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1 Introduction

The present paper is a continuation of our previous paper [PR]. The aim of both papers
is to come to grips with the local models of Shimura varieties in the case where the
group G defining the Shimura variety splits over a ramified extension of Q,,. As was first
pointed out in [P], in this case the “naive” local models of [RZ] are not flat in general.
One wants to define closed subschemes of the naive local models which are flat and to
understand the structure of their special fibers. In this paper, we continue our study
of local models for PEL Shimura varieties in this “ramified case”. Two typical cases in
which ramification occurs for a PEL Shimura variety are the following;:

(i) Gq, is of the form Gq, = RF/QPG/, where G’ is a quasi-split group over F' which
splits over an unramified extension of F. And F/Q, is a ramified extension.

(ii) Gq, is the group of unitary similitudes corresponding to a ramified quadratic
extension of Q.

The case (ii) was first addressed in [P]; unfortunately, a number of conjectures for-
mulated there have to be resolved in order to understand this case, even for the simplest
kind of level structures (see Remark 14.2), and more general level structures pose ad-
ditional problems. Here we will be concerned with the case (i). Although we will only
consider the cases where G = GLg or G' = GSpy, our method applies more generally,
comp. section 14. Loosely speaking, the method developed here allows us to deal with
ramification caused by restriction of scalars. In this introduction we will concentrate on
the case G’ = GL4 which brings out better the outlines of our approach. We intend to
return to case (ii) in subsequent work.

Let Fj be the complete discretely valued field with ring of integers Op, and perfect
residue field. Let F' be a totally ramified extension of degree e contained in a fixed
separable closure ;" of Fy. Let Op be the ring of integers of F' and 7 a uniformizer
which is the root of an Eisenstein polynomial Q(T") € Op,[T]. Let K be the Galois hull
of F in Fj*®, with ring of integers Ok and residue field £’

Let V be an F-vector space of dimension d. Fix an F-basis eq,...,eq of V and let
Ai, 0 <i <d—1 be the Op-lattice in V spanned by 7 ter,..., 7 'e;,eit1,...,eq. For
a subset I = {ig < ... <im—_1} C{0,...,d — 1} we obtain a periodic lattice chain A; in
V' which is given by all multiples of the lattices A; with i € I.

Choose for each embedding ¢ : F' — F;® an integer r, with 0 < r, < d. Set r = Xr,.
Then the naive local model M}‘aive = M™Ve(Op, A1, 1) associated to the lattice chain
Ar and to r = (r,) parametrizes points F; in the Grassmannian of subspaces of rank r
of Aj; 5 = Ay ®0g, Og which are Op-stable and on which the representation of Op is



prescribed in terms of r, and which are compatible with varying j = 0,...,m — 1. It
is a projective scheme defined over Spec Op, where E = E(V,r) is the reflex field. Let
k be the residue field of Og. The special fiber of M"*V¢ can be considered as a closed
subscheme of the affine partial flag variety Fl; = GL4(k[[I1]])/ Py,

7 M}laive ®(9E k — Fl[ .

We choose an ordering of the embeddings ¢. The basic new ingredient of the present
paper is the splitting model M; = M(Op,Ar,r). This is a projective scheme over
Spec Ok which to a Og-scheme S associates the set of commutative diagrams of Op R0,
Og-morphisms resp. -inclusions,

Nigs — Aps — - = N, s 5 Ags
U U U U
Fo - F = - = m—1  — Fq
U U U U
e IR = R
U U U U
U U U U
R

which satisfy the following conditions:

a) f,z is locally on S an Og-direct summand of

J
A;, s of rank Zrl .
=1

b) Foreacha € Op and j=1,... ¢
(a®1-1®p;(a)(F) c A
Here we have set Fp = (0).
We obtain an Og-morphism
Tt My — MP @0, Ok

given by {]:,Z}w — {Ff }i-
Our crucial observation is that M can be identified with a twisted product of un-
ramified local models for GL,4 over Ok, M} = MOk, A1 @0y, Ok,m1), forl =1,... e

Mp=M}Px... xM§ .

Let us define the canonical local model M7*" as the scheme-theoretic image of the com-
posed morphism
MI I M}lawe ®OE OK M}ialve )



We may then state the following result:

Theorem A: a) M is the flat closure of the generic fiber M}laive ®oy, E in M}‘aive,
and it coincides with the local model M}OC defined in [PR], §8. Its special fiber is reduced,
and all its irreducible components are normal and with rational singularities.

b) The special fiber M @ k is the union of the Schubert strata in Flr for all
w € Wi\ W /Wy in the u-admissible set ([KR]), for p = wyp, + ...+ wy,

M[(_:an ®0E k = U Ow
weAdmy(u)

Here W denotes the extended affine Weyl group for GLy and W7 the parabolic subgroup
corresponding to I.

The basic ingredients of the proof of Theorem A are the presentation of the splitting
model as a twisted direct product of unramified local models and the results of Gortz [G1]
on these unramified local models. We also need Gortz’s Lifting Theorem [G3]. When the
integers r,, differ by at most one amongst each other, we conjecture that M;*" = M}‘ai"e,
comp. [PR]. Similarly, it seems reasonable to expect in the symplectic case that the
canonical local model coincides with the naive local model, i.e., that the naive local
model is flat in this case, comp. [G3]. Theorem A seems to indicate that M{*" is the
“correct” way to extend its generic fiber into an integral model. Even though Mp*"
does not represent a good moduli problem, the geometric points of M ®¢p, k can
be described as a subset of M}lai"e ®op k and M7*" satisfies a maximal property with
respect to the morphism from My to M}lai"e. The situation is therefore quite similar to
the solution of an orbit problem by its coarse moduli space.

Our second use of the presentation of M as a twisted direct product of unramified
local models concerns the calculation of the complex of nearby cycles of M7*". Let us
assume that the residue field k& of Op is finite. Let us denote by

RO = RU(MF™ @0, O /Ok)Qeld) (3)

the adjusted complex of nearby cycles, where d denotes the relative dimension of M7*".
This is a perverse Q-sheaf of weight zero on M7 ®o, k, which we may regard as a
Pr-equivariant perverse Q-sheaf on F1; ®j k, equipped with an action by Gal(F;®*/K).

Theorem B: There is an isomorphism of perverse Q,-sheaves with Gal(Fy* /K)-action

can 1 e
RUYT" = RO« « RO

Here on the right hand side there appears the convolution in the sense of Lusztig of
the adjusted complexes of nearby cycles of the unramified local models M7, j =1,...,e.
The latter perverse sheaves on Fl; ®;, k are known due to the solution of the Kottwitz
conjecture by Haines and Ngo [HN1].

In section 14 we extend our construction of the splitting model to the general ramified
PEL case. The splitting model comes equipped with a morphism to the naive PEL local



model of [RZ]. The scheme-theoretic image of this morphism is a closed subscheme of the
naive local model; as our examples indicate, it is reasonable to expect that in many cases
(see §14 for details) this is the “canonical” flat local model. However, as A. Genestier
pointed out to us, this is not true when the group is even orthogonal. Also, this is not true
in general in the case of a unitary group corresponding to a ramified quadratic extension.
However, we believe that even in these cases the methods of the present paper will turn
out to be useful. In the last section we briefly indicate how to construct integral models
of the relevant moduli spaces of abelian varieties with additional structure, defined by
the splitting local models and canonical local models.

We thank V. Drinfeld, A. Genestier, U. Gortz and T. Haines for interesting discus-
sions.

2 General notations

Most of the time, we will follow the notations and assumptions of [R-P], §2. In particular,
Fy is a complete discretely valued field with ring of integers Op,, uniformizer my and
perfect residue field. We fix a separable closure Fj;™” of Fy. Let I be a totally ramified
separable extension of degree e of Fy with ring of integers Op. Let m be a uniformizer
of O which is a root of the Eisenstein polynomial

e—1
(2.1) QT) =T+ bT* by €m-OF, bk € ().
k=0

Let us denote by K the Galois hull of F' in Fj™ and let Ok be the ring of integers of
K; denote by k' the residue field of Og. Let us choose an ordering of the embeddings
¢: F — F;® and for i € {1,---, e} let us set a; = ¢;(w). We have

(2.2) O [T)/(Q(T)) =~ OF
given by T'— «w. Fort =1,..., e, we set
e 1—1 . .
(2.3) Q1) = [[(T —a;), QuT)=T[(T —a;) € OkIT], O = Ok[T)/(Q'(T)),
j=i Jj=1

so that Q(T) = Q(T), and Q;(T)Q(T) = Q(T). There are natural surjective O-
algebra homomorphisms

¢ Or ©oy, Ok ~ Ok[T]/(Q(T)) — Ok[T]/(Q'(T)) = OF

obtained by sending 7 ® 1 to 7.
There are exact sequences

ox[11/@Q) *L 011/ Q) ©

ox[11/Q(1) 1 ok r)/@Qr) L ok (T)/(@Q(T)) |



with the image and the kernel of each morphism Og-free. We conclude that if .S is an
Og-scheme, there are functorial isomorphisms

(24) O ®o, Os = Im(Qi(T) | Os[T)/(Q(T))) = ker(Q'(T)| Os[TI/(Q(T))) ,

the first one obtained by multiplying with Q;(T).

Part 11

3 The “naive” local models for G = Resp/p,GLg

Now let V' be an F-vector space of dimension d. Fix an F- basis ey, ... €q of V and let A;,
0<i< d—1, be the free Op—module of rank d with basis e1 =7 161, coebi=q ey,

l+1 = €it1,--- ed = eq. Let us choose a subset [ = {ig < -+ < i1} C{0,...,d—1}
and consider the Op-lattice chain A7 in V' which is given by all multiples of the lattices

A; with i e 1.

Let us choose for each embedding ¢ : F — F;® an integer r, with 0 < r, < d. Set
r= Z r4. Associated to these data we have the reflex field E, a finite extension of Fj
contalned in F P with

(3.1) Gal(Fy/E) = {o € Gal(F}** /Fy); Top =Ty, Yo} .

We also have a cocharacter y1 : Gy /Fy™® — (Resp, GLg)/Fy " given by (17¢,04774).
The conjugacy class of y is defined over the reflex field E. Let O be the ring of integers
in F and k its residue field.

The “naive” local model Mp*¥¢ = M(Op,Aj,x) of [RZ] for G = Resp/p,GLq, the
cocharacter p and the lattice chain Ay, is the Op—scheme which represents the following
functor: To each Op-scheme S, we associate the set MPVe(S) of collections {Fy}y of
Or R0, Og-submodules of A;, g := Ay, ®0k, Og which fit into a commutative diagram

Aio,S - Ail,s - Aimflys 5 Aims
U U U U
Fo — F - - = Fna — Fos,

(with the morphisms A;, ¢ — A, s of the first row induced by the lattice inclusions
Ay, — Aj,.,). We require the following conditions:
i) Fj is Zariski locally on S a Og-direct summand of A;, g of rank r,

ii) for a € O, we have

det(a | i) H(;S

where this last identity is meant as an 1dent1ty of polynomial functions on Op (comp.
(K], [RZ]).
It is clear that this functor is represented by a projective scheme over Spec Og.



Consider the group scheme Gy over Spec Op,
(3.2) Gr = Autp, (Ar)

with S-valued points the Op ®0g, Og-automorphisms of the lattice chain Aj Q0p, Og.

A simple extension of the arguments of [RZ] Appendix (see also [P]) shows that Gy is
smooth over Spec Op,, comp. Remark 3.1 below. Often we will use the base change of
Gr to Spec O, which we will denote by the same symbol.

Remark 3.1 The arguments of [RZ] carry over with essentially no changes to the follow-
ing situation. Let (Fp, Op,, o) as in section 2. Let O be an Op,-order in a semi-simple
Fp-algebra O R0k, Fy. For the purposes of the present paper we may assume that O
is commutative, i.e. O ®0p, Fy is a product of field extensions of Fy. Let II € O be
an element with mo € (II). Let V be a finite-dimensional Fy-vector space which is an
O ®op, Fo-module. An O-lattice in V' is a Op,-lattice in V' stable under O. A (O,1I)-
periodic lattice chain is a chain of inclusions of O-lattices in V/,

CAN1CANC... ,i€el

such that
(i) Ir: A, =1IA; , VieZ.
(ii) Ai/Ai—1 is a free O/TIO-module Vi € Z.
Let us fix a (O, II)-periodic lattice chain £. Let S be a O, -scheme such that g is

locally nilpotent on S. A chain of O ®o, Os-modules of type (L) on S is given by a
chain of O ®0p, Og-module homomorphisms,

4 4 4
e i—1—>Mi—>--~

such that the following conditions are satisfied.
(i) o" =1L
(ii) Locally on S there exist isomorphisms of O ®o,, Og-modules,

M; = Ai ®op, Os , Mi/o(Mi—1) = Ai/Ai-1 ®0p Os

The proof of Prop. A.4 of loc. cit. shows then that any chain {M;} of O R0, Og-
modules of type (£) on S is locally on S isomorphic to £ ®op, Og, and that the functor
on (Sch/S),

S — Aut({M; R®0g Og'})

is representable by a smooth group scheme over S.

4 Affine flag varieties for GL,

If R is a k-algebra, a lattice in R((IT))? is by definition a sub- R[[II]]-module £ of R((IT))¢
which is locally on Spec R free of rank d and such that L& gy R((I1)) = R((IT))4. (Here
R[[IT]], resp. R((II)) denotes the power series ring, resp. Laurent power series ring in



the indeterminate II over R). Equivalently, a lattice is a sub-R[[II]]-module £ of R((IT))%
such that IV R[[I1)]¢ ¢ £ ¢ TI-NVR[[I1)]¢ for some N and such that -V R[[x]]¢/L is a
locally free R-module.

Recall that the affine Grassmannian Gr over k associated to GLg is the Ind-scheme
over Spec k which represents the functor on k-algebras which to a k-algebra R associates
the set of lattices £ in R((IT))¢. The affine Grassmannian can be identified with the fpqc
quotient GL4(k((I1)))/GL4(k[[I1]]) where GL4(k((I1))), resp. GLg4(k[[IT]]) is the Ind-
group scheme, resp. group scheme over Spec k whose R-rational points is GL4(R((II))),
resp. GLg(R[[IT]]). .

For each i € {0,...,d — 1}, we will denote by A; the k[[II]]-lattice in

k(D) = k((ID)ér @ -~ @ k((I1))éq

which is generated by II='éq, ..., II71¢;, &1, ..., Eq.
Denote by Pj, resp. Pj, the parahoric subgroup scheme of GLg4(k((II))), resp.
SLg(k((I1))), whose k-valued points stabilize the lattice chain

(4.1) NigCchijy c---C Ay, , CTTIA,, .

Tm—1

If I ={0,...,d— 1}, then Py, resp. Pj, is an Iwahori subgroup scheme of GL4(k((II))),
resp. SLg(k((IT))).

For every nonempty subset I = {igp < -+ <ipm_1} C {0,...,d—1}, we have the partial
affine flag variety F1; whose R-rational points parametrize lattice chains in R((IT))?

(4.2) LoCLI C- - C Ly CIITL

with Lgy1/Ly, resp. I Lo/ L1 locally free R-modules of rank ij,q — ij for k =
0...m —2, resp. (d+ip) — im—1.

The affine Grassmannian variety corresponds to the choice I = {0}, while the full
affine flag variety corresponds to I = {0,...,d—1}. The Ind-group scheme GL4(k((II)))
acts on the partial affine flag variety F1; and we can identify F1; (GL4(k((II)))-equivariantly)
with the fpgc quotient

(4.3) Fl; = GLq((k((I1)))/Pr .

Given r € Z, we may also consider the special partial affine flag variety F1; whose
R-rational points parametrize lattice chains in R((IT))?

(4.4) LoCLiC---CLp1 C H_IL[)

such that:

i) Liy1/Ly, resp. U~ 1Lo/L,, 1 are locally free R-modules of rank iz — iy for k =
0...m—2,resp. (d+ig) — im—1,

ii) ALy = " R[[TT]]¢ (as a submodule of ACR((IT1))? = R((IT))).



The special affine flag varieties F1j for various r are all isomorphic to the fpqc quotient
SLa(k((1D)))/ Py

(as abstract Ind-schemes but not SL4(k((II)))-equivariantly, unless r = —ig). For I =
{0}, we obtain the special affine Grassmannian

Gr" =~ SLqg(k((II)))/SLa(k[[IT]]) -
Now fix an identification Op ®o,, k = k[[I]]/(1I°) and Op ®0,, k-isomorphisms
Ay, ®0p, b~ Ny, @pqqry KIT]]/(11°)
which induce a k[[II]]/(II¢)-module chain isomorphism
A1 ®og, k=~ Ay @y K{[]]/(I1°) -
Let R be a k-algebra. For an R-valued point {Fy} of MP¥ we have
(4.5) Fie C iy, ®0p, R =R, @y R[]/ (T1°) .
Let L1, C A, ®p(my R[[U]] be the inverse image of F; under the canonical projection
Aiy, @y R[] — Ay, @pqqury R[]/ (T°)

so that we have . .
Ay, gy R[] C Ly C Aiy, gy R[] -

Then {Lx}x gives an R-valued point of Fl;. In this way, we obtain a morphism
(4.6) i: MPVe @0, k — Fl;

which is a closed immersion (of Ind-schemes).

5 The splitting model for G = Resp/r,GLg

Fix I = {ip < i1 < ... < im-1} C {0,...,d — 1}. Consider the functor M; =
M(Op, Ap,r) on (Schemes/Spec Ok ) which to a Og-scheme S associates the set M;(.S9)
of collections {fi }ik of Op R0, Og-submodules of A;, ¢ which fit into a commutative
diagram

Aigs — Niys — -+ = A5 & Ags
U U @) U
Fo — FH o= = Faa = K
U U @) U
T
U U @) U
U U @] U
N



and are such that:
a) J”:,g is Zariski locally on S a Og-direct summand of A;, g of rank Z{:l 7.
b) For each a € Op and j =1,... ¢,

(@a®1—1® ¢j(a)(F]) c F

where the tensor products a® 1, 1 ® ¢;(a) are in Op R0, Og and where, for each k, we
set Fp = (0).

The functor M is obviously represented by a projective scheme over Spec Ok . Notice
that there is an Og-morphism

(5.1) My — M}laive ®o, Ok

given by {fz}k] — {Fg k. Indeed, if F, = Fi supports a filtration {.’Fg}j with the
above properties, then the characteristic polynomial of the action of a € O on F is

e

(5.2) [1(T - éu(a))"

I=1
and therefore Fy satisfies the condition ii) in the definition of MPaive,
Proposition 5.1 The morphism w; induces an isomorphism
11 @0, K : M @0, K = M} 20, K
on the generic fibers.

PrROOF. To each S-valued point of MPVe with S a K-scheme, given by {F}i, we can
associate an S-valued point of M by considering, for each k, the filtration {F,i}l asso-
ciated to the grading on the Op Qog, I -module F, = F§ given using the decomposition

OF ®OF0 K ~ @leKv a® b— (bgbl(a))l:l,“.,e .
This gives a morphism inverse to 7; ®o, K. |

Foreachl =1,...,e, k= 0,...,m — 1, set Eik = Ai, ®0op.¢, Ok (an Ok-lattice
in V®pgg, K). Denote by EZI the Ok-lattice chain in V ®p 4, K given by the lattices

{G?Eék}k,nez‘ An “essential” part of the lattice chain Elj is

l

= =l = 1=l
I_Jio C‘_'il CC‘_'Z

mo1 &0 Sy

in the sense that each successive link Eﬁ C Eé, in the total lattice chain El] is a multiple

of one of the links in the part above.

Let Q} be the group scheme over Spec O whose S-points are the Og-automorphisms
of the chain Z} ®p, Og (once again, a simple extension of [RZ] Prop. A.4 shows that
this is a smooth group scheme, comp. Remark 3.1).

10



Now if S a scheme over Spec Ok, we obtain from A7 g a Og? ®o, Os-lattice chain

AlI g by extending scalars via

¢' ®o, O : OF ®o,, Os =~ O[T]/(Q(T)) — Os[T1/(Q(T)) = O oy Os .

An argument as in the proof of (2.4), shows that we have functorial isomorphisms of
chains of Og-modules

(5.3) Bl g = A1 ®0p4 Os = ker(r —a; | A} ®0, Os)
obtained by sending the element A ® 1 of A; ®0,. 4 Os to the image of Q1 (7)- (A®@1)
in AlI Kok Og.

Denote by g}” the group scheme over Spec Ok whose S-points are the (’)&? ®ox Os-
automorphisms of the chain AZI ®o, Og (once again we can see that this is a smooth
group scheme, comp. Remark 3.1). The isomorphism (5.3) induces a group scheme
homomorphism

(5.4) G\ — gt

Now suppose that {.’/’-",g}ﬂC is an S-valued point of Mj. For [ =1,...,¢, let us set
W s =ker(Q'(m) | Ais/Fy 1) 5
this is an Oy() ®o, Os-module. We also set
Tl'k,S = ker(m — ay | Aik’s/}"}gl) = ker(m —a; | \Pék’S) .

)

We have (’)gl() ®o, Os-module, resp. Og-module, homomorphisms

l l l T &1
qjik,s - \I]ik-s-hS’ \Ijim—lys - \I]ioﬁ
resp.
l l ar Anl
Tik,S - Tik+1,57 sz L,S Tzo S

induced by the O ®0r, Og-module homomorphisms

[—1 [—1 [—1 7 [—1
Aik,s/fk; - Aik+1,5/]:]g+1’ Aimflys/]:TrL71 - Aio,s/j:o

by taking the kernel of Q'(7), resp. of m — ¢y(7) = m — ay.

Proposition 5.2 a) The formation of \Ilék,s, resp. of Ték’s, from {fg}]k commutes
with base change.

b) The Og-) ®o, Og-module \Ifébs, resp. the Og-module Ték’S, 1s locally on S free of
rank d.

¢) The chain ‘I’ék’s of O&? ®o, Og-modules given by

;

l l 7"
T \Pio,s - \Pimflvs - \Ilzo,

11



()

is Zariski locally on S isomorphic to the chain of O
Similarly, the chain TZI’S of Og-modules on S given by

®o, Os-modules AZI ®o Os.

l l @~
_>T’LO,S—>_)TZm71,S_>TS—>

s Zariski locally on S isomorphic to the chain of Og-modules EZI ®oy Os.

PROOF. The statements for the modules Ti g follow from the corresponding statements

for the modules \Ifl ..o~ Indeed, we can see this fact using the functorial isomorphisms
(5.3) and the fact that
TZk g = ker(m —ay | \11% ).

Write Ql(T)*l(}"li_l) for the inverse image of .7-'1_1 C A, s under A;, s — A;, s given

by multiplication by Q'(T). Notice that since Ql( NFi ) = (0), by (2.4) we have
f,i_l C QYT)(A;, s). Hence, there is an exact sequence

0 — ker(Q(T) | Aiy.5) — QUT) " HFTH = Fit —o0.

By (2.4), ker(QY(T) | As,.5) ~ Aiy 5/Qi(T)A;, 5. Hence, Ql(T)_l(f,l;l) is a locally free
Og-module of rank d(e — 1+ 1) + Zi;} r; whose formation commutes with base change.
The exact sequence

_ _1, QUT _
0= Aips/Q' (M) F) T Mgy s/ FL = Mip s/ QT Asy s — O

now implies that A;, g/QY(T) ' (Fi ') is also Og-locally free. Hence, Q'(T) " (Fy ') C
A, s is locally an Og-direct summand. Now

0— QUT) M (F Y/ Ft = Aps/Fit — Ay s/QUT) H(FL) —

implies that ! ¢ = QYT) " (FL1)/FL ! is a O ®0, Os-module which is locally free
of rank d(e — 1+ 1) as an Og-module and that its formation commutes with base change
in S. To show that \Ill .. is locally on S a free (’)( ) ®o, Os-module it is enough to show
this for S = Spec L, L a field. This is easy to see if L is an extension of K. If L is an
extension of k', then (9%) ®oy L = Lx]/(x¢~!*1). In this case, there is a L[r]/(7¢)-basis
fio-oo faof A, ®o, Land Il —12> 51 > --- > 54 > 0 such that

(55) FIV = L[ f(n®) - 7 fy & - @ Ll /(n) - 54y
Then
(5.6) gl = MR/ w0 @ L/ (nf) - '
. ig,S LI:T(:I/(T{'@) . 7re—s1f1 DD L[W]/(ﬂ-e) X We_sdfd ;
which is freely generated over L[r]/(7¢~"*1) by the classes of 7/=1=s1f; ... ¢l=1=saf,.

It remains to show (c) for ‘lfik g, i.e that the chain \IIZI g is Zariski locally isomorphic

to the chain Al ®o, Og. Given (b), an extension of the arguments in the proof of [RZ]
Prop. A 4, p. 133 shows that it will be enough to prove that the cokernels of

ol oo —wl

l
ig,S ipt1,5 0 im—1, i0,S

12



are Zariski locally on S isomorphic to the O&? ®o, Os-modules (Aik /AL ) ®e, Os

k41

and (Aﬁo JTAL  )®0, Og respectively, comp. Remark 3.1. In what follows, we will only

Tm—1

deal with the case of \I’lz‘k,s — \Ilikﬂ,&

that Aék/Af;k+1 is a module over O%)/TO%) = O [T]/(T,QYT)) ~ Ok /(w**1) with
w a uniformizer of Ok. For simplicity of notation, set

the case of ! L Wl . being similar. Notice
(mel)s 7’073

Rl _ OK/(we—l—I—l) )

The cokernel of \Ilélws — ‘I/liHLS is a module over Ry ®p, Og. Hence, it is enough to
assume that S = Spec R is an affine Rj-scheme and prove the result in this case. In fact,
since M is a Noetherian scheme, we can also assume that R is Noetherian. We can lift
the Ri-chain A7 g, := Ay Rop, I to a chain of R;[[T]]-free modules A;

_/~\i0 (- Ail cC---C IN\im_l C Tflj\io

which are all R;[[T]]-submodules of R;((T))? such that there is an isomorphism of
R [T]/(Q(T)) = Ok ®0y, Ri-chains

Ar @,y RallTN/(Q(T)) ~ Arg, -

Now notice that since each a; is nilpotent in Rj, the elements T' — a; of Ry[[T]] are
invertible in Ry ((7T')) and hence the inverse Q'(T")~! makes sense in R;((7T)). The diagram
corresponding to the R-valued point {]—",i }jk of M now provides us with a diagram of
R[[T)-attices in R((T))%:

AiO,R C Ai1,R c - C Aim—LR C T_IAZ‘O’R

U U U U
QUTMTLyt < QM) < - o QM) © TRNT) LG

U U U U

it C £t c - C £t C it

U~ U~ EJ U~
Q(T)AiO,R C Q(T)Ail,R c - C Q(T)Aim_l,R (@ TﬁlQ(T)AimR ,

where /~\%R = /L-k ®@p, i) BI[T]], and 52_1, resp. QZ(T)AEZ_I, is the inverse image of
-7'—11;1, resp. QI(T)_l(}",l;l) under the surjection

]\ik,R — ]\ik,,R gy RITN/(Q(T)) ~ Aiyr -

Each quotient created by the inclusion of any two modules in this diagram is a finitely
generated locally free R-module. In particular

Q)L /R T L

is annihilated by T and is R-locally free of rank equal to the rank of f\ik 41,8 //N\lkg It
now follows that the cokernel of

\Ijéms = QZ(T)_lﬁic_l/ﬁfk_l - Ql(T)_lﬁgs;ll £ll%jrll = \Ilék+175
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is isomorphic to
(@D L /M L) n, B

and therefore it is a locally free R @, R;-module of the expected rank. This concludes
the proof. O

Now let M} := M(Ok,=4, 1) be the (“unramified”) local model over Spec O for
G = GL4/K = GL(V ®p, K), p given by (17,097, and the lattice chain Z} ([RZ]).
By definition, M } =M (OK,El],rl) is the projective scheme over Ok which classifies
collections {Fj }x of Og-submodules of Eik g = Eék ®0, Og which fit into a commutative

diagram
=l

=l a =]

=l

i, S T Za,S T T T S S T Fig,S
U U U U
Fo — F — - = Fpa — Fo

and are such that F}, is Zariski locally on S a Og-direct summand of Eik g of rank 7.
Let us denote by M 7 the scheme over Spec O whose S-points correspond to pairs
Vi l l
M;(S) == ({Frh, {or})i=s
where {FL},x is an S-valued point of M; and for I =2,... e,
l I~ Al
op: Vg —Arg

is an isomorphism of chains of (’)g? ®o, Og-modules. The natural projection morphism

g Mj— M;

is a torsor for the smooth group scheme [];_, g}” by the action

(5.7) ¢z - ({Fhe + {oi}ima) = (b« {d' - ol}is) -

Notice that an isomorphism o as above, in view of (5.3), induces an isomorphism of

chains of Og-modules
FiYh g S E g 1=2
Tr LS—);_.Ls, = 4y...,€.

For 1 =1, \Ilzlk g =N\, 5 and (5.3) gives a canonical isomorphism
1~ =l
vr TI,S —E/g -

Now if {FL}, 1 is an S-valued point of M, then since (7 — a;)F, C 5’-',271 we can
consider ]:,i/f,ifl as an Og-submodule of T/,Z@S = ker(m — a; | \Pék,s)' Consequently, if
{F 3k ,{ ob}s,) is an S-valued point of M, then we can consider

(5.8) T (FL/FEY CEL g

14



Forl =2,..., e, the Og-modules Tilk (.7-",2/.7—",2_1) are locally direct summands of Eﬁhs
and they provide us with an S-valued point of the “unramified” local model M } For
[ =1, the Og-modules v;, (.7-",%) are locally direct summands of E}Im g and provide us with
an S-valued point of the local model M 11 We conclude that there is a morphism of
Og-schemes

e
pr:Mp — HM}
I=1

given by
{Fihr s {oi}ia) = ({oR(ED b AoREL FD b Ak (FE/FETO )

It is easy to see that the morphism p; is also a [[j_, g;l)—torsor. Note that the
corresponding [];_, Qy)—action on M is different from the action which produces the
torsor gy : My — Mj:

(5:9) (i ((Fhhr » {oh}ia) = (10D o' oh(EDha s 19 0h)ia) -

In short, we have obtained a diagram of morphisms of schemes over Spec Ok:

My

(5.10) pr N a1
[T—, M} Mp o Mpve gy, Ok

in which both of the slanted arrows are torsors for the smooth group scheme [[;_, g}”.
This diagram allows us to think of the splitting model as a twisted product of the
“unramified” local models M } In the next sections, we will see that the special fiber of
this diagram coincides with a certain geometric convolution diagram ([Lu], [H-N]). By
the main result of [G1] the schemes M! are flat over Spec Ox. The existence of such a
diagram of torsors for a smooth group scheme therefore implies:

Theorem 5.3 The scheme My is flat over Spec Ok O

6 Local models and affine flag varieties

We continue with the notation of the previous sections. Recall that there is a closed
immersion of Ind-schemes
it M ®0, k — Flf

15



which is described in §4. This immersion is equivariant for the action of P C GLg4(k((I1)))
in the following sense. The special fiber G; := Gy ®oy, k of the group scheme Gr defined
in §3 acts on MPV°®¢ k. The isomorphism A; ®0g, k =~ A; @y k[[H]]/ (11°) allows us
to identify G; with the group scheme giving the k[[IT]]/(II¢)-automorphisms of the chain
A; ®@pqrryy k[[I1]]/(11¢). The immersion i is Pr-equivariant in the sense that the action of
Pr on Flj stabilizes the image of ¢, the action on this image factors through the natural
group scheme homomorphism P; — G; and i is Gr-equivariant. As a result, the image
of 7 is a (finite) union of Pr-orbits in Fl; = GL4(k((I1)))/Pr. In fact, if R is a k-algebra,
the R-rational points of the image of i correspond to the lattice chains

EoC,ClC"'CEmflCH_l,CQ

which fit into a diagram

Aio,R C Ail,R c - C Aim—l,R C H_lAiO,R
U @] U U
Lo C L1 c --- C Lom—1 C H_lﬁo
U @) U @)
HeAimR C He[\ilyR c - C HeAim_l,R C He_lj\iO,R

and are such that Ek/HeAik7R, and Aik,R/ﬁk are R-locally free of rank r, resp. de — 7.

Similarly, the special fiber M } ®o, k' of the unramified local model M } can be
considered as a closed subscheme of the affine flag variety Fl; ®;, k' via a natural closed
immersion

il Moo, K — Flyep k.

In fact, by [G1], M. ®e, k' can be identified with the scheme-theoretic union of a finite
number of Schubert varieties in F1; and is reduced (see [G1]). This union is stable under
the action of Pj.

Suppose now that R is a k’-algebra and that {.7:,1 }jk gives a Spec R-valued point of
M ®o, K. Forj=1,... ¢, let

L], C Ay, @y RIII]
be the inverse image of 7}, C Ai, ®oy, R~ A;, @y R[[11]]/(I1°) under
As, @gqy) RIM] — Ay, @RI/ (1)
We obtain a R[[II]]-lattice chain E]I'
Lhcolc--.cLl  culs

which provides us with a Spec R-valued point of the affine flag variety Fl;. In this way
we obtain morphisms of Ind-schemes

(6.1) FI o Mp @0, K — Flp ok
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and .
(6.2) F=(F);: My @0, k' — [[Flrexk .
j=1

The morphism F is a closed immersion. Actually, the R-rational points of M; ®o, K
correspond to collections of lattice chains for j =1,... €,

: . : o
LhcLic---cLl,_,cu L]

which fit into a diagram

Aig,R C Ail,R c - C TV - H_l‘f\io,R
U U U U
mi-egctd < m-egd < -0 c mteegl o< 1L
U U U U
U U U U
6 - ¢ c - C L£e c Iz
U U U U
U U U U
sy <ot c -~ Cc L, < nuizg
U U U U
HeAioyR C HeAZ'hR c - C HeAim_l,R C He_lAiD’R,

and are such that Ei / Lf:l, and T/ _eC,i / Hj“_eﬁf:rl are R-locally free of rank r; for
7 =2,...,e, while E,lc/HeAihR and 1~Xik,1|:g/1_[1_e£,1€ are R-locally free of rank ry.

In what follows, for simplicity, we will use a bar to denote the special fiber of a scheme
(or of a morphism of schemes) over Spec O or over Spec Og.

We will see that the special fiber M can be naturally identified with the geometric
convolution of the reduced subschemes MZI, l=1,...,e,of the affine flag variety F1;®,k’.
More precisely, we will see below that the special fiber of the diagram (5.10) relates to a

convolution diagram for the Pr-equivariant subschemes Mll, [=1,...,e, defined as by
Lusztig, Ginzburg etc. ([Lu]):

U

(6.3) P/ N\ P2

My x - x M, Mpx---%M; B Mveg, Ox C Fly @k .

Let us explain how the diagram (6.3) is obtained (e.g [Lu]). For simplicity of notation,
we set G = GLg(k((IT))) and let 7 : G — Fl; = G/ P be the natural quotient morphism

(of Ind-schemes). We also set Z; = Mll C F1; ®; k' and denote by Zl the inverse image
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of Z; under 7 ®; k’. Often we will omit from the notation the base change from & to &/;
this should not cause any confusion. Now set

U=Z1 X XZeyxZCGx---xGxG/Pp

and let
pliU — le-“XZe_lXZe
be the coordinate-wise projection (g1, +,ge—1,9:Pr) — (g1 Pr,-..,9e-1Pr,9¢Pr). The

morphism p; is a (Pr)®!-torsor for the action given by

(6.4) (U1, ey Ve—1) * (g1y- -y Ge—1,9ePr) = (glvl_l, .. ,ge_lve__ll, gePr) .

The convolution Z;x ---xZ, is defined as the quotient of U by the free action of
(Pr)¢~! given by
(6.5) (V1,0 Ve—1) * (g1 s Ge—1, 9 Pr) = (glvl_l, vlggvz_l, ..,ve_gge_lve__ll, Ve—19ePr)

We denote by
pg:U—>Z1>~<--'>~<Z€

the quotient morphism. .
Finally, the morphism Z; X - -+ X Z._1 X Z, — G /Py given by (g1, ..., ge—1, 9ePr) —
g192 - - - ge Pr factors through the quotient to give

p3 @ Zyx - xZe — G/Pr .

Let us now explain how the above convolution diagram (6.3) relates to the diagram
(5.10): There is an isomorphism Z1X --- X Z, ~ M given by

(915, 9¢) — (T gy - Ap, T 2g1g0 - A, .o, (9192 - ge) - Ap)

In fact, an R-valued point (g1, .., ge—1, gePr) of Z1 X +++ X Ze_1 X Z. determines a pair
consisting of a point

(L}, L3 ... L) = (0 gy - Arp, 11 2g192 - ArR, .-+, (9192~ Ge) - ALR)

of M and a collection, for j = 2,...,e, of isomorphisms of chains
. i il il - P .
o} + WL L~ App/T T A g A gy

The isomorphisms a}‘ are given via the inverses of the maps given by the action of
g1 gj—1 ~ ~ ' -
Arr—grgjm - Apg =T
The pair ((EJI')]-, (a}))?ZQ corresponds to a point in the special fiber M ;- Hence, we

obtain a morphism

18



(6.6) w:U — My

and (after the identification Zy % -+ XZ, = M;x - -- x M ~ M) a diagram

U
lu
(6.7) M
pr/ N qr
—1 —e =1 ~ ViR L naive /
MIX”'XMI MIX"'XMI —)MI ®OEOKCF1[®k;k

It is easy to see that we have p; = u -py and p2 = u - q;.
There is a natural surjective group scheme homomorphism

(6.8) (Pr)" — [ Aute(A /e 14,) = T] 6V
=2 =2

Denote its kernel by K. Then the morphism u realizes M 1 as the quotient of U by the
action of K C (Pr)®~! given by (6.4). Then, the torsor p; is identified with the [j_, ?f,”-
torsor obtained from p; by taking the quotient by K. Similarly, and at the same time,
the morphism wu realizes M 1 as the quotient of U by the action of K C (P;)®~! given

by (6.5). Then, the torsor g; is identified with the [[;_, ?gl)—torsor obtained from po by
taking the quotient.

7 The canonical local model for G = Resp/r,GLg

We continue with the assumptions and the notation of the previous sections.

Definition 7.1 The canonical model M := M®"(Op,Ar,r) for the group G =
Resp/p,GLq, the coweight p given by r, and the lattice chain Ay, is the scheme the-
oretic image of the morphism

T My — MPYe @0, O — Mpave

which is obtained by composing the morphism 7; with the base change morphism.

Since 7} is proper, the canonical local model M{* is a closed subscheme of the naive
local model M ?aive. Using Proposition 5.1 we see that M;*" and M}lai"e have the same
generic fiber. The scheme M7*" is flat over Spec Of since, by Theorem 5.3, My is flat
over Spec Ok . Therefore, M7 is the (flat) scheme theoretic closure of the generic fiber
M; ®0p, E in Mpaive,
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In [PR] §8, we have defined the local model M°¢ for O, A; and r as follows. For
every k € {0,...,m — 1}, we consider the standard (naive) local model M"aVe(A; ) :=
MPave(Op, A;,, 1) associated to the lattice A;, (and (F,V, u)). There is a morphism

(71) T, - M}laive N Mnaive(A‘ ) ’

(23

obtained by {F;},t — Fi. In [PR], we set

(7.2) MP© = () m H(MY0(Ay))

ik
i€l

(scheme theoretic intersection in MPVe) where M'¢(A;,) C M™@V¢(A;,) are the (flat)
local models of EL-type which were studied in [PR]. By the above remarks, we have

M°(A;,) = M.

The recent results of Gortz imply now the following theorem.

Theorem 7.2

(a) MP¢ is flat over Op and hence M§™ = M°°.

(b) The special fiber M{* ®o,, k is reduced; its irreducible components are normal
and with rational singularities.

Remark 7.3 (a) The flatness property in (a) above was conjectured in [PR], §8.
(b) Denote by 1; the miniscule coweight (17¢,0977¢) of GLg. By [G1], the special fiber
MZI can be identified with the union of Schubert cells J,,c aqm, () Ow Of the partial affine

flag variety F1; @ k. Here Admy(sy) denotes the y-admissible set inside Wi\W /Wr.
Here W denotes the extended affine Weyl group of GL4(k((II))) and W; the subgroup of

W which corresponds to the parahoric subgroup Pr; see [KR]. By Theorem 7.2 (b) and
the discussion in §6, M‘}an can be identified with the reduced image of the convolution
morphism

U 0Ow|x--x U Ow| =FLek .
weAdmy(p1) weAdmy (pe)

This image is equal to the union UwEAdmI(u) O with g = p1 4+ -+ + e

PrROOF. Notice that each morphism m;, induces an isomorphism between the generic
fibers:
i, ®OE E - M}lalve ®OE E l Mnalve(Aik) ®0E E .

Therefore, M}OC Rop B = M}laive ®op F = M7 ®p, E . Since M7*" is the scheme
theoretic closure of its generic fiber in M7*"¢, we obtain

(7.3) M C MpP© C Mpe
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where the inclusions are inclusions of closed subschemes. In what follows, for simplicity,
we will use a bar to denote the special fiber of a scheme or a morphism of schemes over
Spec Of. Definition 7.2 implies

MPE = () 7} (M8, )

i€l

As we have seen above, MPive resp. M1aive(A; ), can be identified with a closed sub-
scheme of the affine flag, resp. affine Grassmannian, variety for GLg over k. The mor-
phisms 7;, can then be identified with the restrictions of natural (smooth) projection
morphisms from the affine flag variety to the affine Grassmannian. By [PR], the special
fibers M°c(A;,) are reduced and they are identified with Schubert varieties in the affine
Grassmannian; therefore the inverse images are also (reduced) Schubert varieties in the
affine flag variety. By [G1] (see also [Fa]) all Schubert varieties in the affine flag vari-
ety are normal, simultaneously Frobenius split, and with rational singularities; therefore
arbitrary intersections of Schubert varieties in the affine flag variety are also reduced

unions of Schubert varieties. We conclude that M}OC is reduced and that its irreducible
components are normal with rational singularities. Therefore, to show that M}OC is flat
and hence that M7*" = }OC, it will be enough to show that the generic points of the

irreducible components of M}OC lift to characteristic zero. This statement has recently
been shown by Gortz ([G3]) by using results of Haines and Ngo ([HN2]). Hence part

(a) follows. Part (b) now follows from (a) and the above description of the special fiber
—loc

M. m

Part 111

8 The “naive” local models for G = ReSF/FOGSp2g

We continue with the notation of §2. Let (V,{ , }) be the standard symplectic vector
space over F' of dimension 2g with basis eq,...,eg, f1,..., fg, i.€

(8.1) {eise;} ={fi, [;3 =0, {ei fi} = dij -

Let <v,w >= Trp g {v, w}. Then, since F'/Fy is separable, <, > is a non-degenerate
alternating form on V' with values in Fy which, for all a € F', satisfies

(8.2) <av,w >=<v,aw > .
If A is an Op-lattice in V, we set
AN ={veV|{v,A\} € Op, forall A € A},

A={veV|<v,A>cOp, forall A€ A},

for the dual (“complementary”) Op-lattices with respect to the forms { , } and <, >
respectively.
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Now let § be an Op-generator of the inverse different DI;/lFO (if F/Fy is tamely

ramified, we can take § = 717¢). Set

Mg = Spanp,.{e1,...,¢€4,0f1,...,6fs} CV.
Then the Op-lattice Ay is self-dual with respect to the form <, >, i.e
(8.3) Ao = Ay .

Indeed, < e;,adf; >= 0if i # j, and < e;,ad f; >= Trp/p,(ad); this is in Op, exactly
when a is in Op.
For 0 <r <g, let
Ay = Spang {7 er,...,m er, erp1, o eg, 0 1, 0 fy )
We obtain a chain of inclusions of Op-lattices

(8.4) TFA()CATCA():A()CATCWile.

In fact, we have

A~

A, = SpanoF{el,...,eg,ﬂ'(Sfl,...,W(SfT,(Sfr+1,...,5fg} .

We can extend Ag C Ay C --- C Ay to a complete Op-lattice chain {A;};cz in V' by
setting
A =7"FA;, fori=2gk+5,0<j<g,

A = Tr_kf\_j, for i =29k +j, —g < j <0,
The essential part of this Op-lattice chain is
AQC-'-CAl CA():A()CAlC--'CAg:TI'flAg .

The lattice chain {A;}icz is “self-dual” (for every i there is a j such that A = Aj, in fact
we have A; = A_;) and “complete” (for every i, dimy(A;y1/A;) = 1). We will sometimes
write

(85) <, >4 Ay X A:Fi — OFO

for the corresponding perfect form. These sets of forms are alternating in the sense that
< U,w >:|:Z: — << w,?} >:FZ .

Now fix a subset I = {ig < -+ < iy—1} C {0,1,...,9} and consider the self-dual
periodic Op-lattice chain A; given by taking all lattices of the form 7"A;,, 7" A;, for
ne€Z,k=0,...,m—1. An essential part of the lattice chain Ay is

I

A~

A, ,C-ChjyCAyyC---CAy,, Cr A, .

The standard (“naive”) local model N}2¥® associated by Rapoport-Zink [RZ] to the
reductive group G' = Resy/r, GSp(V, <, >), the cocharacter p given by {(19,09)}4 and
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the parahoric subgroup which is the stabilizer of the Op-lattice chain Ay, is by definition
the Op,-scheme representing the following functor on (Schemes/Op,):

For every Op,-scheme S, N}lai"e(S) is the set of collections {F;,, F—i, }k=0,...,m—1 Of
Or ®0p, Og-submodules of A;, g, resp. f\ik’s which fit into a commutative diagram

N N a o
Nipprs = 0 = Ngs = Njgs — 0 = N s = A s
U U U U U
F_im—l - T - ‘F_iO - ‘FZO - T - Em—l - F_im—l

and are such that:

a) Fi,, resp. F_;,, is Zariski locally on S a Og-direct summand of A;, g, resp. A;, s,
of rank eg,

b) the compositions F_;, C Aj, 5 — Fi, , Fip, € Aip.5 = Ni,.5 — F_i, where Fuy, =
Homog(F+iy,, Og) and the second maps are the duals of the inclusions F;, C A;, g, resp.
F_i, C A4, s, are the zero maps.

c) For every a € Op, and k =0,...,m — 1, we have

det(a | Fuii,) Hqﬁ
where again this identity is meant as an identity of polynomial functions on Op.

Remark 8.1 For F C A;, g, we set Ft = ker([\ik,g — .7:") C f\ik,g. For G C [\ik,g we

set G :=ker(A;, s = /AX%S — Q) C A;, 5. If F, resp. G are locally Og-direct summands
of A;, s, resp. A;, g, then F=+, resp. G* are locally Og-direct summands of A, s, resp.
A;, 5. Condition (b) implies that

Foi Cker(Aj, 5 — Fi,) = (Fi,)t . Fi Chker(Miy s — Foip) = (Foi)*

Since by (a), Fti,,, (]—]Eik)L all have rank eg, we obtain F_;, = (Ek)L, Fip = (]-"_Z‘k)L

Hence, NPV¢(S) is in bijection with the set of collections {Fj}x of Op R0, Og-
submodules Fj, C A;, g, which are, Zariski locally on S, Og-direct summands of A;, g of
rank eg and which satisfy:

i) For every a € Op, k=0,---,m — 1,

det(a | Fi) H¢

(as always this identity is meant as an identity of polynomial functions on Op),

ii) The inclusions Fj, C A4, s, ka C A%S fit into a commutative diagram

. . -
Aim—lys - e - Ai075 - A’io,s - e - AZm 1,8 - Aim—lys
U U U U U
Fr, - - = F = R = o = Faa = Fi.
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9 The splitting model for G = Resg;p, GSpy,

We continue with the notation of the previous section. Consider the functor N; =
N(OF, A1, g) on (Schemes/Spec Ok) which to a O-scheme S associates the set of col-
lections {Hkvfiik}k,jﬂ,m,e of OF ®op, Os-submodules of A;, g, resp. A, s which fit
into a commutative diagram

~ ~ ™

Aim—LS - Aio,S - Aio,S - Aim—hs - Aim—lvs
U U U U U
fiimfl - ‘7:32'0 - ‘Fieo - f;mfl - fiimfl
U U U U U
-1 -1 -1 -1 -1
fiimfl - fiio - fﬁ) - fiem—l - fiim—l
U U U U U
U U U U U
Flipy — 00— Fly = Fy o — oo Fo— FL

and are such that:
a) ]:gk, resp. fﬂik, is Zariski locally on S a Og-direct summand of A;, s, resp. A;, g,
of rank jg and satisfies, for all a € Op,

(a®1—-1® ¢j(a))F; C fi;kl .

ik

b) the compositions

~

Fjik C Aiys — Hk ) fzjk C Aiy,s =Ny s — fizk )

are the zero maps.

By Remark 8.1, we see that the above conditions imply that for every k, ffik =
(ﬂi)L, Fio=( fik)L. Hence, we obtain chains

0)cF, c...cF¢

_Z‘k

e — (jriek)L - C (7'—1'1,)L C Aik,S )

—ig

0)CFLC CFL=(F ) C C(FL )T CAiys

¢) In addition to (a) and (b), we require that, for all j = 1,...,e — 1, and every
a € Op,

H (a®1—-1® ¢q(a)) (fzik)J_Cfijk’

Jt1<g<e

[ @oi-1ee) F)" cF, .
Jj+1<q<e
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Obviously the functor N7 is represented by a projective scheme over Spec O which
we will also denote by Nj. As in the case of G = Res F/F,GLag, there is a projective
morphism

(9.1) 7wy N — N}laive ®0g, Ok

given by {.7-1% bik = {FL; k- A construction similar to the one in the proof of
Proposition 5.1 shows that, also in this case, w7 induces an isomorphism

(9.2) 1 o, K : Nt @0, K = Nf*" @0, K
on the generic fibers.

Now suppose that {fizk}Jk is an S-valued point of N7. As in the case of G =
Resp/p, GLg, for I =1,... ¢, let us set

\Ijlﬂ:ik,s = ker( ( ) | Ailkus/ j:lk) )
this is an (’)gl() ®o, Os-module. We also set
Yl s =ker(m —a; | Ay 5/ F)) =ker(m —a | Ul g) .

The proof of Proposition 5.2 implies that the (’)y{) ®o, Ogs-module \Ijl:tik,s is, locally
on S, free of rank 2¢g and that its formation commutes with base change in S. Similarly,
Tlﬂkjs is a locally free Og-module of rank 2g whose formation commutes with base
change in S.

Lemma 9.1 Suppose that {Fi%}]k is an S-valued point of N7. Then forl =1,...,e,
k=0,...,m—1, we have
Q'(m) N (Fiy) = (Fa))™

where the left hand side is the inverse image of the submodule fi% C Aii s under
A5 — Aiiy s given by multiplication by Q'(r).

PROOF. The proof of Proposition 5.2 (b) shows that Q'(7)~ (f:tzk) C A4, 5 is locally
an Og-direct summand of rank g(2e — [ 4+ 1). Observe that the condition (c) in the
definition of the splitting model N7 translates to

(FEht c @Um)(FL

Now (]-'é;l;)L and Ql(w)_l(}i;;) have the same Og-rank and they are both locally Og-
direct summands of A4;, . Hence, they are equal. ]

Suppose that {]:ilk }jk is an S-valued point of AV7. Lemma 9.1 implies that

(9.3) U, g =(F} isz /T izk,
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Therefore, there are perfect Og-bilinear forms
! !
(94) <, >i7,'k : \Iliik,s X U, )

induced by the forms <, >4;,. These satisfy

l

< v,w >lﬂk: - <w,v >, and <av,w >liz‘k:< v, QW >lﬂk ,

for all a € (’)y{) (i.e the pairings respect the action of (’);?).

For [ = 1,...,e, consider the chain of free Oy()—modules AlI obtained from the free
Op R0, Ogk-module chain A;p, = Ar Qop, Ok by extending scalars via

o' Op @op, Ox — Ox[T]/(Q\(T)) = O .
We will define perfect Og-bilinear alternating pairings

l

l . l
< ) >:tlk : A:I:zk X A:F”Lk - OK

which respect the action of Oy() as follows: Using (2.4), we see that there are canonical

isomorphisms

(9'5) Al:l:zk = Im( Ql(T> ‘ Aiik,oK) = ker(Ql(T) ‘ Aﬂ:ik,oK) .

Suppose that v € Alﬂk, w € Alﬂk.

ker(QY(T) | Asi,.0) C Asi, 0, and choose @ € A¢;, o, such that

Via (9.5) we can identify v with an element of

QT) v=w.

We set

(9.6) <vw Sk, =< v, >4,

It is easy to see that this is independent of the choice of @w. It provides us with perfect

Og-bilinear forms which respect the action of (’);? and satisfy

I _

<w,v>h, =—<vw >k,

(i.e they are alternating).

Let us set V! for the K[T]/(Q'(T))-module obtained from the F ®z, K-module V ®p,
K by extending scalars via ¢! ®0, K : F®p, K — K[T]/(Q'(T)). Then, for all
k=0,....,m—1, Alﬂk C V! and the pairings < , >lﬂk are all restrictions of a single
perfect K-bilinear alternating pairing

<, > vixvt 5 K

26



which respects the action of C’)y{) ®o, K = K[T]/(QYT)). It is easy to see that, under
this form, AL i, 1s dual (“complementary”) to Aék. In this sense, the chain AlI is a periodic

self-dual chain of free O%)—modules in V1,

Consider the chain of (’)gl() ®o, Os-modules \I/l[ gt

9.7) - -0, SH"'H\PI—Z'O,S_)\II%O,S_)"'_>\Ijl' ¢ 5w,

—tm—1, tm—1,

over S with the morphisms induced by the commutative diagram in the definition of
N7, and with the bilinear forms (9.4).

Proposition 9.2 a) The pairings (9.4) provide the chain \IllLS with the structure of a

polarized chain of (’)g? ®o, Og-modules \IIILS of type (AY) in the sense of [RZ] Def. 3.14,

p. 75 ((’)g? s not a mazximal order in (’)y{) ®o, K, however the definition still makes

sense).
b) Zariski locally on S, the polarized chain of (’)gl() ®o Og-modules ‘IIZLS is (symplec-
tically) isomorphic to the polarized chain of Ogl() ®o Os-modules AZLS = AZI ®ox Os

()

which is obtained from the O}/ -chain AlI.

ProOF. To show (a) we have to show that the chain \IflI,S satisfies the conditions of

[RZ] Def. 3.14 p. 75 (see also Def. 3.6 and Cor. 3.7). Assuming (a), part (b) of the

proposition follows from a simple extension of [RZ] Prop. A 21 to the case at hand.
Now the only condition in loc. cit. that does not follow immediately from the

definitions is the requirement (corresponding to condition (2) of Def. 3.6) that Zariski

locally on S the quotient of two successive modules in the chain \IflLS is O&? Qo Os-

isomorphic to the quotient of the two corresponding successive modules of the chain AlI, g
This can be shown exactly as the corresponding statement in the proof of Proposition
5.2. D

Forl=1,..., e, there is a natural isomorphism
V@pg K~Im(QH(T) | V) =ker(T —a; | V') .

A construction analogous to (9.6) allows us to define a perfect K-bilinear alternating
form
<, >: V®F,¢ZK><V®F,¢1K — K.

Now set
(9-8) Eli, = Mtiy ®0p, O = Im(QH(T) | AL ) = ker(T —ay | AL;,) -
Once again, we can see that

=l

o=l =
(9.9) < >ty b Sk, X By, — Ok

defined by restricting < , >; to the lattices E4;,, E+;, give a system of perfect Og-
bilinear alternating forms. By construction, we have

~
(910) <v,w >l7iik:< v, w >:|:ilc’
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where we regard v as an element of ker(T — q; | Alﬂk) and where @ € Alﬂk satisfies
QYNT) - w = w.

Hence, foreach I =1, ..., e, we obtain a self-dual Og-lattice chain El] in the K-vector

space V ®p 4, K by using the lattices Elﬂk = A4, ®0p,¢, Ok The essential part of this

chain is:
=l =l =l =l —1=l
C"'CH—iOCHioC"'CHim,1Cal =5

——im—1 m—1 "

Now denote by N} the “unramified” local model N} = N(OK,ElI,< , >) over
Spec Ok defined in [RZ] for G = GSp(V ®F4, K, <,>) (a group over K), the cocharacter
p given by (19,09) and the self-dual lattice chain Z. By definition, N is the projective
scheme over Spec Ok which classifies collections {Fi;, }x of Og-submodules Fi;, C

=l

Bl s = El:tzk ®o, Os which fit into a commutative diagram

=l - ... = - = = . o=l 4 =t

——ipm—1,5 ——ip,S ~ip,S i1 “im—1
U U U U @]

f*im—l - }—*io - Fi - fim—l - }—*im—l

where F4;, are Zariski locally Og-direct summands of Eik g of rank g and which satisfy

Foy = Fi

17

Fi = F2

_Zk .

Now let us denote by ’Hy), resp. HY, the group scheme over Spec O whose S-points

are the (’)g? ®o, Os-module, resp. Og-module, automorphisms of the polarized chain
AlI ®og Og, resp. EZI ®o, Og, which respect the forms < , >lﬂk, resp. <, >y,
up to a similitude which is the same for all indices k. These groups are extensions of
the multiplicative group by the group scheme of symplectic (’)g? ®o, Os-module, resp.
Og-module, automorphisms of the polarized chains AZI ®og Os, resp. EZI ®ox Os. An
argument as in the proof of [RZ] Prop. A.21 shows that the latter group schemes are
smooth over Spec Og. Therefore, Hgl) and Hl] are also smooth group schemes over

Spec Ok.

Now for an S-valued point of N7 given by {.7-1% bigkandl=1,...,e,k=0,...,m—1,
we set

l— l—
Titik,S = ker(m — a; | \Ifihks) = ker(m — a; | (fﬂi,S)J‘/}“ﬂ;S) .

Notice that there is a canonical Og-homomorphism
Im(Q(m) | WYy o) — ker(m —ap | U, o) = Th,
:I:zk,S l :I:zk,S :i:zk,S :

It follows from Proposition 9.2 and (9.8) that this is an isomorphism.
A construction as in (9.10) now allows us to use this isomorphism and the forms

<, >lﬂk: \I/li%S X \I’QF%S — g to derive Og-bilinear alternating forms

l

.l
<, >l,:tik‘ Tiik,s X T¥ik7s — OS .
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Proposition 9.3 The Og-modules Tlﬂk,s are locally free of rank 2g and the Og-bilinear
alternating forms
<, >t Tl:l:ik,S X Tl:Fik,S — Og .

are perfect. Furthermore, the resulting chain of Og-modules over S

(9.11)-~—>Tl S—>---—>leos—>Tlos_>..._>Tl TZ g—

—im—1, im—1,5 —im—1,
is a polarized chain of type () and is, Zariski locally on S, (symplectically) isomorphic
to the polarized chain of Og-modules EZI ®og Og obtained from the self-dual lattice chain

=l

=
Proor. This follows from Proposition 9.2 and the above discussion. O

Let /\AG denote the scheme over Spec O whose S-points correspond to pairs
—~ . . e
Ni(8) = ((FLidsw - {e1})

where {fjmk }ik is an S-valued point of N7 and for [ =2,... e,

Lol ~ Al
o+ Vig — Ajg

is a symplectic (up to similitude) isomorphism of polarized C’)(l) ®o, Og-chains. The

natural projection morphism ¢y : N} — N7 is a torsor for Hz 9 H(l).

Notice that an isomorphism alI as above, induces a symplectic (up to a similitude)

isomorphism of chains of Og-modules
TIS = ker(m —a; | \IIIIS) = ker(m —ay | AlI’S) o~ EZLS .
Similarly, for [ =1, \Ilimk g = A+, 5, and we obtain a canonical symplectic isomorphism
vy T},S = 3}75 .
Now if {]—'i% }jk is an S-valued point of N7, then since
FiolcFy, c(FENY . (r—a)FL, C P

we can consider ]—'i%/ ﬂk as an Og-submodule of TI g = ker(m —ay | (]—":lFZ:) J/Fl i 1.

In fact, flii / F ﬂk is locally a direct Og-summand and

! 1 -1
(fiik /filk) = ijlk /f:FZk
under the “derived” forms <, >; 4;,: Tlﬂ-lws X TZJF%S — (Og. Therefore,

= l
(912) Uizk(fjl:lk) - ‘:‘lilk ®OK OS ? resp' O-ilk( ilk/ :I:’Lk) ‘—‘ilk ®OK OS
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provide us with S-valued points of the “unramified” local models N}, resp. N} for
l=2,...,e. Asin the case of Resp/p GLg we obtain a morphism of schemes

e
Pr :N[ — H N} .
j=1
This is again a torsor for the smooth group scheme [];_, Hgl). Again, as in the case of
Resp/p, GL4, we have obtained a diagram of morphisms of schemes over Spec Ok:

Ni

(9.13) pr ./ N\ g1

I

ITi= NV N BONPIe o, Ok
)

in which both of the slanted arrows are torsors for the smooth group scheme [];_, Hgl .
Once again, since by [G2] the schemes N} are flat over Spec Ok, the existence of such a
diagram implies:

Theorem 9.4 The scheme N7 is flat over Spec O . D

10 Affine flag varieties for the symplectic group
In this section, we will use the notations and terminology of §4. Let us consider
Ao = K[[I]* = k[[I)}ey © - & k[[T]]Jé, @ K[[IT]f1 & - - & ([T} f,
with the k[[IT]]-bilinear alternating form < , >: Ag x Ag — k[[II]] given by
<&,8;>=0, <fi,fij>=0, <é&,fj>=0d;.
For 0 < r < g, we introduce the k[[IT]]-lattices A, in Ag ®prm (1)) by
Ay = Spany g {IT ey, -+ T 16, 6rpr, o, 6, fro oo fo} -

Set A, = A, := {v € E(I1))* | < v,w >€ K[[I]], for all w € A,}. Tt is easy to see
that B 3 o 3
A*T = Spank[[ﬂ]]{él7 T éganflv T 7Hf7'a fT+17 Ty fg} .

Now consider a subset I = {ig < --+ < ip_1} C {0,...,g}. From this we obtain the
lattice chain A in k((IT))2

(10.1) A ,c--cAhychyc---ChAy, ,CITPA, .

By adding all the multiples II"™A+;, , m € Z, to the above lattice chain, we obtain the
corresponding periodic lattice chain. In what follows, we will sometimes use the same
symbol to denote both a lattice chain and its corresponding periodic lattice chain. This
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should not cause any confusion. By definition, a lattice chain (which is not necessarily
periodic) is self-dual if the dual of every lattice in the chain appears in the corresponding
periodic lattice chain. It is clear that Ay is a self-dual lattice chain.

The partial affine flag variety SF1; associated to the symplectic similitude group
GSpy, and the subset I is the ind-scheme over k& which represents the functor which to
a k-algebra R associates the set of self dual R[[II]]-lattice chains

(10.2) L ,C--CL jyCLiyyC - CLy L |

in R((I1))?9 = k((I1))?Y ®; R, such that each successive quotient of the above chain

is a locally free R-module of rank equal to the k-dimension of the corresponding quo-
tient in (10.1). The Ind-group scheme GSpy,(k((I))) acts on SF1; and we can identify
(GSpy, (k((I)))-equivariantly) SF1; with the fpqc quotient

SF1; = GSpy, (((T1))),/ P
where Py is the parahoric subgroup scheme of GSpy,(k((II))) whose k-valued points
stabilize the lattice chain A of (10.1).

Fix an integer . We may also consider the partial affine flag variety SF1} associated
to the symplectic group Spy, and the subset I. This is the ind-scheme over k which
represents the functor which to a k-algebra R associates the set of self dual R[[II]]-lattice
chains

(10.3) L ,C-CL jyCLyyC--CL;, ,CIIL |
in R((I1))%9 = k((I1))?*¥ ®; R, such that

i) each successive quotient of the above chain is a locally free R-module of rank equal
to the k-dimension of the corresponding quotient in (10.1),

i) we have Ly, = II"L_;,.
The Ind-group scheme Sp,,(k((I))) acts on SF17. Sending the lattice chain £ to
™ Ly gives an Spy, (k((IT)))-equivariant isomorphism
SFI; = SFI, ™.

The Ind-schemes SFI1} are all closed Ind-subschemes of SF1;. In fact, SF1; for different
r are all isomorphic as Ind-schemes (but not necessarily Spy,(k((II)))-equivariantly).

11 Local models and symplectic affine flag varieties

Let us identify Op ®0,, k and k[[I1]]/(II°) via the isomorphism Op ®o,, k ~ k[[I]]/(II?)
given by 7 ® 1 +— II. Consider the k[[II]]/(II°)-isomorphism Ag ®o, k 2~ Ao @)
K[[II]]/(I1¢) given by e; +— €&, 6f; — f;. This isomorphism is compatible with the
symplectic forms on both sides. In fact, there are obvious similar isomorphisms

(11.1) Ai @op, k=~ A; @y F([H]]/(11°)
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which induce a (symplectic) isomorphism between the polarized k[[I1]]/(II¢)-chains
A1 ®og, k and A @gqry K{[TI]]/(I1°).
Suppose that {Fi;, }; corresponds to an Spec R-valued point of the special fiber
Npatve ®0p, k of the naive local model. Set Ay, r = A+i, @y R[[]]. Let

(11.2) Lii, C Ay p

be the inverse image of iy, C Asjy, ®0p R~ Ay, Qg R[]}/ (11¢) under

Aiipr — Asi, @pqmy BRI/ (TT°)
We obtain an R][[II]]-lattice chain L;
L ,C-CL jyCLiyC--CL;, L |

which satisfies property (i) of the definition of the (partial) symplectic affine flag variety.
We claim that £;, =I1I7°L_;,. This will establish that the chain above is self-dual and
satisfies property (ii) with » = —e. Now we have

~

‘C’*ik C A,iij = Aik,R C [/zk .

Here the quotients A_ik,R/ﬁ_ik and therefore Eik/A_,-,mR are R-locally free of rank
eg. Hence, Ez‘k/ﬁ—ik is R-locally free of rank 2eg; this is the same as the R-rank of
=°L_;, /L_;, . By our definitions, < £_;,,L;, > C II°R][[II]] and so II"°L_;, C Elk
Since the formation of E_ik and II7°L_;, from the R[[II]]-lattice £_;, commutes with
base change we obtain that II7¢L_;, = Ezk Therefore, the R[[II]]-lattice chain £ gives
an R-valued point of SF1;“ C SF1;.

We have therefore obtained a morphism
(11.3) i: NP @0, k — SFI;° C SFI

which is a closed immersion of Ind-schemes.

Similarly, the special fiber N} ®o, k' of the “unramified” local model N } can be
considered as a closed subscheme of the symplectic affine flag variety SF1; @y k’. In fact,
by [G2], N} @0, k' is reduced and can be identified with the scheme-theoretic union of
a finite number of Schubert varieties in SF1; ®y, k’.

Recall that Hj is the group scheme over Spec O, whose S-valued points give the
symplectic automorphisms up to similitude of the polarized chain Aj Rop, Og. The
above symplectic isomorphism between the polarized Or ®o,, k = k[[I]]/(I1°)-chains
Ar ®op, k and A; gy K[[I1]]/(I1°) allows us to identify the special fiber H; with the
group scheme giving the symplectic similitude automorphisms of A; ®pqrrryy R[]/ (11¢).
This is a factor group of the parahoric group scheme P; giving the symplectic similitude
isomorphisms of A;. The closed immersion i is equivariant for the action of P; in the
sense that the action of H; stabilizes the image of ¢, that the action on this image factors
through P; — H; and that i is H-equivariant.
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Suppose now that {}"ﬁmk }jk corresponds to an Spec R-valued point of the special
fiber N7 ®0, k' of the splitting model. For j =1,..., e let

(11.4) £, CAsir
be the inverse image of fiik C Ay ®0p, R~ Aiik @y R[[IT]]/(11¢) under
Aiip r — Asiy, @y RIM))/(1T°)
As above, we obtain an R|[II]]-lattice chain Cj}
£, co.cf,cLlcoocrl ool

m—1 m—1 "

Using a similar argument as above, one can see that it satisfies properties (i) and (ii) of
the definition with 7 = —2e + j and therefore gives an R-valued point of the symplectic
affine flag variety SFlI_2e+J . We obtain morphisms:

(11.5) FI:Nr®o, K — SFI,* @,k c SFl; @, k' .

and . .

(116)  F=(F); : Ni@o, K — [[SFI;*" @k c [[SFL @k .
j=1 j=1

The morphism F' is a closed immersion. Exactly as in the case of Resp/p, GLg we can
see that the special fiber N7 := Nj ®0p,. k' can be naturally identified with the geometric
convolution of the reduced subschemes N} ®0, k' of the symplectic affine flag variety
SF1; ® k. Similarly, the special fiber of the diagram (9.13) relates to the convolution
diagram for these subschemes (the analogue of (6.3)) in exactly the same fashion as it
was explained in §6 for G = Resp,p, GLqg.

12 The canonical local model for G = Resg/r GSpy,

Definition 12.1 The canonical local model N*" := N°*(Op, Ar, <, >) for the group
G = Resp/r,GSpy, and the self-dual lattice chain Ay is the scheme theoretic image of
the morphism

7T/I . NI N N}laive ®OFO OK N N}laive

which is obtained by composing the morphism 7; with the base change morphism.

Since 7} is proper, the canonical local model N is a closed subscheme of the naive
local model NFaive, Since m; ®o, K : Nt ®oy, K — IV paive ®0y, K is an isomorphism,
N7 and N7#V¢ have the same generic fiber. The scheme N7*" is flat over Spec Op,
since N7 is flat over Spec O. Therefore, N{*" is the (flat) scheme theoretic closure of
the generic fiber N}’ai"e ®0p, Fy in N}lai"e.

Suppose now that I = {0} or that I = {g}. In this case, the self-dual lattice
chain A consists of {7%A¢}iez, resp. {mFA,}rez (we have Ao = A, Ag = mA,4) and
the subgroup of G(Fp) = GSpy,(F') which stabilizes A; is a special maximal parahoric
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subgroup. Then it follows that the unramified local models N } are smooth Lagrangian
Grassmannians over Spec Ok. Hence, we deduce that [][;_; N } is irreducible and smooth
over Spec Ok. Since []}_, Hgl) is a smooth group scheme with geometrically connected
fibers, we conclude, using the diagram (9.13), that, in this case, N7 is also irreducible
and smooth over Spec Ok; therefore the special fiber N7 @, k' is irreducible. As a
result, the special fiber N7*" Rop, k of the canonical local model N*" is irreducible.
More generally, suppose that I = {ig} consists of one index only. This is the case in
which the subgroup of G(Fp) = GSpy,(F') which stabilizes A; is a maximal parahoric
subgroup. Then by [G2], the geometric special fibers of the unramified local models N}
are irreducible. As above, we conclude that the special fiber N‘;an = N7 R0, k is once

again irreducible. In fact, we can then show more:

Theorem 12.2 Suppose that I = {ip} consists of one index only. Then:
(1) Ny is normal and Cohen-Macaulay.

(ii) The special fiber N(}an s integral and normal with rational singularities. It can
be identified with the Schubert variety Oy, in SF1;, where py is the coweight (19,09) of
GSpy,,-

PrOOF. This follows closely the arguments in [PR], proofs of Propositions 5.2-5.3 (see
also loc. cit. Remark 5.5). For simplicity of notation, we will drop the subscript I and
write N instead of N™Ve. We will also use a bar to denote the special fiber of a scheme
over Ok or over OF,, depending on the context. Consider the proper morphism

77:/\/—>N®(9F0(’)K.

Let N’ = Spec (m.(Oyr)) and consider the scheme-theoretic image 7(N) C N ®0,, Ok.
Since N is flat over Spec Ok the same is true for 7(N'). Let @ be a uniformizer of Ok.
The cohomology exact sequence obtained by applying m. to

0—>ON’E>(’)N—>ON—>O
gives an injective homomorphism
On' [wOn — T (Ox7)
This fits in a commutative diagram:

O /@0znvy = Oz
(12.1) l U
ON//LTJON/ — f*(ON)

By the definition of the scheme theoretic image the upper horizontal homomorphism is
surjective. Since by the discussion before the statement of the theorem, N is reduced
and irreducible, the same is true for the scheme-theoretic image T(N) C N. Let up be

the miniscule coweight (19,09) of GSpy,. The special fibers NZI of the corresponding
unramified models can be identified with the Schubert variety 6/“ in the affine partial
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flag variety SF1; @, k' (see [G2]). By §11, §6 the morphism 7 : N' — 7(N) C N can be
identified with the convolution morphism

M (py,on) @ul X - >~<6u1 — @em C SF1; @ K

This morphism is birational on its image. The scheme 7(N) can be identified with the
Schubert variety O, in SF1;®@k’; it is therefore normal with rational singularities ([Fal,
[G2]). Since 7 is proper, the natural morphism Spec (74 (N)) — 7(N) is finite, and now
since by the above 7(N) is normal, Spec (74(N)) — 7(N) is actually an isomorphism.
We conclude that in the diagram (12.1) above, the right vertical homomorphism is an
isomorphism. An argument as in [PR] proof of Proposition 5.2 now implies that the
homomorphisms Or v /@Oxv) — Oz and Oy /wOn: — Tx(Ogy) which appear in
(12.1) are also isomorphisms. Therefore, the special fibers of N’ and 7(N) coincide and
they are both equal to 7(N') which by the above is integral, normal and with rational
singularities. In fact, we can see as in loc. cit. that N’ = 7 (N') and that 7(A\) is normal
and Cohen-Macaulay. To deduce the claims of the theorem for N°*" we can now proceed
along the lines of [PR], proof of Proposition 5.3: Recall that the canonical local model
is the scheme-theoretic image of the morphism

7T’:N—>N®@FO(’)K—>N,
i.e N = 7/(N). An argument as in loc. cit. now shows that
N ®o, O =7(N), 7(N)/Gal(K/F) = N“",

and the desired statements for N follow (see loc. cit. for more details). O

Remark 12.3 Tt follows that N = O,,, is the union of all the Schubert strata (cells)
in SF1; which correspond to double cosets in the extended affine Weyl group which, in
the Bruhat order, are < to the coset given by the coweight p = eu1. The set of these
cosets is exactly the p-admissible set as defined in ([KR]).

We now consider general index sets I. For I = {ig,...,im-1} C {0,...,g}, and
ir € I, we can consider the morphism

7TZk :N;lalve N nalve

{ix}
obtained by {Fi;, ;”;01 — Fii,- As in the case of G = Resp/r,GLg (see §7 and [PR,

§8), we can consider the scheme theoretic intersection in N}V,

(12.2) NpPe = () m (NER)

g€l

Theorem 12.4 (a) N§*" = NJ°°.

(b) The special fiber N R0, k is reduced and its irreducible components are normal
with rational singularities. It can be identified with the union in SF1; of the Schubert
cells Oy with w in the euy-admissible set in Wi \W /Wr.
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Here W denotes the extended affine Weyl group of GSpayg (K[[H]]) and W; the sub-
group corresponding to the parahoric subgroup FP;.

Proor. We consider the chain of closed embeddings of Op, -schemes with identical
generic fibers,
NIcan C N}OC C N]naivc

By [G3], Prop. 6.1 all generic points of the special fiber of NFaiV® can be lifted to the
generic fiber. In other words, the above inclusions induce bijections on the underlying
topological spaces. On the other hand, by Theorem 12.2 the special fiber of NEZCH} is
reduced and hence may be identified with a Schubert variety in a symplectic Grassman-
nian. Now the same argument as in the proof of Theorem 7.2 implies that the special
fiber of (12.2) is reduced with all its irreducible components normal and with rational
singularities. It follows that N}OC is flat over Spec O, and hence N*" = N}OC. The last
statement of (b) follows as Remark 7.3, (b) from Section 11. O

Remark 12.5 It seems plausible to expect that N7 = N}lai"e, i.e. that N}lai"e is flat
over Spec OF,, comp. [G3].

Let I = {0}. The conjecture above may be reduced to a question on a certain space
of matrices. Let

a b
P={ AZ(O tq

char,(T) = (

)GMzge; a,be€ Mg, 'b=—-b,

=k

(T —a;)? ,Q(A) =0 }.

=1

The question is whether P is flat over Spec OF,.
The relation to the previous conjecture is given by the following diagram analogous
to [PR], (1.3),

. T ~ .
NHaIVe naive d) P .

{0} {0}
Here o
oy (8) ={(F cAos, )} ,

where F defines a point of N?S;VC(S ) and where « is a symplectic automorphism of Ag g
which carries F into the Lagrangian subspace Fy of Ag generated over O by e1, ..., ¢e,.
Then 7 is a torsor under the Siegel parabolic in Spyg, =~ Sp(Ag, <, >) and ¢ is a smooth
morphism, given by

S((F,a))=a "l ma,

which we express as a matrix in terms of the Og-basis eq,...,eq,me1,...,mey, ...

7 ety w1 ey, 5f1, o 6 fgy WOy O gy mE LSS, LS, Of Agg.

)
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Part IV

13 Nearby cycles

In this section, we will assume that the residue field k of Op is finite. Our aim is to
describe the sheaves of nearby cycles for the local models M7*"®o, Ok and Nf*"®0, Ok
as convolutions of the sheaves of nearby cycles associated to the “unramified” local
models M} and N} respectively (see below for a precise statement). For simplicity, we
will restrict our discussion mostly to the case of G = Resp/p,GLg, i.e to the models
Mp*™; the case of G = Resp/p, GSpy, is similar.

Fix a prime number ¢ which is invertible in Op and a square root of the cardinality
|k| in Q,. Let O be a discrete valuation ring which is a finite flat extension of O with
fraction field L contained in Fj™. If X is a scheme of finite type over Spec O with
constant relative dimension d denote by

RUY = RUFQ,d](2)

the (adjusted) complex of nearby cycles of X over Spec ©@. This is an element in the
derived category of complexes of Q,-sheaves on the geometric special fiber X ®¢ k with
bounded constructible cohomology sheaves and continuous Gal(F;”/L)-action which
lifts (i.e is compatible with) the action of Gal(F3*/L) on X ®¢ k through the Galois
group of the residue field of O. By [I], Theorem 4.2 and Cor. 4.5, R\Ifi( is a perverse
Q,-sheaf of weight zero on X ®o k.

For simplicity, if X is a scheme over O, we will write R\Ilﬁ instead of R\I'?@OE Ox for
the (adjusted) complex of nearby cycles of X ®0, Ok over Ok. Again, this is a perverse
Q-sheaf of weight zero on X ®¢, k with an action of Gal(F;’/K); it is isomorphic to
the complex of Q,-sheaves RU% with the Gal(Fy"/E)-action restricted to the subgroup
Gal(Fy?/K).

By §6 and Remark 7.3 part (b), the special fiber M; " can be naturally identified
with a reduced finite union of Schubert varieties in the partial affine flag variety Fl;.
On the other hand, for each j = 1,..., e, the special fiber M]I of the unramified local
model M7 over Spec Ok can also be identified with a finite union of Schubert varieties
in F1; ®; k’. In this way, we can regard

j can
RO, RUI

as perverse Q-sheaves of weight zero on Fl; ® k with compatible Gal(F;®”/ K)-actions
which are Pr-equivariant. By Remark 7.3 (b), these perverse sheaves are supported on
the union of Schubert cells corresponding to the p;-admissible, resp. p-admissible cosets,
where g = p1 + -+ + fe.- '

Foreach j =1,...,e, we now let ®; be a Pj-equivariant perverse Q-sheaf on MJI with
compatible Gal(F;” /K )-action. The convolution construction of Ginzburg, Lusztig, etc.
(see for example [Lu]) allows us to construct an element

<I>1*---*<I>e
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in the derived category of complexes of Q,-sheaves on Fl; ®;, k supported on M;an with
bounded constructible cohomology sheaves and compatible Gal(F;"/K)-action. (In
what follows, for simplicity of notation, we will use a bar to denote the geometric special
fiber over k and omit the base change from the notation). The construction proceeds as
follows ([Lu] 1.2 and 1.3). Consider the diagram obtained by the convolution diagram
(6.3) by base changing from &’ to k:

Us

(13.1) 1/ \ P2

My x - x M Mp%---%M; B MMveg, Ox CFl @k .

Consider the pull back of the exterior tensor product pj(®; X --- X ®.); since p; is
a smooth morphism, this is a perverse Q,-sheaf up to a shift by the relative dimension
of pi. By its definition, pj(®; X --- X ®.) is equivariant for the action (6.4); however,
since the complexes of sheaves ®; are Pr-equivariant, it is also equivariant for the action
(6.5). Recall that py is a Pr-torsor for the action (6.5) (which is actually locally trivial
in the Zariski topology). Therefore, by descent (see also [BBD] Theorem 4.2.5), there is
a perverse Q,-sheaf with compatible Gal(F;”/K)-action

PN XD,
on M}% .- X MY, which is unique up to unique isomorphism, such that
p3(21- - KP,) = pi(®1 K- K @) .

We now set . 3
(1)1*"-*(136 = Rpg*(q)lg-"&q)e) .

Theorem 13.1
1 e —
(a) The sheaf R\I/AK/[I ko *R\IIJI\(/[’ on Fl; @4 k is perverse of weight zero.
(b) There is an isomorphism of perverse Q-sheaves with Gal(Fy’ /K)-action
can 1 e
RUMT ~ RO w4 RUGT

on Fl; ®, k.

PROOF. Recall the diagram (5.10)

M
(13.2) pr/ N\ a1

[Tz M; Mp B Mpve @, O .
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By the Kiinneth formula [I], Theorem 4.7, we have an isomorphism of perverse Q-
sheaves with compatible Gal(F3"/K)-action on the geometric special fiber of M} x

< x My,
M}x--xM¢

1 e
(13.3) R, ~ RUI®... KR .

This induces an isomorphism between the pull-backs
1o... e 1 e
(13.4) pHRUMTMY ~ p RV R R RUT

From the definitions, and using the comparisons of the special fiber of the diagram (5.10)
with the convolution diagram (6.3) explained at the end of §6, we obtain an isomorphism

1 e 1 - ~ e
(13.5) PHRUYI K- RRUYT) ~ gi(RUMR.. RRUYT)

Since both pr and ¢r are smooth, p; and ¢; commute with the nearby cycle functor.
Therefore, we obtain an isomorphism

1 e ~
PRI K- RRUYT) ~ RUM ~ F3(RTY)

which by [BBD] Theorem 4.2.5 and (13.5) gives an isomorphism of perverse Q,-sheaves
of weight zero with compatible Gal(F,*"/K)-action

(13.6) RUM ~ RUMIK.. . RRUNT

We now notice that since 77 : M — M ®p, O C M}laivo ®o, Ok is proper and
since 7y induces an isomorphism on the generic fibers, there is a canonical isomorphism

(13.7) RAT,(RUY) ~ RO
Hence, by (13.6) there is an isomorphism

can 1. ~ e 1 e
(13.8) RUM ~ R, (RULIH.--BRUM ) = RO 4. x RUL

with the last equality given by the identification of ps with 7;. This establishes both
parts (a) and (b) of the Theorem. O

1
We note that the factors R\Iljl\gl are known perverse sheaves thanks to the result of
Haines and Ngo regarding the unramified case [HN1].

Remark 13.2 The same arguments applied to the local models N7*" for the group
G = Resp/r, GSpy, show that

Ncan

1 e
(13.9) RUN "~ RUN 5+ RUM

as perverse Q -sheaves with Gal(F;"/K)-action.
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Part V

14 Splitting and local models in the general PEL case

In this section, we explain the construction of splitting models in the general (ramified)
PEL case. As we shall see this also suggests a general construction of local models. We
take Fp = Q, in the notation used elsewhere in this paper. Specifically, we will use the
following notation (following closely [RZ], see 1.38):

e [ a finite direct product of finite field extensions of Q,,

e B a finite central algebra over F,

e I/ a finite dimensional (left) B-module,

e (, ) a nondegenerate alternating Q,-bilinear form on V,

e b — b* an involution on B which satisfies (bv, w) = (v, b*w), v, w € V,

e Op a maximal order of B invariant under .

If W is a right B-module, we define a left B-module on W by restriction of scalars
*: B — B°PP. With this convention the dual vector space V* = Homgq, (V, Qp) is a left
B-module and the form (, ) induces an isomorphism of B-modules

PV -V,

In the same way, for an Op-lattice A in V, the Z,-module A* = Homg, (A, Z;) becomes
a left Op-module. The image of A* under the map
-1
A=V Yo V
is the “dual” lattice A of A C V with respect to (, ). The form (, ) induces a perfect

bilinear pairing

(,):AXA—>ZP.

Let Fy be the Qp-algebra which consists of the *-invariant elements of F'. For sim-
plicity we will assume that Fj is a field; the local models in the general case are products
of local models for cases in which F} is a field. We will denote by 7 the automorphism
of F obtained by restricting the involution *. There are three cases:

(I) F = Fy x Fy and 7(a1,a2) = (az,a1),

(II) F = Fy,

(III) F is a quadratic field extension of Fj.

The existence of the x-linear form ( , ) implies that, even in case I, V is a free
F-module; we will denote its rank by d.

Let G be the algebraic group over Q,, whose points with values in a Q,-algebra R
are given by:

G(R) = {g € GLg(V ®q, R) | (gv, gw) = c(g)(v,w), c(g) € R} .

Let us fix in addition

e a cocharacter i : G,y — G defined over the finite extension N of Q,, given up
to conjugation.
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We assume that the corresponding eigenspace decomposition of V ®q, N is given by
Veq, N=WaeW

(i.e the only weights are 0 and 1) and that the composition co pu : Gy — Gy is
the identity. This implies that both Vi and Vi are totally isotropic for the form on
V ®q, N obtained by (, ) by extending scalars (by [RZ] Definition 3.18 and 3.19 (b)
these conditions correspond to the situation describing moduli of p-divisible groups).
Notice that this implies that the pairing (, ) induces an isomorphism

(14.1) Vo ~ Vi = Hompy(V1, N)

where V|* becomes a left B-module as above, by first regarding it naturally as a right
B-module and then composing with the involution * : B — B°PP. As usual let E be the
field of definition of the conjugacy class of u. We shall also fix

e L a selfdual periodic multichain of Opg-lattices in V' ([RZ] Definition 3.13).

Recall that “selfdual” means that if A is in £ then the dual lattice A is also in L.
As in loc. cit. we can consider £ as a category with morphisms given by inclusions of
lattices.

Now let @ be the set of Qp-algebra homomorphisms of F' in Qp. For a € F let

det(T-I—a | Vi) =[] (T - ¢(a))

pcd

so that the cocharacter

rq, : Gme — GQP Cc GLg(V XQq, Qp) C GLp(V ®Q, Qp) = H GL(V QF 6 Qp)
ped

is given, up to conjugation, by {(17¢,0977¢)} sce with d the F-rank of V. We can think
of the automorphism 7 of F' as giving a permutation of ® by ¢ — ¢ - 7. For every ¢ € ®

we have
(14.2) re+rer=d.

Indeed, by (14.1), the sum ry + r4., is the multiplicity of the eigenvalue ¢(a) for the
action of @ € F' on V ®q, Qp. This is equal to d since V' is F-free of rank d.

Set m = [F; : Qp] and let n be the Q,-dimension of F. We choose an ordering of
the Qp-algebra homomorphisms ¢; : /' — Qp, 1 < i < n, which in the case that ' # I}
has the property that any two embeddings ¢, ¢ with the same restriction to F; are
successive. Denote by K the Galois closure of F' in Qp. Then F C K.

Suppose now that S is an O-scheme. In what follows undecorated tensor products
are meant to be over Z,. If b is a unit of B which normalizes Op and A € £ then by the
definitions bA € L. For such a b, conjugation by b~! defines an isomorphism Op — Op,
x — b lab. If M is an Op ® Og-module we denote by M? the Op ® Og-module obtained
by restriction of scalars with respect to this isomorphism. Left multiplication by b induces
a Op ® Og-linear homomorphism b : M® — M.

Let us now define a functor M on the category of Opn-schemes.
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Definition 14.1 A point of M with values in an Oy-scheme S is given by the following
data.

1. For each i =1,...,n + 1, a functor from the category of the multichain £ to the
category of Op ® Og-modules on §

A—F}, AeL.
2. Fori=1,...,n+ 1, a morphism of functors
jA i Fi — A®Og.

We are requiring that the following conditions are satisfied:

a) For each A € £, i = 1,...,n + 1, the homomorphism 5} is injective (and so
it identifies F}\ with a Op ® Og-submodule of A ® Og). Both F}\ and the quotient
(A ® Og)/F} are finite locally free Og-modules.

b) If b is a unit of B which normalizes Op there are “periodicity” Op ® Og-linear
isomorphisms ' '
Op : (FR)" — Fiy

which make the diagrams '

(F)P 2 (A 0g)

Opa | Lo

F, ™ o0

commutative.

c) For the action of Op on F}, we have the following identity of polynomial functions
detog(a | Fy) = detog(a | V1), a€Op.

d) We have F/’\l+1 = (0). Fori =1,...,n, Ff\H C FX, the quotient F};/Ff\+1 is
Og-locally free of rank 7; := 74, and is annihilated by

a®1—1® ¢i(a) € Op® Og, forall a € Op.

e) Note that (a) implies that F; is a locally direct Og-summand of A ® Og. We will
denote by (F})* its orthogonal complement in A ® Og under the perfect pairing

(,):(A®0g) x (A®Og) = O .

For every A € L and i =1,...,n+ 1, we require that FZ C (Fi)*.
f) In addition to the above, we require that:
fl)If F = Fy, foreveryi=1,...,nand A € L

I (ce1-1@¢(a))(FITHY) c F
1<k<i

for all a € Op.
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f2) If F# Fy, forevery h=1,..., m=[F; : Qpand A € L

H (a®1-1® ¢p(a))(FRHH) C Fihﬂ
1<k<2h

for all a € Op.

There is a morphism m : M — M™V® @ O, where M1 is the functor of the
“naive” local model of [RZ] (denoted by M'°° in loc. cit.) given by sending the S-point
of M given by A — (F}\ CA® OS)ISiSn—H to A — ty = (A & Os)/F/% Indeed, the
functor A — t, satisfies the conditions of loc. cit., Definition 3.27. For example, (c) and
(e) together with the fact that F/{, (F)* are locally direct Og-summands of A ® Og
imply that F' i = (F})* and so t, satisfies condition (iii) of loc. cit.

It is clear that M is representable by a projective scheme over Spec Ok and that
the morphism 7 is projective. We can also see that, on the generic fibers, 7 induces an
isomorphism

TR0 K: Mo, K= M"™W g0 K.

Let us use the same symbol 7 for the composed morphism 7 : M — MV @4 O —
MP™@ve The scheme theoretic image w(M) C M"Y is a closed subscheme of M/MaVe

which has the same generic fiber as M"¥¢, One can now set
M = 7 (M).

We believe that, if we exclude the orthogonal and certain unitary cases, then M'°° is a
good integral model of its generic fiber. ' More precisely, assume that we are either in
case (I), or in case (II) with x an orthogonal involution (then G is a form of a symplectic
group), or in case (III) with F//F unramified. Recall here that an involution of the
first kind on a central simple algebra is called orthogonal resp. symplectic, if after a
base change that splits the algebra it becomes the adjoint involution with respect to
a symmetric resp. alternating form. Then it seems that the methods of the present
paper prove that M!°¢ is flat over Spec O, with reduced special fiber, and such that
all irreducible components of the special fiber are normal with rational singularities.
Furthermore, let L denote the completion of the maximal unramified extension of Q,
and let K = K be the parahoric subgroup of G(L) which fixes the lattice chain £® Op,
in V ®q, L. Then K acts on M'"¢(F,) and the orbits are in bijective correspondence
with the p-admissible subset Adm () of K\G(L)/K. We refer to [R], section 3, for the
definition of the pu-admissible subset in the general case, cf. also [KR]. Our work in the
previous sections shows that all these statements hold true in the following situations
(and we believe that the general case, as limited above, may be reduced to these cases):

a) Let Fy be a finite field extension of Q, and consider B = F; x F; with the
involution (a1, a2)* = (az,a1). Let Op = OF, & Op, and take V = Bt = W, @ W,

Wi=F -€ @ ---@®F, e, fori=1or 2, with the alternating form ( , ) defined by

(eb,e) =0, (er,el)=0p,i=1,2;kil=1,....d .

! Genestier has pointed out to us that the orthogonal case is problematic in this respect.
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This form identifies Wy with tl}e duaﬁl of Wi. A selfdual multichain of lattices in V' now
is given by a pair £ = {Ag}r, £ = {A;}; where L is a chain of O, -lattices in W; and L
is the dual chain. In this case,

G=1{(g,c-(g")™") | g € GL(W1),c € G} € GL(Wy) x GL(W>) .

Therefore, G =~ Resp, /q,(GL4) X Gy,. Let us assume that Fy is totally ramified over Q.
The schemes M (for various choices of the cocharacter p and the multichain £) can be
identified with the splitting models for Resg, ;q, GLqg of §5. To see this we observe that
by using conditions (e) and (f2) and an argument as in Lemma 9.1 we can show that
there is a 1-1 correspondence between submodules

Fio
Ap®N;

=GN e T C (M 0s) @ (M ®0s), (i=1,...,n+1)

which correspond to S-points of M and submodules Gf\k C (Ar ® Og) which correspond
to S-points in the splitting model of §5. Theorem 5.3 now implies that the schemes M
are flat over Spec O.

b) Let B = F' = F; a finite field extension of Q,, and let (V,{ , }) be the standard
symplectic vector space over I’ of dimension 2g with basis e1,...,eg, f1,..., fg, i.€

(14.3) lei,ej} ={fi, fi} =0, {ei, fi} = by

We set (v,w) = Trp/q,({v,w}). In this case, G = Resp/q,GSpy, and, in case F1 is
totally ramified over Q,, the scheme M can be identified with the splitting model for
Resr/q, GSpy, of §9; here Theorem 9.4 implies the truth of the above conjecture.

Remark 14.2 An example where the methods of the previous sections do not directly
apply is provided by the case of a group of unitary similitudes for a ramified quadratic
extension of Q,. However, even in this case, there are instances in which we can show
that M as defined above, is flat over Spec Op. We review some results from [P].
Let B = F a ramified quadratic extension of Q,, p odd, with the involution given by
the non-trivial Galois automorphism. Let V = F™ and denote by ¢;, 1 < i < n, the
canonical Op-generators of the standard lattice Ag := O% C V. Let 7 be a uniformizer
of Of which satisfies 7* = —m. We define a non-degenerate alternating Q,-bilinear form
(,):V xV — Q, which satisfies (az,y) = (x,a*y) for a € F by setting

(ei,ej):(), (ei,ﬁej)zéij,i,jzl,...,n .

The restriction (, ) : Of x OF — Z, is a perfect Z,-bilinear form. Therefore, we

have Ag = Ay and more generally 7r/”/T0 = 7w "™Ag. Let £ be the selfdual lattice chain
{m"Ao}nez. Using the duality isomorphism Hompg(V,F) ~ Homgq,(V,Q,) given by
composing with the trace Trp/q, : F — Qp we see that there exists a unique non-
degenerate hermitian form ¢ : V x V — F such that

(.’L‘,y) = TrF/Qp(ﬂ-il(b(‘Tay))? T, Y€ V.
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Hence, in this case the group G can be identified with the group of unitary similitudes
of the form ¢. Now let r, s be two non-negative integers such that n = r + s. Fix a
cocharacter pup : Gy p — GF such that the corresponding subspace Vi of Vp = F" ® F,
when considered as an F-module via the first factor, is isomorphic to F" @ F? where F;
is the module obtained by F' by restriction of scalars via 7 : ' — F. The “naive” local
models that correspond to these choices have been studied in [P]. As was shown there,
when |r — s| > 1, they are not flat over Spec Op.

Given these choices of PEL data, we can see that K = F' and that for any Spec Op-
scheme S the points M(S) are now pairs (F?2, F!) of Or ® Og-submodules of Ag ® Og
which are locally direct summands as Og-modules and satisfy

i) F!is isotropic for the form ( , ) on Ag ® Og;

ii) F?2 c F'; and F', F? have ranks n and r respectively;

iii) detoy(T-I—a®1|FY)= (T —a)" (T —1(a))® € Og[T], for every a € Op;
iv) (a®@1-1®a)(F?) =(0), (a®1—1®7(a))(F') C F? for every a € Op
(the tensor products are in Op ® Op which maps to Op ® Og).

For simplicity, let us assume that r # s; then K = F = F. The naive local model
MPaive classifies isotropic OF ® Og-submodules F' of Ag ® Og which are locally direct
summands of rank n as Og-modules and satisfy condition (iii) above; the morphism
T M — M"Ve corresponds to forgetting F2. We can see that the scheme theoretic
image M"¢ := w(M) C M™" is contained in the closed subscheme M) of Mm™aive
described by

ANHae®l-1®7(a) | F)=(0), AT a®1l-1®a]| F') = (0).

By [P] Theorem 4.5 and its proof, M, is flat over Spec Op when r = n — 1, s = 1.
Note that the scheme M  has the same generic fiber as M naive  Hence, by the above, if
r=n-—1,s=1, M = M/ _ is flat over Spec Op.

In fact, the calculations described in loc. cit., 4.16 suggest that MAS, and therefore
also M, should be flat over Spec O for all values of 7, s. The discussion in loc.
cit., 4.16 shows that this flatness statement follows if one knows that the subscheme of

n X n-matrices over F,, defined by
{A € Matyxpn| A2 =0, A= A" ATTA=0, NTTA=0, det(T-T— A) =T"}

is reduced. This can be viewed as the symmetric matrix version of a result of Strickland
[St] (compare to [PR] Cor. 5.10) and it can be verified (for various primes p) using
Macaulay when r, s < 5.

In the case considered in this remark, the parahoric subgroup fixing the lattice chain £
is a special maximal parahoric. For more general lattice chains one encounters additional
problems.
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15 Moduli spaces of abelian varieties

In this section we briefly indicate the construction of moduli spaces of abelian varieties
corresponding, in a sense made precise by the diagram (15.4) below, to the splitting and
local models of the previous section. The use of the language of algebraic stacks in (15.4)
replaces the method of linear modifications of [P]; its mathematical content is the same.

In this section we will use the following notation, taken from [RZ], ch. 6. Let B
be a semi-simple algebra over Q and let * be a positive involution on B. Let V be a
finite-dimensional Q-vector space with a nondegenerate alternating bilinear form ( , )
with values in Q. We assume that V' is equipped with a B-module structure such that

(bv,w) = (v,b"w), vyweV, beB .
Let G C GLp(V) be the closed algebraic subgroup over Q such that

G(Q)={g9 € GL(V) | (gv,9w) = c(g9)(v,w), c(g) € Q} .

Let S = Rg/rGm and let b : § — Gr be a homomorphism satisfying the usual Riemann
bilinear relations (cf. loc.cit.). We have a corresponding Hodge decomposition

VeC=VaeW

and a corresponding cocharacter i of G defined over C. We let E C Q be the correspond-
ing Shimura field. We now fix a prime number p and choose an embedding Q — Qp.
The corresponding v-adic completion of E will be denoted E,. Let C? C G (A?) be an
open compact subgroup.

We consider an order Op of B such that Op ® Z, is a maximal order of B ® Q,. We
assume that Op ® Z,, is invariant under the involution. We also fix a selfdual periodic
multichain £ of Op ® Zy-lattices in V' ® Q,, with respect to the alternating form ( , ).

We recall from loc.cit. the definition of a moduli problem Ac» over (Sch/Spec Op, ).
It associates to a Of,-scheme S the following set of data up to isomorphism:

1. An L-set of abelian varieties A = {Ap}
2. A Q-homogeneous principal polarization A of the L-set A.
3. A CP-level structure
7 Hi(A,A%) ~V ® A% mod C7
which respects the bilinear forms on both sides up to a constant in (AI})X.
We require an identity of characteristic polynomials,
det(T- I —b| Lie Ay)=det(T-I—b|Vy), beOp, Ae L .

For the definitions of the terms employed here we refer to loc.cit., 6.3-6.8. We only
mention that A is a functor from the category £ to the category of abelian schemes
over S up to isogeny of order prime to p, with Op-action, and that a polarization A is a
Op-linear homomorphism from A to the dual L-set A (for which Ap = (Ap)").
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The functor Ac» is representable by a quasi-projective scheme over Of,, provided
that C? is sufficiently small.

We denote by M, the Lie algebra of the universal extension of Ajy. Then {Mjy}
is a polarized multichain of (Op ® Z,) ®z, Os-modules on S of type (£) in the sense

of [RZ], Def. 3.14. Let Ac» be the functor which to S € (Sch/Op,) associates the
isomorphism classes of objects (A, \,7) of Ac»(S) and an isomorphism of polarized
multichains between {Mj} and £ ®z, Og. By [P], Thm. 2.2 (a slight extension of [RZ]
Thm. 3.16), the forgetful morphism

(15.1) m: Aoy — Acr

is a principal homogeneous space, locally trivial for the étale topology, under the smooth
group scheme G Xgpec z, Spec Op,. Here G = Aut(L) is the group scheme over Spec Z,
with C), = G(Z,) the parahoric subgroup of G(Q,) fixing the lattice chain L.

The Lie algebra Lie Ay is a factor module ¢ty of My. Using the identification of My
with A ®z, Og over Acr we therefore obtain a point of the naive local model Mm?ive
defined in terms of the Z,-data (B ® Qp,0p ® Zy,,V ® Qp, £) induced from our global
data,

(15.2) @ Acy — MMV

Since ¢ is obviously equivariant for the action of G®z,Og, , ¢ corresponds to a relatively
representable morphism of algebraic stacks

(15.3) o Acr — [M™/G ®37, Op, |

By [P], Thm. 2.2, (a slight extension of [RZ], Prop. 3.3), the morphism ¢ is smooth of
relative dimension dim G. Let us form the cartesian product of ¢ with the morphisms
M — M'°¢ — Mraive where M denotes the splitting model over O, with K the Galois
closure of F,,

AP — [M/Go,]

l l

(15.4) AE — [M*°/Goy, ]

l l
ACP _ [Mnaive/goEu]‘

The scheme Alcoﬁ is a closed subscheme of A¢r and is the image of ASCE’; in Acp. The
scheme Algg is a linear modification of Ac» in the sense of [P]; likewise, .ASCE’; is a linear
modification of ASCE),} ®op, Ok-

The Og-scheme ASC?; represents the following moduli problem on (Sch/Of). It asso-
ciates to S the set of isomorphism classes of objects (A, \, 7, F). Here (A = {Apr}, A\, 7))

is an object of Acr(S).
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Let Fy be the invariants under * in the center F' of B ® Q). Then F} is a direct sum
of fields,

(155) F :FI,I@H-@FLT .

For k=1,...,r, let ng be the degree of the direct summand of F' corresponding to the
direct summand F1 j of Fy. Let My be the Lie algebra of the universal extension of Ax
and let Fy be the kernel of the factor map from My to Lie Ax. Then the action of Of,
on My and F) induces decompositions

r r
My =Mk , Fa=EDFax -
k=1 k=1

The final ingredient F of an object of ASC?;(S) is a collection of functors A +— F}\k for

k=1,...,rand i = 1,...,n;, with functor morphisms j}\k : F/l\k; — My 1, satisfying
for each k =1,...,r the conditions in Definition 14.1 when A ® Og is replaced by My 4
and (F%,7%) by (F§ k,jfx’k), and such that F/{k = Fi k.
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