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Introduction

One of the basic problems in the arithmetic theory of Shimura varieties is the construction

of natural models over the ring of integers OE of the reflex field E. One would like to

construct models which are flat and have mild singularities. Such models should be useful

in various arithmetic applications. In particular, they should allow one to use the Lefschetz

fixed point formula for the complex of nearby cycles to calculate the semi-simple zeta

function at a non-archimedean prime of E.

When the Shimura varieties is the moduli space over Spec (E) of abelian varieties with

additional polarization, endomorphisms and level structure (a Shimura variety of PEL type),

versions of the moduli problem sometimes make sense over Spec (OE). In this case the

corresponding moduli schemes define models over OE , and one may ask whether they satisfy

the requirements spelled out above.

Let us fix a prime number p and consider a level structure of parahoric type in p. In this

case one can expect that the problem of defining a natural integral model has a positive

solution. When the parahoric is hyperspecial, and the group G defining the Shimura variety

has as simple factors only groups of type A or C, Kottwitz [Ko] has shown that the model

defined by the natural extension of the moduli problem has good reduction (at least when

p 6= 2). When the parahoric is defined in an elementary way as the stabilizer of a selfdual
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periodic lattice chain in a p-adic vector space, integral models of the above type were defined

in [RZ]. When the group G only involves types A and C and splits over an unramified

extension of Qp, all parahorics can be described in this way and Görtz [Gö1, Gö2] has

shown in this case that the models defined in [RZ] are indeed flat with reduced special fiber

and with irreducible components which are normal and with rational singularities. This

follows earlier work by Deligne and Pappas [DP], by Chai and Norman [CN], and by de

Jong [J]. In a few cases, these singularities can be resolved to construct semi-stable models

or at least models with toroidal singularities. Here we mention work by Genestier [Ge1],

by Faltings [Fa1-2], and by Görtz [Gö3]. When the group G is of type A or C and is split

over Qp, Haines and Ngo [HN] have calculated the semi-simple trace of Frobenius on the

sheaves of nearby cycles at any point in the reduction of the natural model at any prime

ideal of OE of residue characteristic p. Indeed, they give a group-theoretical expression for

this semi-simple trace that had been conjectured earlier by Kottwitz.

In [P1] the case of a unitary group that corresponds at p to a ramified quadratic extension

of Qp was considered. The parahoric subgroup considered in [P1] is the stabilizer of a

selfdual lattice. In this case, it was shown in loc. cit. that the models proposed in [RZ] are

not flat in general. Furthermore, a closed subscheme of this model was defined and it was

conjectured that this closed subscheme is flat and has other good properties. This conjecture

is still open, although it is proved in [P1] for signature type (r, 1). In the intervening years

it became clear that more generally, when the group G splits over a ramified extension of

Qp, the models defined in [RZ], which were subsequently renamed naive models, are not

the correct ones. Also, as was pointed out by Genestier to one of the authors several years

ago, the naive models have pathological properties in the case of even orthogonal groups,

even those that split over Qp.

There are two ways to overcome the shortcomings of the naive models. The first one

is to force flatness by taking the flat closure of the generic fiber in the naive model, and

to investigate the properties of the models obtained in this way. The second one is to

strengthen the naive formulation of the moduli problem in order to obtain closed subschemes

of the naive models and to show that these models have good properties, like flatness. In

the case that the parahoric subgroup is the stabilizer of a self-dual periodic lattice chain,

there is a well-known procedure ([DP], [RZ]) to reduce these questions to problems of the

corresponding naive local models. The advantage of this approach is that we are then

dealing with varieties that can be defined in terms of linear algebra. Furthermore, the

second approach sometimes leads in this way to very explicit problems on the structure of

varieties given by matrix identities.

In [PR1] and [PR2] we considered groups G which after localization over Qp are of the

form ResF/Qp
G′, where G′ is the general linear group or the group of symplectic similitudes,

and where F is a ramified extension of Qp. We gave three ways of defining good models

in this case, which are all in the spirit of the first approach. The first one is in terms of a

splitting model which in turn is defined in terms of the naive local model for the group G′.
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The second one is by flat closure. The third one is by flat closure for the maximal parahorics,

and then by taking intersections inside the naive local model for G. It was shown in [PR2]

that all three methods lead to the same models. The approach through a strengthening of

the moduli problem turned out to be very complicated in the case of G′ = GLn. In the

case G′ = GSp2n, we conjectured that the naive model is flat. This conjecture is still open,

but Görtz [Gö4] has at least proved that the naive model is topologically flat in this case.

Furthermore, we gave in [PR2] a partial calculation of the semi-simple trace of Frobenius

on the sheaves of nearby cycles for these cases, by reduction to the theorem of Haines and

Ngo (here ‘partial’ means that we only compute these traces after a ramified base change).

Note that in the cases considered in [PR2], all parahorics are stabilizers of selfdual periodic

lattice chains.

In the present paper we deal with the other typical case of a group G which splits over

a ramified extension of Qp, namely the group of unitary similitudes corresponding to a

quadratic extension of Q which is ramified at p. At the end we also comment on the case of

an even orthogonal group since this case is closely intertwined with the case of the ramified

unitary group when one approaches the construction problem in the second way.

To explain our results, we need to introduce some notation. We consider the group G of

unitary similitudes for a hermitian vector space (W,φ) of dimension n ≥ 3 over an imaginary

quadratic field K ⊂ C, and fix a conjugacy class of homomorphisms h : ResC/RGm −→ GR

corresponding to a Shimura datum (G,Xh) of signature (r, s) with s ≤ r. We assume that

K/Q is ramified over p and that p 6= 2. Let F = K ⊗Qp and V = W ⊗Q Qp. We assume

that the hermitian form on V is split, i.e that there is a basis e1, . . . , en such that

φ(ei, en−j+1) = δij , ∀i, j = 1, . . . , n .

We fix a square root π of p. For i = 0, . . . , n− 1, set

Λi = spanOF
{π−1e1, . . . , π

−1ei, ei+1, . . . , en} .

We complete this into a selfdual periodic lattice chain by setting Λi+kn = π−kΛi. Let

n = 2m+ 1 when n is odd and n = 2m when n is even.

It turns out that when n = 2m + 1 is odd, the stabilizer of a partial selfdual periodic

lattice chain is always a parahoric. The conjugacy classes of parahoric subgroups of G(Qp)

correspond in this way to non-empty subsets I of {0, . . . ,m} (stabilizer of the lattices Λj ,

where j = ±i+kn for some i ∈ I and some k ∈ Z). When n = 2m is even, the situation is a

little more complicated, since the stabilizer groups sometimes contain a parahoric subgroup

with index 2. Also, the conjugacy classes of parahoric subgroups correspond in this case

to subsets I of {0, . . . ,m} with the property that if m − 1 ∈ I then also m ∈ I. Let us

denote by Mnaive
I the naive local model in the sense of [RZ], cf. further below. This is a

projective scheme over Spec (OE). We also introduce the local model, the flat closure M loc
I

of the generic fiber in Mnaive
I . In all cases we construct (naive resp. flat) models of the

Shimura variety ShC(G,Xh), where C is an open compact subroup of the finite adele group
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with parahoric p-component, which is étale locally around each point isomorphic to the

naive local model resp. the local model for suitable I. To understand the structure of these

models of the Shimura variety it therefore suffices to study their local versions.

The main tool towards this goal is, as already in Görtz’ paper [Gö1], the embedding of

the geometric special fiber of the naive local model in a partial affine flag variety over the

algebraic closure k of the residue field. In our case, we have to employ the affine flag varieties

for non-split groups whose theory is developed in [PR3]. More precisely, let H be the quasi-

split unitary group over k((t)) which corresponds to a ramified quadratic extension of k((t))

and let F be the affine flag variety of H. We then obtain a closed embedding of the special

fiber of Mnaive in F . Here Mnaive denotes the naive local model for I = {0, . . . ,m}. This

embedding is equivariant for the action of the Iwahori subgroup, and hence its image is a

union of Schubert varieties. These Schubert varieties are enumerated by certain elements

of the affine Weyl group Wa of H. To describe this subset of Wa, recall that the Shimura

datum (G,Xh) defines a minuscule coweight µ = µr,s of H, and that to a coweight µ there

is associated a finite subset Adm(µ) of Wa, the µ-admissible set [R]. One of the main results

of the present paper is the following theorem.

Theorem 0.1. The union of Schubert varieties over the µ-admissible set

A(µ) =
⋃

w∈Adm(µ)
Sw

is contained in M̄ loc, the special fiber of the local model. If the coherence conjecture of

[PR3] is true, then this containment is in fact an equality and M̄ loc is reduced and all its

irreducible components are normal and with rational singularities.

The coherence conjecture of [PR3] is an explicit formula for the dimension of the space of

global sections on A(µ) of the natural ample line bundle L on F . The conjecture is proved

in the cases of GLn and of GSp2n, but is open in general for ramified unitary groups.

Something analogous is proved here also for local models M loc
I for proper subsets I of

{0, . . . ,m}. In various special cases we can however dispense with the coherence conjecture

of [PR3]. We prove the following result.

Theorem 0.2. Let I = {0} if n is odd, and I = {m} if n = 2m is even. The special fiber

of the local model M loc
I is irreducible and reduced and is normal, Frobenius split and with

only rational singularities.

We note that the parahoric subgroups corresponding to the subsets I in this theorem

are special in the sense of Bruhat-Tits theory, but that when n is odd, there are special

parahorics which are not conjugate to the parahoric subgroup for I = {0}.
For the case of Picard surfaces, we have a complete result for all parahorics.
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Theorem 0.3. Let n = 3.

a) Mnaive
{0} is normal and Cohen-Macaulay. Furthermore, Mnaive

{0} is flat over Spec (OE)

and is smooth outside a single point of the special fiber. Blowing up this point yields a

semi-stable model with special fiber consisting of two smooth surfaces meeting transversely

along a smooth curve.

b) M loc
{1} is smooth over Spec (OE), with special fiber isomorphic to P2.

c) M loc
{0,1} is normal and Cohen-Macaulay, with reduced special fiber. Its special fiber has

two irreducible components which are normal and with only rational singularities. These

two irreducible components meet along two smooth curves which intersect transversally in a

single point.

It is an interesting question whether local models can be defined by first forming the

flat closure for maximal parahorics, i.e for subsets I consisting of a single element, and

then taking intersections of their inverse images in the naive local model. This leads to the

combinatorial question whether the µ-admissible set can be defined vertex-wise. Figures 1

and 2 show that this is indeed the case for the cases of relative rank 2.

Let us briefly explain these figures. The ambient tesselation by alcoves corresponds to

the affine Weyl group associated to a finite root system Σ of type B2 in the case of figure

1, resp. of type C2 in the case of figure 2. The dots in these figures indicate the translation

subgroup Q(Σ∨) of Wa; the vertices of the simplices correspond to the elements in the

coweight lattice P (Σ∨). The base alcove is marked in bold face, and the extreme alcoves

in Adm(µ) are shaded in darker gray. They are translates of the fundamental alcove under

the four translation elements λr,s in the Iwahori Weyl group associated to the coweight

µ = µr,s. The other elements of Adm(µ) are shaded in lighter gray.

Figure 1. The admissible sets for U(2, 2) (left) and U(3, 1) (right)



6 G. PAPPAS AND M. RAPOPORT

Figure 2. The admissible sets for U(3, 2) (left) and U(4, 1) (right)

In this paper we also pursue the approach of defining flat models through a strengthening

of the moduli problem. Recall from [RZ] the definition of the naive local model Mnaive
I . We

change the notation slightly by now denoting by E the localization at p of the Shimura

field, i.e E = Qp if r = s, and E = F = K⊗Qp if r 6= s. The naive local model represents a

moduli problem over Spec (OE). A point of Mnaive
I with values in an OE-scheme S is given

by a OF ⊗OS-submodule

Fj ⊂ Λj ⊗OS
for each j ∈ Z of the form j = ±i + kn for some k ∈ Z and some i ∈ I. The following

conditions a)–d) are imposed.

a) As an OS-module, Fj is locally on S a direct summand of rank n.

b) For each j < j′, there is a commutative diagram

Λj ⊗OS −→ Λj′ ⊗OS
∪ ∪
Fj −→ Fj′

where the top horizontal map is induced by the inclusion Λj ⊂ Λj′ , and for each j,

the isomorphism π : Λj −→ Λj−n induces an isomorphism of Fj with Fj−n.
c) We have F−j = F⊥

j where F⊥
j is the orthogonal complement of Fj under the natural

perfect pairing

(Λ−j ⊗OS)× (Λj ⊗OS) −→ OS .
d) For each j, the characteristic polynomial equals

det((T · id− π) | Fj) = (T − π)s · (T + π)r ∈ OE [T ] .

Here π denotes a uniformizer of F with π2 = p.

In [P1] a closed subscheme of Mnaive
I was defined by imposing an additional condition.

e) If r 6= s, we have

(0.1) ∧r+1 (π −√p | Fj) = 0 ,
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(0.2) ∧s+1 (π +
√
p | Fj) = 0 .

Denote by M∧
I the corresponding closed subscheme of Mnaive

I . It has the same generic

fiber. In [P1] it is conjectured that M∧
I is flat over Spec (OE) when I = {0}, i.e that

condition e) above cuts out the local model in Mnaive
{0} . The conjecture for I = {0} is then

reduced to a question about schemes defined by explicit matrix identities. It turns out that

something similar can be done for I = {m} when n = 2m. Let us state here these questions.

Consider the scheme of matrices X in Mn×n over Spec (k) described by

X2 = 0, Xt = HXH, charX(T ) = T n , ∧s+1X = 0, ∧r+1X = 0 ,

resp.

X2 = 0, Xt = −JXJ, charX(T ) = T n, (and ∧s+1 X = 0, ∧r+1X = 0, when r 6= s),

if both n and s are even.

Is this scheme reduced (in which case it is normal, with rational singularities)?

Here H = Hn denotes the antidiagonal unit matrix, and J = J2m the skew-symmetric

matrix with square blocks 0m on the diagonal and Hm, resp. −Hm, above the diagonal,

resp. below the diagonal. Varieties given by similar matrix equations were also considered

by Faltings [Fa1]. However, it does not seem that his results can be used to answer the

above question. Indeed, the schemes he considers are the special fibers of the (normaliza-

tions) of the flat closures of mixed characteristic schemes closely related to Mnaive
I . We can

only see, after the fact, that if the answer to our question is positive, then our schemes

coincide with the ones considered in [Fa1]. (Regardless, the results of [Fa1] establish a con-

nection between the singularities of the normalization of the local models and the complete

symmetric varieties of de Concini-Procesi; see also [P2].)

We give examples which show that for more general I the condition e) is not enough to

define the local model. To treat a general index set I we propose in the present paper an

additional condition.

f) (Spin condition) The line ∧nFj ⊂ ∧n(Λj ⊗ OS) is contained in the subspace

(∧nΛj ⊗OE)± ⊗OE
OS with ± = (−1)s.

We refer to the body of the text for the definition of (∧nΛj ⊗OE)± ⊗OE
OS . We denote

by MI the closed subscheme of Mnaive
I defined by the conditions a)–f). Then MI has again

the same generic fiber and we conjecture that MI is flat over OE . Unfortunately, this

seems very difficult to prove, although the computer evidence seems quite convincing. It is

remarkable that, in contrast to the unramified cases of type A or C, one seems to need in

these ramified cases and also for type D higher tensors to describe the local model.

We now give an overview of the paper. In §1 we define the unitary Shimura varieties and

reduce our structure problem to the case of local models. In §2 we recall some facts about

affine Weyl groups and about the µ-admissible set and make these explicit in the case of

unitary groups. In §3 we recall results from [PR3] on affine flag varieties, and state the
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coherence conjecture. We also prove in this section that the points in Schubert varieties

corresponding to elements in Adm(µ) can be lifted to the generic fiber of Mnaive, i.e the first

statement of Theorem 0.1. In §4 we give our general results. As pointed out above, they

depend on some conjectures of a combinatorial nature. In §5 we consider cases we can treat

unconditionally. In particular, we relate the special fibers in the cases addressed in Theorem

0.2 to nilpotent orbits for the symmetric pairs (gl(n), o(n)) resp. (gl(n), sp(n)), and recover

in this way some of Ohta’s results about them [Oh], even in positive characteristics. We also

treat in §6 the case of Picard surfaces. In §7 we explain the spin condition and the evidence

we have that it is sufficient to cut out the flat closure. In §8 we give remarks on local models

for even orthogonal groups and explain on examples how the spin condition also seems to

eliminate the pathological points in the naive models for them found by Genestier.

It should be pointed out that local models for ramified unitary groups are still quite

mysterious. Many questions on them remain open. This also explains why in the present

paper we have made abstract concepts as explicit as possible for the case at hand and why

we have given many concrete examples. We hope that this will be useful for future work.

One major open problem is that of calculating the semi-simple trace of the Frobenius on

the complex of nearby cycles. Besides the special case treated by Krämer [Kr] nothing is

known.

The present paper should be viewed as a follow-up to [PR3]. The results in [PR3] on

affine flag varieties for non-split groups over k((t)) are crucial to several of our results in

this paper.

We thank A. Genestier, U. Görtz and T. Wedhorn for helpful discussions. We are espe-

cially indebted to C. Kaiser and J.-L. Waldspurger for their explanations on Bruhat-Tits

theory. We are grateful to the Institute for Advanced Study and the Université de Paris-Sud

for their support during our collaboration.

1. Unitary Shimura varieties and moduli problems

1.a. Unitary Shimura varieties. Let K be an imaginary quadratic field with an em-

bedding ǫ : K →֒ C. Denote by O the ring of integers of K. Denote by a 7→ ā the non

trivial automorphism of K. Let W = Kn be a n-dimensional K-vector space, and suppose

that φ : W ×W −→ K is a non-degenerate hermitian form. We assume n ≥ 3. Now set

WC = W ⊗K,ǫ C. Choosing a suitable isomorphism WC ≃ Cn, we may write φ on WC in

a normal form φ(w1, w2) = tw̄1Hw2 where

H = diag(−1, . . . ,−1, 1, . . . , 1)

We denote by s (resp. r) the number of places, where −1, (resp. 1) appears in H. We

will say that φ has signature (r, s). By replacing φ by −φ if needed, we can make sure

that s ≤ r. We will assume that s ≤ r throughout the paper. Let J : WC −→ WC be the

endomorphism given by the matrix −
√
−1H. We have J2 = −id and so the endomorphism
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J gives an R-algebra homomorphism h0 : C −→ EndR(W ⊗Q R) with h0(
√
−1) = J and

hence a complex structure on W ⊗Q R = WC. For this complex structure we have

TrC(a;W ⊗Q R) = s · ǫ(a) + r · ǭ(a), a ∈ K .

Denote by E the subfield of C which is generated by the traces above (the ‘reflex field’).

This is equal to Q if r = s and to K if r 6= s. The representation of K on W ⊗Q R with the

above trace is defined over E, i.e there is an n-dimensional E-vector space W0 on which K

acts such that

(1.1) TrE(a;W0) = s · a+ r · ā

and such that W0 ⊗E C together with the above K-action is isomorphic to W ⊗Q R with

the K-action induced by ǫ : K →֒ C and the above complex structure.

Now let let us fix a non-zero element α ∈ K with ᾱ = −α. Set

(1.2) ψ(x, y) = TrK/Q(α−1φ(x, y))

which is a non-degenerate alternating form W ⊗Q W −→ Q. This satisfies

(1.3) ψ(av,w) = ψ(v, āw), for all a ∈ K, v,w ∈W.

By replacing α by −α, we can make sure that the symmetric R-bilinear form on WC given

by ψ(x, Jy) for x, y ∈WC is positive definite.

Let G = GU(φ) be the unitary similitude group of the form φ,

G = GU(φ) = {g ∈ GLK(W ) | φ(gv, gw) = c(g)φ(v,w), c(g) ∈ Gm} .

Set

GU(r, s) := {A ∈ GLn(C) | tĀHA = c(A)H, c(A) ∈ R×}
By the above discussion, the embedding ǫ : K →֒ C induces an isomorphism G(R) ≃
GU(r, s). The group G is a reductive group over Q which is also given by

G(Q) = {g ∈ GLK(W ) | ψ(gv, gw) = c(g)ψ(v,w), c(g) ∈ Q×} .

We define a homomorphism h : ResC/RGm,C −→ GR by restricting h0 to C×. Then

h(a) for a ∈ R× acts on W ⊗Q R by multiplication by a and h(
√
−1) acts as J . Consider

hC(z, 1) : C× −→ G(C) ≃ GLn(C)×C×. Up to conjugation hC(z, 1) is given by

(1.4) µr,s(z) = (diag( z(s), 1(r) ), z);

this is a cocharacter of G defined over the number field E. (Here and in the rest of the

paper, we write a(m) to denote a list of m copies of a).

Denote by Xh = Xr,s the conjugation orbit of h(i) under G(R). The pair (G,h) gives

rise to a Shimura variety Sh(G,h) which is defined over the reflex field E. In particular, if

C =
∏
v Cv ⊂ G(Af

Q), with Cv ⊂ G(Qv), is an open compact subgroup of the finite adelic
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points of G, we can consider ShC(G,h); this is a quasi-projective variety over E whose set

of complex points is identified with

ShC(G,h)(C) = G(Q)\Xr,s ×G(Af
Q)/C .

Suppose now that p is an odd rational prime which ramifies in K. We denote by OEw the

ring of integers of the completion of E at the unique place above (p). We are interested in

the construction of models of Sh(G,h)C over OEw and in the reductions of these models

when the “level subgroup at p”, Cp ⊂ G(Qp), is a parahoric subgroup of G(Qp). (We will

also assume that the level “away from p”, i.e the subgroup Cp =
∏
v 6=p Cv, is sufficiently

small, i.e it is contained in the principal congruence subgroup for some N ≥ 3 relatively

prime to the discriminant of K).

1.b. Parahoric subgroups of the unitary similitude group. It turns out that the

parahoric subgroups are the neutral components of the subgroups of the unitary similitude

group over the local field that stabilize certain sets of lattices. In this paragraph, we will

explain this statement in a slightly more general context.

1.b.1. Let F0 be a complete discretely valued field with ring of integers O = OF0 and

perfect residue field k of characteristic 6= 2 and uniformizer π0. Let F/F0 be a ramified

quadratic extension and let π ∈ F be a uniformizer with π2 = π0, so that π = −π. Set

Γ = Gal(F/F0). Let V be a F -vector space of dimension n ≥ 3 and let

φ : V × V −→ F

be a F/F0-hermitian form. We assume that φ is split. This means that there exists a basis

e1, . . . , en of V such that

φ(ei, en−j+1) = δij , ∀ i, j = 1, . . . , n .

Set

GU(V, φ) = {g ∈ GLF (V ) | φ(gx, gy) = c(g)φ(x, y), c(g) ∈ F×
0 } .

We have an exact sequence of algebraic groups over F0

(1.5) 1 −→ SU(V, φ) −→ GU(V, φ) −→ D −→ 1 .

Here SU(V, φ) is also the derived group ofGU(V, φ) andD is the torusD = T/(T∩SU(V, φ))

with T the standard (diagonal) maximal torus of GU(V, φ).

1.b.2. We have two associated F0-bilinear forms,

(x, y) =
1

2
TrF/F0

(φ(x, y)) , 〈x, y〉 =
1

2
TrF/F0

(π−1 · φ(x, y)) .

The form ( , ) is symmetric while 〈 , 〉 is alternating. They satisfy the identities,

(1.6) (x, πy) = −(πx, y), 〈x, πy〉 = −〈πx, y〉 .
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For any OF -lattice Λ in V we set,

Λ̂ = {v ∈ V | φ(v,Λ) ⊂ OF } = {v ∈ V | 〈v,Λ〉 ⊂ O} .

Similarly, we set

Λ̂s = {v ∈ V | (v,Λ) ⊂ O} ,
so that Λ̂s = π−1 · Λ̂. For i = 0, . . . , n− 1, set

Λi = spanOF
{π−1e1, . . . , π

−1ei, ei+1, . . . , en} .

The lattice Λ0 is self-dual for the alternating form 〈 , 〉.

1.b.3. We now distinguish two cases:

a) n = 2m+ 1 ≥ 3 is odd. Then we have

T = diag
(
a1, . . . , am, a, aāā

−1
m , . . . , aāā−1

1

)
,

T ∩ SU(V, φ) = {diag
(
a1, . . . , am, āa

−1, ā−1
m , . . . , ā−1

1

)
| a = a1 · · · am} .

We can see that

(1.7) D = T/(T ∩ SU(V, φ))
∼−→ ResF/F0

(Gm) .

with the isomorphism given by sending an element of T as above to a−1 ·(a1ā
−1
1 ) · · · (amā−1

m ).

Now let I be a non-empty subset of {0, . . . ,m} and consider the subgroup

PI = {g ∈ GU(V, φ) | g · Λi = Λi, ∀i ∈ I} .

of GU(V, φ) that preserves the lattice set Λi, i ∈ I. The following statement can be shown

as in [PR3]. Notice that in this case X∗(D)Γ ≃ Z and so the Kottwitz invariant of each

element of PI is trivial.

The subgroup PI is a parahoric subgroup of GU(V, φ). Any parahoric subgroup of GU(V, φ)

is conjugate to a subgroup PI for a unique subset I. The sets I = {0} and I = {m} corre-

spond to the special maximal parahoric subgroups.

In fact, P{0,...,m} is an Iwahori subgroup and its choice allows us to identify {0, . . . ,m} with

the local Dynkin diagram ∆(GU(V, φ)); the index i corresponds to the vertex associated to

P{i}.

b) n = 2m ≥ 4. Then we have

T = {diag
(
a1, . . . , am, cā

−1
m , . . . , cā−1

1

)
| c ∈ F×

0 }

T ∩ SU(V, φ) = {diag
(
a1, . . . , am, ā

−1
m , . . . , ā−1

1

)
| a1 · · · am ∈ F×

0 } .
We can see that

(1.8) D = T/(T ∩ SU(V, φ))
∼−→ Gm × ker

(
ResF/F0

(Gm)
Norm−−−→ Gm

)

with the isomorphism given by sending an element of T as above to

(c, a1 · · · am · ā−1
1 · · · ā−1

m ) .
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(Here of course we use Hilbert’s theorem 90.) We can now see that X∗(D)Γ ≃ Z ⊕ Z/2Z

and that the Kottwitz invariant of an element t ∈ T (F0) as above is given by

(1.9) κ(t) = (valF0(c), valF (a1 · · · am)mod 2) .

This shows that in this case the Kottwitz invariant κ(g) of g ∈ GU(V, φ)(F0) can be obtained

as follows: Consider d(g) := c(g)−m detF (g) ∈ F×; this has norm 1 and so we can write

d(g) = x · x̄−1. Then κ(g) = (valF0(c(g)), valF (x)mod 2). Notice that if g stabilizes a

maximal φ-isotropic F -subspace L ⊂ V , then the second component of κ(g) is the valuation

modulo 2 of the determinant det(g |L). Also note that if g preserves a lattice, then the first

component of κ(g) is zero.

Now consider non-empty subsets I ⊂ {0, . . . ,m}. As above, consider the subgroup

PI = {g ∈ GU(V, φ) | gΛi = Λi, ∀i ∈ I} .

of GU(V, φ) that preserves the lattices Λi, i ∈ I. We also consider the kernel of the Kottwitz

homomorphism, i.e.,

P 0
I = {g ∈ PI | κH(g) = 1} .

We can see that if m− 1 ∈ I, then P 0
I = P 0

I∪{m}.

In fact, in this case the following statement holds:

The subgroup P 0
I is a parahoric subgroup of GU(V, φ). Any parahoric subgroup of GU(V, φ)

is conjugate to a subgroup P 0
I for a unique subset I with the property that if m− 1 is in I,

then m is also in I. For such a subset I, we have P 0
I = PI exactly when I contains m. The

set I = {m} corresponds to a special maximal parahoric subgroup.

This follows from the results on parahoric subgroups of SU(V, φ) in [PR3]. To explain

this, we also introduce

Λm′ = spanOF
{π−1e1, . . . , π

−1em−1, em, π
−1em+1, em+2, . . . , en} .

Then both Λm and Λm′ are self-dual for the symmetric form ( , ). Now consider non-empty

subsets J of {0, . . . ,m− 2,m,m′}. Consider the subgroups

PJ = {g ∈ GU(V, φ) | gΛj = Λj , ∀j ∈ J} , P 0
J = {g ∈ PJ | κH(g) = 1} .

Notice that if both m and m′ are in J then Λj , j ∈ J , is not a lattice chain.

As in [PR3] we can see that PJ is parahoric exactly when J contains at least one of the

two elements {m,m′}. Then P 0
J = PJ . When J contains neither m nor m′, the kernel P 0

J

is a parahoric subgroup and PJ/P
0
J ≃ Z/2Z. Now recall that [PR3] gives a description

of the parahoric subgroups of SU(V, φ) via P ′
J = PJ ∩ SU(V, φ). In fact, P{0,...,m−2,m,m′}

is an Iwahori subgroup and its choice allows us to identify {0, . . . ,m − 2,m,m′} with the

set of vertices of the local Dynkin diagram ∆ := ∆(GU(V, φ)) = ∆(SU(V, φ)); the index j

corresponds to the vertex associated to the subgroup P{j}.

For J ⊂ {0, . . . ,m − 2,m,m′} let J∗ be the subset obtained by replacing m by m′

and vice versa. Observe that if τ is the unitary automorphism defined by em 7→ em+1,
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em+1 −→ em, ei 7→ ei, for 0 ≤ i ≤ m − 2, then τ · Λm = Λm′ , τ · Λm′ = Λm, τ · Λi = Λi,

for 0 ≤ i ≤ m− 2. This shows that τPJτ
−1 = PJ∗ . By [T] 2.5 we can see that the action

of GU(V, φ) on the local Dynkin diagram ∆ = {0, . . . ,m − 2,m,m′} factors through the

Kottwitz homomorphism κ : GU(V, φ) −→ Z/2Z; now κ(τ) = −1 and as we have seen τ

fixes 0 ≤ i ≤ m − 2 and exchanges m and m′. It follows that the conjugacy classes of

parahoric subgroups of GU(V, φ) are parametrized by the orbits of J 7→ J∗ on the set of

non-empty subsets J ⊂ {0, . . . ,m−2,m,m′}. These are in turn parametrized by non-empty

subsets I ⊂ {0, . . . ,m − 1,m} with the property that if m− 1 is in I, then m is also in I:

The set I = J ♯ = (J∗)♯ that corresponds to {J, J∗} is obtained by the following recipe: If

both m and m′ belong to J , put J ♯ to be the set which is obtained from J by replacing

m′ by m − 1. If m′ 6∈ J , set J ♯ = J . Finally, if m′ ∈ J but m 6∈ J , let J ♯ = J∗. Observe

now that for all J , we have PJ = PJ♯ if m ∈ J and PJ = τPJ∗τ−1 = τPJ♯τ−1 if m′ ∈ J .

Therefore our statements on the parahoric subgroups of GU(V, φ) now follow from these

observations and the results on parahoric subgroups of SU(V, φ) in §4 of [PR3].

1.c. Reduction to level subgroups that are lattice chain stabilizers. We return to

the set up of §1.a, so G = GU(W,φ) is a unitary similitude group over Q, and X = Xr,s. We

will assume s > 0. (When s = 0 the corresponding Shimura varieties are zero-dimensional.)

Let p be an odd rational prime which ramifies in K. Assume that the form φ is split on

V = W ⊗Q Qp so that the set-up of §1.b applies. Let C = Cp · Cp with Cp = P 0
I ⊂ G(Qp)

a parahoric subgroup as in §1.b and where Cp ⊂ G(Af,p) contains the principal congruence

subgroup for some N ≥ 3 relatively prime to the discriminant of K. Set C ′
p = PI ⊂ G(Qp)

for the corresponding stabilizer of the set of lattices; we have either P 0
I = PI or PI/P

0
I ≃

Z/2Z. Set C = C ′
p · Cp. Our first observation is that the Shimura varieties ShC(G,X)

and ShC′(G,X) have isomorphic geometric connected components. This follows essentially

from the fact that C ∩ Gder(A
f ) = C ′ ∩ Gder(A

f ) (see below). Therefore, from the point

of view of constructing reasonable integral models over OEw , we may restrict our attention

to ShC′(G,X); since C ′
p corresponds to a lattice set stabilizer, this Shimura variety is given

by a simpler moduli problem.

Denote by

ν : G −→ D = G/Gder

the maximal torus quotient of G. We can see ([Ko], §7) that

(1.10) D ≃ ResK/Q(Gm), D ≃ Gm×ker
(
ResK/Q(Gm)→ Gm

)
, if n is odd, resp. even.

Since Gder is simply connected, the set of connected components of the complex Shimura

variety ShC(G,X)(C) can be identified with the double coset

D(Q)\Y ×D(Af )/ν(C)

where Y = D(R)/Im(Z(R) −→ D(R)), provided that r > 0, s > 0, comp. [M], §5, p.311.

(Notice that D(R) = C× if n is odd, resp. D(R) = R× × U1 if n is even, with U1 the

complex unit circle. The image of the real points of the center Z(R) is C×, resp. R>0×U1.
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Therefore, Y = {1} if n is odd, and Y = {±1} if n is even.) The action of the Galois group

Gal(Ē/E) on the set of connected components factors through Gal(Eab/E) and is given as

follows: Consider the composition ν ◦ µr,s : GmE −→ GE −→ DE which is defined over E,

and set

ρ = NormE/Q ◦ ν ◦ µr,s : GmE −→ DQ .

If σ ∈ Gal(Eab/E) corresponds to the idele xσ ∈ A×
E via Artin reciprocity, then

(1.11) σ · [y, d] = ρ(xσ) · [y, d] ,

with ρ : A×
E −→ D(AQ) given as above. (Here we normalize the reciprocity isomorphism

by asking that the local uniformizer corresponds to the inverse of the Frobenius).

The conjugacy class of the cocharacter µr,s of GE defines a conjugacy class of a local

cocharacter µr,s : GmEw
−→ GEw . Suppose first that r = s. Then Ew = Qp and we can

assume that µr,s is given by

(1.12) a 7→ diag(a(s), 1(r)) ∈ T (Qp) ⊂ G(Qp)

in the notation of §1.b. If r 6= s then Ew = Kv and and we can assume that µr,s is given by

(1.13) a 7→ (diag(a(s), 1(r)), a)) ∈ GLn(Kv)×K×
v ≃ G(Kv) .

Note that the isomorphism GLn(Kv)×K×
v ≃ G(Kv) takes the conjugation action on G(Kv)

to the involution (A, c) 7→ (c̄(A∗)−1, c̄) where (A∗)−1 is the inverse of the hermitian adjoint.

Therefore, we have

(1.14) NormEw/Qp
(µr,s)(a) = diag((aā)(s), ā(r−s), 1(s)) ∈ T (Qp) ⊂ G(Qp) .

Under the identification of D(Qp) as in §1.b.3 this gives

(1.15) ρEw(a) = ā−1
( ā
a

)m−s

, if n is odd,

(1.16) ρEw(a) =

(
aā,
( ā
a

)m−s
)
, if n is even and r 6= s ,

(1.17) ρEw(a) = (a, 1), if n is even and r = s.

Consider now the morphism between the corresponding Shimura varieties,

πC,C′ : ShC(G,X) −→ ShC′(G,X) .

Recall that if n is odd, we always have C = C ′ and so we may restrict our attention to the

case when n = 2m is even.

Proposition 1.1. Assume C 6= C ′. Then the morphism πC,C′ is an étale Z/2Z-cover which

splits after base changing by an extension E′/E which is of degree 1 or 2 and is unramified

over p. If m− s is odd, then the cover is not trivial, [E′ : E] = 2 and w remains prime in

E′. If either r = s or more generally m− s is even, then either E′ = E or [E′ : E] = 2 and

w splits in E′.
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Proof. It is clear that πC,C′ is an étale cover of degree 1 or 2. Let us consider the

corresponding map between geometric connected components:

(1.18) D(Q)\Y ×D(Af )/ν(C) −→ D(Q)\Y ×D(Af )/ν(C ′) .

Obviously, this is a surjective group homomorphism with kernel either trivial or of order

2. We will show that the kernel is actually of order 2; this will imply that the cover πC,C′

becomes trivial after base changing to the algebraic closure Ē. Consider the element α

in Y × D(Af ) which is 1 at each place except at p where it is equal to αp = (1,−1) ∈
Q×
p × ker(Norm(K×

v −→ Q×
p )). From §1.b, we can see that αp is in ν(C ′

p) but not in ν(Cp).

We claim that α gives a non-trivial element of D(Q)\Y ×D(Af )/ν(C) whose image under

(1.18) is trivial: Indeed, suppose there is d ∈ D(Q) such that d · α ∈ ν(C). Since α is in

ν(C ′) we obtain that d is in the intersection D(Q)∩ν(C ′); this is given by pairs of a unit of

Q and a unit of K which are both congruent to 1 modulo N . We can see that the only such

pair is (1, 1); this implies α ∈ ν(C) which contradicts our choice. It remains to show that

the cover becomes trivial after base changing by an extension E′/E as in the statement.

By the formula for the Galois action on the set of connected components and the above we

see that the cover πC,C′ ⊗E Ew is described via local class field theory by the map

ρEw mod ν(C ′
p) : E×

w −→ D(Qp)/ν(Cp) −→ Z/2Z .

Here the last map is given by (a, b/b̄) 7→ val(b)mod 2. The result now follows using (1.16),

(1.17).

Corollary 1.2. Assume C 6= C ′. Let MC′ be a model of ShC′(G,X) over Spec (OEw).

Then there exists a unique modelMC of ShC(G,X) over Spec (OEw), such that the following

diagram is commutative

ShC(G,X) ⊗E Ew →֒ MCy y
ShC′(G,X) ⊗E Ew →֒ MC′

in which the vertical arrows are finite etale. �

1.d. Unitary moduli problems. Here we follow [RZ] to define moduli schemes over OEw

whose generic fiber agrees with ShC′(G,X) ⊗E Ew when C ′ = C ′
p · Cp with C ′

p one of

the lattice set stabilizer subgroups of §1.b. More precisely, we consider non-empty subsets

I ⊂ {0, . . . ,m} where m = [n/2] with the requirement that for n = 2m even, if m − 1

is in I, then m is in I too. We will use the notations of §1.b with F0 = Qp, F = Kv,

V = W ⊗K Kv. We can extend Λi, i ∈ I, given as in 1.b.2, to a periodic self-dual lattice

chain by first including the duals Λ̂si = Λn−i for i 6= 0, and then all the π-multiples of our

lattices: For j ∈ Z of the form j = k · n± i with i ∈ I we put

Λj = π−k · Λi .
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Then {Λj}j form a periodic lattice chain ΛI (with π ·Λj = Λj−n) which satisfies Λ̂j = Λ−j .

We set C ′
p = PI . We will use the construction of Chapter 6 of [RZ] applied to the current

situation. In the notation of loc. cit. we take B = K, ∗ = the conjugation of K/Q,

V = Kn = Q2n, (x, y) = ψ(x, y). Then G is the unitary similitude group as before. We

take the selfdual multichain L of lattices to be Λj, j = kn± i with i ∈ I. For simplicity, set

R = OEw .

We consider the moduli functor AC′ over Spec (R) given in [RZ] Definition 6.9:

A point of AC′ with values in the Spec (R)-scheme S is the isomorphism class of the

following set of data (A, λ̄, η̄):

1. An L-set of abelian schemes A = {Aj}, j = kn ± i with i ∈ I, over S (terminology

of loc. cit.). By definition, this amounts to the data of abelian schemes Aj over S up

to prime-to-p-isogeny for each j, isogenies Aj −→ Aj′ of height logp(Λj′/Λj) for each pair

j ≤ j′, and periodicity isomorphisms θa : Aj ≃ Aj−n·val(a) for each a ∈ OK ⊗ Z(p). These

should satisfy the conditions of loc. cit.

2. A Q-homogeneous principal polarization λ̄ of the L-set A;

3. A Cp-level structure

η̄ : H1(A,A
p
f ) =

(∏

l 6=p

Tl(Aj)
)
⊗Q ≃W ⊗A

p
f mod Cp

that respects the bilinear forms of both sides up to a constant in (Ap
f )

× (see loc. cit. for

details).

The set A should satisfy the determinant condition (i) of loc. cit.

Recall that we assume that Cp is sufficiently small, i.e that it is contained in the principal

congruence subgroup of level N for some N ≥ 3 relatively prime to the discriminant of K.

Then AC′ is representable by a quasi-projective scheme over Spec (R) which we will also

denote by AC′ . Since the Hasse principle is satisfied for the unitary group, we can see as in

loc. cit. that there is a natural isomorphism

(1.19) AC′ ⊗R Ew = ShC′(G,X) ⊗E Ew .

1.e. Local models for GU . We fix non-negative integers r, s with n = r+ s and consider

F/F0 as in §1.b. We set E = F if r 6= s and E = F0 if r = s (this is the reflex field of

the local model we are about to define). As in §1.d, we will consider non-empty subsets

I ⊂ {0, . . . ,m} where m = [n/2] with the requirement that for n even, if m− 1 is in I, then

m is in I too.

1.e.1. First consider I = {0, . . . ,m} which gives as above a complete lattice chain Λj ,

j ∈ Z. We define as follows a functor Mnaive on the category of OE-schemes. A point of

Mnaive with values in an OE-scheme S is given by a OF ⊗OF0
OS -submodule

Fj ⊂ Λj ⊗OF0
OS
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for each j ∈ Z. The following conditions are imposed.

a) as an OS -module, Fj is locally on S a direct summand of rank n.

b) for each j < j′, there is a commutative diagram

Λj ⊗OF0
OS −→ Λj′ ⊗OF0

OS
∪ ∪
Fj −→ Fj′

where the top horizontal map is induced by the inclusion Λj ⊂ Λj′ , and for each j,

the isomorphism π : Λj −→ Λj−n induces an isomorphism of Fj with Fj−n.
c) we have F−j = F⊥

j where F⊥
j is the orthogonal complement of Fj under the perfect

pairing

(Λ−j ⊗OF0
OS)× (Λj ⊗OF0

OS) −→ OS
induced by 〈 , 〉 ⊗OF0

OS .

Next note that Fj is an OF ⊗OF0
OS-module, hence OF and OE act on it. We require

further that

d) for each j, the characteristic polynomial equals

det((T · id− π) | Fj) = (T − π)s · (T + π)r ∈ OE [T ] .

This concludes the definition of the functor Mnaive, which is obviously representable by

a projective scheme over Spec (OE). We call Mnaive the naive local model associated to the

group GU(V, φ), the signature type (r, s) and for the complete lattice chain Λj, j ∈ Z.

1.e.2. We can generalize this definition to incomplete selfdual periodic lattice chains, i.e

to all subsets I as above. For each such I, we obtain a functor Mnaive
I by only giving

the submodules Fj for j ∈ Z of the form j = k · n ± i with i ∈ I. Therefore Mnaive =

Mnaive
{0,...,m}. Denote by PI the (smooth) group scheme of automorphisms (up to similitude) of

the polarized chain L over OF0 ; then PI(OF0) = PI ; the group scheme PI has GU(V, φ) as

its generic fiber. Then PI×OF0
R acts on Mnaive

I . We have forgetful morphisms of projective

schemes

(1.20) Mnaive −→Mnaive
I , and Mnaive

I′ −→Mnaive
I for I ′ ⊃ I .

1.e.3. Note that the map {Fj}j 7→ ker(π − √π0 | Fj) gives an isomorphism between

Mnaive
I ⊗OE

F and the Grassmannian Gr(s, n)F of s-dimensional spaces in the n-dimensional

space V0 = ker(π −√π0 | V ⊗F0 F ).

1.e.4. As is explained in [RZ], [P1], [PR2], when C ′
p = PI , for F0 = Qp and F = Kp, the

(naive) local model is connected to the moduli scheme via a diagram

(1.21) AC′

π←−− ÃC′

φ−−→Mnaive
I ,
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where the morphism π is a PI ⊗Zp R-torsor and φ is a smooth morphism of relative dimen-

sion dim(G) which is PI ⊗Zp R-equivariant. Therefore, there is a relatively representable

morphism of algebraic stacks

(1.22) AC′ −→ [Mnaive
I /(PI ⊗Zp R)]

which is smooth of relative dimension dim(G). (See [P1], [PR2] §15 for some more details.)

1.e.5. As was observed in [P1], the schemes Mnaive
I are almost never flat over R; by the

above, the same is true for AC′ . In the present paper, we will examine the flat closure Aflat
C′

of ShC′(G,X)Ew = AC′ ⊗REw in AC′ . By the above, we can reduce certain local questions

about Aflat
C′ to similar questions about the flat closure of Mnaive

I ⊗R Ew in Mnaive. This last

flat closure is, by definition, the local model M loc
I . We can see that M loc

I supports an action

of PI ⊗Zp R and there is a relatively representable smooth morphism of relative dimension

dim(G),

(1.23) Aflat
C′ −→ [M loc

I /(PI ⊗Zp R)] .

This of course implies that each closed point of Aflat
C′ has an étale neighborhood which is

isomorphic to an étale neighborhood of some corresponding point of M loc
I .

Since the generic fibers Mnaive
I ⊗R Ew are, for the various choices of I, all identical, we

obtain for I ′ ⊃ I commutative diagrams of projective morphisms, resp. closed embeddings,

M loc
I′ →֒ Mnaive

I′y y
M loc
I →֒ Mnaive

I

,

whose generic fibers are all the identity morphism. We can see that these correspond to

similar diagrams between the schemes Aflat
C′ and AC′ for the choices C ′

p = PI′ or PI .

1.e.6. Let again F/F0 be as in §1.b. We can also define a subfunctor M∧
I of Mnaive

I by

specifying that a point of M∧
I with values in an OE-scheme S is given by an OF ⊗OF0

OS-

submodule Fj ⊂ Λj ⊗OF0
OS for each j = k · n± i, i ∈ I, that in addition to the conditions

(a)–(d) above also satisfies:

e) If r 6= s, for each j = k · n± i, i ∈ I, we have

(1.24) ∧r+1 (π −√π0 | Fj) = 0 ,

(1.25) ∧s+1 (π +
√
π0 | Fj) = 0 ,

where we have set π = π ⊗ 1,
√
π0 = 1⊗ π ∈ OF ⊗OF0

OE = OF ⊗OF0
OF .

Denote also by M∧
I the corresponding moduli scheme which is a closed subscheme of

Mnaive
I . Suppose that S is an E-scheme. Then conditions (d) and (e) are equivalent since the

action of π on Fj is semisimple. Therefore, the generic fibers M∧
I ⊗OE

E and Mnaive
I ⊗OE

E

agree. It turns out that M∧
I is in some cases flat; then M loc

I = M∧
I . This was shown when
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I = {0} and n = 3 in [P1]; when I = {0} it is conjectured in [P1] that M∧
{0} is flat. However,

M∧
I is not flat in general (see Remark 5.3.)

In the sequel we will pursue two goals. The first goal is to understand the structure

of M loc
I . The second goal is to define M loc

I as a closed subscheme of Mnaive
I by imposing

conditions similar to those defining M∧
I .

2. Affine Weyl groups and affine flag varieties; the µ-admissible set.

In this section, G will be a (connected) reductive group over a local field L with perfect

residue field. We assume that G is residually split and hence quasi-split ([T1] 1.10).

2.a. Affine Weyl groups. We start by recalling some facts on affine Weyl groups ([HR],

[R]).

2.a.1. Let S be a maximal split torus in G and let T be its centralizer. Since G is quasi-

split, T is a maximal torus in G. Let N = N(T ) be the normalizer of T ; denote by T (L)1 the

kernel of the Kottwitz homomorphism κT : T (L) −→ X∗(T )I ; then T (L)1 = T 0(OL) where

T 0 the connected Neron model of the torus T over OL. By definition, the Iwahori-Weyl

group associated to S is the quotient group

W̃ = N(L)/T (L)1 .

Since κT is surjective, the Iwahori-Weyl group W̃ is an extension of the relative Weyl group

W0 = N(L)/T (L) by X∗(T )I :

(2.1) 0 −→ X∗(T )I −→ W̃ −→ W0 −→ 1.

We have ([HR], comp. also [R], §2)

Proposition 2.1. Let B0 be the Iwahori subgroup of G(L) associated to an alcove contained

in the apartment associated to the maximal split torus S. Then G(L) = B0 ·N(L) ·B0 and

the map B0 · n ·B0 7→ n ∈ W̃ induces a bijection

B0\G(L)/B0
∼−→ W̃ .

If P is the parahoric subgroup of G(L) associated to a facet contained in the apartment

corresponding to S, then

(2.2) P\G(L)/P
∼−→WP\W̃/WP , where WP := (N(L) ∩ P )/T (L)1 .

In fact, if P is the (special) parahoric subgroup Px that corresponds to a special vertex x

in the apartment corresponding to S, then the subgroup WP ⊂ W̃ maps isomorphically to

W0 under the quotient W̃ −→W0 and the exact sequence (2.1) represents the Iwahori-Weyl

group as a semidirect product

(2.3) W̃ = W0 ⋉X∗(T )I ,

see [HR].
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2.a.2. Now let Ssc, Tsc, resp. Nsc be the inverse images of S∩Gder, T ∩Gder, resp. N∩Gder

in the simply connected covering Gsc of the derived group Gder. Then Ssc is a maximal split

torus of Gsc and Tsc, resp. Nsc is its centralizer, resp. normalizer. Hence

Wa := Nsc(L)/Tsc(L)1

is the Iwahori-Weyl group of Gsc. This group is also called the affine Weyl group associated

to S and is a Coxeter group. Indeed, we can recover Wa in the following way: Let N(L)1

be the intersection of N(L) with the kernel G(L)1 of the Kottwitz homomorphism κG :

G(L) −→ π1(G)I . Then one can see ([HR]) that the natural homomorphism

(2.4) Wa = Nsc(L)/Tsc(L)1
∼−→ N(L)1/T (L)1

is an isomorphism and that there is an exact sequence

(2.5) 1 −→Wa −→ W̃
κG−−→ π1(G)I −→ 1 ,

where π(G)I = X∗(T )I/X∗(Tsc)I . Now let B0 be the Iwahori subgroup of G(L) associated

to an alcove C in the apartment corresponding to S and let S be the set of reflections about

the walls of C. Then by [BTII], 5.2.12 the quadruple (G(L)1, B0, N(L)1,S) is a double Tits

system and Wa = N(L)1/T (L)1 is the affine Weyl group of the affine root system Φa of S.

The affine Weyl group Wa acts simply transitively on the set of alcoves in the apartment

of S. Since W̃ acts transitively on the set of these chambers, W̃ is the semi-direct product

of Wa with the normalizer Ω of the base alcove C, i.e., the subgroup of W̃ which preserves

the alcove,

(2.6) W̃ = Wa ⋊ Ω .

We can identify Ω with π1(G)I .

Let us write S = {si}i∈I ⊂ Wa for the finite set of reflections about the walls of C that

generate the Coxeter group Wa. For each w ∈ Wa its length l(w) is the minimal number

of factors in a product of si’s representing w. Any such product realizing the minimum is

called a reduced decomposition of w. We will denote by ≤ the corresponding Bruhat order.

Recall its definition. Fix a reduced decomposition of w ∈ Wa. The elements w′ ≤ w are

obtained by replacing some factors in it by 1. (This set of such w′’s is independent of the

choice of the reduced decomposition of w.) We extend the Bruhat order fromWa to W̃ using

the semi-direct product decomposition (2.6): for w = w1 · τ , with w1 ∈Wa and τ ∈ π1(G)I ,

the elements smaller than w are the w′ of the form w′ = w′
1 · τ with w′

1 ≤ w1 ∈Wa.

Let us denote by αi ∈ Φa the unique affine root with corresponding affine reflection equal

to si (since the group is residually split 1
2αi /∈ Φa, cf. [T1], 1.8). We will denote by ∆ = ∆G

the (local) Dynkin diagram of the affine root system Φa (this can be obtained from the set

{αi}i∈I ; see [BTI], 1.4 and [T1], 1.8). For a subset Y ⊂ S, we denote by WY ⊂ Wa the

subgroup generated by si with i ∈ Y ; we set PY = B0 ·WY · B0. By general properties

of Tits systems these are subgroups of G(L)1 ⊂ G(L); by [BTII], 5.2.12 (i) they are the

parahoric subgroups of G(L) that contain B. Using [BTI], 1.3.5 we see that we can identify



LOCAL MODELS III 21

PY with the parahoric subgroup PCY
, where CY is the facet consisting of a ∈ C for which

Y is exactly the set of reflections s ∈ S which fix a.

Finally, let us recall that there exists a reduced root system Σ such that the semi-direct

product (2.3) (for Gsc instead of G) presents Wa as the affine Weyl group associated (in the

sense of Bourbaki) to Σ,

(2.7) Wa = W (Σ) ⋉Q∨(Σ),

(cf. [BTI], 1.3.8, [T], 1.7, 1.9). In other words, we have identifications W0 ≃ W (Σ),

X∗(Tsc)I ≃ Q∨(Σ) compatible with the semidirect product decompositions (2.3) and (2.7).

2.b. The µ-admissible set. We next recall the definition of the µ-admissible set.

2.b.1. To µ ∈ X∗(T ) we attach its image λ in the coinvariants X∗(T )I . By (2.1) we can

consider λ as an element in the Iwahori-Weyl group W̃ of G. The admissible subset of W̃

associated to the coweight µ is defined as

(2.8) Adm(µ) = {w ∈ W̃ | w ≤ w0(λ) for somew0 ∈W0}.

Note that all elements of Adm(µ) have the same image in W̃/Wa = Ω, namely the image of

µ in π1(G)I . Furthermore, the set Adm(µ) only depends on the geometric conjugacy class

of the one-parameter subgroup µ, cf. [R], §3.

2.b.2. In the present paper we find it more convenient to pass to the adjoint group. Let Tad

denote the image of T in the adjoint group Gad. To µ we associate its image µad in X∗(Tad)

and its image λad in X∗(Tad)I . Now the set Adm(µ) is mapped bijectively to Adm(µad)

under the homomorphism W̃ −→ W̃ad, so that it suffices to consider the latter set, which

we sometimes also denote by Adm(µ). We have a commutative diagram

(2.9)

Wa
∼−→ W (Σ) ⋉Q∨(Σ)

↓ ↓
W̃ad −→ W (Σ) ⋉ P∨(Σ)

Here all arrows are injective and Q∨(Σ), resp. P∨(Σ), is the group of coroots, resp. of

coweights, of the finite root system Σ, cf. [R], §3. We have λad ∈ P∨(Σ), cf. the proof of

Lemma 3.1 in [R]. In the sequel we write W0 for the finite Weyl group W (Σ).

Denoting by τad the common image of all elements of Adm(µ) or Adm(µad) in Ωad =

W̃ad/Wa, we can define the subset Adm(µ)◦ of Wa by

Adm◦(µ) = {w ∈Wa | w · τad ∈ Adm(µad)}.

For a non-empty subset Y of the set of simple affine roots, let Y ◦ ⊂ S be the subset that

corresponds to the set of simple reflections of the form {τad · si · τ−1
ad | i ∈ Y } where si is the

reflection corresponding to the simple affine root parametrized by i ∈ Y .

We may define the subset AdmY (µ) of W̃ad by W Y · Adm(µad) · W Y and the subset

AdmY (µ)◦ of Wa by

AdmY (µ)◦ := W Y · Adm(µ)◦ ·W Y ◦

.
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Since τad ·W Y · τ−1
ad = W Y ◦

this is also equal to (W Y · Adm(µad) ·W Y ) · τ−1
ad .

2.c. Calculation of the affine root system. The following recipe for obtaining the affine

root system Φa was explained to us by Waldspurger. We may assume for this that the

derived group Gder is simply connected. Let L′/L be a finite Galois extension which splits G.

Since G is residually split, the extension L′/L is totally ramified. We extend the normalized

valuation val : L −→ Z to a valuation val : L′ −→ 1
eZ, where e = |L′ : L| is the ramification

degree of L′/L. We identify X∗(S) with X∗(T )I and X∗(S) with X∗(T )I/torsion, and

denote by ϕ the natural map,

(2.10) ϕ : X∗(T ) −→ X∗(T )I/torsion = X∗(S) .

Let Φabs ⊂ X∗(T ) be the set of (absolute) roots. The relative root system Φ is the image

of Φabs under ϕ. Let Φa be the affine root system, which is a set of affine functions on

V = X∗(S) ⊗ R of the form β + r, for β ∈ Φ and r ∈ R. There is a unique action of

N(L) on V by affine transformations such that the elements t ∈ T (L) act by translations

by ord(t) ∈ V . Here ord(t) is uniquely defined by

〈ord(t), χ〉 = − valχ(t), χ ∈ X∗(T ) .

Let

(2.11) lβ = |ϕ−1(β) ∩ Φabs| , β ∈ Φ .

Let for β ∈ Φ,

(2.12) Rβ =





1

lβ
Z , if

β

2
6∈ Φ

1

2lβ
+

1

lβ
Z , if

β

2
∈ Φ .

Proposition 2.2. The affine root system Φa equals

Φa = {β + r | β ∈ Φ, r ∈ Rβ} .

Proof. For any α ∈ Φabs, we denote by Uα the corresponding root subgroup and by α∨ ∈
X∗(T ) the corresponding coroot. Similarly, for β ∈ Φ we have Uβ and β∨ ∈ X∗(S) (in case

2β ∈ Φ, we have U2β ⊂ Uβ).
Let β ∈ Φ. For u ∈ Uβ(L)\{1}, the intersection U−β(L) · u ·U−β(L) ∩N(L) consists of a

single element, denoted by n(u), with image in W0 equal to the reflection sβ. The action of

n(u) on V is an affine reflection about a hyperplane parallel to Ker(β). Let rβ(u) ∈ R be

the real number such that this hyperplane is defined by the equation

β(v) + rβ(u) = 0 , v ∈ V .

We also set rβ(1) =∞. For r ∈ R, define

(2.13) Uβ+r = {u ∈ Uβ(L) | rβ(u) ≥ r}, Uβ+r+ = {u ∈ Uβ(L) | rβ(u) > r} .
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Then the affine roots in Φ are defined to be the affine functions β + r such that

(2.14) Uβ+r/Uβ+r+ · U2β+2r 6= {1} ,

cf. [T], 1.6. Here we set U2β+2r = {1}, if 2β 6∈ Φ.

Let β ∈ Φ. Assume first that 2β 6∈ Φ and β
2 6∈ Φ, (i.e., β of type I). There exists

a sub-extension L ⊂ Lβ ⊂ L′ such that lβ = |Lβ : L| and such that the subgroup of

G(L) generated by Uβ(L) and U−β(L) is isomorphic to SL2(Lβ) (here the fact that Gder is

simply connected, enters). We choose this isomorphism such that Uβ(L) becomes identified

with the upper unipotent matrices, and U−β(L) with the lower unipotent matrices and

the intersection of S(L) with this subgroup with the diagonal torus. For b ∈ Lβ\{0} and

u =

(
1 b

0 1

)
, one calculates ([BT II], p. 80)

n(u) =

(
1 0

−b−1 1

)
·
(

1 b

0 1

)
·
(

1 0

−b−1 1

)
=

(
b 0

0 b−1

)
· w , w =

(
0 1

−1 0

)
.

The action of n(u) on V is given by

(2.15) v 7−→ sβ(v) − val(b) · β∨(v) .

Here sβ denotes the reflection about the hyperplane Kerβ. It follows that rβ(u) = val(b).

Hence β + r ∈ Φ if and only if r ∈ val(Lβ). Since Lβ/L is totally ramified, val(Lβ) = 1
lβ
·Z.

This proves the claim for affine functions of type v 7−→ β(v) + r, for β of Type I.

Now let β ∈ Φ be of type II, i.e., such that 2β ∈ Φ or β
2 ∈ Φ. Then there is a tower of

subextensions L ⊂ Lβ ⊂ L′
β ⊂ L′ such that |L′

β : Lβ| = 2 and such that

|Lβ : L| =





lβ
2
, if 2β ∈ Φ

lβ, if
β

2
∈ Φ .

The subgroup of G(L) generated by Uβ(L) and Uβ
2
(L) (= {1} if β

2 6∈ Φ) and U−β(L)

and U
−β

2
(L) is isomorphic to SU3(Lβ), the special unitary group relative to the quadratic

extension L′
β/Lβ and the hermitian form with anti-diagonal unit matrix. We again choose

this isomorphism in the evident way. Let β0 resp. β∨0 the root resp. coroot of SU3(Lβ),

given by 

t

1

t−1


 7−→ t , t 7−→



t2

1

t−2


 .

The identification is chosen such that if 2β ∈ Φ, then Uβ is identified with

Uβ0 =








1 b c

0 1 b

0 0 1


 | c+ c = b b




,
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and if β
2 ∈ Φ, then Uβ is identified with

U2β0 =








1 0 c

0 1 0

0 0 1


 | c+ c = 0




.

Here x 7→ x denotes Galois automorphism of L′
β/Lβ. For u ∈ Uβ0 , written as above, one

has, [BT II], p. 84,

n(u) =



c

cc−1

c−1


w ,

where

w =




1

−1

1


 .

Hence the action of n(u) on V is given by

(2.16) v 7−→ sβ(v) −
val(c)

2
· β∨0 .

It follows that

(2.17) rβ(u) =





val(c)

2
, if 2β ∈ Φ

val(c) , if
β

2
∈ Φ .

Hence the condition that Uβ+r/Uβ+r+ · U2β+2r 6= {1} is equivalent to

(2.18)




∃ b ∈ L′

β with r = 1
2max{val(c) | c+ c = bb}, if 2β ∈ Φ

∃ c ∈ L′
β with c+ c = 0, and r = val(c) , if

β

2
∈ Φ .

Since p 6= 2, and L′/L is totally ramified, this is equivalent to

(2.19)





r ∈ 1

lβ
Z , if 2β ∈ Φ

r ∈ 1

2lβ
+

1

lβ
Z , if

β

2
∈ Φ .

2.d. The case of a unitary group. We now take G to be the (quasi-split) unitary simil-

itude group over L = F0 corresponding to a tame ramified quadratic extension F/F0 (as in

1.b). Set Γ = Gal(F/F0) = 〈τ〉 and notice that we can take L′ = F in the notation of the

previous paragraph. As in §1.b.3 we denote by T the standard maximal torus of G and by

S the maximal split subtorus of T . Our first purpose is to calculate explicitly the inclusion

Wa ⊂ W̃ad .
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Here Wa
∼= X∗(Tsc)Γ ⋊W0 (as in (2.3), after the choice of a special vertex) is the Coxeter

group generated by the reflections in the root hyperplanes in Φa. The group W̃ad is obtained

from Wa by the push-out via the inclusion X∗(Tsc)Γ →֒ X∗(Tad)Γ.

Recall the definition of the cocharacter µr,s ∈ X∗(T ) in §1.1. Using G(F ) ≃ GLn(F )×F×

we identify X∗(T ) with Zn × Z ; then µr,s = ((1(s), 0(r−s)), 1). Our second purpose is to

determine the image λ = λr,s of µ = µr,s ∈ X∗(T ) in X∗(Tad)Γ and the set

Adm (µ) = {w ∈ W̃ad | w ≤ w0(λ), some w0 ∈W0} .

Let Adm0(µ) be the image of W0 · Adm(µ) in W0 \ W̃ad/W0. Our third purpose is to

determine Adm0(µ).

2.d.1. The case A
(2)
2m−1 (corresponding to GU2m(F/F0)) for m ≥ 2. Let n = 2m. In this

case, X∗(S) can be identified with the subgroup of X∗(T ) ≃ Zn×Z formed by the elements

of the form (x1, . . . , xm,−xm, . . . ,−x1; y). The relative roots β are of the form ±xi±xj for

i 6= j and of the form ±2xi, for i, j ∈ {1, . . . ,m}. For the first kind of β we have lβ = 2,

and for the second kind lβ = 1. Therefore the affine root system Φa consists of the affine

functions ±xi ± xj + 1
2Z and ±2xi + Z. Hence the set of root hyperplanes is the zero sets

of the affine functions {±xi ± xj + 1
2Z; ±xi + 1

2Z}. It follows that the root system Σ is of

type Bm (i.e. Σ∨ is of type Cm) and we have

Wa = Q∨
⋊W0 ⊂ W̃ad = P∨

⋊W0 ,

with

W0 = Sm ⋊ {±1}m

Q∨ = {x ∈ Z
m | Σ(x) ≡ 0(2)}

P∨ = Z
m .

The map

X∗(T ) −→ X∗(Tad)Γ
∼−→ Z

m

is given by

(x1, . . . , x2m, y) 7−→ (x1 − x2m, x2 − x2m−1, . . . , xm − xm+1) .

The image λ = λs of µr,s = (1(s), 0(r−s), 1) in X∗(Tad)Γ = Z
m is equal to (1(s), 0(m−s)).

Let us identify W0 \ W̃ad/W0 = P∨/W0 with

P∨ ∩ C̄ = {x ∈ Z
m | x1 ≥ x2 ≥ . . . ≥ xm ≥ 0} .

The induced order from the Bruhat order is the dominance order. The positive coroots are

(Bourbaki, table Cm)

ei − ej , ei + ej , 2ei (i < j) .

The only possibility of subtracting a positive coroot from λs and stay inside C̄ is by es−1+es.

Hence we see inductively that

Adm0(µr,s) = {λ = λs > λs−2 > . . .} ,
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with the chain ending in λ1 if s is odd and in λ0 if s is even.

Note that λs is minuscule if and only if s = 0 or s = 1.

2.d.2. The case A
(2)
2m (corresponding to GU2m+1(F/F0)) for m ≥ 1. Set n = 2m + 1. In

this case, X∗(S) can be identified with the subgroup of X∗(T ) ≃ Zn × Z formed by the

elements of the form (x1, . . . , xm, 0,−xm, . . . ,−x1; y). The relative roots β are of the form

±xi ± xj for i 6= j and of the form ±xi and of the form ±2xi, for i, j ∈ {1, . . . ,m}. For

the first and second kind of β we have lβ = 2, and for the third kind lβ = 1. Therefore

the affine root system Φa consists of the affine functions ±xi ± xj + 1
2Z and ±xi + 1

2Z and

±2xi + 1
2 + Z. Hence the set of root hyperplanes is the zero sets of the affine functions

{±xi ± xj + 1
2Z; ±2xi +

1
2Z}. In this case, the root system Σ is of type Cm, and we obtain

Wa = Q∨
⋊W0 = W̃ad .

Here

W0 = Sm ⋊ {±1}m

Q∨ = Z
m

(whereas P∨ = Z
m + Z

(
1
2

m∑
i=1

ei

)
). The map

X∗(T ) −→ X∗(Tad)Γ
∼−→ Z

m

is given by

(x1, . . . , x2m+1, y) 7−→ (x1 − x2m+1, x2 − x2m, . . . , xm − xm+2) .

The image of µr,s is λs = (1(s), 0(m−s)). Again we identify W0 \Wa/W0 with

Q∨ ∩ C̄ = {x ∈ Z
m | x1 ≥ x2 ≥ . . . ≥ xm ≥ 0} .

In this case the positive coroots are

ei − ej , ei + ej , ei (i < j) ,

and

Adm0(µr,s) = {λ = λs > λs−1 > . . . > λ1 > λ0 = 0} .

Note that λs is minuscule if and only if s = 0.

2.e. Cases of small rank. Below we give the complete information for the cases of small

rank. Note that here, in order to simplify the notation, we are switching to the unitary

group from the unitary similitude group; the group over F is GLn etc.
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2.e.1. The case A
(2)
3 (corresponds to U4(F/F0)).

a) Apartment over F : (x1, x2, x3, x4) ∈ R4

Affine roots: α+ 1
2Z

Fundamental alcove: x4 + 1
2 ≥ x1 ≥ x2 ≥ x3 ≥ x4

Simple affine roots: α1, α2, α3 and α0(x) = x4 − x1 + 1
2 = −θ + 1

2 with θ =

α1 + α2 + α3

b) Action of τ on apartment: (x1, x2, x3, x4) 7→ (−x4,−x3,−x2,−x1)

Apartment over F0: (x1, x2,−x2,−x1)

Positive roots: α1, α2, α3, α1 + α2, α2 + α3, θ

Relative roots:

res(α1) = res(α3) : x1 − x2 (lβ = 2)

res(α1 + α2) = res(α2 + α3) : x1 + x2 (lβ = 2)

res(α2) : 2x2 (lβ = 1)

res(θ) : 2x1 (lβ = 1)

Affine relative roots:

x1 − x2 + 1
2Z

x1 + x2 + 1
2Z

2x2 + Z

2x1 + Z

Fundamental alcove: 1
2 − x2 ≥ x1 ≥ x2 ≥ 0

Simple affine roots:

x1 − x2 : res(α1) = res(α3)

2x2 : res(α2)
1
2 − x1 − x2 : −res(α1 + α2) + 1

2

c) X∗(Tsc) = {x ∈ Z
4 | Σ(x) = 0}

X∗(Tsc)Γ = X∗(Tsc)/X∗(Tsc) ∩X∗(Tsc)
−
Q −→ Z

2, via x 7→ (x1 − x4, x2 − x3)

(acts by translation by 1
2 on apartment). Here X∗(Tsc)

−
Q denotes the −1-eigenspace.

Image = {x ∈ Z
2 | Σ(x) = 0(2)}.

X∗(Tad)Γ
∼−→ Z

2 surjective.

2.e.2. The case A
(2)
2 (corresponds to U3(F/F0)).

a) apartment over F : (x1, x2, x3) ∈ R
3

fundamental alcove: x3 + 1
2 ≥ x1 ≥ x2 ≥ x3

Simple affine roots: α1, α2, and α0(x) = x3− x1 + 1
2 = −θ+ 1

2 , with θ = α1 +α2.

b) action of τ on apartment: (x1, x2, x3) 7→ (−x3,−x2,−x1)

apartment over F0: (x1, 0,−x1)

Positive roots: α1, α2, α1 + α2
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Relative roots:

res(α1) = res(α2) : x1 (lβ = 2)

res(α1 + α2) : 2x1 (lβ = 1)

Affine relative roots:

x1 + 1
2Z

2x1 + 1
2 + Z

Fundamental alcove: −x1 + 1
2 ≥ x1 ≥ 0

Simple affine roots:

x1 : res(α1)

−2x1 + 1
2 : −res(α1 + α2) + 1

2

c) X∗(Tsc) = {x ∈ Z
3 | Σ(x) = 0}

X∗(Tsc)Γ = {x ∈ Z
3 | Σ(x) = 0}/{x | Σ(x) = 0, x1 = x3} ∼−→ Z, via x 7→ x1 − x3.

X∗(Tad)Γ
∼−→ Z .

2.e.3. The case A
(2)
4 (corresponds to U5(F/F0)).

a) apartment over F : (x1, x2, x3, x4, x5) ∈ R
5

fundamental alcove: x5 + 1
2 ≥ x1 ≥ x2 ≥ . . . ≥ x5

Simple affine roots: α1, . . . , α4, and α0(x) = x5 − x1 + 1
2 = −θ + 1

2 , with θ =

α1 + . . . + α4.

b) action of τ on apartment: (x1, . . . , x5) 7→ (−x5, . . . ,−x1)

apartment over F0: (x1, x2, 0,−x2,−x1)

Positive roots: α1, . . . , α4, α1 + α2, α2 + α3, α3 + α4, α1 + α2 + α3, α2 + α3 + α4, θ

Relative roots:

res(α1) = res(α4) : x1 − x2 (lβ = 2)

res(α1 + α2 + α3) = res(α2 + α3 + α4) : x1 + x2 (lβ = 2)

res(α2) = res(α3) : x2 (lβ = 2)

res(α1 + α2) = res(α3 + α4) : x1 (lβ = 2)

res(α2 + α3) = 2 res(α2) = 2 res(α3) : 2x2 (lβ = 1)

res(θ) = 2res(α1 + α2) = 2res(α3 + α4) : 2x1 (lβ = 1)

Affine relative roots:

x1 − x2 + 1
2Z (mult 2)

x1 + x2 + 1
2Z (mult 2)

x1 + 1
2Z (mult 2)

x2 + 1
2Z (mult 2)

2x1 + 1
2 + Z (mult 1)

2x2 + 1
2 + Z (mult 1)

Fundamental alcove: −x1 + 1
2 ≥ x1 ≥ x2 ≥ 0
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Simple affine roots:

x1 − x2 : res(α1)

x2 : res(α2)

−2x1 + 1
2 : −res(θ) + 1

2

c) X∗(Tsc) = {x ∈ Z
5 | Σ(x) = 0}

X∗(Tsc)Γ = {x ∈ Z
5 | Σ(x) = 0}/{x | Σ(x) = 0, x1 = x5, x2 = x4} ∼−→ Z

2, via

x 7→ (x1 − x5, x2 − x4).

X∗(Tad)Γ
∼−→ Z

2 .

3. Affine Flag varieties

3.a. Affine flag varieties and the coherence conjecture. Let k be an algebraically

closed field. We denote by K = k((t)) the field of Laurent power series with coefficients in

k. Let G be a reductive algebraic group over K. We will assume for simplicity that the

derived group of G is simply connected and absolutely simple, and also that G splits over

a tamely ramified extension of K.

Let S be a maximal split torus in G. We fix an alcove C in the apartment corresponding

to S, and denote by B the associated Iwahori subgroup of G(K). Let S be the set of

reflections about the walls of C. The parahoric subgroups containing B correspond to the

non-empty subsets Y of S. More precisely, we associate to Y the unique parahoric subgroup

containing B such that the associated subgroup W Y = WPY
in the sense of (2.1) is equal

to the subgroup of Wa generated by the simple reflections for the simple affine roots αi with

i /∈ Y . In particular, PS = B.

Let LG be the loop group associated to G, cf. [PR3]. This is the ind-group scheme

over k which represents the functor R 7→ G(R((t))) on the category of k-algebras. To any

parahoric subgroup P there is associated a smooth affine group scheme with connected

fibers over OK and with generic fiber equal to G. We will again denote this group scheme

by P and let L+P be the associated group scheme over k. Recall that L+P represents

the functor R 7→ P (R[[t]]) on the category of k-algebras. Let F(G) = LG/L+B, resp.

FY (G) = LG/L+P Y be the affine flag variety of G, resp. the partial affine flag variety of

G corresponding to Y . These fpqc quotients are representable by ind-schemes.

By [PR3], §10, there is a canonical isomomorphism

(3.1) Pic(FY (Gder))
∼−−→

⊕
i∈Y

Z · ǫi ,

given by sending a line bundle L to the degrees of its restrictions to the projective lines Pαi

corresponding to the simple affine roots αi, for i ∈ Y . Put κ(i) = 1, unless the vector part

of the simple affine root αi is a multipliable root, in which case we set κ(i) = 2 (this last

case only arises when G is of type A
(2)
2m). Let L′(Y ) be the line bundle on FY (Gder) which

is sent to
∑

i κ(i)ǫi under (3.1). Then L′(Y ) is ample, i.e., the restriction of L′(Y ) to any

Schubert variety Sw is ample, for any w ∈W Y \Wa/W
Y .
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Let µ be a cocharacter of Gad. Recall from §2.b.2 the subset AdmY (µ)◦ of Wa. More

precisely, in the notation of loc. cit. we take I = S \ Y and I◦ = τ−1
ad (I) = S \ Y ◦, with

Y ◦ = τ−1
ad (Y ); then AdmY (µ)◦ = AdmI(µ)◦. We define the subset AY (µ)◦ of FY ◦

(Gder) as

a reduced union of L+B-orbits

(3.2) AY (µ)◦ =
⋃

w∈AdmY (µ)◦
L+B · nw .

Note that the union of Schubert varieties in FY (Gad) defined by AY (µ) =
⋃
w∈AdmY (µ) Sw

is the translation by τ of AY (µ)◦.

We recall the coherence conjecture from [PR3], §10. It concerns the dimensions h
(µ)
Y =

dimH0(AY (µ)◦,L′(Y )⊗k), as Y ranges over the non-empty subsets of S. For any minuscule

coweight µ of Gad we introduce the polynomial

(3.3) h(µ)(k) = dimH0(X(µ),L(µ)⊗ek) .

Here e = [K ′ : K] is the degree of the splitting field K ′ of G, and X(µ) = GK ′/P (µ) is

the homogeneous projective variety associated to µ, and L(µ) is the ample generator of

the Picard group of X(µ). If µ = µ1 + . . . + µr is a sum of minuscule coweights, we set

h(µ) = h(µ1) · · · · · h(µr). The conjecture then states that

(3.4) h
(µ)
Y (k) = h(µ)(|Y | · k) ,

provided that µ is a sum of minuscule coweights for Gad. In [PR3] this conjecture is

proved for G = GLn and for G = GSp2n. In the present paper we need the conjecture for

G = GU(V, φ), in which case it is an open question.

3.b. Unitary affine flag varieties. Assume char(k) 6= 2. We consider the unitary simil-

itude group described in §1.b in the special case when F0 = K = k((t)) with uniformizer

π0 = t, and F = K ′ = k((u)) with uniformizer u with u2 = t. We also have the hermitian

vector space (V, φ) of dimension n ≥ 3 over K ′, which we assume split, with distinguished

basis e1, . . . , en. In this case, we will denote the standard lattice chain by λ0, . . . , λn−1. As

in §1.d, we can complete this into a periodic self-dual lattice chain λ in V = K ′n. We denote

by G = GU(V, φ) the group of unitary similitudes, which is an algebraic group over K, of

the type considered in §3.a. The simultaneous stabilizer of all the lattices in the lattice

chain λ is an Iwahori subgroup B as before. As in §1.b we set m = [n/2].

Let I ⊂ {0, . . . ,m} be a non-empty subset. We also require as usual for n = 2m that if

m − 1 ∈ I, then also m ∈ I, cf. §1.b. Let us write I = {i0 < i1 < · · · < ik}. We consider

the part of the “standard” lattice chain

λi0 ⊂ λi1 ⊂ · · · ⊂ λik ⊂ u−1λi0 .

We can complete this to a periodic self-dual lattice chain λI = {λj}j in V = K ′n as in

§1.d. (Recall that here j is of the form k · n ± i, i ∈ I, k ∈ Z, and λk·n−i = π−k · λ̂i,
λk·n+i = π−k · λi.)
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Let us now consider the functor FI which to a k-algebra R associates the set of pairs of

R[[u]]-lattice chains

Li0 ⊂ Li1 ⊂ · · · ⊂ Lik ⊂ u−1Li0

in V ⊗̂K ′R = R((u))n together with an invertible element α ∈ R((t))× which satisfy the

following conditions:

a) For any q ∈ {0, . . . , k}, we have

Liq ⊂ u−1α−1L̂iq ⊂ u−1Liq ,

b) The quotients Liq+1/Liq , u
−1α−1L̂iq/Liq , u

−1Li0/Liq+1 are projective R-modules of

rank equal to the rank of the corresponding quotients for the standard chain (when q = k,

these conditions have to be interpreted in the obvious way).

Here, we may think of α as a “similitude” that modifies the hermitian form φ⊗̂K ′R to

φα := α · (φ⊗̂K ′R). Notice that the dual of Li with respect to the new form φα is α−1L̂i.

The ind-group scheme LG over k acts naturally on FI by g ·({Li}, α) 7→ ({g ·Li}, c(g)−1 ·α).

By following the arguments of [PR], §4 (which deals with the case of the unitary group,

i.e when α = 1), we see that there is an LG-equivariant isomorphism LG/L+PI ≃ FI of

sheaves for the fpqc topology. Note, however, that if n = 2m, FI is not always a partial flag

variety associated to G, since the stabilizer group PI is not always a parahoric subgroup.

In fact, this happens if and only if m /∈ I, cf. §1.b. In this case the parahoric subgroup P 0
I

has index 2 in PI and the partial flag variety LG/L+P 0
I is isomorphic to the disjoint sum

of two copies of FI .
Recall from §1.b.3 that we identified the local Dynkin diagram of SU(V, φ) with {0, . . . ,m}

when n = 2m+ 1 is odd, and with {0, . . . ,m − 2,m,m′} when n = 2m is even. Using the

general notation for affine flag varieties introduced in §3.a, we have LG/L+P 0
I = FY . Here

Y = I when n is odd or n is even and m − 1 /∈ I. If n is even and m − 1 ∈ I, then

Y = (I \ {m− 1}) ∪ {m′}.

3.c. Embedding of the special fibers of local models in partial affine flag varieties.

We now return to the set-up of §1.e. In particular, we fix integers r, s with r + s = n and

denote by E the reflex field for (F/F0, r, s). Let k denote an algebraic closure of the residue

field of OE . Similarly to [PR3] we construct a natural embedding of the geometric special

fibers M̄naive
I = Mnaive

I ⊗R k into a partial affine flag variety associated to the unitary

similitude group G. For this we fix identifications compatible with the actions of π resp. u,

Λj ⊗OF0
k = λj ⊗k[[t]] k

which sends the natural bases of each side to one another. We therefore also obtain a

k[[u]]/(u2)-module chain isomorphism

Λ• ⊗OF0
k ≃ λ• ⊗k[[t]] k ,
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which is in fact an isomorphism of polarized periodic module chains [RZ]. Let R be a

k-algebra. For an R-valued point of Mnaive we have

Fj ⊂ Λj ⊗OF0
R = (λj ⊗k[[t]] k)⊗k R .

Let Lj := LFj
⊂ λj ⊗k[[t]] R[[t]] be the inverse image of Fj under the canonical projection

λj ⊗k[[t]] R[[t]] −→ λj ⊗k[[t]] R .

Also set α = −t−1. Then for this choice of α,

L0 ⊂ L1 ⊂ · · · ⊂ Lm ⊂ u−1L0 = Ln

is a lattice chain in R((u))n which satisfies conditions a) and b) in §3.b. This gives a

well-defined point in F(R) = (LG/L+B)(R). We obtain in this way a morphism

ι : Mnaive ⊗OE
k −→ F ,

which is a closed immersion (of ind-schemes).

In the case of incomplete lattice chains, one can proceed in a similar way and obtain an

embedding

ιI : Mnaive
I ⊗OE

k →֒ FI .
For I ′ ⊃ I, the following diagram is commutative,

Mnaive
I′ ⊗OE

k →֒ FI′y y
Mnaive
I ⊗OE

k →֒ FI .
The horizontal morphisms are equivariant for the actions of L+PI′ resp. L+PI , in the sense

of [PR2], section 6.

Note that in [PR3], we have set Lj := u−1LFj
to produce an embedding of Mnaive

I ⊗OE
k

into LUn/L
+PI(Un), where PI(Un) is the stabilizer of our lattice chain in the unitary group.

Observe that the similitude of scalar multiplication by u−1 is our choice of α = −t−1 here.

Hence, we obtain a commutative diagram

Mnaive
I ⊗OE

k
Fj 7→u−1·LFj

//

iI ++W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

LUn/L
+PI(Un)

u·Id
��

FI = LG/L+PI .

Let µ = µr,s denote the cocharacter of G given under the isomorphism G ⊗K K ′ ≃
GLn ×Gm by

(3.5) µr,s(z) = (diag( z(s), 1(r) ), z) .

Let A(µ) =
⋃
w∈Adm(µ) Sw. This is a closed reduced subset of the full flag variety F =

LG/L+B. Similarly, for I ⊂ {0, . . . ,m}, we denote by AI(µ) the image of A(µ) in FI .

Proposition 3.1. AI(µ) is contained in the image of M loc
I ⊗OE

k under ιI .
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It obviously suffices to prove this in the case of the full flag variety, i.e., for I = {0, . . . ,m}.
This is done in the next subsection.

3.d. Lifting of points in µ-strata to the generic fiber. Recall that we are treating the

Iwahori case of signature (r, s) with s ≤ r. Recall our notation of the standard lattices Λj ;

these come with distinguished OF -generators. For example, for Λ0 these are e1, . . . , en. For

Λm, if n = 2m is even, these are f1 := −π−1e1, . . . fm := −π−1em, fm+1 := em+1, . . . , fn :=

en. We have

〈πei, en+1−j〉 = δi,j

and (for n = 2m)

(fi, πfn+1−j) = ±δi,j
where 〈 , 〉, resp. ( , ) is the alternating, resp. symmetric form associated to the hermitian

form φ, as in §1.b.2. In particular, Λ0, resp. Λm is self-dual for 〈 , 〉, resp. ( , ). In general,

if

Λ = spanOF
{π−1e1, . . . , π

−1ei, ei+1, . . . , en},
we will set

fΛ
1 := −π−1e1, . . . , f

Λ
i := −π−1ei, f

Λ
i+1 := ei+1, . . . , f

Λ
n := en

If T is a subset of {1, . . . , n} = [1, n], we will set T ∗ = {n+ 1− a | a ∈ T}. We denote by

S a subset of [1, n] of cardinality s; then R = RS will denote the complement of S∗. Note

that R has cardinality r = n − s and that if S = [1, s], then R = [1, r]. We will consider

subsets S of cardinality s for which S ∩ S∗ = ∅, i.e S ⊂ RS .

Set

π̃ = π ⊗ 1− 1⊗ π ∈ OF ⊗OF0
OF

We will write this as π̃ = π −√π0. For such a subset S we will consider

FΛ
S =< fΛ

S∗, πfΛ
S∗, π̃fΛ

R\S > ⊂ Λ⊗OF0
OF

where fΛ
T = {fΛ

t }t∈T and where <,> denotes the OF0-module generated by these vectors

(not to be confused with the notation for the alternating form). Notice that R \ S =

[1, n] \ (S ∪ S∗). We claim this corresponds to an OF -point of the naive local model for

signature (r, s) and the complete lattice chain. Note the following identity,

π · (π̃v) = −√π0 · (π̃v) ,

so that π̃v is an eigenvector for the action of π with eigenvalue −√π0 = −1⊗π. This shows

that FΛ
S is stable for the action of π = π ⊗ 1 and the characteristic polynomial is

det(T · I − π | FΛ
S ) = (T 2 − π0)

s(T −√π0)
r−s = (T +

√
π0)

r(T −√π0)
s .

Now we explain why FΛ
S is an isotropic sequence of flags. Since this is a closed condition it

is enough to check it over F . Since Λ⊗OF0
F = Λ0 ⊗OF0

F it is enough to check that

< FΛ0
S ,FΛ0

S >= 0
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for all such S. Recall that fΛ0
j = ej for all j. Since S ∩ S∗ = ∅, we have 〈ei, πej〉 = 0 if

i, j ∈ S∗. We also have

〈π̃v, π̃w〉 = 〈πv −√π0v, πw −
√
π0w〉 = 0 .

Also 〈ei, ej〉 = 0 for all i, j and 〈ei, π̃ej〉 = 0 if i ∈ S∗, j ∈ R \ S. Similarly 〈πei, π̃ej〉 = 0

for i ∈ S∗, j ∈ R \ S.

This shows that FΛ
S gives an OF -point of Mnaive. Denote by

F̄Λ
S ⊂ Λ⊗OF0

(OF /(π)⊗OF /(π) k) = Λ⊗OF0
k

the reduction of the subspaces FΛ
S modulo the maximal ideal of OF . Denote by LS• the

lattice chain that corresponds to the subspaces F̄Λ
S as in §3.b. Then

u2λ• ⊂ LS• ⊂ λ•
(We also think of LS• as giving a point of the affine flag variety F = LG/L+B for the

unitary similitude group G.)

Recall from §2.d.1, 2.d.2, that W0 = Sm ⋊ {±1}m, no matter whether n is even or odd.

For each w ∈W0, and each subset S ⊂ [1, n] of cardinality s ≤ m with S ∩ S∗ = ∅, w · S is

of this type again and this action is transitive.

Lemma 3.2. The relative position inv(λ•, LS•) in the Iwahori-Weyl group W̃ of G is wS(λ).

Here λ is as in §2.b.2 the image of µ ∈ X∗(T ) in the coinvariants X∗(T )I and wS ∈ W0

has the property that wS · [1, s] = S.

Proof. Here we may think of the Iwahori-Weyl group W̃ of the unitary similitude group

G ⊂ ResF/F0
(GLn ×Gm) as a subgroup of the Iwahori-Weyl group for GLn ×Gm. This

follows easily when we we represent these groups as quotients of normalizer groups; on the

translation part this induces the injection given by the norm

(3.6) X∗(T )I −→ X∗(T ) = Zn × Z .

(Note here that X∗(T )I is torsion-free.) Under this map the element λ is sent to

Norm(µr,s) = ((2s, 1r−s, 0s), 2) .

Set

τr,s = diag(−t(s), u(r−s), 1(s))

for a corresponding torus element in the unitary similitude group.

Set Λ = Λ0 if n is odd and Λ = Λm if n = 2m is even (this amounts to choosing a special

vertex for G). Similarly, set λ for λ0 or λm, and LS for the lattices LS0 or LSm respectively.

Then

L[1,s]•
= τr,s · λ• .

This shows that the claim is true for S = [1, s] and w[1,s] the identity; the same is true for

any other choice of w[1,s] since each such choice centralizes τr,s. Now write λj = tj ·λ where

tj is a (diagonal) translation element for GLn. Then we also have (LS)j = tj ·LS for any j.
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Now we think of elements of W0 as permutation matrices in GLn in the standard basis fΛ
i

of Λ. We can see that the permutation wS takes the k[[u]]-basis

{u2fΛ
1 , . . . , u

2fΛ
s , uf

Λ
s+1, . . . , uf

Λ
r , f

Λ
r+1, . . . , f

Λ
n }

of L[1,s] to the basis

{fΛ
S∗ , ufΛ

R−S , u
2fΛ
S }

of LS. This shows that LS = wS · L[1,s] which combined with the above gives

(3.7) (LS)j = tjwSL[1,s] = tjwSτr,sλ = tjwSτr,sw
−1
S λ = tjwSτr,sw

−1
S t−1

j λj .

This amounts to (LS)• = wSτr,sw
−1
S Λ• which proves the claim.

The claim shows that the OF -points of M loc that we constructed above (one for each

subset S) reduce to points lying in the Schubert varieties that correspond to the extreme

elements of the set Adm(µ); all these extreme elements are then obtained by this construc-

tion. Since Adm(µ) is closed under the Bruhat order, the set A(µ) is closed in F , and is

contained in the closed subset ι(M loc ⊗OE
k). This proves Proposition 3.1.

4. The structure of local models

4.a. Consequences of the coherence conjecture. It is shown in [PR3] §11, that as a

consequence of Proposition 3.1, we have the following statement.

Theorem 4.1. Assume the validity of the coherence conjecture for the pair (G,µ) =

(GU(V, φ), µr,s). Then the geometric special fiber of M loc
I is reduced and is isomorphic

to AI(µ). Its irreducible components are normal and with rational singularities.

4.b. Vertex-wise admissibility. Recall that we are assuming s ≤ r. By the previous

section, all the extreme elements of the set AdmI(µr,s) correspond to sequences of subspaces

Fi for which the rank of (π|Fi) is maximal, i.e equal to s, for all i ∈ I.

Conjecture 4.2. The converse is true: given a sequence of subspaces Fi (in the special

fiber of the naive local model Mnaive
I ) for which the rank of (π|Fi) is equal to s for all i ∈ I,

then the corresponding stratum is admissible and extreme, i.e of the form w0(λ) for some

w0 ∈W0 (or rather its image in W I\W̃/W I).

In particular, we conjecture that admissibility has a vertex by vertex characterization.

Remark 4.3. For ResF/F0
GLn (here again F/F0 is ramified quadratic extension) this

statement is true; this follows from [PR1]. In fact, in this case, an element of the naive

local model lies in a Schubert cell for an element of AdmI(µ) if and only if the rank of π on

each subspace is ≤ s and the extreme elements are the ones for which the rank is s. This

stronger statement is false in the case of a ramified unitary group. For example, let n = 2m

be even and let I = {m}. Then the subspace F = πΛm/π0Λm of Λm/π0Λm has rank of

π|F equal to zero, but does not belong to AI(µ) if s is odd, cf. 2.d.1.
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In the global context of §1.d U. Görtz and T. Wedhorn ask whether the points in the

special fiber of AC′ , for which the stronger statement fails, are all supersingular.

Proposition 4.4. Assume the validity of Conjecture 4.2. Then

AI(µ) =
⋂

i∈I
π−1
I,{i}(A{i}(µ))

(intersection inside FI = LG/L+PI). Assuming in addition the coherence conjecture (for

the pair (G,µ) = (GU(V, φ), µr,s)),

M loc
I =

⋂
i∈I

π−1
I,{i}(M

loc
{i})

(intersection inside Mnaive
I ).

Proof. In either case, it is clear that the left hand side is contained in the right hand side.

It suffices to prove the second identity for the special fibers, in which case it follows from

the first identity since we are assuming the coherence conjecture. For the first identity, it

suffices to see that any extreme stratum of the right hand side is contained in the left hand

side. This follows from the following identity which is a consequence of conjecture 4.2,

AdmI(µ) =
⋂

i∈I
π−1
I,{i}(Adm{i}(µ))

(intersection in W I\W̃/W I).

5. Special parahorics

In the beginning of this section, we give affine charts for the local models Mnaive
I and M∧

I

in the cases I = {0} when n is odd and I = {m} when n = 2m is even. For simplicity, we

will omit the subscript {0} or {m} and write simply Mnaive, M∧ etc.

The corresponding parahoric subgroups P 0
I are then special in the sense of Bruhat-Tits

([T]). As we will see, the reduced special fibers of these charts are the closures of certain

nilpotent orbits for the “classical symmetric pairs” (gl(n), o(n)), resp. (gl(n), sp(n)).

5.a. An affine chart. We distinguish two cases:

A. Assume that n = 2m + 1 is odd; then we take I = {0}. Recall that Λ := Λ0 is

equipped with the perfect alternating form 〈 , 〉 which satisfies 〈πei, en+1−j〉 = δij . The

corresponding OF0-basis is

{e1, . . . , en, πe1, . . . , πen}
and the matrix of 〈 , 〉 in this basis is

J2n =

(
0 −Hn

Hn 0

)
,

where Hn is the unit antidiagonal matrix (of size n). Let L = 〈e1, . . . , en〉 be the standard

Lagrangian OF0-direct summand of Λ, and denote by Q the Siegel parabolic subgroup of

Sp(Λ, 〈, 〉) that preserves L.
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B. Assume that n = 2m is even; then we take I = {m}. Recall that Λ := Λm is equipped

with the perfect symmetric form ( , ). Set fi = −π−1ei, for 1 ≤ i ≤ m, fi = ei, for

m+ 1 ≤ i ≤ n. Consider the OF0-basis of Λm given by

{f1, . . . , fn,−πf1, . . . ,−πfm, πfm+1, . . . , πfn}

The matrix of ( , ) in this basis is H2n. Here we let Q be the parabolic subgroup of

O(Λm, (, )) that preserves the totally isotropic OF0-direct summand L = 〈f1, . . . , fn〉.
In each case, the Lie algebra Lie(Q) consists of the OF0-endomorphisms A of Λ that

satisfy A(L) ⊂ L and

(5.1) 〈Av,w〉 + 〈v,Aw〉 = 0, resp. (Av,w) + (v,Aw) = 0.

For simplicity, denote by X the restriction of A to L. Now let Nr,s be the scheme of

endomorphisms A in the Lie algebra Lie(Q)⊗OF0
OE that satisfy the equations

A2 = π0 · I2n , and

charX(T ) = (T −√π0)
s(T +

√
π0)

r .

Also, denote by N∧
r,s the closed subscheme of Nr,s given by A which when r 6= s satisfy

in addition:

(5.2) ∧r+1 (X −√π0 · I) = 0, ∧s+1(X +
√
π0 · I) = 0 .

As in [PR1] (1.3), we see that there is a diagram

(5.3) Mnaive π←−− M̃naive φ−−→ Nr,s ,

where π is a Q-torsor, and where φ is a smooth morphism. Here

M̃naive(S) = {(F ⊂ Λ⊗OF0
OS , α)}

where F gives a point of Mnaive(S) and α is a choice of basis v1, . . . , v2n of Λ⊗OF0
OS with

matrix J2n, resp. H2n for the bilinear form on Λ⊗OF0
OS and such that the subspace F is

generated by v1, . . . , vn. Here φ((F , α)) is given by the endomorphism α−1 ·π ·α (which we

can express by a matrix A using {vi}). Similarly, by restriction along the closed immersions

M∧ ⊂Mnaive, N∧
r,s ⊂ Nr,s we also obtain

(5.4) M∧ π∧

←−−− M̃∧ φ∧−−−→ N∧
r,s ,

with π∧ a Q-torsor and φ∧ smooth again. Notice that the morphisms φ, φ∧ are not surjec-

tive; for example, the closed fiber of their image lies in the open subset where the rank of

A is exactly n.
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5.b. The odd case. Assume we are in case A. For each signature (r, s), we can consider

the point of M∧(k) ⊂Mnaive(k) given by

F0 = π · (Λ0 ⊗OF0
k) ⊂ Λ0 ⊗OF0

k .

To obtain an affine chart of the naive local model around this point consider the subspaces

F which are of the form

F = {π · v +X · v | v ∈ OnS} ,
with v a column vector in OnS = OS · e1 ⊕ · · · ⊕ OS · en. Then we can see as in [P1], p.

596, that the corresponding open subscheme Ur,s of the local model Mnaive is the scheme

of n× n-matrices X which satisfy

(5.5) X2 = π0 · I, Xt = HXH, charX(T ) = (T −√π0)
s(T +

√
π0)

r .

Here H = Hn. Similarly, the corresponding open subscheme U∧
r,s of the wedge local model

M∧ is the scheme of n×n-matrices X which satisfy the equations (5.5) above together with

the equations of minors (5.2).

To connect this with the previous picture, notice that over Ur,s we can split the Q-

torsor π by picking the symplectic basis {vi} of Λ0 ⊗OF0
OS to be πe1 + Xe1, . . . , πen +

Xen,−e1, . . . ,−en. Then Ur,s can be identified with a subscheme of the scheme of matrices

A of Nr,s of the form

A =

(
X −I
0 −X

)
.

Similarly for U∧
r,s.

5.c. The even case. Assume now that we are in case B. We can see as above that an open

affine chart Ur,s of Mnaive around the point F0 = π(Λm ⊗OF0
k) ⊂ Λm ⊗OF0

k is given by

the scheme of n× n-matrices X which satisfy

(5.6) X2 = π0 · I, Xt = −JXJ, charX(T ) = (T −√π0)
r(T +

√
π0)

s .

Here J = Jn. Similarly, the corresponding open subscheme U∧
r,s of M∧ is the scheme of X

which satisfy the equations (5.6) above together with the equations of minors (5.2).

Suppose s 6= 0. It is then also useful to consider affine charts 1Ur,s, 1U
∧
r,s of Mnaive, M∧

r,s

around the point

F1 = 〈f1, πf1, πf2, . . . , πfn−1〉 ⊂ Λm ⊗OF0
k

of M∧(k) ⊂Mnaive(k) (especially when s is odd). Set

Λ′ = spanOF0
〈f1, πf1, πf2, . . . , πfn−1〉,

Λ′′ = spanOF0
〈fn, πfn, f2, . . . , fn−1〉

so that Λm = Λ′ ⊕ Λ′′. Notice that the matrix of the form ( , ) in the basis

(5.7) {f1, πf1, πf2, . . . , πfn−1, fn, πfn, f2, . . . , fn−1}
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is (
0 S

St 0

)

where S is the skew matrix of size n,

S =

(
J t2 0

0 Jn−2

)
.

Now we can find an affine chart 1Ur,s around the point F1 by looking at graphs of linear

maps f : Λ′ −→ Λ′′ so that

F = {v + f(v) | v ∈ Λ′ ⊗OS} .

Write the map f by an n× n matrix

X =

(
T B

C Y

)

by using the basis (5.7) above. Here T is a 2× 2 matrix and Y an (n− 2)× (n− 2) matrix;

the matrices B and C are of sizes 2× (n− 2) and (n− 2)× 2 respectively. We can see that

the condition that F is isotropic is given by

(5.8) SXt = XS .

This translates to J2 · T t = T · J2, Jn−2 · Y t = Y · Jn−2 and C · J t2 = Jn−2 · Bt. The first

condition implies that T is diagonal and scalar, T = diag(x, x); the last condition shows

that C is determined by B. The condition that F is π-stable translates to

Y 2 = π0 · In−2, B1 = B2 · Y

where Bi is the i-th row of B; therefore B1 is determined by B2. We can see that the action

of π on F is now given by the block sum of the matrices

(
0 π0

1 0

)
and Y . This allows us to

translate the characteristic polynomial and exterior power conditions to conditions about

the matrix Y . We obtain

(5.9) charY (T ) = (T −√π0)
s−1(T +

√
π0)

r−1,

and for M∧
r,s

(5.10) ∧s (Y +
√
π0 · In−2) = 0, ∧r(Y −√π0 · In−2) = 0.

We conclude that in this case, the affine chart 1Ur,s is the product of the affine scheme

Ur−1,s−1 with an affine space of dimension n − 1 over OE (which corresponds to the free

coordinates x, B2 = (b2 1, . . . b2n−2)). In particular, we can see that if s or r is 1, then 1Ur,s

is smooth.
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5.d. Symmetric pairs. Let g be a reductive Lie algebra over a field k of odd characteristic.

Let θ be a non-trivial involution of g. Let g = f + p be the Cartan decomposition so that

f = {X ∈ g : θ(X) = X}, p = {X ∈ g : θ(X) = −X}. Then (g, f) form a “symmetric

pair”; we will call p the associated vector space (we can think of it as an infinitesimal

version of a symmetric space). Now let G be the adjoint group of g and let H = Gθ be

the subgroup of elements of G fixed by the involution. The group H acts on p (via the

adjoint action). The orbits of H on p, and in particular the orbits of elements of p which

are nilpotent in g, have been studied by several people starting with Kostant and Rallis

(see [KR1], [KR2], [Oh], etc.). When k = R, g is semi-simple and θ is a Cartan involution,

then H(R) is compact and one has the so-called Kostant-Sekiguchi correspondence [S2]:

this is a bijective correspondence between the nilpotent HC orbits of pC and the nilpotent

orbits of H(R) on the real Lie algebra g(R). (This plays no role in what follows). Here we

consider two “classical cases”:

Let V be a vector space over k of dimension n with a non-degenerate bilinear form

h : V × V −→ k which is either symmetric or alternating. If X ∈ End(V ) the adjoint X∗

is defined as usual by h(Xv,w) = h(v,X∗w). Then θ(X) = −X∗ gives an involution of the

Lie algebra End(V ) ≃ gl(n).

A. The form is symmetric given by the antidiagonal matrix H = Hn. Then (g, f) =

(gl(n), o(n)); the vector space p is {X ∈ Matn×n(k) | Xt = HXH} and the orbits are for

the action of the (split) orthogonal group. The nilpotent orbits in p are parametrized by

partitions P (n) of n: For λ ∈ P (n), the corresponding orbit is pλ = p ∩ Oλ with Oλ the

GLn-orbit of a nilpotent matrix with Jordan blocks given by λ.

B. The form is alternating given by the skew-symmetric matrix J = J2m where n = 2m.

Then (g, f) = (gl(n), sp(n)); the vector space p is {X ∈ Matn×n(k) | Xt = −JXJ}. The or-

bits are for the action of the symplectic group and are parametrized by partitions ofm; if λ =

(a1, a2, . . . , as) is a partition of m then pλ = p ∩ Oλ(2) with λ(2) = (a1, a1, a2, a2, . . . , as, as)

a partition of n = 2m.

(Note that the parametrization of the nilpotent orbits pλ stated above is shown by

Sekiguchi [S1], see also [Oh], when k = C. This result extends to any k of odd charac-

teristic.)

5.e. Generic smoothness. Here we show that our results so far allow us to deduce that

the special fiber M̄ loc is irreducible and generically smooth in these special cases (when

n = 2m+ 1 and I = {0}, or n = 2m and I = {m}).
By §3.c, M̄ loc is connected and projective and is a union of left orbits for PI in the

affine Grassmannian for GUn. We can see that there is a unique closed PI -orbit in M̄ loc.

This closed orbit has to be contained in AI(µ). From the description of Adm0(µr,s) in

§2.d.1 and §2.d.2 we see that the closed orbit is the point {F0} if n = 2m + 1, or if

n = 2m and s is even. If n = 2m and s is odd, then the closed orbit is the orbit of

F1 = spanOF
{f1, πf1, πf2, . . . , πfn−1}. By the above, we can now obtain a description of
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an affine chart of M loc that contains a point from the closed orbit: In each case, such a

chart is given by the flat closure Uflat
r,s of U∧

r,s, resp. 1U
flat
r,s of 1U

∧
r,s. (This is the same as the

flat closure of Ur,s resp. 1Ur,s .)

Now consider the flat closure V flat
r,s of the scheme Vr,s of n × n matrices X over OE that

satisfy

X2 = π0 · I, charX(T ) = (T −√π0)
r(T +

√
π0)

s

∧s+1(X −√π0 · I) = 0, ∧r+1(X +
√
π0 · I) = 0 , when r 6= s.

By [PR1], we see that the scheme V flat
r,s has relative dimension 2rs. Its special fiber is

reduced, irreducible and is the union of the nilpotent orbits Oρ for GLn that correspond to

partitions ρ of n with ρ ≤ (2s, 1r) = (r, s)∨ (the partition dual to (r, s)). Its smooth locus

V sm
r,s is the complement of O(2s−1,1r+1). The involution σ given by X 7→ HXtH when n is

odd, resp. X 7→ −J Xt J when n is even, acts on Vr,s, V
flat
r,s and on O(2s ,1r).

Suppose first that either n is odd, or that both n and s are even. Then, by definition, U∧
r,s

is the fixed point scheme (Vr,s)
σ ; over the generic fiber E this scheme has dimension rs. In

this case, by Prop. 1 of [Oh], we can see that there is at least one σ-fixed point on O(2s ,1r);

since the action is tame, the fixed point scheme (O(2s ,1r))
σ is smooth. In fact, it follows

from [KR2], Prop. 5 and its proof (they deal with the case k = C but their proof is valid

for every algebraically closed field of odd characteristic) that each component of (O(2s ,1r))
σ

has dimension half of the dimension of the corresponding nilpotent orbit O(2s ,1r). Hence,

this dimension is dim((O(2s ,1r))
σ) = rs. We can now deduce that (V sm

r,s )σ ⊂ U∧
r,s is smooth

over OE of relative dimension rs and provides an open subscheme of Uflat
r,s with (smooth)

special fiber (O(2s,1r))
σ. In fact, by Prop. 1 of [Oh], (O(2s,1r))

σ is connected, hence we

can see that (O(2s ,1r))
σ coincides with a nilpotent orbit for the associated symmetric pair,

equal to p(2s ,1r) in the notation of the previous paragraph. It follows that the inclusion

Ūflat
r,s ⊂ Ū∧

r,s = p(2s ,1r) is an equality on points. It now follows that the special fiber of Uflat
r,s

is irreducible and generically smooth. We also deduce that M̄ loc is irreducible.

Suppose now that n is even and s is odd. (Note that in this case, (O(2r ,1s))
σ = ∅.) Then

we can reduce to the smaller case where n = r + s is replaced by n − 2 partitioned by

(r − 1, s − 1); indeed, by our work in the last part of §5.c and the above, we can see that

the special fiber of the flat closure 1U
flat
r,s is generically the product of an affine space with

(O(2s−1,1r−1))
σ and hence it is generically smooth and irreducible.

As a corollary of the main result of [PR3] we can now show:

Theorem 5.1. Let I = {0} if n is odd, and I = {m} if n = 2m is even. The special fiber

of the local model M loc
I is irreducible and reduced and is normal, Frobenius split and with

only rational singularities.

Proof. By the previous considerations the underlying reduced scheme (M̄ loc
I )red is a Schubert

variety equal to AI(µ). By the main result of [PR3] we deduce that (M̄ loc
I )red is normal,

Frobenius split and has only rational singularities. On the other hand, we saw that the

special fiber M̄ loc
I contains an open dense subset which is reduced. By Hironaka’s Lemma
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(EGA IV.5.12.8) we deduce that M̄ loc
I is reduced, which proves the claim, comp. also [PR3],

Remark 11.4.

Conjecture 5.2. Let n be odd, or both n and s be even. Then the scheme of matrices U∧
r,s

is flat over SpecOE. Equivalently, consider the space of matrices X in Mn over Speck with

X2 = 0, Xt = HXH, charX(T ) = T n , ∧s+1X = 0, ∧r+1X = 0 ,

if n is odd, resp.

X2 = 0, Xt = −JXJ, charX(T ) = T n , and ∧s+1 X = 0, ∧r+1X = 0 , when r 6= s ,

if n and s are even.

Then this scheme is reduced (in which case it is normal, with rational singularities).

Remark 5.3. a) Conjecture 5.2 implies that, under the assumptions n is odd, or both

n = 2m and s even, M∧
{0} = M loc

{0}, resp. M∧
{m} = M loc

{m}.

b) Suppose that n is even and s is odd. Recall that we denote by U∧
r,s the affine chart

around the point F0 of M∧(k) = M∧
{m}(k). By the above, we have U∧

r,s = (V ∧
r,s)

σ. However,

we can see that in this case the generic fiber U∧
r,s ⊗OE

E is empty. (Indeed, when π0 is

invertible, if XtJ = JX and X2 = π0, then the matrix (
√
π0)

−1X belongs to the symplectic

group and hence has determinant 1. Therefore, both eigenvalues
√
π0, −

√
π0 of X have to

appear with even multiplicity.) In fact, in this case (O(r,s))
σ is empty and an argument as

above shows that dim(U∧
r,s) < rs. It follows that the point F0 does not lift to characteristic

zero. Hence M∧
{m} and also Mnaive

{m} are not flat over OE .

5.f. Normality of some nilpotent orbits. In the proof of the previous theorem we used

some facts about nilpotent orbits for symmetric pairs. Conversely, we can use the results

on local models (which ultimately rely on structure theorems for affine flag varieties) to

deduce results on nilpotent orbits.

Theorem 5.4. a) Suppose that n is odd. Then the Zariski closure of the nilpotent orbit

p(2s,1r) for the symmetric pair (gl(n), o(n)) is normal.

b) Suppose that n and s are both even. Then the Zariski closure of the nilpotent orbit

p(2s,1r) for the symmetric pair (gl(n), sp(n)) is normal.

(When k = C this result is a very special case of the results of Ohta [Oh]; his methods are

particular to characteristic 0. Note that Ohta shows that the Zariski closure of any nilpotent

orbit for the pair (gl(n), sp(n)) is normal, but exhibits examples for pairs (gl(n), o(n)) of

non-normal orbit closures.)

Proof. By Theorem 5.1 the special fiber M̄ loc is reduced and normal. By our discussion

above, the Zariski closure of the nilpotent orbit p(2s,1r) can be identified with an open affine

subscheme of M̄ loc. The result follows.
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6. The local models of Picard surfaces

In this case (G = GU(2, 1)), there are three conjugacy classes of parahoric subgroups. In

what follows we will show Theorem 0.3 of the introduction.

A) Let I = {0}. Then, by [P1], Theorem 4.5 and Remark 4.15., we have the following

statement.

Proposition 6.1. Mnaive
{0} is normal and Cohen-Macaulay. Furthermore, Mnaive

{0} is flat over

Spec (OF ) and is smooth outside the special point F0 of the special fiber. Blowing up this

special point yields a semi-stable model with special fiber consisting of two smooth surfaces

meeting transversely along a smooth curve.

We note that in [Kr] it is shown that the blow-up scheme represents a moduli problem

analogous to the Demazure resolution of a Schubert variety in the Grassmannian.

B) Let I = {1}. In this case we have the following statement.

Proposition 6.2. M loc
{1} is smooth over Spec (OF ).

Proof. The dual Λ̂s1 of Λ1 with respect to the symmetric bilinear form ( , ) is Λ2. More pre-

cisely, the matrix of this bilinear form with respect to the OF0-basis e3, π
−1e1, e2, πe3, e1, πe2

(in this order) is equal to

D =

(
K H
tH −π0K

)
,

where

K =




0 0 0

0 0 0

0 0 1


 , H =




0 1 0

−1 0 0

0 0 0


 .

We describe an open neighborhood of the point F0 in the special fiber. As in 5.b, we find

that it can be given as a subscheme of the space of matrices A of the form

A =

(
X

I

)
,

where I is the unit matrix of size 3, and where X is a square matrix of size 3 with indeter-

minates as entries. The following conditions are imposed (the first condition corresponds

to the isotropy condition imposed on F = Image(A), the second one to the π-invariance of

F):

(i) tA ·D · A = 0,

(ii) X2 = π0 · I.
Now condition (i) comes to

(6.1) tXKX + (tHX +tXH)− π0 ·K = 0 .

Write X in the form

X =

(
X1 X2

X3 X4

)
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where X1 is a square matrix of size 2 and X4 a square matrix of size 1. Also let

J =

(
0 1

−1 0

)

be the left upper corner of H. Let us write

X1 =

(
a b

c d

)
, X3 = (x, y) .

Then equation (6.1) becomes the matrix equation

(6.2)

(
tX3X3

tX3X4

X4X3 X2
4

)
+

(
tJX1 +tX1J

tJX2
tX2J −π0

)
= 0 ,

where tX3X3 means

(
x2 xy

xy y2

)
.

The condition (ii) becomes

(6.3) X2 =

(
X2

1 +X2X3 X1X2 +X2X4

X3X1 +X4X3 X3X2 +X2
4

)
= π0 · I .

From the left lower corner we get tX2 = X4 · (y,−x). From the left upper corner of (6.2) we

obtain the identity

(6.4) −
(
−2c a− d
a− d 2b

)
=

(
x2 xy

xy y2

)
.

On the other hand, for the characteristic polynomial we are imposing the condition

charX(T ) = (T +
√
π0)

2(T −√π0) .

In particular tr(X) = −√π0, i.e. a+d+X4 = −√π0. Taken together with (6.4), we see that

X is uniquely determined by (x, y) and X4 with X2
4 = π0. In the generic fiber of our scheme

of matrices X we see that we have X4 = −√π0. (Use (6.3), (6.4) and the characteristic

polynomial condition.) Therefore, the identity X4 = −√π0 persists in the flat closure: We

conclude that the intersection of the flat closure M loc
{1} with an open neighborhood of F0

can be identified with a closed subscheme of the affine space in (x, y) over Spec (OF ). It

therefore has to coincide with this affine space. Hence M loc
{1} is smooth in a neighborhood of

F0. But then the singular locus is empty since otherwise, as a closed subset in the special

fiber invariant under the parahoric subgroup, it would have to contain F0.

Remarks 6.3. (i) One can see thatMnaive
{1} and evenM∧

{1} are not flat; computer calculations

indicate that they have non-reduced special fibers, cf. Remark 7.4, (iv).

(ii) The special fiber M of M loc
{1} is isomorphic to P2. To see this, let V̄ = V/R, where

V = Λ1⊗OF0
k, and whereR = (πe2) is the one-dimensional radical of the symmetric bilinear

form on V . Then V̄ is a non-degenerate quadratic space of dimension 5, and the image of πΛ

in V̄ is a two-dimensional isotropic subspace V̄2. Now any F corresponding to a point in M
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{0} {1}

2 0 2

Figure 3. The admissible set for U(2, 1).

contains R, and hence defines a two-dimensional isotropic subspace F̄ in V̄ . The fact that F
is π-stable implies that the intersection F̄ ∩ V̄2 is non-trivial. We see that M is contained in

the Schubert variety of isotropic planes in V̄ which have a non-trivial intersection with the

fixed isotropic plane V̄2. However, the Grassmannian of isotropic planes in V̄ is isomorphic

to the Grassmannian of (isotropic) lines in a 4-dimensional symplectic space (W, 〈 , 〉).
Indeed, V̄ may be identified with a natural subspace of ∧2W , and a line l in W is mapped

to l ∧ l⊥. If L is mapped to V̄2 under this map, then the Schubert variety in question is

identified with the set of lines in W which are contained in the 3-dimensional space L⊥.

Hence this Schubert variety is isomorphic to P2. It follows that M red is contained in P2,

and therefore by Proposition 6.2, M loc
{1} ⊗OF

k is isomorphic to P2.

C) Let I = {0, 1}. In this case we have the following statement.

Proposition 6.4. The local model M loc
{0,1} is normal and Cohen-Macaulay and has reduced

special fiber. It has two irreducible components which are normal and with only rational sin-

gularities. These two irreducible components meet along two smooth curves which intersect

transversally in a single point.

Proof. For the special fiber M̄ loc
{0,1} there is a chain of closed immersions, where µ = µ(2,1),

(6.5) A{0,1}(µ) ⊂ M̄ loc
{0,1} ⊂ π−1

{0}(M̄
loc
{0}) ∩ π−1

{1}(M̄
loc
{1}) = π−1

{0}(A
{0}(µ)) ∩ π−1

{1}(A
{1}(µ)) .

For the µ-admissible set we have

Adm{0,1}(µ) = π−1
{0}(Adm{0}(µ)) ∩ π−1

{1}(Adm{1}(µ)) .

This is shown by Figure 3. Indeed, in the picture, the extreme simplices of Adm{0,1}(µ)

(w.r.t. the Bruhat order) are translates of the base simplex by the translation elements {±2}
which have length 2, and the other simplices in Adm{0,1}(µ) correspond to the elements

smaller than either of these two elements in the affine Weyl group. On the other hand,

π−1
{0}(Adm{0}(µ)) is the set of simplices ∆ such that the distance from the vertex labeled

{0} in the picture to the vertex of the same type in ∆ is ≤ 2, and π−1
{1}(Adm{1}(µ)) is the

set of simplices ∆ such that the distance from the vertex labeled {1} in the picture to the

vertex of the same type in ∆ is ≤ 2. It is visibly true that the set of simplices ∆ satisfying

both conditions is the set of simplices marked in the picture, i.e. is equal to Adm{0,1}(µ).

Hence the above inclusions are bijections on the sets of closed points. By Frobenius

splitness of Schubert varieties in the flag variety of the unitary group proved in [PR3] , the

intersection on the RHS of (6.5) is reduced. Hence all inclusions in (6.5) are equalities. It

follows that M̄ loc
{0,1} is reduced and that all its irreducible components are Schubert varieties,
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hence by [PR3] are normal and with rational singularities. From Figure 3 we deduce that

there are two irreducible components corresponding to the extreme elements of Adm(µ).

They intersect in the two Schubert varieties corresponding to the elements of length one in

Adm(µ) and these are normal curves which intersect in a single reduced point corresponding

to the element of length zero in Adm(µ). We still need to prove that M̄ loc
{0,1} is Cohen-

Macaulay. However, both irreducible components X and Y are Cohen-Macaulay, and the

intersection X∩Y is Cohen-Macaulay and of codimension 1 in both X and Y . Hence X∪Y
is Cohen-Macaulay, comp. [Gö1], Lemma 4.22.

7. Functor description; the spin condition

7.a. Generalities on symmetric forms of even dimension. Let F be a field of char-

acteristic 6= 2. Fix a separable closure F sep of F . Let V be a vector space over F of even

dimension 2n. We will denote F -duals by ∗, so that V ∗ := HomF (V, F ) is the F -dual of V .

There is a perfect, F -bilinear pairing

(7.1) ∧n V × ∧nV −→ ∧2nV

defined by (v1∧· · ·∧vn, v′1∧· · ·∧v′n) 7→ v1∧· · ·∧vn∧v′1∧· · ·∧v′n. This gives an isomorphism

(7.2) c : ∧2nV ⊗F (∧nV )∗ −→ ∧nV
with inverse given by

v′1 ∧ · · · ∧ v′n 7→
(
v1 ∧ · · · ∧ vn 7→ v1 ∧ · · · ∧ vn ∧ v′1 ∧ · · · ∧ v′n

)
.

7.a.1. Now suppose that V supports a perfect symmetric F -bilinear form

h : V × V −→ F .

The form h induces an F -linear isomorphism b = bh : V −→ V ∗. For simplicity, let us set

D for the determinant F -line ∧2nV . Then b induces an isomorphism (“the discriminant”)

d : D⊗2 ∼−−→ F .

Notice that if e = e1 ∧ · · · ∧ e2n ∈ L with {e1, · · · , e2n} an F -basis of V then

(7.3) d(e⊗ e) = D := (−1)n det((h(ei, ej))1≤i,j≤2n)

is the discriminant of the form h in the basis {ei}i.
Define an F -algebra structure on A := F ⊕D by setting

(a, e) · (a′, e′) = (aa′ + d(e⊗ e′), ae′ + a′e) .

We call A the discriminant algebra of h. A choice of a non-zero element e in the F -line D
gives an isomorphism

(7.4) F [x]/(x2 − d(e⊗ e)) ∼−→ A ,

and A is either isomorphic to F × F , resp. a quadratic extension of F , if the discriminant

is a square, resp. not a square, in F .
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7.a.2. We will consider the composition

(7.5) a := c · (id⊗F ∧nb) : D ⊗F ∧nV −→ ∧nV.

where ∧nb : ∧nV −→ ∧n(V ∗) = (∧nV )∗ is given by b = bh. A choice of a non-zero element

e ∈ D provides us with an F -linear map:

(7.6) ae = a(e⊗−) : ∧nV −→ ∧nV .

For λ ∈ F×, we have aλ·e = λae.

Proposition 7.1. The map a : D⊗F∧nV −→ ∧nV provides an A = F⊕D-module structure

which extends the F -vector space structure on ∧nV .

Proof. In view of the above, it is enough to show that if e = e1 ∧ · · · ∧ e2n, with

{e1, · · · , e2n} an orthonormal F -basis of V , then

a2
e = D · Id∧nV ,

with

D = (−1)n
2m∏

i=1

h(ei, ei) .

For a subset S = {i1, . . . , in} ⊂ {1, . . . , 2n} with i1 < · · · < in set

eS = ei1 ∧ · · · ∧ ein ∈ ∧nV , DS = h(ei1 , ei1) · · · h(ein , ein) ∈ F× .

Denote by h∧
n

the symmetric form on ∧nV given by the map ∧nb : ∧nV −→ (∧nV )∗ =

∧nV ∗. If S 6= T , then h∧n(eS , eT ) = 0. If S = T , then h∧n(eS , eS) = DS . Therefore, as S

runs over all subsets of {1, . . . , 2n} of order n, the elements eS form an orthogonal basis of

∧nV for the form h∧
n

and the map ∧nb is given by

eS = ei1 ∧ · · · ∧ ein 7→ DS · e∗S = e∗i1 ∧ · · · ∧ e∗in .

On the other hand, the map c sends e∗S to ηS · eSc where Sc = {1, . . . , 2n} \ S is the

complement of S and ηS = ±1 is such that

eS ∧ eSc = ηS · e .

Note that ηS · ηSc = (−1)n (indeed, the form (7.1) is symmetric when n is even, and

alternating when n is odd). We conclude that the map ae sends eS to DSηS · eSc . Hence,

the square a2
e maps eS to DSDScηSηSc · eS and the result follows.

Now suppose that R is an A-algebra. Then the base change ∧nV ⊗F R = ∧n(V ⊗F R)

supports an A⊗F R–module structure where the first factor acts via the A-module structure

of Proposition 7.1. Hence, it splits into a direct sum of two R-modules

(7.7) ∧n V ⊗F R = (∧nV ⊗F R)+ ⊕ (∧nV ⊗F R)−

where the +, resp. −, part is where a⊗ 1 acts as 1⊗ a, resp. as 1⊗ τ(a), and τ : A −→ A

is the non-trivial involution over F .
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7.a.3. Suppose now that the form h is split; i.e the vector space V has a basis {e1, . . . , e2n}
with h(ei, e2n+1−j) = δij . In this case, D = 1, A = F ×F , and Proposition 7.1 implies that

for e = e1 ∧ · · · ∧ e2n, we have

(7.8) a2
e = Id∧nV .

The element e gives the structure of an A-algebra to F by sending e to 1 and we have

∧nV = (∧nV )+ ⊕ (∧nV )−

where (∧nV )+, resp. (∧nV )− is the eigenspace of ∧mV where ae has eigenvalue +1, resp.

−1. The subspaces (∧nV )+, (∧nV )−, depend on the choice of (split) basis but the two

element set {(∧nV )+, (∧nV )−} does not. We can see that the action of the special oth-

ogonal group SO(V, h) on ∧nV preserves the subspaces (∧nV )+, (∧nV )−. The element of

determinant −1 in O(V, h) permutes the two subspaces.

In this case, we can easily obtain an explicit description of the subspaces (∧nV )±, as

follows: For each subset S of {1, . . . , 2n} of order n we set

2n+ 1− S := {t | t = 2n + 1− s, s ∈ S} .

Define a permutation

σS : {1, . . . , 2n} −→ {1, . . . , 2n}
by sending {1, . . . , n} to the elements of 2n + 1 − S in decreasing order and sending the

remaining {n + 1, . . . , 2n} to the elements of the complement (2n + 1 − S)c in increasing

order.

Lemma 7.2. The subspace (∧nV )± of ∧nV is generated by the elements

eS ± sign(σS)e(2n+1−S)c .

for S running over all subsets of {1, . . . , 2n} of order n.

Proof. A straightfoward calculation from the definitions gives that

ae(eS) = sign(σS)e(2n+1−S)c .

Hence, since a2
e = Id∧nV , we have sign(σS) = sign(σ(2n+1−S)c). The result now follows.

7.a.4. We continue to assume that the form h on V is split with a basis {e1, . . . , e2n}
such that h(ei, e2n+1−j) = δij . If W is an totally isotropic subspace of V of dimension n,

then the line ∧nW is either contained in (∧nV )+ or in (∧nV )−. From the above we can

see that e1 ∧ · · · ∧ en ⊂ (∧nV )+ while e1 ∧ · · · ∧ en−1 ∧ en+1 ⊂ (∧nV )−. Now any basis

of an n-dimensional isotropic subspace of V can be completed to form a split basis of V .

Hence, using induction, we can conclude that if W , W ′ are arbitrary isotropic n-dimensional

subspaces of V then ∧nW and ∧nW ′ are contained in the same eigenspace (∧nV )± if and

only if

(7.9) dim(W ∩W ′) ≡ n mod2 .
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7.b. The spin correction. We now return to the notation of §1.b. In particular, F/F0 is

a tamely ramified quadratic extension with automorphism a 7→ ā, and φ : V ×V −→ F is a

perfect hermitian form on the F -vector space V of dimension n ≥ 3. Suppose {e1, . . . , en}
is a basis of V with φ(ei, en+1−j) = δij . We will apply the constructions of §7.a to V

considered as a 2n-dimensional F0-vector space with the symmetric form

h(v,w) =
1

2
TrF/F0

(φ(v,w)) .

Write m = [n/2] and consider the F0-basis

{−π−1e1, . . . ,−π−1em, em+1, . . . , en, e1, . . . , em, πem+1, . . . , πen}
of V . The OF0-lattice spanned by this basis is invariant for the action of OF = OF0[π] and

is equal to Λm.

There are two cases:

(I) n = 2m+ 1 is odd. Then the discriminant D of h in this basis is equal to π0 and the

discriminant algebra A is isomorphic to F . Hence, the form h is not split over F0. However,

after base changing to F we can replace in this list the vectors em+1, πem+1, by

em+1 −
πem+1√

π0
,

1

2

(
em+1 +

πem+1√
π0

)
.

The resulting new (ordered) basis splits the form h⊗F0F . We can consider the corresponding

eigenspaces (∧nV ⊗F0 F )± of ∧nV ⊗F0 F .

(II) n = 2m is even. Then the above basis splits the form h and we can consider the

eigenspaces (∧nV )± of ∧nV .

Now consider a choice of (r, s) with n = r+ s. Recall our definition of the reflex field E.

We have E = F0, if r = s, and E = F if r 6= s. Note that if r = s, then n is even and so we

can always make sense of the eigenspaces (∧nV ⊗F0 E)± of ∧nV . (If n is even and r 6= s,

we set (∧nV ⊗F0 E)± = (∧nV )± ⊗F0 F .) If Λ is one of the OF -lattices Λj of V defined in

§1.b, we set

(7.10) (∧nΛ⊗OF0
OE)± := (∧nΛ⊗OF0

OE) ∩ (∧nV ⊗F0 E)± .

7.b.1. Now let I be a subset of {0, . . . ,m} as in §1.d and recall the definition of the “naive”

unitary local models Mnaive
I of §1.e corresponding to I and (r, s). Recall also the definition

of the closed subscheme M∧
I of Mnaive

I defined by requiring the additional exterior power

condition (e) of (1.e.6).

We define a subfunctor MI of Mnaive
I by specifying that a point of MI with values in an

OE-scheme S is given by an OF ⊗OF0
OS -submodule Fj ⊂ Λj⊗OF0

OS for each j = k ·n± i,
i ∈ I, that in addition to the conditions (a)-(e) also satisfies

f) (Spin condition) For each j = k · n ± i, i ∈ I, the line ∧nFj ⊂ ∧n(Λj ⊗OF0
OS) is

contained in the subspace (∧nΛj ⊗OF0
OE)± ⊗OE

OS with ± = (−1)s.

It follows from the definition that MI is represented by a closed subscheme of Mnaive
I

which is contained in M∧
I ; we also denote this subscheme by MI .
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7.b.2. We claim that the generic fibers ofMI andMnaive
I are equal. Suppose that S is an E-

scheme. Then, we can see that condition (f) is open and closed on S. Recall that the generic

fiber Mnaive
I ⊗OE

F is isomorphic to the Grassmannian Gr(r, n)F . Hence, Mnaive
I ⊗OE

E is

connected and so it is enough to show that (f) is satisfied at some point of the generic fiber.

It is enough to check this for one choice of signature: Indeed, we can easily find subspaces

Fj , F ′
j , for signatures (r, s) and (r− 1, s+ 1) whose intersection has dimension n− 1; using

(7.9) we can inductively reduce to the case of a single signature choice. Let us take this to

be (m+ 1,m) if n = 2m+ 1 and (m,m) if n = 2m. The subspaces given by

Fodd = 〈π−1e1, . . . , π
−1em, e1, . . . , em, πem+1 −

√
π0em+1 〉 , and,

Feven = 〈π−1e1, . . . , π
−1em, e1, . . . , em 〉 ,

respectively, give points ofMnaive
I ⊗OE

E for these signatures. We can now see, by calculating

the dimension of the intersection of Fodd, resp. Feven, with the standard isotropic subspace

spanned by the first n-basis vectors of our chosen split basis of V ⊗F0 F , that these satisfy

condition (f). To recap, we have closed immersions

(7.11) M loc
I ⊂MI ⊂M∧

I ⊂Mnaive
I

which are isomorphisms on the generic fiber.

Conjecture 7.3. The scheme MI is flat over OE. Equivalently, we have M loc
I = MI .

Remarks 7.4. i) The definition of MI and the above conjecture are also motivated by a

similar construction that we have found to be effective in the case of even orthogonal groups

(see §8).

ii) This conjecture is supported by some computational evidence that we obtained with

the help of Macaulay 2. In particular, we verified the conjecture for the local models of

unitary groups in 3 and 4 variables when F0 = Fp((t)), F = Fp((u)) with u2 = t, for various

(small) primes p > 2.

iii) Recall from Remark 5.3 that the moduli scheme M∧
I , in which we omit condition (f),

is not flat over OE in general: Indeed, for n = 2m, I = {m} and signature (r, s) with s

odd the subspace π(Λm ⊗OF0
k) ⊂ Λm ⊗OF0

k gives a point of the special fiber of M∧
{m}

which does not lift to the generic fiber. We can see that this point does not satisfy the spin

condition (f).

iv) Another interesting example is provided by the case n = 3, (r, s) = (2, 1). Then we

can see that both M∧
{1} and M∧

{0,1} are not flat while our computer calculations suggest that

M{1} and M{0,1} are flat.

8. Remarks on the case of (even) orthogonal groups

Here we will discuss a particular type of orthogonal local model that controls the singu-

larities of certain PEL Shimura varieties; we will concentrate on the algebraic definition of
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these models and leave the connection to group theory and loop groups for another occasion.

Also for the connection to the reduction of Shimura varieties we will refer to [RZ].

We continue with the notations of §7.a. In addition, assume that F is local with ring of

integers OF , uniformizer π and residue field k of characteristic 6= 2. If Λ is an OF -lattice in

the F -vector space V , we denote by Λ̂ its dual lattice, i.e the image of Λ∗ := HomOF
(Λ,OF )

under the map

Λ∗ −→ Λ∗ ⊗OF
F = V ∗ b−1

−→ V .

The restriction of the form h gives a perfect OF -bilinear pairing

hΛ : Λ× Λ̂ −→ OF .

In what follows we will adhere to the terminology of [RZ] (note however, that in their set-up

F = Qp). Let L = {Λ} be a self-dual periodic chain of OF -lattices in V . Recall that a

lattice chain in V is by definition a (non-empty) collection of lattices such that if Λ, Λ′ are

in the chain then either Λ ⊂ Λ′ or Λ′ ⊂ Λ. A lattice chain defines a category with objects

the lattices and morphisms given by inclusions. “Periodic” means that Λ ∈ L implies that

aΛ ∈ L for every a ∈ F×; “self-dual” means that Λ ∈ L implies that Λ̂ ∈ L.

8.a. The naive local models. Let us formulate a moduli problem Mnaive on the category

of OF -schemes. A point of Mnaive with values in an OF -scheme S is given by functors from

the category given by the lattice chain L to the category of OS -modules

(8.1) Λ 7→ FΛ

together with a morphism of functors given by injections

(8.2) jΛ : FΛ −→ Λ⊗OF
OS

such that:

a) via jΛ, FΛ identifies with an OS-locally direct summand of rank n of Λ⊗OF
OS ;

b) if Λ′ = πΛ, the isomorphism Λ ⊗OF
OS −→ πΛ ⊗OF

OS = Λ′ ⊗OF
OS given by

multiplication by the uniformizer π induces an isomorphism between FΛ and FΛ′ ;

c) we have FΛ̂ = F⊥
Λ , where F⊥

Λ is the orthogonal complement of FΛ ⊂ Λ⊗OF
OS under

the perfect pairing

(8.3) (Λ̂⊗OF
OS) × (Λ⊗OF

OS) −→ OS

given by hΛ ⊗OF
OS .

We can see that the functor Mnaive is represented by a projective scheme over SpecOF
which we will also denote by Mnaive; this is the naive local model defined in [RZ]. If S is

an F -scheme, then the conditions above imply that W := FΛ ⊂ V ⊗F OS is independent

of the choice of Λ ∈ L. We can see that generic fiber Mnaive
F of the naive local model is the

orthogonal Grassmannian of isotropic subspaces W of V of dimension n.
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8.b. The corrected local models. It was observed by Genestier ([Ge2]), that the naive

local models are not flat in general. In this paragraph, we suggest a correction in their

definition that should address this problem. We continue with the notations of the previous

paragraph.

Recall A = F ⊕D is the discriminant algebra of h. By (7.7) we have

∧nV ⊗F A = (∧nV ⊗F A)+ ⊕ (∧nV ⊗F A)− ,

where the +, resp. −, part is where a⊗ 1 acts as 1⊗ a, resp. as 1⊗ τ(a), and τ : A −→ A

is the non-trivial involution over F .

Now let OA denote the integral closure of OF in A. For any OF -lattice Λ as above

consider the OA-lattice ΛOA
:= Λ⊗OF

OA. We have ∧n(ΛOA
) ⊂ ∧n(V ⊗F A). Let us set

(∧nΛOA
)± = ∧n(ΛOA

) ∩ (∧nV ⊗F A)±.

This is an OA-lattice in (∧nV ⊗F A)±.

Denote by M the closed subscheme of the base change Mnaive ⊗OF
OA whose S-points

for an OA-scheme S are given by S-points FΛ ⊂ Λ⊗OF
OS of Mnaive⊗OF

OA which satisfy

∧nOS
(FΛ) ⊂ (∧nΛOA

)+ ⊗OA
OS (for all Λ). The corrected local model is by definition M

regarded as a scheme over Spec (OF ). By its construction M comes with a morphism

(8.4) M −→ Spec (OA) −→ Spec (OF ).

There is a natural morphism of OF -schemes q : M −→ Mnaive. We will see below that

q induces an isomorphism on the generic fibers. However, q is not a closed immersion in

general.

Conjecture 8.1. The scheme M is flat over SpecOF .

In addition to the examples of the following paragraphs, there is a fair amount of com-

putational evidence for this (when n ≤ 8, F = Fp((t)), with p a small prime.)

8.b.1. To understand this construction a little better, let us consider the situation over F ,

i.e the generic fibers. Suppose that W is an S-valued point of Mnaive
F with S an F -scheme

(i.e a totally isotropic subbundle of V ⊗F OS); the short exact sequence

0 −→W −→ V ⊗F OS −→ (V ⊗F OS)/W
b−1

≃ W ∗ −→ 0

induces an isomorphism OS ≃ ∧nW ⊗ ∧n(W ∗) ≃ det(V ) ⊗F OS ≃ D ⊗F OS . We can

see that this in turns equips OS with an A-algebra structure. We deduce that Mnaive
F has

a natural structure of an A-scheme: This structure has the property that if W gives an

S-valued point of Mnaive
F , then the homomorphism A⊗F ∧nW −→ ∧nW induced by S −→

Spec (A) is obtained by restricting the homomorphism A⊗F ∧nV −→ ∧nV of Proposition

7.1. Therefore, we have

Mnaive
F = MF .



LOCAL MODELS III 53

Now denote by F sep a separable closure of F ; we fix an F -homomorphism A −→ F sep. The

Plücker map W 7→ ∧nW gives an embedding in projective space

MF sep −→ P(∧nVF sep) .

We can deduce that the image of MF sep under the Plücker embedding

MF sep −→ P(∧nVF sep) = P((∧nVF sep)+ ⊕ (∧nVF sep)−)

lies in the (disjoint) union of the two linear subspaces P((∧nVF sep)+) and P((∧nVF sep)−)

where the decomposition is obtained as above. Since the form h splits over F sep we can

choose a basis for VF sep as in 7.a.3. Since SO(VF sep , hF sep) is connected, from 7.a.3 and the

above, we conclude that MF sep has exactly two connected components each isomorphic to

the special orthogonal Grassmannian SO(VF sep , hF sep)/P ; they are separated by asking that

the top exterior power of the isotropic subspace is contained in (∧nVF sep)+, or (∧nVF sep)−
respectively. In fact, it is well-known that both of these components are of dimension

(n
2

)
.

8.c. The split case; examples. Assume that the form h is split and choose a basis

{e1, . . . , e2n} as in §7.a.3. Set Λ0 = 〈e1, . . . , e2n〉 and let Π : V −→ V be the linear

map defined by Π(e1) = π e2n, Π(ei) = ei−1, 1 ≤ i ≤ 2n. We have Π2n = π. Now let us

set Λ−i = ΠiΛ0; We can see that Λ̂i = Λ−i so that the form induces perfect OF -bilinear

pairings

(8.5) Λ−i × Λi −→ OF .

Now if I ⊂ {0, . . . , n} is a non-empty subset,

LI = {πkΛ±i | k ∈ Z , i ∈ I}.

is a self-dual periodic lattice chain in V . We will denote by Mnaive
I the “naive” local model

associated to V , h and the lattice chain LI . As it was observed by Genestier ([Ge2]), when

{0, n} ⊂ I the scheme Mnaive
I −→ SpecOF is not flat; he pointed out that the problem is

created by the existence of two connected components in the (isomorphic) generic fibers

(Mnaive
{i} )F ≃ OGr(n, 2n)F , i ∈ I. Roughly speaking, the closures of several pairs of these

components appear in the special fiber of the scheme Mnaive
I ⊂∏j∈I∪−I Gr(n, 2n)OF

. (See

the examples below). His observation motivated our work in these sections.

Example 1: Let us consider the case of the orthogonal group O2 over Qp, i.e take n = 1,

F = Qp, π = p, and I = {0, 1}. In this case we have Λ0 = 〈e1, e2〉, Λ−1 = ΠΛ0 = 〈e1, pe2〉.
For a Zp-scheme S the S-points of the naive local model Mnaive are given by diagrams

(8.6)
Λ−1 ⊗Zp OS

φ−→ Λ0 ⊗Zp OS
ψ−→ Λ−1 ⊗Zp OS

∪ ∪ ∪
F−1 −→ F0 −→ F−1

such that F0, F−1 are locally direct summands of rank 1, F0 is isotropic for h, and F−1 is

isotropic for the perfect form on Λ−1 ⊗Zp OS given by p−1h. In these diagrams, the map φ
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is given by base changing the inclusion Λ−1 ⊂ Λ0 while the map ψ is given by base changing

the map Λ0 −→ Λ−1 given by multiplication by p.

Setting

F0 = 〈ae1 + be2〉 , F−1 = 〈ce1 + dpe2〉 ,
we see that the orthogonality conditions give the (homogeneous) equations:

ab = 0 , cd = 0 .

If p is invertible in OS , the submodule F−1 is determined by F0. We can see that there

are two possibilities for F0: either F0 = 〈e1〉, or F0 = 〈e2〉 and so the generic fiber Mnaive
Qp

consists of a disjoint union of two copies of SpecQp. Let us now consider the special fiber,

i.e assume that p = 0 in OS . Taking into account that φ(F−1) = 〈ce1〉 ⊂ F0 = 〈ae1 + be2〉,
ψ(F0) = 〈bpe2〉 ⊂ F−1 = 〈ce1 + dpe2〉, we see that there are three possibilities:

F−1 = 〈e1〉 , F0 = 〈e1〉 , or,

F−1 = 〈pe2〉 , F0 = 〈e2〉 , or,

F−1 = 〈pe2〉 , F0 = 〈e1〉 .
Therefore, the special fiber consists of three copies of SpecFp and so Mnaive

I is not flat over

SpecZp. The point corresponding to the third possibility above does not lift to the generic

fiber. Notice that in this case

(∧nV )+ = 〈e1〉 , (∧nV )− = 〈e2〉 .

We can now readily see that M = SpecZp ⊔ SpecZp which is of course flat.

Example 2: In this example, we take n = 2 (which corresponds to O4), F = Qp, π = p,

and I = {1}. We have

(∧2V )+ = 〈e1 ∧ e2, e3 ∧ e4, e1 ∧ e4 + e2 ∧ e3〉

The lattices are Λ−1 = ΠΛ0 = 〈e1, e2, e3, pe4〉, Λ1 = Π−1Λ0 = 〈e1/p, e2, e3, e4〉, p−1Λ−1 =

p−1ΠΛ0 = 〈e1/p, e2/p, e3/p, e4〉 and the naive local model is given by diagrams

〈e1, e2, e3, pe4〉S φ−→ 〈e1/p, e2, e3, e4〉S ψ−→ 〈e1/p, e2/p, e3/p, e4〉S
∪ ∪ ∪
F−1 −→ F1 −→ F (1/p)

−1

with Fi of rank 2 such that F1 = (F−1)
⊥.

In this case

(∧2Λ−1)+ = 〈e1 ∧ e2, e3 ∧ pe4, e1 ∧ pe4 + p · (e2 ∧ e3)〉 ,

(∧2Λ1)+ = 〈e1/p ∧ e2, e3 ∧ pe4, p · (e1/p ∧ e4) + e2 ∧ e3〉 .
Our additional spin conditions amount to

(8.7) ∧2 F−1 ⊂ 〈e1 ∧ e2, e3 ∧ pe4, e1 ∧ pe4 + p · (e2 ∧ e3)〉S ,
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(8.8) ∧2 F1 ⊂ 〈e1/p ∧ e2, e3 ∧ e4, p · (e1/p ∧ e4) + e2 ∧ e3〉S .

We will examine the special fiber; thus we assume p = 0 in OS . If (F−1,F1) corresponds

to a F̄p-valued point of M , we can see that either e2 or e3 is in F1. When e2 ∈ F1, then

F1 = 〈e2, ae1/p + be3〉, F−1 = 〈e1,−ae2 + bpe4〉, where (a; b) ∈ P1. If e3 ∈ F1, then

F1 = 〈e3, ce2 + de4〉, F−1 = 〈p e4,−ce1 + de3〉, with (c; d) ∈ P1. Those two projective

lines intersect at the point F1 = 〈e2, e3〉 (at which F−1 = 〈e1, p e4〉). This describes the

(reduced) special fiber of the corrected local model. It is not hard to see that both irreducible

components lift to characteristic zero. For example, the point F1 = 〈e3, e4〉, F−1 = 〈e3, p e4〉
is a smooth point on the second component that lifts; similarly the point F1 = 〈e1/p, e2〉,
F−1 = 〈e1, e2〉 is a smooth point of the first component that lifts.

Now on to a “scheme theoretic” calculation. We will calculate an affine chart of the

special fiber at the singular point F−1 = 〈e1, p e4〉, F1 = 〈e2, e3〉. Set

F−1 = 〈e1 + x2e2 + x3e3, p e4 + y2e2 + y3e3〉 ,

Then we can see that

F1 = (F−1)
⊥ = 〈e2 − y3

e1
p
− x3e4, e3 − y2

e1
p
− x2e4〉 .

The condition φ(F−1) ⊂ F1 translates to

(8.9) x2x3 = y2y3 = x2y3 + x3y2 = 0 ,

while ψ(F1) ⊂ F (1/p)
−1 translates to

(8.10) x2y2 = x3y3 = x2y3 + x3y2 = 0 .

The spin conditions (8.7), (8.8) give

y3 = x2 = 0 , x2y3 − y2x3 = 0 .

These equations together with (8.9), (8.10) amount to

x2 = y3 = 0, y2x3 = 0 .

This together with the “set-theoretic” arguments above imply that the special fiber is

reduced and is the union of two P1’s intersecting transversely at a point. Since, both

of these P1’s lift, we also conclude that MI is flat over Zp.

Notice that if we omit the spin conditions, we obtain

x2x3 = y2y3 = x2y2 = x3y3 = x2y3 + x3y2 = 0 .

These are then the equations for an affine chart of the special fiber of the naive local model;

this scheme has four irreducible components and is non-reduced at the origin. We can see

that Mnaive
I cannot be flat over Zp.
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271–318.

[RZ] M. Rapoport, Th. Zink: Period spaces for p–divisible groups. Ann. of Math. Studies 141, Princeton

University Press (1996).

[S1] J. Sekiguchi : The nilpotent subvariety of the vector space associated to a symmetric pair. Publ.

Res. Inst. Math. Sci. 20 (1984), 155–212.

[S2] J. Sekiguchi: Remarks on real nilpotent orbits of a symmetric pair. J. Math. Soc. Japan 39 (1987),

127–138.

[T] J. Tits: Reductive groups over local fields. Automorphic forms, representations and L-functions.

(Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1, pp. 29–69, Proc.

Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I. (1979).

Dept. of Mathematics, Michigan State University, E. Lansing, MI 48824-1027, USA

E-mail address: pappas@math.msu.edu

Mathematisches Institut der Universität Bonn, Beringstrasse 1, 53115 Bonn, Germany.

E-mail address: rapoport@math.uni-bonn.de


	Introduction
	1. Unitary Shimura varieties and moduli problems
	1.a. Unitary Shimura varieties
	1.b. Parahoric subgroups of the unitary similitude group.
	1.c. Reduction to level subgroups that are lattice chain stabilizers.
	1.d. Unitary moduli problems
	1.e. Local models for GU.

	2. Affine Weyl groups and affine flag varieties; the -admissible set.
	2.a. Affine Weyl groups
	2.b. The -admissible set
	2.c. Calculation of the affine root system
	2.d. The case of a unitary group
	2.e. Cases of small rank

	3. Affine Flag varieties
	3.a. Affine flag varieties and the coherence conjecture 
	3.b. Unitary affine flag varieties
	3.c. Embedding of the special fibers of local models in partial affine flag varieties.
	3.d. Lifting of points in -strata to the generic fiber

	4. The structure of local models
	4.a. Consequences of the coherence conjecture.
	4.b. Vertex-wise admissibility.

	5. Special parahorics
	5.a. An affine chart
	5.b. The odd case
	5.c. The even case
	5.d. Symmetric pairs
	5.e. Generic smoothness
	5.f. Normality of some nilpotent orbits

	6. The local models of Picard surfaces
	7. Functor description; the spin condition
	7.a. Generalities on symmetric forms of even dimension
	7.b. The spin correction

	8. Remarks on the case of (even) orthogonal groups
	8.a. The naive local models
	8.b. The corrected local models
	8.c. The split case; examples

	References

