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We interpret the“occult” period maps of Allcock, Carlson, Toledo [2, 3], resp. of Looijenga,
Swierstra [20, 21], resp. of Kondo [13, 14] in moduli theoretic terms, as a construction of certain
families of polarized abelian varieties of Picard type. We show that these period maps are
morphisms defined over their natural field of definition.

1. Introduction

In papers of Allcock, Carlson, Toledo [2, 3], resp. of Looijenga, Swierstra [20, 21], resp. of
Kondo [13, 14], ”hidden” period maps are constructed in certain cases. The target spaces of
these maps are certain arithmetic quotients of complex unit balls. The basic observation, which
is the starting point of this paper, is that these arithmetic quotients can be interpreted as the
complex points of certain moduli spaces of abelian varieties of Picard type, of the kind considered
in our paper [19]. Consequently, the purpose in this paper is to interpret these hidden period
maps in moduli-theoretic terms. The pay-off of this exercise is that we can raise and partially
answer some descent problems which seem natural from our view point, and which are related
to a similar descent problem addressed by Deligne in [7] in his theory of complete intersections
of Hodge level one.

Why do we speak of ”hidden”, or ”occult” period maps in this context? This is done in order to
make the distinction with the usual period maps which associate to a family of smooth projective
complex varieties (over some base scheme S) the (polarized) Hodge structures of its fibers, which
then induces a map from S to a quotient by a discrete group of a period domain. Let us recall
three examples of classical period maps:

(1) Case of quartic surfaces. In this case the period map is a holomorphic map of orbifolds

ϕ : Quartics◦2,C →
[
Γ\V (2, 19)

]
.

Here Quartics◦2,C denotes the stack parametrizing smooth quartic surfaces up to projective equiv-
alence,

Quartics◦2,C =
[
PGL4\PSym4(C4)◦

]
(stack quotient in the orbifold sense). The target space is the orbifold quotient of the space of
oriented positive 2-planes in a quadratic space V of signature (2, 19) by the automorphism group
Γ of a lattice in V .

(2) Case of cubic threefolds. In this case the period map is a holomorphic map of orbifolds

ϕ : Cubics◦3,C →
[
Γ\H5

]
.
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Here Cubics◦3,C denotes the stack parametrizing smooth cubic threefolds up to projective equiv-
alence. The target space is the orbifold quotient of the Siegel upper half space of genus 5 by the
Siegel group Γ = Sp5(Z).

(3) Case of cubic fourfolds. In this case the period map is a holomorphic map of orbifolds

ϕ : Cubics◦4,C →
[
Γ\V (2, 20)

]
.

Here Cubics◦4,C denotes the stack parametrizing smooth cubic fourfolds up to projective equiv-
alence. The target space is the orbifold quotient of the space of oriented positive 2-planes in a
quadratic space V of signature (2, 20) by the automorphism group Γ of a lattice in V .

In the first case, by the Torelli theorem of Piatetskii-Shapiro/Shafarevich, the induced map |ϕ|
on coarse moduli spaces is an open embedding. In the second case, by the Torelli theorem of
Clemens/Griffiths, the map |ϕ| is a locally closed embedding (it is not an open embedding since
the source of ϕ has dimension 10, and the target has dimension 15). In the third case, by the
Torelli theorem of Voisin, the map |ϕ| is an open embedding.

The construction of the occult period maps is quite different, although it does use the classical
period maps indirectly. For instance, the construction of Allcock, Carlson, Toledo attaches a
certain Hodge structure to any smooth cubic surface which allows one to distinguish between
non-isomorphic ones, even though the natural Hodge structures on the cohomology in the middle
dimension of all cubic surfaces are isomorphic. Also, in one dimension higher, their construction
allows them to define an open embedding of the space of cubic threefolds into an arithmetic
quotient of the complex unit ball of dimension 10.

Our second aim in this paper is to identify the complements of the images of occult period maps
with special divisors considered in [19].

The lay-out of the paper is as follows. In sections 2, 3 and 4 we recall some of the theory and
notation of [19]. In sections 5, 6, 7, and 8, respectively, we explain in turn the case of cubic
surfaces, cubic threefolds, curves of genus 3, and curves of genus 4. In section 9, we explain
the descent problem, and solve it in zero characteristic. In the final section, we make a few
supplementary remarks.

We stress that the proofs of our statements are all contained in the papers mentioned above,
and that our work only consists in interpreting these results.

We thank B. van Geemen, D. Huybrechts and E. Looijenga for very helpful discussions. We also
thank J. Achter for keeping us informed about his progress in proving our conjecture in section
9 in some cases. Finally, we thank the referee who alerted us to a mistake concerning the stacks
aspect of period maps.

2. Moduli spaces of Picard type

Let k = Q(
√

∆) be an imaginary-quadratic field with discriminant ∆, ring of integers Ok, and
a fixed complex embedding. We write a 7→ aσ for the non-trivial automorphism of Ok.

For integers n ≥ 1 and r, 0 ≤ r ≤ n, we consider the groupoidM =M(n−r, r) =M(k;n−r, r)
fibered over (Sch/Ok) which associates to an Ok-scheme S the groupoid of triples (A, ι, λ).
Here A is an abelian scheme over S, λ is a principal polarization, and ι : Ok → End(A) is a



ON OCCULT PERIOD MAPS 3

homomorphism such that

ι(a)∗ = ι(aσ) ,

for the Rosati involution ∗ corresponding to λ. In addition, the following signature condition is
imposed

char(T, ι(a) | LieA) = (T − i(a))n−r · (T − i(aσ))r , ∀ a ∈ Ok , (2.1)

where i : Ok → OS is the structure map.

We will mostly consider the complex fiber MC =M×SpecOk
Spec C of M. In any case, M is

a Deligne-Mumford stack and MC is smooth. We denote by |MC| the coarse moduli scheme.

We will also have to consider the following variant, defined by modifying the requirement above
that the polarization λ be principal. Let d > 1 be a square free divisor of |∆|. ThenM(k, d;n−
r, r)∗ =M(k;n− r, r)∗ parametrizes triples (A, ι, λ) as in the case ofM(k;n− r, r), except that
we impose the following condition on λ. We require first of all that kerλ ⊂ A[d], so that Ok/(d)
acts on kerλ. In addition, we require that this action factor through the quotient ring

∏
p|d Fp

of Ok/(d), and that λ be of degree dn−1, if n is odd, resp. dn−2, if n is even. In the notation
introduced in section 13 of [19], we have M(k, d;n− r, r)∗ =M(k, t;n− r, r)∗,naive, where the
function t on the set of primes p with p | ∆ assigns to p the integer 2[(n − 1)/2] if p | d, and
0 if p - d. Note that if k is the Gaussian field k = Q(

√
−1), then necessarily d = 2; if k is the

Eisenstein field k = Q(
√
−3), then d = 3. We denote by |M∗C| the corresponding coarse moduli

scheme.

3. Complex uniformization

Let us recall from [19] the complex uniformization of M(k;n− 1, 1)(C) in the special case that
k has class number one. For n > 2, let (V, ( , )) be a hermitian vector space over k of signature
(n− 1, 1) which contains a self-dual Ok-lattice L. By the class number hypothesis, V is unique
up to isomorphism. When n is odd, or when n is even and ∆ is odd, the lattice L is also unique
up to isomorphism. We assume that one of these conditions is satisfied. Let D be the space of
negative lines in the C-vector space (VR, I0), where the complex structure I0 is defined in terms
of the discriminant of k, as I0 =

√
∆/|
√

∆|. Let Γ be the isometry group of L. Then the complex
uniformization is the isomorphism of orbifolds,

M(k;n− 1, 1)(C) ' [Γ\D].

There is an obvious ∗-variant of this uniformization, which gives

M(k;n− 1, 1)∗(C) ' [Γ∗\D],

where Γ∗ is the automorphism group of the (parahoric) lattice L∗ corresponding to the ∗-moduli
problem. The lattice L∗ is uniquely determined up to isomorphism by the condition that there
is a chain of inclusions of Ok-lattices L∗ ⊂ (L∗)∨ ⊂ (

√
d)−1L∗, with quotient (L∗)∨/L∗ of

dimension n− 1 if n is odd and n− 2 if n is even, when localized at any prime ideal p dividing
d. Here, for an Ok-lattice M in V , we write

M∨ = { x ∈ V | h(x, L) ⊂ Ok }

for the dual lattice.
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4. Special cycles (KM-cycles)

We continue to assume that the class number of k is one, and recall from [19] the definition
of special cycles over C. Let (E, ι0) be an elliptic curve with CM by Ok over C, which we
fix in what follows. Note that, due to our class number hypothesis, (E, ι0) is unique up to
isomorphism. We denote its canonical principal polarization by λ0. For any C-scheme S, and
(A, ι, λ) ∈M(k;n− 1, 1)(S), let

V ′(A,E) = HomOk
(ES , A) ,

where ES = E ×C S is the constant elliptic scheme over S defined by E. Then V ′(A,E) is a
projective Ok-module of finite rank with a positive definite Ok-valued hermitian form given by

h′(x, y) = λ−1
0 ◦ y∨ ◦ λ ◦ x ∈ EndOk(ES) = Ok .

For a positive integer t, we define the DM-stack1 Z(t) by

Z(t)(S) = {(A, ι, λ;x) | (A, ι, λ) ∈M(k;n− 1, 1)(S), x ∈ V ′(A,E), h′(x, x) = t} .

Then Z(t) maps by a finite unramified morphism to M(k;n− 1, 1)C, and its image is a divisor
in the sense that, locally for the étale topology, it is defined by a non-zero equation.

The cycles Z(t) also admit a complex uniformization. More precisely, under the assumption of
the triviality of the class group of k, we have

Z(t)(C) '
[
Γ\
( ∐

x∈L
h(x,x)=t

Dx
)]
,

where Dx is the set of lines in D which are perpendicular to x.

Again, there is a ∗-variant of these definitions and a corresponding DM-stack Z(t)∗ above
M(k;n− 1, 1)∗.

5. Cubic surfaces

In this paper we consider four occult period mappings. We start with the case of cubic surfaces,
following Allcock, Carlson, Toledo [2], comp. also [5]. As explained in the introduction, in these
sources, the results are formulated in terms of arithmetic ball quotients; here we use the complex
uniformization of the previous two sections to express these results in terms of moduli spaces of
Picard type.

Let S ⊂ P3 be a smooth cubic surface. Let V be a cyclic covering of degree 3 of P3, ramified
along S. Explicitly, if S is defined by the homogeneous equation of degree 3 in 4 variables

F (X0, . . . , X3) = 0 ,

then V is defined by the homogeneous equation of degree 3 in 5 variables,

X3
4 − F (X0, . . . , X3) = 0 .

Let k = Q(ω), ω = e2πi/3. Then the obvious µ3-action on V determines an action of Ok = Z[ω]
on H3(V,Z). For the (alternating) cup product pairing 〈 , 〉,

〈ωx, ωy〉 = 〈x, y〉,

1This notation differs from that in [19], in that here the special cycles are defined over C, and are considered
as lying over M(k; n− 1, 1)C.
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which implies that

〈ax, y〉 = 〈x, aσy〉, ∀ a ∈ Ok.

Hence there is a unique Ok-valued hermitian form h on H3(V,Z) such that

〈x, y〉 = tr
( 1√

∆
h(x, y)

)
, (5.1)

where the discriminant ∆ of k is equal to −3 in the case at hand. Explicitly,

h(x, y) =
1
2
(
〈
√

∆x, y〉+ 〈x, y〉
√

∆
)
. (5.2)

Furthermore, an Ok-lattice is self-dual wrt 〈 , 〉 if and only if it is self-dual wrt h( , ).

Fact: H3(V,Z) is a self-dual hermitian Ok-module of signature (4, 1).

As noted above, such a lattice is unique up to isomorphism.

Let

A = A(V ) = H3(V,Z)\H3(V,C)/H2,1(V )

be the intermediate Jacobian of V . Then A is an abelian variety of dimension 5 which is
principally polarized by the intersection form. Since the association V 7→ (A(V ), λ) is functorial,
we obtain an action ι of Ok on A(V ).

Theorem 5.1. (i) The object (A, ι, λ) lies in M(k; 4, 1)(C).

(ii)This construction is functorial and compatible with families, and defines a morphism of DM-
stacks,

ϕ : Cubics◦2,C →M(k; 4, 1)C .

Here Cubics◦2,C denotes the stack parametrizing smooth cubic surfaces up to projective equiva-
lence,

Cubics◦2,C = [PGL4\PSym3(C4)◦]

[stack quotient in the orbifold sense].

(iii) The induced morphism on coarse moduli spaces |ϕ| : |Cubics◦2,C| → |M(k; 4, 1)C| is an open
embedding. Its image is the complement of the image of the KM-cycle Z(1) in |M(k; 4, 1)C|.

Proof. We only comment on the assertions in (ii) and (iii). In (ii), the compatibility with
families is always true of Griffiths’ intermediate jacobians (which however are abelian varieties
only when the Hodge structure is of type (m+1,m)+(m,m+1)). This constructs ϕ as a complex-
analytic morphism. The algebraicity of ϕ then follows from Borel’s theorem that any analytic
family of abelian varieties over a C-scheme is automatically algebraic [6]. The fact that the
image is contained in the complement of Z(1) is true because, by the Clemens-Griffiths theory,
intermediate Jacobians of cubic threefolds are simple as polarized abelian varieties, whereas,
over Z(1) the polarized abelian varieties split off an elliptic curve. However, the fact that Z(1)
makes up the whole complement is surprising and results from the fact that the morphism ϕ

extends to an isomorphism from a partial compactification |Cubicss
2,C| of |Cubics◦2,C| (obtained

by adding stable cubics) to |M(k; 4, 1)C|, such that the complement of |Cubics◦2,C| in |Cubicss
2,C|

is an irreducible divisor, cf. [5], Prop. 6.7, Prop. 8.2. �
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Remark 5.2. Let us comment on the stacks aspect of Theorem 5.1. Any automorphism of S is
induced by an automorphism of P3, which in turn induces an automorphism of V . We therefore
obtain a homomorphism Aut(S) → Aut(A(V ), ι, λ). The statement of [2], Thm. 2.20. implies
that this homomorphism induces an isomorphism

Aut(S) ∼−→ Aut(A(V ), ι, λ)/O×k , (5.3)

where the units O×k ' µ6 act via ι on A(V ). Indeed, in loc. cit. it is asserted that ϕ is an open
immersion of orbifolds Cubics◦2,C → [PΓ\D], where PΓ = Γ/O×k ; however, we were not able to
follow the argument. Note that the orbifold [PΓ\D] is different from [Γ\D], which occurs in §3.

6. Cubic threefolds

Our next example concerns cubic threefolds, following Allcock, Carlson, Toledo [3] and Looijenga,
Swierstra [20].

Let T ⊂ P4 be a cubic threefold. Let V be the cyclic covering of degree 3 of P4, ramified in T .
Then V is a cubic hypersurface in P5 and we define the primitive cohomology as

L = H4
0 (V,Z) = {x ∈ H4(V,Z) | (x, ρ) = 0} , (6.1)

where ρ is the square of the hyperplane section class. Note that rkZL = 22. Again, let k = Q(ω),
with ω = e2πi/3, so that L becomes an Ok-module. Now the cup-product ( , ) on H4(V,Z) is a
perfect symmetric pairing satisfying (ax, y) = (x, aσy) for a ∈ Ok. It induces on L a symmetric
bilinear form ( , ) of discriminant 3. We wish to define an alternating pairing 〈 , 〉 on L satisfying
〈ax, y〉 = 〈x, aσy〉 for a ∈ Ok. We do this by giving the associated Ok-valued hermitian pairing
h( , ), in the sense of (5.1) defined by

h(x, y) =
3
2
(
(x, y) + (x,

√
∆y)

1√
∆

)
. (6.2)

Here the factor 3/2 is used instead of 1/2 to have better integrality properties. Set π =
√

∆.

Fact: For the pairing (6.2), L∨ contains π−1L with L∨/π−1L ' Z/3Z.
For this result, see [3], Theorem 2.6 and its proof, as well as [20], the passage below (2.1).

Now consider the eigenspace decomposition of H4
0 (V,C) under k⊗ C = C⊕ C.

Fact: The Hodge structure of H4
0 (V,R) is of type

H4
0 (V,C) = H3,1 ⊕H2,2

0 ⊕H1,3 ,

with dimH3,1 = dimH1,3 = 1. Furthermore, the only nontrivial eigenspaces of the generator ω
of µ3 are

H4
0 (V,C)ω = H3,1 ⊕ (H2,2

0 )ω , with dim(H2,2
0 )ω = 10

H4
0 (V,C)ω = (H2,2

0 )ω ⊕H1,3 , with dim(H2,2
0 )ω = 10 ,

see [3], §2, resp. [20] §4.

Now set Λ = πL∨. Then we have the chain of inclusions of Ok-lattices

Λ ⊂ Λ∨ ⊂ π−1Λ ,

where the quotient Λ∨/Λ is isomorphic to (Z/3Z)10, and where π−1Λ/Λ∨ is isomorphic to Z/3Z.
Let

A = Λ\H4
0 (V,C)/H− ,
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where

H− = H3,1 ⊕ (H2,2
0 )ω .

Note that the map Λ→ H4
0 (V,C)/H− is an Ok-linear injection, hence A is a complex torus. In

fact, the hermitian form h and its associated alternating form 〈 , 〉 define a polarization λ on A.
Hence A is an abelian variety of dimension 11, with an action of Ok and a polarization of degree
310. In fact, we obtain in this way an object (A, ι, λ) of M(k; 10, 1)∗(C) (see section 2 for the
definition of the ∗-variants of our moduli stacks).

Theorem 6.1. (i) The construction which associates to a smooth cubic T in P4 the object
(A, ι, λ) of M(k; 10, 1)∗(C) is functorial and compatible with families, and defines a morphism
of DM-stacks,

ϕ : Cubics◦3,C →M(k; 10, 1)∗C .

(ii) The induced morphism on coarse moduli spaces |ϕ| : |Cubics◦3,C| → |M(k; 10, 1)∗C| is an open
embedding. Its image is the complement of the image of the KM-cycle Z(3)∗ in |M(k; 10, 1)∗C|.

Proof. The compatibility with families is due to the fact that the eigenspaces for the µ3-action
and the Hodge filtration both vary in a holomorphic way. The point (ii) is [3], Thm. 1.1, resp.
[20], Thm. 3.1. �

Remark 6.2. The stack aspect is not treated in these sources. However, it seems reasonable to
conjecture that the analogue of (5.3) is also true in this case, i.e., that there is an isomorphism

Aut(T ) ∼−→ Aut(A, ι, λ)/O×k , (6.3)

where (A, ι, λ) is the object of M(k; 10, 1)∗C attached to T .

Remark 6.3. The construction of the rational Hodge structure H1(A,Q) from H4
0 (V,Q) is a

very special case of a general construction due to van Geemen [11]. More precisely, it arises (up
to Tate twist) as the inverse half-twist in the sense of loc. cit. of the Hodge structure H4

0 (V,Q)
with complex multiplication by k. The half twist construction attaches to a rational Hodge
structure V of weight w with complex multiplication by a CM-field k a rational Hodge structure
of weight w + 1. More precisely, if Σ is a fixed half system of complex embeddings of k, then
van Geemen defines a new Hodge structure on V by setting

V r,snew = V r−1,s
Σ ⊕ V r,s−1

Σ
,

where VΣ, resp. VΣ denotes the sum of the eigenspaces for the k-action corresponding to the
complex embeddings in Σ, resp. in Σ.

7. Curves of genus three

Our third example concerns the moduli space of curves of genus 3 following Kondo [13].

Let C be a non-hyperelliptic smooth projective curve of genus 3. The canonical system embeds
C as a quartic curve in P2. Let X(C) be the µ4-covering of P2 ramified in C. Then the quartic
X(C) ⊂ P3 is a K3-surface with an automorphism τ of order 4 and hence an action of µ4. Let

L = {x ∈ H2(X(C),Z) | τ2(x) = −x} .

Let k = Q(i) be the Gaussian field.
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Fact: L is a free Z-module of rank 14. The restriction ( , ) of the symmetric cup product pairing
to L has discriminant 28; more precisely, for the dual lattice L∗ for the symmetric pairing,

L∗/L ∼= (Z/2)8 ,

see [13], top of p. 222.

Now consider the eigenspace decomposition of LC = L ⊗ C under k ⊗ C = C ⊕ C, where i ⊗ 1
acts via τ .

Fact: The induced Hodge structure on LC is of type

LC = L2,0 ⊕ L1,1 ⊕ L0,2 ,

with dimL2,0 = dimL0,2 = 1. Furthermore the only nontrivial eigenspaces of τ are

(LC)i = L2,0 ⊕ (L1,1)i , with dim(L1,1)i = 6

(LC)−i = (L1,1)−i ⊕ L0,2 , with dim(L1,1)−i = 6 .

We define an Ok-valued hermitian pairing h on LQ by setting

h(x, y) = (x, y) + (x, τy) i . (7.1)

Then it is easy to see that the dual lattice L∨ of L for the hermitian form h is the same as the
dual lattice L∗ for the symmetric form.

Now set Λ = πL∨, where π = 1 + i. Then we obtain a chain of inclusions of Ok-lattices

Λ ⊂ Λ∨ ⊂ π−1Λ ,

where the quotient Λ∨/Λ is isomorphic to (Z/2Z)6, and where π−1Λ/Λ∨ is isomorphic to Z/2Z.

Let

A = Λ\LC/L
− ,

where

L− = L2,0 ⊕ (L1,1)−i .

Note that the map Λ→ LC/L
− is a Ok-linear injection, hence A is a complex torus. In fact, the

hermitian form h and its associated alternating form 〈 , 〉 define a polarization λ on A. Hence
A is an abelian variety of dimension 7, with an action of Ok and a polarization of degree 26. In
fact, we obtain in this way an object (A, ι, λ) ofM(k; 6, 1)∗(C). Now [13], Thm. 2.5 implies the
following theorem.

Theorem 7.1. (i) The construction which asssociates to a non-hyperelliptic curve of genus 3
the object (A, ι, λ) of M(k; 6, 1)∗(C) is functorial and compatible with families, and defines a
morphism of DM-stacks,

ϕ : N ◦3,C →M(k; 6, 1)∗C .

Here N ◦3,C denotes the stack of smooth non-hyperelliptic curves of genus 3, i.e., of smooth
non-hyperelliptic quartics in P2 up to projective equivalence.

(ii) The induced morphism on coarse moduli schemes |ϕ| : |N ◦3,C| → |M(k; 6, 1)∗C| is an open
embedding. Its image is the complement of the image of the KM-cycle Z(2)∗ in |M(k; 6, 1)∗C|. �
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Remark 7.2. Again, the stack aspect is not treated in [13]. It seems reasonable to conjecture
that the analogue of (5.3) is also true in this case, i.e., that there is an isomorphism

Aut(C) ∼−→ Aut(A, ι, λ)/O×k , (7.2)

where (A, ι, λ) is the object of M(k; 6, 1)∗C attached to C, and where O×k = µ4.

8. Curves of genus four

Our final example concerns the moduli space of curves of genus four and is also due to Kondo
[14].

Let C be a non-hyperelliptic curve of genus 4. The canonical system embeds C into P3. More
precisely, C is the intersection of a smooth cubic surface S and a quartic Q which is either
smooth or a quadratic cone. Furthermore, Q is uniquely determined by C. Let X be a cyclic
cover of degree 3 over Q branched along C (in case Q is singular, we take the minimal resolution
of the singularities, cf. loc.cit.). Then X is a K3-surface with an action of µ3. Let

L = (H2(X,Z)µ3)⊥

be the orthogonal complement of the invariants of this action in H2(X,Z), equipped with the
symmetric form ( , ) obtained by restriction.

Fact: L is a free Z-module of rank 20, with dual L∗ for the symmetric form satisfying

L∗/L ' (Z/3Z)2 ,

cf. [14], top of p. 386.

For k = Q(ω), ω = e2πi/3, we again define an alternating form 〈 , 〉 through its associated
Ok-valued hermitian form h. Using the action of Ok on L, we set

h(x, y) =
3
2
(
(x, y) + (x,

√
∆y)

1√
∆

)
. (8.1)

Set π =
√

∆.

Fact: For the hermitian pairing (8.1), L∨ is an over-lattice of π−1L with L∨/π−1L ' (Z/3Z)2.

Now consider the eigenspace decomposition of L⊗ C under k⊗ C = C⊕ C.

Fact: The induced Hodge structure on LC is of type

LC = L2,0 ⊕ L1,1 ⊕ L0,2 ,

with dimL2,0 = dimL0,2 = 1. Furthermore the only nontrivial eigenspaces of µ3 are

(LC)ω = L2,0 ⊕ (L1,1)ω , with dim(L1,1)ω = 9

(LC)ω = (L1,1)ω ⊕ L0,2 , with dim(L1,1)ω = 9 .

Now set Λ = πL∨. Then we have the chain of inclusions of Ok-lattices

Λ ⊂ Λ∨ ⊂ π−1Λ ,

where the quotient Λ∨/Λ is isomorphic to (Z/3Z)8, and where π−1Λ/Λ∨ is isomorphic to
(Z/3Z)2.

Let
A = Λ\LC/L

− ,
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where
L− = L2,0 ⊕ (L1,1)ω .

Then the map Λ → LC/L
− is a Ok-linear injection, hence A is a complex torus. In fact, the

hermitian form h and its associated alternating form 〈 , 〉 define a polarization λ on A. Hence
A is an abelian variety of dimension 10, with an action of Ok and a polarization of degree 38.
In fact, we obtain in this way an object (A, ι, λ) of M(k; 9, 1)∗(C),

Theorem 8.1. (i) The construction which associates to a non-hyperelliptic curve of genus 4
the object (A, ι, λ) of M(k; 9, 1)∗(C) is functorial and compatible with families, and defines a
morphism of DM-stacks,

ϕ : N ◦4,C →M(k; 9, 1)∗C .

Here N ◦4,C denotes the stack of smooth non-hyperelliptic curves of genus 4.

(ii) The induced morphism on coarse moduli schemes |ϕ| : |N ◦4,C| → |M(k; 9, 1)∗C| is an open
embedding. Its image is the complement of the image of the KM-cycle Z(2)∗ in |M(k; 9, 1)∗C|. �

Remark 8.2. Again, the stack aspect is not treated in [14]. It seems reasonable to conjecture
that the analogue of (5.3) is also true in this case, i.e., that there is an isomorphism

Aut(C) ∼−→ Aut(A, ι, λ)/O×k , (8.2)

where (A, ι, λ) is the object of M(k; 9, 1)∗C attached to C, and where O×k = µ6.

9. Descent

In all four cases discussed above, we obtain morphisms over C between DM-stacks defined over
k. These morphisms are constructed using transcendental methods. In this section we will show
that these morphisms are in fact defined over k. The argument is modelled on Deligne’s solution
of the analogous problem for complete intersections of Hodge level one [7], where he shows that
the corresponding family of intermediate jacobians is an abelian scheme over the moduli scheme
over Q of complete intersections of given multi-degree.

In our discussion below, to simplify notations, we will deal with the case of cubic threefolds,
as explained in section 6; the other cases are completely analogous. Below we will shorten the
notation Cubics◦3 to C, and consider this as a DM-stack over Speck. Let v : V → C be the
universal family of cubic threefolds, and let a : A → CC be the polarized family of abelian
varieties constructed from V in section 6. Hence A is the pullback of the universal abelian
scheme over M(k; 10, 1)∗C under the morphism ϕ : CC →M(k; 10, 1)∗C.

Lemma 9.1. Let b : B → CC be a polarized abelian scheme with Ok-action, which is the pullback
under a morphism ψ : CC → M(k; 10, 1)∗C of the universal abelian scheme, and such that there
exists ` and an Ok-linear isomorphism of lisse `-adic sheaves on CC,

α` : R1a∗Z` ' R1b∗Z`

compatible with the Riemann forms on source and target. Then there exists a unique isomorphism
α : A→ B that induces α`. This isomorphism is compatible with polarizations.

To prove this, we are going to use the following lemma. In it, we denote by Λ the hermitian
Ok-module H1(As,Z), for s ∈ CC a fixed base point. Recall from section 6 that there is a chain
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of inclusions Λ ⊂ Λ∨ ⊂ π−1Λ, where π =
√
−3 is a generator of the unique prime ideal of Ok

dividing 3.

Lemma 9.2. Let s ∈ CC be the chosen base point.

(i) The monodromy representation ρA : π1(CC, s)→ GLk
(
Λ⊗Ok k

)
is absolutely irreducible.

(ii) For every prime ideal p prime to 3, the monodromy representation π1(CC, s)→ GLκ(p)

(
Λ/pΛ

)
is absolutely irreducible.

(iii) For the unique prime ideal p = (π) lying over 3, the monodromy representation π1(CC, s)→
GLκ(p)

(
Λ/pΛ

)
is not absolutely irreducible, but there is a unique non-trivial stable subspace,

namely, the 10-dimensional image of πΛ∨ in Λ/πΛ.

Proof. The monodromy representations in question are induced by the composition of homo-
morphisms

π1(CC, s) −→ π1(M(k; 10, 1)∗C, ϕ(s)) −→ GLOk
(
H1(As,Z)

)
. (9.1)

Here by Theorem 6.1, and using complex uniformization (cf. section 3), the first homomorphism
is induced by the inclusion of connected spaces

ι : D \
( ⋃

x∈L
h(x,x)=3

Dx
)
↪→ D ,

followed by quotienting out by the free action of Γ∗. Since D is simply-connected, it follows
that π1(M(k; 10, 1)∗C, ϕ(s)) = Γ∗ and that the first homomorphism in (9.1) is surjective. Now,
Γ∗ can be identified with the group of unitary automorphisms of the parahoric lattice Λ, and
it is elementary that the representations of Γ∗ on Λ ⊗Ok k and on Λ/pΛ for p prime to 3 are
absolutely irreducible (the latter since Λ∨⊗Z` = Λ⊗Z` for ` 6= 3). The statement (iii) is proved
in the same way. �

Proof. (of Lemma 9.1) Let us compare the monodromy representations,

ρA :π1(CC, s)→ GLOk
(
H1(As,Z)

)
ρB :π1(CC, s)→ GLOk

(
H1(Bs,Z)

)
.

(9.2)

By hypothesis, these representations are isomorphic after tensoring with Z`. Hence, they are
also isomorphic after tensoring with k. Hence there exists a π1(CC, s)-equivariant k-linear iso-
morphism

β : H1(As,Q) ' H1(Bs,Q) .

By the irreducibility of the representation of π1(CC, s) in H1(As,Q), β is unique up to a scalar in
k×. Let us compare the Ok-lattices β−1

(
H1(Bs,Z)

)
and H1(As,Z). Since we are assuming that

Ok is a PID, after replacing β by a multiple βO = cβ, we may assume that LB = β−1
O
(
H1(Bs,Z)

)
is a primitive Ok-sublattice in Λ = H1(As,Z). Let p be a prime ideal in Ok, and let us consider
the image of LB in Λ/pΛ. Since LB is primitive in Λ, this image is non-zero. If p is prime to
3, the irreducibility statement in (ii) of Lemma 9.2 implies that this image is everything, and
hence LB ⊗Ok,p = Λ⊗Ok,p in this case.

To handle the prime ideal p = (π) over 3, we use the polarizations. By the irreducibility statement
in (i) of Lemma 9.2, the polarization forms on H1(As,Q) and on H1(Bs,Q) differ by a scalar in
Q× under the isomorphism βO. Now, by hypothesis on B, with respect to the polarization form
on H1(Bs,Q), we have a chain of inclusions LB ⊂ L∨B ⊂ π−1LB with respective quotients of
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dimension 10 and 1 over Fp, just as for Λ. Since the two polarization forms differ by a scalar, this
excludes the possibility that the image of LB in Λ/πΛ be non-trivial. It follows that LB = Λ.

Furthermore, the isomorphism βO is unique up to a unit in O×k , and it is an isometry with respect
to both polarization forms. Now, by [8], 4.4.11 and 4.4.12, βO is induced by an isomorphism
of polarized abelian schemes. Finally, βO ⊗Z Z` = α` up to a unit, since these homomorphisms
differ by a scalar and both preserve the Riemann forms.
The uniqueness of α follows from Serre’s Lemma. �

Now Lemma 9.1 implies that over any field extension k′ of k inside C, there exists at most one
polarized abelian variety b : B → Ck′ obtained by pull-back from the universal abelian variety
over M(k; 10, 1)∗, equipped with an Ok-linear isomorphism of lisse `-adic sheaves over CC

R1a∗Z` ' R1bC∗Z` ,

preserving the Riemann forms. By the argument in [7], 2.2 this implies that, in fact, B exists
(since it does for k′ = C). Hence the morphism ϕ is defined over k. Put otherwise, for any k-
automorphism τ of C, the conjugate embedding ϕτ , which corresponds to the conjugate (A, ι, l)τ ,
is equal to ϕ; hence ϕ is defined over k.

Conjecture 9.3. In all four cases above, the morphisms ϕ can be extended over Ok[∆−1].

Since we circulated a first version of our paper, this has been proved by J. Achter [1] in the case
of cubic surfaces.

10. Concluding remarks

We end this paper with a few remarks.

Remark 10.1. In all four cases, the complement of Im(|ϕ|) is identified with a certain KM-
divisor. In fact, for other KM-divisors, the intersection with Im(|ϕ|) sometimes has a geometric
interpretation. For example, in the case of cubic surfaces, the intersection of Im(|ϕ|) with the
image of the KM-divisor Z(2) in |M(k; 4, 1)C| can be identified with the locus of cubic surfaces
admitting Eckardt points, cf. [10], Thm. 8.10. Similarly, in the case of curves of genus 3, the
intersection of Im(|ϕ|) with the image of Z(t)∗ in |M(k; 6, 1)∗C| can be identified with the locus
of curves C where the K3-surface X(C) admits a “splitting curve” of a certain degree depending
on t, cf. [4], Thm. 4.6.

Remark 10.2. In [9, 10, 22], occult period morphisms are often set in comparison with the
Deligne-Mostow theory which establishes a relation between configuration spaces (e.g., of points
in the projective line) and quotients of the complex unit ball by complex reflection groups,
via monodromy groups of hypergeometric equations. This aspect of these examples has been
suppressed entirely here. Also, it should be mentioned that there are other ways of constructing
the period map for cubic surfaces, e.g., [9, 10].

Remark 10.3. Let us return to the section 3. There we had fixed an hermitian vector space
(V, ( , )) over k of signature (n − 1, 1). Let V0 be the underlying Q-vector space, with the
symmetric pairing defined by

s(x, y) = tr(h(x, y)).
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Then s has signature (2(n− 1), 2), and we obtain an embedding of U(V ) into O(V0). This also
induces an embedding of symmetric spaces,

D ↪→ DO, (10.1)

where, as before, D is the space of negative (complex) lines in (VR, I0), and where DO is the space
of oriented negative 2-planes in VR. The image of (10.1) is precisely the set of negative 2-planes
that are stable by I0. In the cases of the Gauss field resp. the Eisenstein field, this invariance is
equivalent to being stable under the action of µ4, resp. µ6. Hence in these two cases, the image
of (10.1) can also be identified with the fixed point locus of µ4 resp. µ6 in DO.

Remark 10.4. By going through the tables in [23], §2, one sees that there is no further example
of an occult period map of the type above which embeds the moduli stack of hypersurfaces of
suitable degree and dimension into a Picard type moduli stack of abelian varieties. Note, however,
that, in the case of curves of genus 4, the source of the hidden period morphism is a moduli
stack of complete intersections of a certain multi-degree of dimension one, and there may be
more examples of this type.
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[8] , Théorie de Hodge II, Publ. math. IHES, 40 (1971), 5–57.

[9] I. V. Dolgachev, S. Kondo, Moduli of K3 surfaces and complex ball quotients, Arithmetic and geometry

around hypergeometric functions, 43–100, Progr. Math., 260, Birkhäuser, Basel, 2007.
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