp(Af ) on W ⊗Af , cf. [14, §5]. The morphisms
(A, λ, η) → (A′, λ′, η′) in this groupoid are the quasi-isogenies µ : A → A′ such that, Zariski-locally
on S, the pullback of λ′ is a Q×-multiple of λ, and such that the pullback of η′ is η.

Note that the Weil form on the rational Tate module V̂(A) defined by λ naturally takes values in
Af (1); to compare the symplectic forms on both sides of (2.1), it is necessary to choose a trivialization

Af (1)
∼−→ Af , which is unique up to a factor in A×f .

The theorem in this context, which is the model of all other theorems in this paper, is the
following.

Theorem 2.1. The moduli problem FK is representable by a Deligne–Mumford stack MK over
SpecQ, and

MK(C) = S
(
GSp, {hGSp}

)
K
,

compatible with changing K. �

In fact, the tower (MK) is the canonical model of the Shimura variety (S(GSp, {hGSp})K).

2.2. The group of unitary similitudes. Let F be a CM number field with maximal totally real
subfield F0 and nontrivial F/F0-automorphism a 7→ a. Let n be a positive integer. A generalized
CM type of rank n is a function r : HomQ(F,Q)→ Z≥0, denoted ϕ 7→ rϕ, such that

rϕ + rϕ = n for all ϕ, (2.2)

comp. [19]. Here ϕ denotes the precomposition of ϕ by the nontrivial F/F0-automorphism. When
n is understood, we also refer to r as a signature type. When n = 1, a generalized CM type is “the
same” as a usual CM type (i.e., a half-system Φ of complex embeddings of F ), via

Φ =
{
ϕ ∈ HomQ(F,Q)

∣∣ rϕ = 1
}
.

Fix a CM type Φ of F , and let (W, ( , )) be an F/F0-hermitian vector space of dimension n. The
signatures of W at the archimedean places determine a generalized CM type r of rank n, by writing

sigWϕ = (rϕ, rϕ), ϕ ∈ Φ, Wϕ := W ⊗F,ϕ C.
Let GQ be the group of unitary similitudes of (W, ( , )), considered as a linear algebraic group over
Q (with similitude factor in Gm). For each ϕ ∈ Φ, choose a C-basis of Wϕ with respect to which
the matrix of ( , ) is given by

diag(1rϕ ,−1rϕ). (2.3)

The conjugacy class {hGQ} in the Shimura datum is the GQ(R)-conjugacy class of the homomorphism
hGQ = (hGQ,ϕ)ϕ∈Φ, where the components hGQ,ϕ are defined with respect to the inclusion

GQ(R) ⊂ GLF⊗R(W ⊗ R)
Φ−→∼
∏
ϕ∈Φ

GLC(Wϕ), (2.4)

and where each component is defined on C× by

hGQ,ϕ : z 7−→ diag(z · 1rϕ , z · 1rϕ).

Then the reflex field E(GQ, {hGQ}) is the reflex field Er of r, which is the subfield of Q defined by

Gal(Q/Er) =
{
σ ∈ Gal(Q/Q)

∣∣ σ∗(r) = r
}
. (2.5)

Let K ⊂ GQ(Af ) be a compact open subgroup. Let FK be the category fibered in groupoids over
(LNSch)/Er which associates to each Er-scheme S the groupoid of quadruples (A, ι, λ, η), where

• A is an abelian scheme over S;
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• ι : F → End0(A) is an action of F on A up to isogeny;

• λ is a quasi-polarization on A; and

• η is a K-orbit of AF,f -linear symplectic similitudes

η : V̂(A)
∼−→W ⊗Q Af ,

cf. [14, §5]. Here, as in the Introduction, we equip W with the Q-symplectic form 〈 , 〉 = trF/Q ζ( , )

for some fixed element ζ ∈ F× satisfying ζ = −ζ. We impose the conditions that

Rosλ
(
ι(a)

)
= ι(a) for all a ∈ F, (2.6)

and that A satisfies the Kottwitz condition of signature type r,

char
(
ι(a) | LieA

)
=

∏
ϕ∈Hom(F,Q)

(
T − ϕ(a)

)rϕ
for all a ∈ F. (2.7)

Here the left-hand side in (2.7) denotes the characteristic polynomial of the action of ι(a) on the
locally free OS-module LieA; the right-hand side, which is a priori a polynomial with coefficients in
Er, is regarded as an element of OS [T ] via the structure morphism. The morphisms (A, ι, λ, η) →
(A′, ι′, λ′, η′) in this groupoid are the F -linear quasi-isogenies µ : A → A′ such that, Zariski-locally
on S, the pullback of λ′ is a Q×-multiple of λ, and such that the pullback of η′ is η.

The analog of Theorem 2.1 is as follows.

Theorem 2.2 (Kottwitz). The moduli problem FK is representable by a Deligne–Mumford stack
MK over SpecEr, and if n is even,

MK(C) = S(GQ, {hGQ})K ,
compatible with changing K. If n is odd, then MK(C) is a finite disjoint union of copies of
S(GQ, {hGQ})K , again compatible with changing K; these copies are enumerated by

ker1(Q, GQ) := ker
[
H1
(
Q, GQ(Q)

)
−→ H1

(
Q, GQ(A)

)]
. �

As in the Siegel case, the tower (MK) is in fact the canonical model of the Shimura variety
(S(GQ, {hGQ})K).

Example 2.3. (i) (Fake Drinfeld type) We say that the generalized CM type r of rank n is of fake
Drinfeld type relative to a distinguished element ϕ0 ∈ HomQ(F,Q) if

rϕ =


n− 1, ϕ = ϕ0;

1, ϕ = ϕ0;

0 or n, ϕ ∈ HomQ(F,Q)r {ϕ0, ϕ0}.
In this case, F embeds into Er via ϕ0 for n ≥ 3. For n = 2, at least F0 embeds into Er via ϕ0. For
n = 1, all we can say is that Er is the reflex field of the CM type which is the support of r.

(ii) (Strict fake Drinfeld type) We say that r is of strict fake Drinfeld type for the CM type Φ and
an element ϕ0 ∈ Φ, and we write r = r(Φ,ϕ0), if

r(Φ,ϕ0)
ϕ =

{
n− 1, ϕ = ϕ0;

n, ϕ ∈ Φr {ϕ0}.
(2.8)

(iii) (Harris–Taylor type) This is a special case of strict fake Drinfeld type. Suppose that F = K0F0,
where K0 is an imaginary quadratic field embedded in Q. Let Φ be the induced CM type of F , i.e.,
the set of embeddings F → Q whose restriction to K0 is the given embedding. We fix ϕ0 ∈ Φ. Then
we define rHT := r(Φ,ϕ0) and hHT

GQ := hGQ . In this case, we can be explicit about the reflex field: ϕ0

identifies F
∼−→ Er(Φ,ϕ0) , unless F0 = Q and n = 2 (then Er(Φ,ϕ0) = Q) or F0 is quadratic over Q and

n = 1 (then Er(Φ,ϕ0) identifies via ϕ0 with the unique quadratic subfield of F distinct from K0 and
F0). Note that the book [9] is about the tower of moduli stacks (MK), and not about the Shimura
variety (S(GQ, {hGQ})K) (despite the title of the book!).
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2.3. The unitary group. We continue with the notation of the last subsection, but this time we
consider the group

G := ResF0/Q U
(
W, ( , )

)
. (2.9)

The conjugacy class in the Shimura datum for G is the conjugacy class of the homomorphism
hG = (hG,ϕ)ϕ∈Φ, where

hG,ϕ : z 7−→ diag
(
1rϕ , (z/z)1rϕ

)
,

and where the components are defined as in (2.4). The reflex field is the reflex field Er\ of the
function r\,

Gal(Q/Er\) =
{
σ ∈ Gal(Q/Q)

∣∣ σ∗(r\) = r\
}
, (2.10)

where we define

r\ : HomQ(F,Q) Z≥0

ϕ

{
0, ϕ ∈ Φ;

rϕ, ϕ ∈ Φ.

(Note that r\ need not be a generalized CM type.) The resulting Shimura variety (S(G, {hG})K)
is not of PEL type, i.e., it is not related to a moduli problem of abelian varieties (this can be seen
already from the fact that the restriction of {hG} to Gm ⊂ S is not mapped via the identity map to
the center of G). However, this Shimura variety is of abelian type.

Example 2.4. In the fake Drinfeld case of Example 2.3(i), ϕ0 embeds F into Er\ for n ≥ 2. In the

strict fake Drinfeld case relative to (Φ, ϕ0) of Example 2.3(ii), we have ϕ0 : F
∼−→ Er\ for all n ≥ 1.

Remark 2.5. Suppose that n ≥ 2, and let u ∈W be a totally positive vector, i.e., (u, u) is a totally
positive element in F0. Consider the hermitian space W [ := (u)⊥. Then the inclusion W [ ⊂ W
induces an inclusion U(W [) ⊂ U(W ) of unitary groups (identifying U(W [) with the stabilizer of u).
Let

H := ResF0/Q U(W [),

with its Shimura datum {hH}. Using that u is totally positive, one verifies that the inclusion H ⊂ G
is compatible with the Shimura data {hH} and {hG}. Hence there is an induced morphism of
Shimura varieties, (

S
(
H, {hH}

)
KH

)
↪−→

(
S
(
G, {hG}

)
KG

)
. (2.11)

The resulting cycle leads to the Kudla–Rapoport cycles [18, 2] (in the context of locally symmetric
spaces, these are the Kudla-Millson cycles, cf. [16]). These are cycles of codimension

∑
ϕ∈Φ rϕ. The

most interesting case is the strict fake Drinfeld case of Example 2.3(ii). In this case, we obtain
divisors on the ambient variety.

Taking the graph morphism of (2.11), we obtain a closed embedding of towers,(
S
(
H, {hH}

)
KH

)
↪−→

(
S
(
H, {hH}

)
KH

)
×
(
S
(
G, {hG}

)
KG

)
. (2.12)

The resulting cycle in the target of (2.12) is the GGP cycle, cf. [6]. This is a cycle of codimension∑
ϕ∈Φ rϕrϕ. The most interesting case is again the strict fake Drinfeld case. In this case, the product

variety has dimension 2n−3, and the cycle has codimension n−1, i.e., the codimension is just more
than half the dimension of the ambient variety.

Both of these constructions generalize to the case where the totally positive vector u is replaced
by an m-tuple of totally positive vectors u1, . . . , um which generate a totally definite subspace of W .

Remark 2.6. Let us discuss some of the advantages and disadvantages of the above Shimura
varieties.

(i) First consider the Shimura varieties associated to (GQ, {hGQ}). On the positive side we note the
following.
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• These Shimura varieties are close to moduli problems—but when n is odd, they are not quite
represented by a moduli problem in general.

• The method of Kottwitz works for all Shimura varieties of PEL type.

On the negative side we note the following.

• For odd n, the Shimura varieties are not given by a moduli problem in general.

• It is difficult to construct integral or p-integral models of these Shimura varieties. More precisely,
Kottwitz succeeds in constructing a p-integral model over OEr,(p) only under the assumption that all
data are unramified at p. This last condition means that p is unramified in F , that W is split at all
places of F0 over p, and that K is of the form K = Kp×Kp ⊂ GQ(Af ) = GQ(Apf )×GQ(Qp), where
Kp is arbitrary and Kp is the stabilizer of a self-dual lattice in W ⊗QQp. But allowing ramification
in various forms leads to many new complications.

• In the context of Remark 2.5, the inclusion U(W [) ⊂ U(W ) of unitary groups does not extend to
an inclusion GU(W [) ⊂ GU(W ) of groups of unitary similitudes, nor, after Weil restriction down
to Q, to an inclusion of the unitary Gm-similitude group for W [ into GQ. Hence there is no Gan–
Gross–Prasad set-up in the context of Kottwitz’s Shimura varieties, comp. [6, 31]. Similarly, there
are no Kudla–Rapoport cycles on these Shimura varieties, cf. [18, 2]. See Section 3.5 for the analog
of this discussion in the context of the RSZ Shimura varieties.

(ii) Now let us discuss the Shimura varieties associated to (G, {hG}). On the positive side we note
the following.

• The KR cycles and GGP cycles can be defined for them.

• In the strict fake Drinfeld case of Example 2.3(ii), the Shimura field is very simple: it identifies
with F .

On the negative side we note the following.

• Since these Shimura varieties are not of PEL type, it is difficult to construct and control p-
integral models of them. Since they are at least of abelian type, by Kisin–Pappas [13] they do have
p-integral models when K is of the form K = KpKp, where Kp is a parahoric subgroup. However,
these models are not very explicit. In particular, it seems difficult to address for these p-integral
models the Arithmetic Gan–Gross–Prasad conjecture [6], the Arithmetic intersection conjecture of
[31], and the Kudla–Rapoport intersection conjecture [18, Conj. 11.10].

3. The RSZ Shimura varieties

We continue with the notation F/F0, r, r\, and (W, ( , )) from Sections 2.2–2.3. Again we fix a
CM type Φ of F .

3.1. The torus ZQ and its Shimura variety. We are first going to consider the Shimura varieties
of Section 2.2 in the special case that n = 1 and (W, ( , )) = (W0, ( , )0) is totally positive definite,
i.e., W0 has signature (1, 0) at each archimedean place. In this case, we write ZQ := GQ (a torus
over Q) and hZQ := hGQ . Explicitly,

ZQ =
{
z ∈ ResF/QGm

∣∣ NmF/F0
(z) ∈ Gm

}
,

and the homomorphism hZQ : C× → ZQ(R) identifies with the diagonal embedding into (C×)Φ with
respect to the isomorphism

ZQ(R)
∼−→
{

(zϕ) ∈ (C×)Φ
∣∣ |zϕ| = |zϕ′ | for all ϕ,ϕ′ ∈ Φ

}
⊂ (C×)Φ

induced by the isomorphism F ⊗ R Φ−→∼ CΦ.1 The reflex field of (ZQ, {hZQ}) is EΦ, the reflex field of
Φ.

1We note that [31] adopts the convention that hZQ is the analogous embedding defined in the case that W0 is

totally negative definite, which means that it is our hZQ precomposed by complex conjugation. This difference of

convention results in a number of further differences with [31] throughout the rest of Section 3.
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Let KZQ ⊂ ZQ(Af ) be a compact open subgroup. Then we obtain the Deligne–Mumford stack,
which we denote by M0,K

ZQ , representing the moduli problem of Section 2.2 for the hermitian space
W0. It is a finite étale stack over SpecEΦ.

By Theorem 2.2, the complex fiber M0,K
ZQ ⊗EΦ

C is isomorphic to a finite number of copies of the

Shimura variety S(ZQ, {hZQ})K
ZQ . To make this decomposition more explicit, let us first introduce

the following definition.

Definition 3.1. An element a ∈ F is Φ-adapted if ϕ(a) is an R>0-multiple of
√
−1 ∈ C for all

ϕ ∈ Φ.

Thus any F/F0-traceless element2
√

∆ ∈ F× determines a unique CM type for F to which
√

∆
is adapted, and conversely, by weak approximation, any CM type admits elements adapted to it.
In particular, let us fix a Φ-adapted element

√
∆ for our fixed CM type Φ. In the notation of

the Introduction and Section 2.2, take ζ =
√

∆
−1

, so that we endow W0 with the Q-alternating

form trF/Q
√

∆
−1

( , )0 in the definition of the level structure for M0,K
ZQ . Let RW0,

√
∆ be the set

of isometry classes of pairs (U0, 〈 , 〉0) consisting of a one-dimensional F -vector space U0 equipped
with a nondegenerate Q-alternating form 〈 , 〉0 : U0 × U0 → Q such that 〈ax, y〉0 = 〈x, ay〉0 for all

x, y ∈ U0 and a ∈ F , such that x 7→ 〈
√

∆x, x〉0 is a positive definite quadratic form on U0, and
such that for all finite primes p, the localization U0 ⊗ Qp endowed with its Qp-alternating form

is F ⊗ Qp-linearly similar to (W0, trF/Q
√

∆
−1

( , )0) ⊗ Qp up to a factor in Q×p . (Thus the pair

(W0, trF/Q
√

∆
−1

( , )0) tautologically defines a class in RW0,
√

∆.) Then Q>0 acts on RW0,
√

∆ by

multiplying the form, and by [14, §8],

M0,K
ZQ ⊗EΦ

C '
∐

RW0,
√

∆/Q>0

S
(
ZQ, {hZQ}

)
K
ZQ
. (3.1)

(In terms of Theorem 2.2, the set RW0,
√

∆/Q>0 is in bijection with ker1(Q, ZQ) by taking the class of

(W0, trF/Q
√

∆
−1

( , )0) as basepoint.) Here the index associated to a C-valued point (A0, ι0, λ0, η0)

of M0,K
ZQ is given by the Q×-class of the F -vector space H1(A0,Q) endowed with its natural Q-

valued Riemann form induced by λ0. The decomposition on the right-hand side of (3.1) descends
to EΦ, and we accordingly write

M0,K
ZQ =

∐
τ∈RW0,

√
∆/Q>0

Mτ
0,K

ZQ
. (3.2)

3.2. The RSZ Shimura varieties. The Shimura varietes of [31] are attached to the group

G̃ := ZQ ×Gm GQ, (3.3)

where the maps from the factors on the right-hand side to Gm are respectively given by NmF/F0

and the similitude character. In terms of the Shimura data already defined, we obtain a Shimura

datum for G̃ by defining the Shimura homomorphism to be

hG̃ : C×
(h
ZQ ,hGQ )

−−−−−−−→ G̃(R).

It is easy to see that (G̃, {hG̃}) has reflex field E ⊂ Q characterized by

Gal(Q/E) =
{
σ ∈ Gal(Q/Q)

∣∣ σ ◦ Φ = Φ and σ∗(r) = r
}

=
{
σ ∈ Gal(Q/Q)

∣∣ σ ◦ Φ = Φ and σ∗(r\) = r\
}
.

(3.4)

In other words, the reflex field is the common composite E = EΦEr = EΦEr\ .

2Here the notation
√

∆ reflects the fact that any Φ-adapted element must be a square root of some totally negative

element ∆ ∈ F×0 , but we note that the element ∆ itself will never play any explicit role for us.
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Example 3.2. In the fake Drinfeld case of Example 2.3(i), ϕ0 embeds F into E for n ≥ 2 since
ϕ0 : F → Er\ ⊂ E, cf. Example 2.4. When n = 1, the same statement holds in the strict fake
Drinfeld case relative to Φ of Example 2.3(ii), but F may fail to embed in E for other signature

types of fake Drinfeld type. In the Harris–Taylor case of Example 2.3(iii), we have ϕ0 : F
∼−→ E for

any n ≥ 1.

The various relations between the groups we have introduced give rise to the following relations
between Shimura varieties.

(i) By definition, the natural projection G̃→ GQ induces a morphism of Shimura data (G̃, {hG̃})→
(GQ, {hGQ}). Hence there is an induced morphism of Shimura varieties (i.e., a morphism of pro-
varieties) (

S
(
G̃, {hG̃}

)
KG̃

)
−→

(
S
(
GQ, {hGQ}

)
K
GQ

)
,

compatible with the inclusion Er ⊂ E.

(ii) The torus ZQ embeds naturally as a central subgroup of GQ, which gives rise to a product
decomposition

G̃ ZQ ×G
(z, g) (z, z−1g),

∼
(3.5)

where G ⊂ GQ is the unitary group (2.9). The isomorphism (3.5) extends to a product decomposition
of Shimura data, (

G̃, {hG̃}
) ∼= (ZQ, {hZQ}

)
×
(
G, {hG}

)
, (3.6)

and hence there is a product decomposition of Shimura varieties,(
S
(
G̃, {hG̃}

)
KG̃

)
∼=
(
S
(
ZQ, {hZQ}

)
K
ZQ

)
×
(
S
(
G, {hG}

)
KG

)
,

compatible with the inclusions EΦ ⊂ E and Er\ ⊂ E.

3.3. The RSZ moduli problem in terms of isogeny classes. We are now going to give a moduli

interpretation for the canonical model of the Shimura variety S(G̃, {hG̃})KG̃ over SpecE. We will
only consider subgroups KG̃ which, with respect to the product decomposition (3.5), are of the form

KG̃ = KZQ ×KG ⊂ G̃(Af ) = ZQ(Af )×G(Af ), (3.7)

for arbitrary open compact subgroups KZQ ⊂ ZQ(Af ) and KG ⊂ G(Af ).
For the definition of level structures in the moduli problem, we fix a one-dimensional, totally

positive definite F/F0-hermitian space (W0, ( , )0) as in Section 3.1. We fix a Φ-adapted element√
∆ ∈ F and a class τ ∈ RW0,

√
∆/Q>0, and we recall from (3.2) the stack Mτ

0,K
ZQ

attached to W0.

(Of course we may take τ to be the class of (W0, trF/Q
√

∆
−1

( , )0), but we do not require this.) We
furthermore introduce the n-dimensional F -vector space

V := HomF (W0,W ). (3.8)

The space V carries a natural F/F0-hermitian form, under which elements x, y ∈ V pair to the
composite [

W0
x−→W

w 7→(−,w)−−−−−−→W ∗
y∗−→W ∗0

[w0 7→(−,w0)0]−1

−−−−−−−−−−−→W0

]
∈ EndF (W0) ∼= F. (3.9)

The group G̃ acts naturally by unitary transformations on V , given in terms of the defining presen-

tation (3.3) by (z, g) · x = gxz−1. This action factors through the quotient G̃ → G via (3.5) and
induces G ∼= ResF0/Q U(V ).

We define the following category fibered in groupoids FKG̃(G̃) over (LNSch)/E . To lighten nota-
tion, we suppress the dependence of this category functor on the element τ .



10 M. RAPOPORT, B. SMITHLING, AND W. ZHANG

Definition 3.3. The category functor FKG̃(G̃) associates to each scheme S in (LNSch)/E the
groupoid of tuples (A0, ι0, λ0, η0, A, ι, λ, η), where

• (A0, ι0, λ0, η0) is an object of Mτ
0,K

ZQ
(S);

• A is an abelian scheme over S;

• ι : F → End0(A) is an action of F on A up to isogeny satisfying the Kottwitz condition (2.7);

• λ is a quasi-polarization on A whose Rosati involution satisfies condition (2.6); and

• η is a KG-orbit (equivalently, a KG̃-orbit, where KG̃ acts through its projection KG̃ → KG) of
isometries of AF,f/AF0,f -hermitian modules

η : V̂(A0, A)
∼−→ V ⊗F AF,f . (3.10)

Here

V̂(A0, A) := HomAF,f
(
V̂(A0), V̂(A)

)
, (3.11)

endowed with its natural AF,f -valued hermitian form h,

h(x, y) := λ−1
0 ◦ y∨ ◦ λ ◦ x ∈ EndAF,f

(
V̂(A0)

)
= AF,f , x, y ∈ V̂(A0, A), (3.12)

cf. [18, §2.3].3 Furthermore, for any geometric point s → S, the orbit η is required to be π1(S, s)-

stable with respect to the π1(S, s)-action on the fiber V̂(A0, A)(s) = HomAF,f (V̂(A0,s), V̂(As))
(a condition which holds for all s on a given connected component S0 of S as soon as it holds
for a single s on S0); comp. [14, §5] or [18, Rem. 4.2]. A morphism (A0, ι0, λ0, η0, A, ι, λ, η) →
(A′0, ι

′
0, λ
′
0, η
′
0, A

′, ι′, λ′, η′) in this groupoid is given by a pair of F -linear quasi-isogenies µ0 : A0 → A′0
and µ : A→ A′ such that µ0 is an isomorphism (A0, ι0, λ0, η0)

∼−→ (A′0, ι
′
0, λ
′
0, η
′
0) in Mτ

0,K
ZQ

(S), such

that µ∗(λ′) is the same Q×-multiple of λ as µ∗0(λ′0) is of λ0 at each point of S (the multiplier condi-

tion), and such that under the natural isomorphism V̂(A0, A)
∼−→ V̂(A′0, A

′) sending x 7→ µ ◦x ◦µ−1
0

(which is an isometry by the multiplier condition), η′ pulls back to η.

Remark 3.4. Let us comment further on the space V introduced in (3.8). The hermitian forms ( , )0

and ( , ) determine a conjugate-linear isomorphism V
∼−→ HomF (W,W0), x 7→ xad, characterized by

the formula

(xw0, w) = (w0, x
adw)0, x ∈ V, w0 ∈W0, w ∈W.

Then the pairing (3.9) on V can be expressed succinctly as sending x, y to yadx. Alternatively,
the adjoint xad defined in this way is the same as the adjoint with respect to the Q-valued forms

trF/Q
√

∆
−1

( , ) and trF/Q
√

∆
−1

( , )0.
Concretely, upon choosing a basis vector in W0, the hermitian form on W0 is represented by a

totally positive element a ∈ F0, and we obtain an F -linear isomorphism V ' W . With respect to
this isomorphism, the form on V is then given by a−1( , ). In particular, V has the same signature
at each archimedean place as W , and in the special case that W0 equals F endowed with its norm
form, there is a canonical isometry V ∼= W . This last case recovers the case taken in the definition of
level structures in [31, §3.2] (modulo the sign conventions alluded to previously in footnote 1). But
even in this special case, it is often helpful to distinguish between V and W , and more generally, it
can be desirable to allow other possibilities for W0.

The following theorem is the analog for (G̃, {hG̃}) of Theorems 2.1 and 2.2.

Theorem 3.5. The moduli problem FKG̃(G̃) is representable by a Deligne–Mumford stack MKG̃
(G̃)

over SpecE, and

MKG̃
(G̃)(C) = S

(
G̃, {hG̃}

)
KG̃

,

compatible with changing KG̃ of the form (3.18).

3To be clear, y∨ : V̂(A∨) → V̂(A∨0 ) denotes the adjoint of y with respect to the Weil pairings on V̂(A) × V̂(A∨)

and V̂(A0)× V̂(A∨0 ).
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Proof. This is the extension to the case of arbitrary signature types of [31, Prop. 3.7].4 The key

point is the following. Define for (A0, ι0, λ0, η0, A, ι, λ, η) in MKG̃
(G̃)(C) a hermitian space V(A0, A)

over F in analogy with V̂(A0, A), but by using Betti homology groups instead of rational Tate

modules. Then V̂(A0, A) = V(A0, A)⊗F AF,f . By the level structure η, the two hermitian spaces V
and V(A0, A) are isomorphic at all finite places. At an archimedean place corresponding to ϕ ∈ Φ,
by the Kottwitz condition (2.7) and the analogous condition of signature ((1, 0)ϕ∈Φ) for M0,K

ZQ ,

the signature of V(A0, A) is (rϕ, rϕ). Hence, by the Hasse principle for hermitian spaces, V(A0, A)
and V are isomorphic. The choice of an isomorphism j between them allows one to define a map

MKG̃
(G̃)(C) → S(G̃, {hG̃})KG̃ which one shows to be an isomorphism independent of the choice of

j. �

3.4. Variant moduli problems in terms of isomorphism classes. In this section we give some
“isomorphism class” variants of the moduli problems introduced above.

We begin with the moduli problem for ZQ. For simplicity, we restrict to the case that the level
subgroup KZQ = K◦ZQ ⊂ ZQ(Af ) is the (unique) maximal compact open subgroup,

K◦ZQ :=
{
z ∈ (OF ⊗ Ẑ)×

∣∣ NmF/F0
(z) ∈ Ẑ×

}
. (3.13)

We define the following category fibered in groupoids F0 over (LNSch)/EΦ
.

Definition 3.6. The category functor F0 associates to each scheme S in (LNSch)/EΦ
the groupoid

of triples (A0, ι0, λ0), where

• A0 is an abelian scheme over S;

• ι0 : OF → End(A0) is an OF -action satisfying the Kottwitz condition (2.7) in the case of signature
((1, 0)ϕ∈Φ) for elements in OF ,

char
(
ι(a) | LieA0

)
=
∏
ϕ∈Φ

(
T − ϕ(a)

)
for all a ∈ OF ; (3.14)

and

• λ0 is a principal polarization on A0 whose Rosati involution satisfies condition (2.6) on OF with
respect to ι0.

A morphism (A0, ι0, λ0) → (A′0, ι
′
0, λ
′
0) in this groupoid is an OF -linear isomorphism of abelian

schemes µ0 : A0
∼−→ A′0 such that the pullback of λ′0 is λ0.

By the proof of [11, Prop. 3.1.2], F0 is representable by a DM stack M0 which is finite and étale
over SpecEΦ.

Unfortunately, it may happen that M0 is empty. In order to circumvent this issue, we introduce
the following variant of M0, cf. [11, Def. 3.1.1]. Fix a non-zero ideal a of OF0 . Then we define the
Deligne–Mumford stack Ma

0 of triples (A0, ι0, λ0) as in Definition 3.6, except that we replace the
condition that λ0 is principal by the condition that λ0 is a polarization satisfying kerλ0 = A0[a].
Then, again, Ma

0 is finite and étale over SpecEΦ, cf. [11, Prop. 3.1.2].
If Ma

0 is non-empty, then, like the case of the moduli stack M0,K◦
ZQ

in Section 3.1, its complex

fiber is a finite disjoint union of copies of S(ZQ, {hZQ})K◦
ZQ

. More precisely, let La
Φ be the set

of isomorphism classes of pairs (Λ0, 〈 , 〉0) consisting of a locally free OF -module Λ0 of rank one
equipped with a nondegenerate alternating form 〈 , 〉0 : Λ0 × Λ0 → Z such that 〈ax, y〉0 = 〈x, ay〉0
for all x, y ∈ Λ0 and a ∈ OF , such that the dual lattice Λ∨0 of Λ0 inside Λ0 ⊗Z Q equals a−1Λ0, and

such that x 7→ 〈
√

∆x, x〉0 is a positive definite quadratic form on Λ0 for some (equivalently, any)

Φ-adapted element
√

∆ ∈ F . Then La
Φ is a finite set, in natural bijection with the isomorphism

classes of objects in Ma
0 (C), cf. [31, §3.2]. Given Λ0,Λ

′
0 ∈ La

Φ (as is customary, we often suppress

the pairings when denoting elements in La
Φ), define Λ0 ∼ Λ′0 if Λ0⊗Z Ẑ and Λ′0⊗Z Ẑ are ÔF -linearly

4Strictly speaking, the statement and proof in loc. cit. is for the moduli problem given in Definition 3.8 below, in

the case of a particular signature type. But the argument transposes to the present situation almost unchanged.
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similar up to a factor in Ẑ× and Λ0 ⊗Z Q and Λ′0 ⊗Z Q are F -linearly similar up to a (necessarily
positive) factor in Q×. Then

Ma
0 ⊗EΦ

C '
∐
La

Φ/∼

S
(
ZQ, {hZQ}

)
K◦
ZQ
, (3.15)

cf. Lem. 3.4 and the paragraph following it in [31]. Here the index associated to a C-valued point
(A0, ι0, λ0) of Ma

0 is given by the class in La
Φ/∼ of the OF -module H1(A0,Z) endowed with its

natural Z-valued Riemann form induced by the polarization. The decomposition on the right-hand
side of (3.15) descends to EΦ, and we accordingly write

Ma
0 =

∐
ξ∈La

Φ/∼

Ma,ξ
0 . (3.16)

Remark 3.7. (i) If F/F0 is ramified at some finite place, then Ma
0 is non-empty for any a, cf. [11,

pf. of Prop. 3.1.6]. A special case of this is when F = K0F0, where K0 is an imaginary quadratic
field and the discriminants of K0/Q and F0/Q are relatively prime.

(ii) If F/F0 is unramified at every finite place and M
OF0
0 = ∅, then it is easy to deduce from loc. cit.

and class field theory that Mp
0 is non-empty for any prime ideal p ⊂ OF0

which is inert in F . For

example, this case arises when F0 = Q(
√

3) and F = F0(
√
−1).

(iii) In particular, given finitely many prime numbers p1, . . . , pr, there always exists a relatively
prime to p1, . . . , pr such that Ma

0 is non-empty.

(iv) When F0 = Q, the set La
Φ/∼ has only one element, so that the decomposition (3.16) is trivial.

To directly compare Ma
0 and M0,K◦

ZQ
(or more precisely, the summands occurring on the respective

right-hand sides of (3.2) and (3.16)), let a be such that Ma
0 6= ∅, and let

√
∆ be any Φ-adapted

element in F . Fix a class ξ ∈ La
Φ/∼. Let (Λ0, 〈 , 〉0) be a representative of ξ in La

Φ, and set
W0 := Λ0 ⊗Z Q. Let τ denote the class of (W0, 〈 , 〉0 ⊗Q) in RW0,

√
∆/Q>0. (Here we are implicitly

endowing W0 with the unique F/F0-hermitian form ( , )0 such that 〈 , 〉0 ⊗Q = trF/Q
√

∆
−1

( , )0.)
Then the set RW0,

√
∆ and the class τ are independent of the choice of representative of ξ. We define

an isomorphism

Ma,ξ
0

∼−→Mτ
0,K◦

ZQ
(3.17)

as follows. Let S be a locally noetherian EΦ-scheme, and let (A0, ι0, λ0) be an S-point on Ma,ξ
0 .

By the definition of the summands in the decomposition (3.16) (see [31, pf. of Lem. 3.4]), at each

geometric point s of S there exists an ÔF -linear symplectic similitude (up to a factor in Ẑ)

T̂(A0,s)
∼−→ Λ0 ⊗Z Ẑ.

The set of all such similitudes is a K◦ZQ-orbit, and upon extending scalars to Af they define a level
structure η0 of similitudes

V̂(A0)
∼−→W0 ⊗Q Af .

Then the morphism (3.17) sends (A0, ι0, λ0) 7→ (A0, ι0, λ0, η0). This morphism is an isomorphism
by an obvious modification of the argument in [18, Prop. 4.4], or see [21, Prop. 1.4.3.4].

Keeping W0 fixed, it is not hard to show that every class τ ′ ∈ RW0,
√

∆/Q>0 is represented by a

space of the form Λ′0 ⊗Z Q for some Λ′0 ∈ La
Φ. (Since we will make no essential use of this fact later

in the paper, we leave the details to the reader.) Choosing such a Λ′0 for each τ ′, and taking the ∼-
class of Λ′0, we obtain an injection RW0,

√
∆/Q>0 ↪→ La

Φ/∼. In this way, combined with the previous

paragraph, we may identify M0,K◦
ZQ

with an open and closed substack of Ma
0 . (Note however that

the choice of each Λ′0, and hence the embedding M0,K◦
ZQ

↪→Ma
0 , is not canonical.)
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We now turn to a couple of variants of the moduli problem attached to G̃ in Definition 3.3. We
consider a subgroup KG̃ of the form (3.7) with KZQ = K◦ZQ , so that

KG̃ = K◦ZQ ×KG, (3.18)

still with KG ⊂ G(Af ) an arbitrary open compact subgroup. Fix a,
√

∆, ξ, and W0 all as before
(3.17). Set V := HomF (W0,W ), endowed with its natural hermitian form. We define the follow-

ing category fibered in groupoids F ′KG̃(G̃) over (LNSch)/E . To lighten notation, we suppress the

dependence on the ideal a and the element ξ.

Definition 3.8. The category functor F ′KG̃(G̃) associates to each scheme S in (LNSch)/E the

groupoid of tuples (A0, ι0, λ0, A, ι, λ, η), where

• (A0, ι0, λ0) is an object of Ma,ξ
0 (S); and

• the tuple (A, ι, λ, η) is as in Definition 3.3.

A morphism (A0, ι0, λ0, A, ι, λ, η) → (A′0, ι
′
0, λ
′
0, A

′, ι′, λ′, η′) in this groupoid is given by an isomor-

phism µ0 : (A0, ι0, λ0)
∼−→ (A′0, ι

′
0, λ
′
0) in Ma,ξ

0 (S) and an F -linear quasi-isogeny µ : A → A′ pulling
λ′ back to λ and η′ back to η.

The morphism (3.17) induces a natural comparison morphism of category functors,

F ′KG̃(G̃) FKG̃(G̃)

(A0, ι0, λ0, A, ι, λ, η) (A0, ι0, λ0, η0, A, ι, λ, η).

(3.19)

The fact that (3.17) is an isomorphism easily implies that (3.19) is an isomorphism as well. In this

way, F ′KG̃(G̃) gives another moduli interpretation of the stack MKG̃
(G̃) over SpecE, cf. Theorem

3.5.
We give a third moduli interpretation of MKG̃

(G̃), in which all of the data is taken up to iso-

morphism, as follows. We continue with a, ξ,
√

∆, W0, and V as above. Let Λ0 ∈ La
Φ denote the

representative of ξ used to define W0 as before (3.17). Fix any OF -lattice Λ ⊂ W , and define the
OF -lattice

L := HomOF (Λ0,Λ) ⊂ V.
We again take the subgroup KG̃ = K◦ZQ ×KG of the form (3.18), and we assume that L⊗OF ÔF is

KG-stable inside V ⊗F AF,f (which is equivalent to Λ⊗OF ÔF being KG-stable inside W ⊗F AF,f ).
Let N be a positive integer such that the principal congruence subgroup mod N for L,

KL,N :=
{
g ∈ G(Af )

∣∣ (g − 1) · L⊗OF ÔF ⊂ NL⊗OF ÔF
}
, (3.20)

is contained in KG. We define the following moduli problem. As before we suppress the dependence
on a and ξ in the notation.

Definition 3.9. The category functor FL,NKG̃
(G̃) associates to each scheme S in (LNSch)/E the

groupoid of tuples (A0, ι0, λ0, B, ι, λ, ηN ), where

• (A0, ι0, λ0) is an object of Ma,ξ
0 (S);

• B is an abelian scheme over S;

• ι : OF → End(B) is an action of OF on B satisfying the Kottwitz condition (2.7) for all a ∈ OF ;

• λ is a quasi-polarization on B whose Rosati involution satisfies condition (2.6) for all a ∈ OF ; and

• ηN is an étale closed subscheme

ηN ⊂ IsomOF

(
HomOF

(A0[N ], B[N ]), (L/NL)S
)

over S such that for every geometric point s→ S, the fiber ηN (s) identifies with a KG/K
L,N -orbit

of isomorphisms

ηN (s) : HomOF

(
A0[N ](s), B[N ](s)

) ∼−→ L/NL



14 M. RAPOPORT, B. SMITHLING, AND W. ZHANG

which lift to ÔF -linear isometries of hermitian modules5

T̂(A0, B)(s)
∼−→ L⊗OF ÔF . (3.21)

Here
T̂(A0, B) := HomÔF

(
T̂(A0), T̂(B)

)
, (3.22)

regarded as a smooth ÔF -sheaf on S, and endowed with its natural hermitian form as in (3.12). Fur-

thermore, the notion of “lift” is with respect to the evident reduction-mod-N maps T̂(A0, B)(s) �
HomOF (A0[N ](s), B[N ](s)) and L⊗OF ÔF � L/NL. A morphism

(A0, ι0, λ0, B, ι, λ, ηN ) −→ (A′0, ι
′
0, λ
′
0, B

′, ι′, λ′, η′N )

in this groupoid is given by an isomorphism µ0 : (A0, ι0, λ0)
∼−→ (A′0, ι

′
0, λ
′
0) in Ma,ξ

0 (S) and an

OF -linear isomorphism of abelian schemes µ : B
∼−→ B′ pulling λ′ back to λ and η′N back to ηN .

Remark 3.10. As usual, the condition on the level structure ηN in Definition 3.9 holds for all
geometric points s→ S as soon as it holds for a single geometric point on each connected component
of S. The proof is similar to [21, Lems. 1.3.6.5, 1.3.6.6, Cor. 1.3.6.7].

Remark 3.11. Note that the (quasi-)polarization type of λ in Definition 3.9 is determined by Λ, in

the sense that the existence of the isometries (3.21) implies that T̂(A) and T̂(A)∨ (the dual lattice

of T̂(A) inside V̂(A) with respect to λ and the Weil pairing) have the same relative position as Λ

and Λ∨ (the dual lattice of Λ inside W with respect to trF/Q
√

∆
−1

( , )) have in W . In particular,
λ is an honest polarization if and only if Λ ⊂ Λ∨.

Remark 3.12. In the special case that W0 = F with (x, y)0 = NmF/F0
(xy), take a =

√
∆
−1

D,

where D denotes the different of F/Q, and where
√

∆ is any Φ-adapted element such that a is an
integral ideal. Then a is the image in OF of an ideal in OF0

, and O∨F = a−1OF . Hence we may take
ξ to be the class defined by Λ0 = OF in the above discussion, and we obtain canonical isometries
V ∼= W and L ∼= Λ. Thus in this case, one may formulate Definition 3.9 purely in terms of Λ,
without needing to introduce L.

The moduli problem FL,NKG̃
(G̃) is related to F ′KG̃(G̃) via a natural comparison equivalence

ϕ : FL,NKG̃
(G̃) F ′KG̃(G̃)

(A0, ι0, λ0, B, ι, λ, ηN ) (A0, ι0, λ0, B, ι, λ, η),

∼

(3.23)

where η is the KG-orbit of isometries V̂(A0, B)
∼−→ V ⊗F AF,f induced by extension of scalars from

the lifts (3.21) of the sections of ηN . (Note that, given any geometric point s → S, stability of
the orbit η under the action of π1(S, s) follows from finite étaleness of ηN .) The inverse of ϕ can
be explicitly described in a way similar to the proof of [18, Prop. 4.4]; see also [3, §4.12] or [21,
Prop. 1.4.3.4]. Let S be a locally noetherian scheme over SpecE, and let (A0, ι0, λ0, A, ι, λ, η) be

an S-valued point on F ′KG̃(G̃). Since we assume that L⊗OF ÔF is KG-stable, there exists a unique

ÔF -submodule T ⊂ V̂(A) such that the submodule HomÔF
(T̂(A0), T ) ⊂ V̂(A0, A) identifies with

L ⊗OF ÔF ⊂ V ⊗F AF,f under each η ∈ η. The submodule T gives rise to an abelian scheme B

over S with OF -action ιB and an F -linear quasi-isogeny µ : B → A such that µ∗(T̂(B)) = T inside

V̂(A). The pullback of λ along µ defines the quasi-polarization λB , and the reduction mod N of the
isometries

T̂(A0, B)
µ∗−→∼ HomOF

(
T̂(A0), T

) η−→∼ L⊗OF ÔF ,

5Note that we have made no assumption on the restriction of the hermitian form on V to L; all we can say is that

this restriction takes values in some fractional ideal d of F . Similarly, since λ0 need not be principal and λ is only

required to be a quasi-polarization, the hermitian form on T̂(A0, B) need not be ÔF -valued.
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for η ∈ η, defines the finite étale scheme ηN (using that η is π1(S, s)-stable with respect to any
geometric point s → S). Then (A0, ι0, λ0, B, ιB , λB , ηN ) is the image of (A0, ι0, λ0, A, ι, λ, η) under

the inverse of ϕ. The equivalence (3.23) shows that FL,NKG̃
(G̃) gives a third moduli interpretation of

MKG̃
(G̃), and that, up to canonical equivalence, FL,NKG̃

(G̃) is independent of the choice of L and N

such that KL,N ⊂ KG.

3.5. GGP and KR cycles. To conclude Section 3, we give the definition of GGP and KR cycles
in the context of the RSZ Shimura varieties. In the case of the GGP cycles, let n ≥ 2. We return to
the situation of Remark 2.5, with u ∈ W a fixed totally positive vector and W [ = (u)⊥. Replacing

W by W [ in the discussion in Section 3.2, we get a Shimura datum (H̃, {hH̃}), where H̃ denotes

the analog of the group G̃ for W [. The inclusion W [ ⊂W then induces a natural inclusion H̃ ⊂ G̃.

Since u is totally positive, the inclusion H̃ ⊂ G̃ induces a morphism of the Shimura data we have
defined. Hence there is a morphism of towers(

S
(
H̃, {hH̃}

)
K
H̃

)
−→

(
S
(
G̃, {hG̃}

)
KG̃

)
, (3.24)

which lies over the tower (S(ZQ, {hZQ})K
ZQ ). Taking the graph morphism, we obtain a closed

embedding of towers,(
S
(
H̃, {hH̃}

)
K
H̃

)
↪−→

(
S
(
H̃, {hH̃}

)
K
H̃

)
×(S(ZQ,{h

ZQ})K
ZQ )

(
S
(
G̃, {hG̃}

)
KG̃

)
. (3.25)

The resulting cycle in the target of (3.25) is the GGP cycle in the present context.
In terms of the moduli description of Theorem 3.5, the above morphisms admit the following

simple descriptions. Using that u is totally positive, it is easy to see that E is also the reflex field of

(H̃, {hH̃}). Take W0 := (u) in moduli problem of Definition 3.3 for both groups, so that we consider

the spaces V = HomF (W0,W ) and V [ = HomF (W0,W
[). Similarly fix the same class τ in both

moduli problems. Then for level subgroups KG̃ = KZQ × KG and KH̃ = KZQ × KH of the form
(3.7), and such that KH ⊂ KG, the morphism (3.24) is given by the finite and unramified morphism
over E,

MK
H̃

(H̃) MKG̃
(G̃)

(A0, ι0, λ0, η0, A
[, ι[, λ[, η[) (A0, ι0, λ0, η0, A

[ ×A0, ι
[ × ι0, λ[ × λ0, η).

(3.26)

Here the level structure η is the KG-orbit of the isometries

V̂(A0, A
[ ×A0) = V̂(A0, A

[)⊕ EndAF,f
(
V̂(A0)

) η[⊕[id7→id]−−−−−−−→∼(
V [ ⊗F AF,f

)
⊕
(
EndF (W0)⊗F AF,f

)
= V ⊗F AF,f

(3.27)

for η[ ∈ η[. The GGP cycle for the given levels is the graph of (3.26),

MK
H̃

(H̃) ↪−→MK
H̃

(H̃)×Mτ
0,K

ZQ
MKG̃

(G̃). (3.28)

The morphisms (3.26) and (3.28) admit analogous descriptions in terms of the alternative moduli

interpretations of Section 3.4. In the case of the moduli problems F ′K
H̃

(H̃) and F ′KG̃(G̃) of Definition

3.8, let the level subgroups KG̃ = K◦ZQ ×KG and KH̃ = K◦ZQ ×KH be of the form (3.18), and again
assume that KH ⊂ KG. Fix an ideal a such that Ma

0 6= ∅, and again take W0 = (u) in both moduli

problems. The proof of [11, Prop. 3.1.6] shows that for an appropriate Φ-adapted
√

∆ ∈ F , there

exists an OF -lattice Λ0 ⊂ W0 such that Λ∨0 = a−1Λ0 with respect to the form trF/Q
√

∆
−1

( , )|W0
;

fix such a
√

∆ and Λ0, and let ξ denote the class of Λ0 in La
Φ/∼. Then the morphism (3.26) is given

by the morphism of moduli problems F ′K
H̃

(H̃)→ F ′KG̃(G̃) sending

(A0, ι0, λ0, A
[, ι[, λ[, η[) 7−→ (A0, ι0, λ0, A

[ ×A0, ι
[ × ι0, λ[ × λ0, η), (3.29)
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where the level structure η is defined exactly as in (3.27). The GGP cycle is again the graph of this

morphism, as in (3.28) (with the fibered product over Ma,ξ
0 ). The descriptions of the morphisms

(3.26) and (3.28) in terms of the moduli problems FL,NK
H̃

(H̃) and FL,NKG̃
(G̃) are completely analogous.

To define KR cycles, we again give differing versions according to our differing moduli interpre-

tations of the RSZ Shimura varieties. First consider the moduli problem FKG̃(G̃), for any choice

of defining data in Definition 3.3. Let (A0, ι0, λ0, η0, A, ι, λ, η) be an S-point on FKG̃(G̃) for a con-

nected, locally noetherian E-scheme S. Then Hom0
F (A0, A) is well-defined, and by the multiplier

condition in Definition 3.3, it carries a natural well-defined F/F0-hermitian form h′, in analogy with
(3.12),

h′(x, y) := λ−1
0 ◦ y∨ ◦ λ ◦ x ∈ End0

OF (A0) ∼= F, x, y ∈ Hom0
F (A0, A). (3.30)

Note that passing to Tate modules defines an isometric embedding Hom0
F (A0, A) ↪→ V̂(A0, A).

Now let m be a positive integer, let T ∈ Hermm(F ) be an m × m hermitian matrix which is
positive semidefinite at all archimedean places, and let L be an OF -lattice in the vector space V of
Definition 3.3. The KR cycle Z(T, L) is the stack of tuples

(A0, ι0, λ0, η0, A, ι, λ, η; x), (3.31)

where (A0, ι0, λ0, η0, A, ι, λ, η) is an object in FKG̃(G̃) and x = (x1, . . . , xm) ∈ Hom0
F (A0, A)m is an

m-tuple of quasi-homomorphisms such that (h′(xi, xj)) = T , and such that for each i = 1, . . . ,m

and each η ∈ η, the quasi-homomorphism xi identifies with an element of L ⊗OF ÔF under the
composite

Hom0
F (A0, A) ↪−→ V̂(A0, A)

η−→∼ V ⊗F AF,f .

(Note that if L ⊗OF ÔF is stable inside V ⊗F AF,f under the action of the subgroup KG of
(3.7), then this last condition is independent of η ∈ η.) A morphism (A0, ι0, λ0, η0, A, ι, λ, η; x) →
(A′0, ι

′
0, λ
′
0, η
′
0, A

′, ι′, λ′, η′; x′) consists of quasi-isogenies µ0 : A0 → A′0 and µ : A→ A′ as in Definition
3.3 which pull x′ back to x. The proof of [18, Prop. 2.9] transposes to the present setting to show

that Z(T, L) is representable by a DM stack which is finite and unramified over FL,NKG̃
(G̃) ∼= MKG̃

(G̃)

(in the present setting, one uses the lattice L in the moduli problem to deduce finiteness). If T is
totally positive definite and 1 ≤ m ≤ min{rϕ | ϕ ∈ Φ}, then Z(T, L) has codimension m

∑
ϕ∈Φ rϕ

over MKG̃
(G̃). In particular, in the strict fake Drinfeld case relative to Φ of Example 2.3(ii), the

codimension is m.
In the case of the moduli problem F ′KG̃(G̃) (for any choice of defining data in Definition 3.8),

the KR cycle Z ′(T, L), for T and L as above, is the stack of tuples (A0, ι0, λ0, A, ι, λ, η; x), where

(A0, ι0, λ0, A, ι, λ, η) is an object in F ′KG̃(G̃) and x is exactly as in (3.31). Then the equivalence

F ′KG̃(G̃)
∼−→ FKG̃(G̃) of (3.19) induces a natural equivalence Z ′(T, L)

∼−→ Z(T, L).

In the case of the moduli problem FL,NKG̃
(G̃) (for any choice of defining data in Definition 3.9),

let (A0, ι0, λ0, B, ι, λ, ηN ) be an object in FL,NKG̃
(G̃). Then the group HomOF (A0, B) is well-defined

(since both A0 and B are taken up to isomorphism as abelian schemes), and this group carries a
natural OF /OF0-hermitian form h′, defined as in (3.30), which takes values in some fractional ideal
d of F . In this case, passing to Tate modules defines an isometric embedding HomOF (A0, B) ↪→
T̂(A0, B). (Therefore, by the existence of a level structure in the moduli problem, if the hermitian
form on V is OF -valued on L, then h′ will be OF -valued too.) The KR cycle ZL,N (T ), for T
as above, is the stack of tuples (A0, ι0, λ0, B, ι, λ, ηN ; x), where (A0, ι0, λ0, B, ι, λ, ηN ) is an object

in FL,NKG̃
(G̃) and x = (x1, . . . , xm) ∈ HomOF (A0, B)m is an m-tuple of homomorphisms such that

(h′(xi, xj)) = T . In this case, the equivalence FL,NKG̃
(G̃)

∼−→ F ′KG̃(G̃) of (3.23) induces a natural

equivalence ZL,N (T )
∼−→ Z ′(T, L).
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4. p-integral models of RSZ Shimura varieties

4.1. Semi-global models. In this subsection we define a “semi-global” integral model of the stack

MKG̃
(G̃) over SpecOE,(p) for certain level subgroups KG̃.

We first need some preparatory notions. Let k be any algebraically closed field which is an OE-
algebra. Let (A0, ι0, λ0) and (A, ι, λ) be two triples, each consisting of an abelian variety over k,
an F -action up to isogeny, and a quasi-polarization whose Rosati involution induces the nontrivial
F/F0-automorphism on F . Suppose that (A0, ι0) satisfies the Kottwitz condition (3.14), and that
(A, ι) satisfies the Kottwitz condition (2.7) relative to a fixed choice of a generalized CM type r of
rank n; in particular, this implies that A0 and A have respective dimensions [F0 : Q] and n · [F0 : Q].
Let v be a finite place of F0 which does not split in F . Then [31, App. A] defines a sign invariant
invrv(A0, ι0, λ0, A, ι, λ) ∈ {±1}.6 If the residue characteristic of v does not equal char k, then invrv is
simply the Hasse invariant of the Fv/F0,v-hermitian space

Vv(A0, A) := HomFv

(
Vv(A0),Vv(A)

)
, (4.1)

where the hermitian form is the obvious v-adic analog of (3.12) (and hence Vv(A0, A) is the v-
factor of (3.11) when char k = 0). If the residue characteristic of v equals char k, then invrv is
defined similarly in terms of the highest exterior power of the Hom space of the rational Dieudonné
modules of A0 and A, with a further correction factor in terms of the function r. The sign invariant
depends only on the tuple (A0, ι0, λ0;A, ι, λ) up to isogeny, and it is locally constant in families over
OE-schemes [31, Prop. A.1].

We next note that the definition of the moduli space Ma
0 over SpecE of Section 3.4 extends

word-for-word to a moduli space Ma
0 over SpecOE . Then Ma

0 is a Deligne–Mumford stack, finite
and étale over SpecOE , cf. [11, Prop. 3.1.2]. It follows that the decomposition (3.16) extends to a
disjoint union decomposition of Ma

0,

Ma
0 =

∐
ξ∈La

Φ/∼

Ma,ξ
0 . (4.2)

For the rest of this section we fix a prime number p. We denote by Vp the set of places of F0

over p. If p = 2, then we assume that every v ∈ Vp is unramified in F . We fix a,
√

∆, ξ, Λ0, and
W0 as before (3.17). We continue with the n-dimensional hermitian space W , and as usual we set
V = HomF (W0,W ). For each v ∈ Vp, we endow the Fv/F0,v-hermitian space Wv := W ⊗F Fv with

the Qp-valued alternating form trFv/Qp
√

∆
−1

( , ), and we fix a vertex lattice Λv ⊂Wv with respect
to this form, i.e., Λv is an OF,v-lattice such that

Λv ⊂ Λ∨v ⊂ π−1
v Λv.

Here πv denotes a uniformizer in Fv (if v splits in F , this means the image in Fv of a uniformizer

for F0,v), and Λ∨v ⊂Wv denotes the dual lattice with respect to trFv/Qp
√

∆
−1

( , ).7

We consider a subgroup KG̃ = K◦ZQ ×KG as in (3.18). We assume that KG ⊂ G(Af ) is of the
form KG = Kp

G ×KG,p, where Kp
G ⊂ G(Apf ) is arbitrary and where

KG,p =
∏
v∈Vp

KG,v ⊂ G(Qp) =
∏
v∈Vp

U(W )(F0,v),

with

KG,v := StabU(W )(F0,v)(Λv). (4.3)

6Since we take the Kottwitz condition (3.14) for A0 to be the opposite of the one used in loc. cit., we need to use
the version of invrv modified as in [31, Rem. A.2] when the residue characteristic of v equals char k.

7We remind the reader that Λ∨v and the dual lattice Λ∗v with respect to the hermitian form on Wv need not be
equal, but they are at least scalar multiples of each other. The lattice Λ∨v is more natural to use in connection with

polarizations. We also point out that vertex lattices in [31] are always taken with respect to hermitian forms.
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We note that if v is unramified in F , then KG,v is a maximal parahoric subgroup of U(W )(F0,v).
If v ramifies in F (recall that in this case we assume that v - 2), then KG,v is a maximal compact
subgroup of U(W )(F0,v) which contains a (maximal) parahoric subgroup with index 2, unless n is
even and Λv is πv-modular, in which case KG,v is itself maximal parahoric; see [27, §4.a]. Here
πv-modular means that Λ∨v = π−1

v Λv.

We now define the following category fibered in groupoids Fnaive
KG̃

(G̃) over (LNSch)/OE,(p)
. As

before, to lighten notation, we suppress the ideal a and the element ξ.

Definition 4.1. The category functor Fnaive
KG̃

(G̃) associates to each scheme S in (LNSch)/OE,(p)
the

groupoid of tuples (A0, ι0, λ0, A, ι, λ, η
p), where

• (A0, ι0, λ0) is an object of Ma,ξ
0 (S);

• A is an abelian scheme over S;

• ι : OF,(p) → End(p)(A) is an action up to prime-to-p isogeny satisfying the Kottwitz condition
(2.7) on OF,(p);

• λ ∈ Hom(p)(A,A
∨) is a quasi-polarization on A whose Rosati involution satisfies condition (2.6)

on OF,(p); and

• ηp is a Kp
G-orbit of isometries of ApF,f/A

p
F0,f

-hermitian modules

ηp : V̂p(A0, A)
∼−→ V ⊗F ApF,f , (4.4)

where

V̂p(A0, A) := HomApF,f

(
V̂p(A0), V̂p(A)

)
, (4.5)

and where the hermitian form on V̂p(A0, A) is the obvious prime-to-p analog of (3.12).

We impose the following further conditions on the above tuples.

(i) Consider the decomposition of p-divisible groups

A[p∞] =
∏
v∈Vp

A[v∞] (4.6)

induced by the action of OF0
⊗ Zp ∼=

∏
v∈Vp OF0,v. Since Rosλ is trivial on OF0

, λ induces a

polarization λv : A[v∞] → A∨[v∞] ∼= A[v∞]∨ of p-divisible groups for each v. The condition we
impose is that kerλv is contained in A[ι(πv)] of rank #(Λ∨v /Λv) for each v ∈ Vp.
(ii) We require that at every geometric point s of S the following sign condition holds for every
non-split place v ∈ Vp,

invrv(A0,s, ι0,s, λ0,s, As, ιs, λs) = invv(V ), (4.7)

where the right-hand denotes the Hasse invariant of the hermitian space V at v.

A morphism (A0, ι0, λ0, A, ι, λ, η
p) → (A′0, ι

′
0, λ
′
0, A

′, ι′, λ′, η′p) in this groupoid is given by an iso-

morphism µ0 : (A0, ι0, λ0)
∼−→ (A′0, ι

′
0, λ
′
0) in Ma,ξ

0 (S) and an OF,(p)-linear quasi-isogeny µ : A → A′

inducing an isomorphism A[p∞]
∼−→ A′[p∞], pulling λ′ back to λ, and pulling ηp′ back to ηp.

Remark 4.2. Let A = (A0,s, ι0,s, λ0,s, As, ιs, λs, η
p) be a tuple as in Definition 4.1, except where we

don’t impose the sign condition in (ii), and suppose that A lifts to characteristic zero. Then, by the
product formula and the Hasse principle for hermitian vector spaces, by the Kottwitz condition and
the existence of the prime-to-p level structure ηp, and by local constancy of invrv, the sign condition
for all non-split v ∈ Vp except one implies the sign condition for A at the remaining place. In

particular, when F0 = Q, the sign condition is empty, provided that Fnaive
KG̃

(G̃) is topologically flat

over OE,(p). We refer to Remark 6.5(i) for other instances when the sign condition is redundant. In
these instances the naive moduli problem considered here is replaced by more sophisticated integral
models which are flat over OE,(p).
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Remark 4.3. As in Remarks 3.4 and 3.12, when (W0, ( , )0) = (F,NmF/F0
), we may replace V by

W everywhere in Definition 4.1.

The following theorem shows that the moduli functor Fnaive
KG̃

(G̃) defines an extension of MKG̃
(G̃)

with reasonable properties.

Theorem 4.4. The moduli problem Fnaive
KG̃

(G̃) is representable by a Deligne–Mumford stackMnaive
KG̃

(G̃)

over SpecOE,(p), and

Mnaive
KG̃

(G̃)×SpecOE,(p)
SpecE ∼= MKG̃

(G̃).

Furthermore,

(i) If MKG̃
(G̃) is proper over SpecE, then Mnaive

KG̃
(G̃) is proper over SpecOE,(p).

(ii) If p is unramified in F and the vertex lattice Λv is self-dual for all v ∈ Vp, then Mnaive
KG̃

(G̃) is

smooth over SpecOE,(p).

Proof. This is the extension of [31, Th. 4.1] to the case of arbitrary signature type. The key point

is the statement which compares MKG̃
(G̃) with the generic fiber of Mnaive

KG̃
(G̃). Using the moduli

interpretation F ′KG̃(G̃) of MKG̃
(G̃) of Definition 3.8, this comes down to completing the prime-to-p

level structure ηp as in (4.4) to a level structure η as in (3.10), for a point (A0, ι0, λ0, A, ι, λ, η
p)

of Mnaive
KG̃

(G̃) over an E-scheme. Indeed, by the sign condition (4.7), there exists an isomorphism

between Vv(A0, A) = V̂(A0, A)v and Vv for all v ∈ Vp. Now, recall that prior to defining Fnaive
KG̃

(G̃),

we fixed a lattice Λ0 ⊂W0 such that Λ∨0 = a−1Λ0. The KG,v-equivalence class ηv of the isomorphism
Vv(A0, A) ' Vv is then singled out by stipulating that it takes the lattice HomOF,v (Tv(A0),Tv(A))
in Vv(A0, A) to the lattice Lv := HomOF,v (Λ0,v,Λv) in Vv, where Λ0,v := Λ ⊗OF OF,v; note that
KG,v is the stabilizer of Lv with respect to the isomorphism U(W )(F0,v) ∼= U(V )(F0,v). We remark
that in loc. cit., this part of the argument is carried out when p = 2 under the assumption that all
v ∈ V2 are split in F . The argument extends to the case that all v ∈ V2 are unramified in F by [12,
Th. 7.1], which says that all vertex lattices of the same type are conjugate under the unitary group
in any hermitian space attached to an unramified extension of local fields of characteristic not 2.
We also remark that the smoothness assertion in (ii) follows as in the proof of [31, Th. 4.1], using
Theorem A.1 in the appendix below to extend the formalism of local models to the case p = 2 under
the assumption that all v ∈ V2 are unramified in F .

The properness assertion in (i) follows as in [14, end of §5]. �

Remark 4.5. The lattice stabilizer groups KG,p appearing as p-factors of the level subgroups
in Theorem 4.4 are all maximal. It is possible to extend the definitions above to general lattice
multichain stabilizer groups at p (the v-factors of which, for each v ∈ Vp, continue to contain a
parahoric subgroup with index 1 or 2, as after (4.3)), by replacing the entry A in (A0, ι0, λ0, A, ι, λ, η

p)
by a multichain of abelian varieties, cf. [32, Def. 6.9] (in the context of general PEL moduli problems)
or [28, §1.4] (in the context of unitary moduli problems with F0 = Q).

4.2. Semi-global GGP and KR cycles. In this section we give semi-global versions of the GGP
and KR cycles of Section 3.5.

Let us again start with the GGP cycles. As before, we take n ≥ 2, we fix a vector u ∈ W of

totally positive norm, we set W [ = (u)⊥, and we consider the resulting Shimura datum (H̃, {hH̃})
for W [. We may then define a semi-global integral model Mnaive

K
H̃

(H̃) over SpecOE,(p) as in Section

4.1. The definition of this stack depends on the choice of a vertex lattice Λ[v ⊂W [
v for each v ∈ Vp;

to define a semi-global version Mnaive
K
H̃

(H̃)→Mnaive
KG̃

(G̃) of the morphism (3.29), these lattices and

the lattices Λv ⊂ Wv in the definition of Mnaive
KG̃

(G̃) need to be suitably related. As in Section 3.5,

we set W0 = (u), V = HomF (W0,W ), and V [ = HomF (W0,W
[). By Remark 3.7(i)(ii), the stack

Ma
0 is non-empty for a equal to OF0

or to an inert prime ideal; we fix such an a, and we further
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fix
√

∆, Λ0, and ξ as before (3.29). Then the localization Λ0,v = Λ0 ⊗OF OF,v is a vertex lattice in

W0,v for every place v ∈ Vp. For simplicity, let us now assume that Λv and Λ[v satisfy the relation

Λv = Λ[v ⊕ Λ0,v ⊂Wv = W [
v ⊕W0,v (4.8)

for each v ∈ Vp. We further assume that the prime-to-p level subgroups satisfy Kp
H ⊂ Kp

G. Then
the morphism (3.29) extends to a morphism of p-integral models,

Mnaive
K
H̃

(H̃) Mnaive
KG̃

(G̃)(
A0, ι0, λ0, A

[, ι[, λ[, ηp,[
) (

A0, ι0, λ0, A
[ ×A0, ι

[ × ι0, λ[ × λ0, η
p
)
.

(4.9)

Here the Kp
G-orbit ηp is defined in terms of the obvious prime-to-p analog of (3.27), and it is easy to

see that the sign condition on Mnaive
K
H̃

(H̃) implies that the formula in (4.9) indeed produces points

satisfying the sign condition on Mnaive
KG̃

(G̃). The p-integral GGP cycle for the given levels is the

graph of (4.9),

Mnaive
K
H̃

(H̃) ↪−→Mnaive
K
H̃

(H̃)×Ma,ξ
0
Mnaive

KG̃
(G̃). (4.10)

Remark 4.6. Our assumption that the lattices in question satisfy the relation (4.8) for all v ∈ Vp
is, in certain cases, a serious one. For example, if n is even and there is a place v ∈ Vp which ramifies

in F , then it is impossible to choose Λv and Λ[v in this way such that MKG̃
(G̃) has good reduction

(at least outside of zero dimensional cases). We refer to [31, §4.4] for more general definitions of
GGP cycles in this and further such contexts.

Now let us define the semi-global KR cycles. In fact, we will give two versions of the definition. The

first is based directly on the moduli problem Fnaive
KG̃

(G̃), for any choice of defining data in Definition

4.1. Fix a global OF -lattice Λ ⊂W whose localization Λ⊗OF OF,v, for each v ∈ Vp, equals the vertex
lattice Λv ⊂Wv we fixed before Definition 4.1. Set L := HomOF (Λ0,Λ) ⊂ V . Let m be a positive in-
teger, and let T ∈ Hermm(F ) be a hermitian matrix which is positive semidefinite at all archimedean
places. Then the p-integral KR cycle Znaive(T, L) is the stack of tuples (A0, ι0, λ0, A, ι, λ, η

p; x),

where (A0, ι0, λ0, A, ι, λ, η
p) is an object in Fnaive

KG̃
(G̃) and x = (x1, . . . , xm) ∈ Hom(p),OF,(p)

(A0, A)m

is an m-tuple of OF,(p)-linear quasi-homomorphisms such that (h′(xi, xj)) = T and such that each

xi identifies with an element of L⊗OF Ô
p
F under the composite

Hom(p),OF,(p)
(A0, A) ↪−→ V̂p(A0, A)

ηp−→∼ V ⊗F ApF,f ,

for each ηp ∈ ηp. Here the hermitian form h′ on Hom(p),OF,(p)
(A0, A) is defined as in (3.30), and

ÔpF := (OF [ 1
p ])̂ ⊂ ApF,f . The proof of Theorem 4.4 extends to show that the generic fiber of

Znaive(T, L) is canonically isomorphic to the KR cycle Z ′(T, L) defined in Section 3.5.
To give the second version of the p-integral KR cycle, we first need to introduce a p-integral version

of Definition 3.9. Keep all the notation of the previous paragraph, and assume that L ⊗OF Ô
p
F is

Kp
G-stable inside V ⊗F ApF,f (which is equivalent to Λ⊗OF Ô

p
F being Kp

G-stable inside W ⊗F ApF,f ).

For N a positive integer prime to p, define Kp,L,N ⊂ G(ApF,f ) as the obvious prime-to-p analog of

KL,N in (3.20). Then KL,N = Kp,L,N ×KG,p. Choose N such that Kp,L,N ⊂ Kp
G. We define the

following moduli problem.

Definition 4.7. The category functor Fnaive,L,N
KG̃

(G̃) associates to each scheme S in (LNSch)/OE,(p)

the groupoid of tuples (A0, ι0, λ0, B, ι, λ, η
p
N ), where

• (A0, ι0, λ0) is an object of Ma,ξ
0 (S);

• B is an abelian scheme over S;

• ι : OF → End(B) is an action of OF on B satisfying the Kottwitz condition (2.7) on OF ;
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• λ ∈ Hom(p)(B,B
∨) is a quasi-polarization on B whose Rosati involution satisfies condition (2.6)

on OF ; and

• ηpN is a closed étale subscheme

ηpN ⊂ IsomOF

(
HomOF

(A0[N ], B[N ]), (L/NL)S
)

over S such that for every geometric point s → S (or equivalently, for a single geometric point on
each connected component of S), the fiber ηpN (s) identifies with a Kp

G/K
p,L,N -orbit of isomorphisms

ηpN (s) : HomOF

(
A0[N ](s), B[N ](s)

) ∼−→ L/NL

which lift to ÔpF -linear isometries of hermitian modules

T̂p(A0, B)(s)
∼−→ L⊗OF Ô

p
F .

Here

T̂p(A0, B) := HomÔpF

(
T̂p(A0), T̂p(B)

)
(4.11)

is the obvious prime-to-p analog of (3.22).

We require that the tuples (A0, ι0, λ0, B, ι, λ, η
p
N ) satisfy conditions (i) and (ii) from Definition 4.1

(with B in place of A). A morphism (A0, ι0, λ0, B, ι, λ, η
p
N ) → (A′0, ι

′
0, λ
′
0, B

′, ι′, λ′, ηp′N ) in this

groupoid is given by an isomorphism µ0 : (A0, ι0, λ0)
∼−→ (A′0, ι

′
0, λ
′
0) in Ma,ξ

0 (S) and an OF -linear

isomorphism of abelian schemes µ : B
∼−→ B′ pulling λ′ back to λ and ηp′N back to ηpN .

The obvious prime-to-p analog of the morphism (3.23) defines a natural equivalence of moduli
problems

Fnaive,L,N
KG̃

(G̃)
∼−→ Fnaive

KG̃
(G̃).

Hence Fnaive,L,N
KG̃

(G̃) gives a second moduli interpretation of the stack Mnaive
KG̃

(G̃).

In terms of the moduli functor Fnaive,L,N
KG̃

(G̃), we now define the p-integral KR cycle ZL,N (T )

word-for-word as in the case of ZL,N (T ) in Section 3.5, simply replacing FL,NKG̃
(G̃) everywhere by

Fnaive,L,N
KG̃

(G̃). Then ZL,N (T ) is canonically equivalent to Z(T, L), and its generic fiber canonically

identifies with ZL,N (T ).

4.3. Summary table. The following table summarizes some properties of the various unitary
Shimura varieties we have introduced above. In the last column, by “cycle property” we mean
whether there exists a KR cycle in the Shimura variety and a GGP cycle in an appropriate product
of the Shimura varieties, in analogy with the discussion in Section 3.5. In the last row, by “BHKRY”
we mean the special case of RSZ Shimura varieties where F0 = Q, and of (strict fake) Drinfeld type,
cf. [2]. (In loc. cit. only the case of principal polarization is considered.) In this case, F = K0 is

an imaginary quadratic field. The term “no sign necessary” refers to the case when Fnaive
KG̃

(G̃) is

topologically flat over OK0,(p), cf. Remark 4.2.

Name Shimura datum Reflex field Moduli problem
p-integral

moduli problem

Cycle

property

D/K (§2.2) (GQ, {hGQ}) Er
yes for n even,

almost for n odd
yes if p totally

unramified
no

GGP (§2.3) (G, {hG}) Er\ no no yes

RSZ (§3.2) (G̃, {h
G̃
}) E = EΦEr = EΦEr\ yes

yes for KG,p a lattice
multichain stabilizer

yes

HT
( Ex. 2.3(iii))

(GQ, {hHT
GQ })

Usually F = K0F0;

see Ex. 2.3(iii)
as in D/K

as in D/K, all

levels if p split in K0
as in D/K

BHKRY as in RSZ K0 as in RSZ
as in RSZ,

but no sign necessary
as in RSZ
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5. Flat and smooth p-integral models of RSZ Shimura varieties

The p-integral modelMnaive
KG̃

(G̃) ofMKG̃
(G̃) defined in Section 4 is not always flat over SpecOE,(p).

In this section, we first give some cases where it is known to be flat. We then give some cases where,
upon imposing further conditions on the Lie algebra of the abelian variety (A, ι, λ) in the moduli

problem, we obtain a closed substack MKG̃
(G̃) of Mnaive

KG̃
(G̃) which is flat, with the same generic

fiber. Finally, we give some cases, beyond the totally unramified case appearing in Theorem 4.4(ii),

where MKG̃
(G̃) is even regular or smooth. We continue to assume that every v ∈ Vp is unramified

in F if p = 2, and we again take KG̃ as in Section 4.1, i.e., of the form K◦ZQ ×Kp
G ×KG,p, with Kp

G

arbitrary and KG,p a product of stabilizers of vertex lattices Λv for v ∈ Vp.
Let us note at the outset that when using terminology relating a lattice to its dual in this section,

we will always mean the dual with respect to the Qp-valued form, e.g., Λv being self-dual means
that Λv = Λ∨v . Strictly speaking, this usage differs from all the papers on unitary local models we
will refer to (where the dual is with respect to the hermitian form). But since Λ∨v and Λ∗v are scalar
multiples of each other, the periodic lattice chains generated by {Λv,Λ∨v } and {Λv,Λ∗v} are the same,
and there is ultimately no essential difference.

5.1. Flatness of Mnaive
KG̃

(G̃). The following result gives some cases where Mnaive
KG̃

(G̃) is known to

be flat.

Theorem 5.1. Suppose that p is unramified in F (without any condition on the vertex lattices Λv),
or that the following three conditions hold:

(1 ) each place v ∈ Vp which is unramified in F has ramification index e ≤ 2 over p;8

(2 ) each place v ∈ Vp which ramifies in F is unramified over p, and the lattice Λv for such v is
self-dual;

(3 ) the integers rϕ for varying ϕ ∈ HomQ(F,Q) differ by at most one.

Then Mnaive
KG̃

(G̃) is flat over SpecOE,(p).

In fact, Theorem 5.1 is a consequence of the following more precise statement, which however
requires some more notation to set up. Let ν be a place of E over p, and choose an embedding
α : Q→ Qp inducing ν. Then α induces an identification

α∗ : Hom(F,Q) Hom(F,Qp)
ϕ α ◦ ϕ.

∼
(5.1)

For each p-adic place w of F , let

Homw(F,Q) :=
{
ϕ ∈ Hom(F,Q)

∣∣ α ◦ ϕ induces w
}
. (5.2)

Then, under the identification α∗, the sets Homw(F,Q) are the Gal(Qp/Qp)-orbits in Hom(F,Q),
and hence are independent of the choice of α inducing ν. For each w, let F tw denote the maximal
unramified extension of Qp in Fw. For each ψ ∈ HomQp(F tw,Qp), let Homw,ψ(F,Q) ⊂ Homw(F,Q)
denote the fiber over ψ of the composite

Homw(F,Q)
α∗−→∼ HomQp(Fw,Qp)

restrict−−−−→ HomQp(F tw,Qp). (5.3)

Then, under the identification α∗, the sets Homw,ψ(F,Q) are the Ip-orbits in Hom(F,Q), where

Ip ⊂ Gal(Qp/Qp) denotes the inertia subgroup. The label ψ in Homw,ψ(F,Q) therefore generally
depends on the choice of α inducing ν, but the partition

Hom(F,Q) =
∐
w|p

ψ :F tw→Qp

Homw,ψ(F,Q) (5.4)

8This hypothesis can now be removed; see Remark 5.3(i) and footnote 10 below.
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depends only on ν up to labeling. We now have the following result on flatness of the base change

Mnaive
KG̃

(G̃)OE,(ν)
.

Theorem 5.2. Suppose that the following three conditions hold.

(1 ) For each v ∈ Vp which is unramified in F , the ramification index e of v over p satisfies e ≤ 2

or, for each of the one or two places w of F over v and each ψ ∈ HomQp(F tw,Qp),9

e ≥ min

{ ∑
ϕ∈Homw,ψ(F,Q)

rϕ,
∑

ϕ∈Homw,ψ(F,Q)

rϕ

}
.

(2 ) For each place v ∈ Vp which ramifies in F , v is unramified over p and the lattice Λv is self-dual.

(3 ) For each place w of F over p and each ψ ∈ HomQp(F tw,Qp), the integers rϕ for varying ϕ ∈
Homw,ψ(F,Q) differ by at most one.

Then Mnaive
KG̃

(G̃)OE,(ν)
is flat over SpecOE,(ν).

Proof. After extending scalars to the ν-adic completion OE,(ν) → OE,ν , this follows from the local
model diagram over OE,ν ,

M̃naive
KG̃

(G̃)OE,ν

Mnaive
KG̃

(G̃)OE,ν (Ma
0)OE,ν ×OE,ν Mnaive.

π ϕ̃ (5.5)

Let us briefly remark on the notation; see [32, Ch. 6] or [26, §15] for more details. Let

Λp :=
⊕
v∈Vp

Λv ⊂W ⊗Q Qp =
⊕
v∈Vp

Wv.

Let L be the self-dual periodic multichain of OF,p-lattices in W ⊗Q Qp generated by Λp and its

dual. A triple (A, ι, λ) as in the moduli problem for Mnaive
KG̃

(G̃) then gives rise in a natural way to

a polarized L-set of abelian varieties {AΛ}Λ∈L. For S in (LNSch)/OE,ν , M̃naive
KG̃

(G̃)OE,ν (S) is then

the groupoid of objects (A0, ι0, λ0, A, ι, λ, η) in Mnaive
KG̃

(G̃)OE,ν (S) equipped with an isomorphism

of polarized multichains {HdR
1 (AΛ)}Λ∈L

∼−→ L ⊗Zp OS . The morphism π in (5.5) is the natural
forgetful morphism; it is a torsor under POE,ν , where P is the automorphism scheme of L (as a
polarized multichain) over Zp, which is a smooth affine group scheme (in fact, a Zp-model of the
unitary similitude group GQ for W ). The naive local model Mnaive is a projective OE,ν-scheme
attached to the multichain L and the Shimura datum (GQ, {hGQ}). The group scheme POE,ν acts

naturally on Mnaive, and the morphism ϕ̃ is POE,ν -equivariant and formally smooth of the same
relative dimension as π.

The flatness ofMnaive
KG̃

(G̃)OE,ν now follows from the flatness ofMnaive (and étaleness ofMa
0). More

precisely, by its definition, Mnaive is a moduli space for certain OF ⊗ZOS-linear quotient bundles of
Λp ⊗Zp OS . The decomposition OF0 ⊗Z Zp ∼=

∏
v∈Vp OF0,v then induces a natural decomposition

Mnaive ∼=
∏
v∈Vp

M(v)naive
OE,ν , (5.6)

where each M(v)naive
OE,ν

is the base change to OE,ν of a naive local model attached to the local Fv/F0,v-

hermitian space Wv, the lattice Λv, and the function r|∪w|v Homw(F,Q). Thus flatness ofMnaive follows

from flatness of each M(v)naive. Now let F t0,v denote the maximal unramified extension of Qp in F0,v,

9This hypothesis can now be removed; see Remark 5.3(i) and footnote 10 below.
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and let E(v)un ⊂ Qp denote the maximal unramified extension of the reflex field E(v) of M(v)naive.
Consider the decomposition

OF t0,v ⊗Zp OE(v)un ∼=
∏

ψ0∈HomQp (F t0,v,Qp)

OE(v)un .

After extending scalars to OE(v)un , the action of OF t0,v ⊗Zp OE(v)un on Λv ⊗Zp OE(v)un induces a

natural decomposition

M(v)naive
OE(v)un

∼=
∏
ψ0

M(v, ψ0)naive
OE(v)un , (5.7)

where eachM(v, ψ0)naive
OE(v)un

is the base change to OE(v)un of a naive local model attached to the tower

Fv/F0,v/F
t
0,v. Thus the problem of flatness of Mnaive reduces to flatness of each M(v, ψ0)naive

OE(v)un
.

When v is unramified in F , for each ψ0, there is a further decomposition

OF tv ⊗OFt0,v ,ψ0
OE(v)un ∼=

∏
ψ

OE(v)un ,

where the product is over the two homomorphisms ψ : F tv → Qp extending ψ0. Picking one of these

ψ, this decomposition induces an identification of M(v, ψ0)naive
OE(v)un

with the base change to OE(v)un of

a naive local model M′ attached to the totally ramified extension Fw/F
t
w, the group ResFw/F tw GLn,

and the function r|Homw,ψ(F,Q); here w is the place of F over v determined by ψ (of course there is

only ambiguity in w when v splits in F ), and Homw,ψ(F,Q) identifies with the embeddings of Fw
into Qp extending ψ as in (5.3) above. (Replacing the choice of ψ by ψ results in an isomorphic
naive local model for ResFw/F tw GLn.) When Λv is self-dual, M′ is the local model defined in [25] in

the case of a single lattice; by the hypotheses in (1 ) and (3 ), M′ is flat by Th. B and the following
paragraph in loc. cit. (which we note relies, in turn, on a result of Weyman [36]). For general Λv
(still with v unramified in F ), M′ is a naive local model for ResFw/F tw GLn and r|Homw,ψ(F,Q) in the

case of a periodic lattice chain Lψ generated by one or two lattices. By Görtz [8, §1 Th.], flatness
of M′ in this case (or more generally, in the case of an arbitrary periodic lattice chain Lψ) follows
from flatness of the naive local model in the single lattice case. This concludes the proof when v is
unramified in F .

When v ramifies in F (subject to the hypotheses in (2 ) and (3 )), flatness of each M(v, ψ0)naive is
proved in [35]. �

Remark 5.3. (i) It is conjectured just after Th. B in [25] that when v is unramified in F and Λv
is self-dual, the naive local model M(v, ψ0)naive appearing in the proof of Theorem 5.2 is flat with
reduced special fiber, without any assumption on the ramification of v over p.10 This would imply
(again using Görtz [8] to pass to the case of general Λv) that hypothesis (1 ) in both of Theorems
5.1 and 5.2 can be removed.

(ii) We do not know if the conclusion of Theorem 5.2 remains valid if one allows the places v which
ramify in F to have any ramification over p. However, the assumption for such v that Λv is self-dual
is necessary if n > 1.

(iii) Condition (3 ) in Theorem 5.2 is necessary for the conclusion to hold, cf. [25, Cor. 3.3].

5.2. Flat subscheme of Mnaive
KG̃

(G̃). Even ifMnaive
KG̃

(G̃) is not flat over SpecOE,(p), we sometimes

can strengthen the conditions on the abelian varieties (A, ι, λ) occurring in the moduli problem

to define a closed substack MKG̃
(G̃) of Mnaive

KG̃
(G̃) which is flat with the same generic fiber. For

simplicity, let us consider this question after base change to the completed local ring OE,ν for ν a

10 Since the preprint version of this paper appeared, Muthiah–Weekes–Yacobi have posted a proof [23] of this

conjecture in full generality, by proving [25, Conj. 5.8].
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p-adic place of E. Then, similarly to the proof of Theorem 5.2, the OF -action on the abelian variety
A induces an action of OF ⊗Z Zp ∼=

∏
w OF,w on LieA, and hence a canonical decomposition

LieA =
⊕
w

Liew A, (5.8)

where w runs through the p-adic places of F . For each w, using the notation of Section 5.1, the
OF tw -action on Liew A similarly induces a decomposition

Liew A =
⊕

ψ∈HomQp (F tw,Qp)

Liew,ψ A; (5.9)

here in fact we choose an embedding α : Q→ Qp inducing ν as just before (5.1), and the decompo-
sition (5.9) is defined after base changing the moduli problem to SpecOEun

ν
, where Eun

ν denotes the

maximal unramified extension of Eν (embedded via α) in Qp.
We now consider conditions on Liew,ψ A under various assumptions on w and ψ, as follows. In

some cases the conditions are quite technical to formulate and we only give references. We again
write Homw,ψ(F,Q) ⊂ Hom(F,Q) for the fiber over ψ in the diagram (5.3). Furthermore, we note
that cases (3)–(5) below are disallowed when p = 2 by our standing assumption that the places
v ∈ V2 are unramified in F .

(1) Suppose that the restricted function r|Homw,ψ(F,Q) takes values in {0, n} (a banal signature type

at ψ). Then there is the Eisenstein condition on Liew,ψ A of [31, (4.10)].11 (Note that, in contrast
to cases (2)–(5) below, here we make no ramification assumptions on w; however, the Eisenstein
condition at ψ is already implied by the Kottwitz condition (2.7) if w is unramified over p.)

(2) Suppose that w is unramified over F0, consider the conjugate embedding ψ : F tw → Qp, and
suppose that the restricted function r|Homw,ψ(F,Q)∪Homw,ψ(F,Q) is of the form

rϕ =


n− 1, for some ϕ = ϕ0 ∈ Homw,ψ(F,Q) ∪Homw,ψ(F,Q);

1, ϕ = ϕ0;

0 or n, ϕ 6= ϕ0, ϕ0.

If ϕ0 ∈ Homw,ψ(F,Q), then there is the Eisenstein condition on Liew,ψ A of [33, (8.2)]. If ϕ0 ∈
Homw,ψ(F,Q), then there is the Eisenstein condition on Liew,ψ A of [33, (8.2)]. (This condition is

again already implied by the Kottwitz condition if w is unramified over p.)

(3) Suppose that w is ramified over F0 and the place v of F0 under w is unramified over p; or,
equivalently, that Homw,ψ(F,Q) is of the form {ϕψ, ϕψ} for some ϕψ ∈ Φ. Then there is the wedge
condition of Pappas [24] at ψ: if rϕψ 6= rϕψ , then∧rϕψ+1(

ι(a)− ϕψ(a) | Liew,ψ A
)

= 0∧rϕψ+1(
ι(a)− ϕψ(a) | Liew,ψ A

)
= 0

 for all a ∈ OF,w. (5.10)

Here, using that rϕψ 6= rϕψ , it is easy to see that ϕψ and ϕψ map Fw into Eun
ν , and the expressions

ϕψ(a) and ϕψ(a) are then viewed as sections of the structure sheaf of the base scheme, as in (2.7).
(There is no condition at ψ when rϕψ = rϕψ . There is an analogous condition when w is unramified

over F0, but it is already implied by the Kottwitz condition.)

11Strictly speaking, here we mean that the expression QAψ (ι(π)) defined in loc. cit. is the zero endomorphism on

Liew,ψ A.
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(4) In the same situation as in (3), suppose in addition that n is even. Then there is the spin
condition of [28, §8.2] on Liew,ψ A.12 We note that in the special case that Λv is πv-modular (recall
this means that Λ∨v = π−1

v Λv) and {rϕψ , rϕψ} = {1, n−1}, and in the presence of the wedge condition

at ψ, the spin condition at ψ admits the simple formulation that the endomorphism ι(πv) | Liew,ψ A
is nonvanishing at each point of the base, cf. [30, §6] or [31, (4.28)].

(5) In the same situation as in (3), suppose in addition that n is odd. Then there is the refined spin
condition of [34, §2.5], translated to a condition on Liew,ψ A as in [30, §7] and just before Rem. 4.6 in
[31]. We note that these latter two references treat on the nose the special case that Λv is almost πv-
modular (i.e., Λv ⊂ Λ∨v ⊂ π−1

v Λv with dimOF,v/πvOF,v π
−1
v Λv/Λ

∨
v = 1) and {rϕψ , rϕψ} = {1, n− 1}.

Theorem 5.4. Suppose that for every p-adic place w of F and every embedding ψ : F tw → Qp, one
of the following hypotheses is satisfied and, in each case, impose the given condition on the object

(A, ι, λ) in the moduli problem for Mnaive
KG̃

(G̃)OEun
ν

. Throughout, let v denote the place of F0 under
w.

(a) w is unramified over F0 and v satisfies the ramification hypothesis in Theorem 5.2(1); or w is
ramified over F0, v is unramified over p, and the lattice Λv is self-dual. Furthermore, the rϕ’s for

varying ϕ ∈ Homw,ψ(F,Q) differ by at most one. In this case, impose no further condition.

(b) w and ψ satisfy the assumption in (1) above. Then impose the Eisenstein condition of (1) on
Liew,ψ A.

(c) w and ψ satisfy the assumptions in (2) above and the lattice Λv is self-dual or πv-modular.13 In
the notation of (2), if ϕ0 ∈ Homw,ψ(F,Q), then impose the Eisenstein condition of (2) on Liew,ψ A;

if ϕ0 ∈ Homw,ψ(F,Q), then impose the Eisenstein condition of (2) on Liew,ψ A.

(d) w and ψ satisfy the assumptions in (3) above and the lattice Λv is self-dual. Then impose the
wedge condition on Liew,ψ A.

(e) w and ψ satisfy the assumptions in (4) above, Λv is πv-modular, and {rϕψ , rϕψ} = {1, n − 1}.
Then impose the wedge condition and the spin condition on Liew,ψ A.

(f ) w and ψ satisfy the assumptions in (5) above, Λv is almost πv-modular, and {rϕψ , rϕψ} =

{1, n− 1}. Then impose the refined spin condition on Liew,ψ A.

Then these conditions descend to define a closed substack MKG̃
(G̃)OE,ν of Mnaive

KG̃
(G̃)OE,ν which is

flat over SpecOE,ν with the same generic fiber as Mnaive
KG̃

(G̃)OE,ν .

Proof. As in the proof of Theorem 5.2, the statements on flatness and the generic fiber reduce to
statements on the local model MOEun

ν
⊂Mnaive

OEun
ν

defined by the analogous conditions on Mnaive
OEun

ν
. As

in (5.6) and (5.7), there is a product decomposition

MOEun
ν

∼=
∏
v∈Vp

ψ0 :F t0,v→Qp

M(v, ψ0)OEun
ν
, (5.11)

and we reduce to proving flatness factor-by-factor on the right-hand side. For each p-adic place
w of F and embedding ψ : F tw → Qp, the place v of F0 under w and the restriction ψ|F t0 indexes

one of the factors in (5.11), and all indices in the product arise in this way as w and ψ vary.
Thus we consider cases based on the type of w and ψ. If w and ψ are as in (a), then the factor
M(v, ψ|F t0,v )OEun

ν
= M(v, ψ|F t0,v )naive

OEun
ν

is flat by the proof of Theorem 5.2. If w and ψ are as in (b), then

the factor M(v, ψ|F t0,v )OEun
ν

is flat (in fact, trivial) with the same generic fiber as M(v, ψ|F t0,v )naive
OEun

ν
by

12Strictly speaking, loc. cit. only formulates the spin condition on the local model. We will not spell out the

translation of the spin condition to Liew,ψ A more explicitly; it is entirely analogous to the translation of the refined

spin condition of [34, §2.5] to the Lie algebra of a p-divisible group given in [30, §7] and just before Rem. 4.6 in [31].
13The definition of πv-modular when v is unramified in F is word-for-word the same as when v ramifies in F ,

namely that Λ∨v = π−1
v Λv .
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[31, App. B]. If w and ψ are as in (c), then M(v, ψ|F t0,v )OEun
ν

is flat (in fact, smooth) with the same

generic fiber by [33, Lem. 8.6]. If w and ψ are as in (d), then M(v, ψ|F t0,v )OEun
ν

is flat with the same

generic fiber by [35] (when {rϕψ , rϕψ} = {1, n − 1}, this was proved by Pappas in [24]). If w and

ψ are as in (e), then M(v, ψ|F t0,v )OEun
ν

is flat (in fact, smooth) with the same generic fiber by [28,

§5.3]. If w and ψ are as in (f ), then M(v, ψ|F t0,v )OEun
ν

is flat (in fact, smooth) with the same generic

fiber by [34, Th. 1.4]. By assumption, every w and ψ is of one of these types, and this completes
the proof of the statements on flatness and the generic fiber. The statement on descent is easy to
verify. �

Remark 5.5. The refined spin condition in (5) above is defined in [34] for n even as well as odd,
and it is shown there to imply the wedge condition and the spin condition (without changing the
generic fiber). Therefore one may treat (3)–(5) above in a uniform way by imposing the refined
spin condition in each case; the advantage of the wedge condition and (to a lesser extent) the spin
condition is only that they are simpler to state. It is conjectured in loc. cit. that the refined spin
condition produces flatness for any signature type {rϕψ , rϕψ} and any lattice type (still with the

place v unramified over p). When v ramifies in F and is ramified over p, nothing is known about
characterizing the (flat) local model in terms of an explicit moduli problem.

Remark 5.6. Suppose that v ∈ Vp splits in F , say v = ww, and suppose that the restricted function
r|Homw(F,Q) is of the form

rϕ =

{
n− 1, ϕ = ϕ0 for some ϕ0 ∈ Homw(F,Q);

n, ϕ ∈ Homw(F,Q)r {ϕ0}.
(5.12)

Then it is possible to impose a Drinfeld level structure at v in the moduli problem appearing in
Theorem 5.4. More precisely, let m be a nonnegative integer, and define Km

G,v to be the principal
congruence subgroup mod pmv inside KG,v, where pv denotes the prime ideal in OF0

determined by
v. Let

Km
G̃

:= K◦ZQ ×Kp
G ×K

m
G,v ×

∏
v′∈Vpr{v}

KG,v′ ⊂ KG̃.

Then one can extend the definition ofMKG̃
(G̃)OE,ν to the case of the level subgroup Km

G̃
by adding

a Drinfeld level-m structure at v. Briefly, (5.12) implies that in the decomposition (5.8) of LieA,
the summand Liew A has rank n[Fw : Qp]− 1, and the summand Liew A has rank 1. The datum we
add to the moduli problem is an OF,w-linear homomorphism of finite flat group schemes,

ϕ : π−mw Λw/Λw −→ HomOF,w
(A0[wm], A[wm]),

which is a Drinfeld wm-structure on the target. Here Λw is the summand attached to w in the
natural decomposition Λv = Λw ⊕Λw, with Λv the vertex lattice at v chosen prior to Definition 4.1.
See [31, §4.3] (which we note interchanges the roles of w and w) for more details.

5.3. Exotic smoothness and regularity. In some special cases the conditions introduced in Sec-
tion 5.2 define integral models with good or semi-stable reduction, beyond the totally unramified
situation in Theorem 4.4(ii). For simplicity, we will again consider these questions after base change
to the completed local ring OE,ν for ν a p-adic place of E. We again choose an embedding α : Q→ Qp
inducing ν and use the notation introduced before Theorem 5.2.

The following gives conditions when MKG̃
(G̃)OE,ν is known to be smooth.

Theorem 5.7. In the setting of Theorem 5.4, suppose that every pair (w,ψ) is of type (b), (c), (e),
(f ), or the following special case of type (a):

(a ′) w is unramified over p and the lattice Λv is self-dual or πv-modular.

Then the integral model MKG̃
(G̃)OE,ν defined in Theorem 5.4 is smooth over SpecOE,ν .
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Proof. Similarly to the proof of Theorem 5.4, this reduces to smoothness of the local model M. For
(w,ψ) of type (b), (c), (e), or (f ), the factor M(v, ψ|F t0,v )OEun

ν
in the decomposition (5.11) (again

denoting by v the place of F0 under w) is smooth by the references given in the proof of Theorem
5.4 (additionally using that smoothness of this factor in type (f ) is due to Richarz [1, Prop. 4.16]).
Smoothness of this factor in type (a ′) is standard (it is isomorphic to a Grassmannian for GLn). �

The fact that smoothness can occur in types (c), (e), and (f ), when ramification is present, is a
surprising phenomenon termed exotic smoothness in [29, 30].

The following theorem gives conditions when MKG̃
(G̃)OE,ν is known to have semi-stable reduc-

tion, and hence to be regular.

Theorem 5.8. Let n ≥ 2. In the setting of Theorem 5.4, suppose that there is a p-adic place w0 of
F , with place v0 of F0 under it, of the following special case of type (a):

(a ′′) w0 is unramified over p, and the restricted function r|Homw0
(F,Q)∪Homw0

(F,Q) is of the form

rϕ =

{
arbitrary, for some ϕ = ϕ0, ϕ0 ∈ Homw0(F,Q) ∪Homw0(F,Q);

0 or n, ϕ 6= ϕ0, ϕ0.
(5.13)

Furthermore, Λv0 is almost self-dual (i.e., Λv0 ⊂ Λ∨v0
⊂ π−1

v0
Λv0 with rankOF,v0/πvOF,v0 Λ∨v0

/Λv0
= 1)

or almost πv0 -modular (i.e., Λv0 ⊂ Λ∨v0
⊂ π−1

v0
Λv0 with rankOF,v0/πvOF,v0 Λ∨v0

/Λv0
= n − 1), or

{rϕ0
, rϕ0
} = {1, n− 1}.

In addition, suppose that every pair (w,ψ) as in Theorem 5.4 for which w 6= w0, w0 is of type
(b), (c), or type (a ′) in Theorem 5.7. Furthermore, suppose that Eν is unramified over Qp. Then

MKG̃
(G̃)OE,ν has semi-stable reduction over SpecOE,ν .

Proof. As before, the proof is via the local model, using in particular the product decomposition
(5.11). We first consider the factors in (5.11) corresponding to v0. Note that F0,v0 = F t0,v0

by

hypothesis (a ′′). Regarding ϕ0 as an embedding Fw0
→ Qp via α∗ as in (5.3), consider the restric-

tion ϕ0|F0,v0
, and let E0 ⊂ Qp denote the reflex field of the factor M(v0, ϕ0|F0,v0

). By Görtz [7,

§4.4.5], M(v0, ϕ0|F0,v0
) has semi-stable reduction over OE0

under the assumption that Λv0
is almost

self-dual or or almost πv0
-modular, or under the assumption that {rϕ0

, rϕ0
} = {1, n − 1}. Since

Eν is unramified over Qp, M(ϕ0|F0,v0
)OEun

ν
has semi-stable reduction over OEun

ν
. It follows from

the assumption on r in (5.13) that the factors M(v0, ψ0)OEun
ν

for ψ0 6= ϕ0|F0,v0
are isomorphic to

SpecOEun
ν

[31, App. B]. By Theorem 5.7, the factors M(v, ψ0)OEun
ν

for v 6= v0 are smooth, and the

theorem follows. �

Remark 5.9. The proof of Theorem 5.7 shows that if (w,ψ) is of type (e) or (f ), then the factor
of the local model in (5.11) obtained from (w,ψ) is also smooth. However, we cannot allow the
presence of such types in Theorem 5.8, since they would result in Eν being ramified over Qp, which
would destroy semi-stable reduction of the factor M(v0, ϕ0|F0,v0

) after extending scalars from OE0

to OEν .

Remark 5.10. As is transparent from the above, smoothness and semi-stability of the p-integral
models of the Shimura variety follow from the corresponding property of the local models. We refer
to [10] for a classification, under certain hypotheses, of general local models which are smooth, resp.
have semi-stable reduction. In particular, let us single out one case of a deeper level subgroup (cf.
Remark 4.5) in which semi-stable reduction arises. Let n, w0, and v0 be as in Theorem 5.8, and
modify the definition of type (a ′′) to require that {rϕ0

, rϕ0
} = {1, n − 1} and to allow the level

subgroup KG,v0
at v0 to be the stabilizer in U(W )(F0,v0

) of any self-dual periodic lattice chain.
Then, by work of Drinfeld [5] (see also [7, §4.4.5]), the factor M(v0, ϕ0|F0,v0

) of the local model has
semi-stable reduction. Hence, provided that the other factors of the local model are smooth and
that Eν is unramified over Qp, the corresponding moduli stack will have semi-stable reduction over
SpecOE,ν .
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6. Global integral models of RSZ Shimura varieties

It is sometimes of interest to construct models of MKG̃
(G̃) over SpecOE . Rather than striving

for maximal generality, in this section we single out two situations where this can be done. In both
cases, we take the signature function r for the n-dimensional space W to be of fake Drinfeld type
relative to a fixed element ϕ0 ∈ Φ, cf. Example 2.3(i). Recall that, in this case, ϕ0 embeds F → E
for n ≥ 2, cf. Example 3.2. Hence each finite place ν of E induces a place wν of F and a place vν
of F0 via ϕ0 for such n. We set

Vram := { finite places v of F0 | v ramifies in F },
and we assume that all v ∈ Vram are unramified over Q and do not divide 2.

6.1. Integral models with exotic good reduction. In this subsection we define global integral
models which, when n ≥ 2, have so-called exotic good reduction at all places ν of E such that the
induced place vν of F0 ramifies in F (and which, when n = 1, are étale over SpecOE). We fix a,√

∆, ξ, Λ0, and W0 as before (3.17). As usual, we set V = HomF (W0,W ), and we endow W with

the Q-valued alternating form trF/Q
√

∆
−1

( , ). We fix an OF -lattice Λ ⊂ W whose localization is
a vertex lattice with respect to this form at every finite place v:

Λv ⊂ Λ∨v ⊂ π−1
v Λv.

Of course, as for any OF -lattice in W , the localization Λv is necessarily self-dual for all but finitely
many v. We define the finite set

VΛ
un := { finite places v of F0 | v is unramified in F and Λv  Λ∨v  π−1

v Λv }. (6.1)

In addition to our assumptions on Vram at the beginning of this section, we impose on the tuple
(F/F0,W,Λ) the following conditions.

• All v ∈ VΛ
un are unramified over Q.

• If v ∈ Vram, then the localization Λv of Λ is πv-modular if n is even, and almost πv-modular if n
is odd (see Theorem 5.4(e)(f ) for the definitions of these terms).

Starting from an arbitrary CM extension F/F0 and n-dimensional hermitian space W , we note that
if n is odd, then such a Λ always exists in W ; whereas if n is even, then such a Λ exists if and only
if Wv is a split hermitian space for all v ∈ Vram and for all finite v which are inert in F and ramified
over Q. We set

K◦G :=
{
g ∈ G(Af )

∣∣ g(Λ⊗ Ẑ) = Λ⊗ Ẑ
}
,

and, as usual, we define K◦
G̃

:= K◦ZQ ×K◦G.

We formulate a moduli problem FK◦
G̃

(G̃) over SpecOE as follows. As earlier in the paper, to

lighten notation, we suppress the dependence on the ideal a and the element ξ.

Definition 6.1. The category functor FK◦
G̃

(G̃) associates to each OE-scheme S the groupoid of

tuples (A0, ι0, λ0, A, ι, λ), where

• (A0, ι0, λ0) is an object of Ma,ξ
0 (S);

• A is an abelian scheme over S;

• ι : OF → End(A) is an action satisfying the Kottwitz condition (2.7) of signature type r on OF ;
and

• λ is a polarization on A whose Rosati involution satisfies condition (2.6) on OF .

We also impose that the kernel of the polarization λ is of the type prescribed in Definition 4.1(i) for
every p, relative to the lattice Λ fixed above. Furthermore, we impose for every finite place ν of E
that after base-changing (A, ι, λ) to S⊗OE OE,ν , the resulting triple satisfies the conditions on LieA

imposed in the definition of MK◦
G̃

(G̃)OE,ν in Theorem 5.4. In particular, we note that when n ≥ 2

and ν is such that the induced place wν of F is ramified over F0, this entails imposing the wedge
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condition and spin condition in Theorem 5.4(e) when n is even, and the refined spin condition in
Theorem 5.4(f ) when n is odd, on the appropriate summand of LieA.

Finally, we impose the sign condition that at every geometric point s of S,

invrv(A0,s, ι0,s, λ0,s, As, ιs, λs) = invv(V ), (6.2)

for every finite place v of F0 which is non-split in F .
A morphism (A0, ι0, λ0, A, ι, λ)→ (A′0, ι

′
0, λ
′
0, A

′, ι′, λ′) in this groupoid is given by an isomorphism

µ0 : (A0, ι0, λ0)
∼−→ (A′0, ι

′
0, λ
′
0) in Ma,ξ

0 (S) and an OF -linear isomorphism µ : A
∼−→ A′ of abelian

schemes pulling λ′ back to λ.

The following theorem (the extension of [31, Th. 5.2] to the present setting) shows that the

moduli functor FK◦
G̃

(G̃) defines an extension of MK◦
G̃

(G̃) over SpecOE with good properties. It

follows immediately from Theorem 5.4 and Theorems 5.7 and 5.8.

Theorem 6.2. The moduli problem FK◦
G̃

(G̃) is representable by a Deligne–Mumford stackMK◦
G̃

(G̃)

flat over SpecOE. For every finite place ν of E, the base change of MK◦
G̃

(G̃) to SpecOE,ν is

isomorphic to the ν-adic integral moduli space of Theorem 5.4 in the case of the level subgroup K◦
G̃

.

Hence:

(i) If n ≥ 2, thenMK◦
G̃

(G̃) is smooth of relative dimension n−1 over the open subscheme of SpecOE

obtained by removing all finite places ν for which the induced place vν of F0 lies in VΛ
un. If n = 1,

then MK◦
G̃

(G̃) is finite étale over all of SpecOE.

(ii) If n ≥ 2, then MK◦
G̃

(G̃) has semi-stable reduction over the open subscheme of SpecOE obtained

by removing all finite places ν ramified over Q for which the induced place vν lies in VΛ
un. �

Remark 6.3. The isomorphism in Theorem 6.2 between the base change MK◦
G̃

(G̃)⊗OE OE,ν and

the moduli space of Theorem 5.4 can be made canonical in terms of the lattices Λ0 ⊂W0 and Λ ⊂W
fixed prior to Definition 6.1. Indeed, given an object (A0, ι0, λ0, A, ι, λ) in the moduli problem of
Definition 6.1 over an OE,ν-scheme, one defines the prime-to-p level ηp to be the set of all isometries

V̂p(A0, A)
∼−→ V ⊗F ApF,f carrying T̂p(A0, A) to HomOF (Λ0,Λ)⊗OF Ô

p
F .

Remark 6.4. Consider the moduli problem that associates to each OE-scheme S the groupoid of
triples (A, ι, λ) as in the last three bullet points of Definition 6.1, where the kernel of λ is of the type
prescribed in Definition 4.1(i) for every p with respect to our fixed Λ, and such that for every finite
place ν of E, the base change of (A, ι, λ) to S ⊗OE OE,ν satisfies the conditions on LieA imposed in
Theorem 5.4. Via essentially the same proof as for Theorem 5.4, this moduli problem is represented

by a Deligne–Mumford stack Mr which is flat over SpecOE . Then the stack MK◦
G̃

(G̃) of Theorem

6.2 admits the simple description as the open and closed substack of

Ma,ξ
0 ×SpecOEMr

where the sign condition (6.2) holds pointwise.
We note that Mr is an integral model for a finite disjoint union of copies of the Shimura vari-

ety S(GQ, {hGQ}) of Kottwitz type for maximal level structure; therefore the previous description

explains the relation between the integral model Mr and the integral model MK◦
G̃

(G̃) of the RSZ

Shimura variety S(G̃, {hG̃}) for level structure K◦
G̃

.

Remark 6.5. (i) Let v be a finite place of F0 which is non-split in F . Let ` denote the residue
characteristic of v. Let k be anOE-algebra which is an algebraically closed field of characteristic not `.
Generalizing somewhat from the setting of Definition 6.1, let (A0, ι0, λ0, A, ι, λ) be a tuple consisting
of an abelian variety A0 over Spec k of dimension [F0 : Q], an action ι0 : OF,(`) → End(`)(A0) up to
prime-to-` isogeny, a quasi-polarization λ0 on A0 such that Rosλ(ι0(a)) = ι0(a) for all a ∈ OF,(`),
and a triple (A, ι, λ) of the same form, except where A has dimension n · [F0 : Q]. Consider the OF,v-
lattice Tv(A0) inside the one-dimensional Fv-vector space Vv(A0), and let Tv(A0)∨ denote the dual
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lattice with respect to λ0 and the Weil pairing. Similarly define Tv(A)∨ inside the n-dimensional
vector space Vv(A). Say that

Tv(A0)∨ = πmv Tv(A0) (6.3)

inside Vv(A0). Recall the Fv/F0,v-hermitian space Vv(A0, A) = HomFv (Vv(A0),Vv(A)) from (4.1).
Then the OF,v-lattice

Tv(A0, A) := HomOF,v

(
Tv(A0),Tv(A)

)
⊂ Vv(A0, A)

has hermitian dual

Tv(A0, A)∗ = HomOF,v

(
Tv(A0)∨,Tv(A)∨

)
= πmv HomOF,v

(
Tv(A0),Tv(A)∨

)
. (6.4)

Similarly, for the moment let Λ0,v ⊂ W0,v and Λv ⊂ Wv be any OF,v-lattices, and suppose that
Λ∨0,v = πmv Λ0,v. Then the OF,v-lattice

Lv := HomOF,v (Λ0,v,Λv) ⊂ Vv
has hermitian dual

L∗v = HomOF,v (Λ∨0,v,Λ
∨
v ) = πmv HomOF,v (Λ0,v,Λ

∨
v ). (6.5)

If the quasi-polarization λ is such that the relative position of Tv(A) and Tv(A)∨ in Vv(A) is the
same as that of Λv and Λ∨v in Wv, then it follows from (6.4) and (6.5) that the relative position of
Tv(A0, A) and Tv(A0, A)∗ in Vv(A0, A) is the same as that of Lv and L∗v in Vv. In particular, this

will be the case if (A0, ι0, λ0) arises from a k-point on Ma,ξ
0 , the lattice Λ0,v is the localization at v

of the global lattice Λ0 ⊂ W0 fixed prior to Definition 6.1, and λ induces an honest polarization of
v-divisible groups A[v∞] → A∨[v∞] whose kernel satisfies the condition in Defintion 4.1(i) relative
to Λv.

Now suppose that v is inert in F . Then the split and non-split n-dimensional Fv/F0,v-hermitian
spaces are distinguished by whether ordv(detB) is respectively even or odd, for B the change-of-basis
matrix going from any Fv-basis of the vector space to its dual basis with respect to the hermitian
form (independent of the choice of basis). Hence Tv(A0, A) and Tv(A0, A)∗ having the same relative
position as Lv and L∗v implies that Vv(A0, A) and Vv are isometric hermitian spaces. Hence the sign
condition (6.2) for v is automatically satisfied at all points s of residue characteristic not `. It then
follows from flatness of the moduli problem14 over SpecOE in Theorem 6.2 and local constancy of
invrv as a function on general base schemes [31, Prop. A.1] that the sign condition is automatically
satisfied everywhere, for all inert v.

Now suppose that n is even and v ramifies in F . Then the split and non-split n-dimensional
Fv/F0,v-hermitian spaces are distinguished by whether they respectively do or do not contain a
πiv-modular lattice M with respect to the hermitian form (meaning that M∗ = π−iv M) for some,
or equivalently any, odd integer i. Similarly to the previous paragraph, this implies that the sign
condition (6.2) is automatically satisfied at v (the main new point being that at points of the moduli
space of residue characteristic not `, the integer m in (6.3) must be even when v is ramified, and
the condition on λ in Definition 4.1(i) at v relative to a πv-modular Λv then forces Vv(A0, A) to be
split). We conclude that the full sign condition (6.2) is automatically satisfied when n is even. In
particular, the open and closed embedding

MK◦
G̃

(G̃) ⊂Ma,ξ
0 ×SpecOEMr

of Remark 6.4 is an equality when n is even.

(ii) Suppose that F0 = Q. Then the sign condition can be replaced by the condition that for every
geometric point s of S, there exists an isomorphism of hermitian OF,`-lattices

HomOF,`

(
T`(A0,s),T`(As)

)
' HomOF,`(Λ0,`,Λ`)

14More precisely, the analogous moduli problem defined without the sign condition is also flat over SpecOE , since

flatness is purely a question of the local model at each finite place of E.
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for every prime number ` 6= charκ(s), cf. [2, §2.3]. Indeed, this follows from the product formula
and the Hasse principle for hermitian forms, cf. Remark 4.2.

We finally note that these remarks using flatness are also applicable to the semi-global moduli
problems in Theorem 5.4.

6.2. Integral models for principal polarization. In this subsection we generalize the integral
models of [2] from the case F0 = Q to the case of arbitrary totally real F0. Throughout, we take

a = OF0 and assume that M
OF0
0 6= ∅; recall from Remark 3.7(i) that this assumption is satisfied

whenever F/F0 is ramified at some finite place. We let
√

∆, ξ, Λ0, W0, and V all be as in Section

6.1. We assume that W contains an OF -lattice Λ which is self-dual for trF/Q
√

∆
−1

( , ), and we fix

such a Λ once and for all. (Note that this implies that the set VΛ
un defined as in (6.1) is empty in

the present case.) We set, as in the previous subsection,

K◦G :=
{
g ∈ G(Af )

∣∣ g(Λ⊗ Ẑ) = Λ⊗ Ẑ
}
,

and, as usual, we define K◦
G̃

= K◦ZQ ×K◦G.

In the present situation, we formulate the following variant of the moduli problem in Definition
6.1. As usual, we suppress the ideal a = OF0

and the element ξ in the notation.

Definition 6.6. The category functor FK◦
G̃

(G̃) associates to each OE-scheme S the groupoid of

tuples (A0, ι0, λ0, A, ι, λ), where (A0, ι0, λ0, A, ι) is as in Definition 6.1, and where

• λ is a principal polarization whose Rosati involution satisfies condition (2.6) on OF .

Again, we impose the sign condition (6.2) for every finite non-split place of F0. Likewise, we impose
for every finite place ν of E that after base-changing (A, ι, λ) to S ⊗OE OE,ν , the resulting triple

satisfies the conditions on LieA imposed in the definition of MK◦
G̃

(G̃)OE,ν in Theorem 5.4. In

particular, we note that for the places w of F which are ramified over F0 and of the same residue
characteristic as ν, this entails imposing the wedge condition in Theorem 5.4(d) on each summand
Liew,ψ A (when the signature function r|Homw,ψ(F,Q) is of banal type, it is equivalent to impose the

Eisenstein condition in Theorem 5.4(b)).
The morphisms in this groupoid are as in Definition 6.1.

Theorem 6.7. The moduli problem FK◦
G̃

(G̃) is representable by a Deligne–Mumford stackMK◦
G̃

(G̃)

flat over SpecOE. For every finite place ν of E, the base change of MK◦
G̃

(G̃) to SpecOE,ν is

canonically isomorphic to the ν-adic integral moduli space of Theorem 5.4 in the case of the level
subgroup K◦

G̃
. Furthermore:

(i) If n ≥ 2, thenMK◦
G̃

(G̃) is smooth of relative dimension n−1 over the open subscheme of SpecOE
obtained by removing the set Vram(E) of finite places ν for which the induced place vν of F0 lies in

Vram. If n = 1, then MK◦
G̃

(G̃) is finite étale over all of SpecOE.

(ii) If n ≥ 2, then the fiber of MK◦
G̃

(G̃) over a place ν ∈ Vram(E) has only isolated singularities. If

n ≥ 3, then blowing up these isolated points for all such ν yields a model M\
K◦
G̃

(G̃) which has semi-

stable reduction, and hence is regular, over the open subscheme of SpecOE obtained by removing the

places ν ∈ Vram(E) which are ramified over F . This model represents the moduli problem F \K◦
G̃

(G̃)

formulated below.

Proof. Representability of FK◦
G̃

(G̃) is standard, and the statement on the base change to SpecOE,ν
is obvious, with level structures defined as in Remark 6.3 (thus the isomorphism over SpecOE,ν
is made canonical via the choice of Λ0 and Λ). Flatness follows from Theorem 5.4. Assertion (i)
follows from Theorem 5.7. Assertion (ii) reduces to a statement on the local model. More precisely,
let ν ∈ Vram(E), let p denote the residue characteristic of ν, and consider the decomposition of
the local model MOEun

ν
in (5.11) relative to the choice of an embedding α : Q → Qp inducing ν.
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Since the signature type is of fake Drinfeld type, the factors M(v, ψ0)OEun
ν

for all v 6= vν are trivial

by the Eisenstein condition. Since we assume that every v ∈ Vram is unramified over Q, we have
F0,vν = F t0,vν , and similarly M(vν , ψ0)OEun

ν
is trivial for all embeddings ψ0 : F0,vν → Qp except the

single embedding ψ0,α induced by α ◦ ϕ0. The factor M(vν , ψ0,α)OEun
ν

is then the base change to

SpecOEun
ν

of the local model for GUn(Fvν/F0,vν ) in the case of a self-dual lattice and signature type
(n− 1, 1). By Pappas [24, Th. 4.5 & its proof], when n ≥ 2, this local model is singular at a single
point, with blowup at this point of semi-stable reduction. When n ≥ 3, the reflex field of this local
model identifies with Fvν , and therefore semi-stable reduction is preserved after the base change
OF,vν → OEun

ν
provided ν is unramified over F . �

Remark 6.8. When n = 2, the reflex field of the local model for GU2(Fvν/F0,vν ) appearing in the
proof of Theorem 6.7 is F0,vν , not Fvν . In this case, the local model itself has semi-stable reduction
over SpecOF0,vν , without needing to blow up. However, since Fvν maps into Eν , the extension
OF0,vν → OEun

ν
is necessarily ramified, and hence semi-stable reduction is lost upon base change.

Remark 6.9. There is an obvious analog of Remark 6.4 in the present situation, where the moduli
problem forMr is replaced by the analogous one with respect to our self-dual lattice Λ (in particular,
the polarization λ in the resulting moduli problem is principal; when F0 = Q, the resulting stack

is denoted MPap
(n−1,1) in [2, §2.3]). Furthermore, by the same argument as in Remark 6.5(i), the

sign condition (6.2) imposed in Definition 6.6 is redundant at all inert places v. However, it is no
longer the case that the sign condition is redundant at ramified places v when n is even (since in
the ramified case, for any n ∈ Z>0, both isometry types of n-dimensional Fv/F0,v-hermitian spaces
contain a self-dual lattice). Finally, Remark 6.5(ii) transposes word-for-word to the present situation,
cf. [2, §2.3].

Here is the moduli problem mentioned in Theorem 6.7(ii) (the Krämer model). Let n ≥ 2.

Definition 6.10. The category functor F \K◦
G̃

(G̃) associates to each OE-scheme S the groupoid of

tuples (A0, ι0, λ0, A, ι, λ,P), where (A0, ι0, λ0, A, ι, λ) ∈ FK◦
G̃

(G̃)(S), and where P ⊂ LieA is an

OF -stable OS-submodule which, Zariski-locally on S, is an OS-free direct summand satisfying the
rank condition (6.7) and the Krämer–Eisenstein condition (6.10) below.

The rank condition and the Krämer–Eisenstein condition mentioned in Definition 6.10 are con-
ditions for every finite place ν of E. Fixing ν, let p denote the residue characteristic of ν, and
choose an embedding α : Q → Qp inducing ν as before (5.1). For any p-adic place w of F and any

Qp-embedding ψ : F tw → Qp, define Homw,ψ(F,Q) ⊂ Hom(F,Q) as in (5.3). We recall that the

resulting partition Hom(F,Q) =
∐
w,ψ Homw,ψ(F,Q) as in (5.4) depends only on ν up to labeling

of the sets on the right-hand side. Let

rΦ
w,ψ :=

∑
ϕ∈Homw,ψ(F,Q)∩Φ

rϕ.

Then the rank condition for ν on the OF⊗ZOS-module P states that in the decomposition analogous
to (5.8) and (5.9),

P =
⊕
w,ψ

Pw,ψ, (6.6)

we have

rankOS Pw,ψ = rΦ
w,ψ (6.7)

for all w,ψ. Here, as in (5.9), the decomposition (6.6) is defined when S is an OEun
ν

-scheme, and the
rank condition for all ν then descends to a condition on OE-schemes.

The Krämer–Eisenstein condition for ν is similarly a condition on each summand Pw,ψ in (6.6).
The statement of the condition depends on the restricted function r|w,ψ := r|Homw,ψ(F,Q), and
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involves polynomials closely related to those in the formulation of the Eisenstein condition in [33,
§8]. For each w,ψ, let

CΦ
w,ψ :=

{
ϕ ∈ Homw,ψ(F,Q) ∩ Φ

∣∣ rϕ 6= 0
}
,

CΦ
w,ψ :=

{
ϕ ∈ Homw,ψ(F,Q) ∩ Φ

∣∣ rϕ 6= 0
}
.

(6.8)

Let π be a uniformizer in Fw, and define the polynomials in Qp[T ],

QCΦ
w,ψ

(T ) :=
∏

ϕ∈CΦ
w,ψ

(
T − ϕ(π)

)
∈ Qp[T ] and Q

CΦ
w,ψ

(T ) :=
∏

ϕ∈CΦ
w,ψ

(
T − ϕ(π)

)
. (6.9)

Here and below we implicitly use α to identify CΦ
w,ψ and CΦ

w,ψ with subsets of HomQp(Fw,Qp). Then
the Krämer–Eisenstein condition on Pw,ψ is that

QCΦ
w,ψ

(π ⊗ 1)|Pw,ψ = 0 and Q
CΦ
w,ψ

(π ⊗ 1)|Liew,ψ A/Pw,ψ = 0; (6.10)

here the condition is defined when S is a scheme over SpecOL for any subfield L ⊂ Qp large enough
to contain the image of Eν under α, the image of F tw under ψ, and the coefficients of the polynomials
QCΦ

w,ψ
(T ) and Q

CΦ
w,ψ

(T ). The Krämer–Eisenstein condition (6.10) is independent of the choice of

uniformizer π. Indeed, this follows immediately from the next lemma, upon taking the field L to be

large enough to contain ϕ(Fw) for all ϕ ∈ CΦ
w,ψ ∪ CΦ

w,ψ.

Lemma 6.11. Let π and π′ be two uniformizers of Fw. Then the elements π ⊗ 1 − 1 ⊗ π and
π′ ⊗ 1− 1⊗ π′ are unit multiples of each other in the ring OFw ⊗OFtw OFw .

Proof. Say π′ = uπ, with u ∈ O×Fw . Let e := [Fw : F tw]. Then there exist unique u0, . . . , ue−1 ∈ OF tw ,

with u0 ∈ O×F tw , such that u = u0 + u1π + · · ·+ ue−1π
e−1. Hence

π′ ⊗ 1− 1⊗ π′ = u0(π ⊗ 1− 1⊗ π) + · · ·+ ue−1(πe ⊗ 1− 1⊗ πe).
Every term on the right-hand side is divisible by π⊗1−1⊗π. Factoring out, we obtain an equation
of the form

π′ ⊗ 1− 1⊗ π′ = (π ⊗ 1− 1⊗ π)(u0 + a),

where a ∈ OFw ⊗OFtw OFw lies in the maximal ideal generated by π ⊗ 1 and 1 ⊗ π. This completes

the proof. �

The Krämer–Eisenstein condition for ν is that (6.10) holds for all w,ψ with w of the same residue
characteristic as ν. The (full) Krämer–Eisenstein condition is that the Krämer–Eisenstein condition
for ν holds for all ν; this condition again descends to OE-schemes.

As a first step towards understanding the rank and Krämer–Eisenstein conditions, let Ẽ denote
the composite of E and the normal closure of F in Q, and let O′

Ẽ
be the ring obtained from OẼ by

inverting the finitely many rational primes p which ramify in F . Then

OF ⊗Z O
′
Ẽ
∼=

∏
ϕ∈Hom(F,Q)

O′
Ẽ
.

If S is an O′
Ẽ

-scheme and (A0, ι0, λ0, A, ι, λ) is an S-point on FK◦
G̃

(G̃), the OF -action ι thus induces

a canonical decomposition

LieA =
⊕

ϕ∈Hom(F,Q)

LieϕA.

By the Kottwitz condition, rankOS LieϕA = rϕ. By the definition of O′
Ẽ

, the set Homw,ψ(F,Q) is a

singleton set {ϕ} for all places w such that S has a nonempty fiber of the same residue characteristic
as w. Therefore the rank condition imposes that Pϕ equals LieϕA or 0 according as ϕ ∈ Φ or
ϕ /∈ Φ. Furthermore, the resulting OS-module P =

⊕
ϕ Pϕ obviously satisfies the Krämer–Eisenstein

condition. We conclude that the datum of P in the moduli problem F \K◦
G̃

(G̃) is redundant over
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SpecO′
Ẽ

—and hence, by descent, over SpecO′E , where O′E is the ring obtained from OE by inverting

the primes p that ramify in F . In fact, a stronger statement is true.

Lemma 6.12. Keep the notation above, and assume that S is a scheme over SpecOL for L ⊂ Qp
sufficiently large. If r|w,ψ is banal or w is unramified over F0, then there exists a unique summand
Pw,ψ ⊂ Liew,ψ A satisfying the rank condition (6.7) and the Krämer–Eisenstein condition (6.10).

Proof. To show existence and uniqueness of Pw,ψ, it suffices to solve the analogous problem on the
local model, as in the proofs of Theorems 5.2 and 5.4. The local model is a moduli functor of
OF ⊗Z OS-linear quotients Λ⊗Z OS � Q satisfying certain conditions. Since L is sufficiently large,
we have the usual direct sum decompositions⊕

w′,ψ′

Λw′,ψ′,S �
⊕
w′,ψ′

Qw′,ψ′ ,

where Λw′,ψ′,S := Λ ⊗OF OF,w′ ⊗OFt
w′
,ψ′ OS . Our problem is to show that there exists a unique

subbundle P ′w,ψ ⊂ Qw,ψ satisfying the (analogs on the local model of) the rank condition and the
Krämer–Eisenstein condition. Throughout the rest of the proof, we will make use of the set

Aw,ψ :=
{
ϕ ∈ Homw,ψ(F,Q)

∣∣ rϕ = n
}

and the polynomial

QAw,ψ (T ) :=
∏

ϕ∈Aw,ψ

(
T − ϕ(π)

)
, (6.11)

cf. [33, (2.3), (2.8)] (in the case of the extension Fw/Qp). As before, in (6.11) we have implicitly

used α to identify Aw,ψ with a subset of HomQp(Fw,Qp).
First suppose that r|w,ψ is banal. Then CΦ

w,ψ ∪CΦ
w,ψ = Aw,ψ, and, by the definition of the moduli

problem, Qw,ψ is required to satisfy the Eisenstein condition QAw,ψ (π ⊗ 1)|Qw,ψ = 0, cf. [31, (B.5)].
Furthermore, the Kottwitz condition in the banal case implies that Qw,ψ has OS-rank n · #Aw,ψ.
This forces

ker
[
Λw,ψ,S � Qw,ψ

]
= QAw,ψ (π ⊗ 1) · Λw,ψ,S ⊂ QCΦ

w,ψ
(π ⊗ 1) · Λw,ψ,S ,

cf. [31, (B.6)]. Hence

cok
(
QCΦ

w,ψ
(π ⊗ 1)|Qw,ψ

) ∼= cok
(
QCΦ

w,ψ
(π ⊗ 1)|Λw,ψ,S

)
. (6.12)

Since the right-hand side of (6.12) is a free OS-module of rank n ·#CΦ
w,ψ = rΦ

w,ψ, we conclude that

ker(QCΦ
w,ψ

(π ⊗ 1)|Qw,ψ ) is a direct summand of Qw,ψ of the same rank rΦ
w,ψ. The rank condition

(6.7) and the first relation in the Krämer–Eisenstein condition (6.10) then force the equality

P ′w,ψ = ker
(
QCΦ

w,ψ
(π ⊗ 1)|Qw,ψ

)
. (6.13)

(One sees easily that (6.13) also equals Q
CΦ
w,ψ

(π⊗ 1) · Qw,ψ.) This completes the proof in the banal
case.

Now suppose that w is unramified over F0 and r|w,ψ is non-banal. Then (w,ψ) is one of the pairs

(wν , ψα) and (wν , ψα), where ψα denotes the embedding F twν → Qp induced by α ◦ϕ0. (These pairs

are distinct, by unramifiedness). In the case of (wν , ψα), since the signature type is of fake Drinfeld
type, we have ϕ0 ∈ Homwν ,ψα

(F,Q) with rϕ0
= 1, and Qwν ,ψα satisfies the Eisenstein condition

given in [33, (8.2)]. Let

Kwν ,ψα := ker
[
Λwν ,ψα,S

f
� Qwν ,ψα

]
.

Taking V = QAwν,ψα
(π⊗1) ·Λwν ,ψα,S and W = Λwν ,ψα,S in [33, Lem. 4.10], and using the Eisenstein

condition, we conclude that Kwν ,ψα ⊂ QAwν,ψα (π ⊗ 1) ·Λwν ,ψα,S ; comp. the proof of [33, Lem. 8.6].
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From here, since CΦ
wν ,ψα

⊂ Awν ,ψα in the present case, the same argument as in the previous

paragraph shows that we again must have P ′
wν ,ψα

= ker(QCΦ
wν,ψα

(π ⊗ 1)|Qwν,ψα ).

In the case of the pair (wν , ψα), we have CΦ
wν ,ψα

⊂ Awν ,ψα . Therefore the rank condition (6.7)

and the second relation in the Krämer–Eisenstein condition (6.10) force that the inverse image of
P ′wν ,ψα in Λwν ,ψα,S is Q

CΦ
wν,ψα

(π ⊗ 1) · Λwν ,ψα,S . This uniquely determines P ′wν ,ψα if it exists. In

turn, existence holds if and only if

Kwν ,ψα ⊂ QCΦ
wν,ψα

(π ⊗ 1) · Λwν ,ψα,S , (6.14)

where Kwν ,ψα := ker[Λwν ,ψα,S � Qwν ,ψα ]. To show the containment (6.14), it suffices to show that

Kwν ,ψα ⊂ QAwν,ψα (π ⊗ 1) · Λwν ,ψα,S . (6.15)

Now, by the formalism of local models, self-duality of the lattice Λ gives rise to a perfect pairing

Λwν ,ψα,S × Λwν ,ψα,S −→ OS

under which the OF -actions on the two factors are conjugate-adjoint, and such that Kwν ,ψα ⊂
Λwν ,ψα,S and Kwν ,ψα ⊂ Λwν ,ψα,S are the perp-modules of each other. Thus (6.15) is equivalent to

the containment (
QAwν,ψα (π ⊗ 1) · Λwν ,ψα,S

)⊥ ⊂ Kwν ,ψα . (6.16)

It is a pleasant exercise to show that the left-hand side in (6.16) equals

Q0(π ⊗ 1)QAwν,ψα
(π ⊗ 1) · Λwν ,ψα,S ,

where the polynomials QAwν,ψα
and Q0(T ) := T −ϕ0(π) are defined for the field Fwν with respect to

the uniformizer π. Thus the containment (6.16) holds by the Eisenstein condition [33, (8.2)], which
completes the proof. �

It follows from Lemma 6.12 that the natural forgetful morphism

F \K◦
G̃

(G̃) −→ FK◦
G̃

(G̃) (6.17)

is an isomorphism over the open locus Spec(OE [V−1
ram]) ⊂ Spec(OE). On the other hand, let ν now

be a place lying over some vν ∈ Vram. Then the functor F \K◦
G̃

(G̃)OE,(ν)
can be understood via the

corresponding local model for MK◦
G̃

(G̃)OE,(ν)
. As in the proof of Theorem 6.7, the base change to

SpecOEun
ν

of the local model M is a product

MOEun
ν

=
∏
v,ψ0

M(v, ψ0)OEun
ν
.

By Lemma 6.12, for all factors except the one indexed by (vν , ψ0,α), the datum of P is redundant;
here ψ0,α is as in the proof of Theorem 6.7. The factor M(vν , ψ0,α)OEun

ν
is the base change to OEun

ν

of the Pappas local model for GUn(Fwν/F0,vν ), for a self-dual lattice and signature type (n− 1, 1),
cf. [24]. The datum of P corresponds to a point of the Krämer local model [15] mapping to the
Pappas local model.

Appendix A. Local model diagram for unramified PEL data of type A

In this appendix, we change notation from the main body of the paper. Let (F,B, V, ( , )) be
rational data of PEL type over Qp in the sense of [32, §1.38]. Let ∗ be the induced involution on
B. Let OB be a maximal order of B invariant under ∗. Let F0 denote the invariants of ∗ in F , and
let OF0

and OF denote the respective rings of integers. Our main purpose is to prove the following
theorem, which is a special case of [32, Th. 3.16] when p 6= 2. We adopt the terminology of loc. cit.
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Theorem A.1. Assume that OF is an étale OF0-algebra free of rank 2.
Let L be a self-dual multichain of OB-lattices in V . Let T be a Zp-scheme on which p is locally

nilpotent. Let {MΛ | Λ ∈ L} be a polarized multichain of OB ⊗Zp OT -modules of type (L). Then
locally for the étale topology on T , the polarized multichain {MΛ} is isomorphic to L ⊗Zp OT .

Furthermore, if {M ′Λ} is a second polarized multichain of OB ⊗Zp OT -modules of type (L), then
the functor of isomorphisms of polarized multichains on the category of T -schemes,

T ′ 7−→ Isom
(
{MΛ ⊗OT OT ′}, {M ′Λ ⊗OT OT ′}

)
,

is representable by a smooth affine T -scheme.

Proof. We may assume that F0 is a field. If F/F0 is split, i.e., we are in the case (I) of [32, p. 135],
then the first claim follows from [32, Th. 3.11] by [32, Lem. A.8], which reduces this case to the
unpolarized case. The proofs of these facts are valid for p = 2, and the trivialization even exists
locally for the Zariski topology on T . That the Isom-functor is representable by an affine scheme of
finite type is trivial. Smoothness follows from [32, Th. 3.11].

Now let F/F0 be an unramified field extension. Let F t denote the maximal unramified subexten-
sion of Qp in F , and let OF t denote its ring of integers. Set

F̃0 := F0 ⊗Qp F
t, F̃ := F ⊗Qp F

t, B̃ := B ⊗Qp F
t, Ṽ := V ⊗Qp F

t, (̃ , ) := ( , )⊗ trF t/Qp ,

OF̃0
:= OF0 ⊗Zp OF t , OF̃ := OF ⊗Zp OF t , OB̃ := OB ⊗Zp OF t , L̃ := L ⊗Zp OF t .

Then (F̃ , B̃, Ṽ , (̃ , ), OB̃ , L̃) are integral data of PEL type15 such that F̃ = F̃0 × F̃0, i.e., F̃ /F̃0

is a product of split quadratic extensions. Set M̃Λ := MΛ ⊗Zp OF t . Then {M̃Λ} is a polarized

multichain of OB̃ ⊗Zp OT -modules of type (L̃). From the previous case, we obtain that locally

for the Zariski topology on T , there exists an isomorphism between {M̃Λ} and L̃ ⊗Zp OT . Set

T̃ := T ×SpecZp SpecOF t . Then T̃ is an étale covering of T , and there are natural isomorphisms of
polarized multichains of OB ⊗Zp OT̃ -modules of type (L),

{MΛ ⊗OT OT̃ } ∼= {M̃Λ}, {L ⊗Zp OT̃ } ∼= {L̃ ⊗Zp OT }.

Therefore there is a trivialization of the multichain {MΛ ⊗OT OT̃ }, locally on T̃ . In the same way,
the smoothness of the Isom-scheme follows from the previous case. �

As a consequence, the entire formalism of local models and the local model diagram in [32] carries
over to the p = 2 case for PEL data as in Theorem A.1. In particular, in the context of the main
body of the paper, this applies when all 2-adic places of the totally real field are unramified in the
CM field.
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