
The work of Laurent Lafforgue

by Michael Rapoport

Laurent Lafforgue has been awarded the Fields medal for his proof of the Langlands
correspondence for the general linear groups GLr over function fields of positive charac-
teristic. His approach to this problem follows the basic strategy introduced 25 years ago
by V. Drinfeld in his proof for GL2. Already Drinfeld’s proof is extremely difficult. Laf-
forgue’s proof is a real tour de force, taking up as it does several hundred pages of highly
condensed reasoning. By his achievement Lafforgue has proved himself a mathematician
of remarkable strength and perseverance.

In this brief report I will sketch the background of Lafforgue’s theorem, state his
theorems and then mention some ingredients of his proof. The final passages are devoted
to the human factor.

1. The background

The background of Lafforgue’s theorem is the web of conjectures known as the Lang-
lands philosophy which is a far-reaching generalization of class field theory. Let F be a
global field, i.e. either a finite extension of Q (the number field case) or a finite extension
of Fp(t) where Fp is the finite field with p elements (the function field case). Let A be the
adèle ring of F .

Global class field theory may be formulated as giving a bijection between the sets
of characters of finite order of the Galois group Gal(F̄ /F ) on the one hand, and of the
idèle class group A×/F× on the other hand. This is the reciprocity law of T. Takagi
and E. Artin established in the 1920’s as a far-reaching generalization of the quadratic
reciprocity law going back to L. Euler. At the end of the 1960’s R. Langlands proposed a
non-abelian generalization of this reciprocity law. It conjecturally relates the irreducible
representations of rank r of Gal(F̄ /F ) (or, more generally, of the hypothetical motivic
Galois group of F ) with cuspidal automorphic representations of GLr(A). In fact, this
conjecture is part of an even grander panorama of Langlands (the functoriality principle),
in which homomorphisms between L-groups of reductive groups over F induce relations
between the automorphic representations on the corresponding groups. These hypothetical
reciprocity laws would imply famous conjectures such as the Artin conjecture on the holo-
morphy of L-functions of irreducible Galois representations, or the Ramanujan-Petersson
conjecture on the Hecke eigenvalues of cusp forms for GLr.

In the number field case, deep results along these lines have been obtained for groups
of small rank, such as GL2, by Langlands himself and many others. And such results
have already had spectacular applications such as in the proof of Fermat’s last theorem.
However, the proof of the Langlands correspondence in any generality in the number field
case seems out of reach at the present time. Lafforgue’s result, which concerns the function
field case, is the first general non-abelian reciprocity law.
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2. Lafforgue’s theorem

From now on let F denote a function field of characteristic p. We also fix an aux-
iliary prime number ` 6= p. For a positive integer r let Gr be the set of equivalence
classes of irreducible `-adic representations of dimension r of Gal(F̄ /F ). For each σ ∈ Gr,
A. Grothendieck defined its L-function L(σ, s) which is a rational function in p−s and
which satisfies a functional equation of the form L(σ, s) = ε(σ, s) · L(σ∨, 1 − s), where
ε(σ, s) is a monomial in p−s and where σ∨ denotes the contragredient representation. The
L-function is an Euler product, L(σ, s) = ΠxLx(σ, s), over all places x of F and for a place
x of degree deg(x), where σ is unramified, we have

Lx(σ, s) =
∏r

i=1

1
1− zi p−s deg(x) .

Here z1, . . . , zr are the Frobenius eigenvalues of σ at x.

Let Ar be the set of equivalence classes of cuspidal representations of GLr(A). For
each π ∈ Ar, R. Godement and H. Jacquet defined its L-function L(π, s) with properties
similar to those of the above L-functions. The Euler factor at a place x where π is
unramified is given as

Lx(π, s) =
∏r

i=1

1
1− zi p−s deg(x) ,

where z1, . . . , zr are the Hecke eigenvalues of π at x. The main result of Lafforgue consists
of the following theorems.

Theorem 1 (the Langlands conjecture): There is a bijection π 7→ σ(π) between Ar

and Gr characterized by the fact that Lx(π, s) = Lx(σ(π), s) for every place x of F .

Theorem 2 (the Ramanujan-Petersson conjecture): Let π ∈ Ar with central character
of finite order. Then for every place x of F where π is unramified, the Hecke eigenvalues
z1, . . . , zr ∈ C are all of absolute value 1.

Theorem 3 (the Deligne conjecture): Let σ ∈ Gr with determinant character of finite
order. Then σ is pure of weight 0, i.e. for any place x of F where σ is unramified, the
images of the Frobenius eigenvalues z1, . . . , zn under any embedding of Q̄` into C are of
absolute value 1.

Here Theorems 2 and 3 are consequences of Theorem 1 through P. Deligne’s purity
theorem and the estimate on Hecke eigenvalues of Jacquet and J. Shalika. Theorem 1 itself
is proved by induction on r (Deligne recursion principle). After what was known before
(in addition to the functional equations, essentially the converse theorems of A. Weil and
I. Piatetskii-Shapiro, and the product formula for ε-factors of G. Laumon), it all boiled
down to proving the existence of the map π 7→ σ(π) with the required properties. This is
exactly what Lafforgue did.

Before spending a few words on his proof, let us consider the FAQ: What is it good
for? The answer is that neither set Gr or Ar is simpler than the other in every aspect, but
that Theorem 1 can be used to transfer available information in either direction. Theorem
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3 is an instance of where information available on Ar implies results on Gr. In the other
direction, Theorem 1 permits one to use constructions available on Gr to prove various
instances of Langlands functoriality for Ar, such as the existence of tensor products, of
base change and of automorphic induction.

3. About the proof

The strategy of constructing the map π 7→ σ(π) is due to Drinfeld and is inspired
by the work of Y. Ihara, Langlands and others in the theory of Shimura varieties. It
consists in analyzing the `-adic cohomology of the algebraic stack Shtr,∅ over Spec F ×
Spec F parametrizing shtukas of rank r, resp. the algebraic stack Shtr = lim← Shtr,N

parametrizing shtukas of rank r equipped with a compatible system of level structures
for all levels N . The latter cohomology module is equipped with an action of GLr(A) ×
Gal(F̄ /F )×Gal(F̄ /F ) and the aim is to isolate inside it a subquotient of the form

⊕

π∈Ar
π ⊗ σ(π)⊗ σ(π)∨ ,

by comparing the Grothendieck-Lefschetz fixed point formula and the Arthur-Selberg trace
formula. The essential difficulty is that, in contrast to the case of Shimura varieties, the
moduli stack Shtr is not of finite type — not even at any finite level N . To explain
why, recall that a shtuka of rank r is a vector bundle of rank r on X with additional
structure (essentially a meromorphic descent datum under Frobenius). Here X is the
smooth irreducible projective curve over Fp with function field F . And, just as the moduli
stack of vector bundles of rank r on X is not of finite type, neither are the stacks Shtr,∅
or Shtr,N .

To deal with this difficulty, Lafforgue introduces the open substacks Sht≤P
r,∅ resp. Sht≤P

r,N
of shtukas where the Harder-Narasimhan polygon is bounded by P . These substacks are
of finite type and their union is the whole space. The trouble is that they are not stable
under the Hecke correspondences. Therefore Lafforgue constructs in the case without
level structure a smooth compactification Sht≤P

r,∅ of Sht≤P
r,∅ with a normal crossing divisor

at infinity, and extends to it the Hecke correspondences by simple normalization. He
then applies the Grothendieck-Lefschetz fixed point formula to these correspondences.
However, only a part of this formula can be determined explicitly and therefore this seems
a pointless exercise. Lafforgue circumvents this problem by isolating the r-essential part of
the cohomology of Sht≤P

r,∅ and by showing that the remainder, both the difference between

the cohomology of Sht≤P
r,∅ and of Shtr,∅ and the cohomology of the boundary of Sht≤P

r,∅ is r-
negligible. Here the work of R. Pink on Deligne’s conjecture on the Grothendieck-Lefschetz
formula enters in a decisive way. In the case where a level structure is imposed, Lafforgue
manages to push through his method by constructing a partial compactification of Sht≤P

r,N
which is smooth with a normal crossing divisor at infinity and which is stable under the
Hecke correspondences, and by supplementing Pink’s theorem by K. Fujiwara’s theorem.
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4. The months of suspense

Lafforgue’s first attempt at a proof of Theorem 1 used a compactification of Sht≤P
r,N .

His construction was based on the compactifications of the quotient spaces Xr,n =
(PGLr)n+1/PGLr that he had defined in earlier work, generalizing the case n = 1 due
to C. De Concini and C. Procesi. In June 2000, while lecturing on his proof, Lafforgue
discovered that, contrary to what he had claimed, these compactifications of Xr,n, and
hence also the corresponding compactifications of Sht≤P

r,N , are not smooth in general. He
was not even able to resolve their singularities. During two months of suspense in the
summer of 2000, Lafforgue managed to fill the gap by finding the above-mentioned partial
compactifications of Sht≤P

r,N and was able to finesse the proof of Theorem 1 from them.
Thus in the end, the modified argument is simpler than the original attempt.

Even though Lafforgue’s compactifications of Xr,n are not used in the final proof, they
are fascinating objects in themselves, with close relations to such diverse geometric objects
as configuration spaces of matroids, thin Schubert cells, stable degeneration of n-pointed
projective lines and local models of Shimura varieties. It turns out that these compactifica-
tions are smooth for n = 1 resp. n = 2 and arbitrary r (De Concini and Procesi, resp. Laf-
forgue) and for r = 2 and arbitrary n (G. Faltings), but can have arbitrarily bad singular-
ities in general (N. Mnev). These compactifications constitute a new field of investigation,
taken up by Lafforgue in a 265 page preprint (http://www.ihes.fr/PREPRINTS/M02/
Resu/resu-M02-31.html).

5. Biographical data

Laurent Lafforgue was born in 1966. He was a student at the Ecole Normale Supérieure
(1986-1990) before entering the Centre National des Recherches Scientifiques in 1990. His
academic teacher is Gérard Laumon with whom he obtained his thèse at the Université de
Paris-Sud in 1994. It is in the famous Bâtiment de Mathématique (“le 425”) on the Orsay
campus that Lafforgue worked out his proof. Since 2000 he is a professor at the Institut
des Hautes Etudes Scientifiques.

6. Further information

For excellent overviews of Lafforgue’s proof, cf. Laumon’s Bourbaki seminar No. 873, March
2000, which also contains an annotated bibliography, and the notes of Lafforgue of a course
at the Tata Institute (http://www.ihes.fr/PREPRINTS/M02/Resu/resu-M02-45.html).
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