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1 Introduction

The present paper is a continuation of our previous paper [PR]. The aim of both papers
is to come to grips with the local models of Shimura varieties in the case where the
group G defining the Shimura variety splits over a ramified extension of Qp. As was first
pointed out in [P], in this case the “naive” local models of [RZ] are not flat in general.
One wants to define closed subschemes of the naive local models which are flat and to
understand the structure of their special fibers. In this paper, we continue our study
of local models for PEL Shimura varieties in this “ramified case”. Two typical cases in
which ramification occurs for a PEL Shimura variety are the following:

(i) GQp is of the form GQp = RF/QpG
′, where G′ is a quasi-split group over F which

splits over an unramified extension of F . And F/Qp is a ramified extension.

(ii) GQp is the group of unitary similitudes corresponding to a ramified quadratic
extension of Qp.

The case (ii) was first addressed in [P]; unfortunately, a number of conjectures for-
mulated there have to be resolved in order to understand this case, even for the simplest
kind of level structures (see Remark 14.2), and more general level structures pose ad-
ditional problems. Here we will be concerned with the case (i). Although we will only
consider the cases where G′ = GLd or G′ = GSp2g, our method applies more generally,
comp. section 14. Loosely speaking, the method developed here allows us to deal with
ramification caused by restriction of scalars. In this introduction we will concentrate on
the case G′ = GLd which brings out better the outlines of our approach. We intend to
return to case (ii) in subsequent work.

Let F0 be the complete discretely valued field with ring of integers OF0 and perfect
residue field. Let F be a totally ramified extension of degree e contained in a fixed
separable closure F sep

0 of F0. Let OF be the ring of integers of F and π a uniformizer
which is the root of an Eisenstein polynomial Q(T ) ∈ OF0 [T ]. Let K be the Galois hull
of F in F sep

0 , with ring of integers OK and residue field k′.
Let V be an F -vector space of dimension d. Fix an F -basis e1, . . . , ed of V and let

Λi, 0 ≤ i ≤ d − 1 be the OF -lattice in V spanned by π−1e1, . . . , π−1ei, ei+1, . . . , ed. For
a subset I = {i0 < . . . < im−1} ⊂ {0, . . . , d− 1} we obtain a periodic lattice chain ΛI in
V which is given by all multiples of the lattices Λi with i ∈ I.

Choose for each embedding ϕ : F → F sep
0 an integer rϕ with 0 ≤ rϕ ≤ d. Set r = Σrϕ.

Then the naive local model Mnaive
I = Mnaive(OF , ΛI , r) associated to the lattice chain

ΛI and to r = (rϕ) parametrizes points Fj in the Grassmannian of subspaces of rank r
of Λij ,S = Λij ⊗OF0

OS which are OF -stable and on which the representation of OF is
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prescribed in terms of r, and which are compatible with varying j = 0, . . . , m − 1. It
is a projective scheme defined over Spec OE , where E = E(V, r) is the reflex field. Let
k be the residue field of OE . The special fiber of Mnaive can be considered as a closed
subscheme of the affine partial flag variety FlI = GLd(k[[Π]])/PI ,

i : Mnaive
I ⊗OE k ↪→ FlI .

We choose an ordering of the embeddings ϕ. The basic new ingredient of the present
paper is the splitting model MI = M(OF , ΛI , r). This is a projective scheme over
Spec OK which to aOK-scheme S associates the set of commutative diagrams ofOF⊗OF0
OS-morphisms resp. -inclusions,

Λi0,S → Λi1,S → · · · → Λim−1,S
π→ Λi0,S

∪ ∪ ∪ ∪
Fe

0 → Fe
1 → · · · → Fe

m−1 → Fe
0

∪ ∪ ∪ ∪
Fe−1

0 → Fe−1
1 → · · · → Fe−1

m−1 → Fe−1
0

∪ ∪ ∪ ∪
...

...
...

...
∪ ∪ ∪ ∪
F1

0 → F1
1 → · · · → F1

m−1 → F1
0

which satisfy the following conditions:

a) F j
k is locally on S an OS-direct summand of

Λik,S of rank
j

∑

l=1

rl .

b) For each a ∈ OF and j = 1, . . . , e

(a⊗ 1− 1⊗ ϕj(a))(F j
k) ⊂ F j−1

k .

Here we have set F0
k = (0).

We obtain an OK-morphism

πI : MI −→ Mnaive
I ⊗OE OK ,

given by {F j
k}k,j 7−→ {Fe

k}k.
Our crucial observation is that MI can be identified with a twisted product of un-

ramified local models for GLd over OK , M l
I = M(OK , ΛI ⊗OF ,ϕl OK , rl), for l = 1, . . . , e:

MI = M1
I ×̃ . . . ×̃M e

I .

Let us define the canonical local model M can
I as the scheme-theoretic image of the com-

posed morphism
MI

πI−→ Mnaive
I ⊗OE OK −→ Mnaive

I .

3



We may then state the following result:

Theorem A: a) M can
I is the flat closure of the generic fiber Mnaive

I ⊗OE E in Mnaive
I ,

and it coincides with the local model M loc
I defined in [PR], §8. Its special fiber is reduced,

and all its irreducible components are normal and with rational singularities.

b) The special fiber M can
I ⊗OE k is the union of the Schubert strata in FlI for all

w ∈ W̃I \ W̃/W̃I in the µ-admissible set ([KR]), for µ = ωr1 + . . . + ωre,

M can
I ⊗OE k =

⋃

w∈AdmI(µ)

Ow .

Here W̃ denotes the extended affine Weyl group for GLd and W̃I the parabolic subgroup
corresponding to I.

The basic ingredients of the proof of Theorem A are the presentation of the splitting
model as a twisted direct product of unramified local models and the results of Görtz [G1]
on these unramified local models. We also need Görtz’s Lifting Theorem [G3]. When the
integers rϕ differ by at most one amongst each other, we conjecture that M can

I = Mnaive
I ,

comp. [PR]. Similarly, it seems reasonable to expect in the symplectic case that the
canonical local model coincides with the naive local model, i.e., that the naive local
model is flat in this case, comp. [G3]. Theorem A seems to indicate that M can

I is the
“correct” way to extend its generic fiber into an integral model. Even though M can

I
does not represent a good moduli problem, the geometric points of M can

I ⊗OE k can
be described as a subset of Mnaive

I ⊗OE k and M can
I satisfies a maximal property with

respect to the morphism from MI to Mnaive
I . The situation is therefore quite similar to

the solution of an orbit problem by its coarse moduli space.

Our second use of the presentation of MI as a twisted direct product of unramified
local models concerns the calculation of the complex of nearby cycles of M can

I . Let us
assume that the residue field k of OE is finite. Let us denote by

RΨMcan
I

K = RΨ(M can
I ⊗OE OK/OK)Q`[d]

(d
2

)

the adjusted complex of nearby cycles, where d denotes the relative dimension of M can
I .

This is a perverse Q`-sheaf of weight zero on M can
I ⊗OE k, which we may regard as a

PI -equivariant perverse Q`-sheaf on FlI ⊗k k, equipped with an action by Gal(F sep
0 /K).

Theorem B: There is an isomorphism of perverse Q`-sheaves with Gal(F sep
0 /K)-action

RΨMcan
I

K = RΨM1
I

K ∗ . . . ∗RΨMe
I

K .

Here on the right hand side there appears the convolution in the sense of Lusztig of
the adjusted complexes of nearby cycles of the unramified local models M j

I , j = 1, . . . , e.
The latter perverse sheaves on FlI ⊗k k are known due to the solution of the Kottwitz
conjecture by Haines and Ngo [HN1].

In section 14 we extend our construction of the splitting model to the general ramified
PEL case. The splitting model comes equipped with a morphism to the naive PEL local
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model of [RZ]. The scheme-theoretic image of this morphism is a closed subscheme of the
naive local model; as our examples indicate, it is reasonable to expect that in many cases
(see §14 for details) this is the “canonical” flat local model. However, as A. Genestier
pointed out to us, this is not true when the group is even orthogonal. Also, this is not true
in general in the case of a unitary group corresponding to a ramified quadratic extension.
However, we believe that even in these cases the methods of the present paper will turn
out to be useful. In the last section we briefly indicate how to construct integral models
of the relevant moduli spaces of abelian varieties with additional structure, defined by
the splitting local models and canonical local models.

We thank V. Drinfeld, A. Genestier, U. Görtz and T. Haines for interesting discus-
sions.

2 General notations

Most of the time, we will follow the notations and assumptions of [R-P], §2. In particular,
F0 is a complete discretely valued field with ring of integers OF0 , uniformizer π0 and
perfect residue field. We fix a separable closure F sep

0 of F0. Let F be a totally ramified
separable extension of degree e of F0 with ring of integers OF . Let π be a uniformizer
of OF which is a root of the Eisenstein polynomial

Q(T ) = T e +
e−1
∑

k=0

bkT k, b0 ∈ π0 · O×F0
, bk ∈ (π0).(2.1)

Let us denote by K the Galois hull of F in F sep
0 and let OK be the ring of integers of

K; denote by k′ the residue field of OK . Let us choose an ordering of the embeddings
φ : F → F sep

0 and for i ∈ {1, · · · , e} let us set ai = φi(π). We have

OF0 [T ]/(Q(T )) ' OF(2.2)

given by T 7→ π. For i = 1, . . . , e, we set

Qi(T ) =
e

∏

j=i

(T − aj), Qi(T ) =
i−1
∏

j=1

(T − aj) ∈ OK [T ], O(i)
K = OK [T ]/(Qi(T )) ,(2.3)

so that Q1(T ) = Q(T ), and Qi(T )Qi(T ) = Q(T ). There are natural surjective OK-
algebra homomorphisms

φi : OF ⊗OF0
OK ' OK [T ]/(Q(T )) → OK [T ]/(Qi(T )) = O(i)

K

obtained by sending π ⊗ 1 to T .
There are exact sequences

OK [T ]/(Q(T ))
Qi(T )→ OK [T ]/(Q(T ))

Qi(T )→ OK [T ]/(Q(T )) ,

OK [T ]/(Q(T ))
Qi(T )→ OK [T ]/(Q(T ))

Qi(T )→ OK [T ]/(Q(T )) ,
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with the image and the kernel of each morphism OK-free. We conclude that if S is an
OK-scheme, there are functorial isomorphisms

O(i)
K ⊗OK OS ' Im(Qi(T ) | OS [T ]/(Q(T ))) = ker(Qi(T )| OS [T ]/(Q(T ))) ,(2.4)

the first one obtained by multiplying with Qi(T ).

Part II

3 The “naive” local models for G = ResF/F0GLd

Now let V be an F -vector space of dimension d. Fix an F -basis e1, . . . ed of V and let Λi,
0 ≤ i ≤ d− 1, be the free OF –module of rank d with basis ei

1 := π−1e1, . . . , ei
i := π−1ei,

ei
i+1 := ei+1, . . . , ei

d := ed. Let us choose a subset I = {i0 < · · · < im−1} ⊂ {0, . . . , d− 1}
and consider the OF -lattice chain ΛI in V which is given by all multiples of the lattices
Λi with i ∈ I.

Let us choose for each embedding ϕ : F → F sep
0 an integer rϕ with 0 ≤ rϕ ≤ d. Set

r =
∑

ϕ rφ. Associated to these data we have the reflex field E, a finite extension of F0
contained in F sep

0 with

Gal(F sep
0 /E) = {σ ∈ Gal(F sep

0 /F0); rσϕ = rϕ, ∀ϕ} .(3.1)

We also have a cocharacter µ : Gm/F sep
0 → (ResF/F0GLd)/F sep

0 given by (1rφ , 0d−rφ)φ.
The conjugacy class of µ is defined over the reflex field E. Let OE be the ring of integers
in E and k its residue field.

The “naive” local model Mnaive
I = M(OF , ΛI , r) of [RZ] for G = ResF/F0GLd, the

cocharacter µ and the lattice chain ΛI , is the OE–scheme which represents the following
functor: To each OE–scheme S, we associate the set Mnaive

I (S) of collections {Fk}k of
OF ⊗OF0

OS-submodules of Λik,S := Λik ⊗OF0
OS which fit into a commutative diagram

Λi0,S → Λi1,S → · · · → Λim−1,S
π→ Λi0,S

∪ ∪ ∪ ∪
F0 → F1 → · · · → Fm−1 → F0,S ,

(with the morphisms Λik,S → Λik+1,S of the first row induced by the lattice inclusions
Λik → Λik+1). We require the following conditions:

i) Fk is Zariski locally on S a OS-direct summand of Λik,S of rank r,
ii) for a ∈ OF , we have

det(a | Fk) =
∏

φ

φ(a)rφ ,

where this last identity is meant as an identity of polynomial functions on OF (comp.
[K], [RZ]).

It is clear that this functor is represented by a projective scheme over SpecOE .

6



Consider the group scheme GI over SpecOF0

GI := AutOF
(ΛI)(3.2)

with S-valued points the OF ⊗OF0
OS-automorphisms of the lattice chain ΛI ⊗OF0

OS .
A simple extension of the arguments of [RZ] Appendix (see also [P]) shows that GI is
smooth over SpecOF0 , comp. Remark 3.1 below. Often we will use the base change of
GI to SpecOE , which we will denote by the same symbol.

Remark 3.1 The arguments of [RZ] carry over with essentially no changes to the follow-
ing situation. Let (F0,OF0 , π0) as in section 2. Let O be an OF0-order in a semi-simple
F0-algebra O ⊗OF0

F0. For the purposes of the present paper we may assume that O
is commutative, i.e. O ⊗OF0

F0 is a product of field extensions of F0. Let Π ∈ O be
an element with π0 ∈ (Π). Let V be a finite-dimensional F0-vector space which is an
O ⊗OF0

F0-module. An O-lattice in V is a OF0-lattice in V stable under O. A (O, Π)-
periodic lattice chain is a chain of inclusions of O-lattices in V ,

⊂ Λi−1 ⊂ Λi ⊂ . . . , i ∈ Z ,

such that

(i) ∃r : Λi−r = ΠΛi , ∀i ∈ Z.

(ii) Λi/Λi−1 is a free O/ΠO-module ∀i ∈ Z.

Let us fix a (O, Π)-periodic lattice chain L. Let S be a OF0-scheme such that π0 is
locally nilpotent on S. A chain of O ⊗OF0

OS-modules of type (L) on S is given by a
chain of O ⊗OF0

OS-module homomorphisms,

. . .
%−→ Mi−1

%−→ Mi
%−→ . . .

such that the following conditions are satisfied.

(i) %r = Π.

(ii) Locally on S there exist isomorphisms of O ⊗OF0
OS-modules,

Mi ' Λi ⊗OF0
OS , Mi/%(Mi−1) ' Λi/Λi−1 ⊗OF0

OS .

The proof of Prop. A.4 of loc. cit. shows then that any chain {Mi} of O ⊗OF0
OS-

modules of type (L) on S is locally on S isomorphic to L⊗OF0
OS , and that the functor

on (Sch/S),
S′ 7−→ Aut({Mi ⊗OS OS′})

is representable by a smooth group scheme over S.

4 Affine flag varieties for GLd

If R is a k-algebra, a lattice in R((Π))d is by definition a sub-R[[Π]]-module L of R((Π))d

which is locally on SpecR free of rank d and such that L⊗R[[Π]]R((Π)) = R((Π))d. (Here
R[[Π]], resp. R((Π)) denotes the power series ring, resp. Laurent power series ring in
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the indeterminate Π over R). Equivalently, a lattice is a sub-R[[Π]]-module L of R((Π))d

such that ΠNR[[Π]]d ⊂ L ⊂ Π−NR[[Π]]d for some N and such that Π−NR[[π]]d/L is a
locally free R-module.

Recall that the affine Grassmannian Gr over k associated to GLd is the Ind-scheme
over Spec k which represents the functor on k-algebras which to a k-algebra R associates
the set of lattices L in R((Π))d. The affine Grassmannian can be identified with the fpqc
quotient GLd(k((Π)))/GLd(k[[Π]]) where GLd(k((Π))), resp. GLd(k[[Π]]) is the Ind-
group scheme, resp. group scheme over Spec k whose R-rational points is GLd(R((Π))),
resp. GLd(R[[Π]]).

For each i ∈ {0, . . . , d− 1}, we will denote by Λ̃i the k[[Π]]-lattice in

k((Π))d = k((Π))ẽ1 ⊕ · · · ⊕ k((Π))ẽd

which is generated by Π−1ẽ1, . . . , Π−1ẽi, ẽi+1, . . . , ẽd.
Denote by PI , resp. P ′

I , the parahoric subgroup scheme of GLd(k((Π))), resp.
SLd(k((Π))), whose k-valued points stabilize the lattice chain

Λ̃i0 ⊂ Λ̃i1 ⊂ · · · ⊂ Λ̃im−1 ⊂ Π−1Λ̃i0 .(4.1)

If I = {0, . . . , d− 1}, then PI , resp. P ′
I , is an Iwahori subgroup scheme of GLd(k((Π))),

resp. SLd(k((Π))).

For every nonempty subset I = {i0 < · · · < im−1} ⊂ {0, . . . , d−1}, we have the partial
affine flag variety FlI whose R-rational points parametrize lattice chains in R((Π))d

L0 ⊂ L1 ⊂ · · · ⊂ Lm−1 ⊂ Π−1L0(4.2)

with Lk+1/Lk, resp. Π−1L0/Lm−1 locally free R-modules of rank ik+1 − ik for k =
0 . . . m− 2, resp. (d + i0)− im−1.

The affine Grassmannian variety corresponds to the choice I = {0}, while the full
affine flag variety corresponds to I = {0, . . . , d−1}. The Ind-group scheme GLd(k((Π)))
acts on the partial affine flag variety FlI and we can identify FlI (GLd(k((Π)))-equivariantly)
with the fpqc quotient

FlI = GLd((k((Π)))/PI .(4.3)

Given r ∈ Z, we may also consider the special partial affine flag variety FlrI whose
R-rational points parametrize lattice chains in R((Π))d

L0 ⊂ L1 ⊂ · · · ⊂ Lm−1 ⊂ Π−1L0(4.4)

such that:

i) Lk+1/Lk, resp. Π−1L0/Lm−1 are locally free R-modules of rank ik+1 − ik for k =
0 . . . m− 2, resp. (d + i0)− im−1,

ii) ∧dL0 = ΠrR[[Π]]d (as a submodule of ∧dR((Π))d = R((Π))).
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The special affine flag varieties FlrI for various r are all isomorphic to the fpqc quotient

SLd(k((Π)))/P ′
I

(as abstract Ind-schemes but not SLd(k((Π)))-equivariantly, unless r = −i0). For I =
{0}, we obtain the special affine Grassmannian

Grr ' SLd(k((Π)))/SLd(k[[Π]]) .

Now fix an identification OF ⊗OF0
k = k[[Π]]/(Πe) and OF ⊗OF0

k-isomorphisms

Λik ⊗OF0
k ' Λ̃ik ⊗k[[Π]] k[[Π]]/(Πe)

which induce a k[[Π]]/(Πe)-module chain isomorphism

ΛI ⊗OF0
k ' Λ̃I ⊗k[[Π]] k[[Π]]/(Πe) .

Let R be a k-algebra. For an R-valued point {Fk}k of Mnaive
I , we have

Fk ⊂ Λik ⊗OF0
R = Λ̃ik ⊗k[[Π]] R[[Π]]/(Πe) .(4.5)

Let Lk ⊂ Λ̃ik ⊗k[[Π]] R[[Π]] be the inverse image of Fk under the canonical projection

Λ̃ik ⊗k[[Π]] R[[Π]] → Λ̃ik ⊗k[[Π]] R[[Π]]/(Πe) .

so that we have
ΠeΛ̃ik ⊗k[[Π]] R[[Π]] ⊂ Lk ⊂ Λ̃ik ⊗k[[Π]] R[[Π]] .

Then {Lk}k gives an R-valued point of FlI . In this way, we obtain a morphism

i : Mnaive
I ⊗OE k −→ FlI(4.6)

which is a closed immersion (of Ind-schemes).

5 The splitting model for G = ResF/F0GLd

Fix I = {i0 < i1 < . . . < im−1} ⊂ {0, . . . , d − 1}. Consider the functor MI =
M(OF , ΛI , r) on (Schemes/SpecOK) which to a OK-scheme S associates the set MI(S)
of collections {F j

k}j,k of OF ⊗OF0
OS-submodules of Λik,S which fit into a commutative

diagram
Λi0,S → Λi1,S → · · · → Λim−1,S

π→ Λi0,S
∪ ∪ ∪ ∪
Fe

0 → Fe
1 → · · · → Fe

m−1 → Fe
0

∪ ∪ ∪ ∪
Fe−1

0 → Fe−1
1 → · · · → Fe−1

m−1 → Fe−1
0

∪ ∪ ∪ ∪
...

...
...

...
∪ ∪ ∪ ∪
F1

0 → F1
1 → · · · → F1

m−1 → F1
0
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and are such that:

a) F j
k is Zariski locally on S a OS-direct summand of Λik,S of rank

∑j
l=1 rl.

b) For each a ∈ OF and j = 1, . . . , e,

(a⊗ 1− 1⊗ φj(a))(F j
k) ⊂ F j−1

k

where the tensor products a⊗ 1, 1⊗φj(a) are in OF ⊗OF0
OS and where, for each k, we

set F0
k = (0).

The functorMI is obviously represented by a projective scheme over SpecOK . Notice
that there is an OK-morphism

πI : MI → Mnaive
I ⊗OE OK(5.1)

given by {F j
k}k,j 7→ {Fe

k}k. Indeed, if Fk = Fe
k supports a filtration {F j

k}j with the
above properties, then the characteristic polynomial of the action of a ∈ OF on Fk is

e
∏

l=1

(T − φl(a))rl(5.2)

and therefore Fk satisfies the condition ii) in the definition of Mnaive
I .

Proposition 5.1 The morphism πI induces an isomorphism

πI ⊗OK K : MI ⊗OK K ∼−→ Mnaive
I ⊗OE K

on the generic fibers.

Proof. To each S-valued point of Mnaive
I with S a K-scheme, given by {Fk}k, we can

associate an S-valued point of MI by considering, for each k, the filtration {F l
k}l asso-

ciated to the grading on the OF ⊗OF0
K-module Fk = Fe

k given using the decomposition

OF ⊗OF0
K ' ⊕e

l=1K, a⊗ b 7→ (bφl(a))l=1,...,e .

This gives a morphism inverse to πI ⊗OK K.

For each l = 1, . . . , e, k = 0, . . . , m − 1, set Ξl
ik = Λik ⊗OF ,φl OK (an OK-lattice

in V ⊗F,φl K). Denote by Ξl
I the OK-lattice chain in V ⊗F,φl K given by the lattices

{an
l Ξl

ik}k,n∈Z. An “essential” part of the lattice chain Ξl
I is

Ξl
i0 ⊂ Ξl

i1 ⊂ · · · ⊂ Ξl
im−1

⊂ a−1
l Ξl

i0 ,

in the sense that each successive link Ξl
i ⊂ Ξl

i′ in the total lattice chain Ξl
I is a multiple

of one of the links in the part above.
Let Gl

I be the group scheme over SpecOK whose S-points are the OS-automorphisms
of the chain Ξl

I ⊗OK OS (once again, a simple extension of [RZ] Prop. A.4 shows that
this is a smooth group scheme, comp. Remark 3.1).
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Now if S a scheme over SpecOK , we obtain from ΛI,S a O(l)
K ⊗OK OS-lattice chain

Λl
I,S by extending scalars via

φl ⊗OK OS : OF ⊗OF0
OS ' OS [T ]/(Q(T )) → OS [T ]/(Ql(T )) = O(l)

K ⊗OK OS .

An argument as in the proof of (2.4), shows that we have functorial isomorphisms of
chains of OS-modules

Ξl
I,S = ΛI ⊗OF ,φl OS ' ker(π − al | Λl

I ⊗OK OS)(5.3)

obtained by sending the element λ⊗ 1 of ΛI ⊗OF ,φl OS to the image of Ql+1(π) · (λ⊗ 1)
in Λl

I ⊗OK OS .

Denote by G(l)
I the group scheme over SpecOK whose S-points are the O(l)

K ⊗OK OS-
automorphisms of the chain Λl

I ⊗OK OS (once again we can see that this is a smooth
group scheme, comp. Remark 3.1). The isomorphism (5.3) induces a group scheme
homomorphism

G(l)
I → Gl

I .(5.4)

Now suppose that {F j
k}j,k is an S-valued point of MI . For l = 1, . . . , e, let us set

Ψl
ik,S = ker(Ql(π) | Λik,S/F l−1

k ) ;

this is an O(l)
K ⊗OK OS-module. We also set

Υl
ik,S := ker(π − al | Λik,S/F l−1

k ) = ker(π − al | Ψl
ik,S) .

We have O(l)
K ⊗OK OS-module, resp. OS-module, homomorphisms

Ψl
ik,S → Ψl

ik+1,S , Ψl
im−1,S

T→ Ψl
i0,S

resp.
Υl

ik,S → Υl
ik+1,S , Υl

im−1,S
al→ Υl

i0,S

induced by the OF ⊗OF0
OS-module homomorphisms

Λik,S/F l−1
k → Λik+1,S/F l−1

k+1, Λim−1,S/F l−1
m−1

π→ Λi0,S/F l−1
0

by taking the kernel of Ql(π), resp. of π − φl(π) = π − al.

Proposition 5.2 a) The formation of Ψl
ik,S, resp. of Υl

ik,S, from {F j
k}j,k commutes

with base change.
b) The O(l)

K ⊗OK OS-module Ψl
ik,S, resp. the OS-module Υl

ik,S, is locally on S free of
rank d.

c) The chain Ψl
ik,S of O(l)

K ⊗OK OS-modules given by

· · · → Ψl
i0,S → · · · → Ψl

im−1,S
π→ Ψl

i0,S → · · ·

11



is Zariski locally on S isomorphic to the chain of O(l)
K ⊗OK OS-modules Λl

I ⊗OK OS.
Similarly, the chain Υl

I,S of OS-modules on S given by

· · · → Υl
i0,S → · · · → Υl

im−1,S
al→ Υl

i0,S → · · ·

is Zariski locally on S isomorphic to the chain of OS-modules Ξl
I ⊗OK OS.

Proof. The statements for the modules Υl
ik,S follow from the corresponding statements

for the modules Ψl
ik,S . Indeed, we can see this fact using the functorial isomorphisms

(5.3) and the fact that
Υl

ik,S = ker(π − al | Ψl
ik,S) .

Write Ql(T )−1(F l−1
k ) for the inverse image of F l−1

k ⊂ Λik,S under Λik,S → Λik,S given
by multiplication by Ql(T ). Notice that since Ql(T )(F l−1

k ) = (0), by (2.4) we have
F l−1

k ⊂ Ql(T )(Λik,S). Hence, there is an exact sequence

0 → ker(Ql(T ) | Λik,S) → Ql(T )−1(F l−1
k ) → F l−1

k → 0 .

By (2.4), ker(Ql(T ) | Λik,S) ' Λik,S/Ql(T )Λik,S . Hence, Ql(T )−1(F l−1
k ) is a locally free

OS-module of rank d(e− l + 1) +
∑l−1

i=1 ri whose formation commutes with base change.
The exact sequence

0 → Λik,S/Ql(T )−1(F l−1
k )

Ql(T )→ Λik,S/F l−1
k → Λik,S/Ql(T )Λik,S → 0

now implies that Λik,S/Ql(T )−1(F l−1
k ) is also OS-locally free. Hence, Ql(T )−1(F l−1

k ) ⊂
Λik,S is locally an OS-direct summand. Now

0 → Ql(T )−1(F l−1
k )/F l−1

k → Λk,S/F l−1
k → Λik,S/Ql(T )−1(F l−1

k ) → 0

implies that Ψl
ik,S = Ql(T )−1(F l−1

k )/F l−1
k is a O(l)

K ⊗OK OS-module which is locally free
of rank d(e− l +1) as an OS-module and that its formation commutes with base change
in S. To show that Ψl

ik,S is locally on S a free O(l)
K ⊗OK OS-module it is enough to show

this for S = Spec L, L a field. This is easy to see if L is an extension of K. If L is an
extension of k′, then O(l)

K ⊗OK L = L[π]/(πe−l+1). In this case, there is a L[π]/(πe)-basis
f1, . . . , fd of Λik ⊗OK L and l − 1 ≥ s1 ≥ · · · ≥ sd ≥ 0 such that

F l−1
k = L[π]/(πe) · πe−s1f1 ⊕ · · · ⊕ L[π]/(πe) · πe−sdfd .(5.5)

Then

Ψl
ik,S =

L[π]/(πe) · πl−1−s1f1 ⊕ · · · ⊕ L[π]/(πe) · πl−1−sdfd

L[π]/(πe) · πe−s1f1 ⊕ · · · ⊕ L[π]/(πe) · πe−sdfd
,(5.6)

which is freely generated over L[π]/(πe−l+1) by the classes of πl−1−s1f1, . . . , πl−1−sdfd.
It remains to show (c) for Ψl

ik,S , i.e that the chain Ψl
I,S is Zariski locally isomorphic

to the chain Λl
I ⊗OK OS . Given (b), an extension of the arguments in the proof of [RZ]

Prop. A 4, p. 133 shows that it will be enough to prove that the cokernels of

Ψl
ik,S → Ψl

ik+1,S , Ψl
im−1,S

π→ Ψl
i0,S
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are Zariski locally on S isomorphic to the O(l)
K ⊗OK OS-modules (Λl

ik/Λl
ik+1

) ⊗OK OS

and (Λl
i0/TΛl

im−1
)⊗OK OS respectively, comp. Remark 3.1. In what follows, we will only

deal with the case of Ψl
ik,S → Ψl

ik+1,S , the case of Ψl
im−1,S

π→ Ψl
i0,S being similar. Notice

that Λl
ik/Λl

ik+1
is a module over O(l)

K /TO(l)
K = OK [T ]/(T,Ql(T )) ' OK/($e−l+1) with

$ a uniformizer of OK . For simplicity of notation, set

Rl = OK/($e−l+1) .

The cokernel of Ψl
ik,S → Ψl

ik+1,S is a module over R1 ⊗OK OS . Hence, it is enough to
assume that S = Spec R is an affine R1-scheme and prove the result in this case. In fact,
since MI is a Noetherian scheme, we can also assume that R is Noetherian. We can lift
the R1-chain ΛI,R1 := ΛI ⊗OF0

R1 to a chain of R1[[T ]]-free modules Λ̃I

Λ̃i0 ⊂ Λ̃i1 ⊂ · · · ⊂ Λ̃im−1 ⊂ T−1Λ̃i0

which are all R1[[T ]]-submodules of R1((T ))d such that there is an isomorphism of
R1[T ]/(Q(T )) = OK ⊗OF0

R1-chains

Λ̃I ⊗R1[[T ]] R1[[T ]]/(Q(T )) ' ΛI,R1 .

Now notice that since each aj is nilpotent in R1, the elements T − aj of R1[[T ]] are
invertible in R1((T )) and hence the inverse Ql(T )−1 makes sense in R1((T )). The diagram
corresponding to the R-valued point {F j

k}j,k of MI now provides us with a diagram of
R[[T ]]-lattices in R((T ))d:

Λ̃i0,R ⊂ Λ̃i1,R ⊂ · · · ⊂ Λ̃im−1,R ⊂ T−1Λ̃i0,R
∪ ∪ ∪ ∪

Ql(T )−1Ll−1
0 ⊂ Ql(T )−1Ll−1

1 ⊂ · · · ⊂ Ql(T )−1Ll−1
m−1 ⊂ T−1Ql(T )−1Ll−1

0
∪ ∪ ∪ ∪
Ll−1

0 ⊂ Ll−1
1 ⊂ · · · ⊂ Ll−1

m−1 ⊂ T−1Ll−1
0

∪ ∪ ∪ ∪
Q(T )Λ̃i0,R ⊂ Q(T )Λ̃i1,R ⊂ · · · ⊂ Q(T )Λ̃im−1,R ⊂ T−1Q(T )Λ̃i0,R ,

where Λ̃ik,R = Λ̃ik ⊗R1[[T ]] R[[T ]], and Ll−1
k , resp. Ql(T )−1Ll−1

k , is the inverse image of
F l−1

k , resp. Ql(T )−1(F l−1
k ) under the surjection

Λ̃ik,R → Λ̃ik,R ⊗R[[T ]] R[[T ]]/(Q(T )) ' Λik,R .

Each quotient created by the inclusion of any two modules in this diagram is a finitely
generated locally free R-module. In particular

Ql(T )−1Ll−1
k+1/Ql(T )−1Ll−1

k

is annihilated by T and is R-locally free of rank equal to the rank of Λ̃ik+1,S/Λ̃ik,S . It
now follows that the cokernel of

Ψl
ik,S = Ql(T )−1Ll−1

k /Ll−1
k → Ql(T )−1Ll−1

k+1/L
l−1
k+1 = Ψl

ik+1,S

13



is isomorphic to
(

Ql(T )−1Ll−1
k+1/Ql(T )−1Ll−1

k

)

⊗R1 Rl

and therefore it is a locally free R ⊗R1 Rl-module of the expected rank. This concludes
the proof.

Now let M l
I := M(OK ,Ξl

I , rl) be the (“unramified”) local model over SpecOK for
G = GLd/K = GL(V ⊗F,φl K), µ given by (1rl , 0d−rl), and the lattice chain Ξl

I ([RZ]).
By definition, M l

I = M(OK , Ξl
I , rl) is the projective scheme over OK which classifies

collections {Fk}k of OS-submodules of Ξl
ik,S := Ξl

ik⊗OKOS which fit into a commutative
diagram

Ξl
i0,S → Ξl

i1,S → · · · → Ξl
im−1,S

al→ Ξl
i0,S

∪ ∪ ∪ ∪
F0 → F1 → · · · → Fm−1 → F0

and are such that Fk is Zariski locally on S a OS-direct summand of Ξl
ik,S of rank rk.

Let us denote by ˜MI the scheme over SpecOK whose S-points correspond to pairs

˜MI(S) := ({F l
I}l , {σl

I})e
l=2 ,

where {F l
k}l,k is an S-valued point of MI and for l = 2, . . . , e,

σl
I : Ψl

I,S
∼→ Λl

I,S

is an isomorphism of chains of O(l)
K ⊗OK OS-modules. The natural projection morphism

qI : ˜MI →MI

is a torsor for the smooth group scheme
∏e

l=2 G
(l)
I by the action

(gl)e
l=2 ·

(

{F l
k}l,k , {σl

I}e
l=2

)

=
(

{F l
k}l,k , {gl · σl

I}e
l=2

)

.(5.7)

Notice that an isomorphism σl
I as above, in view of (5.3), induces an isomorphism of

chains of OS-modules
τ l
I : Υl

I,S
∼→ Ξl

I,S , l = 2, . . . , e .

For l = 1, Ψ1
ik,S = Λik,S and (5.3) gives a canonical isomorphism

vI : Υ1
I,S

∼→ Ξ1
I,S .

Now if {F l
k}l,k is an S-valued point of MI , then since (π − al)F l

k ⊂ F l−1
k we can

consider F l
k/F

l−1
k as an OS-submodule of Υl

ik,S = ker(π − al | Ψl
ik,S). Consequently, if

({F l
k}l,k , { σl

I}e
l=2) is an S-valued point of ˜MI , then we can consider

τ l
ik(F l

k/F l−1
k ) ⊂ Ξl

ik,S .(5.8)
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For l = 2, . . . , e, the OS-modules τ l
ik(F l

k/F
l−1
k ) are locally direct summands of Ξl

ik,S

and they provide us with an S-valued point of the “unramified” local model M l
I . For

l = 1, the OS-modules vik(F1
k ) are locally direct summands of Ξ1

ik,S and provide us with
an S-valued point of the local model M1

I . We conclude that there is a morphism of
OK-schemes

pI : ˜MI →
e

∏

l=1

M l
I

given by

({F l
k}l,k , {σl

I}e
l=2) 7→

(

{vk(F1
k )}k, {σ2

k(F l
k/F1

k )}k, . . . , {σe
k(Fe

k/Fe−1
k )}k

)

.

It is easy to see that the morphism pI is also a
∏e

l=2 G
(l)
I -torsor. Note that the

corresponding
∏e

l=2 G
(l)
I -action on ˜MI is different from the action which produces the

torsor qI : ˜MI →MI :

(gl)e
l=2 ·

(

{F l
k}l,k , {σl

I}e
l=2

)

=
(

{(σl
I)
−1 · gl · σl

I(F l
k)}l,k , {gl · σl

I}e
l=2

)

.(5.9)

In short, we have obtained a diagram of morphisms of schemes over SpecOK :

˜MI

pI ↙ ↘ qI

∏e
l=1 M l

I MI
πI→ Mnaive

I ⊗OE OK

(5.10)

in which both of the slanted arrows are torsors for the smooth group scheme
∏e

l=2 G
(l)
I .

This diagram allows us to think of the splitting model as a twisted product of the
“unramified” local models M l

I . In the next sections, we will see that the special fiber of
this diagram coincides with a certain geometric convolution diagram ([Lu], [H-N]). By
the main result of [G1] the schemes M l

I are flat over SpecOK . The existence of such a
diagram of torsors for a smooth group scheme therefore implies:

Theorem 5.3 The scheme MI is flat over SpecOK .

6 Local models and affine flag varieties

We continue with the notation of the previous sections. Recall that there is a closed
immersion of Ind-schemes

i : Mnaive
I ⊗OE k −→ FlI
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which is described in §4. This immersion is equivariant for the action of PI ⊂ GLd(k((Π)))
in the following sense. The special fiber ḠI := GI ⊗OE k of the group scheme GI defined
in §3 acts on Mnaive

I ⊗OE k. The isomorphism ΛI⊗OF0
k ' Λ̃I⊗k[[Π]]k[[Π]]/(Πe) allows us

to identify ḠI with the group scheme giving the k[[Π]]/(Πe)-automorphisms of the chain
Λ̃I ⊗k[[Π]] k[[Π]]/(Πe). The immersion i is PI -equivariant in the sense that the action of
PI on FlI stabilizes the image of i, the action on this image factors through the natural
group scheme homomorphism PI → ḠI and i is ḠI -equivariant. As a result, the image
of i is a (finite) union of PI -orbits in FlI = GLd(k((Π)))/PI . In fact, if R is a k-algebra,
the R-rational points of the image of i correspond to the lattice chains

L0 ⊂ L1 ⊂ · · · ⊂ Lm−1 ⊂ Π−1L0

which fit into a diagram

Λ̃i0,R ⊂ Λ̃i1,R ⊂ · · · ⊂ Λ̃im−1,R ⊂ Π−1Λ̃i0,R
∪ ∪ ∪ ∪
L0 ⊂ L1 ⊂ · · · ⊂ Lm−1 ⊂ Π−1L0
∪ ∪ ∪ ∪

ΠeΛ̃i0,R ⊂ ΠeΛ̃i1,R ⊂ · · · ⊂ ΠeΛ̃im−1,R ⊂ Πe−1Λ̃i0,R

and are such that Lk/ΠeΛ̃ik,R, and Λ̃ik,R/Lk are R-locally free of rank r, resp. de− r.

Similarly, the special fiber M l
I ⊗OK k′ of the unramified local model M l

I can be
considered as a closed subscheme of the affine flag variety FlI ⊗k k′ via a natural closed
immersion

il : M l
I ⊗OK k′ → FlI ⊗k k′ .

In fact, by [G1], M l
I ⊗OK k′ can be identified with the scheme-theoretic union of a finite

number of Schubert varieties in FlI and is reduced (see [G1]). This union is stable under
the action of PI .

Suppose now that R is a k′-algebra and that {F j
k}j,k gives a Spec R-valued point of

MI ⊗OK k′. For j = 1, . . . , e, let

Lj
k ⊂ Λk ⊗k[[Π]] R[[Π]]

be the inverse image of F j
k ⊂ Λik ⊗OF0

R ' Λ̃ik ⊗k[[Π]] R[[Π]]/(Πe) under

Λ̃ik ⊗k[[Π]] R[[Π]] → Λ̃ik ⊗k[[Π]] R[[Π]]/(Πe) .

We obtain a R[[Π]]-lattice chain Lj
I

Lj
0 ⊂ Lj

1 ⊂ · · · ⊂ Lj
m−1 ⊂ Π−1Lj

0

which provides us with a Spec R-valued point of the affine flag variety FlI . In this way
we obtain morphisms of Ind-schemes

F j : MI ⊗OK k′ → FlI ⊗k k′(6.1)
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and

F = (F j)j : MI ⊗OK k′ →
e

∏

j=1

FlI ⊗k k′ .(6.2)

The morphism F is a closed immersion. Actually, the R-rational points of MI ⊗OK k′

correspond to collections of lattice chains for j = 1, . . . , e,

Lj
0 ⊂ Lj

1 ⊂ · · · ⊂ Lj
m−1 ⊂ Π−1Lj

0

which fit into a diagram

Λ̃i0,R ⊂ Λ̃i1,R ⊂ · · · ⊂ Λ̃im−1,R ⊂ Π−1Λ̃i0,R
∪ ∪ ∪ ∪

Π1−eL1
0 ⊂ Π1−eL1

1 ⊂ · · · ⊂ Π1−eL1
m−1 ⊂ Π−eL1

0
∪ ∪ ∪ ∪
...

...
...

...
∪ ∪ ∪ ∪
Le

0 ⊂ Le
1 ⊂ · · · ⊂ Le

m−1 ⊂ Π−1Le
0

∪ ∪ ∪ ∪
...

...
...

...
∪ ∪ ∪ ∪
L1

0 ⊂ L1
1 ⊂ · · · ⊂ L1

m−1 ⊂ Π−1L1
0

∪ ∪ ∪ ∪
ΠeΛ̃i0,R ⊂ ΠeΛ̃i1,R ⊂ · · · ⊂ ΠeΛ̃im−1,R ⊂ Πe−1Λ̃i0,R,

and are such that Lj
k/L

j−1
k , and Πj−eLj

k/Πj+1−eLj+1
k are R-locally free of rank rj for

j = 2, . . . , e, while L1
k/ΠeΛ̃ik,R and Λ̃ik,R/Π1−eL1

k are R-locally free of rank r1.

In what follows, for simplicity, we will use a bar to denote the special fiber of a scheme
(or of a morphism of schemes) over SpecOK or over SpecOE .

We will see that the special fiber MI can be naturally identified with the geometric
convolution of the reduced subschemes M l

I , l = 1, . . . , e, of the affine flag variety FlI⊗kk′.
More precisely, we will see below that the special fiber of the diagram (5.10) relates to a
convolution diagram for the PI -equivariant subschemes M l

I , l = 1, . . . , e, defined as by
Lusztig, Ginzburg etc. ([Lu]):

U

p1 ↙ ↘ p2

M1
I × · · · ×M e

I M1
I×̃ · · · ×̃M e

I
p3→ Mnaive

I ⊗OE OK ⊂ FlI ⊗k k′ .

(6.3)

Let us explain how the diagram (6.3) is obtained (e.g [Lu]). For simplicity of notation,
we set G = GLd(k((Π))) and let π : G → FlI = G/PI be the natural quotient morphism
(of Ind-schemes). We also set Zl = M l

I ⊂ FlI ⊗k k′ and denote by Z̃l the inverse image
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of Zl under π ⊗k k′. Often we will omit from the notation the base change from k to k′;
this should not cause any confusion. Now set

U = Z̃1 × · · · × Z̃e−1 × Ze ⊂ G× · · · ×G×G/PI

and let
p1 : U → Z1 × · · · × Ze−1 × Ze

be the coordinate-wise projection (g1, · · · , ge−1, gePI) 7→ (g1PI , . . . , ge−1PI , gePI). The
morphism p1 is a (PI)e−1-torsor for the action given by

(v1, . . . , ve−1) · (g1, . . . , ge−1, gePI) = (g1v−1
1 , . . . , ge−1v−1

e−1, gePI) .(6.4)

The convolution Z1×̃ · · · ×̃Ze is defined as the quotient of U by the free action of
(PI)e−1 given by

(v1, .., ve−1) ∗ (g1, .., ge−1, gePI) = (g1v−1
1 , v1g2v−1

2 , .., ve−2ge−1v−1
e−1, ve−1gePI) .(6.5)

We denote by
p2 : U → Z1×̃ · · · ×̃Ze

the quotient morphism.
Finally, the morphism Z̃1 × · · · × Z̃e−1 × Ze → G/PI given by (g1, . . . , ge−1, gePI) 7→

g1g2 · · · gePI factors through the quotient to give

p3 : Z1×̃ · · · ×̃Ze → G/PI .

Let us now explain how the above convolution diagram (6.3) relates to the diagram
(5.10): There is an isomorphism Z1×̃ · · · ×̃Ze 'MI given by

(g1, . . . , ge) 7→ (Πe−1g1 · Λ̃I ,Πe−2g1g2 · Λ̃I , . . . , (g1g2 · · · ge) · Λ̃I) .

In fact, an R-valued point (g1, . . . , ge−1, gePI) of Z̃1 × · · · × Z̃e−1 ×Ze determines a pair
consisting of a point

(L1
I ,L2

I , . . . ,Le
I) = (Πe−1g1 · Λ̃I,R,Πe−2g1g2 · Λ̃I,R, . . . , (g1g2 · · · ge) · Λ̃I,R)

of MI and a collection, for j = 2, . . . , e, of isomorphisms of chains

σj
I : Π−e+j−1Lj−1

I /Lj−1
I ' Λ̃I,R/Πe−j+1Λ̃I,R ' Λj

I,R .

The isomorphisms σj
I are given via the inverses of the maps given by the action of

g1 · · · gj−1

Λ̃I,R → g1 · · · gj−1 · Λ̃I,R = Π−e+j−1Lj−1
I .

The pair ((Lj
I)j , (σj

I))
e
j=2 corresponds to a point in the special fiber ˜MI . Hence, we

obtain a morphism
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u : U → ˜MI(6.6)

and (after the identification Z1×̃ · · · ×̃Ze = M1
I×̃ · · · ×̃M e

I 'MI) a diagram

U
↓ u

˜MI

pI ↙ ↘ qI

M1
I × · · · ×M e

I M1
I×̃ · · · ×̃M e

I
p3→ Mnaive

I ⊗OE OK ⊂ FlI ⊗k k′ .

(6.7)

It is easy to see that we have p1 = u · pI and p2 = u · qI .
There is a natural surjective group scheme homomorphism

(PI)e−1 →
e

∏

l=2

Autk(Λ̃I/Πe−l+1Λ̃I) =
e

∏

l=2

G(l)
I ;(6.8)

Denote its kernel by K. Then the morphism u realizes ˜MI as the quotient of U by the
action of K ⊂ (PI)e−1 given by (6.4). Then, the torsor pI is identified with the

∏e
l=2 G

(l)
I -

torsor obtained from p1 by taking the quotient by K. Similarly, and at the same time,
the morphism u realizes ˜MI as the quotient of U by the action of K ⊂ (PI)e−1 given
by (6.5). Then, the torsor qI is identified with the

∏e
l=2 G

(l)
I -torsor obtained from p2 by

taking the quotient.

7 The canonical local model for G = ResF/F0GLd

We continue with the assumptions and the notation of the previous sections.

Definition 7.1 The canonical model M can
I := M can(OF ,ΛI , r) for the group G =

ResF/F0GLd, the coweight µ given by r, and the lattice chain ΛI , is the scheme the-
oretic image of the morphism

π′I : MI → Mnaive
I ⊗OE OK → Mnaive

I

which is obtained by composing the morphism πI with the base change morphism.

Since π′I is proper, the canonical local model M can
I is a closed subscheme of the naive

local model Mnaive
I . Using Proposition 5.1 we see that M can

I and Mnaive
I have the same

generic fiber. The scheme M can
I is flat over SpecOE since, by Theorem 5.3, MI is flat

over SpecOK . Therefore, M can
I is the (flat) scheme theoretic closure of the generic fiber

MI ⊗OE E in Mnaive
I .
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In [PR] §8, we have defined the local model M loc
I for OF , ΛI and r as follows. For

every k ∈ {0, . . . , m − 1}, we consider the standard (naive) local model Mnaive(Λik) :=
Mnaive(OF ,Λik , r) associated to the lattice Λik (and (F, V, µ)). There is a morphism

πik : Mnaive
I → Mnaive(Λik) ,(7.1)

obtained by {Fi}m−1
i=0 7→ Fk. In [PR], we set

M loc
I :=

⋂

ik∈I

π−1
ik (M loc(Λik))(7.2)

(scheme theoretic intersection in Mnaive
I ) where M loc(Λik) ⊂ Mnaive(Λik) are the (flat)

local models of EL-type which were studied in [PR]. By the above remarks, we have

M loc(Λik) = M can
{ik}.

The recent results of Görtz imply now the following theorem.

Theorem 7.2
(a) M loc

I is flat over OE and hence M can
I = M loc

I .
(b) The special fiber M can

I ⊗OE k is reduced; its irreducible components are normal
and with rational singularities.

Remark 7.3 (a) The flatness property in (a) above was conjectured in [PR], §8.

(b) Denote by µi the miniscule coweight (1ri , 0d−ri) of GLd. By [G1], the special fiber
M l

I can be identified with the union of Schubert cells
⋃

w∈AdmI(µl)Ow of the partial affine
flag variety FlI ⊗k k′. Here AdmI(µl) denotes the µl-admissible set inside W̃I\W̃/W̃I .
Here W̃ denotes the extended affine Weyl group of GLd(k((Π))) and W̃I the subgroup of
W̃ which corresponds to the parahoric subgroup PI ; see [KR]. By Theorem 7.2 (b) and
the discussion in §6, M can

I can be identified with the reduced image of the convolution
morphism





⋃

w∈AdmI(µ1)

Ow



 ×̃ · · · ×̃





⋃

w∈AdmI(µe)

Ow



 → FlI ⊗k k′ .

This image is equal to the union
⋃

w∈AdmI(µ)Ow with µ = µ1 + · · ·+ µe.

Proof. Notice that each morphism πik induces an isomorphism between the generic
fibers:

πik ⊗OE E : Mnaive
I ⊗OE E ∼→ Mnaive(Λik)⊗OE E .

Therefore, M loc
I ⊗OE E = Mnaive

I ⊗OE E = M can
I ⊗OE E . Since M can

I is the scheme
theoretic closure of its generic fiber in Mnaive

I , we obtain

M can
I ⊂ M loc

I ⊂ Mnaive
I(7.3)
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where the inclusions are inclusions of closed subschemes. In what follows, for simplicity,
we will use a bar to denote the special fiber of a scheme or a morphism of schemes over
SpecOE . Definition 7.2 implies

M loc
I =

⋂

ik∈I

π̄−1
ik (M loc(Λik))

As we have seen above, Mnaive
I , resp. Mnaive(Λik), can be identified with a closed sub-

scheme of the affine flag, resp. affine Grassmannian, variety for GLd over k. The mor-
phisms π̄ik can then be identified with the restrictions of natural (smooth) projection
morphisms from the affine flag variety to the affine Grassmannian. By [PR], the special
fibers M loc(Λik) are reduced and they are identified with Schubert varieties in the affine
Grassmannian; therefore the inverse images are also (reduced) Schubert varieties in the
affine flag variety. By [G1] (see also [Fa]) all Schubert varieties in the affine flag vari-
ety are normal, simultaneously Frobenius split, and with rational singularities; therefore
arbitrary intersections of Schubert varieties in the affine flag variety are also reduced
unions of Schubert varieties. We conclude that M loc

I is reduced and that its irreducible
components are normal with rational singularities. Therefore, to show that M loc

I is flat
and hence that M can

I = M loc
I , it will be enough to show that the generic points of the

irreducible components of M loc
I lift to characteristic zero. This statement has recently

been shown by Görtz ([G3]) by using results of Haines and Ngô ([HN2]). Hence part
(a) follows. Part (b) now follows from (a) and the above description of the special fiber
M loc

I .

Part III

8 The “naive” local models for G = ResF/F0GSp2g

We continue with the notation of §2. Let (V, { , }) be the standard symplectic vector
space over F of dimension 2g with basis e1, . . . , eg, f1, . . . , fg, i.e

{ei, ej} = {fi, fj} = 0, {ei, fj} = δij .(8.1)

Let < v, w >= TrF/F0{v, w}. Then, since F/F0 is separable, < , > is a non-degenerate
alternating form on V with values in F0 which, for all a ∈ F , satisfies

< av, w >=< v, aw > .(8.2)

If Λ is an OF -lattice in V , we set

Λ∗ := {v ∈ V | {v, λ} ∈ OF , for all λ ∈ Λ} ,

Λ̂ := {v ∈ V | < v, λ >∈ OF0 , for all λ ∈ Λ} ,

for the dual (“complementary”) OF -lattices with respect to the forms { , } and < , >
respectively.
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Now let δ be an OF -generator of the inverse different D−1
F/F0

(if F/F0 is tamely
ramified, we can take δ = π1−e). Set

Λ0 = SpanOF
{e1, . . . , eg, δf1, . . . , δfg} ⊂ V.

Then the OF -lattice Λ0 is self-dual with respect to the form < , >, i.e

Λ̂0 = Λ0 .(8.3)

Indeed, < ei, aδfj >= 0 if i 6= j, and < ei, aδfi >= TrF/F0(aδ); this is in OF0 exactly
when a is in OF .

For 0 ≤ r ≤ g, let

Λr = SpanOF
{π−1e1, . . . , π−1er, er+1, . . . , eg, δf1, . . . , δfg} .

We obtain a chain of inclusions of OF -lattices

πΛ0 ⊂ Λ̂r ⊂ Λ̂0 = Λ0 ⊂ Λr ⊂ π−1Λ0 .(8.4)

In fact, we have

Λ̂r = SpanOF
{e1, . . . , eg, πδf1, . . . , πδfr, δfr+1, . . . , δfg} .

We can extend Λ0 ⊂ Λ1 ⊂ · · · ⊂ Λg to a complete OF -lattice chain {Λi}i∈Z in V by
setting

Λi = π−kΛj , for i = 2gk + j, 0 ≤ j ≤ g,

Λi = π−kΛ̂−j , for i = 2gk + j, −g ≤ j < 0,

The essential part of this OF -lattice chain is

Λ̂g ⊂ · · · ⊂ Λ̂1 ⊂ Λ̂0 = Λ0 ⊂ Λ1 ⊂ · · · ⊂ Λg = π−1Λ̂g .

The lattice chain {Λi}i∈Z is “self-dual” (for every i there is a j such that Λ̂i = Λj , in fact
we have Λ̂i = Λ−i) and “complete” (for every i, dimk(Λi+1/Λi) = 1). We will sometimes
write

< , >±i : Λ±i × Λ∓i → OF0(8.5)

for the corresponding perfect form. These sets of forms are alternating in the sense that

< v, w >±i= − < w, v >∓i .

Now fix a subset I = {i0 < · · · < im−1} ⊂ {0, 1, . . . , g} and consider the self-dual
periodic OF -lattice chain ΛI given by taking all lattices of the form πnΛik , πnΛ̂ik for
n ∈ Z, k = 0, . . . ,m− 1. An essential part of the lattice chain ΛI is

Λ̂im−1 ⊂ · · · ⊂ Λ̂i0 ⊂ Λi0 ⊂ · · · ⊂ Λim−1 ⊂ π−1Λ̂im−1 .

The standard (“naive”) local model Nnaive
I associated by Rapoport-Zink [RZ] to the

reductive group G = ResF/F0GSp(V,< , >), the cocharacter µ given by {(1g, 0g)}φ and
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the parahoric subgroup which is the stabilizer of the OF -lattice chain ΛI , is by definition
the OF0-scheme representing the following functor on (Schemes/OF0):

For every OF0-scheme S, Nnaive
I (S) is the set of collections {Fik ,F−ik}k=0,...,m−1 of

OF ⊗OF0
OS-submodules of Λik,S , resp. Λ̂ik,S which fit into a commutative diagram

Λ̂im−1,S → · · · → Λ̂i0,S → Λi0,S → · · · → Λim−1,S
π→ Λ̂im−1,S

∪ ∪ ∪ ∪ ∪
F−im−1 → · · · → F−i0 → Fi0 → · · · → Fim−1 → F−im−1

and are such that:

a) Fik , resp. F−ik , is Zariski locally on S a OS-direct summand of Λik,S , resp. Λ̂ik,S ,
of rank eg,

b) the compositions F−ik ⊂ Λ̂ik,S → F̂ik , Fik ⊂ Λik,S = ˆ̂Λik,S → F̂−ik , where F̂±ik =
HomOS (F±ik ,OS) and the second maps are the duals of the inclusions Fik ⊂ Λik,S , resp.
F−ik ⊂ Λ̂ik,S , are the zero maps.

c) For every a ∈ OF , and k = 0, . . . , m− 1, we have

det(a | F±ik) =
∏

φ

φ(a)g

where again this identity is meant as an identity of polynomial functions on OF .

Remark 8.1 For F ⊂ Λik,S , we set F⊥ := ker(Λ̂ik,S → F̂) ⊂ Λ̂ik,S . For G ⊂ Λ̂ik,S we

set G⊥ := ker(Λik,S = ˆ̂Λik,S → Ĝ) ⊂ Λik,S . If F , resp. G are locally OS-direct summands
of Λik,S , resp. Λ̂ik,S , then F⊥, resp. G⊥ are locally OS-direct summands of Λ̂ik,S , resp.
Λik,S . Condition (b) implies that

F−ik ⊂ ker(Λ̂ik,S → F̂ik) = (Fik)⊥ , Fik ⊂ ker(Λik,S → F̂−ik) = (F−ik)⊥ .

Since by (a), F±ik , (F±ik)⊥ all have rank eg, we obtain F−ik = (Fik)⊥, Fik = (F−ik)⊥.

Hence, Nnaive
I (S) is in bijection with the set of collections {Fk}k of OF ⊗OF0

OS-
submodules Fk ⊂ Λik,S , which are, Zariski locally on S, OS-direct summands of Λik,S of
rank eg and which satisfy:

i) For every a ∈ OF , k = 0, · · · ,m− 1,

det(a | Fk) =
∏

φ

φ(a)g

(as always this identity is meant as an identity of polynomial functions on OF ),

ii) The inclusions Fk ⊂ Λik,S , F⊥k ⊂ Λ̂ik,S fit into a commutative diagram

Λ̂im−1,S → · · · → Λ̂i0,S → Λi0,S → · · · → Λim−1,S
π→ Λ̂im−1,S

∪ ∪ ∪ ∪ ∪
F⊥m−1 → · · · → F⊥0 → F0 → · · · → Fm−1 → F⊥m−1 .
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9 The splitting model for G = ResF/F0GSp2g

We continue with the notation of the previous section. Consider the functor NI =
N (OF , ΛI , g) on (Schemes/SpecOK) which to a OK-scheme S associates the set of col-
lections {F j

ik ,F j
−ik}k,j=1,...,e of OF ⊗OF0

OS-submodules of Λik,S , resp. Λ̂ik,S which fit
into a commutative diagram

Λ̂im−1,S → · · · → Λ̂i0,S → Λi0,S → · · · → Λim−1,S
π→ Λ̂im−1,S

∪ ∪ ∪ ∪ ∪
Fe
−im−1

→ · · · → Fe
−i0 → Fe

i0 → · · · → Fe
im−1

→ Fe
−im−1

∪ ∪ ∪ ∪ ∪
Fe−1
−im−1

→ · · · → Fe−1
−i0 → Fe−1

i0 → · · · → Fe−1
im−1

→ Fe−1
−im−1

∪ ∪ ∪ ∪ ∪
...

...
...

...
...

∪ ∪ ∪ ∪ ∪
F1
−im−1

→ · · · → F1
−i0 → F1

i0 → · · · → F1
im−1

→ F1
−im−1

and are such that:
a) F j

ik , resp. F j
−ik , is Zariski locally on S a OS-direct summand of Λik,S , resp. Λ̂ik,S ,

of rank jg and satisfies, for all a ∈ OF ,

(a⊗ 1− 1⊗ φj(a))F j
±ik ⊂ F j−1

±ik .

b) the compositions

F j
−ik ⊂ Λ̂ik,S → F̂ j

ik , F j
ik ⊂ Λik,S = ˆ̂Λik,S → F̂ j

−ik ,

are the zero maps.

By Remark 8.1, we see that the above conditions imply that for every k, Fe
−ik =

(Fe
ik)⊥, Fe

ik = (Fe
−ik)⊥. Hence, we obtain chains

(0) ⊂ F1
−ik ⊂ · · · ⊂ Fe

−ik = (Fe
ik)⊥ ⊂ · · · ⊂ (F1

ik)⊥ ⊂ Λ̂ik,S ,

(0) ⊂ F1
ik ⊂ · · · ⊂ Fe

ik = (Fe
−ik)⊥ ⊂ · · · ⊂ (F1

−ik)⊥ ⊂ Λik,S .

c) In addition to (a) and (b), we require that, for all j = 1, . . . , e − 1, and every
a ∈ OF ,

∏

j+1≤q≤e

(a⊗ 1− 1⊗ φq(a)) (F j
−ik)⊥ ⊂ F j

ik ,

∏

j+1≤q≤e

(a⊗ 1− 1⊗ φq(a)) (F j
ik)⊥ ⊂ F j

−ik .
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Obviously the functor NI is represented by a projective scheme over SpecOK which
we will also denote by NI . As in the case of G = ResF/F0GLd, there is a projective
morphism

πI : NI → Nnaive
I ⊗OF0

OK(9.1)

given by {F j
±ik}j,k 7→ {Fe

±ik}k. A construction similar to the one in the proof of
Proposition 5.1 shows that, also in this case, πI induces an isomorphism

πI ⊗OK K : NI ⊗OK K ∼−→ Nnaive
I ⊗OF0

K(9.2)

on the generic fibers.

Now suppose that {F j
±ik}j,k is an S-valued point of NI . As in the case of G =

ResF/F0GLd, for l = 1, . . . , e, let us set

Ψl
±ik,S = ker(Ql(π) | Λ±ik,S/F l−1

±ik ) ;

this is an O(l)
K ⊗OK OS-module. We also set

Υl
±ik,S := ker(π − al | Λik,S/F l−1

±ik ) = ker(π − al | Ψl
±ik,S) .

The proof of Proposition 5.2 implies that the O(l)
K ⊗OK OS-module Ψl

±ik,S is, locally
on S, free of rank 2g and that its formation commutes with base change in S. Similarly,
Υl
±ik,S is a locally free OS-module of rank 2g whose formation commutes with base

change in S.

Lemma 9.1 Suppose that {F j
±ik}j,k is an S-valued point of NI . Then for l = 1, . . . , e,

k = 0, . . . , m− 1, we have
Ql(π)−1(F l−1

±ik ) = (F l−1
∓ik )⊥

where the left hand side is the inverse image of the submodule F l−1
±ik ⊂ Λ±ik,S under

Λ±ik,S → Λ±ik,S given by multiplication by Ql(π).

Proof. The proof of Proposition 5.2 (b) shows that Ql(π)−1(F l
±ik) ⊂ Λ±ik,S is locally

an OS-direct summand of rank g(2e − l + 1). Observe that the condition (c) in the
definition of the splitting model NI translates to

(F l−1
∓ik )⊥ ⊂ Ql(π)−1(F l−1

±ik ) .

Now (F l−1
∓ik )⊥ and Ql(π)−1(F l−1

±ik ) have the same OS-rank and they are both locally OS-
direct summands of Λ±ik,S . Hence, they are equal.

Suppose that {F j
±ik}j,k is an S-valued point of NI . Lemma 9.1 implies that

Ψl
±ik,S = (F l−1

±ik,S)⊥/F l−1
±ik,S .(9.3)
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Therefore, there are perfect OS-bilinear forms

< , >l
±ik : Ψl

±ik,S ×Ψl
∓ik,S → OS(9.4)

induced by the forms < , >±ik . These satisfy

< v, w >l
±ik= − < w, v >l

∓ik , and < av, w >l
±ik=< v, aw >l

±ik ,

for all a ∈ O(l)
K (i.e the pairings respect the action of O(l)

K ).

For l = 1, . . . , e, consider the chain of free O(l)
K -modules Λl

I obtained from the free
OF ⊗OF0

OK-module chain ΛI,OK := ΛI ⊗OF0
OK by extending scalars via

φl : OF ⊗OF0
OK → OK [T ]/(Ql(T )) = O(l)

K .

We will define perfect OK-bilinear alternating pairings

< , >l
±ik : Λl

±ik × Λl
∓ik → OK

which respect the action of O(l)
K as follows: Using (2.4), we see that there are canonical

isomorphisms

Λl
±ik ' Im( Ql(T ) | Λ±ik,OK ) = ker(Ql(T ) | Λ±ik,OK ) .(9.5)

Suppose that v ∈ Λl
±ik , w ∈ Λl

∓ik . Via (9.5) we can identify v with an element of
ker(Ql(T ) | Λ±ik,OK ) ⊂ Λ±ik,OK and choose w̃ ∈ Λ∓ik,OK such that

Ql(T ) · w̃ = w .

We set

< v, w >l
±ik=< v, w̃ >±ik .(9.6)

It is easy to see that this is independent of the choice of w̃. It provides us with perfect
OK-bilinear forms which respect the action of O(l)

K and satisfy

< w, v >l
∓ik= − < v, w >l

±ik

(i.e they are alternating).
Let us set V l for the K[T ]/(Ql(T ))-module obtained from the F⊗F0 K-module V ⊗F0

K by extending scalars via φl ⊗OK K : F ⊗F0 K → K[T ]/(Ql(T )). Then, for all
k = 0, . . . , m − 1, Λl

±ik ⊂ V l and the pairings < , >l
±ik are all restrictions of a single

perfect K-bilinear alternating pairing

< , >l : V l × V l → K
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which respects the action of O(l)
K ⊗OK K = K[T ]/(Ql(T )). It is easy to see that, under

this form, Λl
−ik is dual (“complementary”) to Λl

ik . In this sense, the chain Λl
I is a periodic

self-dual chain of free O(l)
K -modules in V l.

Consider the chain of O(l)
K ⊗OK OS-modules Ψl

I,S :

· · · → Ψl
−im−1,S → · · · → Ψl

−i0,S → Ψl
i0,S → · · · → Ψl

im−1,S
π→ Ψl

−im−1,S → · · ·(9.7)

over S with the morphisms induced by the commutative diagram in the definition of
NI , and with the bilinear forms (9.4).

Proposition 9.2 a) The pairings (9.4) provide the chain Ψl
I,S with the structure of a

polarized chain of O(l)
K ⊗OK OS-modules Ψl

I,S of type (Λl
I) in the sense of [RZ] Def. 3.14,

p. 75 (O(l)
K is not a maximal order in O(l)

K ⊗OK K, however the definition still makes
sense).

b) Zariski locally on S, the polarized chain of O(l)
K ⊗OK OS-modules Ψl

I,S is (symplec-

tically) isomorphic to the polarized chain of O(l)
K ⊗OK OS-modules Λl

I,S := Λl
I ⊗OK OS

which is obtained from the O(l)
K -chain Λl

I .

Proof. To show (a) we have to show that the chain Ψl
I,S satisfies the conditions of

[RZ] Def. 3.14 p. 75 (see also Def. 3.6 and Cor. 3.7). Assuming (a), part (b) of the
proposition follows from a simple extension of [RZ] Prop. A 21 to the case at hand.

Now the only condition in loc. cit. that does not follow immediately from the
definitions is the requirement (corresponding to condition (2) of Def. 3.6) that Zariski
locally on S the quotient of two successive modules in the chain Ψl

I,S is O(l)
K ⊗OK OS-

isomorphic to the quotient of the two corresponding successive modules of the chain Λl
I,S .

This can be shown exactly as the corresponding statement in the proof of Proposition
5.2.

For l = 1, . . . , e, there is a natural isomorphism

V ⊗F,φl K ' Im(Ql+1(T ) | V l) = ker(T − al | V l) .

A construction analogous to (9.6) allows us to define a perfect K-bilinear alternating
form

< , >l : V ⊗F,φl K × V ⊗F,φl K → K .

Now set

Ξl
±ik = Λ±ik ⊗OF ,φl OK ' Im(Ql+1(T ) | Λl

±ik) = ker(T − al | Λl
±ik) .(9.8)

Once again, we can see that

< , >l,±ik : Ξl
±ik × Ξl

∓ik → OK(9.9)

defined by restricting < , >l to the lattices Ξ±ik , Ξ∓ik give a system of perfect OK-
bilinear alternating forms. By construction, we have

< v,w >l,±ik=< v, w̃ >l
±ik ,(9.10)
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where we regard v as an element of ker(T − al | Λl
±ik) and where w̃ ∈ Λl

∓ik satisfies
Ql+1(T ) · w̃ = w.

Hence, for each l = 1, . . . , e, we obtain a self-dual OK-lattice chain Ξl
I in the K-vector

space V ⊗F,φl K by using the lattices Ξl
±ik = Λ±ik ⊗OF ,φl OK . The essential part of this

chain is:
Ξl
−im−1

⊂ · · · ⊂ Ξl
−i0 ⊂ Ξl

i0 ⊂ · · · ⊂ Ξl
im−1

⊂ a−1
l Ξl

im−1
.

Now denote by N l
I the “unramified” local model N l

I := N(OK , Ξl
I , < , >) over

SpecOK defined in [RZ] for G = GSp(V ⊗F,φl K, <, >l) (a group over K), the cocharacter
µ given by (1g, 0g) and the self-dual lattice chain Ξl

I . By definition, N l
I is the projective

scheme over SpecOK which classifies collections {F±ik}k of OS-submodules F±ik ⊂
Ξl
±ik,S := Ξl

±ik ⊗OK OS which fit into a commutative diagram

Ξl
−im−1,S → · · · → Ξl

−i0,S → Ξl
i0,S → · · · → Ξl

im−1

al→ Ξl
im−1

∪ ∪ ∪ ∪ ∪
F−im−1 → · · · → F−i0 → Fi0 → · · · → Fim−1 → F−im−1

where F±ik are Zariski locally OS-direct summands of Ξl
ik,S of rank g and which satisfy

F−ik = F⊥ik , Fik = F⊥−ik .

Now let us denote by H(l)
I , resp. Hl

I , the group scheme over SpecOK whose S-points
are the O(l)

K ⊗OK OS-module, resp. OS-module, automorphisms of the polarized chain
Λl

I ⊗OK OS , resp. Ξl
I ⊗OK OS , which respect the forms < , >l

±ik , resp. < , >l,±ik ,
up to a similitude which is the same for all indices k. These groups are extensions of
the multiplicative group by the group scheme of symplectic O(l)

K ⊗OK OS-module, resp.
OS-module, automorphisms of the polarized chains Λl

I ⊗OK OS , resp. Ξl
I ⊗OK OS . An

argument as in the proof of [RZ] Prop. A.21 shows that the latter group schemes are
smooth over SpecOK . Therefore, H(l)

I and Hl
I are also smooth group schemes over

SpecOK .

Now for an S-valued point of NI given by {F j
±ik}j,k and l = 1, . . . , e, k = 0, . . . , m−1,

we set
Υl
±ik,S = ker(π − al | Ψl

±ik,S) = ker(π − al | (F l−1
∓ik,S)⊥/F l−1

±ik,S) .

Notice that there is a canonical OS-homomorphism

Im(Ql+1(π) | Ψl
±ik,S) → ker(π − al | Ψl

±ik,S) = Υl
±ik,S .

It follows from Proposition 9.2 and (9.8) that this is an isomorphism.
A construction as in (9.10) now allows us to use this isomorphism and the forms

< , >l
±ik : Ψl

±ik,S ×Ψl
∓ik,S → OS to derive OS-bilinear alternating forms

< , >l,±ik : Υl
±ik,S ×Υl

∓ik,S → OS .
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Proposition 9.3 The OS-modules Υl
±ik,S are locally free of rank 2g and the OS-bilinear

alternating forms
< , >l,±ik : Υl

±ik,S ×Υl
∓ik,S → OS .

are perfect. Furthermore, the resulting chain of OS-modules over S

· · · → Υl
−im−1,S → · · · → Υl

−i0,S → Υl
i0,S → · · · → Υl

im−1,S
al→ Υl

−im−1,S → · · ·(9.11)

is a polarized chain of type (Ξl
I) and is, Zariski locally on S, (symplectically) isomorphic

to the polarized chain of OS-modules Ξl
I⊗OK OS obtained from the self-dual lattice chain

Ξl
I .

Proof. This follows from Proposition 9.2 and the above discussion.

Let ˜NI denote the scheme over SpecOK whose S-points correspond to pairs

˜NI(S) :=
(

{F j
±ik}j,k , {σj

I}
)e

j=2

where {F j
±ik}j,k is an S-valued point of NI and for l = 2, . . . , e,

σl
I : Ψl

I,S
∼→ Λl

I,S

is a symplectic (up to similitude) isomorphism of polarized O(l)
K ⊗OK OS-chains. The

natural projection morphism qI : ˜NI → NI is a torsor for
∏e

l=2H
(l)
I .

Notice that an isomorphism σl
I as above, induces a symplectic (up to a similitude)

isomorphism of chains of OS-modules

τ l
I : Υl

I,S = ker(π − al | Ψl
I,S) ∼→ ker(π − al | Λl

I,S) ' Ξl
I,S .

Similarly, for l = 1, Ψ1
±ik,S = Λ±ik,S , and we obtain a canonical symplectic isomorphism

vI : Υ1
I,S

∼→ Ξ1
I,S .

Now if {F j
±ik}j,k is an S-valued point of NI , then since

F l−1
±ik ⊂ F l

±ik ⊂ (F l−1
∓ik )⊥ , (π − al)F l

±ik ⊂ F l−1
±ik ,

we can consider F l
±ik/F l−1

±ik as an OS-submodule of Υl
I,S = ker(π − al | (F l−1

∓ik )⊥/F l−1
±ik ).

In fact, F l
±ik/F l−1

±ik is locally a direct OS-summand and

(

F l
±ik/F l−1

±ik

)⊥
= F l

∓ik/F l−1
∓ik

under the “derived” forms < , >l,±ik : Υl
±ik,S ×Υl

∓ik,S → OS . Therefore,

v±ik(F1
±ik) ⊂ Ξ1

±ik ⊗OK OS , resp. σl
±ik(F l

±ik/F l−1
±ik ) ⊂ Ξl

±ik ⊗OK OS(9.12)
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provide us with S-valued points of the “unramified” local models N1
I , resp. N l

I for
l = 2, . . . , e. As in the case of ResF/F0GLd we obtain a morphism of schemes

pI : ˜NI →
e

∏

j=1

N l
I .

This is again a torsor for the smooth group scheme
∏e

l=2H
(l)
I . Again, as in the case of

ResF/F0GLd, we have obtained a diagram of morphisms of schemes over SpecOK :

˜NI

pI ↙ ↘ qI

∏e
l=1 N l

I NI
πI→ Nnaive

I ⊗OF0
OK

(9.13)

in which both of the slanted arrows are torsors for the smooth group scheme
∏e

l=2H
(l)
I .

Once again, since by [G2] the schemes N l
I are flat over SpecOK , the existence of such a

diagram implies:

Theorem 9.4 The scheme NI is flat over SpecOK .

10 Affine flag varieties for the symplectic group

In this section, we will use the notations and terminology of §4. Let us consider

Λ̃0 = k[[Π]]2g = k[[Π]]ẽ1 ⊕ · · · ⊕ k[[Π]]ẽg ⊕ k[[Π]]f̃1 ⊕ · · · ⊕ k[[Π]]f̃g

with the k[[Π]]-bilinear alternating form < , >: Λ̃0 × Λ̃0 → k[[Π]] given by

< ẽi, ẽj >= 0 , < f̃i, f̃j >= 0 , < ẽi, f̃j >= δij .

For 0 ≤ r ≤ g, we introduce the k[[Π]]-lattices Λ̃r in Λ̃0 ⊗k[[Π]] k((Π)) by

Λ̃r = Spank[[Π]]{Π−1ẽ1, · · · , Π−1ẽr, ẽr+1, · · · , ẽg, f̃1, · · · , f̃g} .

Set Λ̃−r = ̂Λ̃r := {v ∈ k((Π))2g | < v,w >∈ k[[Π]], for all w ∈ Λ̃r}. It is easy to see
that

Λ̃−r = Spank[[Π]]{ẽ1, · · · , ẽg, Πf̃1, · · · , Πf̃r, f̃r+1, · · · , f̃g} .

Now consider a subset I = {i0 < · · · < im−1} ⊂ {0, . . . , g}. From this we obtain the
lattice chain Λ̃I in k((Π))2g

Λ̃−im−1 ⊂ · · · ⊂ Λ̃−i0 ⊂ Λ̃i0 ⊂ · · · ⊂ Λ̃im−1 ⊂ Π−1Λ−im−1 .(10.1)

By adding all the multiples ΠmΛ±ik , m ∈ Z, to the above lattice chain, we obtain the
corresponding periodic lattice chain. In what follows, we will sometimes use the same
symbol to denote both a lattice chain and its corresponding periodic lattice chain. This
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should not cause any confusion. By definition, a lattice chain (which is not necessarily
periodic) is self-dual if the dual of every lattice in the chain appears in the corresponding
periodic lattice chain. It is clear that Λ̃I is a self-dual lattice chain.

The partial affine flag variety SFlI associated to the symplectic similitude group
GSp2g and the subset I is the ind-scheme over k which represents the functor which to
a k-algebra R associates the set of self dual R[[Π]]-lattice chains

L−im−1 ⊂ · · · ⊂ L−i0 ⊂ Li0 ⊂ · · · ⊂ Lim−1 ⊂ Π−1L−im−1(10.2)

in R((Π))2g = k((Π))2g ⊗k R, such that each successive quotient of the above chain
is a locally free R-module of rank equal to the k-dimension of the corresponding quo-
tient in (10.1). The Ind-group scheme GSp2g(k((Π))) acts on SFlI and we can identify
(GSp2g(k((Π)))-equivariantly) SFlI with the fpqc quotient

SFlI = GSp2g(k((Π)))/PI

where PI is the parahoric subgroup scheme of GSp2g(k((Π))) whose k-valued points
stabilize the lattice chain Λ̃I of (10.1).

Fix an integer r. We may also consider the partial affine flag variety SFlrI associated
to the symplectic group Sp2g and the subset I. This is the ind-scheme over k which
represents the functor which to a k-algebra R associates the set of self dual R[[Π]]-lattice
chains

L−im−1 ⊂ · · · ⊂ L−i0 ⊂ Li0 ⊂ · · · ⊂ Lim−1 ⊂ Π−1L−im−1(10.3)

in R((Π))2g = k((Π))2g ⊗k R, such that

i) each successive quotient of the above chain is a locally free R-module of rank equal
to the k-dimension of the corresponding quotient in (10.1),

ii) we have ̂Li0 = ΠrL−i0 .

The Ind-group scheme Sp2g(k((Π))) acts on SFlrI . Sending the lattice chain LI to
ΠmLI gives an Sp2g(k((Π)))-equivariant isomorphism

SFlrI
∼→ SFlr−2m

I .

The Ind-schemes SFlrI are all closed Ind-subschemes of SFlI . In fact, SFlrI for different
r are all isomorphic as Ind-schemes (but not necessarily Sp2g(k((Π)))-equivariantly).

11 Local models and symplectic affine flag varieties

Let us identify OF ⊗OF0
k and k[[Π]]/(Πe) via the isomorphism OF ⊗OF0

k ' k[[Π]]/(Πe)
given by π ⊗ 1 7→ Π. Consider the k[[Π]]/(Πe)-isomorphism Λ0 ⊗OF0

k ' Λ̃0 ⊗k[[Π]]

k[[Π]]/(Πe) given by ei 7→ ẽi, δfj 7→ f̃j . This isomorphism is compatible with the
symplectic forms on both sides. In fact, there are obvious similar isomorphisms

Λi ⊗OF0
k ' Λ̃i ⊗k[[Π]] k[[Π]]/(Πe)(11.1)

31



which induce a (symplectic) isomorphism between the polarized k[[Π]]/(Πe)-chains
ΛI ⊗OF0

k and Λ̃I ⊗k[[Π]] k[[Π]]/(Πe).

Suppose that {F±ik}k corresponds to an SpecR-valued point of the special fiber
Nnaive

I ⊗OF0
k of the naive local model. Set Λ̃±ik,R = Λ̃±ik ⊗k[[Π]] R[[Π]]. Let

L±ik ⊂ Λ̃±ik,R(11.2)

be the inverse image of F±ik ⊂ Λ±ik ⊗OF0
R ' Λ̃±ik ⊗k[[Π]] R[[Π]]/(Πe) under

Λ̃±ik,R → Λ̃±ik ⊗k[[Π]] R[[Π]]/(Πe) .

We obtain an R[[Π]]-lattice chain LI

L−im−1 ⊂ · · · ⊂ L−i0 ⊂ Li0 ⊂ · · · ⊂ Lim−1 ⊂ Π−1L−im−1

which satisfies property (i) of the definition of the (partial) symplectic affine flag variety.
We claim that ̂Lik = Π−eL−ik . This will establish that the chain above is self-dual and
satisfies property (ii) with r = −e. Now we have

L−ik ⊂ Λ̃−ik,R = ̂Λ̃ik,R ⊂ ̂Lik .

Here the quotients Λ̃−ik,R/L−ik and therefore ̂Lik/Λ̃−ik,R are R-locally free of rank
eg. Hence, ̂Lik/L−ik is R-locally free of rank 2eg; this is the same as the R-rank of
Π−eL−ik/L−ik . By our definitions, < L−ik ,Lik > ⊂ ΠeR[[Π]] and so Π−eL−ik ⊂ ̂Lik .
Since the formation of ̂L−ik and Π−eL−ik from the R[[Π]]-lattice L−ik commutes with
base change we obtain that Π−eL−ik = ̂Lik . Therefore, the R[[Π]]-lattice chain LI gives
an R-valued point of SFl−e

I ⊂ SFlI .

We have therefore obtained a morphism

i : Nnaive
I ⊗OF0

k → SFl−e
I ⊂ SFlI(11.3)

which is a closed immersion of Ind-schemes.
Similarly, the special fiber N l

I ⊗OK k′ of the “unramified” local model N l
I can be

considered as a closed subscheme of the symplectic affine flag variety SFlI ⊗k k′. In fact,
by [G2], N l

I ⊗OK k′ is reduced and can be identified with the scheme-theoretic union of
a finite number of Schubert varieties in SFlI ⊗k k′.

Recall that HI is the group scheme over SpecOF0 whose S-valued points give the
symplectic automorphisms up to similitude of the polarized chain ΛI ⊗OF0

OS . The
above symplectic isomorphism between the polarized OF ⊗OF0

k = k[[Π]]/(Πe)-chains
ΛI ⊗OF0

k and Λ̃I ⊗k[[Π]] k[[Π]]/(Πe) allows us to identify the special fiber HI with the
group scheme giving the symplectic similitude automorphisms of Λ̃I ⊗k[[Π]] k[[Π]]/(Πe).
This is a factor group of the parahoric group scheme PI giving the symplectic similitude
isomorphisms of Λ̃I . The closed immersion i is equivariant for the action of PI in the
sense that the action of HI stabilizes the image of i, that the action on this image factors
through PI → HI and that i is HI -equivariant.
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Suppose now that {F j
±ik}j,k corresponds to an Spec R-valued point of the special

fiber NI ⊗OK k′ of the splitting model. For j = 1, . . . , e let

Lj
±ik ⊂ Λ̃±ik,R(11.4)

be the inverse image of F j
±ik ⊂ Λ±ik ⊗OF0

R ' Λ̃±ik ⊗k[[Π]] R[[Π]]/(Πe) under

Λ̃±ik,R → Λ̃±ik ⊗k[[Π]] R[[Π]]/(Πe) .

As above, we obtain an R[[Π]]-lattice chain Lj
I

Lj
−im−1

⊂ · · · ⊂ Lj
−i0 ⊂ Lj

i0 ⊂ · · · ⊂ Lj
im−1

⊂ Π−1Lj
−im−1

.

Using a similar argument as above, one can see that it satisfies properties (i) and (ii) of
the definition with r = −2e + j and therefore gives an R-valued point of the symplectic
affine flag variety SFl−2e+j

I . We obtain morphisms:

F j : NI ⊗OK k′ → SFl−2e+j
I ⊗k k′ ⊂ SFlI ⊗k k′ .(11.5)

and

F = (F j)j : NI ⊗OK k′ →
e

∏

j=1

SFl−2e+j
I ⊗k k′ ⊂

e
∏

j=1

SFlI ⊗k k′ .(11.6)

The morphism F is a closed immersion. Exactly as in the case of ResF/F0GLd we can
see that the special fiber NI := NI ⊗OK k′ can be naturally identified with the geometric
convolution of the reduced subschemes N j

I ⊗OK k′ of the symplectic affine flag variety
SFlI ⊗k k′. Similarly, the special fiber of the diagram (9.13) relates to the convolution
diagram for these subschemes (the analogue of (6.3)) in exactly the same fashion as it
was explained in §6 for G = ResF/F0GLd.

12 The canonical local model for G = ResF/F0GSp2g

Definition 12.1 The canonical local model N can
I := N can(OF , ΛI , < , >) for the group

G = ResF/F0GSp2g and the self-dual lattice chain ΛI is the scheme theoretic image of
the morphism

π′I : NI → Nnaive
I ⊗OF0

OK → Nnaive
I

which is obtained by composing the morphism πI with the base change morphism.

Since π′I is proper, the canonical local model N can
I is a closed subscheme of the naive

local model Nnaive
I . Since πI ⊗OK K : NI ⊗OF0

K → Nnaive
I ⊗OF0

K is an isomorphism,
N can

I and Nnaive
I have the same generic fiber. The scheme N can

I is flat over SpecOF0

since NI is flat over SpecOK . Therefore, N can
I is the (flat) scheme theoretic closure of

the generic fiber Nnaive
I ⊗OF0

F0 in Nnaive
I .

Suppose now that I = {0} or that I = {g}. In this case, the self-dual lattice
chain ΛI consists of {πkΛ0}k∈Z, resp. {πkΛg}k∈Z (we have Λ̂0 = Λ0, Λ̂g = πΛg) and
the subgroup of G(F0) = GSp2g(F ) which stabilizes ΛI is a special maximal parahoric
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subgroup. Then it follows that the unramified local models N l
I are smooth Lagrangian

Grassmannians over SpecOK . Hence, we deduce that
∏e

l=1 N l
I is irreducible and smooth

over SpecOK . Since
∏e

l=2H
(l)
I is a smooth group scheme with geometrically connected

fibers, we conclude, using the diagram (9.13), that, in this case, NI is also irreducible
and smooth over SpecOK ; therefore the special fiber NI ⊗OK k′ is irreducible. As a
result, the special fiber N can

I ⊗OF0
k of the canonical local model N can

I is irreducible.
More generally, suppose that I = {i0} consists of one index only. This is the case in
which the subgroup of G(F0) = GSp2g(F ) which stabilizes ΛI is a maximal parahoric
subgroup. Then by [G2], the geometric special fibers of the unramified local models N l

I
are irreducible. As above, we conclude that the special fiber N can

I = N can
I ⊗OF0

k is once
again irreducible. In fact, we can then show more:

Theorem 12.2 Suppose that I = {i0} consists of one index only. Then:

(i) N can
I is normal and Cohen-Macaulay.

(ii) The special fiber N can
I is integral and normal with rational singularities. It can

be identified with the Schubert variety Oeµ1 in SFlI , where µ1 is the coweight (1g, 0g) of
GSp2g.

Proof. This follows closely the arguments in [PR], proofs of Propositions 5.2–5.3 (see
also loc. cit. Remark 5.5). For simplicity of notation, we will drop the subscript I and
write N instead of Nnaive. We will also use a bar to denote the special fiber of a scheme
over OK or over OF0 , depending on the context. Consider the proper morphism

π : N → N ⊗OF0
OK .

Let N ′ = Spec (π∗(ON )) and consider the scheme-theoretic image π(N ) ⊂ N ⊗OF0
OK .

Since N is flat over SpecOK the same is true for π(N ). Let $ be a uniformizer of OK .
The cohomology exact sequence obtained by applying π∗ to

0 → ON
$→ ON → ON → 0

gives an injective homomorphism

ON ′/$ON ′ → π∗(ON ) .

This fits in a commutative diagram:

Oπ(N )/$Oπ(N ) → Oπ(N )
↓ ↓

ON ′/$ON ′ → π∗(ON )
.(12.1)

By the definition of the scheme theoretic image the upper horizontal homomorphism is
surjective. Since by the discussion before the statement of the theorem, N is reduced
and irreducible, the same is true for the scheme-theoretic image π(N ) ⊂ N . Let µ1 be
the miniscule coweight (1g, 0g) of GSp2g. The special fibers N l

I of the corresponding
unramified models can be identified with the Schubert variety Oµ1 in the affine partial
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flag variety SFlI ⊗k k′ (see [G2]). By §11, §6 the morphism π : N → π(N ) ⊂ N can be
identified with the convolution morphism

m(µ1,...,µ1) : Oµ1×̃ · · · ×̃Oµ1 → Oeµ1 ⊂ SFlI ⊗k k′

This morphism is birational on its image. The scheme π(N ) can be identified with the
Schubert varietyOeµ1 in SFlI⊗kk′; it is therefore normal with rational singularities ([Fa],
[G2]). Since π is proper, the natural morphism Spec (π∗(N )) → π(N ) is finite, and now
since by the above π(N ) is normal, Spec (π∗(N )) → π(N ) is actually an isomorphism.
We conclude that in the diagram (12.1) above, the right vertical homomorphism is an
isomorphism. An argument as in [PR] proof of Proposition 5.2 now implies that the
homomorphisms Oπ(N )/$Oπ(N ) → Oπ(N ) and ON ′/$ON ′ → π∗(ON ) which appear in
(12.1) are also isomorphisms. Therefore, the special fibers of N ′ and π(N ) coincide and
they are both equal to π(N ) which by the above is integral, normal and with rational
singularities. In fact, we can see as in loc. cit. that N ′ = π(N ) and that π(N ) is normal
and Cohen-Macaulay. To deduce the claims of the theorem for N can we can now proceed
along the lines of [PR], proof of Proposition 5.3: Recall that the canonical local model
is the scheme-theoretic image of the morphism

π′ : N → N ⊗OF0
OK → N ,

i.e N can = π′(N ). An argument as in loc. cit. now shows that

N can ⊗OF0
OK = π(N ) , π(N )/Gal(K/F0) = N can ,

and the desired statements for N can follow (see loc. cit. for more details).

Remark 12.3 It follows that N can
I = Oeµ1 is the union of all the Schubert strata (cells)

in SFlI which correspond to double cosets in the extended affine Weyl group which, in
the Bruhat order, are ≤ to the coset given by the coweight µ = eµ1. The set of these
cosets is exactly the µ-admissible set as defined in ([KR]).

We now consider general index sets I. For I = {i0, . . . , im−1} ⊂ {0, . . . , g}, and
ik ∈ I, we can consider the morphism

πik : Nnaive
I → Nnaive

{ik}

obtained by {F±in}m−1
n=0 7→ F±ik . As in the case of G = ResF/F0GLd (see §7 and [PR],

§8), we can consider the scheme theoretic intersection in Nnaive
I ,

N loc
I :=

⋂

ik∈I

π−1
ik (N can

{ik}) .(12.2)

Theorem 12.4 (a) N can
I = N loc

I .
(b) The special fiber N can

I ⊗OF0
k is reduced and its irreducible components are normal

with rational singularities. It can be identified with the union in SFlI of the Schubert
cells Ow with w in the eµ1-admissible set in W̃I\W̃/W̃I .
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Here W̃ denotes the extended affine Weyl group of GSp2g(k[[Π]]) and W̃I the sub-
group corresponding to the parahoric subgroup PI .

Proof. We consider the chain of closed embeddings of OF0-schemes with identical
generic fibers,

N can
I ⊂ N loc

I ⊂ Nnaive
I .

By [G3], Prop. 6.1 all generic points of the special fiber of Nnaive
I can be lifted to the

generic fiber. In other words, the above inclusions induce bijections on the underlying
topological spaces. On the other hand, by Theorem 12.2 the special fiber of N can

{ik} is
reduced and hence may be identified with a Schubert variety in a symplectic Grassman-
nian. Now the same argument as in the proof of Theorem 7.2 implies that the special
fiber of (12.2) is reduced with all its irreducible components normal and with rational
singularities. It follows that N loc

I is flat over Spec OF0 and hence N can
I = N loc

I . The last
statement of (b) follows as Remark 7.3, (b) from Section 11.

Remark 12.5 It seems plausible to expect that N can
I = Nnaive

I , i.e. that Nnaive
I is flat

over Spec OF0 , comp. [G3].
Let I = {0}. The conjecture above may be reduced to a question on a certain space

of matrices. Let

P = { A =
(

a b
0 ta

)

∈ M2ge ; a, b ∈ Mge , tb = −b ,

chara(T ) = (
e
∏

i=1
(T − ai))g , Q(A) = 0 } .

The question is whether P is flat over Spec OF0 .
The relation to the previous conjecture is given by the following diagram analogous

to [PR], (1.3),

Nnaive
{0}

π←− Ñnaive
{0}

φ−→ P .

Here
Ñnaive
{0} (S) = {(F ⊂ Λ0,S , α)} ,

where F defines a point of Nnaive
{0} (S) and where α is a symplectic automorphism of Λ0,S

which carries F into the Lagrangian subspace F0 of Λ0 generated over OF by e1, . . . , eg.
Then π is a torsor under the Siegel parabolic in Sp2ge ' Sp(Λ0, < , >) and φ is a smooth
morphism, given by

φ((F , α)) = α−1 · π · α ,

which we express as a matrix in terms of the OS-basis e1, . . . , eg, πe1, . . . , πeg, . . . ,
πe−1e1, . . . , πe−1eg, δf1, . . . , δfg, πδf1, . . . , πδfg, . . . , πe−1δf1, . . . , πe−1δfg of Λ0,S .
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Part IV

13 Nearby cycles

In this section, we will assume that the residue field k of OE is finite. Our aim is to
describe the sheaves of nearby cycles for the local models M can

I ⊗OEOK and N can
I ⊗OEOK

as convolutions of the sheaves of nearby cycles associated to the “unramified” local
models M j

I and N j
I respectively (see below for a precise statement). For simplicity, we

will restrict our discussion mostly to the case of G = ResF/F0GLd, i.e to the models
M can

I ; the case of G = ResF/F0GSp2g is similar.
Fix a prime number ` which is invertible in OE and a square root of the cardinality

|k| in Q`. Let O be a discrete valuation ring which is a finite flat extension of OE with
fraction field L contained in F sep

0 . If X is a scheme of finite type over SpecO with
constant relative dimension d denote by

RΨX
L = RΨX

OQ`[d]
(d

2

)

the (adjusted) complex of nearby cycles of X over SpecO. This is an element in the
derived category of complexes of Q`-sheaves on the geometric special fiber X ⊗O k̄ with
bounded constructible cohomology sheaves and continuous Gal(F sep

0 /L)-action which
lifts (i.e is compatible with) the action of Gal(F sep

0 /L) on X ⊗O k̄ through the Galois
group of the residue field of O. By [I], Theorem 4.2 and Cor. 4.5, RΨX

L is a perverse
Q`-sheaf of weight zero on X ⊗O k̄.

For simplicity, if X is a scheme over OE , we will write RΨX
K instead of RΨ

X⊗OEOK

K for
the (adjusted) complex of nearby cycles of X⊗OE OK over OK . Again, this is a perverse
Q`-sheaf of weight zero on X ⊗OE k̄ with an action of Gal(F sep

0 /K); it is isomorphic to
the complex of Q`-sheaves RΨX

E with the Gal(F sep
0 /E)-action restricted to the subgroup

Gal(F sep
0 /K).

By §6 and Remark 7.3 part (b), the special fiber M can
I can be naturally identified

with a reduced finite union of Schubert varieties in the partial affine flag variety FlI .
On the other hand, for each j = 1, . . . , e, the special fiber M j

I of the unramified local
model M j

I over SpecOK can also be identified with a finite union of Schubert varieties
in FlI ⊗k k′. In this way, we can regard

RΨMj
I

K , RΨMcan
I

K

as perverse Q`-sheaves of weight zero on FlI ⊗k k̄ with compatible Gal(F sep
0 /K)-actions

which are PI -equivariant. By Remark 7.3 (b), these perverse sheaves are supported on
the union of Schubert cells corresponding to the µj-admissible, resp. µ-admissible cosets,
where µ = µ1 + · · ·+ µe.

For each j = 1, . . . , e, we now let Φj be a PI -equivariant perverse Q`-sheaf on M j
I with

compatible Gal(F sep
0 /K)-action. The convolution construction of Ginzburg, Lusztig, etc.

(see for example [Lu]) allows us to construct an element

Φ1 ? · · · ? Φe
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in the derived category of complexes of Q`-sheaves on FlI ⊗k k̄ supported on M can
I with

bounded constructible cohomology sheaves and compatible Gal(F sep
0 /K)-action. (In

what follows, for simplicity of notation, we will use a bar to denote the geometric special
fiber over k̄ and omit the base change from the notation). The construction proceeds as
follows ([Lu] 1.2 and 1.3). Consider the diagram obtained by the convolution diagram
(6.3) by base changing from k′ to k̄:

Uk̄

p1 ↙ ↘ p2

M1
I × · · · ×M e

I M1
I×̃ · · · ×̃M e

I
p3→ Mnaive

I ⊗OE OK ⊂ FlI ⊗k k̄ .

(13.1)

Consider the pull back of the exterior tensor product p∗1(Φ1 � · · · � Φe); since p1 is
a smooth morphism, this is a perverse Q`-sheaf up to a shift by the relative dimension
of p1. By its definition, p∗1(Φ1 � · · · � Φe) is equivariant for the action (6.4); however,
since the complexes of sheaves Φj are PI -equivariant, it is also equivariant for the action
(6.5). Recall that p2 is a PI -torsor for the action (6.5) (which is actually locally trivial
in the Zariski topology). Therefore, by descent (see also [BBD] Theorem 4.2.5), there is
a perverse Q`-sheaf with compatible Gal(F sep

0 /K)-action

Φ1�̃ · · · �̃Φe

on M1
I×̃ · · · ×̃M e

I , which is unique up to unique isomorphism, such that

p∗2(Φ1�̃ · · · �̃Φe) = p∗1(Φ1 � · · ·� Φe) .

We now set
Φ1 ? · · · ? Φe := Rp3∗(Φ1�̃ · · · �̃Φe) .

Theorem 13.1
(a) The sheaf RΨM1

I
K ? · · · ? RΨMe

I
K on FlI ⊗k k̄ is perverse of weight zero.

(b) There is an isomorphism of perverse Q`-sheaves with Gal(F sep
0 /K)-action

RΨMcan
I

K ' RΨM1
I

K ? · · · ? RΨMe
I

K

on FlI ⊗k k̄.

Proof. Recall the diagram (5.10)

˜MI

pI ↙ ↘ qI

∏e
l=1 M l

I MI
πI→ Mnaive

I ⊗OE OK .

(13.2)
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By the Künneth formula [I], Theorem 4.7, we have an isomorphism of perverse Q`-
sheaves with compatible Gal(F sep

0 /K)-action on the geometric special fiber of M1
I ×

· · · ×M e
I ,

RΨM1
I×···×Me

I
K ' RΨM1

I
K � · · ·� RΨMe

I
K .(13.3)

This induces an isomorphism between the pull-backs

p∗I(RΨM1
I×···×Me

I
K ) ' p∗I(RΨM1

I
K � · · ·� RΨMe

I
K ) .(13.4)

From the definitions, and using the comparisons of the special fiber of the diagram (5.10)
with the convolution diagram (6.3) explained at the end of §6, we obtain an isomorphism

p∗I(RΨM1
I

K � · · ·� RΨMe
I

K ) ' q∗I(RΨM1
I

K �̃ · · · �̃RΨMe
I

K ) .(13.5)

Since both pI and qI are smooth, p∗I and q∗I commute with the nearby cycle functor.
Therefore, we obtain an isomorphism

p∗I(RΨM1
I

K � · · ·� RΨMe
I

K ) ' RΨM̃
K ' q∗I(RΨM

K )

which by [BBD] Theorem 4.2.5 and (13.5) gives an isomorphism of perverse Q`-sheaves
of weight zero with compatible Gal(F sep

0 /K)-action

RΨM
K ' RΨM1

I
K �̃ · · · �̃RΨMe

I
K .(13.6)

We now notice that since πI : M → M can
I ⊗OE OK ⊂ Mnaive

I ⊗OE OK is proper and
since πI induces an isomorphism on the generic fibers, there is a canonical isomorphism

RπI∗(RΨM
K ) ' RΨMcan

I
K .(13.7)

Hence, by (13.6) there is an isomorphism

RΨMcan
I

K ' RπI∗(RΨM1
I

K �̃ · · · �̃RΨMe
I

K ) = RΨM1
I

K ? · · · ? RΨMe
I

K(13.8)

with the last equality given by the identification of p3 with πI . This establishes both
parts (a) and (b) of the Theorem.

We note that the factors RΨM l
I

K are known perverse sheaves thanks to the result of
Haines and Ngo regarding the unramified case [HN1].

Remark 13.2 The same arguments applied to the local models N can
I for the group

G = ResF/F0GSp2g show that

RΨNcan
I

K ' RΨN1
I

K ? · · · ? RΨNe
I

K(13.9)

as perverse Q`-sheaves with Gal(F sep
0 /K)-action.
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Part V

14 Splitting and local models in the general PEL case

In this section, we explain the construction of splitting models in the general (ramified)
PEL case. As we shall see this also suggests a general construction of local models. We
take F0 = Qp in the notation used elsewhere in this paper. Specifically, we will use the
following notation (following closely [RZ], see 1.38):

• F a finite direct product of finite field extensions of Qp,
• B a finite central algebra over F ,
• V a finite dimensional (left) B-module,
• ( , ) a nondegenerate alternating Qp-bilinear form on V ,
• b 7→ b∗ an involution on B which satisfies (bv, w) = (v, b∗w), v, w ∈ V ,
• OB a maximal order of B invariant under ∗.
If W is a right B-module, we define a left B-module on W by restriction of scalars

∗ : B → Bopp. With this convention the dual vector space V ∗ = HomQp(V,Qp) is a left
B-module and the form ( , ) induces an isomorphism of B-modules

ψ : V → V ∗ .

In the same way, for an OB-lattice Λ in V , the Zp-module Λ∗ = HomZp(Λ,Zp) becomes
a left OB-module. The image of Λ∗ under the map

Λ∗ → V ∗ ψ−1

' V

is the “dual” lattice Λ̂ of Λ ⊂ V with respect to ( , ). The form ( , ) induces a perfect
bilinear pairing

( , ) : Λ× Λ̂ → Zp .

Let F1 be the Qp-algebra which consists of the ∗-invariant elements of F . For sim-
plicity we will assume that F1 is a field; the local models in the general case are products
of local models for cases in which F1 is a field. We will denote by τ the automorphism
of F obtained by restricting the involution ∗. There are three cases:

(I) F = F1 × F1 and τ(a1, a2) = (a2, a1),
(II) F = F1,
(III) F is a quadratic field extension of F1.
The existence of the ∗-linear form ( , ) implies that, even in case I, V is a free

F -module; we will denote its rank by d.
Let G be the algebraic group over Qp, whose points with values in a Qp-algebra R

are given by:

G(R) = {g ∈ GLB(V ⊗Qp R) | (gv, gw) = c(g)(v, w), c(g) ∈ R} .

Let us fix in addition
• a cocharacter µ : GmN → GN defined over the finite extension N of Qp, given up

to conjugation.

40



We assume that the corresponding eigenspace decomposition of V ⊗Qp N is given by

V ⊗Qp N = V0 ⊕ V1

(i.e the only weights are 0 and 1) and that the composition c ◦ µ : GmN → GmN is
the identity. This implies that both V0 and V1 are totally isotropic for the form on
V ⊗Qp N obtained by ( , ) by extending scalars (by [RZ] Definition 3.18 and 3.19 (b)
these conditions correspond to the situation describing moduli of p-divisible groups).
Notice that this implies that the pairing ( , ) induces an isomorphism

V0 ' V ∗
1 = HomN (V1, N)(14.1)

where V ∗
1 becomes a left B-module as above, by first regarding it naturally as a right

B-module and then composing with the involution ∗ : B → Bopp. As usual let E be the
field of definition of the conjugacy class of µ. We shall also fix

• L a selfdual periodic multichain of OB-lattices in V ([RZ] Definition 3.13).

Recall that “selfdual” means that if Λ is in L then the dual lattice Λ̂ is also in L.
As in loc. cit. we can consider L as a category with morphisms given by inclusions of
lattices.

Now let Φ be the set of Qp-algebra homomorphisms of F in Q̄p. For a ∈ F let

det(T · I − a | V1) =
∏

φ∈Φ

(T − φ(a))rφ

so that the cocharacter

µQ̄p
: GmQ̄p

→ GQ̄p
⊂ GLB(V ⊗Qp Q̄p) ⊂ GLF (V ⊗Qp Q̄p) =

∏

φ∈Φ

GL(V ⊗F,φ Q̄p)

is given, up to conjugation, by {(1rφ , 0d−rφ)}φ∈Φ with d the F -rank of V . We can think
of the automorphism τ of F as giving a permutation of Φ by φ 7→ φ · τ . For every φ ∈ Φ
we have

rφ + rφ·τ = d .(14.2)

Indeed, by (14.1), the sum rφ + rφ·τ is the multiplicity of the eigenvalue φ(a) for the
action of a ∈ F on V ⊗Qp Q̄p. This is equal to d since V is F -free of rank d.

Set m = [F1 : Qp] and let n be the Qp-dimension of F . We choose an ordering of
the Qp-algebra homomorphisms φi : F → Q̄p, 1 ≤ i ≤ n, which in the case that F 6= F1
has the property that any two embeddings φ, φ′ with the same restriction to F1 are
successive. Denote by K the Galois closure of F in Q̄p. Then E ⊂ K.

Suppose now that S is an OK-scheme. In what follows undecorated tensor products
are meant to be over Zp. If b is a unit of B which normalizes OB and Λ ∈ L then by the
definitions bΛ ∈ L. For such a b, conjugation by b−1 defines an isomorphism OB → OB,
x 7→ b−1xb. If M is an OB⊗OS-module we denote by M b the OB⊗OS-module obtained
by restriction of scalars with respect to this isomorphism. Left multiplication by b induces
a OB ⊗OS-linear homomorphism b : M b → M .

Let us now define a functor M on the category of ON -schemes.
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Definition 14.1 A point of M with values in an ON -scheme S is given by the following
data.

1. For each i = 1, . . . , n + 1, a functor from the category of the multichain L to the
category of OB ⊗OS-modules on S

Λ 7→ F i
Λ , Λ ∈ L.

2. For i = 1, . . . , n + 1, a morphism of functors

ji
Λ : F i

Λ → Λ⊗OS .

We are requiring that the following conditions are satisfied:

a) For each Λ ∈ L, i = 1, . . . , n + 1, the homomorphism ji
Λ is injective (and so

it identifies F i
Λ with a OB ⊗ OS-submodule of Λ ⊗ OS). Both F i

Λ and the quotient
(Λ⊗OS)/F i

Λ are finite locally free OS-modules.

b) If b is a unit of B which normalizes OB there are “periodicity” OB ⊗ OS-linear
isomorphisms

θb,Λ : (F i
Λ)b ∼−→ F i

bΛ

which make the diagrams

(F i
Λ)b ji

Λ→ (Λ⊗OS)b

θb,Λ ↓ ↓ b

F i
bΛ

ji
bΛ→ bΛ⊗OS

commutative.

c) For the action of OB on F 1
Λ, we have the following identity of polynomial functions

detOS (a | F 1
Λ) = detOS (a | V1), a ∈ OB .

d) We have Fn+1
Λ = (0). For i = 1, . . . , n, F i+1

Λ ⊂ F i
Λ, the quotient F i

Λ/F i+1
Λ is

OS-locally free of rank ri := rφi and is annihilated by

a⊗ 1− 1⊗ φi(a) ∈ OB ⊗OS , for all a ∈ OF .

e) Note that (a) implies that F i
Λ is a locally direct OS-summand of Λ⊗OS . We will

denote by (F i
Λ)⊥ its orthogonal complement in Λ̂⊗OS under the perfect pairing

( , ) : (Λ⊗OS)× (Λ̂⊗OS) → OS .

For every Λ ∈ L and i = 1, . . . , n + 1, we require that F i
Λ̂
⊂ (F i

Λ)⊥.

f) In addition to the above, we require that:

f1) If F = F1, for every i = 1, . . . , n and Λ ∈ L
∏

1≤k≤i

(a⊗ 1− 1⊗ φk(a))((F i+1
Λ )⊥) ⊂ F i+1

Λ̂

for all a ∈ OF .
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f2) If F 6= F1, for every h = 1, . . . , m = [F1 : Qp] and Λ ∈ L
∏

1≤k≤2h

(a⊗ 1− 1⊗ φk(a))((F 2h+1
Λ )⊥) ⊂ F 2h+1

Λ̂

for all a ∈ OF .

There is a morphism π : M → Mnaive ⊗OE OK , where Mnaive is the functor of the
“naive” local model of [RZ] (denoted by M loc in loc. cit.) given by sending the S-point
of M given by Λ 7→ (F i

Λ ⊂ Λ ⊗ OS)1≤i≤n+1 to Λ 7→ tΛ := (Λ ⊗ OS)/F 1
Λ. Indeed, the

functor Λ 7→ tΛ satisfies the conditions of loc. cit., Definition 3.27. For example, (c) and
(e) together with the fact that F 1

Λ̂
, (F 1

Λ)⊥ are locally direct OS-summands of Λ̂ ⊗ OS

imply that F 1
Λ̂

= (F 1
Λ)⊥ and so tΛ satisfies condition (iii) of loc. cit.

It is clear that M is representable by a projective scheme over SpecOK and that
the morphism π is projective. We can also see that, on the generic fibers, π induces an
isomorphism

π ⊗OK K : M⊗OK K ∼→ Mnaive ⊗OE K.

Let us use the same symbol π for the composed morphism π : M→ Mnaive ⊗OE OK →
Mnaive. The scheme theoretic image π(M) ⊂ Mnaive is a closed subscheme of Mnaive

which has the same generic fiber as Mnaive. One can now set

M loc = π(M).

We believe that, if we exclude the orthogonal and certain unitary cases, then M loc is a
good integral model of its generic fiber. 1 More precisely, assume that we are either in
case (I), or in case (II) with ∗ an orthogonal involution (then G is a form of a symplectic
group), or in case (III) with F/F1 unramified. Recall here that an involution of the
first kind on a central simple algebra is called orthogonal resp. symplectic, if after a
base change that splits the algebra it becomes the adjoint involution with respect to
a symmetric resp. alternating form. Then it seems that the methods of the present
paper prove that M loc is flat over SpecOE , with reduced special fiber, and such that
all irreducible components of the special fiber are normal with rational singularities.
Furthermore, let L denote the completion of the maximal unramified extension of Qp
and let K̃ = K̃L be the parahoric subgroup of G(L) which fixes the lattice chain L⊗OL
in V ⊗Qp L. Then K̃ acts on M loc(Fp) and the orbits are in bijective correspondence
with the µ-admissible subset AdmK̃(µ) of K̃ \G(L)/K̃. We refer to [R], section 3, for the
definition of the µ-admissible subset in the general case, cf. also [KR]. Our work in the
previous sections shows that all these statements hold true in the following situations
(and we believe that the general case, as limited above, may be reduced to these cases):

a) Let F1 be a finite field extension of Qp and consider B = F1 × F1 with the
involution (a1, a2)∗ = (a2, a1). Let OB = OF1 ⊕ OF1 and take V = Bd = W1 ⊕ W2,
Wi = F1 · ei

1 ⊕ · · · ⊕ F1 · ei
d, for i = 1 or 2, with the alternating form ( , ) defined by

(ei
k, e

i
l) = 0, (e1

k, e
2
l ) = δkl , i = 1, 2; k, l = 1, . . . , d .

1Genestier has pointed out to us that the orthogonal case is problematic in this respect.
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This form identifies W2 with the dual of W1. A selfdual multichain of lattices in V now
is given by a pair L = {Λk}k, L̂ = {Λ̂l}l where L is a chain of OF1-lattices in W1 and L̂
is the dual chain. In this case,

G = {(g, c · (gt)−1) | g ∈ GL(W1), c ∈ Gm} ⊂ GL(W1)×GL(W2) .

Therefore, G ' ResF1/Qp(GLd)×Gm. Let us assume that F1 is totally ramified over Qp.
The schemes M (for various choices of the cocharacter µ and the multichain L) can be
identified with the splitting models for ResF1/QpGLd of §5. To see this we observe that
by using conditions (e) and (f2) and an argument as in Lemma 9.1 we can show that
there is a 1-1 correspondence between submodules

F i
Λk⊕Λ̂l

= Gn+1−i
Λk

⊕G′n+1−i
Λ̂l

⊂ (Λk ⊗OS)⊕ (Λ̂l ⊗OS), (i = 1, . . . , n + 1)

which correspond to S-points of M and submodules Gj
Λk
⊂ (Λk⊗OS) which correspond

to S-points in the splitting model of §5. Theorem 5.3 now implies that the schemes M
are flat over SpecOK .

b) Let B = F = F1 a finite field extension of Qp and let (V, { , }) be the standard
symplectic vector space over F of dimension 2g with basis e1, . . . , eg, f1, . . . , fg, i.e

{ei, ej} = {fi, fj} = 0, {ei, fj} = δij .(14.3)

We set (v, w) = TrF/Qp({v, w}). In this case, G = ResF/QpGSp2g and, in case F1 is
totally ramified over Qp, the scheme M can be identified with the splitting model for
ResF/QpGSp2g of §9; here Theorem 9.4 implies the truth of the above conjecture.

Remark 14.2 An example where the methods of the previous sections do not directly
apply is provided by the case of a group of unitary similitudes for a ramified quadratic
extension of Qp. However, even in this case, there are instances in which we can show
that M loc as defined above, is flat over SpecOE . We review some results from [P].
Let B = F a ramified quadratic extension of Qp, p odd, with the involution given by
the non-trivial Galois automorphism. Let V = Fn and denote by ei, 1 ≤ i ≤ n, the
canonical OF -generators of the standard lattice Λ0 := On

F ⊂ V . Let π be a uniformizer
of OF which satisfies π∗ = −π. We define a non-degenerate alternating Qp-bilinear form
( , ) : V × V → Qp which satisfies (ax, y) = (x, a∗y) for a ∈ F by setting

(ei, ej) = 0, (ei, πej) = δij , i, j = 1, . . . , n .

The restriction ( , ) : On
F × On

F → Zp is a perfect Zp-bilinear form. Therefore, we
have Λ̂0 = Λ0 and more generally π̂nΛ0 = π−nΛ0. Let L be the selfdual lattice chain
{πnΛ0}n∈Z. Using the duality isomorphism HomF (V, F ) ' HomQp(V,Qp) given by
composing with the trace TrF/Qp : F → Qp we see that there exists a unique non-
degenerate hermitian form φ : V × V → F such that

(x, y) = TrF/Qp(π
−1φ(x, y)), x, y ∈ V.
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Hence, in this case the group G can be identified with the group of unitary similitudes
of the form φ. Now let r, s be two non-negative integers such that n = r + s. Fix a
cocharacter µF : GmF → GF such that the corresponding subspace V1 of VF = Fn ⊗ F ,
when considered as an F -module via the first factor, is isomorphic to F r ⊕F s

τ where Fτ
is the module obtained by F by restriction of scalars via τ : F → F . The “naive” local
models that correspond to these choices have been studied in [P]. As was shown there,
when |r − s| > 1, they are not flat over SpecOE .

Given these choices of PEL data, we can see that K = F and that for any SpecOF -
scheme S the points M(S) are now pairs (F 2, F 1) of OF ⊗OS-submodules of Λ0 ⊗OS
which are locally direct summands as OS-modules and satisfy

i) F 1 is isotropic for the form ( , ) on Λ0 ⊗OS ;

ii) F 2 ⊂ F 1; and F 1, F 2 have ranks n and r respectively;

iii) detOS (T · I − a⊗ 1 | F 1) = (T − a)r(T − τ(a))s ∈ OS [T ], for every a ∈ OF ;

iv) (a⊗ 1− 1⊗ a)(F 2) = (0), (a⊗ 1− 1⊗ τ(a))(F 1) ⊂ F 2, for every a ∈ OF

(the tensor products are in OF ⊗OF which maps to OF ⊗OS).

For simplicity, let us assume that r 6= s; then K = E = F . The naive local model
Mnaive classifies isotropic OF ⊗OS-submodules F 1 of Λ0 ⊗OS which are locally direct
summands of rank n as OS-modules and satisfy condition (iii) above; the morphism
π : M → Mnaive corresponds to forgetting F 2. We can see that the scheme theoretic
image M loc := π(M) ⊂ Mnaive is contained in the closed subscheme M ′

r,s of Mnaive

described by

∧r+1(a⊗ 1− 1⊗ τ(a) | F 1) = (0), ∧s+1(a⊗ 1− 1⊗ a | F 1) = (0).

By [P] Theorem 4.5 and its proof, M ′
r,s is flat over SpecOE when r = n − 1, s = 1.

Note that the scheme M ′
r,s has the same generic fiber as Mnaive. Hence, by the above, if

r = n− 1, s = 1, M loc = M ′
r,s is flat over SpecOE .

In fact, the calculations described in loc. cit., 4.16 suggest that M ′
r,s, and therefore

also M loc, should be flat over SpecOE for all values of r, s. The discussion in loc.
cit., 4.16 shows that this flatness statement follows if one knows that the subscheme of
n× n-matrices over Fp defined by

{A ∈ Matn×n| A2 = 0, A = At, ∧s+1A = 0, ∧r+1A = 0, det(T · I −A) ≡ Tn}

is reduced. This can be viewed as the symmetric matrix version of a result of Strickland
[St] (compare to [PR] Cor. 5.10) and it can be verified (for various primes p) using
Macaulay when r, s ≤ 5.

In the case considered in this remark, the parahoric subgroup fixing the lattice chain L
is a special maximal parahoric. For more general lattice chains one encounters additional
problems.
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15 Moduli spaces of abelian varieties

In this section we briefly indicate the construction of moduli spaces of abelian varieties
corresponding, in a sense made precise by the diagram (15.4) below, to the splitting and
local models of the previous section. The use of the language of algebraic stacks in (15.4)
replaces the method of linear modifications of [P]; its mathematical content is the same.

In this section we will use the following notation, taken from [RZ], ch. 6. Let B
be a semi-simple algebra over Q and let ∗ be a positive involution on B. Let V be a
finite-dimensional Q-vector space with a nondegenerate alternating bilinear form ( , )
with values in Q. We assume that V is equipped with a B-module structure such that

(bv, w) = (v, b∗w), v, w ∈ V, b ∈ B .

Let G ⊂ GLB(V ) be the closed algebraic subgroup over Q such that

G(Q) = {g ∈ GLB(V ) | (gv, gw) = c(g)(v, w), c(g) ∈ Q} .

Let S = RC/RGm and let h : S → GR be a homomorphism satisfying the usual Riemann
bilinear relations (cf. loc.cit.). We have a corresponding Hodge decomposition

V ⊗C = V0 ⊕ V1

and a corresponding cocharacter µ of G defined over C. We let E ⊂ Q be the correspond-
ing Shimura field. We now fix a prime number p and choose an embedding Q → Qp.
The corresponding ν-adic completion of E will be denoted Eν . Let Cp ⊂ G(Ap

f ) be an
open compact subgroup.

We consider an order OB of B such that OB ⊗Zp is a maximal order of B⊗Qp. We
assume that OB ⊗ Zp is invariant under the involution. We also fix a selfdual periodic
multichain L of OB ⊗ Zp-lattices in V ⊗Qp with respect to the alternating form ( , ).

We recall from loc.cit. the definition of a moduli problem ACp over (Sch/Spec OEν ).
It associates to a OEν -scheme S the following set of data up to isomorphism:

1. An L-set of abelian varieties A = {AΛ}

2. A Q-homogeneous principal polarization λ of the L-set A.

3. A Cp-level structure

η : H1(A,Ap
f ) ' V ⊗Ap

f mod Cp ,

which respects the bilinear forms on both sides up to a constant in (Ap
f )×.

We require an identity of characteristic polynomials,

det(T · I − b | Lie AΛ) = det(T · I − b | V0), b ∈ OB, Λ ∈ L .

For the definitions of the terms employed here we refer to loc.cit., 6.3–6.8. We only
mention that A is a functor from the category L to the category of abelian schemes
over S up to isogeny of order prime to p, with OB-action, and that a polarization λ is a
OB-linear homomorphism from A to the dual L-set Ã (for which ÃΛ = (AΛ∗)∧).
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The functor ACp is representable by a quasi-projective scheme over OEν , provided
that Cp is sufficiently small.

We denote by MΛ the Lie algebra of the universal extension of AΛ. Then {MΛ}
is a polarized multichain of (OB ⊗ Zp) ⊗Zp OS-modules on S of type (L) in the sense
of [RZ], Def. 3.14. Let ÃCp be the functor which to S ∈ (Sch/OEν ) associates the
isomorphism classes of objects (A, λ, η) of ACp(S) and an isomorphism of polarized
multichains between {MΛ} and L ⊗Zp OS . By [P], Thm. 2.2 (a slight extension of [RZ]
Thm. 3.16), the forgetful morphism

π : ÃCp −→ ACp(15.1)

is a principal homogeneous space, locally trivial for the étale topology, under the smooth
group scheme G ×Spec Zp Spec OEν . Here G = Aut(L) is the group scheme over Spec Zp
with Cp = G(Zp) the parahoric subgroup of G(Qp) fixing the lattice chain L.

The Lie algebra Lie AΛ is a factor module tΛ of MΛ. Using the identification of MΛ
with Λ ⊗Zp OS over ÃCp we therefore obtain a point of the naive local model Mnaive

defined in terms of the Zp-data (B ⊗Qp, OB ⊗ Zp, V ⊗Qp,L) induced from our global
data,

ϕ̃ : ÃCp −→ Mnaive .(15.2)

Since ϕ is obviously equivariant for the action of G⊗ZpOEν , ϕ̃ corresponds to a relatively
representable morphism of algebraic stacks

ϕ : ACp −→
[

Mnaive/G ⊗Zp OEν

]

.(15.3)

By [P], Thm. 2.2, (a slight extension of [RZ], Prop. 3.3), the morphism ϕ is smooth of
relative dimension dim G. Let us form the cartesian product of ϕ with the morphisms
M→ M loc ↪→ Mnaive, where M denotes the splitting model over OK , with K the Galois
closure of Eν ,

Aspl
Cp −→ [M/GOK ]



y



y

Aloc
Cp −→ [M loc/GOEν

]



y



y

ACp −→ [Mnaive/GOEν
].

(15.4)

The scheme Aloc
Cp is a closed subscheme of ACp and is the image of Aspl

Cp in ACp . The
scheme Aloc

Cp is a linear modification of ACp in the sense of [P]; likewise, Aspl
Cp is a linear

modification of Aspl
Cp ⊗OEν

OK .
The OK-scheme Aspl

Cp represents the following moduli problem on (Sch/OK). It asso-
ciates to S the set of isomorphism classes of objects (A, λ, η,F). Here (A = {AΛ}, λ, η)
is an object of ACp(S).
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Let F1 be the invariants under ∗ in the center F of B⊗Qp. Then F1 is a direct sum
of fields,

F1 = F1,1 ⊕ . . .⊕ F1,r .(15.5)

For k = 1, . . . , r, let nk be the degree of the direct summand of F corresponding to the
direct summand F1,k of F1. Let MΛ be the Lie algebra of the universal extension of AΛ
and let FΛ be the kernel of the factor map from MΛ to Lie AΛ. Then the action of OF1

on MΛ and FΛ induces decompositions

MΛ =
r

⊕

k=1

MΛ,k , FΛ =
r

⊕

k=1

FΛ,k .

The final ingredient F of an object of Aspl
Cp(S) is a collection of functors Λ 7→ F i

Λ,k for
k = 1, . . . , r and i = 1, . . . , nk, with functor morphisms ji

Λ,k : F i
Λ,k → MΛ,k, satisfying

for each k = 1, . . . , r the conditions in Definition 14.1 when Λ⊗OS is replaced by MΛ,k
and (F i

Λ, ji
Λ) by (F i

Λ,k, j
i
Λ,k), and such that F 1

Λ,k = FΛ,k.
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Köln 2001.
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(1994), 9–58.

[K] R. Kottwitz: Points on some Shimura varieties over finite fields, Journ. AMS
5 (1992), 373–444.

48



[KR] R. Kottwitz, M. Rapoport: Minuscule alcoves for GLn and GSp2n,
Manuscripta Math. 102 (2000), 403–428.

[Lu] G. Lusztig: Cells in affine Weyl groups and tensor categories. Advances in
Math. 129 (1997), 85–98.
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