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ABSTRACT. We survey the theory of local models of Shimura varieties. In particular,
we discuss their definition and illustrate it by examples. We give an overview of the
results on their geometry and combinatorics obtained in the last 15 years. We also
exhibit their connections to other classes of algebraic varieties.
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Introduction

Local models of Shimura varieties are projective algebraic varieties over the
spectrum of a discrete valuation ring. Their singularities are supposed to model
the singularities that arise in the reduction modulo p of Shimura varieties, in the
cases where the level structure at p is of parahoric type. The simplest case occurs
for the modular curve with Γ0(p)-level structure. In this example the local model
is obtained by blowing up the projective line P1

Zp over SpecZp at the origin 0 of
the special fiber P1

Fp = P1
Zp ×SpecZp SpecFp. Local models for Shimura varieties are

defined in terms of linear algebra data inside the product of Grassmann varieties, at
least as far as type A, or C, or some cases of type D are concerned. Another version
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of these varieties arises as closures of Schubert varieties inside the Beilinson-Drinfeld-
Gaitsgory deformation of affine flag varieties. It is the aim of this survey to discuss
local models from various points of view, exhibit their connections to other classes
of algebraic varieties, and give an overview of the results on them obtained in the
last 15 years.

Why does such a survey have a place in the handbook of moduli? The reason
is that Shimura varieties are often moduli spaces of abelian varieties with additional
structure. Therefore, determining the singularities of their reduction modulo p is
an inherent part of the theory of such moduli spaces. The archetypical example
is the Shimura variety attached to the group of symplectic similitudes (and its
canonical family of Hodge structures). In this case, the Shimura variety represents
the moduli functor on Q-schemes of isomorphism classes of principally polarized
abelian varieties of a fixed dimension, equipped with a level structure. In case the
p-component of this level structure is of parahoric type, there is an obvious way to
extend the moduli functor to a moduli functor on Z(p)-schemes, which however
will have bad reduction, unless the p-component of the level structure is hyperspecial.
Local models then serve to analyze the singularities in the special fibers of the Z(p)-
models thus defined. For instance, natural questions of a local nature are whether
the Z(p)-schemes that arise in this way are flat over Z(p), or Cohen-Macaulay, or
what the set of branches through a point in the reduction is. All these questions,
exactly because they are of a local nature, can be transferred to questions on the
corresponding local models.

We will not give a sketch of the historical development of the theory here.
We only mention that the origin of these ideas lies in the work of Deligne and
Pappas [DP], of Chai and Norman [CN], and of de Jong [J] on specific Shimura
varieties. The definitions of local models in the examples considered in these papers
were formalized to some degree in the work of Rapoport and Zink in [RZ] with the
introduction of what were subsequently termed naive local models. The paper [P1]
of Pappas pointed to the fact that naive local models are not always flat. Whereas
the examples of Pappas arise due to the fact that the underlying group is non-split
(in fact, split only after a ramified extension), it was later pointed out by Genestier
[Ge2] that a similar phenomenon also occurs for split orthogonal groups. This
then led to the definition of local models in the papers [PR1, PR2, PR4], as it is
presented here. The local structure of local models was considered in papers by Görtz
[Gö1, Gö2, Gö4], Faltings [F1, F2], Arzdorf [A], Richarz [Ri2], Zhu [Zh], Pappas and
Zhu [PZ], and others. At the same time, the combinatorics of the special fiber of
local models (in particular, the {µ}-admissible set in the Iwahori-Weyl group) was
considered in papers by Kottwitz and Rapoport [KR], Haines and Ngô [HN2], Görtz
[Gö4], and Smithling [Sm1, Sm2, Sm3, Sm4, Sm5]. Finally, we mention the papers
by Gaitsgory [Ga], Haines and Ngô [HN1], Görtz [Gö3], Haines [H1, H2, HP],
Krämer [Kr], Pappas and Zhu [PZ], Rostami [Ro], and Zhu [Zh] addressing the
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problem of determining the complex of nearby cycles for local models (Kottwitz
conjecture).

It is remarkable that local models also appear in the study of singularities of
other moduli schemes. In [Ki] Kisin constructs a kind of birational modification
scheme of the universal flat deformation of a finite flat group scheme over a discrete
valuation ring of unequal characteristic (0,p), and shows that the singularities in
characteristic p of these schemes are modeled by certain local models that correspond
to Shimura varieties of type A. Another context in which local models appear is
in the description of Faltings [F3] of the singularities of the moduli space of vector
bundles on semi-stable singular algebraic curves.

The theory of local models falls fairly neatly into two parts. The first part is
concerned with the local commutative algebra of local models, and the combina-
torics of the natural stratification of their special fibers. This part of the theory is
surveyed in the present paper. The second part is concerned with the cohomology
of sheaves on local models, and will be presented in a sequel to this paper. More
precisely, we will survey in a second installment the cohomology of coherent sheaves
on local models (and in particular will explain the coherence conjecture of [PR3]),
as well as the cohomology of `-adic sheaves on local models, and in particular the
determination of the complex of nearby cycles. Of course, both parts are interrelated
by various links between them, and we will try to make this plain in the sequel to
this first installment.

This survey consists of three parts of a rather distinct nature. In the first part
(§1), we give two approaches to local models, each with a different audience in mind.
It should be pointed out that only one of these approaches is the one with which we
actually work, and which relates directly to the theory of Shimura varieties, especially
those which are of PEL type. The other approach points to a more general theory
and shows the ubiquity of local models in other contexts, but is not completely
worked out here.

In the second part (§§2–4), we give an account of the results on local models
that have been obtained in the last 15 years, and we highlight open questions in this
area.

In the third part (§§5–8) we explain the relation of local models to other classes
of algebraic varieties, such as nilpotent orbit closures, matrix equation varieties,
quiver Grassmannians, and wonderful compactifications of symmetric spaces, that
have been established in some cases. Especially as concerns the last section, this is
still largely uncharted territory, which explains why this part is of a more informal
nature.

We are happy to acknowledge the important contributions of K. Arzdorf,
C.-L. Chai, P. Deligne, V. Drinfeld, G. Faltings, D. Gaitsgory, A. Genestier, U. Görtz,
T. Haines, J. de Jong, R. Kottwitz, L. Lafforgue, P. Norman, T. Richarz, X. Zhu, and
Th. Zink to the subject of the survey. In addition, we thank U. Görtz, T. Richarz,
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J. Schroer, and X. Zhu for their help with this survey, and the referee for his/her
suggestions.

1. An object in search of a definition

In this motivational section, we sketch two possible approaches to local models.
It is the first approach that is directly related to the original purpose of local models,
which is to construct an elementary projective scheme over the ring of integers of a
p-adic localization of the reflex field of a Shimura variety, whose singularities model
those of certain integral models of a Shimura variety. Unfortunately we cannot
make the corresponding definition in as great a generality as we would like. It is the
second approach which is most easily related to the theory of algebraic groups. It is
also the most elegant, in the sense that it is uniform. In a preliminary subsection we
list the formal properties that we have come to expect from local models.

1.1. Local models in an ideal world

The ideal situation presents itself as follows. Let F be a discretely valued field.
We denote by OF its ring of integers and by k = kF its residue field which we assume
to be perfect. Let G be a connected reductive group over F, and let {µ} be a geometric
conjugacy class of one-parameter subgroups of G, defined over an algebraic closure
F of F. Let E be the field of definition of {µ}, a finite extension of F contained in F
(the reflex field of the pair (G, {µ})). Finally, let K be a parahoric subgroup of G(F) in
the sense of [BTII], see also [T]. These subgroups are (“up to connected component",
see [BTII] for a precise definition) the stabilizers of points in the Bruhat-Tits building
of the group G(F). We denote by G the smooth group scheme over OF with generic
fiber G and with connected special fiber such that K = G(OF). The existence of a
canonical group scheme G with these properties is one of the main results of [BTII].

To these data, one would like to associate the local model, a projective scheme
Mloc =Mloc(G, {µ})K over SpecOE, at least when {µ} is a conjugacy class of minus-
cule1 coweights. It should be equipped with an action of GOE = G⊗OF OE. At least
when {µ} is minuscule, Mloc should have the following properties.

(i) Mloc is flat over SpecOE with generic fiber isomorphic to G/Pµ. Here G/Pµ
denotes the variety over E of parabolic subgroups of G of type {µ}.

(ii) There is an identification of the geometric points of the special fiber,

Mloc(kE) =
{
g ∈ G(L)/K̃

∣∣ K̃gK̃ ∈ Adm
K̃
({µ})

}
.

Here L denotes the completion of the maximal unramified extension of F in F, and
K̃ = G(OL) the parahoric subgroup of G(L) corresponding to K. Finally,

Adm
K̃
({µ}) ⊂ K̃\G(L)/K̃

is the finite subset of {µ}-admissible elements [R], cf. Definition 4.23 below.

1Recall that a coweight µ is minuscule if 〈α,µ〉 ∈ {−1,0,1} for every root α ofGF.
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(iii) For any inclusion of parahoric subgroups K ⊂ K ′ of G(F), there should be a
morphism

(1.1) Mloc
K −→Mloc

K′ ,

which induces the identity (via (i)) on the generic fibers. For a central isogeny
G→ G ′, and compatible conjugacy classes {µ} and {µ ′}, and compatible parahoric
subgroups K ⊂ G(F), resp. K ′ ⊂ G ′(F), one should have an identification

(1.2) Mloc(G, {µ})K =Mloc(G ′, {µ ′})K′ .

More generally, if ϕ : G → G ′ is a homomorphism, and {µ ′} = {ϕ ◦ µ}, and if
ϕ(K) ⊂ K ′, there should be a morphism

(1.3) Mloc(G, {µ})K −→Mloc(G ′, {µ ′})K′ ⊗OE′ OE ,

which induces in the generic fiber the natural morphism G/Pµ → (G ′/Pµ′)⊗E′ E.
Here E ′ ⊂ E is the reflex field of (G ′, {µ ′}).

(iv) Let F ′ be a finite extension of F contained in F. Let G ′ = G⊗F F ′, and regard {µ}

as a geometric conjugacy class of one-parameter subgroups of G ′. Let K ′ ⊂ G ′(F ′)
be a parahoric subgroup with K = K ′ ∩G(F). Note that the reflex field of (G ′, {µ})
is equal to E ′ = F ′E. Under these circumstances one should expect a morphism of
local models

(1.4) Mloc(G, {µ})K ⊗OE OE′ −→Mloc(G ′, {µ})K′ ,

which induces the natural morphism

(G/Pµ)⊗E E ′ −→ G ′/P ′µ

in the generic fibers. Furthermore, if F ′/F is unramified, then the morphism (1.4)
should be an isomorphism.

(v) Suppose that G =
∏n
i=1Gi, K =

∏n
i=1 Ki, and µ =

∏n
i=1 µi are all products.

Then G =
∏n
i=1 Gi and the reflex fields Ei, 1 6 i 6 n, generate the reflex field E. We

then expect an equivariant isomorphism of local models

(1.5) Mloc(G, {µ})K
∼−→
∏

i
Mloc(Gi, {µi})Ki ⊗OEi

OE ,

which induces the natural isomorphism

(G/Pµ) =
∏

i
(Gi/Pµi)⊗Ei E

in the generic fibers.

Here we should point out that it is not clear that the above listed properties are
enough to characterize the local models Mloc(G, {µ})K up to isomorphism. In fact,
a general abstract (i.e. “group theoretic") definition of local models is still lacking,
although, as we will explain in §1.3, there is now some progress on this problem.

We now sketch two different approaches to the concept of local models.
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1.2. Local models arising from Shimura varieties

Let ShK = Sh(G, {h},K) denote a Shimura variety [D1] attached to the triple
consisting of a connected reductive group G over Q, a family of Hodge structures h
and a compact open subgroup K ⊂ G(Af). We fix a prime number p and assume
that K factorizes as K = Kp · Kp ⊂ G(Apf )×G(Qp). In fact we assume in addition
that K = Kp is a parahoric subgroup of G(Qp).

Let E ⊂ C denote the reflex field of (G, {h}), i.e., the field of definition of the
geometric conjugacy class of one-parameter subgroups {µ} = {µh} attached to {h},
cf. [D1]. Then E is a subfield of the field of algebraic numbers Q, of finite degree
over Q. Fixing an embedding Q → Qp determines a place ℘ of E above p. We
denote by the same symbol the canonical model of ShK over E and its base change
to E℘. It is then an interesting problem to define a suitable model SK of ShK over
SpecOE℘ . Such a model should be projective if ShK is (which is the case when Gad

is Q-anisotropic), and should always have manageable singularities. In particular,
it should be flat over SpecOE℘ , and its local structure should only depend on the
localized group G = G⊗Q Qp, the geometric conjugacy class {µ} over Qp, and the
parahoric subgroup K = Kp of G(Qp). Note that, due to the definition of a Shimura
variety, the conjugacy class {µ} is minuscule.

More precisely, we expect the local model Mloc(G, {µ})K to model the singular-
ities of the model SK, in the following sense. We would like to have a local model
diagram of OE℘ -schemes, in the sense of [RZ],

S̃K

π

zztttttttttt
ϕ̃

%%KKKKKKKKKKK

SK Mloc(G, {µ})K ,

in which π is a principal homogeneous space (p.h.s.) under the algebraic group
GOE℘

= G⊗Zp OE℘ , and in which ϕ̃ is smooth of relative dimension dimG. Equiva-
lently, using the language of algebraic stacks, there should be a smooth morphism
of algebraic stacks of relative dimension dimG to the stack quotient,

SK −→ [Mloc(G, {µ})K/GOE℘
] .

In particular, for every geometric point x ∈ SK(Fp), there exists a geometric point
x ∈ Mloc(G, {µ})K(Fp), unique up to the action of G(Fp), such that the strict
henselizations of SK at x and of Mloc at x are isomorphic.

Note that the generic fiber G/Pµ =Mloc(G, {µ})K ⊗OE℘
E℘ is nothing but the

compact dual of the hermitian symmetric domain corresponding to the Shimura
variety Sh(G, {h},K) (after extending scalars from E to E℘). From this perspective,
the local model Mloc(G, {µ})K is an OE℘ -integral model of the compact dual of the
Shimura variety Sh(G, {h},K).
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The problems of defining a model of ShK over OE℘ and of defining a local
model Mloc(G, {µ})K are closely intertwined (although not completely equivalent,
as the example of a ramified unitary group shows [PR4]). Let us explain this
and also briefly review the general procedure for the construction of local models
Mloc(G, {µ})K in some cases where the Shimura variety is of PEL type. Recall that in
the PEL cases treated in [RZ] one first constructs a “naive" integral model Snaive

K of
the Shimura variety ShK; this is given by a moduli space description and affords a
corresponding “naive local model" Mnaive together with a smooth morphism

Snaive
K −→ [Mnaive/GOE℘

].

As we mentioned in the introduction, these naive models Mnaive and SK are often
not even flat over OE℘ [P1, Ge2]. Then, in most cases, the (non-naive) local model
is a GOE℘

-invariant closed subscheme Mloc :=Mloc(G, {µ})K of Mnaive with the same
generic fiber which is brutally defined as the flat closure. The general idea then is
that, from Mloc(G, {µ})K, one also obtains a good (i.e at least flat) integral model SK
of the Shimura variety via the cartesian diagram

SK //

��

[Mloc/GOE℘
]

��

Snaive
K

// [Mnaive/GOE℘
].

Unfortunately, in general, the schemes Mloc(G, {µ})K and SK, do not have a reason-
able moduli theoretic interpretation. Nevertheless, there are still (proven or conjec-
tural) moduli descriptions in many interesting cases [P1, Gö1, Gö2, PR1, PR2, PR4].
All these issues are explained in more detail in §2.

We mention here that taking the expected functorialities (i)–(v) of local models
into account, we may, in constructing a local model for the data (G, {µ},K), make
the following hypotheses. We may assume that the adjoint group of G is simple;
we may extend scalars to an unramified extension F of Qp. If we insist that {µ} be
minuscule, this reduces the number of possible cases to an essentially finite list.
Let us explain this in more detail. We assume Gad is simple and denote by µad the
corresponding minuscule cocharacter of Gad(Qp). Let Qun

p be the completion of the
maximal unramified extension of Qp; by Steinberg’s theorem every reductive group
over Qun

p is quasi-split. We can write

Gad/Qun
p
= ResL/Qun

p
(H) , µ = {µσ}σ:L→Qp ,

where H is absolutely simple adjoint over L, σ runs over embeddings of L over Qun
p ,

and µσ are minuscule cocharacters of H(Qp). The group H over L is also quasi-split.
The possible cases for the pairs (H,µσ) are given in the table below which

can be obtained by combining the table of types of quasi-split, residually split,
absolutely simple groups from [T, p. 60–61] with the lists of minuscule coweights in
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[B] which are dominant relative to the choices of positive roots in [B]. In the local
Dynkin diagrams, h denotes a hyperspecial vertex, s a special (but not hyperspecial)
vertex, and • a nonspecial vertex. We refer to [T, 1.8] for the explanation of the
notation in the diagrams. There are n + 1 vertices in each diagram that explicitly
depends on n, i.e. aside from the diagrams for A1, A(2)

2 , D(3)
4 , E6, E(2)

6 , and E7.

Type of H(L) Local Dynkin diagram
Nonzero dominant minuscule

coweights for H(Qp)

A1 h h $∨
1

An, n > 2
h

h h h h
tttt JJJJ $∨

i , 1 6 i 6 n

A
(2)
2 (C-BC1) s s< $∨

1 ,$∨
2

A
(2)
2n (C-BCn),

n > 2
s • • • • s< < $∨

i , 1 6 i 6 2n

A
(2)
2n−1 (B-Cn),

n > 3
• • • • •

s

s
>

rrr LLL $∨
i , 1 6 i 6 2n− 1

Bn, n > 3 • • • • •
h

h
<

rrr LLL $∨
1

Cn, n > 2 h • • • • h> < $∨
n

Dn, n > 4
h

h
• • • •

h

h

LLL
rrr

rrr LLL $∨
1 ,$∨

n−1,$∨
n

D
(2)
n+1 (C-Bn),

n > 2
s • • • • s< > $∨

1 ,$∨
n ,$∨

n+1

D
(3)
4 , D(6)

4 (GI
2) s • •< $∨

1 ,$∨
3 ,$∨

4
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E6 h • •
•

h

•
h

rrrr
rrr

LLLL
LLL

$∨
1 ,$∨

6

E
(2)
6 (FI

4) s • • • •< $∨
1 ,$∨

6

E7 h • • •
•
• • h $∨

1

Note that the minuscule coweights are for H(Qp) and so they only depend on
the absolute type over Qp. There are no nonzero minuscule coweights for E8, F4, G2

types. Of course, there is no simple description of the local model for ResL/Qun
p
(H)

in terms of a local model for H. For example, see the case of H = GLn in 2.4
below. However, we expect that most properties of local models for a group which
is the restriction of scalars ResL/Qun

p
(H) will only depend on H, the degree of L over

Qun
p , the combinatorial data describing {µσ}σ and the type (conjugacy class) of the

parahoric subgroup K ⊂ H(L) (and not on the particular choice of the field L).
Recall that to each such pair (H,µ) with H absolutely simple adjoint and µ

minuscule as above, we associate a homogeneous space H/Pµ. Following Satake,
in [D2, 1.3] Deligne studies faithful symplectic representations ρ : H ′ → GSp2g,
where H ′ → H is a central isogeny, with the property that the coweight ρad ◦ µad is
the (unique) minuscule coweight $∨

g in type Cg. Such symplectic representations
exist for all the pairs in the table, except for those corresponding to exceptional
groups. Hence, for all classical pairs, we can obtain an embedding of H/Pµ in the
Grassmannian of Lagrangian subspaces of rank g in symplectic 2g-space. As we
will see in the rest of the paper, the local model is often defined using such an
embedding. By loc. cit., Shimura varieties of “abelian type" [M1, M2] produce pairs
that support such symplectic representations. Among them, the pairs (Bn,$∨

1 ),
(Dn,$∨

1 ), (D
(2)
n ,$∨

1 ), (D
(3)
4 ,$∨

1 ), (D
(6)
4 ,$∨

1 ) do not appear, when we are just
considering Shimura varieties of PEL type. For these pairs, the corresponding
homogeneous spaces H/Pµ are forms of quadric hypersurfaces in projective space.
So far, local models involving these pairs and the exceptional pairs have not been
the subject of a systematic investigation. The construction in 1.3 applies to some of
these local models, but we will otherwise omit their discussion in this survey.

Example 1.6. Let us consider the Siegel case, i.e., the Shimura variety of principally
polarized abelian varieties of dimension g with level K-structure, where the p-
component Kp of K is the parahoric subgroup of Gp2g(Qp) which is the stabilizer
of a selfdual periodic lattice chain L in the standard symplectic vector space of
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dimension 2g over Qp. In this case the Shimura field is equal to Q, and a model SK
over Z(p) is given as the moduli scheme of principally polarized chains of abelian
varieties of dimension g of type corresponding to L, with a level structure prime to
p. In this case, the local model is given inside the product of finitely many copies of
the Grassmannian of subspaces of dimension g in a 2g-dimensional vector space,
which satisfy two conditions: a periodicity condition, and a self-duality condition.
This example is discussed in 2.2.

Example 1.7. Let us consider Shimura varieties related to the Picard moduli schemes
of principally polarized abelian varieties of dimension n with complex multiplica-
tion of the ring of integers Ok in an imaginary-quadratic field k of signature (r, s)
(cf. [KuR, §4] for precise definitions). Here the Qp-group G is the group of unitary
similitudes for the quadratic extension k ⊗ Qp of Qp. Three alternatives present
themselves.

(i) p splits in k. ThenG ' GLn×Gm, and {µ} is the conjugacy class of a cocharacter of
the form

(
(1(r), 0(s)); 1

)
. Here, for n = r+ s, we write (1(r),0(s)) for the cocharacter

x 7−→ diag(x, . . . , x︸ ︷︷ ︸
r

, 1, . . . ,1︸ ︷︷ ︸
s

)

of GLn. The parahoric subgroup Kp is of the form K0
p × Z×p , where K0

p is a parahoric
subgroup of GLn(Qp).
(ii) p is inert in k. Then G becomes isomorphic to GLn ×Gm after the unramified
base extension ⊗Qpkp. Hence, by the expected general property (iv) of local models
(which is true in the case at hand), the local models in cases (i) and (ii) become
isomorphic after extension of scalars from E℘ to E ′℘ = kp · E℘. Note that, if r 6= s,
then E℘ can be identified with kp, and hence E ′℘ = E℘.

(iii) p is ramified in k. Again G⊗Qp kp = GLn ×Gm. There is a morphism of local
models

Mloc(G, {µ})K ⊗OE℘
OE′℘ −→Mloc(GLn ×Gm, {µ})K′ ,

for any parahoric subgroup K ′ ⊂ GLn(kp) × k×p with intersection K with G(Qp).
However, in general this is not an isomorphism.

The Picard moduli problems lead to local models defined in terms of linear
algebra, similar to the Siegel case above. The local models relating to the first two
cases are discussed in 2.1; the local models of the last case is discussed in 2.6.

As is apparent from this brief discussion, the definitions of the local models
related to the last two kinds of Shimura varieties strongly use the natural represen-
tations of the classical groups in question (the group of symplectic similitudes in
the Siegel case, the general linear group in the Picard case for unramified p, and the
group of unitary similitudes in the Picard case for ramified p). They are therefore not
purely group-theoretical. In the next section, we will give, in some cases, a purely
group-theoretical construction of local models.
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1.3. Local models in the Beilinson-Drinfeld-Gaitsgory style

The starting point of the construction is a globalized version of the affine
Grassmannian as in [BD]. Let O be a complete discrete valuation ring, with fraction
field F and residue field k. Let X = SpecO[t] be the affine line over O. Let G be a
split reductive algebraic group. We consider the following functor on (Sch/X). Let
S ∈ (Sch/X), with structure morphism y : S→ X, and define

(1.8) GrG,X(S) =

{
iso-classes of pairs

(F,β)

∣∣∣∣ F a G-bundle on X× S,
β a trivialization of F|(X×S)\Γy

}
.

Here Γy ⊂ X× S denotes the graph of y, and the fiber products are over SpecO.
Then GrG,X is representable by an ind-scheme over X. The relation of this

ind-scheme to the usual affine Grassmannian is as follows.
Recall that to G and any field κ, there is associated its positive loop group L+G

over κ, its loop group LG, and its affine Grassmannian GrG = LG/L+G (quotient
of fpqc-sheaves on κ-schemes). Here L+G is the affine group scheme on Spec κ
representing the functor on κ-algebras

R 7−→ L+G(R) = G(R[[T ]]) ,

and LG is the ind-group scheme over Spec κ representing the functor

R 7−→ LG(R) = G
(
R((T))

)
,

and GrG is the ind-scheme over Spec κ representing the functor

R 7−→ GrG(R) =

{
iso-classes of pairs

(F,β)

∣∣∣∣ F a G-bundle on SpecR[[T ]],
β a trivialization of F|SpecR((T))

}
,

comp. [BL], cf. also 3.1 below. When we wish to emphasize that we are working
over the field κ, we will denote the affine Grassmannian by GrG,κ.

Lemma 1.9 (Gaitsgory [Ga, Lem. 2]). Let x ∈ X(κ), where κ is either the residue field
of O, or the fraction field of O, and identify the completed local ring Ox of X× Spec κ with
κ[[T ]], using the local parameter T = t − x. Then the restriction morphism induces an
isomorphism of ind-schemes over Spec κ,

i∗x : GrG,X ×X,x Spec κ −→ GrG,κ .

Here GrG,κ denotes the affine Grassmannian of G over κ. �

We next construct a degeneration of GrG,F to the affine flag variety FlG,k =

LG/B over k, where B denotes the Iwahori subgroup scheme of L+G given as the
inverse image under the reduction map of a fixed Borel subgroup B of G,

L+G //

⊂

G

⊂

B //____ B.
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Denote by 0 ∈ X(O) the zero section. Let FlG,X be the ind-scheme over X which
represents the following functor on X-schemes,

(1.10) S 7−→
{

iso-classes of triples (F,β, ε)
∣∣∣∣ (F,β) ∈ GrG,X(S),
ε a reduction of F|{0}×S to B

}
.

Let πX : FlG,X → GrG,X be the forgetful morphism, which is a smooth proper
morphism with typical fiber G/B.

Now fix a uniformizer π ∈ O. We denote by δ the section of X over O defined
by δ∗(t) = π. Let FlG,O, resp. GrG,O, be the pull-back via δ of FlG,X, resp. GrG,X, to
SpecO, and let

(1.11) πO : FlG,O −→ GrG,O

be the pull-back of πX. Note that the section δ gives by Lemma 1.9 identifications of
the generic fiber of GrG,O with GrG,F, and of the special fiber of GrG,O with GrG,k.

Lemma 1.12. The morphism πO induces

• over F a canonical isomorphism

FlG,O × Spec F ' GrG,F ×G/B ,

• over k a canonical isomorphism

FlG,O × Speck ' FlG,k .

Proof. (cf. [Ga, Prop. 3]) If S is a F-scheme, then

X× S \ Γy = SpecS OS[t, (t− π)
−1],

and the trivialization β induces a trivialization of F along the section t = 0. Hence
the reduction ε to B corresponds to a section of G/B over S, which provides the
claimed identification of the generic fiber.

If S is a k-scheme, then the identification of GrG,O × Speck with GrG,k is via
the origin t = 0, in the sense of Lemma 1.9. Hence the reduction ε to B corresponds
to the choice of a compatible flag in the non-constant G-bundle F|t=0 over S, hence
the triple (F,β, ε) corresponds to a lifting of the S-valued point (F,β) of GrG,k to
an S-valued point of FlG,k, which gives the claimed identification of the special
fiber. �

Next we recall that the orbits of L+G onGrG are parametrized by the dominant
coweights, cf. Remark 4.9. More precisely, if A denotes a maximal split torus in B,
and X∗(A)+ denotes the dominant coweights with respect to B, then the map

λ 7−→
(
L+G · λ(T) · L+G

)/
L+G = Oλ

defines a bijection between X∗(A)+ and the set of orbits. Furthermore, Oλ is a
quasi-projective variety of dimension 〈2ρ, λ〉, and Oµ ⊂ Oλ if and only if µ6λ (i.e.,
λ− µ is a non-negative integral sum of positive co-roots), cf. Proposition 4.21. In
particular, Oλ is a projective variety if and only if λ is a minuscule coweight.
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Now we may define a version of local models in this context.

Definition 1.13. The local model attached to λ ∈ X∗(A)+ in the Beilinson-Drinfeld-
Gaitsgory context is the scheme-theoretic closure MG,λ in FlG,O of the locally closed
subset Oλ × {e} of GrG,F ×SpecF G/B.

This definition is essentially independent of the choice of the uniformizer π of
O. Indeed, any two uniformizers differ by a unit, which may be used to construct a
canonical isomorphism between the corresponding local models.

It follows from the definition that MG,λ is a projective scheme flat of relative
dimension 〈2ρ, λ〉 over O. If λ is minuscule, then the generic fiber of MG,λ is
projective and smooth. The theory of local models is concerned with the structure of
the schemes MG,λ. Natural questions that arise in this connection are the following.
When is the special fiber MG,λ ⊗O k reduced? What are its singularities, and how
can one enumerate its irreducible components?

Variants 1.14. (i) Replacing the Borel subgroup B by a parabolic subgroup P con-
taining B, and the Iwahori subgroup B by the parahoric subgroup P corresponding
to P under the reduction morphism, we obtain a scheme FlG,P,O with generic fiber
equal to GrG,F × G/P and with special fiber equal to the affine partial flag variety
LG/P. Correspondingly we define local models MG,P,λ over SpecO for λ ∈ X∗(A)+,
with generic fiber contained in GrG,F, and with special fiber contained in the partial
flag variety LG/L+P over k. For an inclusion P ⊂ P ′ of two standard parabolic
subgroups of G, we obtain a morphism between local models

MG,P,λ −→MG,P ′,λ ,

which induces an isomorphism in the generic fibers. In the extreme case P = G, the
scheme FlG,P,O has generic fiber GrG,F and special fiber GrG,k, and the local model
MG,G,λ “looks constant" over SpecO, with generic fiber the Schubert variety Oλ in
GrG,F, and special fiber the Schubert variety Oλ in GrG,k. If λ is minuscule, then
MG,G,λ is projective and smooth over O.

(ii) The preceding considerations generalize without substantial changes to the case
when G is a quasi-split reductive group over O.

(iii) An alternative definition of MG,P,λ can be given as follows. Starting from the
Chevalley form of G over O and a parabolic subgroup P as above, we can construct
a smooth “parahoric group scheme" Ĝ over SpecO[[t]]. The generic, resp. special,
fiber of Ĝ→ SpecO is isomorphic to the smooth affine “parahoric group scheme"
Ĝκ over Spec κ[[t]] with κ = F, resp. k, given by Bruhat-Tits theory. (These are
characterized by requiring that Ĝκ(κsep[[t]]) is equal to the group of elements of
G(κsep[[t]]) with reduction modulo t contained in P(κsep).) For example, Ĝ can be
obtained by applying the constructions of [BTII, 3.2, 3.9.4] to the two dimensional
base SpecO[[t]] by picking appropriate schematic root data given by ideals generated
by powers of t, see also [PR4, p. 147]. The base change Ĝ ×SpecO[[t]] SpecO((t)) is
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identified with the Chevalley group scheme G×SpecO SpecO((t)). We can now glue
the “constant" group scheme G over SpecO[t, t−1] with Ĝ over SpecO[[t]] to produce
a “Bruhat-Tits group scheme" G over the affine line X = SpecO[t], cf. [PR5, He]. Let
us define the functor GrG,X exactly as in (1.8) above, except that G-torsors are now
replaced by G-torsors. Also as above, set

GrG,O = GrG,X ×X,δ SpecO

where δ : SpecO → X is given by t 7→ π. Note that G ×X,δ SpecO is the parahoric
group scheme associated to the subgroup of elements of G(Oun) with reduction
modulo π contained in P(ksep). Similar to Lemma 1.12, we can see that GrG,O ×
Spec F = GrG,F is the affine Grassmannian of the loop group of G over F, while
GrG,O × Speck = LG/L+Ĝk is the affine flag variety corresponding to the parahoric
subgroup Ĝ(k[[t]]) over k. The rest of the construction proceeds the same way: we
define MG,P,λ =MG,λ to be the Zariski closure of the orbit Oλ.

This construction extends beyond the split case and is used in [PZ] to provide
a definition of local models Mloc(G, {µ})K under some rather general assumptions.
Indeed, one can deal with all reductive groups G that split over a tamely ramified
extension of F and with general parahoric subgroups. The technical details of the
construction of the group scheme G over X = SpecO[t] and of the global affine
Grassmannian GrG,X in the general (tamely ramified) case are quite involved and
we will not attempt to report on them here. Instead, we refer the reader to the article
[PZ].

In the rest of this survey we will only discuss the models that are directly
related to (mostly PEL) Shimura varieties, as sketched in 1.2. However, especially
after Gaitsgory’s paper [Ga], we have seen that methods from elsewhere, such as
from the theory of the Geometric Langlands Correspondence, are having an impact
on the problems discussed in this report.2 We hope that our loose discussion above
can help in this respect to attract people from these other areas to the theory of local
models.

2. Basic examples

In this section we make explicit the definition of the local model in the style of
1.2 in the most basic cases. Let F be a discretely valued field, OF its ring of integers,
π ∈ OF a uniformizer, and k = OF/πOF its residue field which we assume is perfect.
Let n be a positive integer. A lattice chain in Fn is a collection of OF-lattices in Fn

totally ordered under inclusion. A lattice chain L is periodic if aΛ ∈ L for every

2In this respect, we refer to very recent work of X. Zhu [Zh] on the coherence conjecture [PR3] and to
the article [PZ].
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Λ ∈ L and a ∈ F×. For i = na+ j with 0 6 j < n, we define the OF-lattice

(2.1) Λi :=

j∑
l=1

π−a−1OFel +

n∑
l=j+1

π−aOFel ⊂ Fn,

where e1, . . . , en denotes the standard ordered basis in Fn. Then the Λi’s form a
periodic lattice chain

(2.2) · · · ⊂ Λ−2 ⊂ Λ−1 ⊂ Λ0 ⊂ Λ1 ⊂ Λ2 ⊂ · · · ,

which we call the standard lattice chain.
Given a partition n = r+s, we recall the cocharacter

(
1(r),0(s)

)
of GLn defined

in Example 1.7(i); we shall also regard this as a cocharacter of certain subgroups of
GLn (e.g. GSp2g, GO2g, . . . ), as appropriate.

In each case except for 2.4 and 2.5, we give the types of the adjoint group and
nontrivial minuscule coweights under consideration, in the sense of the table in 1.2.

2.1. Split unitary, i.e. GLn (types (An−1,$∨
r ), 1 6 r 6 n− 1)

We refer to 1.2 for an explanation of why we lump the cases GLn and the split
unitary group relative to an unramified quadratic extension together.

Let G := GLn over F and let L be a periodic lattice chain in Fn. Fix an integer r
with 0 6 r 6 n, let µ denote the cocharacter

(
1(r), 0(n−r)

)
of the standard maximal

torus of diagonal matrices in G, and let {µ} denote the geometric conjugacy class of
µ over F. The local model Mloc

G,{µ},L attached to the triple (G, {µ},L) is the functor on
the category of OF-algebras that assigns to each OF-algebra R the set of all families
(FΛ)Λ∈L such that

(i) (rank) for every Λ ∈ L, FΛ is an R-submodule of Λ⊗OF R which Zariski-locally
on SpecR is a direct summand of rank n− r;

(ii) (functoriality) for every inclusion of lattices Λ ⊂ Λ ′ in L, the induced map
Λ⊗OF R→ Λ ′ ⊗OF R carries FΛ into FΛ′ :

Λ⊗OF R
//

⊂

Λ ′ ⊗OF R

⊂

FΛ //_____ FΛ′ ;

(iii) (periodicity) for every a ∈ F× and every Λ ∈ L, the isomorphism Λ
a−→
∼
aΛ

identifies FΛ
∼−→ FaΛ.

It is clear that Mloc
G,{µ},L is representable by a closed subscheme of a product of

finitely many copies of Gr(n−r,n)OF , the Grassmannian of (n−r)-planes in n-space;
and that Mloc

G,{µ},L has generic fiber isomorphic to Gr(n− r,n)F. The fundamental
result of Görtz’s paper [Gö1] is the following.

Theorem 2.3 (Görtz [Gö1, 4.19, 4.21]). For any µ =
(
1(r), 0(n−r)

)
and periodic

lattice chain L, Mloc
G,{µ},L is flat over SpecOF with reduced special fiber. The irreducible

components of its special fiber are normal with rational singularities, so in particular are
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Cohen-Macaulay. Furthermore, Mloc
G,{µ},L has semi-stable reduction when µ =

(
1, 0(n−1)

)
.
�

Here a normal variety having “rational singularities” is meant in the strongest
sense, i.e., there exists a birational proper morphism from a smooth variety to it
such that the higher direct images of the structure sheaf and of the dualizing sheaf
vanish.

Example 2.4. The simplest nontrivial example occurs for n = 2, µ = (1,0), and
L the standard lattice chain (the Iwahori case). The most interesting point on the
local model is the k-point x specified by the lines ke1 ⊂ Λ0 and ke2 ⊂ Λ1, where
we use a bar to denote reduction mod π. In terms of standard affine charts of the
Grassmannian, we find that x has an affine neighborhood U in the local model
consisting of all points of the form

FΛ0 = span{e1 + Xe2} and FΛ1 = span{Yπ−1e1 + e2}

such that XY = π. Hence U ∼= SpecOF[X, Y]/(XY − π). Hence U visibly satisfies the
conclusions of Theorem 2.3; its special fiber consists of two copies of A1

k meeting
transversely at x. In fact, globally the special fiber of the local model consists of two
copies of P1

k meeting at x. By contrast, taking L to be the homothety class of Λ0 or
of Λ1 (the maximal parahoric case), the local model is tautologically isomorphic to
P1
OF

.
In 6.1 we shall consider various analogs of the scheme U both for higher rank

and for other groups, which we broadly refer to as schemes of matrix equations.
Note that U is exactly the scheme Z1,2 appearing in Theorem 6.2.

Remark 2.5. In light of Theorem 2.3, it is an interesting question whether the special
fiber, as a whole, of the local model is Cohen-Macaulay; by the flatness result, this is
equivalent to the local model itself being Cohen-Macaulay. If Cohen-Macaulayness
holds, then, since by the theorem above the special fiber is generically smooth, we
can apply Serre’s criterion to deduce that the local model is also normal.

In [Gö1, §4.5.1], Görtz proposes to attack the question of Cohen-Macaulayness
of the special fiber by means of a purely combinatorial problem in the affine Weyl
group, which however appears to be difficult, at least when L is the full standard
lattice chain. In this way he has found that the special fiber is Cohen-Macaulay
for n 6 4 by hand calculations, and for n 6 6 by computer calculations. Cohen-
Macaulayness can also be shown via his approach for any n, in the case that the
lattice chain L consists of the multiples of only two lattices. Similar remarks apply
to local models for any group, whenever the special fiber of the local model can be
identified with a union of Schubert varieties in an affine flag variety. See Remark
2.10 for another case where this property can be shown. By contrast, we know of
no experimental evidence for Cohen-Macaulayness of the special fiber in any other
Iwahori, i.e. “full lattice chain,” cases. We shall discuss embedding the special fiber
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of local models in affine flag varieties in 3.3. The question of Cohen-Macaulayness
and normality of local models is a major open problem in the field.

2.2. Split symplectic (types (Cg,$∨
g ))

Let n = 2g, and let 〈 , 〉 denote the alternating F-bilinear form on F2g whose
matrix with respect to the standard ordered basis is

(2.6) Jn :=

(
Hg

−Hg

)
,

where Hg denotes the g× g matrix

(2.7) Hg :=


1

. .
.

1

 .

Given a lattice Λ in L, we denote by Λ̂ its 〈 , 〉-dual,

Λ̂ :=
{
x ∈ F2g

∣∣ 〈Λ, x〉 ⊂ OF
}

.

Then 〈 , 〉 induces a perfect bilinear pairing of OF-modules

(2.8) Λ× Λ̂ −→ OF.

We say that a lattice chain L in F2g is self-dual if Λ̂ ∈ L for all Λ ∈ L.
Let G := GSp2g := GSp

(
〈 , 〉
)

over F, let µ denote the cocharacter
(
1(g), 0(g)

)
of the standard maximal torus of diagonal matrices in G, and let {µ} denote its
geometric conjugacy class over F. Let L be a periodic self-dual lattice chain in F2g.
The local model Mloc

G,{µ},L is the closed OF-subscheme of Mloc
GL2g,{µ},L whose R-points,

for each OF-algebra R, satisfy the additional condition

(iv) (perpendicularity) for all Λ ∈ L, the perfect R-bilinear pairing(
Λ⊗OF R

)
×
(
Λ̂⊗OF R

)
−→ R

obtained by base change from (2.8) identifies F⊥Λ ⊂ Λ̂⊗OF R with F
Λ̂

.

This time the local model Mloc
G,{µ},L has generic fiber LGr(2g)F, the Grassman-

nian of Lagrangian subspaces in F2g. The fundamental result of Görtz’s paper [Gö2]
is the following.

Theorem 2.9 (Görtz [Gö2, 2.1]). For any periodic self-dual lattice chain L, Mloc
G,{µ},L is

flat over SpecOF with reduced special fiber. The irreducible components of its special fiber
are normal with rational singularities, so in particular are Cohen-Macaulay. �

Remark 2.10. In the case that the lattice chain L consists of multiples of two lattices
Λ and Λ ′ such that Λ̂ = Λ and Λ̂ ′ = πΛ, one can obtain a better result, namely that
the whole special fiber is Cohen-Macaulay and that the local model is normal. This
was first shown in [CN]. See Theorem 6.6 and the discussion after its statement.
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2.3. Split orthogonal (types (Dg,$∨
g−1), (Dg,$∨

g ))

In this example we assume chark 6= 2. Let n = 2g, and let ( , ) denote the
symmetric F-bilinear form on F2g whose matrix with respect to the standard ordered
basis is H2g (2.7). Let Λ̂ denote the ( , )-dual of any lattice Λ in F2g. Analogously to
the previous subsection, ( , ) induces a perfect pairing Λ× Λ̂→ OF for any lattice Λ.
We again say that a lattice chain in F2g is self-dual if it is closed under taking duals.

Let G := GO2g := GO
(
( , )
)

over F,3 let µ denote the cocharacter
(
1(g), 0(g)

)
of the standard maximal torus of diagonal matrices in G, and let {µ} denote its
G(F)-conjugacy class over F. Let L be a periodic self-dual lattice chain F2g. The naive
local model Mnaive

G,{µ},L is the closed OF-subscheme of Mloc
GL2g,{µ},L defined in exactly

the same way as for GSp2g, that is, we impose condition (iv) with the understanding
that all notation is taken with respect to ( , ).

Analogously to the symplectic case, Mnaive
G,{µ},L has generic fiber OGr(g,2g)F, the

orthogonal Grassmannian of totally isotropic g-planes in F2g. But contrary to the
symplectic and linear cases — and the reason here for the adjective “naive” — the
naive local model is typically not flat over OF, as was first observed by Genestier
[Ge2].

A major source of trouble is the fact that the orthogonal Grassmannian is
not connected, but has two connected components. To fix ideas, let us suppose
that L contains a self-dual lattice Λ ′ and a lattice Λ ′′ ⊃ Λ ′ with dimkΛ

′′/Λ ′ = g;
then Λ̂ ′′ = πΛ ′′. Given an R-point (FΛ)Λ∈L of Mnaive

G,{µ},L, the perpendicularity
condition requires that FΛ′ be totally isotropic for ( , )R, and the perpendicularity
and periodicity conditions require that FΛ′′ be totally isotropic for

(
π−1( , )

)
R

,
where we use a subscript R to denote base change to R. Hence we get a map

(2.11)
Mnaive
G,{µ},L

// OGr(g,2g)OF ×OGr(g,2g)OF

(FΛ)Λ∈L
� // (FΛ′ ,FΛ′′).

Now, quite generally, a scheme X over a regular, integral, 1-dimensional base
scheme is flat if and only if the scheme-theoretic closure in X of the generic fiber of
X is equal to X. In our present situation, the target space in (2.11) has 4 connected
components, 2 of which contain the image of the 2 connected components of the
generic fiber of Mnaive

G,{µ},L. But for any g > 1, the image of Mnaive
G,{µ},L always meets

another component; see [PR4, 8.2] for a simple example which is easy to generalize
to higher rank. Hence the generic fiber of Mnaive

G,{µ},L is not dense in Mnaive
G,{µ},L, so that

Mnaive
G,{µ},L is not flat.

To correct for non-flatness of the naive local model, one simply defines the true
local model Mloc

G,{µ},L to be the scheme-theoretic closure in Mnaive
G,{µ},L of its generic

3Note that G is disconnected, so that it does not honestly fit into the framework of §1. See the
discussion after Remark 2.14.
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fiber. Then Mloc
G,{µ},L is flat essentially by definition, but a priori it carries the disad-

vantage of not admitting a ready moduli-theoretic description. In [PR4] a remedy
for this disadvantage is proposed in the form of a new condition, called the spin
condition, which is added to the moduli problem defining Mnaive

G,{µ},L. Unfortunately
the spin condition is a bit technical to formulate; we refer to [PR4, §§7.1, 8.2] or
[Sm1, §2.3] for details. In the simple case that L consists of the homothety classes of
a self-dual lattice Λ ′ and a lattice Λ ′′ satisfying Λ̂ ′′ = πΛ ′′, the map (2.11) is a closed
embedding, and the effect of the spin condition is simply to intersect Mnaive

G,{µ},L

with the two connected components of OGr(g,2g)OF ×OGr(g,2g)OF marked by the
generic fiber of Mnaive

G,{µ},L. For more general L, the spin condition becomes more
complicated.

In general, letMspin
G,{µ},L denote the closed subscheme ofMnaive

G,{µ},L that classifies

points satisfying the spin condition. The inclusion Mspin
G,{µ},L ⊂M

naive
G,{µ},L is shown in

[PR4] to be an isomorphism on generic fibers, and we then have the following.

Conjecture 2.12 ([PR4, Conj. 8.1]). For any periodic self-dual lattice chain L,Mspin
G,{µ},L =

Mloc
G,{µ},L, that is, Mspin

G,{µ},L is flat over SpecOF.

Hand calculations show that Mspin
G,{µ},L is indeed flat with reduced special fiber

for n 6 3; see [PR4, §8.3] for some explicit examples for n = 1 and 2. The main
result of [Sm1] is the following weakened form of the conjecture (for arbitrary n),
the full version of which is still open. Recall that a scheme over a regular, integral,
1-dimensional base scheme is topologically flat if its generic fiber is dense.

Theorem 2.13 ([Sm1, Th. 7.6.1], [Sm5]). For any periodic self-dual lattice chain L,
M

spin
G,{µ},L is topologically flat over SpecOF; or in other words, the underlying topological

spaces of Mspin
G,{µ},L and Mloc

G,{µ},L coincide. �

Remark 2.14. For sake of unformity assume g > 4. In proving Theorem 2.13 in the
Iwahori case, it suffices to take L to be the standard lattice chain Λ• (2.2). But from
a building-theoretic perspective, it is more natural to instead consider the periodic
self-dual lattice oriflamme

· · ·
⊂
⊂
Λ0

Λ0′
⊂

⊂
Λ2 ⊂ · · · ⊂ Λg−2⊂

⊂
Λg

Λg′
⊂

⊂
Λg+2 ⊂ · · · ⊂ Λ2g−2⊂

⊂
Λ2g

Λ2g′
⊂

⊂
· · ·

,

where, for a ∈ Z,

Λ2ga′ := π
−a−1OFe1 +

(2g−1∑
l=2

π−aOFel

)
+ π−a+1OFe2g
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and

Λ(g+2ga)′ :=

(g−1∑
l=1

π−a−1OFel

)
+ π−aOFeg + π

−a−1OFeg+1 +

2g∑
l=g+2

π−aOFel.

Then the lattice-wise fixer of Λ• in G(F) is the same as that for the displayed ori-
flamme, namely the Iwahori subgroup B of elements in G(OF) which are upper
triangular mod π;4 and the parahoric subgroups of G◦(F) that contain B are pre-
cisely the parahoric stabilizers of periodic, self-dual subdiagrams of the displayed
oriflamme.

One can define a naive local model for the displayed oriflamme just as we
have done for lattice chains, namely by specifying a locally direct summand of
rank g for each lattice in the oriflamme, subject to functoriality, periodicity, and
perpendicularity conditions. However this naive local model again fails to be flat:
this time the four lattices Λ0, Λ0′ , Λg, and Λg′ are all self-dual up to scalar, and one
can see in a way very similar to what we discussed on p. 152 that the naive local
model is not even topologically flat. One can see as in [PR4, §8.2] that it is necessary
to impose a version of the spin condition, and we conjecture that the resulting spin
local model is flat.

As already noted, the treatment of the local model in this subsection does
not honestly fall under the framework set out in §1, since GO2g is disconnected.
But if we take the philosophy of §1 seriously, then we should expect to have local
models for the connected group GO◦2g (or its adjoint quotient PGO◦2g) and each
of its minuscule coweights $g−1 and $g. Here we can simply define these two
local models to be the respective Zariski closures of each of the two components of
OGr(g,2g)F in Mnaive

G,{µ},L. In this way the local model Mloc
G,{µ},L for GO2g is just the

disjoint union of these two local models for GO◦2g.

2.4. Weil restriction of GLn

We now begin to consider the simplest examples of local models for nonsplit
groups. Let F0 be a discretely valued field with ring of integers OF0 and residue field
k0. We suppose that F is a finite extension of F0 contained in a separable closure Fsep

0

of F0. Let d := [F : F0] and let e denote the ramification index of F/F0, so that e | d.
In this subsection we generalize our discussion of GLn in 2.1 to the group

G := ResF/F0 GLn over F0. As in 2.1, we place no restrictions on the characteristic of
k. Let L be a periodic OF-lattice chain in Fn. Let FGal denote the Galois closure of F
in Fsep

0 . Then we have the standard splitting upon base change to FGal,

(2.15) GFGal
∼=
∏

ϕ :F→Fsep
0

GLn,

4One verifies easily that in fact B ⊂ G◦(OF).
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where the product runs through the set of F0-embeddings ϕ : F → F
sep
0 . For each

such ϕ, choose an integer rϕ with 0 6 rϕ 6 n; let

r :=
∑
ϕ

rϕ;

let µϕ denote the cocharacter
(
1(rϕ), 0(n−rϕ)

)
of the standard maximal torus of

diagonal matrices in GLn; let µ denote the geometric cocharacter of G whose ϕ-
component, in terms of (2.15), is µϕ; and let {µ} denote the geometric conjugacy
class of µ. Let E denote the reflex field of {µ}; this is easily seen to be the field of
definition of µ, that is, the fixed field in Fsep

0 of the subgroup of the Galois group{
σ ∈ Gal(Fsep

0 /F0)
∣∣ rσ◦ϕ = rϕ for all ϕ : F→ F

sep
0

}
.

Plainly E ⊂ FGal. Let OE denote the ring of integers in E.
The naive local model Mnaive

G,{µ},L attached to the triple (G, {µ},L) is the functor on
the category of OE-algebras that assigns to each OE-algebra R the set of all families
(FΛ)Λ∈L such that

(i) for every Λ ∈ L, FΛ is an (OF ⊗OF0
R)-submodule of Λ ⊗OF0

R which Zariski-
locally on SpecR is a direct summand as an R-module of rank dn− r;

(ii) for every inclusion of lattices Λ ⊂ Λ ′ in L, the induced map Λ ⊗OF0
R →

Λ ′ ⊗OF0
R carries FΛ into FΛ′ ;

(iii) for every a ∈ F× and every Λ ∈ L, the isomorphism Λ
a−→
∼
aΛ identifies FΛ

∼−→
FaΛ; and

(iv) (Kottwitz condition) for every a ∈ OF and every Λ ∈ L, the element a ⊗ 1 ∈
OF ⊗OF0

R acts on the quotient (Λ⊗OF0
R)/FΛ as an R-linear endomorphism with

characteristic polynomial

charR
(
a⊗ 1

∣∣ (Λ⊗OF0
R)/FΛ

)
=

∏
ϕ :F→Fsep

0

(
X−ϕ(a)

)rϕ .

Note that in the statement of the Kottwitz condition the polynomial
∏
ϕ

(
X−

ϕ(a)
)rϕ can first be regarded as a polynomial with coefficients in OE by definition

of E, and then as a polynomial with coefficients in R via its OE-algebra structure. We
remark that in [Ko1, §5] and [RZ, §3.23(a)], the Kottwitz condition is formulated in
a different (but equivalent) way as a “determinant” condition. As always, Mnaive

G,{µ},L

is plainly representable by a projective OE-scheme.
When F is unramified over F0, upon base change to FGal, Mnaive

G,{µ},L becomes
isomorphic to a product of local models for GLn of the form considered in 2.1.
Hence (2.3) implies the following.

Theorem 2.16 (Görtz [Gö1, 4.25]). Suppose F is unramified over F0. Then for any µ
as above and any periodic OF-lattice chain L, Mnaive

G,{µ},L is flat over SpecOE with reduced
special fiber. The irreducible components of its special fiber are normal with rational
singularities, so in particular are Cohen-Macaulay. �
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In general, i.e. in the presence of ramification, the naive local model need not
be flat. As in the orthogonal case, the honest local model Mloc

G,{µ},L is then defined

to be the scheme-theoretic closure in Mnaive
G,{µ},L of its generic fiber; thus Mloc

G,{µ},L =

Mnaive
G,{µ},L when F is unramified. Unfortunately, in contrast to the orthogonal case,

it appears to be unreasonable to hope to give a simple, explicit, purely moduli-
theoretic description of Mloc

G,{µ},L in general; see however [PR1, Th. 5.7], where just
such a description is given in special cases under the hypothesis of the correctness
of the conjecture of De Concini and Procesi on equations defining the closures of
nilpotent conjugacy classes in gln. To better focus on the issues at hand, we shall
suppose henceforth that F is totally ramified over F0, i.e. that e = d.

Although there seems to be no simple moduli-theoretic description ofMloc
G,{µ},L,

there are at least two nontrivial descriptions of it that bear mention. For the first,
note that whenever L ′ is a subchain of L, there is a natural forgetful morphism

ρL′ : M
naive
G,{µ},L −→Mnaive

G,{µ},L′ .

In particular, for every lattice Λ ∈ L, we may consider its homothety class [Λ] ⊂ L

and the projection Mnaive
G,{µ},L → Mnaive

G,{µ},[Λ]; here the target space corresponds to
the maximal parahoric case, as the stabilizer of Λ in G(F0) is a maximal parahoric
subgroup. In [PR1, §8] it is proposed to describe Mloc

G,{µ},L by first taking the local

model Mloc
G,{µ},[Λ] in the sense of the previous paragraph for each homothety class

[Λ] ⊂ L, and then defining5

Mvert
G,{µ},L :=

⋂
[Λ]⊂L

ρ−1
[Λ]

(
Mloc
G,{µ},[Λ]

)
.

In the maximal parahoric case, the special fiber of Mloc
G,{µ},[Λ] is integral and normal

with only rational singularities [PR1, 5.4]. On the other hand, Görtz [Gö4, Prop. 1]
has shown thatMvert

G,{µ},L is topologically flat. These results can be combined to yield
the following.

Theorem 2.17 (Görtz [Gö4, §1 Th.]; [PR2, 7.3], [PR1, 5.4]). For any µ as above
and any periodic OF-lattice chain L, Mvert

G,{µ},L =Mloc
G,{µ},L, that is, Mvert

G,{µ},L is flat over

SpecOE. The special fiber of Mloc
G,{µ},L is reduced and its irreducible components are

normal with rational singularities, so in particular are Cohen-Macaulay. When L consists
of a single lattice homothety class, the special fiber of Mloc

G,{µ},L is moreover irreducible. �

Note that if a moduli-theoretic description of the local models Mloc
G,{µ},[Λ]

can be found, then there would clearly also be a moduli-theoretic description of
Mvert
G,{µ},L. The definition of Mvert

G,{µ},L is closely related to the combinatorial notion
of vertexwise admissibility, which we shall take up in 4.5.

5Note that [PR1] uses the notationMloc to denote what we callMvert
G,{µ},L, which a priori is different

from our definition ofMloc
G,{µ},L.
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The second description of Mloc
G,{µ},L makes use of the splitting model MG,{µ},L

defined in [PR2, §5]. We shall not recall the details of the definition here. Roughly
speaking, MG,{µ},L is a projective scheme defined over the ring of integers OFGal in
FGal which represents a rigidified version of the moduli problem defining Mnaive

G,{µ},L.
There are canonical morphisms

MG,{µ},L −→Mnaive
G,{µ},L ⊗OE OFGal −→Mnaive

G,{µ},L.

The canonical local model Mcan
G,{µ},L is defined to be the scheme-theoretic image in

Mnaive
G,{µ},L of the composite. It is shown in [PR2] that the first displayed arrow is an

isomorphism on generic fibers (the second is trivially an isomorphism after base
change to FGal, of course) and that MG,{µ},L can be identified with a certain twisted
product of local models for GLn over SpecOFGal , so that MG,{µ},L is flat. One then
obtains the following.

Theorem 2.18 ([PR2, 5.1, 5.3]). For any µ as above and any periodic OF-lattice chain
L, Mcan

G,{µ},L =Mloc
G,{µ},L. �

Note that although Mloc
G,{µ},L itself does not appear to admit a ready moduli-

theoretic description, the theorem exhibits it as the image of a canonical morphism
between schemes that do.

As pointed out by Haines, the splitting model can be used to give a second
proof of flatness for Mvert

G,{µ},L that bypasses part of the proof of topological flatness
of Görtz. See [PR2, 7.5] and [Gö4, §5 Rem.].

2.5. Weil restriction of GSp2g

In addition to Weil restrictions of GLn, local models for Weil restrictions of
GSp2g have also been studied in some detail. In this subsection we shall very briefly
survey their theory, outsourcing essentially all of the details to the papers [PR2] and
[Gö4].

Let G := ResF/F0 GSp2g, and otherwise continue with the assumptions and
notation of the previous subsection. For each F0-embedding ϕ : F→ F

sep
0 , let rϕ := g.

Let µ denote the resulting geometric cocharacter of ResF/F0 GL2g, regard µ as a
geometric cocharacter for G, and let {µ} denote the geometric conjugacy class of µ
for G. Then the reflex field of {µ} is F0. Let L be a periodic OF-lattice chain in F2g

which is “self-dual” in the sense of [PR4, §8] or [Gö4, §6]. The naive local model
Mnaive
G,{µ},L attached to (G, {µ},L) is the closed subscheme of Mnaive

ResF/F0
GL2g,{µ},L whose

points satisfy a perpendicularity condition relative to every pair of dual lattices in L,
in close analogy with the perpendicularity condition in 2.2; again see [PR4, §8] or
[Gö4, §6].

Essentially all the results in the previous subsection are known to carry over to
the present setting. For unramified extensions we have the following.
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Theorem 2.19 (Görtz [Gö2, §2 Rem. (ii)]). Suppose F is unramified over F0. Then
for any self-dual periodic OF-lattice chain L, Mnaive

G,{µ},L is flat over SpecOF0 with reduced
special fiber. The irreducible components of its special fiber are normal with rational
singularities, so in particular are Cohen-Macaulay. �

Let us suppose for the rest of the subsection that F/F0 is totally ramified. Then it
is not known whetherMnaive

G,{µ},L is flat (but see Conjecture 2.22 below), and we define

Mloc
G,{µ},L to be the scheme-theoretic closure in Mnaive

G,{µ},L of its generic fiber. In [PR2,
Display 12.2], there is defined a natural “vertexwise” analog of Mvert

ResF/F0
GL2g,{µ},L,

which we denote by Mvert
G,{µ},L (this is denoted by Nloc

I in loc. cit.). We then have the
following.

Theorem 2.20 (Görtz [Gö4, Prop. 3]; [PR2, Ths. 12.2, 12.4]). For any self-dual
periodic OF-lattice chain L, Mvert

G,{µ},L =Mloc
G,{µ},L, that is, Mvert

G,{µ},L is flat over SpecOF0 .

The special fiber of Mloc
G,{µ},L is reduced and its irreducible components are normal with

rational singularities, so in particular are Cohen-Macaulay. When L is a minimal self-dual
periodic lattice chain, the special fiber of Mloc

G,{µ},L is moreover irreducible. �

Görtz’s contribution to Theorem 2.20 is to show that Mvert
G,{µ},L is topologically

flat. In fact he proves the following stronger result.

Theorem 2.21 (Görtz [Gö4, Prop. 3]). For any self-dual periodic OF-lattice chain L,
Mnaive
G,{µ},L is topologically flat over SpecOF0 . �

Thus Mloc
G,{µ},L, Mvert

G,{µ},L, and Mnaive
G,{µ},L all coincide at the level of topological

spaces. Görtz furthermore conjectures that they are equal on the nose.

Conjecture 2.22 (Görtz [Gö4, §6 Conj.]). For any self-dual periodic OF-lattice chain
L, Mnaive

G,{µ},L is flat over SpecOF0 .

Note that the conjecture stands in contrast to the case of ResF/F0 GLn, where
the naive local model may even fail to be topologically flat.

We finally mention that, in analogy with the previous subsection, the notions
of splitting model and canonical local model are also developed in [PR2] in the setting
of local models for G. We refer to loc. cit. for details, where, in particular, it is shown
that the canonical local model equals Mloc

G,{µ},L.

2.6. Ramified, quasi-split unitary (types (A1,$∨
1 ); (A(2)

n−1,$∨
s ), 1 6 s 6 n− 1)6

In this subsection we take up another typical example of a group that splits
only after a ramified base extension, namely ramified, quasi-split GUn. We suppose
n > 2 and chark 6= 2. We continue with the notation of the previous subsection,
but we now restrict to the special case that F/F0 is ramified quadratic. To simplify

6Note that typeA(2)
3 does not actually appear in the table in 1.2. Rather the adjoint group PGU4 is

of typeD(2)
3 .
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matters, assume that π 7→ −π under the nontrivial automorphism of F/F0, so that
π0 = π2 is a uniformizer of F0. Let φ denote the F/F0-Hermitian form on Fn whose
matrix with respect to the standard ordered basis is Hn (2.7). We attach to φ the
alternating F0-bilinear form

〈 , 〉 : V × V // F0

(x,y) � // 1
2 TrF/F0

(
π−1φ(x,y)

)
.

Given an OF-lattice in Fn, we denote by Λ̂ its common 〈 , 〉- and φ-dual,

Λ̂ :=
{
x ∈ Fn

∣∣ 〈Λ, x〉 ⊂ OF0

}
=
{
x ∈ Fn

∣∣ φ(Λ, x) ⊂ OF
}

.

As usual, 〈 , 〉 induces a perfect OF0 -bilinear pairing

Λ× Λ̂ −→ OF0

for any OF-lattice Λ; and we say that an OF-lattice chain in Fn is self-dual if it is closed
under taking duals.

Let G := GUn := GU(φ) over F0, and let L be a periodic self-dual OF-lattice
chain in Fn. Although we shall define local models for any such L, when n is even,
facets in the building only correspond to L with the property that

(∗) if L contains a lattice Λ such that πΛ ⊂ Λ̂ ⊂ Λ and dimk Λ̂/πΛ = 2, then L also
contains a lattice Λ ′ ⊃ Λ with dimkΛ

′/Λ = 1.

Such a Λ ′ then satisfies Λ̂ ′ = πΛ ′. See [PR3, §4.a], [PR4, §1.2.3].
Over F we have the standard splitting

(2.23) GF
(f,c)−−−→
∼

GLn ×Gm,

where c : GF → Gm is the similitude character and f : GF → GLn is given on R-points
by the map on matrix entries

R⊗F0 F
// R

x⊗ y � // xy

for an F-algebra R. Let D denote the standard maximal torus of diagonal matrices
in GLn. Choose a partition n = r + s; we refer to the pair (r, s) as the signature.
Let µ denote the cocharacter

(
1(s),0(r); 1

)
of D×Gm. Then we may regard µ as a

geometric cocharacter of G via (2.23), and we denote by {µ} its geometric conjugacy
class. We denote by E the reflex field of {µ}; then E = F0 if r = s and E = F otherwise.
Let OE denote the ring of integers in E.

The naive local model Mnaive
G,{µ},L is the functor on the category of OE-algebras

that assigns to each OE-algebra R the set of all families (FΛ)Λ∈L such that

(i) for every Λ ∈ L, FΛ is an (OF ⊗OF0
R)-submodule of Λ ⊗OF0

R which Zariski-
locally on SpecR is a direct summand as an R-module of rank n;

(ii) for every inclusion of lattices Λ ⊂ Λ ′ in L, the induced map Λ ⊗OF0
R →

Λ ′ ⊗OF0
R carries FΛ into FΛ′ ;
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(iii) for every a ∈ F× and every Λ ∈ L, the isomorphism Λ
a−→
∼
aΛ identifies FΛ

∼−→
FaΛ;

(iv) for every Λ ∈ L, the perfect R-bilinear pairing(
Λ⊗OF0

R
)
×
(
Λ̂⊗OF0

R
)
−→ R

induced by 〈 , 〉 identifies F⊥Λ ⊂ Λ̂⊗OF0
R with F

Λ̂
;

(v) (Kottwitz condition) for every a ∈ OF and every Λ ∈ L, the element a ⊗ 1 ∈
OF ⊗OF0

R acts on the quotient (Λ⊗OF0
R)/FΛ as an R-linear endomorphism with

characteristic polynomial

charR
(
a⊗ 1

∣∣ (Λ⊗OF0
R)/FΛ

)
= (X− a)r(X− a)s,

where we use a bar to denote the nontrivial automorphism of F/F0.

When r = s, the right-hand side of the last display is to be interpreted as(
X2 − (a + a)X + aa

)s
. The Kottwitz condition is equivalent to requiring the

“determinant” condition that for every Λ ∈ L, we have an equality of polynomials
with coefficients in R

detR
(
X(1⊗ 1) + Y(π⊗ 1)

∣∣ (Λ⊗OF0
R)/FΛ

)
= (X+ Yπ)r(X− Yπ)s,

where 1 ⊗ 1, π ⊗ 1 ∈ OF ⊗OF0
R; and these conditions are mutually equivalent to

requiring that the single element π ⊗ 1 acts on (Λ ⊗OF0
R)/FΛ with characteristic

polynomial (X− π)r(X+ π)s.
As always, the naive local model is representable by a closed subscheme of a

finite product of Grassmannians over SpecOE. If we denote by V the n-dimensional
F-vector space

V := ker(π⊗ 1 − 1⊗ π | Fn ⊗F0 F ),

then the map
(FΛ)Λ 7−→ ker(π⊗ 1 − 1⊗ π | FΛ )

(independent of Λ) defines an isomorphism from the F-generic fiberMnaive
G,{µ},L⊗OE F

onto the Grassmannian Gr(s,V)F.
It was observed in [P1] that Mnaive

G,{µ},L fails to be flat in general; historically,
this was the first time it was found that the Rapoport–Zink local model can fail to
be flat. The key point is that the Kottwitz condition fails to impose a condition
on the reduced special fiber. Indeed, if R is a k-algebra, then π⊗ 1 is nilpotent in
OF ⊗OF0

R. Hence, when R is reduced, π⊗ 1 necessarily acts on (Λ⊗OF0
R)/FΛ with

characteristic polynomial Xn, in accordance with the Kottwitz condition. Thus the
reduced special fiber is independent of the signature. Hence by Chevalley’s theorem
(EGA IV.13.1.5), the special fiber has dimension

> max{dimMnaive
G,{µ},L ⊗OE E}06s6n = max{dim Gr(s,V)}06s6n =

⌊n
2

⌋⌈n
2

⌉
.

The max in the display is achieved for |r − s| 6 1. Thus Mnaive
G,{µ},L is not flat for

|r− s| > 1, as its generic and special fibers have different dimension. We note that
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the analogous argument given in the proof of [P1, Prop. 3.8(b)] should be amended
to use the reduced special fiber in place of the honest special fiber.

As always, one remedies for non-flatness of the naive local model by defining
the honest local model Mloc

G,{µ},L to be the scheme-theoretic closure in Mnaive
G,{µ},L of

its generic fiber. Although less is known about Mloc
G,{µ},L for ramified GUn than for

ramified ResF/F0 GLn and ResF/F0 GSp2g, there are by now a number of results that
have been obtained in various special cases. In low rank, the case n = 3 has been
completely worked out.

Theorem 2.24 ([P1, 4.5, 4.15], [PR4, §6]). Let n = 3 and (r, s) = (2,1).

(i) Let L be the homothety class of the lattice Λ0 = OnF ⊂ Fn. ThenMnaive
G,{µ},L =Mloc

G,{µ},L,

that is, Mnaive
G,{µ},L is flat over SpecOF. Moreover, Mnaive

G,{µ},L is normal and Cohen-Macaulay,
it is smooth outside a single point y in its special fiber, and its special fiber is integral and
normal and has a rational singularity at y. The blowup M̃loc

G,{µ},L → Mloc
G,{µ},L at y is

regular with special fiber a reduced union of two smooth surfaces meeting transversely along
a smooth curve.

(ii) Let L = [Λ1,Λ2], the lattice chain consisting of the homothety classes of Λ1 and Λ2.
Then Mloc

G,{µ},L is smooth over SpecOF with geometric special fiber isomorphic to P2.

(iii) Let L be the standard maximal lattice chain in F3. Then Mloc
G,{µ},L is normal and

Cohen-Macaulay. Its special fiber is reduced and consists of two irreducible components,
each normal and with only rational singularities, which meet along two smooth curves
which, in turn, intersect transversally at a point. �

We shall discuss the case n = 2 at the end of the subsection in Remark 2.35.

Remark 2.25. In each case in the theorem, the stabilizer of L in G(F0) is a parahoric
subgroup. In this way the three cases correspond to the three conjugacy classes of
parahoric subgroups in G(F0). See [PR4, §1.2.3(a)].

Remark 2.26. Quite generally, for any fixed n and L, it is elementary to verify
that Mnaive

G,{µ},L (and hence Mloc
G,{µ},L) is unchanged up to isomorphism if we replace

the signature (r, s) with (s, r). Moreover, it is easy to see from the wedge condition
discussed below thatMloc

G,{µ},L is just SpecOF itself in case r or s is 0. So the theorem
covers all cases of interest when n = 3.

For larger n, results on Mloc
G,{µ},L are known for cases of simple signature and

for cases of simple lattice chains L. One important tool for proving reducedness of
the special fiber is Hironaka’s Lemma (EGA IV.5.12.8).

Theorem 2.27. (i) ([PR4, Th. 5.1]; Arzdorf [A, Th. 2.1], Richarz [Ri2, Cor. 5.6]) Let
n > 3. Suppose that n is even and L = [Λn/2], or that n = 2m+ 1 is odd and L = [Λ0]

or L = [Λm,Λm+1]. Then for any signature (r, s), the special fiber of Mloc
G,{µ},L is integral

and normal and has only rational singularities.
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(ii) ([P1, 4.5]) Let n > 2, (r, s) = (n− 1,1), and L = [Λ0]. Then Mloc
G,{µ},L is normal

and Cohen-Macaulay, and it is smooth over SpecOE outside a single point y in the special
fiber. For n = 2, Mloc

G,{µ},L is regular and its special fiber is a divisor with simple normal

crossings. For n > 3, the blowup M̃loc
G,{µ},L →Mloc

G,{µ},L at y is regular with special fiber a
divisor with simple normal crossings.

(iii) ([PR4, §5.3]; Richarz [A, Prop. 4.16]) Let n > 3 and (r, s) = (n− 1,1). Suppose
that n is even and L = [Λn/2] or that n = 2m + 1 is odd and L = [Λm,Λm+1]. Then
Mloc
G,{µ},L is smooth. �

Remark 2.28. In (i), the cases n even, L = [Λn/2] and n odd, L = [Λ0] are in [PR4],
and the other is due to Arzdorf. A different proof is due to Richarz [Ri2]. The
significance of the assumptions on n and L is that, up to G(F0)-conjugacy, these
are all the cases that correspond to special maximal parahoric level structure, i.e. the
parahoric stabilizer of L in G(F0) is the parahoric subgroup corresponding to a
vertex in the building which is special in the sense of Bruhat–Tits theory. See [PR4,
§1.2.3].

Remark 2.29. The blowup M̃loc
G,{µ},L occurring in (ii) is described explicitly by

Krämer in [Kr] in terms of a moduli problem analogous to the Demazure resolution
of a Schubert variety in the Grassmannian. She shows that the special fiber of
M̃loc
G,{µ},L consists of two smooth irreducible components of dimension n − 1 —

one of which, the fiber over y, being isomorphic to Pn−1
k , the other one being

a P1
k-bundle over a smooth quadric — which intersect transversely in a smooth

irreducible variety of dimension n− 2.

Remark 2.30. In (iii), the case of n even is in [PR4], and the case of n odd is
due to Richarz. The result in the former case is not directly stated in [PR4], but it
follows from the cited reference, where it is shown that Mloc

G,{µ},[Λn/2]
has an open

neighborhood around its “worst point” isomorphic to An−1
OF

(note that in the last
sentence of [PR4, §5.3], 1Ur,s should be replaced by 1U

∧
r,s).

In the cases n even, L = [Λn/2] and n odd, L = [Λ0], the local models are
never smooth outside the cases enumerated in (iii) (up to switching (r, s) and (s, r),
cf. Remark 2.26), provided that the signature is nontrivial, i.e., r 6= 0 or s 6= 0,
see [Ri1, Th. 3.15]. Probably the same holds for the case n = 2m + 1 is odd and
L = [Λm,Λm+1].

In light of the failure of Mnaive
G,{µ},L to be flat in general, it is an interesting

problem to obtain a moduli-theoretic description of Mloc
G,{µ},L. Motivated by the

Kottwitz condition’s failure to impose a condition on the reduced special fiber,
in [P1] the following additional condition is introduced to the moduli problem
defining Mnaive

G,{µ},L:
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(vi) (wedge condition) if r 6= s, then for every Λ ∈ L, we have∧s+1

R
(π⊗ 1 + 1⊗ π | Fi) = 0 and

∧r+1

R
(π⊗ 1 − 1⊗ π | Fi) = 0.

(There is no condition when r = s.)

The wedge local model M∧
G,{µ},L is the closed subscheme of Mnaive

G,{µ},L that clas-
sifies points satisfying the wedge condition. It is easy to see that the wedge and
naive local models have common generic fiber, and under the special hypotheses
of Theorem 2.27(ii) it has been shown that the wedge condition cuts out the flat
closure Mloc

G,{µ},L.

Proposition 2.31 ([P1, Th. 4.5]). Let n > 2, (r, s) = (n− 1,1), and L = [Λ0]. Then
M∧
G,{µ},L =Mloc

G,{µ},L. �

More generally, it is conjectured in [P1] that M∧
G,{µ},[Λ0]

is flat for any n and

any signature.7 But for more general lattice chains, the wedge condition turns out to
be insufficient [PR4, Rems. 5.3, 7.4]. For example, for n = 3 and (r, s) = (2,1), the
schemesM∧

G,{µ},L for L = [Λ1,Λ2] and L the standard lattice chain are topologically
flat but not flat. And for n even and r 6= 0 or s 6= 0, the scheme M∧

G,{µ},[Λn/2]
is not

even topologically flat.

Remark 2.32. When n is even, [PR4] only shows that M∧
G,{µ},[Λn/2]

is not topologi-
cally flat for r and s odd. But the same holds for r and s even, provided neither is 0:
for example, the point denoted F1 in [PR4, §5.3] is not in the closure of the generic
fiber in this case. Accordingly, for n even, [PR4, Rem. 5.3(a)] should be corrected to
say that Conjecture 5.2 in loc. cit. implies that M∧

G,{µ},[Λn/2]
contains Mloc

G,{µ},[Λn/2]

as an open subscheme for any signature, not that M∧
G,{µ},[Λn/2]

=Mloc
G,{µ},[Λn/2]

for r
and s even. (Here the corrected statement allows for r and s to be odd as well as
even, since the odd case reduces to the even case, as follows from [PR4, §5.3].) See
Conjecture 6.13 below for a statement of Conjecture 5.2 in loc. cit.

More precisely, one verifies at once that the perfect pairing

Λn/2 ×Λn/2
id×π−−−→
∼

Λn/2 ×Λ−n/2
〈 , 〉−−→ OF0

is split symmetric. Hence Mnaive
G,{µ},[Λn/2]

naturally embeds as a closed subscheme of
OGr(n,2n)OE . Then [PR4, Conj. 5.2], together with the topological flatness result
Theorem 2.34 below, implies that Mloc

G,{µ},[Λn/2]
is the intersection of M∧

G,{µ},[Λn/2]

with the connected component of OGr(n,2n)OE marked by the common generic
fiber of Mnaive

G,{µ},[Λn/2]
and M∧

G,{µ},[Λn/2]
.

7This conjecture is still open, but it follows from Theorem 2.34 below, and from [Sm4, Rem. 7.4.9]
when n is even, thatM∧

G,{µ},[Λ0]
is at least topologically flat in general. It is also conjectured in [P1] that

the schemesMnaive
G,{µ},[Λ0]

,M∧
G,{µ},[Λ0]

, andMloc
G,{µ},[Λ0]

all coincide for |r− s| 6 1. This is proved for n

equal to 2 and 3 in [P1, Th. 4.5, §4.15].
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Although the wedge condition is not sufficient in general to cut out the local
model inside Mnaive

G,{µ},L, one can still hope to describe Mloc
G,{µ},L via a further refine-

ment of the moduli problem. In [PR4] it is shown that, in addition to the wedge
condition, Mloc

G,{µ},L satisfies a close analog of the spin condition that arose in the
setting of even orthogonal groups in 2.3, which is again called the spin condition. In
the setting of Remark 2.32, with n even and L = [Λn/2], the spin condition amounts
exactly to intersectingMnaive

G,{µ},[Λn/2]
with the connected component of OGr(n,2n)OE

marked by the generic fiber of Mnaive
G,{µ},[Λn/2]

. In general the spin condition is more
complicated, and we shall just refer to the source papers for its formulation: see
[PR4, §7.2] or [Sm3, §2.5], [Sm4, §2.4] (the latter two contain a correction to a
minor sign error in the first). As in the orthogonal case, we denote by Mspin

G,{µ},L the

closed subscheme of M∧
G,{µ},L that classifies points satisfying the spin condition,

and we have the following.

Conjecture 2.33 ([PR4, Conj. 7.3]). Let L be a periodic self-dual OF-lattice chain,
satisfying property (∗) from the beginning of the subsection if n is even. Then for any n > 3
and any signature, Mspin

G,{µ},L =Mloc
G,{µ},L, that is, Mspin

G,{µ},L is flat over SpecOE.

Although the conjecture remains open, there is the following result, in analogy
with the orthogonal case.

Theorem 2.34 ([Sm3, Main Th.], [Sm4, Th. 1.3]). For any n > 3, any signature, and
any L as in Conjecture 2.33, Mspin

G,{µ},L is topologically flat over SpecOE. If n is odd, then

M∧
G,{µ},L is also topologically flat. �

In the special case n = 2m+ 1 is odd, (r, s) = (n− 1,1), and L = [Λm,Λm+1]

mentioned in Theorem 2.27(iii), topological flatness of M∧
G,{µ},L also follows from

[A, Prop. 4.16].
We emphasize that for odd n, although Mspin

G,{µ},L and M∧
G,{µ},L coincide as

topological spaces, their scheme structures really do differ in general, and it is only
the spin local model that is conjectured to be flat. By contrast, for even n, Mspin

G,{µ},L

andM∧
G,{µ},L typically do not even agree at the level of topological spaces; see [Sm4].

Remark 2.35 (GU2). To be able to treat the Bruhat-Tits-theoretic aspects of GUn
in a uniform way, the paper [PR4] omits the case n = 2. Let us briefly discuss it
now. The only nontrivial signature to worry about is (r, s) = (1,1). In this case the
naive and wedge local models coincide and are defined over SpecOF0 . The derived
group SU2 is isomorphic to SL2, which is split. Each alcove in the building has two
vertices, both of which are special and GU2(F0)-conjugate. Thus there are essentially
two cases to consider: the (special) maximal parahoric case and the Iwahori case.

First take L = [Λ1]. Then the stabilizer inGU2(F0) ofΛ1 is a maximal parahoric
subgroup. The naive local model is a closed subscheme of Gr(2,Λ1)OF0

, and by
restricting standard open affine charts of the Grassmannian, [PR4, §5.3] computes
two affine charts on Mnaive

GU2,{µ},[Λ1]
. (Although, strictly speaking, [PR4] makes the
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blanket assumption n > 3, the calculations in loc. cit. still go through for n = 2.)
The first chart U1,1 identifies with the scheme of all 2× 2 matrices X such that

X2 = π0 · Id, Xt = −JXJ, and charX(T) = T2 − π0,

where

J =

(
0 −1
1 0

)
.

One easily solves these equations to find that U1,1 = Speck. The second affine chart

1U1,1 identifies with the scheme of all 2× 2 matrices X such that

Xt = −JXJ,

which, as noted in loc. cit., is the scheme of all scalar matrices X. Hence 1U1,1
∼= A1

OF0
.

By restricting the remaining standard affine charts on the Grassmannian to the local
model, one finds that globally

Mnaive
GU2,{µ},[Λ1]

=M∧
GU2,{µ},[Λ1]

∼= P1
OF0
q Speck.

Of course this scheme is not flat because of the copy of Speck. As described in
Remark 2.32 and the paragraph preceding Theorem 2.34, Mnaive

GU2,{µ},[Λ1]
is actu-

ally contained in OGr(2,Λ1)OF0
inside Gr(2,Λ1)OF0

, and imposing the spin con-
dition amounts to intersecting Mnaive

GU2,{µ},[Λ1]
with the connected component of

OGr(2,Λ1)OF0
marked by Mnaive

GU2,{µ},[Λ1]
⊗OF0

F0. In this way the spin condition
visibly eliminates the extraneous copy of Speck.

For the Iwahori case we take L to be the standard lattice chain. To warm
up, let us consider the naive local model associated just to the homothety class
[Λ0], without worrying about the functoriality conditions attached to the inclusions
Λ0 ⊂ Λ1 and Λ1 ⊂ π−1Λ0. Let x denote the k-point on Mnaive

GU2,{µ},[Λ0]
given by

(π⊗ 1) · (Λ0 ⊗OF0
k) ⊂ Λ0 ⊗OF0

k.

An affine chart for Mnaive
GU2,{µ},[Λ0]

around x is described in [P1, p. 596–7]: it is the

scheme of all 2× 2 matrices X such that8

X2 = π0 · Id, Xt = H2XH2, and charX(T) = T2 − π0,

where as always H2 is the antidiagonal unit matrix (2.7). Writing

X =

(
x11 x12

x21 x22

)
,

one finds that this chart is given by SpecOF0 [x12, x21]/(x12x21 − π0). Thus we find
semistable reduction; in fact the global special fiber consists of two copies of P1

k

meeting at the point x.

8Note that [P1] has the condition Xt = X instead of Xt =H2XH2, owing to how the formψp is
defined there.
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The full local model Mloc
GU2,{µ},L can now be obtained from Mloc

GU2,{µ},[Λ0]

and Mloc
GU2,{µ},[Λ1]

by imposing the functoriality conditions attached to the inclu-
sions Λ0 ⊂ Λ1 and Λ1 ⊂ π−1Λ0. We leave it to the reader to verify that in fact
Mloc
GU2,{µ},L

∼=Mloc
GU2,{µ},[Λ0]

, i.e. the submodule FΛ0 uniquely determines FΛ1 , with-
out constraint. This fact admits a building-theoretic interpretation: the stabilizer
of Λ0 in GU2(F0) is not a maximal parahoric subgroup, but rather, after passing to
its connected component, the Iwahori subgroup fixing the entire standard chain.
Finally, note that the local model obtained in each of our two cases is isomorphic to
the local model for GL2 in the analogous case, cf. Example 2.4.

2.7. Quasi-split but nonsplit orthogonal (types (D
(2)
g ,$∨

g−1), (D
(2)
g ,$∨

g ))

Again assume chark 6= 2 and let n = 2g − 2, n > 4. Let V be the 2g-
dimensional F-vector space on the ordered basis e, f, e1, . . . , e2g−2, and let ( , )
denote the symmetric F-bilinear form on V whose matrix with respect to this basis
is9 π 1

H2g−2

 ,

with H2g−2 the anti-diagonal matrix (2.7). As always, we denote by Λ̂ the ( , )-dual
of any OF-lattice Λ in V , and ( , ) induces a perfect pairing Λ× Λ̂→ OF.

Let G := GO
(
( , )
)

over F. Then G is quasi-split but not split. Consider the
cocharacter

(
1(g), 0(g)

)
of GF ' GO2g given as in 2.3, and let {µ} denote its G(F)-

conjugacy class over F. Let L be a periodic lattice chain in F2g which is self-dual
for the form ( , ). The naive local model Mnaive

G,{µ},L is the closed OF-subscheme of

Mloc
GL2g,{µ},L defined in the exactly the same way as for GSp2g and split GO2g, that

is, we impose the duality condition (iv) with the understanding that all notation is
taken with respect to ( , ). Once again, Mnaive

G,{µ},L has generic fiber OGr
(
( , )

)
F
, the

orthogonal Grassmannian of totally isotropic g-planes in F2g for the form ( , ). This
Grassmannian is now connected although not geometrically connected. We can
see [PR4, 8.2.1] that OGr

(
( , )

)
F

supports a canonical morphism to SpecK where
K = F(

√
D) is the ramified quadratic extension of F obtained by extracting a square

root of the discriminant D = (−1)gπ. (Let us remark here that the form ( , ) splits
over K.) The base change Mnaive

G,{µ},L ⊗OF K is the split orthogonal Grassmannian
OGr(g, 2g)K which has two (geometrically) connected components.

There is enough computational evidence to suggest the following.

Conjecture 2.36. The scheme Mnaive
G,{µ},L is topologically flat over SpecOF.

9It follows from Springer’s Theorem [Lam, Th. VI.1.4] that, after passing to a sufficiently big unramified
extension of F, any symmetric bilinear form on F2g becomes isomorphic to ( , ) or to the split form ( , )
considered in 2.3.
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This is in contrast to the case of split GO2g. However, the naive local model
Mnaive
G,{µ},L is still typically not flat and a version of the spin condition is needed. This

condition is explained in [PR4, 8.2] where the reader can also find the conjecture that
the corresponding spin local model Mspin

G,{µ},L is flat. In fact, in this case, Mspin
G,{µ},L is

naturally an OK-scheme. The local model Mloc
G,{µ},L is by definition the flat closure

of Mnaive
G,{µ},L ⊗OF K in Mnaive

G,{µ},L ⊗OF OK and is also naturally an OK-scheme. Except
for the results of a few calculations not much is known in this case. For more details,
we refer to loc. cit.

Let us remark here that, similarly to the example in the split case of 2.3, the
group G does not fit neatly into our framework of §1 since G is not connected. To
define corresponding local models for the connected quasi-split group PGO◦

(
( , )

)
of type D(2)

g and the cocharacters given as above, we can argue as follows: First note
that the reflex field in this case is the quadratic ramified extension K of F as above.
As above, the generic fiber Mnaive

G,{µ},L ⊗OF F supports a canonical morphism to SpecK.
We can now consider the flat closures of the two components of the orthogonal
Grassmannian OGr(g, 2g)K = Mnaive

G,{µ},L ⊗OF K in Mnaive
G,{µ},L ⊗OF OK. These two

schemes over SpecOK give by definition the local models for PGO◦
(
( , )

)
and the

two PEL minuscule cocharacters $∨
g−1, $∨

g .

3. Local models and flag varieties for loop groups

A basic technique in the theory of local models, introduced by Görtz [Gö1], is
to embed the special fiber of the local model into an appropriate affine flag variety.
In this section we discuss this and related matters, focusing on the representative
examples of the linear and symplectic groups. Throughout this section we denote by
k a field, by K := k((t)) the field of Laurent series in t with coefficients in k, and by
OK := k[[t]] the subring of K of power series.

3.1. Affine flag varieties

For any contravariant functor G on the category of K-algebras, we denote by
LG the functor on k-algebras

LG : R 7−→ G
(
R((t))

)
,

where we regard R((t)) as a K-algebra in the obvious way. Similarly, for any con-
travariant functor P on the category of OK-algebras, we denote by L+P the functor
on k-algebras

L+P : R 7−→ P
(
R[[t]]

)
.

If P is an affine OK-scheme, then L+P is an affine k-scheme. If G is an affine K-
scheme, then LG is an ind-scheme expressible as the colimit of a filtered diagram of
closed immersions between affine k-schemes.

For our purposes, we shall be interested in the case thatG and P are group-valued
functors; then we call LG and L+P the loop group and positive loop group attached to G
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and P, respectively. Given such P, let Pη denote its generic fiber, and consider the
fpqc quotient

FP := LPη/L
+P,

or in other words, the fpqc sheaf on k-algebras associated to the presheaf

R 7−→ P
(
R((t))

)/
P
(
R[[t]]

)
.

When P is smooth and affine, the following is a basic structure result on FP. It
generalizes results of Faltings [F4].

Theorem 3.1 ([PR3, Th. 1.4]). Let P be a smooth affine group scheme over OK. Then
FP is representable by an ind-scheme of ind-finite type over k, and the quotient morphism
LPη → FP admits sections locally in the étale topology. �

Recall that an ind-scheme over k is of ind-finite type if it is expressible as a
filtered colimit of k-schemes of finite type.

For applications to local models, we are mainly interested in the sheaf FP in the
case that G = Pη is a connected reductive group over K and P is a parahoric group scheme.
Let us elaborate. Let G be a connected reductive group over the t-adically valued
field K, let Gad denote its adjoint group, and consider the Bruhat–Tits building
B := B

(
Gad(K)

)
. Let f be a facet in B. Then Bruhat–Tits theory attaches to the pair

(G, f) the parahoric group scheme Pf; this is a smooth affine OK-scheme with generic
fiber G, with connected special fiber, and whose OK-points are identified with the
corresponding parahoric subgroup of G(K). We make the following definition.

Definition 3.2. Given a facet f in the building of the adjoint group of the connected
reductive K-group G, the affine flag variety relative to f (or to Pf, or to Pf(OK)) is the
ind-scheme over k

Ff := FPf
= LG/L+Pf.

In some cases, this mirrors the closely related constructions of (partial) affine
flag varieties in the setting of the theory of Kac-Moody Lie algebras ([Kac], [Ku2]).
See Remark 3.14 for more details on this relation.

In concrete examples involving classical groups, one can often identify the
affine flag variety with a space of lattice chains; this fact is crucial to the embedding
of the special fibers of local models mentioned at the beginning of this section. Let R
be a k-algebra, and consider the R((t))-module R((t))n for some n > 1. Recall that a
lattice in R((t))n is an R[[t]]-submodule L ⊂ R((t))n which is free as an R[[t]]-module
Zariski-locally on SpecR, and such that the natural arrow L⊗R[[t]] R((t))→ R((t))n

is an isomorphism. We leave it as an exercise to check that it is equivalent to say
that L is an R[[t]]-submodule of R((t))n such that tNR((t))n ⊂ L ⊂ t−NR((t))n for
N sufficiently big, and such that t−NR((t))n/L is projective as an R-module for one,
hence any, such N.

All of the terminology for lattices from §2 admits an obvious analog in the
present setting. A collection of lattices in R((t))n is a chain if it is totally ordered



G. Pappas, M. Rapoport, and B. Smithling 169

under inclusion and all successive quotients are projective R-modules (necessarily
of finite rank). A lattice chain is periodic if t±1L is in the chain for every lattice L in
the chain. In analogy with the definition of Λi (2.1), for i = na+ j with 0 6 j < n,
we define the OK-lattice

(3.3) λi :=

j∑
l=1

t−a−1OKel +

n∑
l=j+1

t−aOKel ⊂ Kn,

where now e1, . . . , en denotes the standard ordered basis in Kn. The λi’s form
a periodic lattice chain · · · ⊂ λ−1 ⊂ λ0 ⊂ λ1 ⊂ · · · , which we again call the
standard chain. More generally, let I ⊂ Z be any nonempty subset which is closed
under addition by n; or in other words, I is the inverse image under the canonical
projection Z → Z/nZ of a nonempty subset of Z/nZ. Then we denote by λI the
periodic subchain of the standard chain consisting of all lattices of the form λi for
i ∈ I.

Example 3.4 (GLn and SLn). Let G = GLn over K. Then the facets in the Bruhat–
Tits building B

(
PGLn(K)

)
are in bijective correspondence with the periodic OK-

lattice chains in Kn, and the parahoric group schemes for G can be described as
automorphism schemes of these lattice chains. More precisely, let us consider the
chain λI for some nonempty I closed under addition by n; of course, every periodic
OK-lattice chain in Kn is G(K)-conjugate to λI for some such I. Let PI denote the
automorphism scheme of λI as a periodic lattice chain over OK. Then for any
OK-algebra A, the A-points of PI consist of all families

(3.5) (gi) ∈
∏
i∈I
GLA(λi ⊗OK A)

such that the isomorphism λi ⊗ A
ta⊗idA−−−−−→

∼
λi−na ⊗ A identifies gi with gi−na for

all i ∈ I and all a ∈ Z, and such that the diagram

λi ⊗OK A
//

gi ∼

��

λj ⊗OK A

gj∼

��

λi ⊗OK A
// λj ⊗OK A

commutes for all i < j in I. The scheme PI is a smooth OK-scheme with evident
generic fiber G = GLn and whose OK-points identify with the full fixer in G(K) of
the facet f corresponding to λI. Moreover, it is not hard to see that PI has connected
special fiber. Hence PI is the parahoric group scheme Pf attached to f; see [BTII, 1.7,
4.6, 5.1.9, 5.2.6].

For R a k-algebra, let Latn(R) denote the category whose objects are the R[[t]]-
lattices in R((t))n and whose morphisms are the natural inclusions of lattices. Of
course, any R[[t]]-lattice chain may be regarded as a full subcategory of Latn(R). We
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define FI to be the functor on k-algebras that assigns to each R the set of all functors
L : λI → Latn(R) such that

(C) (chain) the image L(λI) is a lattice chain in R((t))n;

(P) (periodicity) L(tλi) = tL(λi) for all i ∈ I, so that the chain L(λI) is periodic; and

(R) (rank) dimk λj/λi = rankR L(λj)/L(λi) for all i < j.

In more down-to-earth terms, an R-point of FI is just a periodic lattice chain in
R((t))n indexed by the elements of I, such that the successive quotients have the
same rank as the corresponding quotients in λI.

The loop group LG acts on FI via the natural representation of G
(
R((t))

)
on

R((t))n, and it follows that the LG-equivariant map LG→ FI specified by taking the
tautological inclusion

(
λI ↪→ L(Kn)

)
∈ FI(k) as basepoint defines an LG-equivariant

morphism

ϕ : Ff −→ FI.

In fact ϕ is an isomorphism: it is plainly a monomorphism, and it is an epimor-
phism because every periodic lattice chain in R((t))n admits a so-called “normal
form” Zariski-locally on SpecR, as is proved in [RZ, Ch. 3 App.].

Similar remarks apply to SLn over K. Up to conjugacy, the parahoric group
schemes for SLn are again given by certain automorphism schemes P ′I of the chains
λI for nonempty I closed under addition by n, where this time we consider families
(gi) as in (3.5) satisfying the same conditions as above and such that det(gi) =

1 for all i. For given such I, let f ′ denote the facet associated to P ′I and F ′f′ =

LSLn/L
+P ′I the associated affine flag variety. The inclusion SLn ⊂ GLn induces a

monomorphism F ′f′ ↪→ Ff, where f again denotes the associated facet for GLn.
To describe F ′f′ as a space of lattice chains, we call a functor L : λI → Latn(R)

special if

(S)
∧n
R[[t]] L(λi) = t

−iR[[t]] as a submodule of
∧n
R((t)) R((t))

n = R((t)) for all i ∈ I.

Then the isomorphism ϕ above identifies F ′f′ with the subfunctor of FI of special
points L; this is easy to check directly, or see [Gö1, 3.5]. As a consequence, note that
a point L ∈ Ff(R) is special as soon as

∧n
R[[t]] L(λi) = t

−iR[[t]] for a single i ∈ I.
For applications to local models, it is convenient to consider not just the

canonical embedding F ′f′ ↪→ Ff, but the following variant, involving a simple
generalization of the notion of special. For r ∈ Z, we say that a point L ∈ Ff(R) is
r-special if

∧n
R[[t]] L(λi) = tr−iR[[t]] as a submodule of R((t)) for one, hence every,

i ∈ I. Let

I− r := { i− r | i ∈ I }.

Then the functor λi 7→ λi−r is an r-special point in Ff(k), and, taking it as basepoint,
it determines an LSLn-equivariant isomorphism from F ′f′′ onto the subfunctor in
Ff of r-special points, where f ′′ is the facet for SLn corresponding to λI−r.
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Example 3.6 (GSp2g and Sp2g). Let φ denote the alternating K-bilinear form on
K2g whose matrix with respect to the standard basis is

J2g =

(
Hg

−Hg

)
,

as in (2.6). We denote by G the K-group GSp2g := GSp(φ).
To describe the parahoric group schemes for G, let I be a nonempty subset of

Z closed under addition by 2g and multiplication by −1. For any i ∈ I and any
OK-algebra R, the pairing φ induces a perfect R-bilinear pairing

(λi ⊗OK R)× (λ−i ⊗OK R)
φR−−→ R,

where we use a subscript R to denote base change from OK to R. Let PI denote the
OK-group scheme whose R-points consist of all families

(gi) ∈
∏

i∈I
GLR(λi ⊗OK R)

satisfying the same conditions as in the GLn case and such that, in addition, there
exists c ∈ R× such that

(3.7) φR(gix,g−iy) = c · φR(x,y)

for all i ∈ I and all x ∈ λi ⊗OK R, y ∈ λ−i ⊗OK R. Then, analogously to the GLn
case, PI is a parahoric group scheme for G, and up to conjugacy all parahoric group
schemes arise in this way.

Given nonempty I closed under addition by 2g and multiplication by −1, let f
denote the associated facet in the Bruhat–Tits building for Gad. To describe the affine
flag variety attached to f, let R be a k-algebra and recall the lattice category Lat2g(R)

from Example 3.4. For an R[[t]]-lattice Λ in R((t))2g, let Λ̂ denote the φ-dual of Λ,
that is, the R[[t]]-module

Λ̂ :=
{
x ∈ R((t))2g

∣∣ φR((t))(Λ, x) ⊂ R[[t]]
}

.

We define FI to be the functor on k-algebras that assigns to each R the set of all
functors L : λI → Lat2g(R) satisfying conditions (C), (P), and (R) from Example 3.4
and such that, in addition,

(D) (duality) Zariski-locally on SpecR, there exists c ∈ R((t))× such that L̂(λi) =
c · L

(
λ̂i
)

for all i ∈ I.
Analogously to the GLn case, the loop group LG acts naturally on FI, and taking
the tautological inclusion

(
λI ↪→ L(Kn)

)
∈ FI(k) as basepoint specifies an LG-

equivariant isomorphism

Ff
∼−→ FI.

This description of FI is plainly equivalent to the lattice-theoretic description of the
affine flag variety for GSp2g given in [PR2, §10] (except that the scalar denoted a
there should only be required to exist Zariski-locally on SpecR).
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For the group Sp2g := Sp(φ) over K, up to conjugacy, the parahoric group
schemes are again given by certain automorphism schemes P ′I of the chains λI for
nonempty I closed under addition by 2g and multiplication by −1, namely, we now
take the closed subscheme of PI of points for which c = 1 in (3.7). For given such I,
let f ′ denote the associated facet for Sp2g and F ′f′ the associated affine flag variety.
The inclusion Sp2g ⊂ GSp2g induces a monomorphism F ′f′ ↪→ Ff, where f again
denotes the associated facet for GSp2g. In this way F ′f′ identifies with the subfunctor

of FI of points L such that L̂(λi) = L(̂λi) for all i ∈ I, i.e. such that c can be taken to
equal 1 in (D). This subfunctor can also be described as the subfunctor of all special
L such that the lattice chain L(λI) is self-dual.

As in the linear case, it is convenient to consider other embeddings besides the
standard one F ′f′ ↪→ Ff. This time we consider r-special L only for r ∈ gZ. Then the
functor λi 7→ λi−r is an r-special point in Ff(k) whose image lattice chain is self-
dual, and just as in the linear case, it specifies an LSp2g-equivariant isomorphism
from F ′f′′ onto the subfunctor in Ff of r-special points L such that L(λI) is self-dual,
where f ′′ is the facet for Sp2g corresponding to λI−r. Note that if L is r-special, then
the scalar c appearing in (D) can be taken to equal t−r/g.

The affine flag varieties for other groups discussed in §2 can all be described
similarly. For example, see [Sm1, §6.2] for GO2g (at least in the Iwahori case) and
[PR4, §3.2] and [Sm3, §4.2] for ramified GUn.

Returning to the general discussion, we conclude this subsection with a couple
of further structure results from [PR3]. The first describes the connected compo-
nents of loop groups and affine flag varieties in the case k is algebraically closed.
Let G be a connected reductive group over K with k = k. Let π1(G) denote the
fundamental group of G in the sense of Borovoi [Bor]; this can be described as
the group X∗(T)/Q∨ of geometric cocharacters of T modulo coroots, where T is
any maximal torus in G defined over K. Let Ksep denote a separable closure of K.
Then the inertia group I := Gal(Ksep/K) acts naturally on π1(G), and we may con-
sider the coinvariants π1(G)I. In [Ko2], Kottwitz constructs a functorial surjective
homomorphism

(3.8) G(K)� π1(G)I

which turns out to parametrize the connected components of LG and Ff as follows.

Theorem 3.9 ([PR3, Th. 5.1]). Assume that k is algebraically closed. Then for any facet
f, the Kottwitz homomorphism induces isomorphisms

π0(LG)
∼−→ π0(Ff)

∼−→ π1(G)I. �

In the special case that G is split we have π1(G)I = π1(G). Then the theorem
may be regarded as an avatar of the familiar statement in topology, where LG plays
the role of the loop space of G.
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The final result of the subsection (a generalization of a result of Faltings [F4])
concerns the (ind-)scheme structure on LG and Ff. Recall that an ind-scheme is
reduced if it is expressible as a filtered colimit of reduced schemes.

Theorem 3.10 ([PR3, Th. 6.1]). Assume that k is perfect and let G be a connected
semi-simple K-group. Suppose that G splits over a tamely ramified extension of K and that
the order of the fundamental group π1(Gder) of the derived group Gder is prime to the
characteristic of k. Then the ind-schemes LG and Ff, for any facet f, are reduced. �

We note that Theorem 3.10 is only an existence theorem. In [PR1, Prop. 6.6],
in the case G = SLn, a candidate is proposed for writing the affine Grassmannian
LG/L+G as an increasing union of reduced projective subschemes. This candidate
indeed works if char k = 0, or if n 6 2, cf. loc. cit. This is related to Remark 5.6
below.

By contrast, ifG is reductive but not semi-simple, then LG and Ff are necessarily
non-reduced [PR3, Prop. 6.5]. We do not know if the assumption in the theorem that
G splits over a tamely ramified extension of K is necessary. On the other hand, the
assumption on the order of π1(Gder) appears to be: for example, π1(PGL2) = Z/2Z
and LPGL2 is non-reduced in characteristic 2 [PR3, Rem. 6.4].

3.2. Schubert varieties

In this subsection we discuss Schubert cells and varieties in affine flag varieties;
these are the analogs in the context of loop groups of the usual notions for ordinary
flag varieties. Let G be connected reductive over K, and let f and f ′ be facets in
B(Gad) contained in a common alcove.

Definition 3.11. For g ∈ G(K) = LG(k), the associated f ′-Schubert cell in Ff, denoted
Cg, is the reduced, locally closed subscheme of Ff whose underlying topological
space is the image of L+Pf′ in Ff under the L+Pf′ -equivariant map sending 1 to
the class of g.10 The associated f ′-Schubert variety in Ff, denoted Sg, is the Zariski
closure of Cg in Ff endowed with its reduced scheme structure.

We also refer to f ′-Schubert cells as Pf′ -Schubert cells or Pf′(OK)-Schubert cells,
and analogously for f ′-Schubert varieties.

The f ′-Schubert cell Cg and the f ′-Schubert variety Sg in Ff only depend on
the image of g in the double coset space Pf′(OK)\G(K)/Pf(OK). For k algebraically
closed, we shall see later in Proposition 4.8 that this double coset space can be
identified with the Iwahori-Weyl group of G when f and f ′ are a common alcove, and
with a certain double coset space of the Iwahori-Weyl group in general. Note that,
since Pf′ is smooth over OK with connected special fiber, it follows from [Gr, p. 264
Cor. 2] that L+Pf′ is reduced and irreducible. Hence each Schubert cell is irreducible.

10Note that Cg is not a topological cell when f is not an alcove, i.e., it is not isomorphic to an affine
space.
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Hence each Schubert variety is reduced and irreducible (reducedness being imposed
by definition). In general, the Schubert cells and Schubert varieties are subschemes
of Ff of finite type over k; moreover the Schubert varieties are proper over k.

The following theorem gives important information on the structure of Schu-
bert varieties.

Theorem 3.12 ([PR3, Th. 8.4]). Suppose that G splits over a tamely ramified extension
of K and that the order of the fundamental group π1(Gder) of the derived group Gder is
prime to the characteristic of k. Then all f ′-Schubert varieties in Ff are normal and have
only rational singularities. If k has positive characteristic, then all f ′-Schubert varieties
contained in a given f ′-Schubert variety are compatibly Frobenius split. �

We refer to [BK] for the notion of a scheme X in characteristic p being Frobenius
split, and for a family of closed subschemes of X being compatibly Frobenius split.
This property has important consequences for the local structure: if X is Frobenius
split, then X is reduced and weakly normal, cf. [BK, §1.2]. Also, if {X1, . . . ,Xn} is
a family of compatibly split closed subschemes of X, then their (reduced) union
X1 ∪ · · · ∪ Xn and their intersection X1 ∩ · · · ∩ Xn are also compatibly split; in
particular, X1 ∩ · · · ∩ Xn is reduced. Frobenius splitness also has interesting global
consequences, such as strong forms of the Kodaira vanishing property, cf. loc. cit.

After introducing the Iwahori-Weyl group in §4, we will give in Propositions
4.20 and 4.18, respectively, the dimension of Schubert varieties and their inclusion
relations in terms of the combinatorics of the Iwahori-Weyl group.

Remark 3.13. In [PR3] f ′-Schubert cells and varieties are only defined, and Theorem
3.12 is only formulated and proved, in the case that f = f ′. But the method of proof
involves a reduction to the case that f = f ′ is an alcove, and this reduction step
works just as well for any f ′-Schubert variety in Ff in the sense defined here. See
[PR3, Rem. 8.6, §8.e.1]. We shall see how f ′-Schubert varieties in Ff with f ′ 6= f

arise naturally in the context of local models in the next subsection.

Remark 3.14. In the case that the groupG is split semi-simple and simply connected,
Theorem 3.12 is due to Faltings [F4]. Let us mention here that there are also
corresponding results in the theory of affine flag varieties for Kac-Moody Lie algebras.
To explain this, assume that G is quasi-split, absolutely simple and simply connected
and splits over a tamely ramified extension. The local Dynkin diagram of G (as in
the table of §1) is also the Dynkin diagram of a uniquely determined affine (or
twisted affine) Kac-Moody Lie algebra g = gKM(G) (see [Kac]). In the Kac-Moody
setting, there is an affine flag variety Fg and Schubert varieties Sgw (see [Ku2], [Ma];
here w is an element of the affine Weyl group). Their definition is given by using
an embedding into the infinite dimensional projective space associated to a highest
weight representation of the Kac-Moody algebra g; it is a priori different from our
approach. The normality of Schubert varieties Sgw in the Kac-Moody setting is a
well-known cornerstone of the theory; it was shown by Kumar [Ku1] in characteristic
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0 and by Mathieu [Ma] and Littelmann [Li] in all characteristics. It is not hard to
show that when g = gKM(G), the Kac-Moody Schubert varieties Sgw are stratawise
isomorphic to the Schubert varieties Sw in FB = LG/L+B that we consider here. As
a result, we can see a posteriori, as a consequence of Theorem 3.12 and the results
of Mathieu and Littelmann, that the Schubert varieties Sgw and Sw are isomorphic.
This also implies that the affine flag variety FB is isomorphic to the affine flag variety
Fg for the corresponding Kac-Moody Lie algebra. See [PR3, 9.h] for more details.

3.3. Embedding the special fiber of local models

We now come to the key application of affine flag varieties to the theory of
local models, namely the embedding of the special fiber of the local model into an
appropriate affine flag variety. Since we do not know how to define the local model
in general (cf. §1), we can only describe the embedding in particular examples. Here
we do so for GLn and GSp2g. Note that for the Beilinson–Gaitsgory local model in
1.3 such an embedding is tautological.

We resume the notation of §2. In particular, we take k to be the residue field of
F and we recall the OF-lattices Λi from (2.1). In analogy with our notation for the
λi’s, for nonempty I ⊂ Z closed under addition by n, we denote by ΛI the periodic
lattice chain in Fn consisting of the lattices Λi for i ∈ I.

For any OF-scheme X, we write X for its special fiber X⊗OF k.

Example 3.15 (GLn). Let I ⊂ Z be nonempty and closed under addition by n, let
µ denote the cocharacter

(
1(r), 0(n−r)

)
of the standard diagonal maximal torus in

GLn and {µ} its geometric conjugacy class, and recall the local model Mloc
GLn,{µ},ΛI

over SpecOF from 2.1. We embed the special fiber M
loc
GLn,{µ},ΛI in the affine flag

variety FI for GLn (see Example 3.4) as follows.
Let R be a k-algebra and (FΛi)i∈I an R-point of Mloc

GLn,{µ},ΛI
. For i ∈ I, we

identify

Λi ⊗OF k ' λi ⊗OK k

by identifying the standard ordered bases on the two sides. In this way we get an
isomorphism of lattice chains ΛI ⊗OF k ' λI ⊗OK k. Via this isomorphism, we
regard FΛi ⊂ Λi ⊗OF R as a submodule of λi ⊗OK R, and we define Li to be the
inverse image of FΛi under the reduction-mod-t-map

λi ⊗OK R[[t]]� λi ⊗OK R.

Then Li is an R[[t]]-lattice in R((t))n. Denoting the elements of I by

· · · < i−1 < i0 < i1 < · · · ,
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we get a diagram of lattices in R((t))n

(3.16)

· · · ⊂ λi−1 ⊗OK R[[t]] ⊂

⊂

λi0 ⊗OK R[[t]] ⊂

⊂

λi1 ⊗OK R[[t]] ⊂

⊂

· · ·

· · · ⊂ Li−1 ⊂

⊂

Li0 ⊂

⊂

Li1 ⊂

⊂

· · ·

· · · ⊂ tλi−1 ⊗OK R[[t]] ⊂ tλi0 ⊗OK R[[t]] ⊂ tλi1 ⊗OK R[[t]] ⊂ · · ·

.

It is easy to verify that the collection (Li)i∈I specifies a point in FI(R), and we define
the morphism

ι : M
loc
GLn,{µ},ΛI −→ FI

by the rule (FΛi)i 7→ (Li)i. Plainly ι is a monomorphism, and it is therefore a closed

immersion of ind-schemes since M
loc
GLn,{µ},ΛI is proper.

Moreover, it is easy to see that (Li)i is r-special as defined in Example 3.4. Hence
we get an embedding

M
loc
GLn,{µ},ΛI

� � ι //

q�

""F
F

F
FI

F ′I−r

2�

DD





,

where F ′I−r is the affine flag variety for SLn corresponding to the set I− r and the
unlabeled solid arrow is the embedding discussed in Example 3.4.

The embeddings of M
loc
GLn,{µ},ΛI into FI and into F ′I−r enjoy an important

equivariance property which we now describe. Let A denote the OF-group scheme
of automorphisms of the lattice chain ΛI, defined in the obviously analogous way
to the OK-group scheme PI in Example 3.4. Then A acts naturally on Mloc

GLn,{µ},ΛI
.

Now consider the positive loop group L+PI over Speck. The tautological action of
PI on λI furnishes a natural action of L+PI on the chain λI⊗OK k. The isomorphism
λI ⊗OK k ' ΛI ⊗OF k then yields a homomorphism L+PI → A. Hence L+PI acts

on M
loc
GLn,{µ},ΛI . It is now easy to see that the embedding M

loc
GLn,{µ},ΛI ↪→ FI is

L+PI-equivariant with respect to the natural L+PI-action on FI. As a consequence,

we see that M
loc
GLn,{µ},ΛI decomposes into a union of PI-Schubert cells inside FI.

Entirely similar remarks apply to the embedding M
loc
GLn,{µ},ΛI ↪→ F ′I−r: the

positive loop group L+P ′I acts naturally on M
loc
GLn,{µ},ΛI in an analogous way, the

embedding into F ′I−r is then L+P ′I-equivariant, and we conclude that M
loc
GLn,{µ},ΛI

decomposes into a union of P ′I-Schubert cells inside F ′I−r.

Example 3.17 (GSp2g). Now let n = 2g, µ =
(
1(g),0(g)

)
, and {µ} its geometric

conjugacy class in GSp2g, and suppose that I is, in addition, closed under multipli-
cation by −1. Then we may consider the local model Mloc

GSp2g,{µ},ΛI
for GSp2g as in

2.2. The embedding of the special fiber M
loc
GSp2g,{µ},ΛI into the affine flag variety FI

for GSp2g is completely analogous to the situation just considered for GLn.
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More precisely, under the embedding ofM
loc
GL2g,{µ},ΛI into the affine flag variety

for GL2g from the previous example, it is easy to see that the closed subscheme

M
loc
GSp2g,{µ},ΛI ⊂M

loc
GL2g,{µ},ΛI

is carried into the locus of points satisfying condition (D) in Example 3.6 (where for
any R-valued point, the scalar c in (D) can be taken to equal t−1 globally). Hence

we get the desired embedding of M
loc
GSp2g,{µ},ΛI into the affine flag variety for GSp2g.

Continuing the analogy, the parahoric group scheme for GSp2g denoted PI
in Example 3.6 again acts naturally on M

loc
GL2g,{µ},ΛI , and we again conclude that

M
loc
GSp2g,{µ},ΛI decomposes into a union of PI-Schubert cells inside FI. Moreover,

since the image ofM
loc
GL2g,{µ},ΛI consists of g-special points in FI, there is an induced

embedding M
loc
GL2g,{µ},ΛI ↪→ F ′I−g, where F ′I−g denotes the affine flag variety for

Sp2g corresponding to the set I− g; and M
loc
GSp2g,{µ},ΛI decomposes into a union of

P ′I-Schubert cells inside F ′I−g.

The embeddings of the special fibers of the local models for other groups
discussed in §2 can all be described similarly. See [Sm1, §7.1] for GO2g (at least in
the Iwahori case), [PR2, §4] for totally ramified ResF/F0 GLn, [PR2, §11] for totally
ramified ResF/F0 GSp2g, and [PR4, §3.3] and [Sm3, §4.4] for ramified GUn. In all
cases, the image of the special fiber of the local model decomposes into a union of
Schubert cells inside the affine flag variety. In fact, since the local model is proper,
the image is a union of Schubert varieties. It then becomes an interesting problem
to determine which Schubert varieties occur in the union. This is a problem of an
essentially combinatorial nature to which we turn in §4.

4. Combinatorics

In all known examples — and as we saw explicitly for GLn and GSp2g in 3.3 —
the special fiber of the local model admits an embedding into an affine flag variety,
with regard to which it decomposes into a union of Schubert varieties. It is then a
basic problem to determine which Schubert varieties occur in the union. Arising
from this are a number of considerations of an essentially combinatorial nature to
which we turn in this section. Much of our discussion is borrowed from [R, §§2–3]
and [PR4, §§2.1–2.2].

We shall work over a complete, discretely valued field L, which we suppose
in addition is strictly Henselian. For applications to local models, we are especially
interested in the setting L = k((t)), where k is an algebraic closure of the residue
field k as denoted in §2; this setting implicitly corresponds to working with the
geometric special fiber of the local model. We write OL for the ring of integers in L.

Given a connected reductive group G over L, we denote by κG its Kottwitz
homomorphism, as encountered earlier in (3.8); recall that this is a functorial
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surjective map G(L) → π1(G)I, where I := Gal(Lsep/L). To be clear about signs,
we take κG to be exactly the map defined by Kottwitz in [Ko2, §7] (which makes
sense over any complete, discretely valued, strictly Henselian field), without the
intervention of signs. This is opposite to the sign convention taken in Richarz’s
article [Ri2], to which we shall refer in several places. The only practical effect of
this difference is that we shall be led to make use of dominant coweights wherever
Richarz makes use of antidominant coweights.

4.1. Iwahori-Weyl group

Let G be a connected reductive group over L, let S be a maximal split torus
in G, let Gad denote the adjoint group of G, and let Sad denote the image of S in
Gad. Then Sad is a maximal split torus in Gad, and we let A := X∗(Sad)⊗Z R denote
the apartment in the building of Gad attached to Sad. Let T be the centralizer of
S in G. Then T is a maximal torus, since by Steinberg’s theorem G is quasi-split.
Let N be the normalizer of T in G, and let T(L)1 denote the kernel of the Kottwitz
homomorphism κT : T(L)� π1(T)I = X∗(T)I for T .

Definition 4.1. The Iwahori-Weyl group of G associated to S is the group

W̃G,S := W̃G := W̃ := N(L)/T(L)1.

Observe that the evident exact sequence

0 −→ T(L)/T(L)1 −→ W̃ −→ N(L)/T(L) −→ 1

exhibits W̃ as an extension of the relative Weyl group

W0 := N(L)/T(L)

by (via the Kottwitz homomorphism)

X∗(T)I ∼= T(L)/T(L)1.

In fact this sequence splits, by splittings which depend on choices. More precisely,
for any parahoric subgroup K ⊂ G(L) attached to a facet contained in the apartment
for S, let11

(4.2) WK :=
(
N(L) ∩ K

)/
T(L)1.

Proposition 4.3 ([HR, Prop. 13]). Let K be the maximal parahoric subgroup of G(L)
attached to a special vertex in A. Then the subgroup WK of W̃ projects isomorphically to
the factor group W0, so that W̃ admits a semidirect product decomposition

W̃ = X∗(T)I oWK ∼= X∗(T)I oW0. �

11Here we follow the convention of [HR, PR3, PR4] by using a superscript K in (4.2). Some authors
would instead denote the group (4.2) byWK, and then useWK to denote the set of elementsw in the
affine Weyl group such thatw has minimal length in the cosetwWK.
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We typically write tµ when we wish to regard an element µ ∈ X∗(T)I as an
element in W̃, and we refer to X∗(T)I as the translation subgroup of W̃.

Remark 4.4. Let R = (X∗,X∗,Φ,Φ∨) be a root datum. We define the extended affine
Weyl group W̃(R) of R to be the semidirect product X∗ oW(R), where W(R) denotes
the (finite) Weyl group of R.

In the case that G is split, W̃ canonically identifies with the extended affine
Weyl group W̃(R) of the root datum R :=

(
X∗(S),X∗(S),Φ,Φ∨

)
of G. Indeed, in

this case S = T , the action of I on X∗(T) is trivial, and T(L)1 = S(OL). Taking
G(OL) as the special maximal parahoric subgroup in Proposition 4.3, we have
W̃ = X∗(S)oW0, where W0 =W is the absolute Weyl group, which identifies with
W(R). Then W̃ contains the affine Weyl group Wa(R) := Q∨ oW0 as a normal
subgroup with abelian factor group π1(G) = X∗(S)/Q

∨. Here Q∨ ⊂ X∗(S) denotes
the subgroup generated by the coroots Φ∨.

Even if G is nonsplit, W̃ can be identified with a generalized extended affine
Weyl group of a reduced root system, as is explained in Remark 4.15 below.

Example 4.5 (GLn). Let G = GLn in Remark 4.4 and take for S = T the standard
split maximal torus of diagonal matrices in G. Then

W̃ ∼= Zn o Sn,

where Zn ∼−→ X∗(S) by sending the ith standard basis element to the cocharacter
x 7→ diag

(
1(i−1), x,1(n−i)

)
, and where the symmetric group Sn of permutation

matrices maps isomorphically to the Weyl group.

Example 4.6 (GSp2g). Let G = GSp2g in Remark 4.4 and take S = T to be the
standard split maximal torus of diagonal matrices in G. Let

S∗2g :=
{
σ ∈ S2g

∣∣ σ(i∗) = σ(i)∗ for all i
}

,

where i∗ := 2g+ 1 − i for any i ∈ {1, . . . ,2g}. Then S∗2g identifies with the subgroup
of permutation matrices in G and maps isomorphically to the Weyl group. We
obtain

W̃ ∼= X∗ o S∗2g,

where, in terms of the natural embedding of S into the maximal torus for GL2g, and
in terms of the identification of the previous example, we have

X∗ :=
{
(x1, . . . , x2g) ∈ Z2g

∣∣ x1 + x2g = x2 + x2g−1 = · · · = xg + xg+1
} ∼−→ X∗(S).

Remark 4.7 (GO2g). Although the orthogonal similitude group GO2g is not con-
nected, we can give an ad hoc definition of its Iwahori-Weyl group by following the
recipe in Definition 4.1 in the most literal way, where we take the normalizer in the
full group. We find

W̃GO2g
∼= X∗ o S∗2g,
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just as in the previous example. The Iwahori-Weyl group W̃GO◦2g of the identity

component GO◦2g is naturally a subgroup of W̃GO2g of index 2. Explicitly,

W̃GO◦2g
∼= X∗ o S◦2g,

where

S◦2g :=
{
σ ∈ S∗2g

∣∣ σ is even in S2g
}

.

It turns out that, just as we shall see for connected groups, in the function field
case W̃GO2g continues to parametrize the Schubert cells in the Iwahori affine flag
variety for GO2g. See [Sm1].

The following group-theoretic result provides the key link between the Iwahori-
Weyl group and local models.

Proposition 4.8 ([HR, Prop. 8]). Let B be an Iwahori subgroup of G(L) attached to an
alcove in A. Then the inclusion N(L) ⊂ G(L) induces a bijection

W̃
∼−→ B\G(L)/B.

More generally, let K and K ′ be parahoric subgroups of G(L) attached to facets in A. Then
the inclusion N(L) ⊂ G(L) induces a bijection

WK′\W̃/WK ∼−→ K ′\G(L)/K. �

Remark 4.9. Assume in Proposition 4.8 that K is a parahoric subgroup attached to
a special vertex. Then W̃ ∼= X∗(T)I oWK and, since WK ∼=W0,

WK\W̃/WK ∼= X∗(T)I/W0.

This last set may in turn be identified with the set of dominant elements in X∗(T)I
(any element in X∗(T)I is conjugate under W0 to a unique dominant element, cf.
[Ri2, Remark before Cor. 1.8]; recall that we use dominant elements where Richarz
uses antidominant ones). The notion of dominant elements in X∗(T)I arises after
identifying W̃ with a generalized extended affine Weyl group of a certain root system
Σ in the sense of Remark 4.15 below, and then choosing a basis for Σ; comp. Remark
4.17.

If we assume in addition that G is split, then K is hyperspecial, X∗(T)I = X∗(S),
and the notion of a dominant coweight in X∗(S) is more standard.

Remark 4.10. Let K be a parahoric subgroup of G(L) and P the corresponding
parahoric group scheme over SpecOL. Then WK can be identified with the Weyl
group of the special fiber P of P [HR, Prop. 12].
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4.2. Bruhat order

The force of Proposition 4.8 in the context of local models is that, when L is a
field of Laurent series and K and K ′ are as in the proposition, the set of double classes
WK′\W̃/WK (which is W̃ itself in the Iwahori case) parametrizes the K ′-Schubert
cells in the affine flag variety for K. To better exploit this fact, in this subsection
we shall introduce the Bruhat order on W̃. This will lead us to some much heavier
usage of Bruhat-Tits theory than we have yet encountered, but non-experts should
be able to safely treat many of the external results we appeal to as black boxes, with
little impairment to overall understanding. We continue with the notation of the
previous subsection.

Consider the apartment A = X∗(Sad)⊗Z R ∼= X∗(Tad)I ⊗Z R. We obtain from
the Kottwitz homomorphism a map12

T(L)/T(L)1
κT−→
∼
X∗(T)I −→ X∗(Tad)I −→ A.

Let Aff(A) denote the group of affine transformations on A. The relative Weyl
group W0 acts naturally on A by linear transformations, and regarding AoW0 as a
subgroup of Aff(A), the displayed map extends to a map of exact sequences

(4.11)

1 // T(L)/T(L)1 //

��

W̃ //

ν

��
�
�
� W0 // 1

1 // A // AoW0 // W0 // 1,

in which ν is unique up to conjugation by a unique translation element in Aff(A);
see [T, §1.2] or [Lan, Prop. 1.6 and 1.8].

Having chosen ν, the set of affine roots Φa, which consists of certain affine
functions on A, is defined in Tits’s article [T, §1.6]. There then exists a unique
reduced root system Σ on A with the properties that

• every root α ∈ Σ is proportional to the linear part of some affine root; and

• for any special vertex v ∈ A [T, §1.9], translation by −v

A
t−v−−→ A

carries the vanishing hyperplanes of the affine roots to precisely the vanishing
hyperplanes of the functions on A

(4.12) u 7−→ α(u) + d for α ∈ Σ, d ∈ Z;

12Note that the displayed composite differs from the analogous map defined in Tits’s article [T, §1.2]
by a sign of −1. However this discrepancy will make no difference in any of our subsequent appeals to
[T]. It matters only in that, as we have mentioned before, we systematically work with dominant elements
where Richarz [Ri2] uses antidominant elements; see especially Proposition 4.21.
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see [BTI, 1.3.8], [T, §1.7], and [B, VI §2.5 Prop. 8]. For G absolutely simple and
simply connected, see Remark 4.15 below for a description of Φa and Σ.

The affine Weyl group Wa is the group of affine transformations on A generated
by the reflections through the affine root hyperplanes. Analogously, the affine Weyl
group Wa(Σ) of Σ [B, VI §2.1 Def. 1] is the group of affine transformations on A

generated by the reflections through the vanishing hyperplanes of the functions
(4.12). Thus for any special vertex v, we have

Wa = tvWa(Σ)t
−1
v .

Hence Wa is a Coxeter group generated (as a Coxeter group) by the reflections
through the walls of any fixed alcove. The affine Weyl group for Σ admits the
semidirect product decomposition Wa(Σ) = Q∨(Σ) oW(Σ), where Q∨(Σ) is the
coroot lattice for Σ and W(Σ) is the Weyl group of Σ.

To apply the preceding discussion to the Iwahori-Weyl group, consider the
diagram

W̃

ν

��

Wa ⊂ Aff(A).

We shall show that Wa lifts canonically to W̃. Indeed, let

G(L)1 := ker κG

and

(4.13) N(L)1 := N(L) ∩G(L)1.

Let B ⊂ G(L) be the Iwahori subgroup attached to an alcove in A, and let Π be the
set of reflections through the walls of this alcove. Then, taking into account that
N(L) ∩ B = T(L)1 [HR, Lem. 6] and that G(L)1 is the subgroup of G(L) generated by
the parahoric subgroups of G(L) [HR, Lem. 17], the quadruple

(4.14)
(
G(L)1,B,N(L)1,Π

)
is a double Tits system [BTI, 5.1.1] whose Weyl group N(L)1/T(L)1 ⊂ W̃ identifies
via ν with Wa by [BTII, 5.2.12].

The affine Weyl group can also be realized as a subgroup of W̃ via the simply
connected cover Gsc of the derived group Gder of G. To explain this, let Ssc, Tsc, and
Nsc denote the respective inverse images of S ∩Gder, T ∩Gder, and N ∩Gder in Gsc.
Then Ssc is a maximal split torus in Gsc with centralizer Tsc and normalizer Nsc. Let
W̃sc := Nsc(L)/Tsc(L)1 denote the Iwahori-Weyl group of Gsc, let Bsc ⊂ Gsc(L) be the
Iwahori subgroup attached to an alcove in A, and let Π again be the set of reflections
through the walls of this alcove. Then by [BTII, Prop. 5.2.10],

(
Gsc(L),Bsc,Nsc(L),Π

)
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is a double Tits system whose Weyl group W̃sc (we again use [HR, Lem. 6]) identifies
with Wa via the composite

W̃sc −→ W̃
ν−→ AoW0.

In this way Tsc(L)/Tsc(L)1
∼= X∗(Tsc)I identifies with the translation elements in Wa,

or in other words, with the coroot lattice in Wa(Σ). Moreover, for any parahoric
subgroup Ksc ⊂ Gsc(L) attached to a special vertex v, the composite

W̃sc −→ W̃
ν−→ AoW0

conjugation
by t−v−−−−−−→ AoW0

carries WKsc ⊂ W̃sc isomorphically to the Weyl group of Σ, which identifies with W0.
In other words, the composite isomorphism

W̃sc
ν|
W̃sc−−−→
∼

Wa

conjugation
by t−v−−−−−−→

∼
Wa(Σ)

is compatible with the semidirect product decompositions W̃sc
∼= X∗(Tsc)I oWKsc

and Wa(Σ) = Q
∨(Σ)oW(Σ).

Remark 4.15. Just as W̃sc can in this way be identified with the affine Weyl group for
the root system Σ, so can W̃ be identified with a generalized extended affine Weyl group
for Σ via push-out by the canonical injection X∗(Tsc)I ↪→ X∗(T)I. Here “generalized”
means that the abelian group X∗(T)I may have torsion.

For any absolutely simple, simply connected group G over a discretely valued
field with algebraically closed residue field, the affine root systemΦa and root system
Σ admit the following descriptions (up to a choice of normalization of the valuation,
and of a special vertex as origin), which are given by Prasad–Raghunathan [PrRa,
§2.8]; we thank J.-K. Yu and X. Zhu for pointing this out to us. Let Φ denote the
relative roots of S in G.

If G is split over L, then Φ is necessarily reduced,

Φa = {a+ Z | a ∈ Φ }, and Σ = Φ.

If G is nonsplit over L and Φ is reduced, then

Φa =

{
a+

(a,a)
2

Z
∣∣∣∣ a ∈ Φ} and Σ = Φ∨ ∼=

{
2a

(a,a)

∣∣∣∣ a ∈ Φ},

where ( , ) is a nondegenerate W0-invariant inner product. If G is nonsplit and Φ is
nonreduced, then G is an outer form of type A2n,

Φa =

{
a+ Z

∣∣∣∣ a ∈ Φ,
a

2
/∈ Φ
}
∪
{
a+ 1 + 2Z

∣∣∣∣ a ∈ Φ,
a

2
∈ Φ
}

,

and Σ is the subset of Φ of roots a for which 2a /∈ Φ.
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We return to the main discussion. Since the target of the Kottwitz homomor-
phism is abelian, it is immediate from the definition (4.13) of N1(L) that it is a
normal subgroup of N(L). Hence Wa ' N(L)1/T(L)1 is a normal subgroup of W̃,
and we get an exact sequence

1 −→Wa −→ W̃ −→ X∗(T)I/X∗(Tsc)I −→ 1.

This sequence splits canonically after choosing a base alcove: since Wa acts simply
transitively on the alcoves in A [T, 1.7], W̃ is the semidirect product of Wa with the
normalizer Ω ⊂ W̃ of the base alcove,

(4.16) W̃ =Wa oΩ,

with Ω ∼−→ W̃/Wa
∼= X∗(T)I/X∗(Tsc)I ∼= π1(G)I.

The semidirect product decomposition (4.16) for W̃ has the important conse-
quence of endowing W̃ with a Bruhat order and length function. Again let Π denote
the subset ofWa of reflections across the walls of the base alcove. As we have already
recalled, Π is a set of Coxeter generators for Wa. We then get a Bruhat order 6 and a
length function ` on Wa as for any Coxeter group: for s, s ′ ∈Wa, `(s) is the smallest
nonnegative integer r such that s is expressible as a product s1s2 · · · sr with s1, s2, . . . ,
sr ∈ Π; and s ′ 6 s if there exists an expression s = s1 · · · sr with `(s) = r and the
si’s in Π such that s ′ can be obtained by deleting some of the si’s from the product.
These definitions naturally extend to W̃ via (4.16): for s, s ′ ∈ Wa and ω, ω ′ ∈ Ω,
we have `(sω) := `(s), and s ′ω ′ 6 sω exactly when ω ′ = ω and s ′ 6 s in Wa.

For parahoric subgroups K, K ′ ⊂ G(L) attached to respective subfacets f and
f ′ of the base alcove, the Bruhat order on W̃ induces one on WK′\W̃/WK. Indeed,
let X and X ′ denote the respective subsets of Π of reflections fixing f and f ′, let WX
and WX′ denote the respective subgroups of Wa generated by X and X ′, and recall
from [BTII, 5.2.12] that the parahoric subgroups of G(L) are precisely the parahoric
subgroups of the Tits system (4.14). Then

K = BWXB and K ′ = BWX′B,

and

WK =WX and WK′ =WX′ .

Hence by [B, IV §1 Ex. 3] each double coset w ∈ WK′\W̃/WK contains a unique
element in W̃, which we denote w̃, with the property that w̃ 6 x for all x ∈ w. For
w, w ′ ∈ WK′\W̃/WK, we then define w ′ 6 w if w̃ ′ 6 w̃ in W̃. The Bruhat order
on WK′\W̃/WK has the property that if x 6 y in W̃, then WK′xWK 6WK′yWK in
WK′\W̃/WK.

Remark 4.17. The Bruhat order on WK′\W̃/WK can be expressed in a particularly
simple way when K = K ′ is a maximal parahoric subgroup attached to a special
vertex v of the base alcove. Indeed, the choice of v allows us to identify W̃sc with the
affine Weyl group of the reduced root system Σ, and W̃ with a generalized extended
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affine Weyl group of Σ, as in Remark 4.15 above. The affine root hyperplanes
passing through v determine chambers in A, and we take as positive chamber the
chamber opposite the unique chamber containing our base alcove. This determines a
notion of positive roots in X∗(Tsc)

I, of positive coroots in X∗(Tsc)I, and of dominant
elements in X∗(T)I (those elements that pair non-negatively with positive roots).
The dominance order on X∗(T)I is defined by λ 6 λ ′ if λ ′ − λ is a nonnegative
Z-linear combination of positive coroots. Then, after identifying WK\W̃/WK with
the set of dominant elements in X∗(T)I as in Remark 4.9, the Bruhat order on
WK\W̃/WK is identified with the restriction of the dominance order to the set of
dominant elements, cf. [Ri2, Cor. 1.8]. (In contrast to [Ri2], we use dominant
elements instead of antidominant elements because we have taken the base alcove
to be in the negative chamber.)

In the function field setting, and in analogy with the case of ordinary flag
varieties, the Bruhat order carries important geometric content about Schubert
varieties.

Proposition 4.18 (Richarz [Ri2, Prop. 2.8]; [PR3, Prop. 9.6]). Suppose that L =

k((t)) with k algebraically closed. Let f and f ′ be subfacets of the base alcove in A, let
K and K ′ denote the respective associated parahoric subgroups of G(L), and consider the
associated affine flag variety Ff over Speck, cf. Definition 3.2. For w ∈WK′\W̃/WK, let
Sw denote the associated f ′-Schubert variety in Ff. Then for all w, w ′ ∈WK′\W̃/WK,

Sw′ ⊂ Sw in Ff ⇐⇒ w ′ 6 w in WK′\W̃/WK. �

By choosing good representatives in W̃ for double cosets, the inclusion rela-
tions between Schubert varieties can be phrased in a somewhat more precise way,
which is sometimes useful. We first state the following lemma.

Lemma 4.19 (Richarz, Waldspurger [Ri2, Lem. 1.9]). Let f and f ′ be subfacets of the
base alcove in A, and let K and K ′ denote the respective associated parahoric subgroups of
G(L). Let w ∈ W̃.

(i) There exists a unique element wK of minimal length in wWK.

(ii) There exists a unique element K′wK of maximal length in {(vw)K | v ∈WK′ }.

�

We introduce the following subset of W̃,

K′W̃
K :=

{
K′w

K
∣∣ w ∈ W̃ }.

Then K′W̃
K maps bijectively to the set of double classes WK′\W̃/WK, and we may

phrase the inclusion relations between Schubert varieties in terms of these special
representatives of double classes as follows.

Proposition 4.20 (Richarz [Ri2, Prop. 2.8]). Let w ∈ K′W̃K. Then the f ′-Schubert
variety Sw in Ff satisfies
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(i) Sw =
⋃

{w′∈K′W̃K|w′6w}
Sw′ ; and

(ii) dimSw = `(w). �

Now let us specialize to the case of special maximal parahorics.

Proposition 4.21 (Richarz [Ri2, Cor. 1.8]). Let K = K ′ be a special maximal parahoric
subgroup attached to a vertex of the base alcove, and consider the dominant elements of
X∗(T)I as in Remark 4.17.

(i) KW̃
K = { tλ | λ ∈ X∗(T)I is dominant }.

(ii) dimSw = 〈λ, 2ρ〉 for w corresponding to tλ ∈ KW̃K.

Here ρ denotes the halfsum of positive roots for Σ. �

4.3. The {µ}-admissible set

In this subsection we come to the key notion of {µ}-admissibility. We continue
with the notation of the previous two subsections. Let {µ} ⊂ X∗(T) be aW-conjugacy
class of geometric cocharacters of T . Let Λ̃{µ} ⊂ {µ} be the subset of cocharacters
whose images in X∗(T)⊗Z R are contained in some (absolute) closed Weyl chamber
corresponding to a Borel subgroup of G containing T and defined over L.13 Then
Λ̃{µ} forms a single W0-conjugacy class, since all such Borels are W0-conjugate. Let
Λ{µ} denote the image of Λ̃{µ} in X∗(T)I. Let a be an alcove in the apartment A, and

consider the associated Bruhat order 6 on W̃. We first state a conjecture.

Conjecture 4.22. Let {µ} denote the image of the W-conjugacy class {µ} in X∗(T)I. Then
the set of maximal elements in {µ} with respect to the Bruhat order is precisely the set Λ{µ}.

Of course the conjecture only has content for nonsplit G. We have verified it
for Weil restrictions of split groups and for unitary groups.

The validity of the conjecture not being known to us in general, we define the
{µ}-admissible set as follows.

Definition 4.23. An element w ∈ W̃ is {µ}-admissible if w 6 tλ for some λ ∈ Λ{µ}.

We denote the set of µ-admissible elements in W̃ by Adm({µ}).

In other words, w ∈ W̃ is {µ}-admissible if and only if w 6 σtµσ−1 = tσ·µ

for some σ ∈ W0, where µ is the image in X∗(T)I of a cocharacter µ ∈ Λ̃{µ}. Since

W0 can be lifted to the affine Weyl group inside W̃, all elements in Adm({µ}) are
congruent modulo Wa.

More generally, let K and K ′ be parahoric subgroups of G(L) attached to
subfacets of a, and consider the set of double cosets WK′\W̃/WK.

Definition 4.24. An element w ∈WK′\W̃/WK is {µ}-admissible if

w 6WK′tλW
K for some λ ∈ Λ{µ}.

13Note that such Borel subgroups always exists sinceG is quasi-split.
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We denote the set of {µ}-admissible elements in WK′\W̃/WK by AdmK′,K({µ}), or
just by AdmK({µ}) when K = K ′.

Note that if Conjecture 4.22 holds true, then the notion of {µ}-admissibility is
just that w 6WK′tµW

K for some µ in the image of {µ} in X∗(T)I.

Example 4.25. Suppose that K is a special maximal parahoric subgroup. Then the
Bruhat order on WK\W̃/WK identifies with the dominance order on the set of
dominant elements in X∗(T)I, as in Remark 4.17. In this way the {µ}-admissible set
in WK\W̃/WK identifies with the dominant elements in X∗(T)I that are 6 µdom in
the dominance order, where µdom denotes the unique dominant element in Λ{µ}.

It is also worth making explicit the notion of {µ}-admissibility in the setting of
root data, which amounts to working in the special case that G is split, cf. Remark
4.4. Let R = (X∗,X∗,Φ,Φ∨) be a root datum and {µ} ⊂ X∗ a W(R)-conjugacy class
of cocharacters. Again choose a base alcove and consider the induced Bruhat order
on W̃(R). Then we define the {µ}-admissible set

Adm({µ}) :=
{
w ∈ W̃(R)

∣∣ w 6 tµ for some µ ∈ {µ}
}

.

More generally, let f and f′ be subfacets of the base alcove, and let X (resp. X ′) be
the set of reflections across the walls of the base alcove containing f (resp. f′). As
on p. 184, let WX (resp. WX′) be the subgroup of Wa(R) generated by X (resp. X ′).
Then we define

Admf,f′({µ}) :=
{
w ∈WX′\W̃(R)/WX

∣∣ w 6WX′tµWX for some µ ∈ {µ}
}

.

When f = f′, we write Admf({µ}) := Admf,f({µ}).

Remark 4.26. Let R be a root datum, choose a positive chamber, and take the
base alcove to be the unique alcove contained in the negative chamber and whose
closure contains the origin. Let µ be a dominant cocharacter. He and Lam [HL,
Th. 2.2] have recently given a description of the partially ordered set Adm

(
W(R) ·

µ
)
∩W(R)tµW(R) in terms of the combinatorics of projected Richardson varieties.

Note that in the special case when µ is minuscule, µ is minimal among domi-
nant cocharacters in the dominance order, and it follows from Example 4.25 that
Adm

(
W(R) · µ

)
⊂W(R)tµW(R). Thus He and Lam’s result describes the full admis-

sible set in the minuscule case.

4.4. Relation to local models

We continue with the notation of the previous three subsections. Let us now
return to the problem we posed at the beginning of §4, namely that of identifying
the Schubert cells that occur in the geometric special fiber of a local model upon a
suitable embedding into an affine flag variety. More precisely, let F be a discretely
valued field with residue field k, let G̃ be a connected reductive group over F, let {µ}
be a conjugacy class of geometric cocharacters of G̃, let E denote the reflex field of
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{µ}, and let OE and kE denote the respective ring of integers in, and residue field of,
E. Suppose that for some choice of parahoric level structure we have attached a (flat)
local model Mloc

G̃,{µ}
to G̃ and {µ} over SpecOE; in each example we encountered

in §2, this was taken to be the scheme-theoretic closure of the generic fiber of the
naive local model. Let Fun denote the completion of a maximal unramified algebraic
extension of F, let S̃ be a maximal split torus in G̃Fun := G̃ ⊗F Fun, let T̃ be the
centralizer of S̃ in G̃Fun , and regard {µ} as an absolute conjugacy class of geometric
cocharacters of T̃ . Let L = kE((t)). Then in every example we know,14

• there exists a connected reductive group G over L (“a function field analog of G̃Fun”)
such that G and G̃ are forms of the same split Chevalley group defined over Z, and whose
Iwahori-Weyl group W̃G naturally identifies with W̃

G̃Fun
;

• the geometric special fiber M
loc
G̃,{µ} ⊗kE kE embeds L+P-equivariantly in the affine flag

variety FP for G, where P is a parahoric group scheme for G corresponding to the original
choice of parahoric level structure;

• and with regard to this embedding, the Schubert cells occurring in M
loc
G̃,{µ} ⊗kE kE are

parametrized by precisely the {µ}-admissible set, regarded as a subset of WK\W̃G/W
K via

the above bijection W̃G ∼= W̃G̃Fun
, where K denotes the parahoric subgroup P(OL) ⊂ G(L).

Note that this says that the irreducible components of M
loc
G̃,{µ} ⊗kE kE, which cor-

respond to the Schubert cells in M
loc
G̃,{µ} ⊗kE kE that are maximal for the inclusion

relation of their closures, are exactly parametrized by the elements of Λ{µ}.

Example 4.27 (GLn). Let G̃ = GLn over F, and let {µ} be the conjugacy class of
µ =

(
1(r),0(n−r)

)
, as in 2.1. Then E = F. Let L be the standard lattice chain ΛZ in

Fn. We take G := GLn over L with split maximal diagonal torus S and Iwahori-Weyl
group W̃ = W̃G,S as in Example 4.5, and we embed

M
loc
GLn,{µ},ΛZ

⊗k k −→ FZ

as in Example 3.15. Then an element w ∈ W̃ = N(L)/S(OL) specifies a Schubert cell

contained in the image of M
loc
GLn,{µ},ΛZ

⊗k k exactly when w · λZ is contained in the

image of M
loc
GLn,{µ},ΛZ

⊗k k, that is, exactly when the lattice chain w · λZ satisfies

(1) λi ⊃ w · λi ⊃ tλi for all i; and
(2) dimk(w · λi/tλi) = n− r for all i.

To translate these conditions into more explicit combinatorics, let us identify
each OL-lattice of the form ti1OL ⊕ · · · ⊕ tinOL with the vector (i1, . . . , in) ∈ Zn.
Then with regard to our identifications, the natural action of N(L)/S(OL) on lattices
translates to the natural action of Zn o Sn on Zn by affine transformations, with Zn

acting by translations and Sn acting by permuting coordinates. For i = nd+ j with

14This is addressed more systematically in [PZ].
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0 6 j < n, the lattice λi translates to the vector

ωi :=
(
(−1)(j),0(n−j)

)
− d,

where for any d we write boldface d to denote the vector (d, . . . ,d). Conditions (1)
and (2) become equivalent to

(1 ′) 0 6 w ·ωi −ωi 6 1 for all i; and
(2 ′) for all i, the sum of the entries of the vector w ·ωi −ωi is r.

Note that µ and all its Weyl conjugates, regarded as translation elements in W̃,
trivially satisfy (1 ′) and (2 ′). The main result for GLn in [KR] is that the set of all
w ∈ W̃ satisfying (1 ′) and (2 ′) is precisely the set Adm({µ}), where the Bruhat order
is taken with respect to the alcove determined by the ωi’s.15 Entirely analogous
remarks hold for any subchain ΛI of ΛZ.

Let us return to the general discussion, with L again an arbitrary complete,
discretely valued, strictly Henselian field. Taking note that, in the previous example,
the images of the ωi’s in the standard apartment for PGLn are the vertices of the
base alcove, the papers [KR, R] abstract conditions (1 ′) and (2 ′) to any Iwahori-Weyl
group as follows. Let Tad denote the image of T in Gad. Consider the composition

X∗(T)I −→ X∗(Tad)I −→ X∗(Tad)I ⊗Z R ∼= X∗(Sad)⊗Z R = A,

and let P{µ} denote the convex hull in A of the image of the set Λ{µ}.

Definition 4.28. An element w ∈ W̃ is {µ}-permissible if

• w ≡ tµ mod Wa for one, hence any, µ ∈ Λ{µ}; and

• w · x− x ∈ P{µ} for all x ∈ a.

More generally, for any subfacet f of a with associated parahoric subgroup K, an
element w ∈WK\W̃/WK is {µ}-permissible if w ≡ tµ mod Wa for any µ ∈ Λ{µ} and
w·x−x ∈ P{µ} for all x ∈ f. We write Perm({µ}) for the set of {µ}-permissible elements

in W̃ and PermK({µ}) for the set of {µ}-permissible elements in WK\W̃/WK.

Note that for w ∈WK\W̃/WK, the condition w ≡ tµ mod Wa is well-defined
because WK ⊂Wa, and the condition

(4.29) w · x− x ∈ P{µ} for all x ∈ f

is well-defined by [R, §3, p. 282]. By convexity, (4.29) is equivalent to requiring that
w · x− x ∈ P{µ} for all vertices x of f.

In the case of GLn and {µ} the conjugacy class of µ =
(
1(r),0(n−r)

)
from

Example 4.27, one sees almost immediately that the set of elements in W̃ satisfying
(1 ′) and (2 ′) is precisely Perm({µ}). Thus the main result for GLn in [KR] is to
establish the equality Adm({µ}) = Perm({µ}) for such µ.

15Note that this alcove is the alcove contained in the negative Weyl chamber (relative to the standard
choice of positive roots) and whose closure contains the origin. This is the motivation for our convention
in defining the positive chamber in Remark 4.17.
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In many (but not all!) cases known to us, the Schubert cells in the special fiber
of the local model turn out to be parametrized by the {µ}-permissible set, i.e. one
has an equality between {µ}-admissible and {µ}-permissible sets. And in explicit
computations it is easier to determine the {µ}-permissible set than the {µ}-admissible
set. Thus it is of interest to understand the relationship between {µ}-admissibility
and {µ}-permissibility. The first results in this direction are the following.

Proposition 4.30. (i) ([KR, §11]) For any G and any {µ}, Perm({µ}) is closed in the
Bruhat order and Adm({µ}) ⊂ Perm({µ}).

(ii) (Haines–Ngô [HN2, 7.2]) The reverse inclusion can fail. More precisely, suppose
that G is split over L with irreducible root datum of rank > 4 and not of type A. Then
Adm({µ}) 6= Perm({µ}) for {µ} the conjugacy class of any sufficiently regular cocharacter
µ. �

In (ii), we refer to the proof of the cited result for the precise meaning
of “sufficiently regular.” We also note that in [Sm4, Eg. 9.8.3] it is shown that
Adm({µ}) 6= Perm({µ}) for {µ} the Weyl orbit of the coweight

(
1(r),0(m−r)

)
for Bm

(using the standard coordinates, as in [B, Pl. II]) for m, r > 3.
While {µ}-admissibility and {µ}-permissibility are not equivalent in general,

the following result gives a summary of most situations in which they are known to
coincide. We shall formulate the results for extended affine Weyl groups attached
to root data; in the most literal sense one may regard this as an assumption that
G is split over L, as in Remark 4.4, but see Remark 4.33 below for the relevance
of this to the nonsplit case. Given a root datum R = (X∗,X∗,Φ,Φ∨) and a W(R)-
conjugacy class {µ} ⊂ X∗ of cocharacters, we define Perm({µ}) in obvious analogy
with Definition 4.28,

Perm({µ}) :=

{
w ∈ W̃(R)

∣∣∣∣ w ≡ tµ mod Wa(R) for any µ ∈ {µ} and
w · x− x ∈ P̃{µ} for all x in the base alcove

}
,

where P̃{µ} denotes the convex hull of {µ} in X∗ ⊗Z R.

Proposition 4.31. Let W̃ be the extended affine Weyl group attached to a root datum R,
as in Remark 4.4, and take the Bruhat order on W̃ corresponding to a base alcove a.

(i) (Haines–Ngô [HN2, 3.3]; [KR, 3.5]) If R involves only type A, then Adm({µ}) =

Perm({µ}) for any W(R)-conjugacy class {µ}.

(ii) (Haines–Ngô [HN2, 10.1]; [KR, 4.5, 12.4]) Suppose that W̃ is the Iwahori-Weyl
group of GSp2g and that {µ} =W(R) · µ for µ a sum of dominant minuscule cocharac-
ters. Then Adm({µ}) = Perm({µ}).

(iii) ([KR, 3.5, 4.5], [Sm1, 7.6.1], [Sm2, Main Theorem]) Suppose that R involves only
types A, B, C, and D and that {µ} is a W(R)-conjugacy class of minuscule cocharacters.
Then Adm({µ}) = Perm({µ}). �
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In (ii), a cocharacter µ is a sum of dominant minuscule cocharacters (with
respect to the standard choice of positive Weyl chamber) exactly when it is of the
form

(
n(g),0(g)

)
+ d for some n ∈ Z>0 and d ∈ Z, in the notation of Example 4.6.

Remark 4.32. As stated, the proposition covers only the Iwahori case, but it is
known to generalize to the general parahoric case. To be precise, let f be a subfacet
of a, let X be the set of reflections across the walls of the base alcove containing
f, and let WX be the subgroup of Wa(R) generated by X. Then, in analogy with
Definition 4.28, we define Permf({µ}) to be the set of all w ∈WX\W̃(R)/WX such
that w ≡ tµ mod Wa(R) for any µ ∈ {µ}, and such that w̃ · x− x ∈ P̃{µ} for all x ∈ f,

where w̃ is any representative of w in W̃(R) (this is again independent of the choice
of w̃ by [R, §3, p. 282]).

Then in (i), we have Admf({µ}) = Permf({µ}) for any {µ} and any f when R

involves only type A; this was proved in the case of minuscule {µ} in [KR, 9.6], and
the general case is an immediate consequence of Görtz’s result [Gö4, Cor. 9] (which
itself makes crucial use of the cited result in the Iwahori case of Haines–Ngô).

In (ii), we have Admf({µ}) = Permf({µ}) insideWX\W̃GSp2g/WX for any f and
any {µ} which is the conjugacy class of a sum of dominant minuscule coweights;
this was proved in the case of minuscule {µ} in [KR, 10.7], and the general case is an
immediate consequence of Görtz’s result [Gö4, Cor. 13] (which again relies on the
Iwahori case established in [HN2]).

It follows that the parahoric version of (iii) holds for any f and any minuscule
{µ} provided R involves only types A and C. On the other hand, the general
parahoric version of (iii) for types B and D will be deduced in [Sm5] from the
Iwahori case for these types, via arguments along the lines of those in [KR] or [Gö4].

Remark 4.33. Proposition 4.31 is useful for more than just the case that G is split.
Indeed, for any group G, questions of admissibility and permissibility in W̃ can
always be reduced to the case of an extended affine Weyl group attached to a root
datum. The link is made via the reduced root system Σ on A attached to the affine
root system Φa for G, as discussed in 4.2, p. 181.

Consider the group X∗(Tad)I. By [BTII, 4.4.16], X∗(Tad) is an induced Galois
module. Hence X∗(Tad)I is torsion-free. And by [HR, Lem. 15], we have

Q∨(Σ) ⊂ X∗(Tad)I ⊂ P∨(Σ),

where Q∨(Σ) and P∨(Σ) denote the respective coroot and coweight lattices for Σ.
Hence

R :=
(
X∗(Tad)

I,X∗(Tad)I,Σ,Σ∨
)

is a root datum. For any v ∈ A which is a special vertex relative to the affine root
system for G, the image of the composition

W̃
ν−→ AoW0

conjugation
by t−v−−−−−−→ AoW0
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is contained in W̃(R) = X∗(Tad)I oW0; let us write

f : W̃ −→ W̃(R).

Then, on translation elements f restricts to the natural map X∗(T)I → X∗(Tad)I, and
f carries WK ⊂ W̃ isomorphically to W0, where K ⊂ G(L) is the parahoric subgroup
attached to v and WK is the subgroup (4.2).

For the present discussion it is necessary to understand the map f in terms
of the semidirect product decomposition W̃ = Wa o Ω (4.16), where Ω is the
stabilizer of the base alcove a inside W̃. Inside W̃(R) is the affine Weyl group
Wa(R) = Q∨(Σ) o W0, and we denote by Ω(R) the stabilizer in W̃(R) of the
translate a− v, which is an alcove in A for Σ. Then W̃(R) =Wa(R)oΩ(R), and f
restricts to an isomorphism Wa

∼−→ Wa(R) and a map Ω → Ω(R). Endow W̃ with
the Bruhat order corresponding to a− v. Then it is clear that

• w ′ 6 w in W̃ =⇒ f(w ′) 6 f(w) in W̃(R), with the converse holding exactly when
w ′ ≡ w mod Wa;

and that for any W-conjugacy class {µ} ⊂ X∗(T),

• f carries the subset Adm({µ}) ⊂ W̃ bijectively onto Adm({µad}) ⊂ W̃(R), where
{µad} denotes the image of Λ{µ} in X∗(Tad)I; and

• f carries the subset Perm({µ}) ⊂ W̃ bijectively onto Perm({µad}) ⊂ W̃(R).

Moreover, we have

• Adm({µ}) = Perm({µ}) in W̃ ⇐⇒ Adm({µad}) = Perm({µad}) in W̃(R).

Remark 4.34. The following variant of the preceding remark, which uses the build-
ing for G in place of the building for Gad, is sometimes more convenient in practice.

Let Ã := X∗(S)⊗ R ∼= X∗(T)I ⊗ R, and consider the natural map

T(L)/T(L)1
∼−→ X∗(T)I −→ Ã.

Then there exists an extension of the displayed composite to a map W̃ ν̃−→ ÃoW0.
More precisely, replacing A with Ã everywhere in the diagram (4.11), there exists a

map W̃ ν̃−→ Ã oW0 making the diagram commute, and any two extensions differ
by conjugation by a translation element, but this translation element is no longer
uniquely determined.

Let Φa denote the affine root system for G relative to the composite

W̃
ν̃−→ ÃoW0 −→ AoW0.

Let Σ denote the associated reduced root system on A, as in the preceding remark.
Then we can regard the elements of Σ as linear functions on Ã, and the W0-action
on Ã allows us to canonically lift the coroots to Ã: for each root α ∈ Σ we have the
associated reflection sα ∈W0, and this determines the associated coroot α∨ via the
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formula

sα(x) = x− 〈α, x〉α∨ for x ∈ Ã.16

Finally let N denote the torsion subgroup of X∗(T)I. Then

R̃ :=
(
X∗(T)I,X∗(T)I/N,Σ,Σ∨

)
is a root datum, and everything carries over from the previous remark with R̃ in
place of R.

Remark 4.35. Although we are interested in minuscule conjugacy classes of cochar-
acters for applications to Shimura varieties, we caution that, in the context of the
previous two remarks, the image of a minuscule Λ̃{µ} in X∗(T)I or X∗(Tad)I need
not be minuscule for Σ. In this way the study of admissibility for non-minuscule
cocharacters in root data is relevant to the study of admissibility for minuscule
cocharacters in nonsplit groups.

Remark 4.36. It is conjectured in [R, §3, p. 283] that Adm({µ}) = Perm({µ}) for any
Weyl orbit {µ} of minuscule cocharacters in any extended affine Weyl group attached
to a based root datum. Thus part (iii) of Proposition 4.31 is a partial confirmation
of this conjecture. In fact, [R] formulates the more optimistic conjecture that
Adm({µ}) = Perm({µ}) whenever {µ} is the conjugacy class attached to a sum µ of
dominant minuscule cocharacters. However, this more optimistic version of the
conjecture can fail, cf. [Sm4, Eg. 8.6.5]. In particular, Adm({µ}) 6= Perm({µ}) for µ
the sum of dominant minuscule coweights

(1,1,1,0) =
(

1
2 , 1

2 , 1
2 , 1

2

)
+
(

1
2 , 1

2 , 1
2 ,− 1

2

)
in D4 (using the standard coordinates, as in [B, Pl. IV]).

Let us conclude this subsection by making more explicit the relation of the
{µ}-admissible and {µ}-permissible sets to the local models discussed in this article
and elsewhere in the literature. For all of the local models attached to GLn in 2.1
[Gö1], GSp2g in 2.2 [Gö2], ResF/F0 GLn in 2.4 [Gö4, PR2], ResF/F0 GSp2g in 2.5
[Gö4, PR2], and ramified, quasi-split GUn in 2.6 [PR4, Sm3, Sm4], the geometric
special fiber of the local model Mloc

G,µ,L admits an embedding into an affine flag
variety — constructed very much in the spirit of 3.3 — with regard to which it
decomposes into a union of Schubert cells indexed by exactly the {µ}-admissible set.
In 2.3, the orthogonal group GO2g is disconnected, so that as in Remark 4.7 the
present discussion does not literally apply. Nevertheless, the special fiber of the local
model, which has two connected components, can still be embedded into an affine
flag variety for GO2g, where it is found to contain the Schubert cells indexed by two
admissible sets for GO◦2g: one for the conjugacy class of the cocharacter

(
1(g),0(g)

)
,

16Of course, we can also canonically lift the coroots to Ã via the embedding X∗(Tsc)I ↪→ X∗(T)I
discussed in 4.2, p. 183.
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and the other for the conjugacy class of the cocharacter
(
1(g−1),0,1,0(g−1)

)
. Note

that these cocharacters are GO2g-conjugate but not GO◦2g-conjugate. See [Sm1].
In all of the examples mentioned in the previous paragraph, one also has an

equality between {µ}-admissible and {µ}-permissible sets with the possible exception
of ramified, quasi-split GUn for n even and > 6, for which this equality can fail. See
[Sm4] for details.

4.5. Vertexwise admissibility

We continue with the notation of the previous four subsections. Let K and
K ′ be parahoric subgroups of G(L) attached to subfacets of the base alcove a, and
let {µ} ⊂ X∗(T) be a W-conjugacy class. It is an immediate consequence of the
properties of the Bruhat order that the canonical projection W̃ → WK′\W̃/WK

induces a surjective map

(4.37) Adm({µ})� AdmK′,K({µ}).

If f is a subfacet of a with associated parahoric subgroup K, then for each vertex x of
f, let Kx denote the associated parahoric subgroup and

ρx : W
K\W̃/WK �WKx\W̃/WKx

the canonical projection. We make the following definition.

Definition 4.38. The {µ}-vertexwise admissible set in WK\W̃/WK is the subset

Admvert
K ({µ}) :=

⋂
vertices
x of f

ρ−1
x

(
AdmKx({µ})

)
.

In other words, an element w ∈ WK\W̃/WK is {µ}-vertexwise admissible if
WKxwWKx ∈ AdmKx({µ}) for all vertices x of f. It is an obvious consequence of the
map (4.37) that AdmK(µ) ⊂ Admvert

K (µ), and we conjecture the following.

Conjecture 4.39. Let {µ} ⊂ X∗(T) be a W-conjugacy class of minuscule cocharacters,
and let f be a subfacet of a with associated parahoric subgroup K. Then the inclusion
AdmK({µ}) ⊂ Admvert

K ({µ}) is an equality.

We do not know if the assumption that {µ} be minuscule is necessary, but the
examples that we have studied all arise from local models, where the assumption
holds by definition. The notion of vertexwise admissibility and the attendant
conjecture appear (sometimes only implicitly) in special cases in [PR1, PR2, PR4];
see in particular [PR4, §4.2] for the case of ramified, quasi-split unitary groups. We
also note that the Bruhat order itself between elements in WK\W̃/WK cannot be
tested vertex by vertex in general [HN2], so that the conjecture has some teeth to it.

We note that in cases where {µ}-admissibility and {µ}-permissibility are equiv-
alent, the conjecture is automatic. Indeed, for any {µ} we have Admvert

K ({µ}) ⊂
PermK({µ}) because AdmK′({µ}) ⊂ PermK′({µ}) for any K ′, and in particular for K ′
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of the form Kx, and because {µ}-permissibility is manifestly a vertexwise condition.
Hence the equality AdmK({µ}) = PermK({µ}) implies the equality AdmK({µ}) =

Admvert
K ({µ}). Because of this, the conjecture may in some sense be regarded as a

version for arbitrary groups of the conjecture in [R] that Adm({µ}) = Perm({µ}) for
minuscule cocharacters in split groups; see Remark 4.36.

We also note that the conjecture holds in all examples that we know of arising
from local models. More precisely, for all of the local models attached to GLn
in 2.1; GSp2g in 2.2; GO2g in 2.3; ResF/F0 GLn in 2.4; and ResF/F0 GSp2g in 2.5,
the conjecture holds because {µ}-admissibility and {µ}-permissibility are equivalent
by Proposition 4.31 and Remark 4.32. For the local models attached to ramified,
quasi-split GUn for n odd in 2.6, the conjecture is known via the equivalence of
{µ}-admissibility and {µ}-permissibility [Sm3], but these cases are not covered by
Proposition 4.31. Finally, for the local models attached to ramified, quasi-split GUn
for n even in 2.6, {µ}-admissibility and {µ}-permissibility are typically not equivalent,
but the conjecture still holds in these cases by [Sm4, Th. 9.7.1].

5. Local models and nilpotent orbits

In a few cases, the special fibers of local models can be described via nilpotent
orbits and their closures. As was first observed in [PR1], this connection is especially
tight in the case of the (ramified) group ResF/F0GLn. This also gives a connection
between affine Schubert varieties for SLn and nilpotent orbit closures. In this section
we discuss this relation in a somewhat informal manner.

5.1. Nilpotent orbits

Let G be a reductive group over a field k and denote by g its Lie algebra, which
we think of as an affine space. Recall that an element x of g is called nilpotent if its
adjoint endomorphism ad(x) : g→ g is nilpotent. The property of being nilpotent is
invariant under the adjoint action ofG on g; a nilpotent orbitNx = {ad(g)·x | g ∈ G}
is the orbit of a nilpotent element x under the adjoint action. Here we consider Nx
as the reduced subscheme with underlying topological space the orbit of x. We will
denote by Nx the Zariski closure of Nx in the affine space g. The varieties Nx have
been the subject of intense study ([KP, BC, dCP2], etc.) The most classical example
of course is when G = GLr and g = Matr×r. ThenNA is the conjugation orbit of the
nilpotent matrix A. These orbits are parametrized by partitions r = (r1 > r2 > · · · >
rs) of r; the numbers ri are the sizes of the blocks in the Jordan decomposition of
A.

5.2. Relations to local models

We consider the situation of 2.4, i.e take G = ResF/F0GLn, where F/F0 is a
totally ramified separable extension of degree e. Let π be a uniformizer of OF, and
let Q(T) ∈ OF0 [T ] be the Eisenstein polynomial satisfied by π.
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Recall from loc. cit. that the minuscule cocharacter µ is determined by choosing
rϕ with 0 6 rϕ 6 n, for each embedding ϕ of F in a fixed algebraic closure F0 of
F0. We choose the lattice chain L = {πkΛ0}k∈Z to be given by the multiples of the
standard OF-lattice in Fn. (Then the corresponding parahoric group is maximal and
special). We denote by M the naive local model Mnaive

G,{µ},L for these choices (defined

in 2.4) and write Mloc for the corresponding local model Mloc
G,{µ},L given as the flat

closure of M⊗OE E over the ring of integers OE of the reflex field E. Denote by kE
the residue field of OE.

Set r =
∑
ϕ rϕ. Then the subspace F := FΛ0 ⊂ Λ0,S := Λ0 ⊗Zp OS occurring in

the definition of M is locally on S free of rank n− r. This allows us to consider the
GLr-torsor M̃ over M defined by

M̃(S) =
{
(F,α)

∣∣ F ∈M(S), α : Λ0,S/F
∼−→ OrS

}
,

and construct a GLr-equivariant morphism

q̃ : M̃ −→ N ,

with

(5.1) N :=

{
A ∈ Matr×r

∣∣∣∣ det(X · I−A) ≡
∏
ϕ

(
X−ϕ(π)

)rϕ , Q(A) = 0
}

,

where the GLr-action on the target is via conjugation. The morphism q̃ is smooth
[PR1, Th. 4.1], and hence we obtain a smooth morphism of algebraic stacks

(5.2) q : M −→ [GLr\N].

Note that the special fiberN⊗OE kE is the GLr-invariant subscheme of the nilpotent
matrices Nilpr×r over kE, given as

(5.3) N⊗OE kE =
{
A ∈ Matr×r

∣∣ det(X · I−A) ≡ Xr, Ae = 0
}

.

Recall the dual partition t of the decomposition {rϕ}ϕ of r defined by

t1 = #{ϕ | rϕ > 1 }, t2 = #{ϕ | rϕ > 2 }, etc.

We have t1 > t2 > · · · > tn. Consider the (reduced by definition) closed nilpotent
orbit Nt that corresponds to the partition t. All matrices in this closure Nt have
Jordan blocks of size at most e. Hence we have a GLr-equivariant closed immersion

i : Nt ↪→ N⊗OE kE.

From [PR1], Theorem 5.4 and the above, we now deduce that the special fiber
Mloc ⊗OE kE of the local model Mloc is isomorphic to the pull-back of i along q.
This gives the following:

Theorem 5.4. There is a smooth morphism of algebraic stacks

qloc : Mloc ⊗OE kE −→ [GLr\Nt]. �
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Corollary 5.5. The special fiber Mloc ⊗OE kE of the local model Mloc for the choice of µ
determined by {rϕ}ϕ is smoothly equivalent to the closed nilpotent orbit Nt. �

In particular, Mloc ⊗OE kE is reduced. By [MvdK] the closed orbits Nt are
normal and Frobenius split (when kE has positive characteristic), and so we conclude
that the same properties are true for Mloc ⊗OE kE.

Remark 5.6. Note that if all rϕ differ amongst themselves by at most 1, then
Nt = (N ⊗OE kE)red. In [PR1], it is conjectured that N ⊗OE kE is in fact reduced.
This holds by a classical result of Kostant when r 6 e, and this is proved by Weyman
in [W] in the cases where either char kE = 0, or where e = 2, comp. Theorem 6.8
below.

Remark 5.7. The fact that Mloc ⊗OE kE is reduced and normal has found an inter-
esting application in the theory of deformations of Galois representations by Kisin
[Ki]. This application is based on the following lemma, comp. [Ki, Cor. 2.4.10]: Let
X be a scheme which is proper and flat over the spectrum S of a complete discrete valuation
ring. We denote by Xη, resp. Xs the generic, resp. the special fiber. If Xs is reduced, then
there are bijections between the sets of connected components

π0(Xs) = π0(X) = π0(Xη).

Consider the dominant cocharacter λ of GLn that corresponds to t, and denote
by Oλ the corresponding Schubert variety in the affine Grassmannian for GLn. Now
we can see that the embedding of the special fiber of the local model in the affine
Grassmannian (cf. 3.3, and for this example [PR1]) gives an isomorphism

(5.8) Mloc ⊗OE kE
∼−→ Oλ.

Since by varying the data t we can obtain all dominant cocharacters λ, this observa-
tion together with Theorem 5.4 also shows

Theorem 5.9 ([PR1, Th. C]). Any Schubert variety in the affine Grassmannian of GLn
is smoothly equivalent to a nilpotent orbit closure for GLr, for suitable r. �

This has also been shown independently by Mirković and Vybornov [MV].
Recall that earlier Lusztig [Lu] interpreted certain Schubert varieties in the affine
Grassmannian of GLr as compactifications of the nilpotent variety of GLr (namely
the Schubert variety corresponding to the coweight (r,0, . . . , 0)), compatible with
the orbit stratifications of both varieties. In particular, as used by Lusztig in his paper,
all singularities of nilpotent orbit closures occur in certain Schubert varieties in the
affine Grassmannians. The above goes in the opposite direction.

Remark 5.10. This tight connection between local models (or affine Schubert va-
rieties) and nilpotent orbits does not persist for other groups. There are, however,
some isolated instances of such a correspondence in other cases. For example, the
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reduced special fibers of the local models for the ramified unitary groups and special
parahoric subgroups are smoothly equivalent to nilpotent orbit closures in the
classical symmetric pairs (sln, son), resp. (sl2n, sp2n) which have been studied by
Kostant-Rallis [KosR], and Ohta [O]. See [PR4, §5], and especially Theorem 5.4 and
its proof in [PR4], for more details. However, not all such nilpotent orbits appear in
this correspondence.

6. Local models and matrix equations

In some cases, local charts around points of local models can be described via
the spectra of affine rings given by generators and relations, in shorthand matrix
form (matrix equations). We have already seen some instances of this in Example 2.4,
Remark 2.35, and §5. Rather than giving a formal definition of what we mean by
matrix equations, we list in this section a few examples. Obviously, structure results
on matrix equations have consequences for local models. What is more surprising is
that sometimes results on local models imply structure results on matrix equations.

6.1. Matrix equations related to naive local models

Our first example is as follows. Let O be a discrete valuation ring with uni-
formizer π. We fix positive integers r and n, and consider the following closed
subscheme of affine space of dimension nr2 over SpecO,

(6.1) Zr,n =

{
(A1, . . . ,An) ∈ Matnr×r

∣∣∣∣ A1A2 · · ·An = A2A3 · · ·A1 = · · · =
= AnA1 · · ·An−1 = π · I

}
.

In the special case r = 1 there is only one equation X1X2 · · ·Xn = π in the n
unknowns X1,X2, . . . ,Xn, which describes the semistable reduction case. The special
fiber Zr,n ⊗O k is called the generalized circular variety over the residue field k. The
scheme Zr,2 ⊗O k is called the variety of circular complexes, and has been considered
long before local models were defined, cf. [MT, St].

Theorem 6.2 (Görtz [Gö1, 4.4.5]). The scheme Zr,n is flat over O, with reduced special
fiber. The irreducible components of its special fiber are normal with rational singularities,
so in particular are Cohen-Macaulay. �

The matrix equation (6.1) arises in the analysis of local charts for local models
for the triple consisting ofGLn, the Iwahori subgroup, and the minuscule cocharacter
µ = (1(r), 0(n−r). Recall from Theorem 2.3 that, in this case, the local model
coincides with the naive local model. More precisely, and similarly to what happened
in 5.2, we define a scheme M̃loc overMloc which parametrizes, in addition to a point
(Fi | i ∈ Z/nZ) of Mloc(S), a basis of Λi,S/Fi. Then associating to the transition
morphisms Λi,S/Fi → Λi+1,S/Fi+1 their matrices in terms of these bases, we obtain
a morphism q : M̃loc → Zr,n, which turns out to be smooth, cf. [F1, PR1]. Hence
the properties claimed in the theorem follow from Theorem 2.3, locally at each
point of Zr,n in the image of q. Something similar holds for any parahoric subgroup
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corresponding to a partial periodic lattice chain L. Now apply this result to the local
model for the triple consisting ofGLrn, the parahoric subgroup corresponding to the
periodic lattice chain L = {Λi | i ∈ rZ}, and the minuscule coweight (1(r), 0(rn−r)).
It is easy to see that in this case the morphism q : M̃loc → Zr,n is surjective, and this
proves the claim, cf. [Gö5].

The next example arises in the analysis of the naive local model for the triple
consisting of a symplectic group, a non-special maximal parahoric subgroup, and
the unique conjugacy class of nontrivial minuscule coweights µ. Let n be even, and
define

(6.3) Z = {A ∈ Matn×n | AJtA = tAJA = π · I }.

Here, as in the beginning of 2.2, J = Jn denotes the matrix describing the standard
symplectic form.

Theorem 6.4 (Görtz [Gö2, §5]). The scheme Z is flat over O, with reduced irreducible
normal special fiber, which has only rational singularities. �

The proof of Görtz of this theorem uses local model techniques, combined
with the theory of De Concini [dC1] of doubly symplectic tableaux which gives a
good basis of the coordinate ring of Z⊗O k as a k-vector space.

Similarly, in the analysis of the naive local model for the triple consisting of a
symplectic group, the parahoric subgroup which stabilizes a pair of lattices Λ, Λ ′

where Λ is self-dual and Λ ′ is self-dual up to scalar π, and the unique (nontrivial
dominant) minuscule coweight µ, the following matrix equations arise,

(6.5) Z = {A,B ∈ Matn×n | AB = BA = π · I, tA = A, tB = B }.

More precisely, Z is locally around the origin isomorphic to an open neighborhood
of the ‘worst point’ of the local model in question.

Theorem 6.6 (Chai–Norman [CN], [DP], Görtz [Gö2, 2.1]). The scheme Z is flat,
normal and Cohen-Macaulay over O, with reduced special fiber. The irreducible components
of its special fiber are normal with rational singularities. �

Whereas Görtz’ proof of this theorem uses local models (in particular, the
embedding of the special fiber in the affine Grassmannian) and Frobenius splitting
methods, the proof of Chai and Norman uses techniques from the theory of algebras
with straightening laws (and the proof in [DP] is a simplification of this proof). The
Cohen-Macaulay property of Z is shown directly in [CN], but it can also be derived
by the methods of Görtz (see [Gö1, §4.5.1]). We refer to [Gö2] and [DP] for further
discussion of other methods in the literature.

Another example of a matrix equation we have seen already in the previous
section, cf. (5.1). For better comparison with the matrix equations appearing right
after it, let us recall it. As in the beginning of 5.2, let F/F0 be a totally ramified
separable extension of degree e. Let π be a uniformizer of OF, and let Q(T) ∈ OF0 [T ]
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be the Eisenstein polynomial satisfied by π. As in loc. cit., we fix a tuple r = (rϕ).
Then

(6.7) N = Nr =

{
A ∈ Matr×r

∣∣∣∣ Q(A) = 0 and
det(X · I−A) ≡

∏
ϕ(X−ϕ(π))rϕ

}
,

which is a scheme over SpecOE, where E is the reflex field corresponding to r.

Theorem 6.8 (Weyman [W]). Assume that all e integers rϕ differ amongst each other
by at most 1. Assume further that either the characteristic of the residue field kE is zero, or
that e 6 2, or that

∑
ϕ rϕ 6 e. Then N is flat over O, with reduced special fiber, which is

normal with rational singularities. �

As explained in the previous section, the scheme N occurs in relation to the
naive local model for the triple consisting of the group G := ResF/F0 GLn, the natural
special maximal parahoric subgroup, and the minuscule cocharacter µ determined
by r, cf. 2.1. If the conclusion of Theorem 6.8 were true without the “further”
restrictions listed (as is conjectured in [PR1]), then the local model and the naive
local model would coincide in this case.

For the triple consisting of G := ResF/F0 GSp2n, the natural special parahoric
subgroup, and the natural minuscule cocharacter µ, one obtains in the analogous
way the following matrix equation, cf. [PR2, 12.5],

(6.9) P =

{(
a b

0 ta

)
∈ Mat2ne×2ne

∣∣∣∣∣ a,b ∈ Matne×ne, tb = −b, Q(a) = 0,
det(X · I− a) ≡

∏
ϕ(X−ϕ(π))n

}
.

Conjecture 6.10 ([PR2, 12.5]). The scheme P is flat over SpecOF0 , with reduced special
fiber.

If this conjecture held true, it would follow that in this case the naive local
model is flat, i.e., coincides with the local model — which would constitute a special
case of Conjecture 2.22.

Our next examples are related to the case of a ramified unitary group. Let
F/F0 be a ramified quadratic extension obtained by adjoining the square root of
a uniformizer π0 of F0. The following matrix equations arise in connection with
the triple consisting of a group of unitary similitudes of size n for F/F0, a special
maximal parahoric subgroup (in the case when n is odd, the parahoric subgroup
fixing a self-dual lattice, and in the case when n is even, the parahoric subgroup
fixing a lattice which is self-dual up to a scalar

√
π0), and a minuscule cocharacter

given by (r, s) with r+ s = n. Consider the following schemes of matrices.
When n is odd,

(6.11) N =

A ∈ Matn×n

∣∣∣∣∣∣
A2 = π0 · I, At = HAH,

charA(T) = (T −
√
π0)

s(T +
√
π0)

r,
∧s+1A = 0, ∧r+1A = 0

 .
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When both n = 2m and s are even,

(6.12) N =

A ∈ Matn×n

∣∣∣∣∣∣
A2 = π0 · I, At = −JAJ,

charA(T) = (T −
√
π0)

s(T +
√
π0)

r,
∧s+1A = 0, ∧r+1A = 0

 ,

where the conditions on wedge powers are imposed only when r 6= s. Here, as in
the beginning of 2.2, H = Hn denotes the antidiagonal unit matrix, and J = Jn the
skew-symmetric matrix with square blocks 0m on the diagonal and Hm, resp. −Hm,
above the diagonal, resp. below the diagonal.

Conjecture 6.13 ([PR4, §5]). The schemes N above are flat over OE, with reduced
special fiber (which is then normal, with rational singularities).

If this conjecture were true, it would follow that for the local models mentioned
above, the wedge local model contains the local model as an open subscheme, cf.
Remark 2.32 (a corrected version of [PR4, Rem. 5.3]).

Remark 6.14. There should be similar matrix equations related to local models for
orthogonal groups. This does not seem to have been investigated so far.

7. Local models and quiver Grassmannians

In a few cases, the special fibers of local models can be identified with certain
quiver Grassmannians in the sense of Zelevinsky and others, cf. [Z]. In this section
we discuss this in rough outline.

7.1. Quiver Grassmannians

Let Q be a quiver, with set of vertices Q0 and set of arrows Q1. Then Q is in the
obvious way a category. Let (V ,ϕ) be a representation of Q over the field k, in other
words, a functor from the category Q to the category of finite-dimensional vector
spaces over k. To any such representation there is associated its dimension vector
d(V) ∈ (Z>0)

Q0 with d(V)i = dimVi. Let e ∈ (Z>0)
Q0 such that e 6 d, i.e., each

component of e is less than or equal to the corresponding component of d. The
quiver Grassmannian associated to these data is the projective variety (comp. e.g. [CR,
§1])

(7.1) Gre(V) =
{
Fi ∈ Gr(ei,Vi), ∀i ∈ Q0

∣∣ ϕi,j(Fi) ⊂ Fj, ∀(i, j) ∈ Q1
}

.

The subgroup GV of elements in
∏
i∈Q0

GL(Vi) which respect the homomorphisms
{ϕi,j}(i,j)∈Q1 acts in the obvious way on Gre(V). Most often, there are infinitely
many orbits.

7.2. Relations to local models

We consider the situation of 2.4, i.e., take G = GLn over F, µ = (1(r), 0n−r)),
and a periodic lattice chain in Fn extracted from the standard lattice chain Λi, i ∈ Z,
by keeping those Λi with i congruent to an element in a fixed non-empty subset
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I ⊂ Z/nZ. Let Λi = Λi ⊗O k, with the linear maps Λi → Λi+1 induced by the
inclusions Λi ⊂ Λi+1. Using the identification Λi+n = πΛi, we may identify Λi+n
with Λi, and therefore define unambiguously Λi for i ∈ Z/nZ. By keeping only
those Λi with i ∈ I, we obtain a representation ΛI of the quiver of type Ã|I|. Here
an extended Dynkin diagram of type Ã defines a quiver by choosing the clockwise
orientation of its bonds. This representation is characterized up to isomorphism by
the following conditions:

(i) dimΛi = n for all i ∈ I.

(ii) dim Kerϕi,i′ = i ′ − i for all i 6 i ′ 6 i+ n.

From 2.1 it is plain that a point of the local model M = Mloc
G,µ,I with values in a

k-scheme S corresponds to a S-valued point Fi of the Grassmannian of subspaces of
dimension n− r of Λi, one for each i ∈ I such that, under ϕi,i′ , the subspace Fi is
carried into a subspace of Fi′ .

Comparing with (7.1), we see that M⊗OF k can be identified with the quiver
Grassmannian Grn−r(ΛI) of subspaces with scalar dimension vector n − r of the
representation ΛI of the quiver of type Ã|I|. Furthermore, under this identification,
the action of the loop group L+PI on M⊗OF k from Example 3.15 coincides with
the action of the automorphism group GV of the quiver ΛI from 7.1. In particular,
in this case the GV -action has only finitely many orbits.

From this perspective, the local model M is a deformation over OF of a quiver
Grassmannian over k.

Remark 7.2. In [CR] and other papers in the area of representations of algebras,
quiver Grassmannians are considered as varieties, i.e., nilpotent elements are ne-
glected. It follows from Görtz’s Theorem 2.3 that the quiver Grassmannians of type
Ã are reduced. For other quiver Grassmannians this question does not seem to have
been considered in the literature.

Remark 7.3. It is not clear which local models can be described in this way.

(i) In 2.4, we mentioned the splitting model M = MG,{µ},L from [PR2] for G =

ResF/F0(GLn), where F/F0 is a totally ramified extension. Similar to the above
identification, the special fiber of M can be described as a subvariety of a quiver
flag variety of a representation of a quiver of type Ã (defined by the condition that
the nilpotent operator induced by π induces the zero endomorphism on a certain
associated graded vector space), cf. [PR2].

(ii) Recall from 2.2 the local model corresponding to the triple (GSp2g, {µ},L),
where {µ} is the unique conjugacy class of nontrivial minuscule coweights of GSp2g,
and where L is a self-dual periodic lattice chain. In fact, to simplify matters, let us
assume that L is maximal. By choosing the symplectic form as in 2.2, and taking for
L the standard lattice chain, we see that Λ̂i = Λ−i. Using again the notation Λi for
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Λi ⊗OF k, we see that we obtain a non-degenerate pairing

(7.4) Λi ×Λ−i −→ k.

Now a point of the special fiber M⊗OF k is given by a subspace Fi of dimension g
of Λi, one for each i, such that, under each map ϕi,i+1 : Λi → Λi+1, the subspace
Fi is mapped into a subspace of Fi+1, and such under the natural pairing (7.4) the
subspaces Fi and F−i are perpendicular to each other, for all i. However, this kind of
object has apparently not been considered in the context of quiver Grassmannians.

8. Local models and wonderful completions

In this section, which is of an (even) more informal nature, we will explain
various relations between the theory of local models and the so-called wonderful
compactifications of symmetric spaces. This extends to also give a relation of local
models for GLn with Lafforgue’s compactifications of the quotients (PGLr)s/PGLr.
At the moment we do not have a very good understanding of the scope of these
connections between the theory of local models and those theories; they appear
somewhat sporadic. As a result we will mainly concentrate on several illustrative
examples and explanations that, we hope, are enough to explain why one should
expect such a connection in the first place. We also hope that this will motivate
readers to explore possible generalizations.

An instance of a connection between some local models and wonderful com-
pletions was first observed by Faltings [F1] (also [F2]). Faltings starts by considering
certain schemes given by matrix equations. These schemes are given by embedding
symmetric spaces in projective spaces defined by homogeneous line bundles and
considering their closures. In several cases, these give affine charts of local models in
the sense of §6. Faltings then uses constructions from the theory of wonderful com-
pletions of symmetric spaces to produce birational modifications of these schemes.
In many cases, these also give modifications of the corresponding local models
which are regular and have as special fiber a divisor with (possibly non-reduced)
normal crossings.

In this section, after a quick review of wonderful completions (8.1), we will
explain (in §§8.2, 8.3) a different and more direct relation between local models and
wonderful completions, based on some unpublished notes [P2] by the first author.
This was inspired by Faltings’ paper. The goal in this approach is to relate local
models to closures of orbits of parabolic subgroups in the wonderful completion;
such parabolic orbit closures have been studied by Brion and others [Br2, BrP, BrTh].
In some cases this gives an alternative construction of the local models. Then, in
8.4, we give some comments on Faltings’ methods.

Contrary to our notation earlier in the paper, in this section we shall use the
symbols Λ0, Λ1, . . . to denote arbitrary lattices in a vector space, not lattices in the
standard lattice chain (2.2).
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8.1. Wonderful completions

For a more complete overview of this “wonderful" theory and its connections
to classical algebraic geometry we refer the reader to [dC2, dCP1]. We also refer
to [dCS] and [F1, §2] for details on the actual constructions in the generality we
require. The basic set-up is as follows.

Let G be an adjoint semi-simple algebraic group over a field F of characteristic
6= 2 which is equipped with an involution θ defined over F. Let H = Gθ be the
fixed points of the involution which is then a reductive group over F; it is connected
when G is simply connected, cf. [dCS, §1]. The corresponding symmetric space is
the affine quotient X = G/H over F. The wonderful completion X of X is a smooth
projective variety over F which contains X as a dense Zariski open subset. It supports
a left action of G that extends the translation action on X. In addition, it has the
following property: The complement X−X is a divisor with normal crossings which
is the union of a finite set of smooth irreducible G-stable divisors such that all their
partial intersections are transversal; the closures of the G-orbits in X are precisely
these intersections.

One basic example is obtained by taking the group to be the productG×Gwith
θ(g1,g2) = (g2,g1), so that X = (G×G)/G ' G. Then X = G is a compactification
of the group G. Another well-studied example is given by taking the group PGLn
with involution given by θ(g) = (tg)−1. Then H = PGOn, and X is the variety of
invertible symmetric matrices and X is the classical variety of “complete quadrics,”
see [dCP1, Lak, dCGMP].

8.2. The example of the general linear group

In this subsection, we explain the method of [P2]. We will concentrate on two
classes of examples. For simplicity, we only consider the equal characteristic case17,
i.e., the local models will be schemes over the discrete valuation ring O = k[[t]]

with uniformizer π = t. Let F = k((t)). Suppose that Λ0, Λ1 are two O-lattices
in the vector space V = Fn such that Λ0 ⊂ Λ1 ⊂ t−1Λ0. Choose a O-basis of
e1, . . . , en of Λ1 such that Λ0 has O-basis formed by e1, . . . , em, tem+1, . . . , ten, for
some m 6 n− 1. Fix an integer 0 < r < n.

Recall from 2.1 that the naive local model M =Mnaive corresponding to the
triple consisting of GLn, of the minuscule cocharacter µ = (1(r), 0(n−r)), and of
the above lattice chain, is the scheme over SpecO whose S-points parametrize pairs
(F0,F1) of OS-subbundles of rank n− r of Λ0 ⊗O OS, resp. Λ1 ⊗O OS, such that the

17An extension to the mixed characteristic case depends on defining wonderful completions over Zp.
This should not present any problems (provided p is odd) and is roughly sketched in [F1] and [dCS],
but we prefer to leave the details for another occasion.
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following diagram commutes

(8.1) Λ0 ⊗O OS //

⊂

Λ1 ⊗O OS //

⊂

t−1Λ0 ⊗O OS

⊂

F0 // F1 // t−1F0.

Here the horizontal maps on the top row are induced by the inclusions Λ0 ⊂ Λ1 ⊂
t−1Λ0 and t−1F0 stands for image of F0 under the isomorphism Λ0 ⊗O OS

∼−→
t−1Λ0 ⊗O OS induced by multiplication by t−1. (Recall that in this case, by Görtz’s
Theorem 2.3, the naive local model is equal to the local model Mloc =M.)

Of course,M is realized as a closed subscheme of the product of Grassmannians
Gr(n−r,n)O×OGr(n−r,n)O. The generic fiber is isomorphic to Gr(n−r,n)F, and in
the generic fiber the embedding ofM⊗OF in the product Gr(n−r,n)F×FGr(n−r,n)F
is described by F1 7→ (A · F1,F1) with A = diag(1(m), t(n−m)) (m copies of 1 and
n − m copies of t placed along the diagonal.) This allows us to view M as a
deformation over O of what is essentially the diagonal embedding Gr(n− r,n)F ↪→
Gr(n− r,n)F ×F Gr(n− r,n)F. Such deformations have been considered by Brion
[Br1] (following work by Thaddeus [Th] and others on Kapranov’s “Chow quotients"
[Ka]). Brion views such deformations as parametrized by a part of the Hilbert scheme
of subschemes of Gr(n− r,n)O ×O Gr(n− r,n)O.

Here is how this is related to the wonderful completion of G = PGLn. Set
P = Pµ for the standard parabolic subgroup ofG such that Gr(n−r,n) = G/P. LetG
be the wonderful completion of G and denote by P ⊂ G the Zariski closure of P in G.
The product G×G acts on G in a way that extends the action (g1,g2) ·g = g1gg

−1
2 of

G×G on G. This also restricts to an action of P × P on P. Over G, we can construct
a family of closed subschemes of Gr(n − r,n)× Gr(n − r,n) as follows. Consider
the commutative diagram

M
ι //

φ

��
π

''PPPPPPPPPPPPPPPPP G/P ×G/P ×G

prG
��

G/P ×G/P G.

Here M = (G×G)
P×P
× P is the “contracted product” which is given as the quotient

of G×G× P by the right action of P × P by(
(g1,g2), x

)
· (p1,p2) =

(
g1p1,g2p2, (p−1

1 ,p−1
2 ) · x

)
.

The morphism ι is given by

ι
(
(g1,g2), x

)
=
(
g1P,g2P, (g1,g2) · x

)
and the morphism φ by φ

(
(g1,g2), x

)
= (g1P,g2P). It is easy to see that ι is a closed

immersion; hence we can view π : M → G as a family of closed subschemes of
G/P ×G/P over the base G. It follows from [Br1, BrP] that this is a flat family. Now
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the matrix A gives, by the valuative criterion of properness, a well-defined point
[A] : Speck[[t]]→ G. Then it is not hard to see that the base change M×G,[A] O of π
along [A] can be identified with the flat closure of the generic fiber M⊗O F in the
naive local model M. By definition, this is the local model Mloc for our situation,
and so we obtain the following result.

Theorem 8.2. In the situation described above, there is an isomorphism

Mloc 'M×G,[A] SpecO.

Indeed, using the flatness result above, it is enough to check that this base
change is a closed subscheme of the naive local model M. This can be easily verified
(see the proof of Theorem 8.6 below for a more detailed explanation of a more
interesting case).

Remark 8.3. a) As was pointed out above, the naive local modelM is flat by Görtz’s
theorem, and so Mloc =M. However, the above construction of the local model is
independent of Görtz’s result.

b) Note that the morphism φ above is a (Zariski) locally trivial fibration with
fibers isomorphic to P. Hence, the singularities of the total space M are smoothly
equivalent to the singularities of P. The singularities of parabolic orbit closures in
complete symmetric varieties (such as G) have been studied by Brion and others (e.g
[Br2, BrP]); we can then obtain results on the singularities of the local models in
question. For example, one can deduce from this approach that the special fibers
of these local models are reduced and Cohen-Macaulay. Of course, these results
can also be obtained by the method of embedding the local models in affine flag
varieties described in the previous sections (see [Gö1]), cf. Theorem 2.3. (In the case
of this lattice chain, which consists of multiples of two lattices, one can obtain that
the special fiber, as a whole, is Cohen-Macaulay, cf. Remark 2.5. See also Remark
2.10 and Theorem 6.6 for similar results in the symplectic case.)

8.3. Other examples, some symplectic and orthogonal cases

Here we will explain how the method of 8.2 can be extended to relate certain
local models for maximal parahoric subgroups in the cases of symplectic and even
orthogonal groups to wonderful completions of the corresponding symmetric spaces.

Suppose that n = 2m is even. We assume that V = Fn = k((t))n is equipped
with a perfect form h : V × V → F which is alternating, resp. symmetric, the two
cases leading to a description of local models with respect to the symplectic, resp.
the orthogonal group. When h is symmetric, we assume char(k) 6= 2. We will
assume that the form h is split and “standard" i.e it satisfies

(
h(ei, ej)

)
i,j = Jn, resp.(

h(ei, ej)
)
i,j = Hn, for the standard basis {ei}i of V = Fn, with the matrices Jn, resp.

Hn as in (2.6) and (2.7). Denote by S the matrix of the form h so that S = Jn, resp.
S = Hn.
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Recall that we denote by G(V ,h) the group of similitudes of the form h. By
the above, this is GSpn(F), resp. GOn(F). We consider the minuscule cocharacter
µ = (1(m), 0(m)) for G(V ,h) expressed as a cocharacter for the standard torus in
GL(V) = GLn.

For 0 6 r 6 m, we consider the lattice

Λ =

r∑
j=1

πOej +

n∑
j=r+1

Oej.

Then Λ ⊂ Λ̂. We will denote by α the inclusion Λ ⊂ Λ̂. The form h restricts to give
an O-bilinear form Λ× Λ → O and a perfect O-bilinear form Λ× Λ̂ → O; we will
also write h for these forms. We also denote by h ′ the (different) alternating, resp.
symmetric, form on Λ given on the standard basis {πe1, . . . ,πer, er+1, . . . , en} of Λ
by the matrix S . Denote by L the O-submodule of rankm of Λ generated by the first
m standard basis elements of Λ as listed above; it is totally isotropic for both forms
h ′ and h.

In this case, the local model Mloc can be described as follows. Let us first give
the “naive" local model M = Mnaive for this situation. Consider the functor over
SpecO whose points with values in an O-scheme S are given by OS-submodules
F ⊂ Λ⊗O OS, which are OS-locally free direct summands of rank m such that

(αOS)(F) ⊂ F⊥.

Here the perpendicular F⊥ ⊂ Λ̂ ⊗O OS is by definition the kernel of the OS-
homomorphism (Λ⊗O OS)

∗ = Λ̂⊗O OS → F∗ which is the dual of the inclusion
F ⊂ Λ⊗O OS. This condition is equivalent to

(h⊗O OS)(F,F) ≡ 0.

This functor is representable by a projective scheme M over SpecO which is a closed
subscheme of the Grassmannian Gr(m,n) over SpecO. The generic fiber of M can
be identified with the Langrangian, resp. (disconnected) orthogonal Grassmannian
of isotropic m-subspaces in n-space. The local model Mloc is by definition the (flat)
Zariski closure of the generic fiber in M.

Consider the involution θ on G = PGLn given by θ(g) = S−1(tg)−1S. The
fixed points H = PGLθn can be identified with the groups PGSp2m, resp. PGOn. Let
us consider the symmetric space X = G/H. The morphism

gH 7−→ Ag = (tg)−1 · S · g−1.

identifies X with the quotients{
A ∈ Matn×n

∣∣ tA = −A, det(A) 6= 0
}/

Gm ,{
A ∈ Matn×n

∣∣ tA = A, det(A) 6= 0
}/

Gm
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of antisymmetric, resp. symmetric n× n invertible matrices up to homothety. Con-
sider the wonderful completion X of the symmetric space X = G/H. By the construc-
tion of X, it follows that there is a morphism

T : X −→ Pn2−1 = (Matn×n − {0})/Gm

which extends the natural inclusion G/H ↪→ (Matn×n − {0})/Gm. The morphism T

factors through the closed subscheme given by matrices which are antisymmetric,
resp. symmetric. Now let us consider the parabolic P of G that corresponds to µ, so
that Gr(m,n) = G/P. Let us also consider the Zariski closure PmodH = P/P ∩H of
the orbit of 1 ·H by the action of P ⊂ G in X.

There is a diagram

(8.4) G/P
q←− G×P (PmodH) π−→ G/H.

Here G ×P (PmodH) = (G × PmodH)/P where the quotient is for the right P-
action given by (g, x) · p = (gp,p−1 · x). We have q(g, x) = gP and π is given by
π(g, x) = g · x, via the action of G on G/H. There is also a morphism

(8.5) ι : G×P (PmodH) −→ G/P ×G/H ,

given by ι(z) =
(
q(z),π(z)

)
. These fit in a diagram

M
ι //

q

��

π
%%JJJJJJJJJJJ G/P ×G/H

pr2

��

G/P G/H,

where M = G×P (PmodH). As in [Br1], one can see that:

a) The morphism q is an étale locally trivial G-equivariant fibration with fibers
isomorphic to PmodH.

b) The morphism ι is a closed immersion which identifies G ×P (PmodH) with
the closed subscheme of G/P × G/H whose points (gP, x) satisfy the “incidence"
condition x ∈ g · (PmodH).

c) The morphism π : M→ G/H is flat.

Now consider the matrix HΛ =
(
h(ei, ej)

)
ij
∈ Matn×n(O) obtained by the

restriction of our form h to Λ×Λ. Since h⊗O F is perfect, this matrix HΛ gives an
F-valued point of G/H. By properness, this extends to a point

[HΛ] : SpecO −→ G/H.

After these preparations we can finally give the description of the local model.

Theorem 8.6 ([P2]). Under our assumptions, there is an isomorphism

Mloc 'M×G/H,[HΛ] SpecO.
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Proof. (Sketch) Denote by M ′ the base change in the statement of the theorem:

(8.7) M ′ //

��

G×P (PmodH)

π

��

SpecO
[HΛ]

// G/H.

By c), M ′ → SpecO is flat. Since, by definition, the local model Mloc is the Zariski
closure of the generic fiber M ⊗O F in the naive local model M, it remains to
show that M ′ is a closed subscheme of M and has the same generic fiber, i.e.,
M ′ ⊗O F =M⊗O F. Let us identify G/P with the Grassmannian using gP 7→ F = gL.
Recall that we can identifyM with a closed subscheme of G/P: this is the subscheme
of points gP for which [HΛ] ∈ g · (PmodH), or equivalently g−1 · [HΛ] ∈ PmodH.
Using that L is an isotropic subspace for the form h ′, we now obtain that the image
of PmodH under the morphism T is contained in the closed subscheme with affine
cone the antisymmetric or symmetric matrices A for which

(8.8) tv ·A ·w = 0 for all v,w ∈ L .

Now suppose that gP is inM ′, i.e., g−1 · [HΛ] ∈ PmodH. By applying T we find that
A = (tg)T([HΛ])g satisfies (8.8). Since, by definition, the O-valued point T([HΛ]) is
equal to HΛ =

(
h(ei, ej)

)
ij

, we obtain that

(8.9) tv ·t gT([HΛ])g ·w = h(gv,gw) = 0 for all v,w ∈ L .

Since F = gL, this shows that F is isotropic for h. Hence M ′ is a closed subscheme
of M. Now it is not hard to show that the generic fibers of M ′ and M are equal, and
the claim follows. �

Remark 8.10. This approach can also be applied to the local model studied by Chai
and Norman ([CN], cf. (6.5)) and to certain orthogonal local models corresponding
to pairs of lattices. The relevant symmetric space is the one corresponding to the
symplectic, resp. the orthogonal group. In the interest of brevity we omit discussing
these examples.

8.4. Wonderful completions and resolutions

In what follows, we will first explain in rough outline some of the constructions
of [F1] in the case of the local model M = Mloc for GLn considered in 8.2 above.
Faltings’ approach also applies to cases of other groups, see Remark 8.17. Then
we sketch the method of [F2] to include more general parahoric level structures
(defined by more than two lattices). Similar constructions also appear in the work of
Genestier [Ge1, Ge3]. The main goal of all these papers is to produce resolutions of
a local model Mloc which are regular and have as special fiber a divisor with normal
crossings. More precisely, this goal may be formulated as follows.
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Recall that, in all cases that it is successfully constructed, the local model
Mloc
G,{µ},L supports an action of the parahoric group scheme G⊗O OE.

Definition 8.11. An equivariant modification of Mloc
G,{µ},L consists of a proper OE-

scheme that supports an action of G ⊗O OE and a G ⊗O OE-equivariant proper
birational morphism π : N → Mloc

G,{µ},L, which is an isomorphism on the generic
fibers. We can obtain such modifications by blowing-up G ⊗O OE-invariant sub-
schemes of Mloc

G,{µ},L which are supported in the special fiber.

It is reasonable to conjecture that there always exists an equivariant modifi-
cation N →Mloc

G,{µ},L such that N is regular and has as special fiber a divisor with
(possibly non-reduced) normal crossings [P1].

Let us return to the local model M = Mloc for GLn and µ = (1(r), 0(n−r))

considered in 8.2. Consider, as in §6, the GLr ×GLr-torsor

M̃ −→M

given by choosing bases for Λ0/F0 and Λ1/F1,

M̃(S) =
{
(F0,F1) ∈M(S), α0 : Λ0,S/F0

∼−→ OrS, α1 : Λ1,S/F1
∼−→ OrS

}
.

The scheme M̃ affords a morphism q : M̃→ Y, where Y is the O-scheme of matrices

(8.12) Y =
{
(A,B) ∈ Matr×r ×Matr×r

∣∣ A · B = B ·A = π · I
}

,

comp. (6.1). The morphism q is given by sending (F0,F1;α0,α1) to the pair of
matrices that describe the maps Λ0,S/F0 → Λ1,S/F1, resp. Λ1,S/F1 → Λ0,S/F0

induced by Λ0 ⊗O OS → Λ1 ⊗O OS, resp. Λ1 ⊗O OS → Λ0 ⊗O OS. It is not hard to
see that the morphism q : M̃→ Y is smooth, comp. [PR1, Th. 4.2]. The scheme Y
supports an action of GLr ×GLr given by

(g1,g2) · (A,B) = (g1Ag
−1
2 ,g2Bg

−1
1 ) ,

such that q is GLr × GLr-equivariant. Hence we obtain a smooth morphism of
algebraic stacks

(8.13) M −→ [(GLr ×GLr)\Y].

Now consider the following variant of Y,

Y1 =
{
(A,B,a)

∣∣ A · B = B ·A = a · Id
}
⊂ Matr×r ×Matr×r × A1 ,

regarded as a k-variety with GLr × GLr-action. Following [F1, p. 194], (see also
[Ge3, §2.2]), we can now see that the open subset Y1 − {a = 0} is a G2

m-bundle over
PGLr ' (PGLr×PGLr)/PGLr and actually Y1 can be viewed as a double affine cone
over the projective variety X in P(Matr×r)× P(Matr×r) given by the closure of the
image of the map A 7→ (A,Aadj), where Aadj denotes the adjugate matrix of A. As
in loc. cit. we see that the total space of the corresponding affine bundle obtained
by pulling back by PGLr → X provides a resolution Ỹ1 → Y1. By intersecting Ỹ1

with a − π = 0, we obtain a resolution Ỹ → Y. Explicitly, Ỹ can be obtained by
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successively blowing up ideals obtained from minors of A and B. This can now be
used to obtain that in this very special case:

Theorem 8.14. There exists an equivariant modification π : N → Mloc such that N is
regular and has as special fiber a divisor with simple normal crossings. �

Remark 8.15. One can attempt to generalize this method of resolution, as well as
the method of [P2], to general parahoric level subgroups. Let us start with a lattice
chain

Λ0 ⊂ Λ1 ⊂ · · · ⊂ Λs−1 ⊂ t−1Λ0

in V = Fn and consider the corresponding local model for G = GLn and µ =

(1(r), 0(n−r)). The natural replacement for PGLr = (PGLr × PGLr)/PGLr to accom-
modate more than two lattices would be a suitable completion X of the quotient
X = (PGLr)

s/PGLr. Unfortunately, there is no easy “wonderful" choice for such
a completion. Indeed, the equivariant compactifications of such quotients have a
very complicated theory, which was developed by Lafforgue [Laf]. To transpose the
theory of [P2], one can then consider the corresponding closures in the completion
of a product of parabolics and attempt to obtain local models as pull-backs of the
corresponding universal families. The details of such a general construction have
not been worked out. On the other hand, as far as constructing resolutions of local
models in the style of Theorem 8.14 are concerned, an approach using completions
of (PGLr)s/PGLr is given in [F2], see also [Ge3].

Remark 8.16. A somewhat different but related point of view which also connects
with Lafforgue’s completions is explained in [F2]. Using it, Faltings constructs a
resolution of the local models of Remark 8.15 when r = 2 (when r = 1 the local
models themselves have the desired properties, cf. the second part of Theorem 2.3).
We will not attempt to fully reproduce his (ingenious!) construction in this survey,
but here is an idea.

Faltings starts with the following observation: If R is a discrete valuation ring,
then an R-valued point F(R) := {Fi(R)}i of the local model Mloc gives a sequence of
free R-modules

F0 ⊂ F1 ⊂ · · · ⊂ Fs−1

of rank r. This sequence can be viewed as a lattice arrangement in a vector space of
dimension r. Note that the local model Mloc and all its proper modifications N that
share the same generic fiber, also share the same set of R-valued points for a discrete
valuation ring R. We can now view the search for a suitable birational modification
N→Mloc as a search for a suitable parameter space of lattice arrangements as above.
Observe that to any such lattice arrangement we can associate its corresponding
Deligne scheme D = D(F(R)) over SpecR (which is a type of local model on its own)
cf. [F2, §5], [Mu]. A suitable blow-down of the Deligne scheme gives a “minimal"
modelDmin with toroidal singularities. Now parameters for a space of lattice arrange-
ments can be obtained by looking at moduli of these minimal Deligne schemes.
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More specifically, Faltings constructs a universal family of lattice arrangements that
supports a universal minimal Deligne scheme. The base of this family is a projective
equivariant embedding of the homogeneous space (PGLr)

s/PGLr. It turns out that
this embedding is of the kind considered by Lafforgue. As explained in Remark
8.15 above, this can then be used to obtain modifications of the local models. For
example, when r = 2, the Deligne scheme is a projective flat curve over SpecR with
generic fiber P1 and special fiber a chain of P1’s intersecting transversely (our first
local model for Γ0(p) in Example 2.4 is such an example of a Deligne scheme).
The minimal model Dmin now gives a semi-stable curve over SpecR and we can
parametrize the lattice arrangement by a corresponding point of the moduli space
of genus 0 semi-stable marked curves. In this case, Faltings’ construction produces
a smooth compactification of (PGL2)

s/PGL2 and hence also a regular equivariant
modification of the corresponding local model for µ = (1(2), 0(n−2)) and the peri-
odic lattice chain with smembers. See also [KT] for some more recent developments
in this circle of ideas.

Remark 8.17. In [F1], Faltings gives a construction of resolutions of local models in
some cases related to other groups. This is done by working with explicit schemes of
matrices that give affine charts forMloc, and relating those to wonderful completions.
This then leads to resolutions for these affine charts. One can then obtain equivariant
resolutions of the corresponding local models as in Theorem 8.14 (note however
that the special fibers of these resolutions are not always reduced).

We conclude this section with a list of some matrix equations which are among
those investigated by Faltings [F1, §4]. Before doing so, we make two remarks. First
of all, even though some of the matrix equations that Faltings writes down are
among the ones discussed in §6 (e.g., Z in (6.5) appears in the middle of p. 194
in [F1], and N of (6.11), resp. (6.12) occurs in the middle of p. 195 in [F1]), and
therefore are closely related to local models, this is less clear for others. In fact, his
list arises from embedding symmetric spaces in projective spaces via homogeneous
line bundles, and considering the singularities which occur in their closures—so
there is a priori no connection to local models. Secondly, Faltings is less interested
in questions of flatness, but rather allows himself to pass to the flat closure of the
generic fiber, i.e., to the affine variety with coordinate ring obtained by dividing out
by π-torsion, and then tries to construct resolutions of those.

Again we fix O with uniformizer π. One matrix equation considered in [F1] is

(8.18) Z = {A ∈ Matn×n | AAad = AadA = π · I },

where Aad is the adjoint of A with respect to a symmetric or a symplectic form.
Faltings proves that, when n is even, the flat closure of Z ⊗O F inside Z is Cohen-
Macaulay with rational singularities. When n is odd, the flat closure of Z ⊗O F

inside Z is not Cohen-Macaulay, but its normalization is, with rational singularities.
Furthermore, he gives equivariant resolutions of these flat O-schemes which have a
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normal crossings divisor as their special fibers, and computes the multiplicities of
the irreducible components.

In a similar vein, Faltings also analyzes the intersection of Z with the locus
where A = Aad, i.e.,

(8.19) {A ∈ Matn×n | A = Aad,A2 = π · I }.

When Aad is the adjoint of A for a symmetric form, this matrix equation relates to
local models for the ramified unitary group, and the maximal parahoric subgroup
fixing a self-dual lattice, comp. (6.11). Similarly, he also considers the matrix
equation

(8.20) {A ∈ Matn×n | A = −Aad,A2 = π · I }.

We refer to [F1, §4] for further matrix equations, and results concerning them.
In [F2, Th. 13], Faltings constructs resolutions of local models in the case of

the symplectic group of genus 2, for more general parahoric subgroups (see also
[Ge3]).
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