
PUP.master.W.rev January 13, 2006

Annals of Mathematics Studies

Number 161



PUP.master.W.rev January 13, 2006

A vertical cycleZ(j) in the casep = 2

The vertical cycleZ(j) in the casep = 2 for the endomorphismj given by
(6A.5.2) in Chapter 6: Appendix. Here the half apartment{[Λ] = [Λr] =
[ [e1, 2re2] ] | mult[Λ](j) > 0} has been marked, and the multiplicities of
components have been indicated.
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1
(M) → ĈH
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Chapter One

Introduction

In this monograph we study the arithmetic geometry of cycles on an arith-
metic surfaceM associated to a Shimura curve over the field of rational
numbers and the modularity of certain generating series constructed from
them. We consider two types of generating series, one for divisors and one

for 0-cycles, valued in̂CH
1
(M) andĈH

2
(M), the first and second arith-

metic Chow groups ofM, respectively. We prove that the first type is a
nonholomorphic elliptic modular form of weight32 and that the second type
is a nonholomorphic Siegel modular form of genus two and weight3

2 . In fact
we identify the second type of series with the central derivative of an inco-
herent Siegel-Eisenstein series. We also relate the height pairing of a pair

of ĈH
1
(M)-valued generating series to thêCH

2
(M)-valued series by an

inner product identity. As an application of these results we define an arith-
metic theta lift from modular forms of weight32 to the Mordell-Weil space
of M and prove a nonvanishing criterion analogous to that of Waldspurger
for the classical theta lift, involving the central derivative of theL-function.

We now give some background and a more detailed description of these
results.

The modular curveΓ \ H, whereH = {z ∈ C | Im z > 0} is the
upper half plane andΓ = SL2(Z), is the first nontrivial example of a locally
symmetric variety, and of a Shimura variety. It is also the host of the space
of modular forms and is the moduli space of elliptic curves. Starting from
this last interpretation, we see that the modular curve comes equipped with a
set of special divisors, which, like the classical Heegner divisors, are the loci
of elliptic curves with extra endomorphisms. More precisely, fort ∈ Z>0

let

(1.0.1) Z(t) = {(E, x) | x ∈ End(E) with tr(x) = 0, x2 = −t · idE},

whereE denotes an elliptic curve. The resulting divisor on the modular
curve, which we also denote byZ(t), is the set of points where the corre-
sponding elliptic curveE admits an action of the orderZ[x] = Z[

√
−t] in

the imaginary quadratic fieldkt = Q(
√
−t), i.e.,E admits complex multi-

plication by this order. One may also interpretZ(t) as the set ofΓ-orbits in
H which contain a fixed point of an elementγ ∈ M2(Z) with tr(γ) = 0 and
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det(γ) = t.
It is a classical fact that the degree ofZ(t) is given bydegZ(t) = H(4t),

whereH(n) is the Hurwitz class number. It is also known that the generat-
ing series

(1.0.2)
∑
t>0

degZ(t) qt =
∑
t>0

H(4t) qt

is nearly the q-expansion of a modular form. In fact, Zagier [58] showed
that the complete series, forτ = u+ iv,
(1.0.3)

E(τ,
1
2
) = − 1

12
+
∑
t>0

H(4t) qt+
∑
n∈Z

1
8π

v−
1
2

∫ ∞

1
e−4πn2vr r−

3
2 dr · q−n2

,

is theq-expansion of the value ats = 1
2 of a nonholomorphic Eisenstein

seriesE(τ, s) of weight 3
2 , and hence is a modular form.

Generating series of this kind have a long and rich history. They are all
modeled on the classical theta series. Recall that if(L,Q) is a positive
definite quadraticZ-module of rankn, one associates to it the generating
series

(1.0.4) θL(τ) =
∑
x∈L

qQ(x) = 1 +
∞∑
t=1

rL(t) qt.

Here

(1.0.5) rL(t) = |{x ∈ L | Q(x) = t}|,

and we have set, as elsewhere in this book,q = e(τ) = e2πiτ . It is a
classical result going back to the 19th century thatθL is theq-expansion of
a holomorphic modular form of weightn2 for some congruence subgroup of
SL2(Z). Similarly, Siegel considered generating series of the form

(1.0.6) θr(τ, L) =
∑
x∈Lr

qQ(x) =
∑

T∈Symr(Z)∨

rL(T ) qT ,

whereτ ∈ Hr, andqT = e(tr(Tτ)), and

(1.0.7) rL(τ) = |{ x ∈ Lr | Q(x) =
1
2
((xi, xj)) = T }|.

He showed that they define Siegel modular forms of genusr and weightn2 .
Generalizations to indefinite quadratic forms were considered by Hecke and
Siegel, and the resulting generating series can be nonholomorphic modu-
lar forms. Hirzebruch and Zagier [20] constructed generating series whose
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coefficients are given by cohomology classes of special curves on Hilbert-
Blumenthal surfaces. They prove that the image under any linear functional
of this generating series is an elliptic modular form. For example, they iden-
tify the modular form arising via the cup product with the Kähler class as
an explicitly given Eisenstein series. One can also define special0-cycles
on Hilbert-Blumenthal surfaces and make generating functions for their de-
grees [25] . These can be shown to be Siegel modular forms of genus two
and weight2.

We now turn to the generating series associated to arithmetic cycles on
Shimura curves. We exclude the modular curve to avoid problems caused by
its noncompactness. It should be pointed out, however, that all our results
should have suitable analogues for the modular curve, cf. [57]. We pay,
however, a price for assuming compactness. New difficulties arise due to
bad reduction and to the absence of natural modular forms.

LetB be an indefinite quaternion division algebra overQ, so that

(1.0.8) B ⊗Q R 'M2(R) and D(B) =
def.

∏
B⊗QQp
division

p > 1.

Let

(1.0.9) V = {x ∈ B | tr(x) = 0},

with quadratic formQ(x) = Nm(x) = −x2, where tr andNm denote the
reduced trace and norm onB respectively. ThenV is a quadratic space over
Q of signature type(1, 2). Let

(1.0.10) D = {w ∈ V (C) | (w,w) = 0, (w, w̄) < 0}/C×,

where(x, y) = Q(x+y)−Q(x)−Q(y) is the bilinear form associated to the
quadratic formQ. ThenD is an open subset of a quadric inP(V (C)) ' P2,
and(B ⊗Q R)× acts onV (R) andD by conjugation. We fix a maximal
orderOB in B. Since all these maximal orders are conjugate, this is not
really an additional datum. SetΓ = O×B . The Shimura curve associated to
B is the quotient

(1.0.11) [Γ\D].

SinceΓ does not act freely, the quotient here is to be interpreted as an orbi-
fold.

Let us fix an isomorphismB ⊗Q R = M2(R). Then we can also identify
(B ⊗Q R)× = GL2(R) and(B ⊗Q R)× acts onH± = C \ R by fractional
linear transformations. We obtain an identification

(1.0.12) D = C \ R, via
(
z −z2

1 −z

)
7−→ z,
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equivariant for the action of(B ⊗Q R)× = GL2(R).
The Shimura curve associated toB has a modular interpretation. Namely,

consider the moduli problemMwhich associates to a schemeS over SpecZ
the category of pairs(A, ι) where

• A is an abelian scheme overS

• ι : OB → End(A) is an action ofOB onA with characteristic poly-
nomial

charpol(x | Lie A) = (T − x)(T − xι) ∈ OS [T ],

for the inducedOB-action on the Lie algebra.

Herex 7→ xι denotes the main involution onB. If S is a scheme in charac-
teristic zero, then the last condition simply says thatA has dimension 2, i.e.,
that(A, ι) is afake elliptic curvein the sense of Serre. This moduli problem
is representable by an algebraic stack in the sense of Deligne-Mumford, and
we denote the representing stack by the same symbolM. We therefore have
an isomorphism of orbifolds,

(1.0.13) M(C) = [Γ \D].

SinceB is a division quaternion algebra,M is proper over SpecZ and
M(C) is a compact Riemann surface (when we neglect the orbifold as-
pect). By its very definition, the stackM is an integral model of the orbifold
[Γ \ D]. It turns out thatM is smooth over SpecZ[D(B)−1] but has bad
reduction at the prime divisors ofD(B). At the primesp with p | D(B), the
stackM has semistable reduction and, in fact, admits ap-adic uniformiza-
tion by the Drinfeld upper half planêΩ. In particular, the special fiberMp

is connected but in general not irreducible.
In analogy with the case of the modular curve, we can define special

divisors on the Shimura curve by considering complex multiplication points.
More precisely, lett ∈ Z>0 and introduce a relative DM-stackZ(t) overM
by posing the following moduli problem. To a schemeS the moduli problem
Z(t) associates the category of triples(A, ι, x), where

• (A, ι) is an object ofM(S)

• x ∈ End(A, ι) is an endomorphism such that tr(x) = 0, x2 = −t·idA.

An endomorphism as above is called aspecial endomorphismof (A, ι).
The spaceV (A, ι) of special endomorphisms is equipped with the degree
form Q(x) = xιx. Note that forx ∈ V (A, ι) we haveQ(x) = −x2. We
denote by the same symbol the image ofZ(t) as a cycle inM and use the
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notationZ(t) = Z(t)C for its complex fiber. Note thatZ(t) is a finite set
of points on the Shimura curve, corresponding to those fake elliptic curves
which admit complex multiplication by the orderZ[

√
−t]. We form the

generating series

(1.0.14) φ1(τ) = −vol(M(C)) +
∑
t>0

deg(Z(t)) qt ∈ C[[q]].

Here the motivation for the constant term is as follows. Purely formally
Z(0) is equal toM with associated cohomology class in degree zero; to
obtain a cohomology class in the correct degree, one forms the cup product
with the natural K̈ahler class — which comes down to taking (up to sign)
the volume ofM(C) with respect to the hyperbolic volume element.

Proposition 1.0.1. The seriesφ1(τ) is theq-expansion of a holomorphic
modular form of weight3/2 and levelΓ0(4D(B)o), whereD(B)o = D(B)
if D(B) is odd andD(B)o = D(B)/2 if D(B) is even.

Just as with the theorem of Hirzebruch and Zagier, this is not proved
by checking the functional equations that a modular form has to satisfy.
Rather, the theorem is proved by identifying the seriesφ1(τ) with a specific
Eisenstein series1. More precisely, forτ = u+ iv ∈ H, set
(1.0.15)
E1(τ, s, B) = v

1
2
(s− 1

2
) ·

∑
γ∈Γ′∞\Γ′

(cτ + d)−
3
2 |cτ + d|−(s− 1

2
)ΦB(γ, s),

whereγ =
(
a b
c d

)
∈ Γ′ = SL2(Z), andΦB(γ, s) is a certain function de-

pending onB. The Eisenstein seriesE1(τ, s, B) is the analogue for the
Shimura curve of Zagier’s Eisenstein series (1.0.3). It has a functional equa-
tion of the form

(1.0.16) E1(τ, s, B) = E1(τ,−s,B).

Its value ats = 1
2 is a modular form of weight32 and we may consider itsq-

expansion. Proposition 1.0.1 now follows from the following more precise
result.

Proposition 1.0.2.

φ1(τ) = E1(τ,
1
2
, B),

i.e.,φ1 is theq-expansion ofE1(τ, 1
2 , B).

1Alternatively,φ1(τ) can be obtained by calculating the integral overM(C) of a theta
function valued in(1, 1) forms; this amounts to a very special case of the results of [33].
The analogous computation in the case of modular curves was done by Funke [11].
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Proposition 1.0.2 is proved in [38] by calculating the coefficients of both
power series explicitly and comparing them term by term. These coefficients
turn out to be generalized class numbers. More precisely, fort > 0, the
coefficient ofqt on either side is equal to

(1.0.17) deg Z(t) = 2δ(d;D(B))H0(t;D(B)),

where

(1.0.18) δ(d;D) =
∏
`|D

(1− χd(`))

and

(1.0.19) H0(t;D) =
h(d)
w(d)

∑
c|n

(c,D)=1

c
∏
`|c

(1− χd(`)`−1).

Here d denotes the fundamental discriminant of the imaginary quadratic
field kt = Q(

√
−t) and we have written4t = n2d; also,h(d) denotes

the class number ofkt andw(d) the number of roots of unity contained in
kt. By χd we denote the quadratic residue character modd. For t = 0,
the identity in Proposition 1.0.2 reduces to the well-known formula for the
volume

(1.0.20) vol(M(C)) = ζD(B)(−1),

where inζD(B)(s) the index means that the Euler factors forp | D(B) have
been omitted in the Riemann zeta function. Note that the fact that the gen-
erating seriesφ1(τ) is a modular form reveals some surprising and highly
nonobvious coherence among the degrees of the various special cyclesZ(t).

In this book we will establish arithmetic analogues of Propositions 1.0.1
and 1.0.2. In contrast to the above propositions, which are statements about
generating series valued in cohomology (just as was the case with the results
of Hirzebruch-Zagier), our generating series will have coefficients in the
arithmetic Chow groups of Gillet-Soulé [14], [48], (see also [3]). Let us
recall briefly their definition in our case.

A divisor onM is an element of the free abelian group generated by the
closed irreducible reduced substacks which are, locally for theétale topol-
ogy, Cartier divisors. A Green function for the divisorZ is a functiong on
M(C) with logarithmic growth along the complex points ofZ = ZC and
which satisfies the Green equation of currents onM(C),

(1.0.21) ddcg + δZ = [η],
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whereη is a smooth(1, 1)-form. Let ẐZ(M) be the group of pairs(Z, g),
whereg is a Green function for the divisorZ. The first arithmetic Chow

groupĈH
1

Z(M) is the factor group of̂ZZ(M) by the subgroup generated by
the Arakelov principal divisorŝdiv f associated to rational functions onM.
For us it will be more convenient to work instead with theR-linear version
ĈH

1
(M). In its definition one replacesZ-linear combinations of divisors by

R-linear combinations and divides out by theR-subspace generated by the
Arakelov principal divisors. Such groups were introduced by Gillet-Soulé
[15]; for the case relevant to us, see [3]. Note that restriction to the generic
fiber defines the degree map

(1.0.22) degQ : ĈH
1
(M) −→ CH1(MC)⊗ R ∼−→ R.

The groupĈH
2
(M) is defined in an analogous way, starting with 0-cycles

onM. Since the fibers ofM over SpecZ are geometrically connected of
dimension 1, the arithmetic degree map yields an isomorphism

(1.0.23) d̂eg : ĈH
2
(M) ∼−→ R.

Finally we mention the Gillet-Soulé arithmetic intersection pairing,

(1.0.24) 〈 , 〉 : ĈH
1
(M)× ĈH

1
(M) −→ ĈH

2
(M) = R.

It will play the role of the cup product in cohomology in this context.

We now define a generating series with coefficients in̂CH
1
(M) using the

divisorsZ(t). Fort > 0, we equip the divisorZ(t) with the Green function
Ξ(t, v) depending on a parameterv ∈ R>0, constructed in [24]. Let̂Z(t, v)
be the corresponding class in̂CH

1
(M). For t < 0 note thatZ(t) = ∅.

However, the functionΞ(t, v) is still defined and is smooth fort < 0, hence
it is a Green function for the trivial divisor, and we may define againẐ(t, v)
to be the class of(Z(t),Ξ(t, v)) = (0,Ξ(t, v)). To defineẐ(0, v), we take
our lead from the justification of the absolute term in the generating series
(1.0.14).

Let ω be the Hodge line bundle onM, i.e., the determinant bundle of the
dual of the relative Lie algebra of the universal family(A, ι) overM,

(1.0.25) ω = ∧2(Lie A)∗.

The complex fiber of this line bundle comes equipped with a natural metric.
This metric is well defined up to scaling.2 We denote bŷω the class of this

2The normalization of the metric we use differs from the standard normalization.
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metrized line bundle under the natural map from̂Pic(M) to ĈH
1
(M) and

set

(1.0.26) Ẑ(0, v) = −ω̂ − (0, log(v) + c),

wherec is a suitable constant.
The DM-stackZ(t) is finite and unramified overM. It is finite and flat,

i.e., a relative divisor, over SpecZ[D(B)−1] but may contain irreducible
components of the special fiberMp whenp | D(B). This integral exten-
sion of the0-cyclesZ(t) is therefore sometimes different from the extension
obtained by flat closure inM. Its nonflatness depends in a subtle way on
the p-adic valuation oft. Our definition ofZ(t) is a consequence of our
insistence on a thoroughly modular treatment of our special cycles, which is
essential to our method. We strongly suspect that in fact the closure defini-
tion does not lead to (variants of) our main theorems and that therefore our
definition is the ‘right one’. We do not know this for sure since the closure
definition is hard to work with.

We form the generating series,

(1.0.27) φ̂1 =
∑
t∈Z

Ẑ(t, v) qt ∈ ĈH
1
(M)[[q±1]],

where the coefficients depend on the parameterv ∈ R>0 via the Green
function Ξ(t, v). The first main result of this book, proved in Chapter 4,
may now be formulated as follows:

Theorem A. For τ = u + iv, φ̂1(τ) is a (nonholomorphic) modular form

of weight32 and levelΓ0(4D(B)o) with values in̂CH
1
(M).

To explain the meaning of the statement of the theorem, recall that the

R-versionĈH
1
(M) of the arithmetic Chow group splits canonically into a

direct sum of a finite-dimensionalC-vector spacêCH
1
(M, µ), the classical

Arakelov Chow group with respect to the hyperbolic metric, and the vector
spaceC∞(M(C))0 of smooth functions onM(C) orthogonal to the con-
stant functions. Correspondingly, the seriesφ̂1 is the sum of a serieŝφ0

1 in

q with coefficients inĈH
1
(M, µ) and a serieŝφ∞1 in q with coefficients in

C∞(M(C))0. The assertion of the theorem should be interpreted as fol-
lows. There is a smooth function onH with values in the finite-dimensional
vector spacêCH

1
(M, µ) which satisfies the usual transformation law for a

modular form of weight32 and of levelΓ0(4D(B)o) whoseq-expansion is
equal toφ̂0

1, and there is a smooth function onH ×M(C) which satisfies
the usual transformation law for a modular form of weight3

2 and of level
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Γ0(4D(B)o) in the first variable and whoseq-expansion in the first variable
is equal toφ̂∞1 . Obviously, the serieŝφ0

1 satisfies the above condition if for

any linear form` : ĈH
1
(M, µ) → C the series̀ (φ̂1) with coefficients in

C is a nonholomorphic modular form of weight3
2 and levelΓ0(4D(B)o) in

the usual sense.
Let us explain briefly what is involved in the proof of Theorem A. The

structure of̂CH
1
(M, µ) is encapsulated in the following direct sum decom-

position

(1.0.28) ĈH
1
(M, µ) = M̃W ⊕ R ω̂ ⊕Vert.

Here

(1.0.29) M̃W ' MW(MQ) := Pic0(MQ)(Q)⊗ R

is the orthogonal complement to(R ω̂ ⊕ Vert), and the subspace Vert is
spanned by the elements(Y, 0), whereY is an irreducible component of a
fiberMp for somep. Also, MW(MQ) is the Mordell-Weil group ofMQ,
tensored withR. By the above remark, we have to prove the modularity of
`(φ̂0

1) for linear functionals̀ on each of the summands of (1.0.28).
For the summand̃MW, this is done by comparing the restriction to the

generic fiber of our generating seriesφ̂1 with the generating series consid-
ered by Borcherds [2], for which he proved modularity. Proposition 1.0.1
is used to produce divisors of degree 0 in the generic fiber from our special
divisors.

For the summandR ω̂, the modularity follows from the following theorem
which is the main result of [38]. Note that this theorem not only gives
modularity but even identifies the modular form explicitly. We form the
generating series with coefficients inC obtained by cupping witĥω,

(1.0.30) 〈 ω̂, φ1 〉 =
∑
t

〈 ω̂, Ẑ(t, v) 〉 qt.

Theorem 1.0.3. The series above coincides with theq-expansion of the
derivativeat s = 1

2 of the Eisenstein series (1.0.15),

〈 ω̂, φ̂1 〉 = E ′1(τ,
1
2
, B).

Next, consider the pairings of the generating seriesφ̂1 with the classes
(Y, 0) ∈ Vert, whereY is an irreducible component of a fiber with bad
reductionMp, i.e., p | D(B). The corresponding series can be identified
with classical theta functions for the positive definite ternary lattice associ-
ated to the definite quaternion algebraB(p) with D(B(p)) = D(B)/p. This
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is based on the theory ofp-adic uniformization and uses the analysis of the
special cycles at primes of bad reduction [36].

Finally, for the serieŝφ∞1 , we show that the coefficients of the spectral
expansion of̂φ1 are Maass forms. More precisely, iffλ is an eigenfunction
of the Laplacian with eigenvalueλ, then the coefficient offλ in φ̂1 is up to
an explicit scalar the classical theta liftθ(fλ) to a Maass form of weight32
and levelΓ0(4D(B)o).

To formulate the second main result of this book, Theorem B, we form a
generating series for 0-cycles onM instead of divisors onM. The idea is
to impose apair of special endomorphisms, i.e., ‘twice as much CM’. Let
Sym2(Z)∨ denote the set of half-integral symmetric matrices of size 2, and
letT ∈ Sym2(Z)∨. We define a relative DM-stackZ(T ) overM by posing
the following moduli problem. To a schemeS the moduli problemZ(T )
associates the category of triples(A, ι,x) where

• (A, ι) is an object ofM(S)

• x = [x1, x2] ∈ End(A, ι)2 is a pair of endomorphisms with tr(x1) =
tr(x2) = 0, and1

2(x,x) = T .

Here(x,x) = ((xi, xj))i,j . It is then clear thatZ(T ) has empty generic
fiber whenT is positive definite, since in characteristic 0 a fake elliptic
curve cannot support linearly independent complex multiplications. How-
ever, perhaps somewhat surprisingly,Z(T ) is not always a 0-divisor onM.

To explain the situation, recall from [24] that anyT ∈ Sym2(Z)∨ with
det(T ) 6= 0 determines a set of primes Diff(T,B) of odd cardinality. More
precisely, letC = (Cp) be the (incoherent) collection of local quadratic
spaces whereCp = Vp for p < ∞ and whereC∞ is the positive def-
inite quadratic space of dimension3. If T ∈ Sym2(Q) is nonsingular,
we letVT be the unique ternary quadratic space overQ with discriminant
−1 = discr(V ) which representsT . We denote byBT the unique quater-
nion algebra overQ such that its trace zero subspace is isometric toVT and
define

(1.0.31) Diff(T,B) = { p ≤ ∞ | invp(BT ) 6= inv(Cp) }.

Note that∞ ∈ Diff(T,B) if and only if T is not positive definite.
If |(Diff (T,B))| > 1 or Diff(T,B) = {∞}, thenZ(T ) = ∅. Assume

now that Diff(T,B) = {p} with p < ∞. If p - D(B), thenZ(T ) is a
0-cycle onM with support in the fiberMp, as desired. In fact, the cycle is
concentrated in the supersingular locus ofMp. If, however,p | D(B), then
Z(T ) is (almost always) a verticaldivisorconcentrated inMp.
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Our goal now is to form a generating series with coefficients in̂CH
2
(M),

(1.0.32) φ̂2 =
∑

T∈Sym2(Z)∨

Ẑ(T, v)qT .

Here the coefficientŝZ(T, v) ∈ ĈH
2
(M) will in general depend onv ∈

Sym2(R)>0. How to define them is evident from the above only in the case
whenT is positive definite and Diff(T,B) = {p} with p - D(B). In this
case we set

(1.0.33) Ẑ(T, v) = (Z(T ), 0) ∈ ĈH
2
(M),

independent ofv. Then Ẑ(T, v) has imagelog |Z(T )| ∈ R under the
arithmetic degree map (1.0.23). IfT ∈ Sym2(Z)∨ is nonsingular with
|Diff (T,B)| > 1, we setẐ(T, v) = 0. In the remaining cases, the definition
we give of the coefficients of (1.0.32) is more subtle. If Diff(T,B) = {∞},
then Ẑ(T, v) does depend onv; its definition is purely archimedean and
depends on the rotational invariance of the∗-product of two of the Green
functions in [24], one of the main results of that paper. If Diff(T,B) = {p}
with p | D(B), then the definition ofẐ(T, v) (which is independent ofv)
relies on the GL2(Zp)-invariance of the degenerate intersection numbers on
the Drinfeld upper half plane, one of the main results of [36]. Finally, for
singular matricesT ∈ Sym2(Z)∨≥0 we are, in effect, imposing only a ‘single
CM’, and the naive cycle is a divisor, so that its class lies in the wrong de-
gree; we again use the heuristic principle that was used in the definition of
the constant term of (1.0.14) and in the definition ofẐ(0, v) in (1.0.26). In
these cases we are guided in our definitions by the desire to give a construc-
tion that is on the one hand as natural as possible, and on the other hand to
obtain the modularity of the generating series. We refer to Chapter 6 for the
details.

Our second main theorem identifies the generating series (1.0.32) with an
explicit (nonholomorphic) Siegel modular form of genus two. Recall that
such a modular form admits aq-expansion as a Laurent series in

(1.0.34) qT = e(tr(Tτ)), T ∈ Sym2(Z)∨,

and that the coefficients may depend on the imaginary partv ∈ Sym2(R)>0

of τ = u + iv ∈ H2. We introduce a Siegel Eisenstein seriesE2(τ, s, B)
which is incoherentin the sense of [24]. In particular, 0 is the center of
symmetry for the functional equation, andE2(τ, 0, B) = 0. The derivative
ats = 0 is a nonholomorphic Siegel modular form of weight3

2 .
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Theorem B. The generating function̂φ2 is a Siegel modular form of genus
two and weight32 of levelΓ0(4D(B)o) ⊂ Sp2(Z). More precisely,

φ̂2(τ) = E ′2(τ, 0, B),

i.e., theq-expansion of the Siegel modular form on the right-hand side coin-
cides with the generating serieŝφ2.

Here we are identifying implicitlŷCH
2
(M) with R via d̂eg, cf. (1.0.23).

Theorem B is proved in Chapter 6 by explicitly comparing the coefficients of
theq-expansion ofE ′2(τ, 0, B) with the coefficientsẐ(T, v). This amounts
to a series of highly nontrivial identities, one for eachT in Sym2(Z)∨. Let
us explain what is involved.

First letT be positive definite with Diff(T,B) = {p} for p - D(B). The
calculation of the coefficient ofE ′2(τ, 0, B) corresponding toT comes down
to the determination of derivatives of Whittaker functions or of certain rep-
resentation densities. This determination is based on the explicit formulas
for such densities due to Kitaoka [22] forp 6= 2. For p = 2, correspond-
ing results are given in [55]. The determination of the arithmetic degree of
Z(T ) boils down to the problem of determining the length of the formal de-
formation ring of a 1-dimensional formal group of height 2 with two special
endomorphisms. This is a special case of the theorem of Gross and Keat-
ing [17]. We point out that for both sides the prime number 2 (‘the number
theorist’s nightmare’) complicates matters considerably.

Next let T be positive definite with Diff(T,B) = {p} for p | D(B).
In this case, the corresponding derivatives of representation densities are
determined in [54] forp 6= 2 and in [55] forp = 2. The determination
of the corresponding coefficient of̂φ2 depends on the calculation of the
intersection product of special cycles on the Drinfeld upper half space. This
is done in [36] forp 6= 2. These calculations are completed here forp = 2.

Now let T be nonsingular with Diff(T,B) = ∞. Then the calculation
of the corresponding coefficients ofE ′2(τ, 0, B) and ofφ̂2 is given in [24] in
the case where the signature ofT is (1, 1). The remaining case, where the
signature is(0, 2), is given here, using the method of [24].

Next, we consider the coefficients corresponding to singular matricesT
of rank 1. For such a matrix

(1.0.35) T =
(
t1 m
m t2

)
∈ Sym2(Z)∨,

with det(T ) = 0 andT 6= 0, we may writet1 = n2
1t, t2 = n2

2t, and
m = n1n2t for the relatively prime integersn1 andn2 andt ∈ Z6=0. The
pair n1, n2 is unique up to simultaneous change in sign, andt is uniquely
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determined. Also, note that, ift1 = 0, thenn1 = 0, n2 = 1, andt = t2,
while if t2 = 0, thenn1 = 1, n2 = 0, andt = t1. Then the comparison
between the corresponding singular coefficients ofφ̂2 and E ′2(τ, 0, B) in
this case is based on the following result, proved in Chapter 5. It relates the
singular Fourier coefficients of the derivative of the genus two Eisenstein
series occurring in Theorem B with the Fourier coefficients of the genus
one Eisenstein series occurring in Theorem A.

Theorem 1.0.4.(i) Let T ∈ Sym2(Z)∨, with associatedt ∈ Z6=0 as above.
Then

E ′2,T (τ, 0, B) = −E ′1,t(t−1tr(Tτ),
1
2
, B)

− 1
2
· E1,t(t−1tr(Tτ),

1
2
, B) ·

(
log(

det v
t−1tr(Tv)

) + log(D(B))
)
.

(ii) For the constant term

E ′2,0(τ, 0, B) = −E ′1,0(idet v,
1
2
, B)− 1

2
E1,0(idet(v),

1
2
, B) · logD(B).

It is this theorem that motivated our definition of the singular coefficients
of the generating serieŝφ2. Just as for Proposition 1.0.1, we see that the
modularity of the generating function̂φ2 is not proved directly but rather by
identifying it with an explicit modular form.

The coherence in our definitions of the generating seriesφ̂1 and φ̂2 is
displayed by the following arithmetic inner product formula, which relates
the inner product of the generating seriesφ̂1 with itself under the Gillet-
Souĺe pairing with the generating seriesφ̂2. Let

(1.0.36) H× H −→ H2 (τ1, τ2) 7−→ diag(τ1, τ2) =
(
τ1 0
0 τ2

)
be the natural embedding into the Siegel space of genus two.

Theorem C. For τ1, τ2 ∈ H

〈φ̂1(τ1), φ̂1(τ2)〉 = φ̂2(diag(τ1, τ2)).

Explicitly, for anyt1, t2 ∈ Z andv1, v2 ∈ R>0,

〈Ẑ(t1, v1), Ẑ(t2, v2)〉 =
∑

T∈Sym2(Z)∨

diag(T )=(t1,t2)

Ẑ(T,diag(v1, v2)).
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Theorem C, which is proved in Chapter 7, is the third main result of this
book and provides the arithmetic analogue of Theorem 6.2 in [23], which re-
lates to the cup product of two generating series with values in cohomology.
Let us explain what is involved here, first assuming thatt1t2 6= 0.

The proof distinguishes two cases. In the first caset1t2 6∈ Q×,2. In
this case all matricesT occurring in the sum on the right-hand side are
automatically nonsingular; at the same time the divisorsZ(t1) andZ(t2)
have empty intersection in the generic fiber, so that the Gillet-Soulé pairing
decomposes into a sum of local pairings, one for each prime ofQ. Consider
the case whenti > 0 for i = 1, 2. Then the key to the formula above is the
decomposition of the intersection (fiber product) of the special cyclesZ(ti)
according to ‘fundamental matrices’,

(1.0.37) Z(t1)×M Z(t2) =
∐
T

diag(T )=(t1,t2)

Z(T ).

HereZ(T ) appears as the locus of objects((A, ι), x1, x2) in the fiber prod-
uct wherex = [x1, x2] satisfies12(x,x) = T . Note that, by the remarks pre-
ceding the statement of Theorem B, the intersection of theZ(ti) need not
be proper since these divisors can have common components in the fibers of
bad reductionMp for p | D(B). Of course, all matricesT occurring in the
disjoint sum in (1.0.37) are positive definite. The occurrence in the sum of
Theorem C of summands corresponding to matricesT which are not posi-
tive definite is due to the Green functions component of theẐ(t, v). Similar
archimedean contributions occur in the cases where one of theti is negative.

In the second caset1t2 ∈ Q×,2. In this case,Z(t1) andZ(t2) intersect in
the generic fiber. In addition to the contribution of the nonsingularT to the
sum in Theorem C, there is also a contribution of the two singular matrices
T , whereT is given by (1.0.35) withm = ±

√
t1t2. In this case the Gillet-

Souĺe pairing does not localize. Instead we use the arithmetic adjunction
formula from Arakelov theory [10], [40]. To calculate the various terms
in this formula we must, among other things, go back to the proof of the
Gross-Keating formula and use the fine structure of the deformation locus
of a special endomorphism of ap-divisible group of dimension 1 and height
2.

We stress that the proof of Theorem C sketched so far has nothing to do
with Eisenstein series. However, the modularity of both sides of the identity
in Theorem C allows us to deduce from the truth of the statement for all
t1t2 6= 0 first the value of the constantc in (1.0.26) and then the truth of the
statement for all(t1, t2). In this way we can also prove our conjecture [38]
on the self-intersection of the Hodge line bundle.
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Theorem 1.0.5.Let ω̂0 be the Hodge line bundle onM metrized with the
normalization of Bost[3]. Then

〈ω̂0, ω̂0〉 = 2 · ζD(B)(−1)

ζ ′(−1)
ζ(−1)

+
1
2
− 1

4

∑
p|D(B)

p+ 1
p− 1

log p

 .
Formally, this result specializes forD(B) = 1 to the formula of Bost [4]

and Kühn [39] in the case of the modular curve (note that due to the stacks
aspect our quantity is half of theirs). In their case they use the section∆
of ω⊗6 to compute the self-intersection ofω̂0 explicitly from its definition.
For Shimura curves there is no such natural modular form and our result
comes about only indirectly. We note that the general form of this formula
is related to formulas given by Maillot and Roessler [42].

The above three theorems are the main results in this book. As an appli-
cation of these results, we introduce an arithmetic version of the Shimura-
Waldspurger correspondence and obtain analogues of results of Waldspurger
[53] and of Gross-Kohnen-Zagier [18].

If f is a cusp form of weight32 for Γ0(4D(B)o), we can define the arith-
metic theta lift off by

(1.0.38) θ̂(f) := C ·
∫
Γ0(4D(B)o)\H

f(τ) φ̂1(τ) v−
1
2 du dv ∈ ĈH

1
(MB),

for a constantC given in section 3 of Chapter 9. Of course, this is the ana-
logue of the classical theta lift from modular forms of weight3

2 to modular

forms of weight2, but with φ̂1(τ) replacing the classical theta kernel of
Niwa [43] and Shintani [47]. By the results discussed above, it follows that

〈 θ̂(f), 11 〉 = 〈 f, E1(τ,
1
2
;B) 〉Pet = 0,(1.0.39)

〈 θ̂(f), ω̂ 〉 = 〈 f, E ′1(τ,
1
2
;B) 〉Pet = 0,(1.0.40)

and

〈 θ̂(f), a(φ) 〉 = 〈 f, θ(φ) 〉Pet = 0, for all φ ∈ C∞(M(C))0,(1.0.41)

sincef is a holomorphic cusp form. Here, forφ ∈ C∞(M(C))0, we denote

by a(φ) the corresponding class in̂CH
1
(M) and byθ(φ) the corresponding

Maass cusp form of weight32 . Thusθ̂(f) lies in the space of̃MW ⊕ Vert0,
where Vert0 is the subspace of Vert orthogonal toω̂.

In order to obtain information about the nonvanishing ofθ̂(f), we con-
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sider the height pairing〈 φ̂1(τ1), θ̂(f) 〉. Using Theorems B and C, we obtain

〈 φ̂1(τ1), θ̂(f) 〉 = 〈 f, 〈 φ̂1(τ1), φ̂1 〉 〉

= 〈 f, φ̂2(diag(τ1, ·)) 〉(1.0.42)

= 〈 f, E ′2(diag(τ1, ·), 0;B) 〉

=
∂

∂s

{
〈 f, E2(diag(τ1, ·), s;B) 〉

}∣∣∣∣
s=0

.

We then consider the integral〈 f, E2(diag(τ1, ·), s;B) 〉 occurring in the last
expression. This integral is essentially the doubling integral of Piatetski-
Shapiro and Rallis [45] (see also [41]), except that we only integrate against
one cusp form.

Theorem 1.0.6.LetF be a normalized newform of weight2 onΓ0(D(B))
and letf be the good newvector, in the sense defined in section 3 of Chap-
ter 8, corresponding toF under the Shimura-Waldspurger correspondence.
Then

〈 f, E2(diag(τ1, ·), s;B) 〉 = C(s) · L(s+ 1, F ) · f(τ1),

where

C(s) =
3

2π2

∏
p|D(B)

(p+ 1)−1 ·
(
D(B)

2π

)s
Γ(s+ 1) ·

∏
p|D(B)

Cp(s),

with

Cp(s) = (1− εp(F ) p−s)− p− 1
p+ 1

(1 + εp(F ) p−s)Bp(s).

HereL(s, F ) is the standard Hecke L-function ofF , εp(F ) is the Atkin-
Lehner sign ofF ,

F |Wp = εp(F )F,

andBp(s) is a rational function ofp−s with

Bp(0) = 0 and B′p(0) =
1
2
· p+ 1
p− 1

log(p).

Note thatCp(0) = 2 if εp(F ) = −1 andCp(0) = C′p(0) = 0 if εp(F ) = 1.
As a consequence, we have the following analogue of Rallis’s inner product
formula [46], which characterizes the nonvanishing of the arithmetic theta
lift.
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Corollary 1.0.7. For F with associatedf as in Theorem 1.0.6,

〈 φ̂1(τ1), θ̂(f) 〉 = C(0) · L′(1, F ) · f(τ1).

In particular,

〈 θ̂(f), θ̂(f) 〉 = C(0) · L′(1, F ) · 〈 f, f 〉,

and hence

θ̂(f) 6= 0 ⇐⇒

 εp(F ) = −1 for all p | D(B), and

L′(1, F ) 6= 0.

LetSnew
2 (D(B))(−) be the space of normalized newforms of weight2 for

Γ0(D(B)) for which all Atkin-Lehner signs are−1. Note that, forF ∈
Snew

2 (D(B))(−), the root number ofL(s, F ) is given by

ε(1, F ) = −
∏

p|D(B)

εp(F ) = −1.

Since the vertical part of̂φ1(τ) is a linear combination of theta functions for
the anisotropic ternary spacesV (p), for p | D(B), and since the classical
theta lift of a formF with ε(1, F ) = −1 to such a space vanishes by Wald-
spurger’s result [50], [53], it follows that̂θ(f) ∈ M̃W. Recall from (1.0.29)
that this space is isomorphic to MW(MQ) via the restriction map resQ.

Corollary 1.0.8. For eachF ∈ Snew
2 (D(B))(−), letf be the corresponding

good newvector of weight32 . Then

resQ
(
φ̂B1 (τ)

)
= E1(τ,

1
2
;B) · ωQ

degωQ
+

∑
F∈Snew

2 (D(B))(−)

L′(1,F ) 6=0

f(τ) · resQ θ̂(f)
〈 f, f 〉

,

whereωQ is the restriction of the Hodge bundle toMQ.

Next, for eacht ∈ Z>0, write Z(t)(F ) for the component3 of the cycle
Z(t) = Z(t)Q in the F -isotypic part CH1(MQ)(F ) of the Chow group
CH1(MQ). Note thatZ(t)(F ) has zero image inH2(MC) and hence de-
fines a class in MW(MQ).

3Here we transferF to a system of Hecke eigenvalues for the quaternion algebraB via
the Jacquet-Langlands correspondence.
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Theorem 1.0.9.TheF -isotypic component of the generating function

resQ
(
φ̂B1 (τ)

)
=
∑
t≥0

Z(t) qt,

is

resQ
(
φ̂B1 (τ)

)
(F ) =

∑
t≥0

Z(t)(F ) qt =
f(τ) · resQθ̂(f)

〈 f, f 〉
.

In particular,

Z(t)(F ) =
at(f) · resQ θ̂(f)

〈 f, f 〉
,

where

f(τ) =
∑
t>0

at(f) qt

is the Fourier expansion off . Moreover, fort1 and t2 ∈ Z>0, the height
pairing of theF -components ofZ(t1) andZ(t2) is given by

〈Z(t1)(F ), Z(t2)(F ) 〉 = C(0) · L′(1, F ) · at1(f) · at2(f)
〈 f, f 〉

.

This result is the analogue in our case of the result of Gross-Kohnen-
Zagier [18], Theorem C, p.503. The restriction to newforms inSnew

2 (D(B))
with all Atkin-Lehner signs equal to−1 is due to the fact that our cycles are
invariant under all Atkin-Lehner involutions. To remove this restriction, one
should use ‘weighted’ cycles, see section 4 of Chapter 3.

In fact, we construct an arithmetic theta lift of automorphic representa-
tionsσ in the spaceA00(G′) on the metaplectic extensionG′A of SL2(A).
This theta lift, which is only defined for representations corresponding to
holomorphic cusp forms of weight32 , is the analogue of the classical theta
lift considered by Waldspurger [50], [51], [53]. We formulate a conjectural
analogue of Waldspurger’s nonvanishing criterion and prove it in certain
cases as an application of Theorem 1.0.6 and Corollary 1.0.7. For forms
F with ε(1, F ) = +1, Waldspurger proved that the classical theta lift is
nonzero if and only if (i) certain local conditions (theta dichotomy) are sat-
isfied at every place, and (ii)L(1, F ) 6= 0. In the arithmetic case, we show
that for (certain) formsF of weight 2 with ε(1, F ) = −1, the arithmetic
theta lift is nonzero if and only if (i) the local theta dichotomy conditions are
satisfied, and (ii)L′(1, F ) 6= 0. A more detailed discussion can be found in
section 1 of Chapter 9 as well as in [29]. Our construction is similar in spirit
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to that of [16], where Gross formulates an arithmetic analogue of another
result of Waldspurger [52] and shows that, in certain cases, this analogue
can be proved using the results of Gross-Zagier [19] and their extension by
Zhang [60].

We now mention some previous work on such geometric and arithmetic-
geometric generating functions. The classic work of Hirzebruch-Zagier
mentioned above inspired much work on modular generating functions val-
ued in cohomology. Kudla and Millson considered modular generating
functions for totally geodesic cycles in Riemannian locally symmetric spaces
for the classical groups O(p, q), U(p, q), and Sp(p, q) [31], [32], [33]. Such
cycles were also considered by Oda [44] and Tong-Wang [49]. In the case
of symmetric spaces for O(n, 2), the generating function of Kudla-Millson
[33] and Kudla [23] for the cohomology classes of algebraic cycles of codi-
mensionr is a Siegel modular form of weightn2 +1 and genusr. In the case
r = n, i.e., for0-cycles, the generating function was identified in [23] as a
special value of an Eisenstein series via the Siegel-Weil formula. A similar
relation to Eisenstein series occurs in the work of Gross and Keating [17] for
the generating series associated to the graphs of modular correspondences
in a product of two modular curves. Borcherds [2] used Borcherds products
to construct modular generating series with coefficients inCH1 for divisors
on locally symmetric varieties associated to O(n, 2) and proved that they
are holomorphic modular forms. We also mention recent related work of
Bruinier [5], [6], Bruinier-Funke [8], Funke [11], and Funke-Millson [12],
[13].

The results in the arithmetic context are all inspired by the theorem of
Gross and Zagier [19]. Part of a generating series for triple arithmetic in-
tersections of curves on the product of two modular curves was implicitly
considered in the paper by Gross and Keating [17], where the ‘good non-
singular’ coefficients are determined explicitly, cf. also [1]. For Shimura
curves, Kudla [24] considered the generating series obtained from the Gillet-
Souĺe height pairing of special divisors. It was proved that this generating
series coincided for ‘good’ nonsingular coefficients with the diagonal pull-
back of the central derivative of a Siegel Eisenstein series of genus two.
The ‘bad’ nonsingular coefficients were determined in [36]. However, the
singular coefficients were left out of this comparison. In [37] we consid-
ered the 0-dimensional case, where the ambient space is the moduli space
of elliptic curves with complex multiplication. In this case we were able
to determine the generating series completely and to identify it with the
derivative of a special value of an Eisenstein series. Another generating se-
ries is obtained in [38] by pairing special divisors on arithmetic models of
Shimura curves, equipped with Green functions, with the metrized dualizing
line bundle. Again this can be determined completely and identified with a
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special value of a derivative of an Eisenstein series. A generating series in a
higher-dimensional case is constructed by Bruinier, Burgos, and Kühn [7].
They consider special divisors on arithmetic models of Hilbert-Blumenthal
surfaces whose generic fibers are Hirzebruch-Zagier curves, equip them
with (generalized) Green functions [9], and obtain a generating series by
taking the pairing withthe squareof the metrized dualizing line bundle.
They identify this series with a special value of an Eisenstein series. Finally
we mention partial results in higher-dimensional cases (Hilbert-Blumenthal
surfaces, Siegel threefolds) in [34], [35].

This monograph is not self-contained. Rather, we make essential use
of our previous papers. We especially need the results in [24] about the
particular Green functions we use, as well as the results on Eisenstein series
developed there. We also use the results on representation densities from
[54], [55]. Furthermore, for the analysis of the situation at the fibers of
bad reduction we use the results contained in [36]. These are completed
in [38], which is also essential for our arguments in other ways. Finally,
we need some facts from [27] in order to apply the results of Borcherds.
These papers are not reproduced here. Still, we have given here all the
definitions necessary for following our development and have made an effort
to direct the reader to the precise reference where he can find the proof
of the statement in question. We also have filled in some details in the
proof of other results in the literature. Most notable here are our exposition
in section 6 of Chapter 3 of the special case of the theorem of Gross and
Keating [17] that we use, and the exposition in Chapter 8 of the doubling
method of Piatetski-Shapiro and Rallis [45] in the special case relevant to
us. In the first instance, we were aided by a project with a similar objective,
namely to give an exposition of the general result of Gross and Keating,
undertaken by the ARGOS seminar in Bonn [1]. In the second instance, we
use precise results about nonarchimedean local Howe duality for the dual
pair (SL2,O(3)) from [30].

We have structured this monograph in the following manner. In Chapter
2 we provide the necessary background from Arakelov geometry. The key
point here is to show that the theory of Gillet-Soulé [14], [3] continues to
hold for the DM-stacks of the kind we encounter. We also give a version
of the arithmetic adjunction formula. It turns out that among the various
versions of it the most naive form, as presented in Lang’s book [40], is
just what we need for our application of it in Chapter 7. In Chapter 3 we
define the special cycles on Shimura curves and review the known facts
about them. Here we also give a proof of the special case of the Gross-
Keating formula which we need. In Chapter 4 we prove Theorem A, along
the lines sketched above. In Chapter 5 we introduce the Eisenstein series
of genus one and two which are relevant to us and calculate their Fourier
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expansion. In particular, we prove Theorem 1.0.4. In Chapter 6 we define
the generating serieŝφ2 and prove Theorem B by comparing term by term
this series with the Fourier coefficients of the Siegel Eisenstein series of
genus two determined in the previous chapter. For the ‘bad nonsingular’
coefficients ofφ̂2, the calculation in the casep = 2 had been left out in
[36]. In the appendix to Chapter 6 we complete the calculations forp = 2.
Chapter 7 is devoted to the proof of the inner product formula, Theorem C.
In Chapter 8 we give an exposition of the doubling method in our case. The
point is to determine explicitly all local zeta integrals for the kind of good
test functions that we use. The casep = 2 again requires additional efforts.
In Chapter 9 we give applications of our results to the arithmetic theta lift
and to L-functions and prove Theorems 1.0.6 and 1.0.9 and Corollaries 1.0.7
and 1.0.8 above.

This book is the result of a collaboration over many years. The general
idea of forming the arithmetic generating series and relating them to mod-
ular forms arising from derivatives of Eisenstein series is due to the first
author. The other two authors joined the project, each one contributing a
different expertise to the undertaking. In the end, we can honestly say that
no proper subset of this set of authors would have been able to bring this
project to fruition. While the book is thus the product of a joint enterprise,
some chapters have a set ofprincipal authorswhich are as follows:

Chapter 2: SK, MR
Chapter 4: SK
Chapter 5: SK, TY
Appendix to Chapter 6: SK, MR
Chapter 7: SK, MR
Chapter 8: SK, TY
The material of this book, as well as its background, has been the subject

of several survey papers by us individually: [25], [26], [28], [29], [56], [57].
It should be pointed out, however, that in the intervening time we made
progress and that quite a number of question marks which still decorate the
announcements of our results in these papers have been removed.
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Chapter Two

Arithmetic intersection theory on stacks

The aim of the present chapter is to outline the (arithmetic) intersection
theory on Deligne-Mumford (DM) stacks that will be relevant to us. The
stacksM we consider will satisfy the following conditions:

• M is regular of dimension 2 and is proper and flat overS = SpecZ,
and is a relative complete intersection over SpecZ. Also we assume
M to be connected (and later even geometrically connected).

• LetM = MC = M×SpecZ SpecC be the complex fiber ofM. Then
M is given by an orbifold presentation,

M = [Γ \X],

whereX is a compact Riemann surface (not necessarily connected)
andΓ is a finite group acting onX.

2.1 THE ONE-DIMENSIONAL CASE

As a preparation for later developments we start with the one-dimensional
case.

First we consider a DM-stackZ which is reduced and proper of relative
dimension 1 over an algebraically closed fieldk. LetL be an invertible sheaf
onZ. Before defining the degree ofL we recall [10] that ifR is an integral
domain of dimension 1, with fraction fieldK, we put forf = a

b ∈ K
× with

a, b ∈ R,

(2.1.1) ordR(f) = lg(R/a)− lg(R/b).

This is extended in the obvious way to define ordL(s) for an elements ∈
L⊗R K of a freeR-moduleL of rank one.

Now lets be a rational section ofL. If x is a closed geometric point ofZ
andÕZ,x is the strictly local henselian ring ofZ in x, we get a direct sum
decomposition into integral domains according to the formal branches ofZ
throughx,

(2.1.2) ÕZ,x =
⊕
i

Oi.
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We put

(2.1.3) degx s = ΣiordOi(si),

wheresi is the image ofs in L ⊗OZ,x Oi.
As in [3], VI, 4.3, we put

(2.1.4) deg(L) = deg(Z,L) =
∑

x∈Z(k)

1
|Aut(x)|

· degx(s).

If k is not algebraically closed, one defines the degree after extension of
scalars tōk. This definition is independent of the choice ofs and coincides
with the usual definition whenZ is a scheme. It satisfies

(i) additivity inL: deg(L ⊗ L′) = deg(L) + deg(L′)
(ii) coverings:If f : Z ′ → Z is a finite flat morphism of constant degree,

then

(2.1.5) deg(f∗L) = deg(f) · deg(L).

In particular, letπ : Z̃ → Z be the normalization ofZ. This is the
relatively representable morphism such that for anyétale presentationX →
Z, the resulting morphismX ×Z Z̃ → X is the normalization ofX. Then

(2.1.6) deg(Z,L) = deg(Z̃, π∗(L)).

The calculation of the RHS is somewhat easier since ifZ = Z̃ is normal,
for a rational sections of L we have

(2.1.7) degx(s) = ordx(s).

(If Z is normal, thenÕZ,x is a discrete valuation ring and ordx(s) is the
valuation ofs.)

In Arakelov theory it is more convenient to use theArakelov degreewhich
is defined as

(2.1.8) d̂eg(Z,L) = deg(Z,L) · log p,

whenZ is of finite type overFp. HereZ is considered as a stack overFp. If
Γ(Z,O) = Fq andZ is considered as a stackoverFq, then the RHS equals
deg(Z,L) · log q.

Next we consider the case whereZ is a reduced irreducible DM-stack of
dimension1 which is proper and flat over SpecZ. In this case we want to
considermetrized line bundles.There are two ways to define the concept of
a metrized line bundle onZ. First, one can define a metrized line bundle
to be a rule which associates, functorially, to anyS-valued pointS → Z a
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line bundleLS onS equipped with aC∞-metric on the line bundleLS,C on
S ×SpecZ SpecC. Second, one can define a metrized line bundle onZ to
be a metrized line bundle on anétale presentationX → Z, equipped with a
descent datum which respects the metric.

We denote byP̂ic(Z) the set of isomorphism classes of metrized line
bundles onZ. This is an abelian group under the tensor product operation.

Let Γ(Z,OZ) be the ring of regular functions onZ. This may be identi-
fied with the ring of regular functions on the coarse moduli space ofZ. Then
Γ(Z,OZ) is an orderO in a number fieldK with Γ(Z ⊗Z Q,O) = K. If
ν : Z̃ → Z is the normalization ofZ, thenΓ(Z̃,OZ̃) is the ring of integers
OK . We now put for a rational sections of the metrized line bundlêL,

(2.1.9) d̂eg(Z, L̂) =
∑
p

( ∑
x∈Z(F̄p)

degx(s)
|Aut(x)|

)
log p− 1

2

∫
Z(C)

log ‖s‖2.

Here the integral is defined as

(2.1.10)
∫
Z(C)

log ‖s‖2 =
∑

x∈Z(C)

1
|Aut(x)|

· log ‖s(x)‖2.

Let us check that (2.1.9) is independent of the choice ofs. This comes down
to checking for a functionf ∈ K× that

(2.1.11)

0 =
∑
p

( ∑
x∈Z(F̄p)

degx(f)
|Aut(x)|

)
log p− 1

2

∑
σ:K→C

1
|Aut(σ)|

log |σ(f)|2.

Forx ∈ Z(F̄p), let [x] be the corresponding geometric point of the coarse
moduli schemeZ = SpecO of Z. Then

(2.1.12) ÕZ,[x] = (ÕZ,x)Aut(x)/Aut(η̄),

whereη̄ is any generic geometric point ofZ. It follows that

(2.1.13) degx f = |Aut(x)|/|Aut(η̄)| · deg[x] f.

Inserting this into (2.1.11) we obtain for the right-hand side the expression

(2.1.14)
1

|Aut(η̄)|
·
(∑

p

∑
x∈(SpecO)(F̄p)

degx(f) · log p−
∑
σ

log |σ(f)|2
)
.

Using the normalizationν : Z̃ → Z we may rewrite this as

(2.1.15)
1

|Aut(η̄)|
·
(∑

p

∑
x̃∈(SpecOK)(F̄p)

ordx̃(f) · log p−
∑
σ

log |σ(f)|2
)
,
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which is zero by the product formula forf ∈ K×.
The definition ofd̂eg(L̂) is again additive in̂L and compatible with pass-

ing to a finite covering; see (2.1.5).
An important line bundle is the relative dualizing sheafωZ/S . It is char-

acterized by the fact that its pullback to anyétale presentationX → Z is
the relative dualizing sheafωX/SpecZ. Recall that by Grothendieck duality
we have (we identify the sheaves with theZ-modules they define),

(2.1.16) ωX/Z = HomOX (OX , ωX/Z) = HomZ(OX ,Z),

the inverse different of the orderΓ(X,OX) in Γ(X ⊗Z Q,O). In particular
we obtain a natural homomorphism

(2.1.17) Γ(X,ωX/Z) ↪→ Γ(X ⊗Z Q,O).

It follows thatωX/Z is equipped with a natural metric‖ ‖. For this metric
we have for any complex embedding

(2.1.18) σ : Γ(X ⊗Z Q,O) ↪→ C

that‖σ(1)‖ = 1. By naturality, this metric descends to a metric onωZ/S .
We define

(2.1.19) dZ = d̂eg (ωZ/S , ‖ ‖).

It therefore follows that

(2.1.20) dZ = log |ωZ/S : O| = log |D−1 : O|,

whereD−1 = O∗ is the dual module with respect to the trace form ofO
(inverse of the absolute different of the orderO). Indeed the trace map
trO/Z defines an elementt ∈ O∗ = Γ(Z, ωZ/S) which goes to1 ∈ C under
everyσ. Using the global sectiont to calculate (2.1.9) for̂ωZ/S , we see that
the first summand giveslog |D−1 : O| while the second summand vanishes.

2.2 Pic(M),CH1
Z(M), AND CH2

Z(M)

In this section we take up the study of our two-dimensional stackM. Let
Pic(M) be the set of isomorphism classes of line bundles onM, an abelian
group under the tensor product operation. This is related to the Chow group
CH1

Z(M) as follows.
By aprime divisor onM we mean a closed irreducible reduced substack

Z ofMwhich is locally for théetale topology a Cartier divisor. LetZ1
Z(M)

be the free abelian group generated by the prime divisors onM. Let f ∈
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Q(M)× be a rational function. In other words,f is the germ of a morphism
U → A1 defined on a dense open substackU of M. Equivalently, since
M is irreducible,f is an element of the function field of the coarse moduli
scheme ofM. Then tof there is associated a principal divisor

(2.2.1) div(f) =
∑
Z

ordZ(f) · Z,

where the sum is over all prime divisorsZ of M and where we note that,
sinceM is regular, the strict henselization of the local ring ofZ, ÕM,Z , is
a discrete valuation ring so that ordZ(f) has a meaning. The factor group of
Z1

Z(M) by the group of principal divisors is the first Chow groupCH1
Z(M).

The groups Pic(M) andCH1
Z(M) are isomorphic. Under this isomor-

phism, an elementL goes to the class ofΣZordZ(s) · Z, wheres is a mero-
morphic section ofL. Conversely, ifZ ∈ Z1

Z(M), then its preimage under
this isomorphism isO(Z).

We denote byZ1(M) = Z1
Z(M)⊗ R the space of real divisors (i.e., the

formal sums of prime divisors with coefficients inR), and byCH1(M) the
factor group by theR-subspace generated by the principal divisors.

We will also have use for thesecondChow groupCH2
Z(M). By a0-cycle

onM we mean a formal sumΣPnPP whereP ranges over the irreducible
reduced closed substacks ofM of dimension 0. We denote byZ2

Z(M) the
abelian group of 0-cycles onM.

We have the homomorphism of abelian groups,

(2.2.2)

⊕
Z

Q(Z)× −→ Z2
Z(M)

fZ 7−→
∑
P⊂Z

degP(f) · P.

(Here, as in (2.1.3), the degree functiondegP is the sum of the correspond-
ing degree functions over all formal branches ofZ atP.) ThenCH2

Z(M) is
the factor group ofZ2

Z(M) by the image of (2.2.2).
We also denote byCH2(M) theR-version ofCH2

Z(M), i.e. the factor
space ofZ2(M) = Z2

Z(M)⊗R by theR-subspace generated by the image
of (2.2.2).

2.3 GREEN FUNCTIONS

In this section, we review the theory of Green functions needed to define
the arithmetic Chow groups in the next section. Due to the assumptions we
made at the beginning of this chapter about the stackM, we can restrict
ourselves to the following situation. LetX be a compact Riemann surface
(not necessarily connected), and letΓ be a finite group which acts onX by
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holomorphic automorphisms. We do not assume that the action is effective.
The quotient stackM = [Γ\X] then has a presentation

(2.3.1) Γ×X −→−→ X,

where one arrow is the projection onto the second factor and the other is the
group action. There is a holomorphic projection

(2.3.2) pr: X −→ [Γ\X] = M.

A C∞ (resp. meromorphic, resp.. . . ) function onM is given by aΓ-
invariantC∞ (resp. meromorphic, resp.. . . ) function onX. Similarly, a
measure (resp.2-form) µ on M is given by aΓ-invariant measure (resp.
2-form) onX, and we have

(2.3.3)
∫
M
f · µ =

∫
[Γ\X]

f · µ := |Γ|−1
∫
X
f · µ.

If z ∈ X is a point, there is a corresponding point, i.e., a closed irreducible
substack of dimension 0,

(2.3.4) P = [Γz\z] −→ [Γ\X] = M

of M . Of course, two pointsz andz′ in X define the same point ofM if
and only if they are in the sameΓ-orbit. Note that there is an alternative
presentation

(2.3.5) [Γ\pr−1(P )] = [Γz\z] = P.

We define thedelta distributionδP of a pointP ∈ M. For a functionf on
M ,

(2.3.6) 〈 δP , f 〉M := |Γ|−1 · 〈 δpr−1(P ), f 〉X = |Γz|−1 · f(z).

A divisor Z onM is an element of the free abelian group on the points of
M . Associated to

(2.3.7) Z =
∑
P∈X

nP · P

is aΓ-invariant divisor

(2.3.8) Z̃ =
∑
P∈M

∑
z∈pr−1(P )

nP · z

onX. The degree ofZ is given by

(2.3.9) degM (Z) = 〈 δZ , 1 〉M =
∑
P∈Z

nP · |ΓP |−1 = |Γ|−1 ·degX(Z̃).
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Definition 2.3.1. A Green function for a divisorZ onM is a Γ-invariant
Green functiong for the divisorZ̃ onX. In particular,g satisfies the Green
equation

ddcg + δZ̃ = [ω]

of currents onX, whereω is a smooth,Γ-invariant(1, 1)-form onX.

To see that this is the correct definition, we check that the corresponding
Green equation holds for currents onM . By linearity, we may assume that
Z = P is a single point onM , so thatZ̃ = pr−1(P ). Then

〈 ddcg, f 〉M = |Γ|−1 · 〈 ddcg, f 〉X

= |Γ|−1 ·
(
− 〈 δpr−1(P ), f 〉X +

∫
X
f · ω

)
(2.3.10)

= −〈 δx, f 〉M +
∫
M
f · ω.

Thus

(2.3.11) ddcg + δZ = [ω]

as currents onM . Next, if Z1 andZ2 are divisors onM with disjoint sup-
ports, then the supports of theΓ-invariant divisorsZ̃1 andZ̃2 onX are also
disjoint. If g1 andg2 are Green functions forZ1 andZ2, one may view them
asΓ-invariant Green functions for̃Z1 andZ̃2 onX and form their usual star
product

(2.3.12) g1 ∗ g2 = g1 δ2 + g2 ω1,

whereδ2 is the delta current for the divisor̃Z2 onX. This is aΓ-invariant
distribution onX, and, as above, we can view it as a distribution onM .
Again, we may suppose thatZ2 = P2 is a single point and compute

〈 g1 ∗ g2, f 〉M : = |Γ|−1 · 〈 g1 ∗ g2, f 〉X

= |Γ|−1 ·
( ∑

z∈pr−1(P2)

g1(z) f(z) +
∫
X
f · g2 ω1

)
(2.3.13)

= |Γ|−1 |Γ/Γz| · g1(z) f(z) +
∫
M
f · g2 ω1

= 〈 g1 δP2 + g2 ω1, f 〉M

Thus, we may view the formula (2.3.12) for the star product above as an
identity of currents onM , where theδ2 on the right side is the delta function
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of the divisorZ2. We obtain the symmetry

(2.3.14) 〈 g1 ∗ g2, 1 〉M = 〈 g2 ∗ g1, 1 〉M

by appealing to the corresponding symmetry onX, [1]. WhenM is not con-
nected, the same identity (2.3.14) holds with1 replaced by the characteristic
function of any connected component.

One can check that the notions described so far are intrinsic toM , i.e.,
do not depend on the particular presentation (2.3.1). For example, suppose
thatΓ0 ⊂ Γ is a normal subgroup which acts without fixed points onX, let
X1 = Γ0\X be the quotient Riemann surface and letΓ1 = Γ/Γ0. Then,
the orbifolds[Γ\X] and[Γ1\X1] are isomorphic. A Green functiong for a
divisorZ onM can be given as aΓ-invariant Green functiong onX for the
divisor pr−1(Z). But since such ag is thenΓ0-invariant, it may, in turn, be
viewed as aΓ1-invariant Green function onX1 for theΓ1-invariant divisor
pr−1

1 (Z) onX1.
Eventually, we will be in the situation whereΓ is a discrete co-compact

subgroup of GL2(R) acting onD = P1(C) \ P1(R). Moreover, there will
be a normal subgroupΓ0 ⊂ Γ of finite index which acts without fixed points
onD. Then, we can work with the orbifoldM = [Γ1\X1] = [Γ\D], where
X1 = Γ0\D andΓ1 = Γ/Γ0. Our Green functions for divisorsZ onM
will be given asΓ-invariant Green functions onD for the divisor pr−1(Z).
Here, of course, we mean that the corresponding functiong onX1 is a Green
function for theΓ1-invariant divisor pr−1

1 (Z) onX1 as discussed above. By
the previous remark, the construction is independent of the choice ofΓ0.

2.4 P̂ic(M), ĈH
1

Z(M), AND ĈH
2

Z(M)

By P̂ic(M) we mean, as in the one-dimensional case, the abelian group of
isomorphism classes of metrized line bundles onM. LetZ ∈ Z1

Z(M). In
the previous section we explained what is meant by a Green function forZ.
We denote byẐ1

Z(M) the group of Arakelov divisors, i.e., of pairs(Z, g)
consisting of a divisorZ and a Green function forZ, with componentwise
addition.

If f ∈ Q(M)×, thenf |MC corresponds to aΓ-invariant meromorphic
function f̃C onX, and we define theassociated principal Arakelov divisor

(2.4.1) d̂iv(f) = ( div(f),− log |f̃C|2 ).

The factor group of̂Z1
Z(M) by the group of principal Arakelov divisors is

the arithmetic Chow group̂CH
1

Z(M). The groupŝCH
1

Z(M) andP̂ic(M)
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are isomorphic. Under this isomorphism, an elementL̂ goes to the class of

(2.4.2)
( ∑

Z
ordZ(s)Z, − log ‖s‖2 ),

wheres is a meromorphic section ofL. Conversely, if(Z, g) ∈ Ẑ1
Z(M),

then its preimage under this isomorphism is

(2.4.3) (O(Z), ‖ ‖),

where− log ‖1‖2 = g, with 1 the canonicalΓ-invariant section of the pull-
back ofÔ(Z) toX.

We also introduce theR-versionĈH
1
(M) of ĈH

1

Z(M); see [1], 5.5. In
its definition one starts witĥZ1(M), which is theR-vector space of pairs
(Z, g), whereZ ∈ Z1(M) is anR-divisor andg is a Green function for
Z, and divides out by theR-subspace generated by the Arakelov principal
divisors. As Bost points out [1], whereasCH1(M) = CH1

Z(M) ⊗ R, the

spacêCH
1
(M) cannot be identified witĥCH

1

Z(M)⊗ R.

We next turn tôCH
2

Z(M). Let

(2.4.4) Ẑ2
Z(M) = {(Z, g); Z ∈ Z2

Z(M), g ∈ D1,1(MC)}.

HereD1,1(MC) is theR-vector space of(1, 1)-currents onMC (i.e., the
space ofΓ-invariant currents of type(1, 1) on X) which arereal in the
sense that

(2.4.5) F ∗∞(g) = −g

whereF∞ denotes complex conjugation. Note thatZ is ‘in the top degree’
so that there is no Green equation linkingZ to g. ThenẐ2

Z(M) is a group
under componentwise addition. Let̂R2

Z(M) be the subgroup of̂Z2
Z(M)

generated by elements of the form

(2.4.6)
( ∑
P⊂Z

degP(f) · P, iZ∗(− log |f2|)
)
,

wheref = fZ ∈ Q(Z)× for some prime divisorZ onM, and by elements
of the form(0, ∂u + ∂̄v) for currentsu of type (0, 1) andv of type (1, 0).
HereiZ∗(− log |f |2) is the current with

(2.4.7) 〈φ, iZ∗(− log |f |2)〉 = −
∑

x∈Z(C)

1
|Aut(x)|

· φ(x) · log |f(x)|2.

Then ĈH
2

Z(M) is the factor groupẐ2
Z(M)/R̂2

Z(M). Similarly, we let
Ẑ2(M) be theR-vector space of pairs(Z, g) whereZ ∈ Z2(M) ⊗Z R
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and whereg is as before. We let̂CH
2
(M) be the quotient of̂Z2(M) by the

R-subvector space generated byR̂2
Z(M).

There is the Arakelov degree map

(2.4.8)
ĈH

2

Z(M) −→ R,
(Z, g) 7−→ d̂egZ +

∫
M(C) g.

Here forZ =
∑
P
mP P we have put

(2.4.9) d̂egZ =
∑
p

∑
P
mP

( ∑
x∈P(F̄p)

1
|Aut(x)|

)
log p.

The integral
∫
M(C) g = |Γ|−1 ·

∫
X g is to be understood as in the previous

section.
That this map is well defined follows from Stokes’s theorem for mod-

ifications of the form∂u + ∂̄v. For elements of the form (2.4.6), forZ
horizontal, irreducible and reduced, it follows from the product formula, cf.
section 1.

The degree map obviously factors through theR-arithmetic Chow group,

(2.4.10) d̂eg : ĈH
2
(M) −→ R.

If M is geometrically irreducible, this last map is an isomorphism. Indeed,
in this case theR-vector space

D1,1(MC)/ ( Im ∂ + Im ∂̄ )

has dimension 1. On the other hand, letP ∈ Z2
Z(M) and choose an irre-

ducible horizontal divisorZ ∈ Z1
Z(M) with P ⊂ Z. Now Pic(Z) is finite,

hence there existsn ∈ Z andf ∈ Γ(Z ⊗Q,O)× such thatnP = div(f) as

divisors onZ. But then(nP, 0) ≡ (0, iZ∗(log |f |2) in ĈH
2

Z(M).
The same argument shows that whenM is not geometrically connected,

then

ĈH
2
(M) ∼−→ Rπ0(MC).

2.5 THE PAIRING ĈH
1
(M)× ĈH

1
(M) → ĈH

2
(M)

Let
(2.5.1)
(Ẑ1(M)× Ẑ1(M))o = {(Z1, g1), (Z2, g2); suppZ1Q ∩ suppZ2Q = ∅}
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be the set of pairs of Arakelov divisors with disjoint support on the generic
fiber. On this subset we define the intersection pairing by setting

(2.5.2) (Z1, g1).(Z2, g2) = (Z1.Z2, g1 ∗ g2).

Here the first component is the 0-cycle defined by bilinear extension from
the case whereZ1 andZ2 are irreducible and reduced. In this case, if
Z1 6= Z2, the definition ofZ1.Z2 is clear (each ‘point’ in the intersection is
weighted with the length of the local ring ofZ1 ∩ Z2). If Z1 = Z2 = Z,
thenZ is a vertical divisor lying in the special fiberMp = M⊗Z Fp for
somep. We write

(2.5.3) div(p) = a · Z +R in Z1(M),

whereR is prime toZ. Then we set

(2.5.4) Z.Z = −1
a
· (R.Z).

We claim that the induced pairing

(2.5.5) (Ẑ1(M)× Ẑ1(M))o −→ ĈH
2
(M)

is symmetric. This is obvious as far as the symmetry in the first compo-
nent is concerned. For the second component it follows from the symmetry
(2.3.14) which shows that

(2.5.6) g1 ∗ g2 ≡ g2 ∗ g1 mod ( im ∂ + im ∂̄ ).

We now want to show that the pairing above descends to a symmetric pairing

(2.5.7) 〈 , 〉 : ĈH
1
(M)× ĈH

1
(M) −→ ĈH

2
(M).

Since any pair of two classes in̂CH
1
(M) can be represented by an element

in (Ẑ1(M)× Ẑ1(M))o the assertion comes down to proving that if

((Z1, g1), (Z2, g2)) and ((Z ′1, g′1), (Z ′2, g′2))

in (Ẑ1(M)×Ẑ1(M))o represent the same element in̂CH
1
(M)×ĈH

1
(M),

then

(2.5.8) (Z1, g1).(Z2, g2) = (Z ′1, g′1).(Z ′2, g′2).

This in turn is reduced to the following statement. Let(Z, g) ∈ Ẑ1
Z(M)

withZ irreducible and reduced. Letf ∈ Q(M)× such thatZQ∩div(f)Q =
∅. Then

(2.5.9) d̂iv(f).(Z, g) = 0 in ĈH
2
(M).
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If Z is horizontal, then the LHS of (2.5.9) is the image off |Z under the
map (2.4.6) since for the Green function part

(2.5.10) − log |f |2 ∗ g = − log |f |2 · δZ
by the Lelong formula. Therefore, the claim (2.5.9) follows in this case.
If Z is vertical, of the form (2.5.3), let div(f) = mZ + Z ′, whereZ ′ is
relatively prime toZ. Then

(2.5.11) div(fa · p−m) = aZ ′ −mR

is relatively prime toZ. Hencefa · p−m|Z is a nonzero rational functionZ
and

(2.5.12) div(fa · p−m).Z = iZ∗(div(fa · p−m|Z)) ≡ 0

in ĈH
2
(M). We are therefore reduced to proving div(p).Z ≡ 0 (recall that

ĈH
2
(M) is theR-version of the arithmetic Chow group). But this is exactly

the content of the definition (2.5.4) ofZ.Z.

Composing (2.5.7) with the arithmetic degree map̂deg : ĈH
2
(M) → R,

we obtain the Arakelov intersection pairing

(2.5.13) 〈 , 〉 : ĈH
1
(M)× ĈH

1
(M) −→ R.

2.6 ARAKELOV HEIGHTS

Let L̂ = (L, ‖ ‖) be a metrized line bundle onM. LetZ ∈ Z1
Z(M) be an

irreducible and reduced divisor. We then define theheight ofZ with respect
toL by

hL̂(Z) =


d̂eg(Z, i∗Z(L̂)), if Z is horizontal,

d̂eg(Z, i∗Z(L)) if Z is vertical.
(2.6.1)

We extendhL̂ to all ofZ1
Z(M) by linearity. Using this concept we have the

following expression for the Arakelov intersection pairing. Let(Z ′, g′) ∈
Ẑ1

Z(M) be a representative of̂L under the isomorphism̂Pic(M) = ĈH
1

Z(M).
Then by [1], (5.11),

(2.6.2) 〈(Z, g), (Z ′, g′)〉 = hL̂(Z) +
1
2
·
∫
[Γ\X]

g · c1(L̂).

Herec1(L̂) = ω′ is the RHS of the Green equation for(Z ′, g′), i.e.,

(2.6.3) ddcg′ + δZ̃′ = c1(L̂).
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This formula is obvious from our definitions when the supports ofZ and
Z ′ are disjoint on the generic fiber. The general case follows since all terms
are unchanged when(Z ′, g′) is replaced by(Z ′, g′) + d̂ivf for somef ∈
Q(M)×.

2.7 THE ARITHMETIC ADJUNCTION FORMULA

In this section, we review the adjunction formula for arithmetic surfaces that
we will need. We follow the treatment in [7], which has the advantage of
allowing us sufficient flexibility in the choice of the metrics.

LetX be a compact Riemann surface with a smooth(1, 1)-form ν. Let∆
be the diagonal divisor onX ×X and letOX×X(∆) be the associated line
bundle with its canonical sections∆ with divisor div(s∆) = ∆.

Definition 2.7.1. A weakly ν-biadmissible Green functiong is a function
g : X ×X −∆ → R, satisfying the following conditions:

(i) g is C∞ and has a logarithmic singularity along∆, i.e., on an open
neighborhoodU × U ,

g(z1, z2) = − log |ζ1 − ζ2|2 + smooth

with respect to a local coordinateζ on U , whereζ1 = ζ(z1) and
ζ2 = ζ(z2).

(ii) (symmetry)

g(z1, z2) = g(z2, z1).

(iii) (Green equation) There is aC∞ function

φ : X ×X −→ R

such thatφ(z1, z2) = φ(z2, z1),∫
X
φ(z1, z2) dν(z2) = 1,

and, for any fixedz1 ∈ X,

d2d
c
2g(z1, z2) + δz1 = φ(z1, z2) pr∗2(ν).

Here, in (iii), pr2 is the projection on the second factor ofX ×X and, as
usual,dc = (∂ − ∂̄)/4πi, so thatddc = −∂∂̄/2πi.
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The definition above generalizes the definition of aν-biadmissible met-
ric in [8] (bipermise). In [8], φ is required to be the constant1, and it is
explained that in the case of the Arakelov volume formν, these conditions
arise in a very natural way from the relation betweenX and its Jacobian.
Our variant will allow us to make a connection with the peculiar metrics
introduced in [6] and is also suitable whenX is no longer compact. Note
that, for fixedz1 ∈ X, the functionz2 7→ g(z1, z2) is a Green function
of logarithmic type in the terminology of Gillet and Soulé [5], [10] for the
pointz1 ∈ X.

A weakly ν-biadmissible Green functiong determines a metric|| || on
OX×X(∆), defined by

(2.7.1) g(z1, z2) = − log ||s∆(z1, z2)||2.

It therefore also defines a metric on each point bundle

(2.7.2) OX(z) = i∗z OX×X(∆),

where, for a fixedz ∈ X,

(2.7.3) iz : X → X ×X, z′ 7→ (z, z′).

The associated Green function is given byz′ 7→ g(z, z′). For any divisor
Z =

∑
i zi, the bundleOX(Z) = ⊗iOX(zi) gets the tensor product metric.

Of course, this metric can depend on the given divisorZ and not just on the
isomorphism class ofOX(Z) in Pic(X).

A metric on the canonical bundleΩ1
X is determined by the canonical iso-

morphism

(2.7.4) Ω1
X ' i∗∆OX×X(−∆).

Note that the Green function onX × X − ∆ associated to the metric on
OX×X(−∆) used here is−g. The key point is that, by construction, for
these metrics, the residue map

(2.7.5) resz : (Ω1
X ⊗OX(z))|z ∼−→ C

is an isometryfor any z ∈ X, whereC is given the standard metric with
||1|| = 1.

Now suppose thatΓ is a finite group of automorphisms ofX and let
M = [Γ\X], as in section 2.3. Suppose that the weaklyν-biadmissible
Green functiong and associated functionφ, as in Definition 2.7.1, satisfy

(2.7.6) g(γz1, γz2) = g(z1, z2) and φ(γz1, γz2) = φ(z1, z2)
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for all γ ∈ Γ. For a divisorZ =
∑
P∈M nP · P in M , consider the function

(2.7.7) gZ(ζ) :=
∑

z∈pr−1(P )

nP · g(z, ζ) =
∑
P∈Z

nP · e−1
P

∑
γ∈Γ

g(z, γζ),

where, in this last expression, pr(z) = P , and whereeP = |Γz|. ThengZ is
aΓ-invariant Green function for the divisor̃Z = pr−1(Z) in X, and hence,
as explained in section 2.3,gZ is a Green function forZ onM . Thus,g
defines metrics on all of the bundlesOM (Z) onM . Similarly, the diagonal
invariance property (2.7.6) implies that the metric onΩ1

X determined by the
isomorphism (2.7.4) is, in fact,Γ-invariant, and hence defines a metric on
Ω1
M .
We now return to our stackM with ‘uniformization’ M = MC =

[Γ\X]. We suppose thatX is equipped with a weaklyν-biadmissible Green
function satisfying the diagonal invariance property. We denote byω̂M/S

the relative dualizing sheafωM/S with the metric determined byg. Since
we are assuming thatM is a relative complete intersection overS, the du-
alizing sheafωM/S is a line bundle onM.

Suppose thatZ is an irreducible horizontal divisor onM, and letÔM(Z)
be the bundleOM(Z) with the metric determined byg. Writing j : Z →
M for the closed immersion ofZ intoM, we have a canonical isomorphism

(2.7.8) j∗( ω̂M/S ⊗ ÔM(Z) ) = ω̂Z/S ,

whereω̂Z/S is the dualizing sheaf ofZ overS, equipped with the metric
which makes this an isometry. The first version of the adjunction formula is
then

(2.7.9) hÔM(Z)
(Z) = −hω̂M/S

(Z) + d̂egZ(ω̂Z/S).

As explained in [7], Proposition 5.2, Chapter 4, the second term on the RHS
here can be written as

(2.7.10) d̂egZ(ω̂Z/S) = dZ +
1
2
|Γ|−1

∑
P,P ′∈Z(C)

∑
z∈pr−1(P )

z′∈pr−1(P ′)

z 6=z′

g(z, z′),

wheredZ is the degree ofωZ/S with trivial metric, see (2.1.19) above, and
where the second term comes from the use of the metric determined byg,
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via (2.7.8). Thus,
(2.7.11)

hÔM(Z)
(Z) = −hω̂M/S

(Z) + dZ +
1
2
|Γ|−1

∑
P,P ′∈Z(C)

∑
z∈pr−1(P )

z′∈pr−1(P ′)

z 6=z′

g(z, z′).

Recalling thatg is invariant under the diagonal action ofΓ, we can rewrite
the last term in (2.7.11) as follows:

1
2
|Γ|−1

∑
P,P ′∈Z(C)

∑
z∈pr−1(P )

z′∈pr−1(P ′)

z 6=z′

g(z, z′)

=
1
2
|Γ|−1

∑
P,P ′∈Z(C)

e−1
P e−1

P ′

∑
γ, γ′∈Γ

γz 6=γ′z′

g(γz, γ′z′)(2.7.12)

=
1
2

∑
P,P ′∈Z(C)

e−1
P e−1

P ′

∑
γ∈Γ

z 6=γz′

g(z, γz′),

wherez and z′ ∈ X are points with pr(z) = P and pr(z′) = P ′, and
eP = |Γz|, eP ′ = |Γz′ |.

If the cycleZ is equipped with the Green functiongZ and if (Z, gZ) ∈
ĈH

1
(M) is the corresponding class, then we also have the arithmetic inter-

section pairing (2.6.2),

(2.7.13) 〈 (Z, gZ), (Z, gZ) 〉M = hÔM(Z)
(Z) +

1
2

∫
M
φZ · gZ · ν,

where

1
2

∫
M
φZ · gZ · ν =

∑
P,P ′∈Z(C)

e−1
P e−1

P ′

∑
γ∈Γ

1
2

∫
X
φ(z, ζ) · g(γz′, ζ) dν(ζ).

Combining these expressions, we obtain the version of the formula which
will be needed later.

Theorem 2.7.2. [Arithmetic Adjunction Formula]Let g be a weaklyν-
biadmissible Green function onX × X − ∆X for a presentationMC =
[Γ\X] of MC, satisfying the diagonal invariance condition (2.7.6). Sup-
pose thatZ is an irreducible horizontal divisor onM with Green function
gZ determined byg. LetÔM(Z) be the corresponding metrized line bundle
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and letω̂M/S be the relative dualizing sheaf ofM with the metric deter-
mined byg. Then
(i)

hÔM(Z)
(Z) = −hω̂M/S

(Z) + dZ +
1
2

∑
P,P ′∈Z(C)

e−1
P e−1

P ′

∑
γ∈Γ

z 6=γz′

g(z, γz′),

wheredZ is the discriminant degree ofZ; see (2.1.19).
(ii)

〈 (Z, gZ), (Z, gZ) 〉M
= −hω̂M/S

(Z) + dZ

+
∑

P,P ′∈Z(C)

e−1
P e−1

P ′

∑
γ∈Γ

z 6=γz′

1
2

(
g(z, γz′)

+
∫
M
φ(z, ζ) · g(γz′, ζ) dν(ζ)

)
+

∑
P∈Z(C)

e−1
P

1
2

∫
M
φ(z, ζ) · g(z, ζ) dν(ζ).

Here in the last sums,z andz′ ∈ X are points withpr(z) = P andpr(z′) =
P ′, and the metric onωM/S depends on the archimedean presentationpr :
X −→ [Γ\X] = M .

When we use this formula in Chapter 7, we will, in fact, pass to a pre-
sentationM = [Γ\D], whereD = H+ ∪ H− andΓ is an infinite discrete
group. The expressions in the previous theorem will still be valid for such a
presentation provided the, now infinite, sums overΓ are absolutely conver-
gent.
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Chapter Three

Cycles on Shimura curves

In this chapter we review the objects which will be our main concern. We
introduce the moduli problem attached to a quaternion algebraB over Q
solved by the DM-stackM, which has relative dimension1 over SpecZ,
has semistable reduction everywhere, and is smooth outside the ramification
locus ofB. This stack has a complex uniformization byC \ R = H+ ∪ H−

and, for every primep in the ramification locus ofB, ap-adic uniformization
by the Drinfeld upper half space.

We then recall from [12] the construction of classesẐ(t, v) in ĈH
1
(M)

for every t ∈ Z and everyv ∈ R>0. This is done in three steps. In a
first step we define for everyt > 0 a divisorZ(t) onM by imposing a
‘special endomorphism’ of degreet, and we setZ(t) = 0 for t < 0. In
a second step we define for everyt 6= 0 a Green function for the divisor
Z(t) which depends on the positive real parameterv (for t < 0, this is just a
smooth function onMC). Finally, to defineẐ(0, v), we consider the Hodge
line bundleω, equipped with a suitable metric depending onv. We then
defineẐ(0, v) to be the image of the corresponding class of̂Pic(M) under

the natural map from̂Pic(M) to ĈH
1
(M); see Section 2.4. The classes

Ẑ(t, v) will be the coefficients of our generating seriesφ̂1 with coefficients

in ĈH
1
(M), which will be considered in the next chapter.

Finally, we define 0-cyclesZ(T ) onM for positive definite ‘good’ semi-

integral matricesT . The classes of these 0-cycles in̂CH
2
(M) will be part

of our generating serieŝφ2 (the remaining coefficients will be defined in
Chapter 6). The 0-cycleZ(T ) (if nonempty) is concentrated in the super-
singular locus of a fiberMp for a unique prime numberp depending on
T . The lengths of all local rings ofZ(T ) are identical and are given by the
Gross-Keating formula [6]. More precisely, this is the special case of this
formula, in which the first entry of the Gross-Keating invariant(a1, a2, a3)
is equal to zero. The proof of this special case is easier than the general case
(as is already pointed out in the original paper). Because of the importance
of this formula for us, we give an exposition of the proof.
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3.1 SHIMURA CURVES

LetB be an indefinite quaternion algebra overQ. LetD(B) be the product
of primesp for whichBp = B ⊗Qp is a division algebra. For the moment
we allow the caseB = M2(Q), whereD(B) = 1, but later on this case will
be excluded. LetOB be a maximal order inB.

We consider the following moduli problem over SpecZ. The moduli
problemM associates to a schemeS the category of pairs(A, ι) where
A is an abelian scheme overS and whereι is a ring homomorphism

(3.1.1) ι : OB −→ EndA.

The morphisms in this category are the isomorphisms of such objects. We
impose the condition on the characteristic polynomial

(3.1.2) char(ι(b) | Lie A)(T ) = (T − b) · (T − bι), b ∈ OB.

In other words,(A, ι) is specialin the sense of Drinfeld. Hereb 7→ bι is
the main involution ofB. If S = C, such an(A, ι) is simply an abelian
surface with an action ofOB, but if S is a scheme of characteristicp, then
the condition (3.1.2) is stronger and excludes some pathologies.

Proposition 3.1.1. (i) The moduli problemM is representable by a DM-
stack which is flat of relative dimension one overSpecZ. The stackM is
regular and in fact is smooth overSpecZ[D(B)−1] and semistable over all
of SpecZ. If B is a division algebra (i.e.,D(B) > 1), thenM is proper
overSpecZ. Furthermore,M is geometrically connected and so are all its
fibers overSpecZ.
(ii) Let D(B) > 1. The coarse moduli scheme ofM is proper and flat of
relative dimension one overSpecZ and is in fact a projective scheme over
SpecZ, with all fibers geometrically connected curves.

We will not give a proof of this proposition but will give instead some
references to the literature. For the representability ofM, the main point
is to establish the existence and uniqueness of a polarization of(A, ι) of a
certain type. This is explained in [2], Chapter 3, Section 3. Once this is
done, the construction ofM can be performed along familiar lines. One ap-
proach is to use the Artin representability theorem for stacks [13], Chapter
10. Another approach is to impose a level structure and use the relative rep-
resentability over the moduli space of principally polarized abelian varieties
of dimension 2 with level structure (cf. [2], Chapter 3). By varying the level
structure, one obtainsM.

ThatM is smooth over SpecZ[D(B)−1] can be shown using deforma-
tion theory and the Serre-Tate theorem. In this way one sees that the formal
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deformation space of a point(A, ι) ∈ M(F̄p) for p 6 | D(B) is isomor-
phic to the formal deformation space of the correspondingp-divisible group
(A(p), ι). Now using the idempotents inOB ⊗ Zp ' M2(Zp) to write
A(p) as the square of ap-divisible groupG of dimension 1 and height 2,
one sees that this formal deformation space is isomorphic to the formal de-
formation space ofG and hence is formally smooth of relative dimension
1. The semistability ofM at primesp dividingD(B) relates to thep-adic
uniformization; cf. Corollary 3.2.4 below. IfB is a division algebra, the
properness ofM is checked through the valuative criterion for properness,
using the semistable reduction theorem. That the fiber ofM overC is con-
nected follows from the complex uniformization; cf. Corollary 3.2.2 below.
Then all other fibers are geometrically connected by Zariski’s connectedness
theorem. The assertions (ii) about the coarse moduli scheme follow from the
corresponding properties ofM, except the projectivity of the coarse moduli
space, for which one has to use the second approach to the representability
ofM and the quasi-projectivity of the moduli space of principally polarized
abelian varieties.

From now on we will assume thatB is a division algebra and will callM
aShimura curve, even thoughM is a stack and not a scheme.

3.2 UNIFORMIZATION

We first recall from [12] thecomplex uniformizationof M. Let

(3.2.1) V = {x ∈ B | tr(x) = 0},

with quadratic formQ(x) = Nm(x) = −x2. LetH = B×, viewed as an
algebraic group overQ. ThenH acts onV by conjugation and this induces
an isomorphism

(3.2.2) H
∼−→ GSpin(V,Q),

where GSpin(V,Q) is the spinor similitude group ofV . SinceB is indef-
inite, i.e.,B ⊗Q R ' M2(R), the quadratic spaceVR has signature(1, 2).
Let

(3.2.3) D = {w ∈ V (C) | (w,w) = 0, (w, w̄) < 0}/C×.

Here(x, y) = tr(xιy) is the bilinear form associated toQ. ThenD is an
open subset ofP1(C), stable under the action ofH(R). If we fix an isomor-
phismBR ' M2(R), we have an identification

(3.2.4) C\R = H+∪H−
∼−→ D, z 7−→ w(z) =

(
z −z2

1 −z

)
mod C×.
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This identification is equivariant for the action ofH(R) ' GL2(R) by frac-
tional linear transformations on the lefthand side, and by conjugation on the
righthand side.

Let Γ = O×B andK = Ô×B in H(Af ). By strong approximation we have

(3.2.5) H(Q) \H(A)/K = Γ \H(R).

The complex uniformization ofM is now given by the following statement.

Proposition 3.2.1. We have an isomorphism of stacks

[Γ \D] ∼−→MC.

Proof. Forz ∈ C\R we obtain a latticeLz in C2 as the image ofOB under
the isomorphism

(3.2.6) λz : BR = M2(R) −→ C2, b 7−→ b ·
(
z
1

)
.

ThenAz = C2/Lz is an abelian variety withOB-action ιz given by left
multiplication. We obtain a map

(3.2.7) D −→MC, z 7−→ (Az, ιz).

Two points inD give the same lattice if and only if they are in the same orbit
underO×B = Γ. Furthermore, the automorphisms of(Az, ιz) are given by
elements inΓz. Since every(A, ι) overC is isomorphic to some(Az, ιz),
the resulting morphism of stacks[Γ \D] →MC is an isomorphism.

Corollary 3.2.2. MC is connected.

Proof. Γ contains elementsb with Nm(b) < 0.

We next turn top-adic uniformizationfor p | D(B). We fix such a
prime and denote bŷΩ the Drinfeld upper half plane. This is an adic for-
mal scheme overZp with semistable reduction [2], [16], equipped with
an action ofPGL2(Qp). The name derives from the remarkable property
that for any finite extensionK of Qp with ring of integersOK we have
Ω̂(OK) = P1(K) \ P1(Qp). We letGL2(Qp) act onΩ̂× Z by

(3.2.8) g : (z, i) 7−→ (gz, i+ ordp(det g)).

Let B′ = B(p) be the definite quaternion algebra overQ whose invariants
agree with those ofB at all primes̀ 6= p, and denote byH ′ the algebraic
group overQ with H ′(Q) = B′×. We fix isomorphisms

(3.2.9) H ′(Qp) ' GL2(Qp) and H ′(Ap
f ) ' H(Ap

f ).
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We writeK = Kp.Kp with Kp ⊂ H(Ap
f ) andKp ⊂ H(Qp). LetK ′p ⊂

H ′(Ap
f ) be the image ofKp under this last isomorphism and letΓ′ =

H ′(Q) ∩ (H ′(Qp).K ′p). ThenΓ′ = OB
[
p−1

]×. By strong approxima-
tion we have

(3.2.10) H ′(Q) \H ′(A)/K ′p = Γ′ \H ′(Qp).

Let M̂W be the base change toW = W (F̄p) of the formal completion
of M along its fiber atp. We denote bŷΩW the base change of̂Ω to W .
The Cherednik-Drinfeld uniformization theorem may now be formulated as
follows.

Theorem 3.2.3.There is an isomorphism of formal stacks overW (F̄p),

M̂W ' H ′(Q)\
[
(Ω̂W × Z)×H ′(Ap

f )/K
′p
]

= Γ′\(Ω̂W×Z) = Γ′1\Ω̂W ,

whereΓ′1 = {g ∈ Γ′ | ordp det g = 0}.

For the proof we refer to [2] and [16]. In these references one also finds
a comparison of the descent data fromW to Zp of both sides. An informal
discussion of this theorem appears in [10]. The principal reason for this
theorem to hold is that all elements(A, ι) ∈ M(F̄p) are isogenous to one
another.

Corollary 3.2.4. M×Spec Z SpecZp is semistable overSpecZp.

3.3 THE HODGE BUNDLE

Let (A, ι) be the universal abelian scheme overM. TheHodge line bundle
(or Hodge bundlefor short) is the following line bundle onM,

(3.3.1) ω = ε∗(Ω2
A/M) = ∧2Lie(A/M)∗.

Here ε : M → A is the zero section. The Hodge bundle is related to
the relative dualizing sheafωM/Z by the following proposition; see [12],
Proposition 3.2.

Proposition 3.3.1. The Hodge bundleω is isomorphic to the relative dual-
izing sheafωM/Z.

The complex fiberωC is a line bundle onMC = [Γ \ D]. It may be
given by a line bundle onD, equipped with a descent datum with respect to
the action ofΓ onD as follows ([12], Section 3): The line bundle onD is
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associated to the trivial vector bundleD × C, and the action ofΓ onD is
lifted toD × C by the automorphy factor(cz + d)2, i.e.,

(3.3.2) γ =
(
a b
c d

)
: (z, ζ) 7−→ (γ · z, (cz + d)2 · ζ).

More precisely, the pullback ofωC toD is trivialized by associating toz ∈
C \R the sectionαz = D(B)−1 · (2πi)2 · dω1 ∧ dω2 of Ω2

Az/C. HereAz =
C2/Lz with Lz = λz(OB) andw1, w2 are the coordinates onC2 = BR via
λz; see (3.2.6). It follows that onMC the Hodge bundle is isomorphic to
the canonical bundleΩ1

MC/C under the map which sendsαz to dz.
On the Hodge bundleωC there is a natural metric‖ ‖nat. If s : z 7→ sz is

a section ofωC, then

(3.3.3) ‖s‖2
nat =

∣∣∣∣∣
(
i

2π

)2

·
∫
Az
sz ∧ s̄z

∣∣∣∣∣ .
We prefer to use the normalized metric defined by

(3.3.4) ‖ ‖2 = e−2C · ‖ ‖2
nat.

Here

(3.3.5) 2C = log(4π) + γ,

whereγ is Euler’s constant. The reason for this renormalization is explained
in the introduction to [12]. Further justification is given in Chapter 7 in
connection with the adjunction formula. The metric onΩ1

MC
resulting under

the above isomorphism withωC is then

‖dz‖2 = ‖αz‖2 = e−2C ·
∣∣∣∣∣
(
i

2π

)2

·
∫
Az
αz ∧ ᾱz

∣∣∣∣∣
(3.3.6)

= e−2C · (2π)−2 · (2π)4 ·D(B)−2 · vol(M2(R)/OB) · Im(z)2

= e−2C · (2π)2 · Im(z)2.

Here we have used the fact that the pullback underλz of the formdw1 ∧
dw2 ∧ dw̄1 ∧ dw̄2 on C2 is 4 Im(z)2 times the standard volume form on
M2(R), and that vol(M2(R)/OB) = D(B)2.
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3.4 SPECIAL ENDOMORPHISMS

Let (A, ι) ∈ M(S). Thespace of special endomorphisms of(A, ι) is the
Z-module

(3.4.1) V (A, ι) = {x ∈ EndS(A, ι) | tr(x) = 0}.

WhenS is connected,V (A, ι) is a freeZ-module of finite rank equipped
with theZ-valued quadratic formQ given by

(3.4.2) −x2 = Q(x) · idA.

Proposition 3.4.1.The quadratic formQ is positive-definite, i.e.,Q(x) ≥ 0
andQ(x) = 0 only forx = 0.

Proof. We may assume thatS is the spectrum of an algebraically closed
field. But then it follows from the classification of End(A, ι) ⊗Z Q that
any nonscalarx ∈ End(A, ι) ⊗ Q generates an imaginary quadratic field
extensionk. For x ∈ V (A, ι) ⊗ Q we obtain−x2 = Nmk/Q(x) · idA,
which proves the claim.

Definition 3.4.2. Let t 6= 0 be an integer. LetZ(t) be the moduli stack of
triples(A, ι, x), where(A, ι) is an object ofM and wherex ∈ V (A, ι) with
Q(x) = t.

ThenZ(t) is a DM-stack which is relatively representable overM by an
unramified finite morphism (rigidity theorem),

(3.4.3) Z(t) −→M.

If t < 0, thenZ(t) = ∅.
The degree of the generic fiberZ(t)Q is given by the following formula

[12]: Let 4t = n2d, where−d is the fundamental discriminant ofkt. Then

(3.4.4) deg Z(t)Q = 2 · δ(d,D(B)) ·H0(t,D(B)),

where

(3.4.5) δ(d,D) =
∏
p|D

(1− χd(p))

(zero or a power of2) and

(3.4.6) H0(t,D) =
∑
c|n

h(c2d)
w(c2d)

=
h(d)
w(d)

( ∑
c|n

(c,D)=1

c ·
∏
`|c

(1− χd(`)`−1)
)
.
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Hereh(c2d) is the class number of the orderOc2d of conductorc in kt,
w(c2d) is the number of units inOc2d, andχd is the Dirichlet character
for kt. Note that in defining the degree ofZ(t)Q over Q, each pointη =
(A, ι, x) in Z(t)(C) counts with multiplicity1/|Aut(A, ι, x)|.

The proof of (3.4.6) in [12] uses thecomplex uniformizationof the stack
Z(t). If (A, ι, x) ∈ Z(t)(C), thenA is an abelian surface with an action
of OB ⊗Z Z[

√
−t]. If A = Az = C2/Lz as in (3.2.6), then the action ofx

on LieA = BR ' C2 commutes with the action ofOB and hence is given
by right multiplication by an elementjx ∈ OD ∩ V with Nm(jx) = t. The
map given by right multiplication withjx,

(3.4.7) x̃ = r(jx) : C2 −→ C2

is holomorphic and preservesD. The pointz is fixed byx̃. Denote byDx

the fixed locus ofr(jx). Let

(3.4.8) L(t) = {x ∈ OB ∩ V | Q(x) = t},

and put

(3.4.9) Dt =
∐

x∈L(t)

Dx.

We thus obtain a morphism

(3.4.10) Dt −→ Z(t)C.

One checks, cf. [12], that this induces an isomorphism of stacks overC,

(3.4.11) [Γ \Dt] ' Z(t)C,

compatible with the isomorphism[Γ \D] 'MC of Proposition 3.2.1.
By (9.5) and (9.6) of [12], there is a 2–1 map of orbifolds,

(3.4.12) [ Γ\DZ(t) ] −→ [ Γ\L(t) ].

This arises as follows. For anyw ∈ D the negative2-planeU(w) = (Cw+
Cw̄)∩V has a natural orientation determined byiw∧ w̄. Fix an orientation
of V . For x ∈ L(t), with t > 0, let D0

x = {z0}, wherez0 ∈ Dx is
determined by the condition that[x,U(w(z0))] is properly oriented. Note
thatD0

−x = { z̄0 }, and pr(Dx) = pr(D0
x) ∪ pr(D0

−x).

Lemma 3.4.3. Letx ∈ L(t) withD0
x = {z0}. Then

(i) −x /∈ Γ · x.
(ii) z̄0 /∈ Γ · z0.
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Proof. To prove (i), suppose thatγ ∈ Γ is such thatγ ·x = γ xγ−1 = −x. It
follows thatγ andx generateB and hence thatγ2 is central. Thusγ2 = ±1.
The caseγ2 = 1 is excluded, sinceB is a division algebra. Ifγ2 = −1,
thenB ' (−1,−t) as a cyclic algebra overQ. But this cannot happen,
since(−1,−t)∞ = −1 whereasB is indefinite. For (ii), ifγ · z0 = z̄0, then
γ reverses the orientation onU(w(z0)) and hence acts by−1 onx, which is
excluded by (i).

By (ii) of the lemma, pr(Dx) consists of two distinct points pr(D0
x) and

pr(D0
−x), while, by (i), the vectorsx and−x both contribute the same pair

of points to the sum

(3.4.13) Z(t)(C) =
∑

x∈L(t)

mod Γ

pr(Dx) = 2
∑

x∈L(t)

mod Γ

pr(D0
x)

Thus,

(3.4.14) degZ(t)Q = 2
∑

x∈L(t)

mod Γ

e−1
x

so that the computation ofdegZ(t)Q is reduced to a counting problem; see
[12], Proposition 9.1.

Remark 3.4.4. The factor of2 on the righthand side of (3.4.14) is also due
to the fact that the morphismZ(t) →M is nota closed immersion. In fact,
Z(t)Q → MQ is of degree 2 over its image ((A, ι, x) and(A, ι,−x) are
the two nonisomorphic preimages of(A, ι)); see [12], Remark 9.3). In the
sequel we denote byZ(t) both the DM-stack defined above and its image
divisor inM. At those places where this notational ambiguity can cause a
problem, we have pointed out explicitly which meaning is intended.

Proposition 3.4.5. The0-cycleZ(t)C is nonempty if and only if the imagi-
nary quadratic fieldkt = Q(

√
−t) embeds inB. In this case the stackZ(t)

is flat overSpecZ[D(B)−1].

Proof. The first assertion is clear by the above description ofZ(t)C. Let
p - D(B) and let(A, ι) ∈ Mp(F̄p). The second assertion follows from
the fact that the locus in the formal deformation space of(A, ι) where a
nonzero special endomorphism of(A, ι) deforms is a relative divisor over
Spf W (F̄p). Using the idempotents inOB ⊗ Zp ' M2(Zp) to write the
p-divisible group ofA as the square of ap-divisible groupG of dimension
1 and height 2, we are reduced to showing that the locus in the formal de-
formation space ofG, where a nonscalar endomorphism ofG deforms, is a
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relative divisor. This is well known; see [17], Proposition 6.1 and also [19],
[6].

Just asM has a complex uniformization as well as ap-adic uniformiza-
tion, so do the special cyclesZ(t); see [12], Section 11. We fixp | D(B)
and introduce, as in Section 3.2, the definite quaternion algebraB′ = B(p),
and isomorphisms as in (3.2.9). We fixx ∈ OB′ with tr(x) = 0 and with
x2 = −t. Put

(3.4.15) I(x) = {gK ′p ∈ H ′(Ap
f )/K

′p | g−1xg ∈ ÔpB′}.

Also put x̃ = x if ordp(t) = 0, resp.x̃ = 1 + x if ordp(t) > 0. Then in all
casesordp Nm(x) = 0. LetH ′

x be the stabilizer ofx in H ′ and denote by

(3.4.16) Ĉ(x) =
(
Ω̂W × Z

)x̃
the fixed locus of̃x. Sinceordp Nm(x) = 0, this is equal to the product
Ω̂x̃
W × Z.
Then thep-adic uniformization is given as an isomorphism of stacks over

W ,

(3.4.17) Z(t)W =
[
H ′
x(Q) \ I(x)× Ĉ(x)

]
.

A closer analysis of the situation forp | D(B) gives the following facts,
proved in [11] forp 6= 2 and in [12] forp = 2.

Proposition 3.4.6. Let t > 0 and letp | D(B). ThenZ(t) has vertical
components of the fiberMp = M ⊗Z Fp if ordp(t) ≥ 2 and the field
kt = Q(

√
−t) embeds intoB′ = B(p).

For kt there are therefore the following two alternatives. Ifkt embeds
intoB, then it also embeds intoB(p) and the cycleZ(t) will, by Proposition
3.4.5, have a nonempty generic fiber and, by Proposition 3.4.6, have vertical
components atp, as soon as ordp(t) ≥ 2. In this casep is either inert or
ramified inkt. If, on the other hand,p splits inkt, thenkt does not embed
into B, and the generic fiber ofZ(t) is empty. In this case, ifkt embeds
into B(p), then all prime divisors ofD(B) other thanp are non-split inkt
and hence the cycleZ(t) has support in the fiberMp.

We therefore see that, whileZ(t) is flat over SpecZ[D(B)−1], the stack
Z(t) is not flat over SpecZ (at least when ordp(t) ≥ 2 for somep | D(B)).
This seems to be unavoidable if one insists on a modular definition ofZ(t).

We will define away another unpleasant feature of our cycles. Namely,
by [11], the fiber atp | D(B) of Z(t) contains embedded components when
p | t, and it has the ‘wrong dimension’ 0, when ordp(t) = 0 andp splits in
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kt, and embeds intoB′ = B(p). We therefore redefineZ(t) by replacing it
by its Cohen-Macauleyfication (denotedZ(t)pure in [11]). By Proposition
3.4.5 this does not changeZ(t) over SpecZ[D(B)−1], and nowZ(t) is pure
of dimension 1 (unless it is empty) and without embedded components. We
considerZ(t) as a divisor although, strictly speaking,Z(t) is not a closed
substack ofM; cf. Remark 3.4.4.

To form our generating series, we will also need to defineZ(0). We
take the image of the class ofω under the composition of the isomorphism
Pic(M) ' CH1

Z(M) and the natural mapCH1
Z(M) −→ CH1(M).

Remark 3.4.7. In fact, it is possible to slightly refine the definition of the
cycleZ(t) as follows. Recall that there is an elementδ ∈ OB such that
δ2 = −D(B). For a point(A, ι, x) of Z(t), the special endomorphismx
defines an action onA of the orderZ[

√
−t] of discriminant−4t in kt =

Q(
√
−t). If we write 4t = n2d, as above, and letn0 be the prime toD(B)

part ofn, then the action ofZ[
√
−t] extends to an action of the orderOn2

0d

of discriminant−n2
0d. Note that this order is maximal at eachp dividing

D(B). Sincex commutes with the action ofOB, X := ker(ι(δ)) ⊂ A is a
finite group scheme of orderD(B)2 equipped with an action of

(3.4.18) On2
0d
/(D(B)) ∼−→

∏
p|D(B)

p inert

Fp2 ×
∏

p|D(B)

p ramified

Fp.

It also carries an action of

(3.4.19) OB/(δ)
∼−→

∏
p|D(B)

Fp2 .

In our situation, the two actions are related by a commutative diagram

(3.4.20)

∏
p inert

Fp2 ↪→ End(X)

(∗) ↓ ‖∏
p inert

Fp2 ↪→ End(X).

There are2ν = δ(d,D(B)) possibilities, which we call types, for the iso-
morphism (*), whereν is the number of prime factors ofD(B) which are
inert inkt. For each typeη, we can define a componentZ(t, η) of Z(t) by
requiring thatker(ι(δ)) be of typeη. Note that this construction explains the
occurrence of the factorδ(d,D(B)) in the formula (3.5.8) fordegCZ(t).
This decomposition according to types is analogous to the decomposition of
Heegner cycles in [4] and [7]. There, prime divisors of the levelN must be
split or ramified inkt, and the role ofη is played by the parameterr, which
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determines the isomorphism class of the kernel of the cyclicN -isogeny. In
both cases, the group of Atkin-Lehner involutions permutes the components
transitively. We will make no further use of this refinement in the present
work so that, in effect, we consider only cycles which are invariant under
the group of Atkin-Lehner involutions.

3.5 GREEN FUNCTIONS

To obtain arithmetic cycle classes in̂CH
1

Z(M) from the cyclesZ(t) intro-
duced in Section 3.4, we will equip them with Green functions following
[9]. Forx ∈ V (R) with Q(x) 6= 0 andz ∈ D set

(3.5.1) R(x, z) = |(x,w(z))|2 |(w(z), w(z))|−1 = −(prz(x),prz(x)).

where prz(x) is the orthogonal projection ofx to the negative2-plane ob-
tained by intersecting(C·w(z)+C·w(z)) with V (R). Herew(z) ∈ V (C) is
any vector with imagez in P(V (C)). Then this function for fixedx vanishes
precisely when(x,w(z)) = 0, i.e.,z ∈ Dx. Let

(3.5.2) β1(r) =
∫ ∞

1
e−ruu−1du = −Ei(−r)

be the exponential integral. Then

(3.5.3) β1(r) =

{
− log(r)− γ +O(r) as r → 0,

O(e−r) asr →∞.

As in [9], we form the functions

(3.5.4) ξ(x, z) = β1(2πR(x, z))

and

(3.5.5) ϕ(x, z) = [ 2(R(x, z) + 2Q(x))− 1
2π

] · e−2πR(x,z).

Thenξ(x, z) has a logarithmic singularity alongDx and decays exponen-
tially as z goes to the boundary ofD. The following result is Proposi-
tion 11.1 of [9] (where the functionsξ andϕ were denoted byξ0 andϕ0).

Proposition 3.5.1. Let µ = i
2y
−2 dz ∧ dz̄ be the hyperbolic volume form

onD = C \ R. Then

ddcξ(x) + δDx = [ϕ(x)µ]

as currents onD. In particular, ξ(x, ·) is a Green function forDx.
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Because of the rapid decay ofξ(x, ·), we can average over lattice points.

Corollary 3.5.2. For v ∈ R>0 let

Ξ(t, v) =
∑

x∈OB∩V
Q(x)=t

ξ(v1/2x, z).

(i) For t > 0, Ξ(t, v) defines a Green function forZ(t).
(ii) For t < 0, Ξ(t, v) defines a smooth function onMC = [Γ \D].

This allows us to define classes in the arithmetic Chow groupĈH
1
(M):

(3.5.6) Ẑ(t, v) =

{
(Z(t),Ξ(t, v)) if t > 0,

(0,Ξ(t, v)) if t < 0.

Remark 3.5.3. We note that the functionΞ(t, v) vanishes when the quadratic
field kt = Q(

√
−t) is not embeddable inB, since then the summation in

the definition is empty.

Finally, we have to define the clasŝZ(0, v) in ĈH
1
(M). We set, follow-

ing [12],

(3.5.7) Ẑ(0, v) = −ω̂ − (0, log(v)) + (0, c).

Here the first summand is the image ofω̂ under the natural map from̂Pic(M)
into ĈH

1
(M), andc is the real constant determined by the identity

(3.5.8)
1
2

degQ(ω̂)·c = 〈 ω̂, ω̂ 〉−ζD(−1)
[

2
ζ ′(−1)
ζ(−1)

+1−2C−
∑

p|D(B)

p log(p)
p− 1

]
.

In Chapter 7, we will prove that, in fact,c = − logD(B).

3.6 SPECIAL 0-CYCLES

Let

(3.6.1) Sym2(Z)∨ = {T ∈ Sym2(Q) | tr(Tb) ∈ Z, ∀b ∈ Sym2(Z)}

be the space ofsemi-integral symmetric matrices.For T ∈ Sym2(Z)∨ we
define

(3.6.2) Z(T ) = {(A, ι;x1, x2); x1, x2 ∈ V (A, ι); Q(x) = T}.
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Here (A, ι) is an object ofM, and for special endomorphismsx1, x2 ∈
V (A, ι) we set

(3.6.3) Q(x) = Q(x1, x2) =
1
2

(
(x1, x1) (x1, x2)
(x2, x1) (x2, x2)

)
,

where(x, y) = Q(x+ y)−Q(x)−Q(y) is the associated bilinear form.
ThenZ(T ) is a DM-stack equipped with an unramified morphism

(3.6.4) Z(T ) −→M.

By Proposition 3.4.1,Z(T ) = ∅ unlessT is positive-semidefinite.
We next explain whenZ(T ) is nonempty of dimension 0 forT with

detT 6= 0. We introduce theincoherentcollection of quadratic spaces
C = (Cp), whereCp = Vp for p < ∞ and whereC∞ is the positive-
definite quadratic space of dimension 3. Note that, since the quaternion
algebraB is indefinite, the signature type ofV∞ is equal to (1,2), so that
indeed the collectionC is incoherent, i.e., the product of the Hasse invari-
ants of the local quadratic spacesCp is equal to−1. LetT ∈ Sym2(Q) with
det(T ) 6= 0. LetVT be the unique ternary quadratic space overQ with dis-
criminant−1 = discr(V) which representsT . ThenVT is isometric to the
space of trace zero elements of a well-determined quaternion algebraBT
overQ. We then define following [9], Definition 5.1,

(3.6.5) Diff(T,B) = { p ≤ ∞ | invp(BT ) 6= inv(Cp) }.

Note that, sinceC is an incoherent collection, the cardinality|Diff (T,B)|
is a positive odd number. Furthermore,∞ ∈ Diff (T,B) if and only if the
signature ofT is equal to (1,2) or (0,2), i.e., ifT is not positive-definite.

Theorem 3.6.1.LetT ∈ Sym2(Z)∨ be nonsingular.
(i) If |Diff (T,B)| > 1, thenZ(T ) = ∅.
(ii) If Diff (T,B) = {p}, with p < ∞, and p 6 | D(B), thenZ(T ) is a
finite stack in characteristicp with support in the supersingular locus. The
lengths of the local rings at all geometric points ofZ(T ) are identical and
given by the Gross-Keating formula

νp(T ) =


∑a2−1

2
j=0 (a2 + a3 − 4j)pj if a2 is odd,

∑a2
2
−1

j=0 (a2 + a3 − 4j)pj + 1
2(a3 − a2 + 1)p

a2
2 if a2 is even.

Here (0, a2, a3) with 0 ≤ a2 ≤ a3 are the Gross-Keating invariants1 of
T̃ = diag(1,T).

1If p 6= 2, this means thatT is GL2(Zp)-equivalent to diag(ε1pa2 , ε2pa3) with ε1, ε2 ∈
Z×p .
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(iii) If Diff (T,B) = {p}, with p < ∞, and p | D(B), thenZ(T ) is
concentrated in characteristicp. Furthermore,dimZ(T ) = 1 if p2|T in
Sym2(Z)∨.

Remark 3.6.2. If p 6= 2, the converse holds in (iii), i.e., ifp2 - T , then
dim Z(T ) = 0, and in this case the lengths of the local rings at all geometric
points ofZ(T ) are identical and given by

νp(T ) =


β if α = 1,
β if α = 0 andχ(ε1) = −1,
0 if α = 0 andχ(ε1) = 1.

HereT is GL2(Zp)-equivalent to diag(ε1pα, ε2pβ) with ε1, ε2 ∈ Z×p andχ
is the quadratic residue character modulop.

If p = 2 in (iii), the situation is more complicated and can be read off
from the results in the appendix to Chapter 6. Let us callT ∈ Sym2(Zp)∨
primitive, if an equationT = AT ′At with T ′ ∈ Sym2(Zp)∨ andA ∈
M2(Zp) impliesA ∈ GL2(Zp). Obviously, ifT is primitive, thenp2 6 | T . If
p = 2, thendim Z(T ) = 0 if and only if T is primitive. If dim Z(T ) = 0,
then the lengths of the local rings at all geometric points ofZ(T ) are the
same and can be read off from Theorem 6A.1.1 in the appendix to Chapter
6.

Proof. Let (A, ι; y1, y2) be a point ofZ(T ). ThenB′ = End(A, ι) ⊗ Q
contains the three linearly independent elements1, y1, y2. Hence(A, ι) is
a supersingular point in positive characteristicp. SinceT is represented by
the spaceV ′ of trace zero elements ofB′, it follows thatV ′ = VT . On the
other hand,B′ is a definite quaternion algebra whose invariants agree with
those ofB at all finite primes̀ 6= p. It follows that Diff(T,B) = {p},
which proves the first assertion.

Now consider (i). Let(A, ι) be a supersingular point and lety = (y1, y2)
be a pair of special endomorphisms of(A, ι) with Q(y) = T . We need
to determine the lengthlg Ôx/J(y)x. Here Ôx = ÔM,x is the formal
completion of the local ring ofx andJ(y)x denotes the minimal ideal in
Ôx such thaty1 andy2 extend to endomorphisms of(A, ι) mod J(y). Here
(A, ι) denotes the universal object overM.

We use the Serre-Tate theorem. According to this theorem, the universal
deformation space of(Ax, ιx,y) coincides with the universal deformation
space of the correspondingp-divisible group(Ax(p), ι) with its special en-
domorphisms. Thisp- divisible group is independent ofx. More precisely,
let G be thep-divisible formal group of dimension 1 and height 2 overF̄p
(it is unique up to isomorphism). Then there is an isomorphismÂx ' G2
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compatible with an isomorphismOB ⊗ Zp ' M2(Zp). The special endo-
morphisms in End(Ax(p), ιx) induced byy1 andy2 can be identified with
endomorphismsx1, x2 ∈ End(G) with tr(xi) = 0, for i = 1, 2. We there-
fore obtain isomorphisms

(3.6.6) Ôx 'W [[t]], Ôx/J(y)x 'W [[t]]/J(x).

HereW = W (F̄p) is the ring of Witt vectors, SpfW [[t]] is the base of the
universal deformation space ofG, andJ(x) is the minimal ideal inW [[t]]
such that the special endomorphismsx1 andx2 of G deform to endomor-
phisms of the universal deformationΓ moduloJ(x),

(3.6.7) x1, x2 : Γ −→ Γ (mod J(x)) .

We therefore have reduced the statement (i) to an assertion about thep-
divisible groupG, with its pair of special endomorphismsx1, x2, given by
Theorem 3.6.3 below.

For (ii) we refer to [11], Proposition 2.10 and Theorem 6.1 in the case
p 6= 2 and to the appendix to Chapter 6 below in the casep = 2.

Theorem 3.6.3. Let G be the formal group of dimension 1 and height 2
over F̄p and letΓ be its universal deformation overW [[t]]. Letx1, x2 be a
pair of special endomorphisms ofG ( tr(xi) = 0 for i = 1, 2 ) which are
linearly independent. LetJ(x) be the minimal ideal such that thexi deform
to endomorphisms ofΓ(mod J(x)). ThenlgW [[t]]/J(x) only depends on
theGL2(Zp)-equivalence class ofT = 1

2(x,x) and is equal to

νp(T ) =


∑a2−1

2
j=0 (a2 + a3 − 4j)pj if a2 is odd,

∑a2
2
−1

j=0 (a2 + a3 − 4j)pj + 1
2(a3 − a2 + 1)p

a2
2 if a2 is even.

Here (0, a2, a3) with 0 ≤ a2 ≤ a3 are the Gross-Keating invariants of
T̃ = diag(1,T).

Theorem 3.6.3 is the special casea1 = 0 of [6], Proposition 5.4. How-
ever, this special case is easier to prove and follows from the results in [8],
as we now proceed to show.

Remark 3.6.4. Theorem 5.1 of [8] is not proved there. Instead, the reader
is referred to Keating’s unpublished Harvard thesis. A detailed account of
Keating’s result can be found in [1], which also contains a proof of the
general result of Gross-Keating. We also point out that Theorem 3.6.3 is
overstated as Proposition 14.6 in [9].
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Proof. LetL = Zpx1 + Zpx2 ⊂ End(G). It is obvious that

(3.6.8) J(L) = J(x),

whereJ(L) is the minimal ideal inW [[t]] such that

(3.6.9) L ⊂ End(Γ(mod J(L))).

We may therefore choose any basisϕ,ψ of L and then

J(x1, x2) = J(ϕ,ψ) = J(L).

We chooseϕ,ψ, as we may, such that1, ϕ, ψ form an optimal basisof
L̃ = Zp · 1 + Zpx1 + Zpx2, with v(ϕ) = a2 andv(ψ) = a3. If p 6= 2,
this simply means that the bilinear form onL is diagonalized byϕ,ψ and
that a2 = v(ϕ) anda3 = v(ψ). Here, as elsewhere, we denote byv the
valuation on the quaternion division algebraD = End(G)⊗Zp Qp.

Lemma 3.6.5. Let k = Qp(ϕ) ⊂ D. Thenk/Qp is unramified ifa2 is
even and is ramified ifa2 is odd. The orderZp[ϕ] has conductorps with
s = [a2/2].

Proof forp 6= 2. We have tr(ϕ) = 0 and Nmϕ = ε2p
a2 with ε2 ∈ Z×p .

If a2 is odd, thenk = Qp(π) with π =
√
−ε2p andOk = Zp[π]. Since

ϕ = ps ·π, the claim follows in this case. Ifa2 is even, thenk = Qp(ξ) with
ξ =

√
−ε2. ThenOk = Zp[ξ]. Sinceϕ = ps · ξ, the claim follows.

The proof forp = 2 is more complicated and is given at the end of this
section.

Lemma 3.6.6.

ψ ∈ Πa3OD \ (Ok + Πa3+1OD).

HereΠ denotes a uniformizer ofOD.

Proof forp 6= 2. In this caseψ anticommutes withk, i.e., conjugation with
ψ induces the nontrivial automorphism ofk. Sincek/Qp is unramified or
tamely ramified, we may apply [14], Lemma 2.2. Letv = v(ψ) = a3.
Then [14] tells us that, under the ramification hypothesis made, we have
ψ ∈ ΠvOD \ (Ok + Πv+1OD).

The proof forp = 2 is given at the end of this section.
Let us now continue the proof of Theorem 3.6.3, assuming (even forp =

2) the validity of Lemmas 3.6.5 and 3.6.6. By Lemma 3.6.5 we may write
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the locus SpfW [[t]]/J(ϕ) whereϕ deforms as a sum of quasi-canonical
divisors in SpfW [[t]],

(3.6.10) SpfW [[t]]/J(ϕ) =
s∑
r=0

Wr(ϕ).

Recall [5], (cf. also Section 7.7), that the quasi-canonical divisor of levelr
is a reduced irreducible regular divisor in SpfW [[t]] such that the pullback
of the universalp-divisible group on SpfW [[t]] toWr(ϕ) has the orderOr
of conductorpr in k (embedded viaϕ intoD) as its endomorphism algebra.
We haveWr(ϕ) ' Spf Wr(k), whereWr(k) is the ring of integers in a
ramified extensionMr of M = Frac W .

Now the locus insideWr(ϕ) to whichψ deforms is defined by an ideal
I` in Wr(k) which only depends on the integer` with ψ ∈ (Or + Π`OD) \
(Or+Π`+1OD). By Lemma 3.6.6, we havè= a3. Sincea3 ≥ a2 ≥ 2s ≥
2r − 1, we are in the ‘stable range’ of the formula of [15], Theorem 1.1.
Hence
(3.6.11)

lg Wr(k)/Ia3 =
(pr−1 − 1)(p+ 1)

p− 1
+ pr−1 +

(
a3 + 1

2
− r

)
er + 1,

whereer is the ramification index ofMr overM .
Now from the explicit description ofWr(k), as described, e.g., in Section

7.7, we have

(3.6.12) er =


2pr if k/Qp is ramified,

pr + pr−1 if k/Qp is unramified andr ≥ 1,

1 if k/Qp is unramified andr = 0.

Therefore we have obtained a completely explicit expression for

(3.6.13) lg W [[t]]/J(ϕ,ψ) =
s∑
r=0

lg Wr(k)/Ia3 .

Taking into account the first statement of Lemma 3.6.5, which allows us to
distinguish the ramified case from the unramified case by the parity ofa2,
we get the following values forlg W [[t]]/J(ϕ,ψ):

(3.6.14)
s∑
r=0

(
(pr−1 − 1)(p+ 1)

p− 1
+ pr−1 +

(
a3 + 1

2
− r

)
· 2pr + 1

)
,

if a2 = 2s+ 1 is odd, and
(3.6.15)
a3 + 1

2
+

s∑
r=1

(
(pr − 1)(p+ 1)

p− 1
+ pr−1 +

(
a3 + 1

2
− r

)
(pr + pr−1) + 1

)
,
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if a2 = 2s is even. An elementary (but tedious) calculation now gives the
formula in Theorem 3.6.3.

It remains to prove Lemmas 3.6.5 and 3.6.6 forp = 2. For this we use
the classification of the possiblẽT and the construction of optimal bases of
L̃ in each case; see [18], [3].

T̃ ’s and Optimal Bases

(A) T̃ = diag
(

1, 2β
(

2 1
1 2

))
with β ≥ 0 even.2 Then1 = e1, ϕ = e2,

ψ = e3 is an optimal basis, and

GK(T̃ ) = (0, β + 1, β + 1).

(B) T̃ = diag(1, ε22β2 , ε32β3) with 0 ≤ β2 ≤ β3. ThenT̃ is anisotropic
if and only if

(−1, ε2ε3) = (ε2, ε3) · (2, ε2)β3 · (2, ε3)β2 .

(1) β2 odd. Then1 = e1, ϕ = e2, ψ = c1e1 + c2e2 +e3 for suitable
c1, c2 ∈ Z2, and

GK(T̃ ) = (0, β2, β3 + 2).

(2) β2 even andβ3 ≤ β2 + 1.

(a) β2 = β3. Then1 = e1,ϕ = 2β2/2e1+e2,ψ = 2β2/2e1+e3,
and

GK(T̃ ) = (0, β2 + 1, β3 + 1).

(b) β3 = β2 + 1 andε1 ≡ 1(mod 4). Then1 = e1, ϕ =
2β2/2e1 + e2, ψ = 2β2/2e1 + e3, and

GK(T̃ ) = (0, β2 + 1, β3 + 1).

(c) β3 = β2 + 1 andε2 ≡ −1(mod 4). Then1 = e1, ϕ =
2β2/2e1 + e2 + e3, ψ = 2β2/2e1 + e2 + 2e3, and

GK(T̃ ) = (0, β2 + 1, β3 + 1).

(3) β2 even andβ3 ≥ β2 + 2.

2The parity condition onβ comes from the fact thatT is anisotropic.
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(a) ε2 ≡ −1(mod 4). Then1 = e1, ϕ = 2β2/2e1 +e2, ψ = e3,
and

GK(T̃ ) = (0, β2 + 2, β3).

(b) ε2 ≡ 1(mod 4). Then1 = e1, ϕ = 2β2/2e1 + e2, ψ =
c1e1 + c2e2 + e3 for suitablec1, c2 ∈ Z2, and

GK(T̃ ) = (0, β2 + 1, β3 + 1).

Proof of Lemma 3.6.5.We distinguish cases.

Case A:Here tr(ϕ) = (e1, e2) = 0 and Nm(ϕ) = 2β+1. Hencek = Q2(π)
whereπ =

√
−2. Sok is ramified,Ok = Zp[π] andϕ = 2β/2 · π, which

proves the claim.

Case B1:Here trϕ = (e1, e2) = 0 and Nm(ϕ) = ε22β2 . Hencek = Q2(π)
with π =

√
−ε22. Sok is ramified,Ok = Zp[π] andϕ = 2(β2−1)/2 · π,

which proves the claim.

Case B2a: Here tr(ϕ) = (e1, 2β2/2e1 + e2) = 2β2/2+1 and Nmϕ =
2β2(1 + ε2). Now by the anisotropy of̃T we haveε2 ≡ 1(mod 4). Hence
k = Q2[X]/(X2− 2X + (1 + ε2)) is defined by an Eisenstein polynomial.
Denoting byπ the residue class ofX we haveOk = Z2[π] andϕ = 2β2/2·π,
which proves the claim.

Case B2b:This is identical to the previous case.

Case B2c:Here tr(ϕ) = 2β2/2+1 and Nm(ϕ) = 2β2 + ε22β2 + ε32β3 =
2β2(2ε3 + 1 + ε2). Sinceε2 ≡ −1(mod 4), we havek = Q2[X]/(X2 −
2X+(2ε3 +1+ε2)), which is defined by an Eisenstein equation. Denoting
by π the residue class ofX, we haveOk = Z2[π] andϕ = 2β2/2 · π, which
proves the claim.

Case B3a:Here trϕ = 2β2/2+1 and Nm(ϕ) = 2β2(1 + ε2). Now sinceT̃
is anisotropic,1 + ε2 ≡ 4(mod 8). Hence writing1 + ε2 = 4η we have
η ∈ Z×2 andk = Q2[X]/(X2 − X + η). Hencek/Q2 is unramified as
asserted and, denoting byξ the residue class ofX, we haveOk = Z2[ξ] and
ϕ = 2β2/2+1 · ξ, which proves the claim.

Case B3b:Here tr(ϕ) and Nm(ϕ) are as in the previous case but this time
1+ε2 ≡ 2(mod 4). Hencek = Q2[X]/(X2−2X+(1+ε2)) is defined by
an Eisenstein polynomial. Denoting byπ the residue class ofX, we have
Ok = Z2[π] andϕ = 2β2/2 · π, which proves the claim.

The lemma is now proved in all cases.



PUP.master.W.rev January 13, 2006

CYCLES ON SHIMURA CURVES 65

Proof of Lemma 3.6.6.Again we go through all cases. Whenp = 2, the
endomorphismψ does not in general anticommute withϕ (and even if it
did, Lemma 2.2 of [14] does not apply whenk/Q2 is ramified). Still, the
commuting properties ofψ andϕ can be used to prove Lemma 3.6.6.

Case A:Here

ϕψ= (eι1 ◦ e2) ◦ (eι1 ◦ e3) = −eι1 ◦ e2 ◦ (eι3 ◦ e1)
=−eι1 ◦ (−e3 ◦ eι2 + 2β+1) ◦ e1 = eι1 ◦ e3 ◦ eι2 ◦ e1 − 2β+1

=−(eι1 ◦ e3) ◦ (eι1 ◦ e2)− 2β+1

=−ψϕ− 2β+1.

Here, as usual,x 7→ xι denotes the main involution ofD. Hence

(3.6.16) ϕψ + ψϕ = −2β+1.

Now we can write, following [5], Proposition 4.3,

(3.6.17) D = k⊕ kj,

wherej anticommutes withk and withj2 ≡ 1 mod 2e−1, wheree is the
valuation of the different ofk/Q2, and then

(3.6.18) OD = Ok ⊕Okα,

whereα = π1−e(1 + j) ∈ O×D.
In the case at hand, the different ofk/Qp has valuation 3, henceα =

π−2(1+j). Writingψ = a+bα, the assertion of Lemma 3.6.6 comes down
to v(b) = a3. But the LHS of (3.6.16) is equal to (recallϕ = 2sπ),

(3.6.19) 2s(aπ+ bπ−1(1+ j)+aπ+ bπ−1(1− j)) = 2s+1 · (aπ+ bπ−1).

Notingβ = 2s, we get from (3.6.16) the identity

(3.6.20) b = −2sπ − aπ2.

Comparing valuations of the summands and recallingv(ψ) = β + 1 = a3,
we obtainv(b) = a3 as asserted.

Case B1:In this case

(3.6.21) ϕψ − ψϕ = 2 · eι3 ◦ e2.

AgainD = k + kj andOD = Ok ⊕ Okα with α = π−2(1 + j) ∈ O×D.
Writing ψ = a+ bα, we get for the LHS of (3.6.21), notingϕ = 2sπ,

(3.6.22) 2s
(
(aπ + bπ−1(1 + j))− (aπ + bπ−1(1− j))

)
= 2s+1 · bπ−1j.
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Hence equation (3.6.21) gives

(3.6.23) 2sbπ−1j = eι3 ◦ e2.

Comparing valuations on both sides gives

(3.6.24) 2s+ v(b)− 1 = β2 + β3,

i.e.v(b) = β3 + 2 = a3, as claimed.

Case B2a:In this case

(3.6.25) ϕψ − ψϕ = 2 · eι3 ◦ e2.

AgainD = k + kj andOD = Ok ⊕Okα, but this time, since the different
has valuation2, we haveα = π−1(1 + j). Writing ψ = a+ bα, we get for
the LHS of (3.6.25) and notingϕ = 2s · π,

(3.6.26) 2s
(
(aπ + b(1 + j))− (aπ + b+ bπι/π · j)

)
= 2sjb · (2− 2/π).

Hence equation (3.6.25) gives

(3.6.27) 2sjb · (2− 2/π) = 2 · eι3 ◦ e2.

Comparing valuations on both sides gives

(3.6.28) 2s+ v(b) + 1 = β2 + β3 + 2,

i.e.,v(b) = β3 + 1 = a3, as claimed.

Case B2b:identical with the previous one.

Case B2c:In this case

(3.6.29) ϕψ − ψϕ = 2 · eι3 ◦ e2.

AgainD = k + kj andOD = Ok ⊕ Okα with α = π−1(1 + j). Writing
ψ = a+ bα we obtain by an identical reasoning as in Case B2a thatv(b) =
β3 + 1 = a3, as desired.

Case B3a:In this case

(3.6.30) ϕψ − ψϕ = 2 · eι3 ◦ e2.

In this casek/Q2 is unramified. We may choose a uniformizerΠ of OD
which anticommutes withk and such thatΠ2 = 2, and then

(3.6.31) OD = Ok ⊕OkΠ.
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Now writingψ = a+bΠ we need to show thatv(bΠ) = a3. Nowϕ = 2s ·ξ
and the LHS of (3.6.30) is equal to

(3.6.32) 2s((aξ+ bξΠ)− (aξ+ bξιΠ)) = 2sb(ξ− ξι) = 2sb(1− 2ξ) ·Π.

Hence equation (3.6.30) gives

(3.6.33) 2sb · (1− 2 · ξι) ·Π = 2 · eι3 ◦ e2.

Comparing valuations gives

(3.6.34) 2s+ v(bΠ) = 2 + β2 + β3.

Since2s = β2 + 2, we getv(bΠ) = β3 = a3, as desired.

Case B3b:Again

(3.6.35) ϕψ − ψϕ = 2 · eι3 ◦ e2.

HereD = k + kj andOD = Ok ⊕ Okα with α = π−1(1 + j). Writing
ψ = a+ bα, we get as in Case B2a

(3.6.36) 2β2/2 · j · b · (2− 2/π) = 2 · eι3 ◦ e2.

Hence comparing valuations we get

(3.6.37) β2 + v(b) + 1 = 2 + β2 + β3,

i.e.,v(b) = β3 + 1 = a3, as desired.

In Chapter 6, when we form the generating seriesφ̂2 for 0-cycles on
M, we will need to associate to everyT ∈ Sym2(Z)∨ and everyv ∈
Sym2(R)>0 an element

Ẑ(T, v) ∈ ĈH
2
(M).

WhenT is positive definite and Diff(T,B) = {p} for somep 6 | D(B),
we take the class of(Z(T ), 0) ∈ Ẑ2

Z(M), and if T is positive definite

and |Diff (T,B)| > 1, we take the zero class in̂CH
2
(M). In all other

cases, whenT is not positive definite, or whenT is positive definite and
Diff (T,B) = {p} with p | D(B), the definition is less obvious. This issue
is dealt with in Chapter 6.
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Chapter Four

An arithmetic theta function

In this chapter, we consider the generating functionφ̂1 whose coefficients

are the special divisorŝZ(t, v) ∈ ĈH
1
(M) defined in the previous chapter.

We prove that̂φ1 is a modular form of weight32 (Theorem A). In the first
section we introduce the decomposition

(4.0.1) ĈH
1
(M) = M̃W ⊕ R ω̂ ⊕ Vert ⊕ a(A0(MR)0)

of ĈH
1
(M) into its ‘Mordell-Weil’ component, its ‘Hodge bundle’ com-

ponent, its ‘vertical’ component, and its ‘C∞’-component. We then reduce
the proof of Theorem A to an assertion about the various components of
φ̂1 with respect to this decomposition. The modularity of the Hodge com-
ponent follows from [16]. In Section 4.3, we prove the modularity of the
vertical component of̂φ1 by identifying it with the theta function of a pos-
itive definite ternary form. In Section 4, we prove the modularity of the
C∞-component of̂φ1 by identifying it with the theta lift of a Maass form.
In Sections 4.5 and 4.6, we show that the modularity of the Mordell-Weil
component of̂φ1 follows from Borcherds’ theorem [2]. In the last section,
we check an intertwining property of the arithmetic theta function which
will be crucial in the definition of the arithmetic theta lift in Chapter 9.

4.1 THE STRUCTURE OF ARITHMETIC CHOW GROUPS

LetM be an arithmetic surface over SpecZ, as in Chapter 2. We assume
thatM is geometrically irreducible. In this section, we review the structure
of the arithmetic Chow group ofM and set up a convenient decomposition
of this group with respect to the arithmetic intersection pairing or Arakelov-
Gillet-Souĺe height pairing.

Let ĈH
1
(M) be the arithmetic Chow group with real coefficients as de-

fined in Chapter 2. Recall that this is the quotient of the real vector space
Ẑ1(M)R spanned by pairs(Z, g), whereZ ∈ Z1(M)R is a divisor onM
with real coefficients andg is a Green function forZ, by the subspace of
relations spanned overR by the elementŝdiv(f) = (div(f),− log |f |2) for
f ∈ Q(M)×. We will use the notationg(Ẑ) (resp. ω(Ẑ)) for the Green
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function (resp.(1, 1)-form) associated to a clasŝZ. These are related by

ddcg(Ẑ) + δZ = ω(Ẑ).

We will only consider Green functions ofC∞-regularity, in the terminology

of [1], p. 18, as in [5]. As explained in Chapter 1, the group̂CH
1
(M) comes

equipped with an arithmetic intersection pairing, the Arakelov-Gillet-Soulé
height pairing〈 , 〉, which we will also refer to as the height pairing. In

addition, there is a geometric degree mapdegQ : ĈH
1
(M) → R obtained

as a composition

(4.1.1) degQ : ĈH
1
(M)

resQ−→ CH1(MQ)⊗ R deg−→ R,

where CH1(MQ) is the usual Chow group of the generic fiberMQ of M.
We fix a volume formµ1 onM(C), with vol(M(C), µ1) = 1. We also

fix a metrized line bundlêω = (ω, || ||) onMwith first Chern formc1(ω̂) =
degQ(ω) · µ1 with degQ(ω) > 0, and denote by the same symbol

(4.1.2) ω̂ ∈ ĈH
1
(M)

the associated class under the map̂Pic(M) → ĈH
1
(M). Let A0(MR)

be the space ofC∞-functions onM(C) invariant under the archimedean
FrobeniusF∞, and let

(4.1.3) a : A0(MR) −→ ĈH
1
(M), f 7→ (0, f),

be the inclusion. Note that this map isR-linear. Let

(4.1.4) 11 := a(1) ∈ ĈH
1
(M).

LetA0(MR)0 be the subspace off ∈ A0(MR) such that

(4.1.5)
∫
M(C)

f · c1(ω̂) = 0.

Let

(4.1.6) Vert= Vert(M)

be the subspace of̂CH
1
(M) generated by the classes of the form(Yp, 0),

whereYp is an irreducible component of a fiberMp. The relationd̂iv(p) =
(Mp,− log(p2)) ≡ 0, implies that(Mp, 0) ≡ 2 log(p) 11, so that11 ∈ Vert.
Let

(4.1.7) Vertp = ⊕iRYp,i
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be the real vector space with basis the irreducible componentsYp,i of the
fiberMp, and let

(4.1.8) Vertp = Vertp/(R · Mp) and Vert = Vert/(R · 11).

Then we have a commutative diagram with exact rows and columns

(4.1.9)

R −→ ⊕pR −→ R 1
|| ↓ ↓ ↓
R −→ ⊕pVertp −→ Vert 11

↓ ↓
⊕pVertp −→ Vert

where

(4.1.10) R = {(λp) ∈ ⊕pR |
∑
p

λp log(p) = 0}.

The inclusion map onR in the middle line is given by

(4.1.11) (λp) 7→
∑
p

λpMp,

while the second arrow in the top line is given by(λp) 7→ 2
∑
p λp log(p).

Of course, Vert lies in the kernel ofdegQ.

The intersection pairing〈 ·, · 〉 on ĈH
1
(M) can be written in general as

(4.1.12) 〈 Ẑ1, Ẑ2 〉 = hL̂1
(Z2) +

1
2

∫
M(C)

g(Ẑ2)ω(Ẑ1),

wherehL̂1
(Z2) is the height of the cycleZ2 with respect to the metrized

line bundleL̂1 corresponding toẐ1; see Section 2.6 or (5.11) of [1]. The
alternative expression

〈 Ẑ1, Ẑ2 〉

= d̂eg(Z1 · Z2) +
1
2

∫
M(C)

g(Ẑ1) ∗ g(Ẑ2)(4.1.13)

= d̂eg(Z1 · Z2) +
1
2

∫
M(C)

g(Ẑ1) δZ2 +
1
2

∫
M(C)

g(Ẑ2)ω(Ẑ1),

from [1] (5.8), is valid when the supports|Z1| and|Z2| are disjoint on the
generic fiber; see Section 2.5. In particular, using (4.1.13), we have

(4.1.14) 〈 Ẑ, 11 〉 =
1
2

degQ(Ẑ),
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so that

(4.1.15) 〈 ω̂, 11 〉 =
1
2

degQ(ω) and 〈 11, 11 〉 = 0.

Forf ∈ A0(MR)0, we have

(4.1.16) 〈 ω̂, a(f) 〉 = 〈 11, a(f) 〉 = 0,

since, via (4.1.13),

(4.1.17) 〈 ω̂, a(f) 〉 =
1
2

∫
M(C)

f · c1(ω̂) = 0.

Also

(4.1.18) 〈 a(f1), a(f2) 〉 =
1
2

∫
M(C)

f2 · ddcf1.

Again using (4.1.13), on Vert we have

(4.1.19) 〈 ω̂, (Yp, 0) 〉 = deg(ω|Yp) · log(p),

wheredeg(ω|Yp) is the degree of the restriction of the line bundleω to
Yp. For fixedp, and denoting bymi the multiplicities of the irreducible
componentsYi of Mp,

(4.1.20)
∑
i

mi · 〈 ω̂, (Yp,i, 0) 〉 = 〈 ω̂, (Mp, 0) 〉 = degQ ω · log(p),

and

(4.1.21) 〈 11,Vert〉 = 0.

Let

(4.1.22) MW= MW(M) := Jac(M)(Q)⊗Z R

be the Mordell-Weil space of the generic fiberMQ. Here Jac(M) denotes
the neutral component of the Picard variety ofM .

Definition 4.1.1. Let

M̃W :=
(

R ω̂ ⊕ Vert⊕ a(A0(MR)0)
)⊥

⊂ ĈH
1
(M)

be the orthogonal complement ofR ω̂ ⊕ Vert⊕ a(A0(MR)0) with respect
to the height pairing.

The following result is well known [8], [4], [1].
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Proposition 4.1.2. (i)

ĈH
1
(M) = M̃W ⊕

(
R ω̂ ⊕ Vert

)
⊕ a(A0(MR)0),

and the three summands are orthogonal with respect to the height pairing.
(ii) The restrictionresQ to the generic fiber induces an isomorphism

resQ : M̃W ∼−→ MW

which is an isometry for the Gillet-Soulé height pairing onM̃W and the
negative of the Neron-Tate height pairing onMW.

Remark 4.1.3. (i) Note that the finite dimensional real vector space

(4.1.23) CH1(M, µ1) = M̃W ⊕ R ω̂ ⊕ Vert

is the Arakelov Chow group with respect to the normalized volume form
µ1 = c1(ω̂)/deg(ω), except that we have taken real coefficients. Thus we
have the decomposition

(4.1.24) ĈH
1
(M) = CH1(M, µ1)⊕ a(A0(MR)0).

(ii) If Z is a 0-cycle of degree zero on the generic fiberMQ, let Z be a
divisor with rational coefficients onM with ZQ = Z and withZ · Yp = 0
for all irreducible componentsYp of closed fibersMp. Such an extension
of Z is unique up to the addition of a finite linear combination ofMp’s. Let
gZ be theµ1-admissible antiharmonic Green function forZ. Then

(4.1.25) Ẑ = (Z, gZ) ∈ ĈH
1
(M)

lies in

(4.1.26)
(

Vert⊕ a(A0(MR)0)
)⊥

.

There is a real scalarκ ∈ R such that

(4.1.27) 〈 ω̂, Ẑ + a(κ) 〉 = 0.

Once the extensionZ has been chosen, then

(4.1.28) κ = −2 〈 ω̂, Ẑ 〉.

The resulting class

(4.1.29) Z̃ := Ẑ + a(κ) ∈ M̃W
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is the preimage iñMW of the class ofZ in MW. It is independent of the
choice ofZ.

We can use the height pairing to write the components in the decomposi-
tion (i) in Proposition 4.1.2 more explicitly.

For each primep for which the fiberMp is not irreducible, chooseYp,i,
i = 1, . . . , rp such that the imagesY p,i are a basis ofVertp. Recall that
RMp is the radical of the intersection form on Vertp. LetY

∨
p,i be a dual basis

for Vertp with respect to the intersection form and letY ∨p,i be the preimage

of Y
∨
p,i in Vertp such that

(4.1.30) 〈 ω̂, (Y ∨p,i, 0) 〉 = 0.

For convenience, we write

(4.1.31) yp,i = (Yp,i, 0), y∨p,i = (Y ∨p,i, 0) ∈ ĈH
1
(M),

and

(4.1.32) ω̂1 = deg(ω)−1 ω̂.

Then, if ẑ is any class inRω̂ ⊕ Vert, we have the decomposition

(4.1.33) ẑ = degQ(ẑ) · ω̂1 +
∑
p

rp∑
i=1

〈 ẑ, yp,i 〉 · y∨p,i + 2κ(ẑ) · 11,

wheredegQ(ẑ) = 2 〈 ẑ, 11 〉 and

(4.1.34) κ(ẑ) = 〈 ẑ, ω̂1 〉 − degQ(ẑ) 〈 ω̂1, ω̂1 〉.

Next consider the archimedean component. Suppose that there is a ‘uni-
formization’

(4.1.35) M(C) ' [ Γ\H ],

whereH is the upper half plane andΓ ⊂ SL2(R) is a Fuchsian group.
If Γ has elements of finite order, we understand the quotient as an orbi-
fold.1 In addition, we assume thatµ1 = vol(M(C), µ)−1 µ whereµ =
(2π)−1 y−2 dx ∧ dy is the hyperbolic volume form onH. Recall that, for
f ∈ A0(M(C)),

(4.1.36) ddcf =
1
2

∆f · µ

1This explains the quotation marks on the term ‘uniformization’.
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where∆ is the hyperbolic Laplacian. The spaceA0(MR) is spanned by
eigenfunctions of the Laplacianfλ satisfying

(4.1.37) ∆fλ + λ fλ = 0,

with eigenvalues0 = λ0 < λ1 ≤ λ2 ≤ . . . and orthonormal with respect to
µ. In particular,f0 = vol(M(C), µ)−

1
2 ·11. For the height pairing, we have,

by (4.1.18),

(4.1.38) 〈 a(fλi), a(fλj ) 〉 = −1
4

∫
M(C)

fλi · λjfλj µ = −1
4
λjδij .

In summary,

Proposition 4.1.4. Any ẑ ∈ ĈH
1
(M) has a unique decomposition:

ẑ = ẑMW +
degQ(ẑ)
degQ(ω̂)

· ω̂ +
∑
p

rp∑
i=1

〈 ẑ, yp,i 〉 · y∨p,i

+ 2κ(ẑ) · 11− 4
∑
λ>0

λ−1 〈 ẑ, a(fλ) 〉 · a(fλ).

where

κ(ẑ) = 〈 ẑ, ω̂1 〉 − degQ(ẑ) 〈 ω̂1, ω̂1 〉,

and ẑMW ∈ M̃W.

4.2 THE ARITHMETIC THETA FUNCTION

In this section, we consider the case of the arithmetic surfaceM attached to
an indefinite division quaternion algebraB overQ, and we define a gener-

ating functionφ̂1(τ) valued inĈH
1
(M). We use the setup and notation of

Chapter 3. In particular,D(B) > 1 is the product of the primesp at which
B is ramified andM has good reduction forp - D(B). We let ω̂ be the
Hodge line bundle onM with metric normalized as in Section 3.3.

For eacht ∈ Z and positive real numberv, there is a class

(4.2.1) Ẑ(t, v) ∈ ĈH
1
(M),

defined in Section 3.5; see also [16]. For example, ift > 0, then

(4.2.2) Ẑ(t, v) = (Z(t),Ξ(t, v)),
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whereZ(t) is defined in terms of special endomorphisms andΞ(t, v) is the
Green function given in Corollary 3.5.2. On the other hand, fort < 0,

(4.2.3) Ẑ(t, v) = (0,Ξ(t, v)),

for a smooth functionΞ(t, v). Finally,

(4.2.4) Ẑ(0, v) = −ω̂ − a(log(v)) + a(c),

wherec is the real constant determined by the identity
(4.2.5)
1
2

degQ(ω̂)·c = 〈 ω̂, ω̂ 〉−ζD(−1)
[

2
ζ ′(−1)
ζ(−1)

+1−2C−
∑

p|D(B)

p log(p)
p− 1

]
.

In Chapter 7, we will prove that, in fact,c = − logD(B).
We form the generating series

(4.2.6) φ̂1 :=
∑
t

Ẑ(t, v) qt ∈ ĈH
1
(M)[[q]].

As explained in [12] and [14], we refer to this series as an arithmetic theta
function. The main result of this chapter is the following:

Theorem A. The serieŝφ1 is theq-expansion of a nonholomorphic elliptic
modular form of weight32 for the subgroupΓ′ = Γ0(4D(B)o) of SL2(Z)

valued inĈH
1
(M)⊗R C.

This means that there is a smooth functionφAr of τ ∈ H, valued in the
finite dimensional complex vector space CH1(M, µ1)C, and a smooth func-
tion φan(τ, z) onH×M(C), with∫

M(C)
φan(τ, z) dµ(z) = 0,

such that the sumφ(τ) = φAr(τ) + φan(τ, z) satisfies the usual transforma-
tion law for a modular form of weight32 for Γ0(4D(B)o) and such that the

q-expansion ofφ(τ) is the formal generating serieŝφ1 defined above. Of
course, the coefficients in theq-expansion ofφ(τ) are functions ofv. We
will abuse notation and writêφ1(τ) for both the functionφ(τ) and for the
q-expansion̂φ1.

The proof of Theorem A is based on the application of the decomposi-
tion of Proposition 4.1.2 and Proposition 4.1.4 toφ̂1. This gives rise to the
component functions

(4.2.7) φdeg = degQ(φ̂1) =
∑
t

degQ(Z(t)) qt,
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(4.2.8) 〈 φ̂1, ω̂ 〉 =
∑
t

〈 Ẑ(t, v), ω̂ 〉 qt,

(4.2.9) 〈 φ̂1, yp,i 〉 =
∑
t

〈 Ẑ(t, v), yp,i 〉 qt,

(4.2.10) 〈 φ̂1, a(fλ) 〉 =
∑
t

〈 Ẑ(t, v), a(fλ) 〉 qt,

and, finally, the component iñMW, or, equivalently, in MW,

(4.2.11) φMW = resQ
(
φ̂1(τ)− φdeg(τ) · ω̂1

)
∈ MW ⊗ C.

It will be shown that each of these component functions is modular of weight
3
2 for Γ′, and hence so iŝφ1.

The modularity of (4.2.7) and (4.2.8) is proved in [16]. More precisely,
let E1(τ, s;D(B)) be the Eisenstein series of weight3

2 defined in Section 6
of [16]. Then, Proposition 7.1 of [16] asserts that

(4.2.12) φdeg(τ) = E1(τ,
1
2
;D(B)),

and hence gives the modularity of (4.2.7). Here and elsewhere, the meaning
of this equation is that theq-expansion ofE1(τ, 1

2 ;D(B)) is given byφdeg.
The main result, Theorem 7.2 of [16], asserts that

(4.2.13) 〈 φ̂1(τ), ω̂ 〉 = E ′1(τ,
1
2
;D(B)).

This gives the modularity of (4.2.8). The vertical, archimedean, and Mordell-
Weil components will be handled in the following three sections.

4.3 THE VERTICAL COMPONENT: DEFINITE THETA FUNCTIONS

In this section, for a primep | D(B) and a vertical elementyp,i ∈ ĈH
1
(M),

as in (4.1.31), we prove that the component function〈 φ̂1(τ), yp,i 〉 is a mod-
ular form of weight32 . Our tool will thep-adic uniformization ofM and of
the special divisorsZ(t) recalled in Section 3.2.

Recall thatB′ = B(p) denotes the definite quaternion algebra overQ
whose local invariants coincide with those ofB at all placesv 6= p,∞, and
V ′ = {x ∈ B′ | tr(x) = 0}. ForH ′ = (B′)×, we have fixed isomorphisms

(4.3.1) H ′(Qp) ' GL2(Qp) andH ′(Ap
f ) ' H(Ap

f ).
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We haveK = Ô×B = KpKp with Kp ⊂ H(Ap
f ) andKp ⊂ H(Qp), and

alsoK ′ = K
′pK ′

p, whereK
′p = Kp under the isomorphism (4.3.1), and

K ′
p = GL2(Zp). LetM̂W be the base change toW = W (F̄p) of the formal

completion ofM along its special fiber atp. We also denote bŷΩW the
base change of the Drinfeld upper half space toW . For convenience of
notation, we introducêΩ•W = Ω̂W × Z, the disjoint sum of copies of̂ΩW

parametrized byZ. We then have

(4.3.2) M̂W ' H ′(Q) \
[
Ω̂•W × H ′(Ap

f )/K
′p ].

From the uniformization (4.3.2), one obtains the following well-known
description of the irreducible components overFp of the special fiberMp

of M. Note that these correspond to the irreducible components of the
special fiber ofM̂W . Recall thatγ′ ∈ H ′(Q) acts onΩ̂•W ×H(Ap

f )/K
p by

(4.3.3) γ′ : [ ξ ]i × hK 7→ [ γ ξ ]i+ordp(ν(γ)) × γhK,

where[ξ]i is the image in̂Ωi
W of ξ ∈ Ω̂W . The components of the special

fiber Ω̂p of Ω̂W are projective linesP[Λ] indexed by the vertices[Λ] of the
buildingB for PGL2(Qp), where[Λ] is the homothety class of aZp-lattice
Λ in Q2

p. Thus, GL2(Qp) acts transitively on the components ofΩ̂•W , and,
if Λ0 = Z2

p is the standard lattice, the stabilizer in GL2(Qp) of [ P[Λ0] ]0 is
K ′
p = GL2(Zp).

Proposition 4.3.1. There is a bijection

H ′(Q)\H ′(Af )/K ′ ∼−→
(

irreducible components
of Mp

)
,

H ′(Q)gK ′ 7−→ H ′(Q)-orbit of gp[ P[Λ0] ]
0 × gpKp.

In particular, the irreducible components of the special fiberMp are in-
dexed by the double cosets in the decomposition

H ′(Af ) =
∐
j

H ′(Q)gjK ′.

We will frequently refer to the pair[Λ]i × gKp as the data associated to
the component[P[Λ]]i × gKp.

We next recall from [16] thep-adic uniformization of the cyclesZ(t); cf.
also Section 6.2. Fixt ∈ Z>0 and letZ(t) be the corresponding divisor
onM; see Section 3.4. Loosely speaking,Z(t) is the locus where theOB-
abelian variety is equipped with a special endomorphism of square−t. Let

(4.3.4) C(t) = Z(t)×Spec Z SpecZ(p),
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and let

(4.3.5) Ĉ = Ĉ(t)×Spf Zp SpfW,

be the cycle inM̂W determined byC(t). Let

V ′t (Q) = { x ∈ V ′(Q) | Q(x) = −x2 = t }.

Then, (8.17) of [15] gives ap-adic uniformization ofĈ:

(4.3.6)

Ĉ ↪→ H ′(Q)\
(
V ′t (Q)× Ω̂•W ×H(Ap

f )/K
p

)
↓ ↓

M̂W
∼−→ H ′(Q)\

(
Ω̂•W ×H(Ap

f )/K
p

)
,

where the image of̂C in the upper right corner is the set of triples

(4.3.7)

{
(x, (X, ρ), gKp)

∣∣∣∣ (i) g−1xg ∈ V (Ap
f ) ∩ Ô

p
B, and

(ii) for j = j(x), (X, ρ) ∈ Z•(j)

}
.

Here we have identified̂Ω•W with the formal moduli space of quasi-isogenies
ρ : X −→ X of special formalOB-modules, whereX is the base point and
where we have fixed an identification ofV ′(Qp) with the traceless elements
in EndOB (X). Thenj(x) is the special endomorphism of thep-divisible
groupX, determined byx, andZ•(j) is the corresponding cycle in̂Ω•W , as
defined in [15] (the locus ofρ’s where the isogenyj(x) of X extends to an
endomorphism ofX).

Using thep-adic uniformization just described, we compute the intersec-
tion number(C(t), Yp) for an irreducible componentYp of the special fiber
Mp.

Proposition 4.3.2. Write t = −εpα, with ε ∈ Z×p andα ∈ Z. Then, for an
irreducible componentYp ofMp determined by data[Λ]i× gKp, as above,(

C(t), Yp
)

=
∑

x∈V ′(Q)

Q(x)=t

ϕp(g−1x)µ[Λ](x).

Hereϕp denotes the characteristic function ofV (Ap
f ) ∩ Ô

p
B and the multi-

plicity µ[Λ](x) is given as follows:
Let j = j(x) be the endomorphism ofQ2

p associated tox. Lete ≥ f , with
e, f ∈ Z be the elementary divisors of the lattice pair(Λ, j(Λ)). Note that
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e + f = α = ordp(det(j)), f ≤
[
α
2

]
, and thatr = 1

2(e − f) = d([Λ],Bj)
is the distance from[Λ] to the fixed point setBj of j onB. Then, forα > 0,

µ[Λ](x) =


1− p if f > 0,

1 if f = 0,

0 if f < 0.

For α = 0, andp 6= 2,

µ[Λ](x) =

1− χp(ε) if f = 0,

0 if f < 0.

For α = 0, andp = 2,

µ[Λ](x) =


1− p if f = 0 and(1 + j)(Λ) ⊂ 2Λ,

1 if f = 0 and(1 + j)(Λ) 6⊂ 2Λ,

0 otherwise.

Hereχp(ε) = (ε, p)p where( , )p is the quadratic Hilbert symbol forQp.

Proof. Let Ŷ be the irreducible component of̂MW corresponding toYp.
Fixing the preimage[P[Λ]]i×gKp of Ŷ , we must calculate the total intersec-

tion number of this curve with the full preimage ofĈ in Ω̂•W ×H(Ap
f )/K

p,
as described by the incidence set (4.3.7) for the upper right corner in (4.3.6)
above. First, for a given(x, (X, ρ), g0Kp) to contribute, we must have
g0K

p = gKp and the height of the quasi-isogenyρ must be the giveni.
The first incidence condition becomesϕp(g−1x) 6= 0. It remains to calcu-
late the intersection number ofP[Λ] andZ(j), j = j(x) on Ω̂W . We write
Z(j) = Z(j)h + Z(j)v as the sum of horizontal and vertical parts. For
p 6= 2, Lemma 4.9 of [15] gives(Z(j)h,P[Λ]), and Lemma 6.2 of [15] gives
(Z(j)v,P[Λ]), taking into account the relation between the elementary divi-
sorse,f and the distancer, described above; see also Lemma 2.4 of [15].
This yields the result in the casep 6= 2.

Forp = 2, we use the results of the appendix to Chapter 6. There the cycle
Z(j) is described in terms of ‘cycle data’(S, µ, Zh); see Section 6A.2 of
the appendix to Chapter 6. HereS is a subset of the building (parametrizing
the ‘central vertical components’), the integerµ is the common multiplicity
of the central vertical components, andZh denotes the horizontal part of the
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divisorZ(j). Remark (I) right before (6A.4.12) gives

(Z(j)v,P[Λ]) =


1− p if 1 ≤ d([Λ], S) ≤ µ− 1,

i.e., [Λ] is regular inZ(j),
1 if d([Λ], S) = µ,

0 if d([Λ], S) > µ,

(4.3.8)

providedµ > 0. If µ > 0 andd([Λ], S) = 0, i.e.,[Λ] ∈ S, then

(4.3.9) (Z(j)v,P[Λ]) = χ2(j)− p,

whereχ2(j) is equal to1, −1, or 0, depending on whether the extension of
Q2 generated byj is split, unramified, or ramified. Finally, forµ = 0, we
have(Z(j)v,P[Λ]) = 0.

As for the intersection number(Z(j)h,P[Λ]), we have, by a case by case
inspection of the cases(1) to (4) in Section A.2 of the appendix,

(Z(j)h,P[Λ]) =

{
1− χ2(j) if [Λ] ∈ S,

0 otherwise.
(4.3.10)

Summing, we obtain

(Z(j),P[Λ]) =


1− p if µ ≥ 1 andd([Λ], S) ≤ µ− 1,

1 if µ ≥ 1 andd([Λ], S) = µ,

1− χ2(j) if µ = d([Λ], S) = 0,

0 in all other cases.

(4.3.11)

We now note, by checking case by case in Section A.2 of the appendix, that

(4.3.12) d([Λ], S) ≤ µ ⇐⇒ d([Λ],Bj) ≤ α

2
⇐⇒ f ≥ 0.

Similarly,d([Λ], S) ≤ µ−1 is equivalent tof > 0. Whenα > 0, then either
µ > 0 and the assertion in the proposition follows from formula (4.3.11),
or α = 1 and j2 = ε · 2 (i.e., j2 is of type (4) in the terminology of
the appendix). In this case,µ = 0, andd([Λ], S) = 0 is equivalent to
d([Λ],Bj) = 1

2 , i.e.,(e, f) = (1, 0), and formula (4.3.11) givesµ[Λ](x) = 1.
Now, in this case, the two vertices inS correspond to the lattices given by
the ring of integersO in the ramified extensionQ2(j) and toπO, whereπ
denotes a uniformizer inO. For either of them(1 + j)(Λ) = Λ. Hence the
value forµ[Λ](x) obtained above confirms the statement in the proposition.

Suppose thatα = 0. Then, whenε is of type(1) or (2), we haveµ = 1
and formula (4.3.11) gives the value1 − p, 1, or 0, depending on whether
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d([Λ], S) = 0, d([Λ], S) = 1, or d([Λ], S) > 1. The first case is character-
ized byj(Λ) = Λ, (1 + j)Λ ⊂ 2Λ. The second case is characterized by
j(Λ) = Λ, (1 + j)Λ 6⊂ 2Λ. This confirms the claim of the proposition in
this case. Whenα = 0 andε is of type(3), we haveµ = 0 and formula
(4.3.11) gives 1 if[Λ] ∈ S and 0 otherwise. The first alternative is charac-
terized byj(Λ) = Λ. Again the two lattices withj(Λ) = Λ are given, up to
scalar multiples, by the ring of integersO in the ramified extensionQ2(j)
and byπO. Hence(1 + j)O = πO so that(1 + j)(Λ) 6⊂ 2Λ, which again
confirms the assertion of the proposition in this case.

The multiplicityµ[Λ](x) can be expressed in terms of a Schwartz function
onV ′(Qp) as follows. Letϕ[Λ] be the characteristic function of the set

(4.3.13) {x ∈ V ′(Qp) | j(Λ) ⊂ Λ, for j = j(x) }.

Note that, with the notation above,

(4.3.14) ϕ[Λ](x) 6= 0 ⇐⇒ f ≥ 0, ϕ[Λ](p
−1x) 6= 0 ⇐⇒ f > 0,

andϕ[Λ] is invariant under the action ofK ′
[Λ] = gpGL2(Zp)g−1

p onV ′(Qp)
by conjugation, whereΛ = gpΛ0. Thus, ifx ∈ V ′(Qp) with Q(x) = t, and
excluding the caseα = f = 0, we can write

(4.3.15) µ[Λ](x) = ϕ[Λ](x)− pϕ[Λ](p
−1x).

Also, letϕ+
[Λ], ϕ

−
[Λ], andϕ0

[Λ] be the characteristic functions of the following
sets,

(4.3.16)
X±

Λ = {x ∈ V ′(Qp) | j(Λ) = Λ, andχp(det(j)) = ±1 }

X 0
Λ = {x ∈ V ′(Qp) | j(Λ) = Λ, (1 + j)(Λ) ⊂ 2Λ }.

These are again Schwartz functions onV ′(Qp), invariant under the action
of K ′

[Λ] onV ′(Qp) by conjugation.
Then, we have,

Lemma 4.3.3. (i) For all x ∈ V ′(Qp), the functionµ[Λ] ∈ S(V ′(Qp)) is
given by

µ[Λ](x) =

ϕ[Λ](x)− pϕ[Λ](p−1x)− ϕ+
[Λ](x) + ϕ−[Λ](x) if p 6= 2,

ϕ[Λ](x)− pϕ[Λ](p−1x)− pϕ0
[Λ] if p = 2.

(ii) If Λ = gpΛ0, then

µ[Λ](x) = µ[Λ0](g
−1
p x).
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Finally, we can consider the component function of (4.2.9):

〈 φ̂1(τ), yp 〉 =
∑
t

〈 Ẑ(t, v), yp 〉 qt,(4.3.17)

= −(ω, Yp) log(p) + log(p)
∑
t>0

(Z(t), Yp) qt

where, for the constant term, we recall (4.2.4) and (4.1.17). Cancelling the
log(p), we define

(4.3.18) φVert(τ ;Yp) :=
∑
t≥0

(C(t), Yp) qt,

where we have setC(0) = −ω.

Theorem 4.3.4.LetYp be the component ofMp corresponding to the dou-
ble cosetH ′(Q)gK ′ under the bijection of Proposition 4.3.1. Let

ϕ′p = µ[Λ0] ∈ S(V ′(Qp))

be the Schwartz function described in Lemma 4.3.3, and letϕ′ = ϕ′pϕ
p ∈

S(V ′(Af )), whereϕp is the characteristic function ofV ′(Ap
f ) ∩ Ô

p
B. Then

φVert(τ ;Yp) = θ(τ, g;ϕ′) :=
∑

x∈V ′(Q)

ϕ′(g−1x) qQ(x)

is the theta function of weight32 for the dataϕ′ and g ∈ H ′(Af ) for the
positive definite quadratic spaceV ′.

Remark 4.3.5. It remains to check that the theta functionθ(τ, g;ϕ′) is
a modular form forΓ0(4D(B)o), as claimed in Theorem A. Equivalently,
we must determine the compact open subgroup of the metaplectic extension
of SL2(Qp) which fixes the Schwartz functionϕ′p. This will be done in
Section 8.5, where the necessary information about the Weil representation
is reviewed.

Proof. For t > 0, Proposition 4.3.2 and (ii) of Lemma 4.3.3 give

(4.3.19) (C(t), Yp) =
∑

x∈V ′(Q)

Q(x)=t

ϕ′(g−1x).

On the other hand, Proposition 11.1 of [16] gives

(4.3.20) (ω, Yp) = − (p− 1) = ϕ′(0).
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Corollary 4.3.6. The component functions〈 φ̂1(τ), yp,i 〉 of (4.2.9) are holo-
morphic theta functions of weight3

2 attached toV ′ = V (p).

Remark 4.3.7. (i) The special fiber ofM is reduced. Hence we have∑
i

〈 φ̂1(τ), (Yp,i, 0) 〉 = 〈 φ̂1(τ),Mp 〉

= 2 log(p) · 〈 φ̂1(τ), 11 〉(4.3.21)

= log(p) · φdeg(τ)

= log(p) · E(τ,
1
2
, D(B)).

On the other hand, by the Siegel-Weil formula for the anisotropic ternary
spaceV (p), the sum of the theta functions is the Eisenstein series,

(4.3.22)
∑
i

θ(τ, g;ϕ′) = E1(τ,
1
2
, D(B)).

The coincidence of the two formulas is an example of the ‘matching’
identity for the Siegel-Weil formula described in [13]. Up to the factor of
log(p), the modular forms〈 φ̂1(τ), (Yp,i, 0) 〉 are the theta series of weight3

2
for the classes, asi varies, in theK ′-genus for the positive definite ternary
spaceV ′ = V (p).

(ii) Note that the key fact in this proof is that the degree−(p − 1) of the
restriction ofω to a lineP[Λ] is equal to the intersection number(P[Λ], C(t)),
provided that the vertex[Λ] is regular inC(t) in the sense of the appendix to
Chapter 6. This equality seems quite mysterious.

(iii) Theorem 4.3.4 carries over to the situation where a level structure
away fromp is imposed, as in [15]. More precisely, letKp ⊂ H(Ap

f ) beany

open compact subgroup, but keepKp = O×Bp , as before. LetK = Kp.Kp.
Then we have the moduli spaceAK over SpecZ(p) as in [15], which again
admits ap-adic uniformization. Letϕp ∈ S(V (Ap

f )) be the characteristic
function of aKp-invariant compact open subset ofV (Ap

f ). (This subset was
denoted byω in [15], but here we avoid this notation because it is already in
use.) Fort ∈ Z(p),>0 there is a cycleC(t, ϕp) onAK . Note the slight shift
in notation from [15], where the quadratic form had the opposite sign and
ω was written in place ofϕp. In the case ofM, i.e., whenKp = Ôp,×B , the
functionϕp is the characteristic function ofV (Ap

f ) ∩ ÔB, and

(4.3.23) C(t, ϕp) = Z(t)×Spec Z SpecZ(p).
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We can then form the generating series associated to an irreducible com-
ponentYp of (AK)p, as in (4.3.18). Let

(4.3.24) C(0, ϕp) = −ϕp(0) · ω,

and define the generating function

(4.3.25) φVert(τ, ϕp;Yp) :=
∑
t≥0

(C(t, ϕp), Yp) qt.

Then we can again identify this function with a theta function. LetYp cor-
respond to the double cosetH ′(Q)gK ′, and let as beforeϕ′p = µ[Λ0] ∈
S(V ′(Qp)) be the Schwartz function described in Lemma 4.3.3, and let
ϕ′ = ϕ′pϕ

p ∈ S(V ′(Af )). Then

(4.3.26) φVert(τ, ϕp;Yp) = θ(τ, g;ϕ′) :=
∑

x∈V ′(Q)

ϕ′(g−1x) qQ(x).

(iv) In his Montreal article [7], Gross gave an analogue of the Gross-
Zagier formula for the central value of the L-function, in the case of root
number+1. This should have a natural interpretation here in terms of the
geometry of components of the fiberMp.

4.4 THE ANALYTIC COMPONENT: MAASS FORMS

In this section, we consider the component functions〈 φ̂1(τ), a(fλ) 〉 of
(4.2.10) associated to eigenfunctions of the Laplacian. In this section we
allow an arbitrary level structureK ⊂ (B⊗Af )×, although for Theorem A
only the caseK = Ô×B is needed.

First we review the definition of the Green function of Section 3.5 and
[11], where more details can be found. ForH = B×, as in Chapter 3, and
for any compact open subgroupK ⊂ H(Af ), the complex points of the
associated Shimura curveMK overQ are given by

(4.4.1) MK(C) '
[
H(Q)\D ×H(Af )/K

]
,

where the right side is, as usual, understood in the sense of stacks or orb-
ifolds. HereD is as in (3.2.3). Recall that, for anyK, the irreducible
components ofMK(C) are indexed by the double cosets

(4.4.2) H(Af ) =
∐
j

H(Q)+hjK,

so that

(4.4.3) MK(C) '
∐
j

[
Γj\D+ ],
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whereΓj = H(Q)+ ∩ hjKh−1
j . HereH(Q)+ = H(Q) ∩H(R)+, where

H(R)+ is the identity component ofH(R) ' GL2(R), andD+ is a fixed
connected component ofD. Thus, in general,MK is not geometrically
connected, and the irreducible components are defined over a cyclotomic
extension [20], [18].

Fort ∈ Q>0 and for a weight functionϕ ∈ S(V (Af ))K , there is a divisor
Z(t, ϕ) = Z(t, ϕ;K) onMK , which is rational overQ [11]. We suppress
theK to lighten the notation. Ift ∈ Z>0, K = Ô×B , andϕ is the charac-
teristic function ofV (Af ) ∩ ÔB, thenZ(t, ϕ;K) = Z(t)Q coincides with
the generic fiber of the cycleZ(t) defined in Chapter 3. A Green function
of logarithmic type forZ(t, ϕ) is constructed as follows; see Section 11 of
[11] for more details.

Recall that, forz ∈ D andx ∈ V (R),

(4.4.4) ξ(x, z) = −Ei(−2πR(x, z)),

where Ei is the exponential integral. For a fixedx 6= 0, this function is
smooth onD \Dx and satisfies

(4.4.5) ddcξ(x, z) + δDx = e2πQ(x) ϕ∗∞(x, z) · µ,

where, by [13], Proposition 4.10, and [11],

(4.4.6) ϕ∗∞(x, z) =
[
4π(R(x, z) + 2Q(x) )− 1

]
· ϕ∞(x, z)

for

(4.4.7) ϕ∞(x, z) := e−2πR(x,z) e−2πQ(x),

the Gaussian defined byz ∈ D. Here, under an isomorphism
D ' P1(C) \ P1(R),

(4.4.8) µ =
1
2π

i

2
dz ∧ dz̄
y2

.

For fixedz ∈ D, ϕ∗∞(·, z) ∈ S(V (R)) is a Schwartz function, and, for fixed
x, ξ(x, ·) is a Green function of logarithmic type for the pointDx ⊂ D, in
the sense of Gillet-Soulé.

For t > 0, ϕ ∈ S(V (Af ))K , v ∈ R>0, and[z, h] ∈ D ×H(Af ), let

(4.4.9) Ξ(v; t, ϕ)(z, h) =
∑

x∈V (Q)

Q(x)=t

ξ(v
1
2x, z)ϕ(h−1x).

This function is well defined onMK(C) with logarithmic singularities on
Z(t, ϕ) and satisfies the Green equation

(4.4.10) ddc Ξ(v; t, ϕ) + δZ(t,ϕ) = Ψ(v; t, ϕ) · µ,
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where

(4.4.11) Ψ(v; t, ϕ)(z, h) · e−2πtv =
∑

x∈V (Q)

Q(x)=t

ϕ∗∞(v
1
2x, z)ϕ(h−1x).

In particular,Ξ(v; t, ϕ) is a Green function of logarithmic type for the cy-
cle Z(t, ϕ). Note that the functionΞ(v; t, ϕ) can be defined by the same
formula whent < 0 and, in this case, it is a smooth function onMK(C),
again satisfying (4.4.10), but without the delta current on the left side. The
functionΨ(v; t, ϕ) is defined for allt, with, for example,

(4.4.12) Ψ(v; 0, ϕ) = −ϕ(0).

LetG = SL(2) and letG′R be the metaplectic cover ofG(R). ThenG′R
acts on the spaceS(V (R)) by the Weil representationω for the additive
characterψ∞(x) = e(x) = e2πix. Forτ = u+ iv ∈ H, let

(4.4.13) g′τ = [

(
v

1
2 uv−

1
2

v−
1
2

)
, 1] ∈ G′R.

Then

v−
3
4 (ω(g′τ )ϕ

∗
∞)(x, z)

(4.4.14)

=
[

4πv(w, w̄)−1 det
(

(x, x) (x, w̄)
(w, x) (w, w̄)

)
− 1

]
· e−2πvR(x,z) qQ(x),

whereq = e(τ) andw = w(z) is as in (3.2.4). Thus, the generating function∑
t

Ψ(v; t, ϕ)(z, h) · qt = v−
3
4

∑
x∈V (Q)

ω(g′τ )ϕ
∗
∞(x, z)ϕ(h−1x)(4.4.15)

=: θ∗(τ, z, h;ϕ)

is the weight32 theta function associated toϕ∗∞(·, z)⊗ ϕ ∈ S(V (A)). Here
the∗ distinguishes this function from the weight−1

2 Siegel theta function

θ(τ, z, h;ϕ) = v−
3
4

∑
x∈V (Q)

ω(g′τ )ϕ∞(x, z)ϕ(h−1x)(4.4.16)

=
∑

x∈V (Q)

e−2πvR(x,z) qQ(x) ϕ(h−1x)

defined using the Gaussianϕ∞ in place ofϕ∗∞.
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Remark 4.4.1. In fact, this relation of the right side of the Green equa-
tion (4.4.10) to the ‘geometric’ theta functionθ∗(τ, z, h;ϕ) was the original
motivation for the definition of the Green functionΞ(v; t, ϕ) in [11].

For the moment, we assume that the image of the compact open subgroup
K under the reduced norm isν(K) = Ẑ×. This is equivalent to the assump-
tion thatMK is geometrically irreducible, so that

(4.4.17) X := MK(C) =
[
Γ\D+ ]

in (4.4.3), whereD+ ' H is one component ofD and Γ = H(Q) ∩
H(R)+K, whereH(R)+ ' GL2(R)+ is the identity component.

Let µ1 = vol(X)−1µ. Recall that there is a uniqueµ1-admissible Green
functiong(t, ϕ) for the cycleZ(t, ϕ) satisfying

(4.4.18) ddcg(t, ϕ) + δZ(t,ϕ) = deg(Z(t, ϕ))µ1,

and

(4.4.19)
∫
X

g(t, ϕ)µ1 = 0.

The two Green functions,g(t, ϕ) andΞ(v; t, ϕ) differ by a smooth func-
tion onX, which is best described in terms of spectral theory. Let0 =
λ0 < λ1 ≤ λ2 ≤ . . . be the spectrum of the hyperbolic Laplacian onX,
with associated smooth eigenfunctions functionsfλ satisfying (4.1.37) and
orthonormal with respect toµ. For λ > 0, these are the weight0 Maass
forms with respect toΓ. For any smooth functionf onX, let

(4.4.20) θ∗(τ ;ϕ; f) :=
∫
X
θ∗(τ, z;ϕ) f(z) dµ(z)

be the associated theta integral. We then can write the spectral expansion of
the theta function, as a function ofz, as

(4.4.21) θ∗(τ, z;ϕ) =
1

vol(X)
θ∗(τ ;ϕ; 1) +

∑
λ>0

θ∗(τ ;ϕ; fλ) · fλ(z),

where the ‘spectral’ coefficients are the theta lifts of the Maass forms. Tak-
ing the Fourier expansion with respect toτ of both sides and recalling
(4.4.15), we obtain

(4.4.22)
∑
t

Ψ(v; t, ϕ) · qt =
∑
t

∑
λ≥0

θ∗t (τ ;ϕ; fλ) fλ

whereθ∗t (τ ;ϕ; fλ) is thet-th Fourier coefficient ofθ∗(τ ;ϕ; fλ). This yields
the spectral expansion of theΨ(v; t, ϕ)’s:
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Proposition 4.4.2. (i) The Fourier expansion of the theta integral of the
constant function1 is

θ∗(τ ;ϕ; 1) = −vol(X)ϕ(0) +
∑
t>0

deg(Z(t, ϕ)) qt.

Also, forλ > 0,

θ∗0(τ ;ϕ; fλ) = 0,

so that theθ∗(τ ;ϕ; fλ)’s are cuspidal Maass forms of weight3
2 .

(ii) For t > 0,

Ψ(v; t, ϕ)(z) qt =
1

vol(X)
deg(Z(t, ϕ)) qt +

∑
λ>0

θ∗t (τ ;ϕ; fλ) · fλ(z).

(iii) For t = 0,

Ψ(v; 0, ϕ) = −ϕ(0)

is a constant.
(iv) For t < 0,

Ψ(v; t, ϕ)(z) qt =
∑
λ>0

θ∗t (τ ;ϕ; fλ) · fλ(z).

Hereθ∗t (τ ;ϕ; fλ) denotes thet-th Fourier coefficient of the theta integral of
the Maass formfλ.

Proof. We only need to prove (i). An easy estimate shows that the theta
functionθ∗(τ, z;ϕ) can be integrated termwise onX = Γ\D+, and (4.4.15)
together with a standard Stoke’s Theorem argument [11], pp. 606–608, yields

(4.4.23)
∫
X

Ψ(v; t, ϕ)µ =
∑

P∈Z(t,ϕ)

1 = deg(Z(t, ϕ)).

Also note that the constant termθ∗0(τ, z;ϕ) of the whole theta function is
the constant function−ϕ(0) onX, so that, forλ > 0,

(4.4.24) θ∗0(τ ;ϕ; fλ) =< θ∗0(τ, ·;ϕ), fλ > = 0.

Remark 4.4.3. In fact, it is possible to give an explicit formula for the
Fourier coefficientsθ∗t (τ ;ϕ; fλ). These involve sums of values offλ over
the CM points inZ(t, ϕ) when t > 0 and integrals offλ over certain
geodesics whent < 0; see [9] for the case of modular curves.

The spectral expansion ofΨ(v; t, ϕ) can be ‘lifted’ to give the spectral
expansion of the Green functionΞ(v; t, ϕ). Here recall (4.1.36):ddcf =
1
2 ∆f · µ.
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Theorem 4.4.4.(i) For t > 0,

Ξ(v; t, ϕ) qt =
(
g(t, ϕ) + κ(v; t, ϕ)

)
qt − 2

∑
λ>0

1
λ
θ∗t (τ ;ϕ; fλ) · fλ,

where

κ(v; t, ϕ) =
1

vol(X)

∫
X

Ξ(v; t, ϕ)µ.

(ii) For t < 0,

Ξ(v; t, ϕ) qt = κ(v; t, ϕ) qt − 2
∑
λ>0

1
λ
θ∗t (τ ;ϕ; fλ) · fλ.

Proof. For t 6= 0, the functionΞ(v; t, ϕ)− g(t, ϕ) is smooth with

ddc
(

Ξ(v; t, ϕ)− g(t, ϕ)
)
· qt = Ψ(t, v;ϕ) qt µ− deg(Z(t, ϕ)) qt µ1

=
∑
λ>0

θ∗t (τ ; fλ;ϕ) fλ(4.4.25)

by (ii) of Proposition 4.4.2. Thus

(4.4.26) Ξ(v; t, ϕ)− g(t, ϕ) = constant− 2
∑
λ>0

λ−1θ∗t (τ ; fλ;ϕ) fλ,

and the constant is determined by integrating againstµ1.

Let MK be a regular model ofMK over SpecZ and letZ(t, ϕ) be a
(weighted sum of) divisor(s) onMK with Z(t, ϕ)Q = Z(t, ϕ). Let

(4.4.27) Ẑ(t, v, ϕ) = (Z(t, ϕ),Ξ(t, v;ϕ)) ∈ ĈH
1
(MK)C.

Corollary 4.4.5. For λ > 0,

〈 Ẑ(t, v), a(fλ) 〉 · qt = θ∗t (τ ;ϕ; fλ).

Proof. By (4.1.38), we have

〈 Ẑ(t, v;ϕ), a(fλ) 〉 · qt = 〈 a(Ξ(t, v;ϕ)− g(t, ϕ)), a(fλ) 〉 · qt

= −2λ−1θ∗t (τ ;ϕ; fλ)〈 a(fλ), a(fλ) 〉(4.4.28)

= θ∗t (τ ;ϕ; fλ).

In the case ofM as in Section 4.2, i.e.,K = Ô×B , by summing ont ∈ Z,
we obtain
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Corollary 4.4.6. For the generating function̂φ1(τ) of Section 4.2, the com-
ponent

〈 φ̂1(τ), a(fλ) 〉 = θ∗(τ ;ϕ; fλ).

is a Maass form of weight32 .

We now return to the situation at the beginning of this section so thatK
is an arbitrary compact open subgroup ofH(Af ) and the components of
MK(C) are described by (4.4.3). Forϕ ∈ S(V (Af ))K , the analogue of (i)
of Proposition 4.2 gives

(4.4.29)
∫
MK(C)

θ∗(τ ;ϕ)µ = −vol(MK(C))ϕ(0) +
∑
t>0

deg(Z(t, ϕ)) qt

whereθ∗(τ ;ϕ) is the theta function defined by (4.4.15), anddeg(Z(t, ϕ))
is the degree of the weighted0-cycle, i.e., the sum of its degrees on each
of the components ofMK(C). The right side of (4.4.29) is an Eisenstein
series. We would like to have similar information about the degrees of the
weighted0-cyclesZ(t, ϕ) on individual components ofMK(C). Note that,
by strong approximation,

(4.4.30) π0(MK(C)) ' Q×\A×/R×+ν(K).

For any functionη onπ0(MK(C)), we define a locally constant functioñη
onD ×H(Af ) by

(4.4.31) η̃(z, h) = η
(
(sgn(z), ν(h))

)
, (sgn(z), ν(h)) ∈ R× × A×f ,

where sgn(z) = ±1 if z ∈ D±. The integral of the theta function againstη̃
then gives the generating function
(4.4.32)∫

MK(C)
θ∗(τ ;ϕ) · η̃ · µ = −volη(MK(C))ϕ(0) +

∑
t>0

degη(Z(t, ϕ)) qt.

for degrees weighted byη.

Proposition 4.4.7. Suppose thatη is orthogonal to the constant function
on π0(MK). Then the generating function forη-degrees is a distinguished
cusp form of weight32 , i.e., lies in the space of cusp forms generated by theta
functions for quadratic forms in one variable.

Proof. Letdh be Tamagawa measure onSO(V )(A) ' Z(A)\H(A), where
Z is the center ofH. Let dzf be the measure onZ(Af ) which gives the
maximal compact subgroup̂Z× volume 1, and letdh′ = dzf dh be the
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resulting invariant measure onZ(R)\H(A). Write dh′ = dh∞ × dh′f ,
where the measuredh∞ on SO(V )(R) = Z(R)\H(R) is determined by
the identity

(4.4.33)
∫
Z(R)\H(R)

φ(h∞ · z0) dh∞ =
∫
D
φ(z) dµ(z).

By a very slight modification of the proof of Proposition 4.17 of [13] in our
current situation, we obtain

Lemma 4.4.8. For an integrable functionφ onD × H(Af ) which is left
invariant underH(Q) and right invariant underK,∫
H(Q)Z(R)\H(A)

φ(h∞ z0, hf )dh′ = e−1
K vol(K)

∑
j

∫
Γj\D+

φ(z, hj) dµ(z),

whereeK = |Z(Q) ∩K| andvol(K) = vol(K, dh′f ).

Applying this to the integral in (4.4.32), we obtain
(4.4.34)∫

MK(C)
θ∗(τ ;ϕ) · η̃ · µ =

∫
H(Q)Z(R)\H(A)

θ(τ, h;ϕ∗∞ ⊗ ϕ) η(ν(h)) dh′.

We may as well assume thatη is a nontrivial character of the component
groupπ0(MK(C)). The theta functionθ is invariant under the centerZ(A),
since it factors throughSO(V )(A). Hence, ifη2 6= 1, the integral is iden-
tically zero. If η2 = 1 with η 6= 1, let kη be the associated quadratic ex-
tension ofQ. The integral can be unfolded and only terms withx ∈ V (Q)
with Q(x) ' kη can give a nonzero contribution. Thus, the theta integral is
a distinguished cusp form, and hence, by the results of [6] and [21], lies in
the space generated theta functions coming from O(1)’s.

4.5 THE MORDELL-WEIL COMPONENT

In this section, we will prove that the Mordell-Weil componentφMW of our
generating series given by (4.2.11) is theq-expansion of a modular form
valued in MW⊗ C. The idea is that this series is very closely related to
the generating series considered by Borcherds [2], so that his result can be
applied. Again, we work in a more general case than is finally needed for
the moduli spaceM.

For a compact open subgroupK ⊂ H(Af ), a weight functionϕ ∈
S(V (Af ))K , andt ∈ Q>0, let Z(t, ϕ;K) be the corresponding weighted
0-cycle onMK . Recall that is it rational overQ, so it defines a class in the
Chow group CH1(MK) which we also denote byZ(t, ϕ;K). If K ′ ⊂ K is
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an open subgroup, and if pr: MK′ →MK is the natural projection, then by
[10],

(4.5.1) pr∗(Z(t, ϕ;K)) = Z(t, ϕ;K ′),

so that we obtain a class

(4.5.2) Z(t, ϕ) ∈ CH1(M) := lim
→
K

CH1(MK)C

in the direct limit. LetL be the line bundle onD given by the restriction
of the bundleO(−1) on P(V (C)), and letLK be the associated bundle on
MK . Since theLK ’s are compatible with pullbacks, we have the relation
pr∗(c1(LK)) = c1(LK′) on Chern classes and can define classes

(4.5.3) Z(0, ϕ;K) = −ϕ(0) c1(LK) ∈ CH1(MK)C,

at finite level, and

(4.5.4) Z(0, ϕ) = −ϕ(0)c1(L) ∈ CH1(M)C,

in the direct limit.
The following result will be proved in Section 4.6.

Theorem 4.5.1. (Borcherds [2],+ε) For anyϕ ∈ S(V (Af ))K , the gener-
ating series

φBor(q, ϕ;K) := Z(0, ϕ;K) +
∑
t>0

Z(t, ϕ;K) qt ∈ CH1(MK)C[[ q ]]

is theq-expansion of a holomorphic modular formφBor(τ, ϕ;K) of weight
3
2 valued inCH1(MK)C.

We can pass to the limit onK and conclude that, for anyϕ ∈ S(V (Af )),
the generating series

(4.5.5) φBor(q, ϕ) := Z(0, ϕ) +
∑
t>0

Z(t, ϕ) qt ∈ CH1(M)C[[ q ]]

is also theq-expansion of a holomorphic modular formφBor(τ) of weight
3
2 . Moreover the map

(4.5.6) φBor(τ) : S(V (Af )) −→ CH1(M), ϕ 7→ φBor(τ, ϕ)

is equivariant for the natural action ofH(Af ) on the two sides. In effect,
this equivariance describes the action of the Hecke operators for the Shimura
varietyM on the generating series.
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The proof of Theorem 4.5.1 will be given in the next section. Here we
use it to prove the modularity of the Mordell-Weil component (4.2.11). In
the caseK = Ô×B , MK = MQ is geometrically irreducible. Moreover, by
(3.12) of [16] and the remark after (1.15) of [13], we haveL = ωQ, for ω
the Hodge line bundle, as in Section 3.3. Takingϕ to be the characteristic
functionϕ0 := char(V (Af ) ∩ ÔB), we have

(4.5.7) deg(φBor(τ, ϕ0;K)) = φdeg(τ) = E1(τ,
1
2
;D(B)).

Thus, we have proved the following.

Proposition 4.5.2. The generating seriesφMW(q) ∈ CH1(MQ)0[[ q ]] of
(4.2.11) is theq-expansion of the holomorphic modular form

φ0
Bor(τ, ϕ

0;K) := φBor(τ, ϕ0;K)− E1(τ,
1
2
;D(B)) deg(LK)−1 c1(LK).

4.6 BORCHERDS’ GENERATING FUNCTION

In this section, we explain how to formulate Borcherds’ result [2] in order to
obtain the statement of Theorem 4.5.1. A slightly more detailed discussion
of some background is given in Section 1 of [13], to which we refer the
reader for more information.

As in [16] and Section 5.5, letG′A (resp.G′R andG′Af ) be the metaplectic
extension of SL2(A) (resp. SL2(R) and SL2(Af )). Let G′Q be the image
of SL2(Q) under the unique splitting homomorphism SL2(Q) → G′A. Let
Γ′ ⊂ G′R be the full inverse image of SL2(Z) and letK ′ ⊂ G′Af be the full

inverse image of SL2(Ẑ). ThusΓ′ is a central extension of SL2(Z) by C1.
For eachγ′ ∈ Γ′, there is a unique elementk′ ∈ K ′ such that the product
γ = γ′k′ ∈ SL2(Z), identified with a subgroup ofG′Q. The mapγ′ 7→ k′

defines a homomorphism fromΓ′ toK ′. Forτ = u+ iv ∈ H, let g′τ ∈ G′R
be given by (4.4.13), and letK ′

∞ ⊂ G′R be the full inverse image of SO(2).
For anyγ′ ∈ G′R with projectionγ ∈ SL2(R), we have

(4.6.1) γ′ g′τ = g′γ(τ) k
′
∞(γ′, τ),

for a unique elementk′∞(γ′, τ) ∈ K ′
∞. Forr ∈ 1

2Z, letχr be the character
of K ′

∞ given by (1.26) of [13], and define an automorphy factor

(4.6.2) jr(γ′, τ) = χ−r(k′∞(γ′, τ))) |cτ + d|r;

see Section 8.5.
Let ψf be the unique additive character ofAf which is trivial onẐ and

such that the additive characterψ = ψ∞ ψf , with ψ∞(x) = e(x), of A
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is trivial on Q. The groupG′Af acts in the spaceS(V (Af )) by the Weil
representationω associated toψf .

LetL ⊂ V be a lattice on which the quadratic formQ is integral, and let

L] = { x ∈ V | (x, L) ⊂ Z }

be the dual lattice. LetSL ⊂ S(V (Af )) be the space of functionsϕ with
support inL̂] and which are invariant under translation byL̂. This space is
isomorphic toC[L]/L] under the mapλ 7→ ϕλ where, forλ ∈ L], ϕλ is the
characteristic function ofλ + L̂. The Weil representation action ofK ′ on
S(V (Af )) preservesSL and yields a representationρL of Γ′ on this space
via the homomorphismΓ′ → K ′. Following Borcherds [2], let

(4.6.3) MF(Γ′,
1
2
, ρL)

be the space ofSL-valued holomorphic functionsf onH such that

(4.6.4) f(γ(τ)) = j 1
2
(γ′, τ) ρL(γ′)f(τ),

for all γ ∈ SL2(Z), and which have aq-expansion of the form

(4.6.5) f(τ) =
∑
λ

∑
t

cλ(t) qt ϕλ,

where only a finite number ofcλ(t)’s with t < 0 are nonzero. Let

(4.6.6) MF(Γ′,
1
2
, ρL)Z

be theZ-submodule off ’s for which cλ(t) ∈ Z for all t ≤ 0.
Let ZHeeg(L) be theQ-vector space with generatorsyλ(t), for λ ∈ L]/L

andt ∈ Q>0 with Q(λ) ≡ t mod Z, and an additional elementy0(0). For
f ∈ MF(Γ′, 1

2 , ρL)Z, let

(4.6.7) rel(f) = c0(0) y0(0) +
∑
λ

∑
t>0

cλ(−t) yλ(t) ∈ ZHeeg(L).

Finally, let

(4.6.8) CHeeg(L) =
ZHeeg(L)〈

rel(f)
∣∣ f ∈ MF(Γ′, 1

2 , ρL)Z
〉 .

This group is a kind of formal Chow group for Heegner divisors. In [2],
Borcherds proved that the generating series for theyλ(t)’s is a holomorphic
modular form, assuming the existence of a basis with rational Fourier coef-
ficients of a certain space of vector valued modular forms. The existence of
the required basis was subsequently proved by McGraw [17].
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Theorem 4.6.1.(Borcherds)
(i) The spaceCHeeg(L) is finite dimensional overQ.
(ii) The generating series

φBor(q, L) =
∑
λ

∑
t≥0

yλ(t) qt ϕ∨λ ∈ CHeeg(L)⊗ S∨L [[ q ]]

is theq-expansion of a holomorphicCHeeg(L)⊗ S∨L-valued modular form
φBor(τ, L) of weight32 and typeρ∨L for Γ′. HereS∨L is the dual space toSL
and{ϕ∨λ} is the dual basis to{ϕλ}.

We can viewφBor(τ, L) as a map

(4.6.9) φBor(τ, L) : SL −→ CHeeg(L)C,

where, forϕ ∈ SL,

(4.6.10) φBor(τ, ϕ;L) := φBor(τ, L)(ϕ) =
∑
t≥0

yϕ(t) qt,

with

(4.6.11) yϕ(t) =
∑
λ

yλ(t) < ϕ∨λ , ϕ > .

This function has the transformation law

(4.6.12) φBor(γ(τ), ϕ;L) = j 3
2
(γ′, τ)φBor(τ, ρL(γ′)−1ϕ;L),

for all γ ∈ SL2(Z), whereγ′ ∈ Γ′ is any preimage ofγ.
To relate this formal generating series to one valued in a geometric Chow

group, we proceed as follows. LetK0 = Ô×B , and let

(4.6.13) KL = { k ∈ K0 | kL = L andk acts trivially inL]/L }.

The key point in Borcherds’ construction is then

Proposition 4.6.2.The mapZHeeg(L) → CH1(MKL)C defined by sending
yλ(t) toZ(t, ϕλ;KL) andy0(0) to−c1(LKL) induces a homomorphism

CHeeg(L)C −→ CH1(MKL)C.

Proof. To anyf ∈ MF(Γ′, 1
2 , ρL)Z, Borcherds constructs a meromorphic

section2 Ψ(f) of LkKL , wherek = c0(0), with explicit divisor

(4.6.14) div(Ψ(f)) =
∑
λ

∑
t>0

cλ(−t)Z(t, ϕλ;KL).

2Technically, the transformation law ofΨ(f) may involve a unitary character. Since this
character has finite order [3], and since we are taking Chow groups withQ-coefficients, we
can ignore it.
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But then

(4.6.15) rel(f) 7−→ −c0(0) c1(L) + div(Ψ(f)) ≡ 0.

Thus, we have

(4.6.16) SL
φBor(τ,L)−→ CHeeg(L)C −→ CH1(MKL)C.

Finally, we pass to the limit overL. Suppose thatL2 ⊂ L1 are lattices, as
above. Then there is a natural inclusionSL1 ↪→ SL2 , compatible with theΓ′

actionsρL1 andρL2 , since these are, after all, just coming from the action
of K ′ on

(4.6.17) S(V (Af )) = lim
→
L

SL.

There is a resulting inclusion

(4.6.18) MF(Γ′,
1
2
, ρL1) −→ MF(Γ′,

1
2
, ρL2)

preserving the ‘integral’ elements. It is easily checked that the map

ZHeeg(L1) −→ ZHeeg(L2),(4.6.19)

yλ(t) 7→
∑

µ∈L]2/L2

µ≡λ mod L1

yµ(t), y0(0) 7→ y0(0),

induces a map

(4.6.20) pr∗ : CHeeg(L1) −→ CHeeg(L2).

We let

(4.6.21) CHeeg:= lim
→
L

CHeeg(L).

It is easy to check the following compatibility.

Lemma 4.6.3. The diagram

SL2

φBor(τ,L2)−→ CHeeg(L2)C −→ CH1(MKL2
)C

↑ ↑ pr∗ ↑ pr∗

SL1

φBor(τ,L1)−→ CHeeg(L1)C −→ CH1(MKL1
)C

is commutative.
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Since the system of subgroupsKL is cofinal in the system of all compact
open subgroupsK with K ∩ Z(Af ) ' Ẑ×, we pass to the limit and obtain

(4.6.22) φBor(τ) : S(V (Af )) −→ CHeegC −→ CH1(M)C,

where we writeφBor(τ) for the composite map.

Proposition 4.6.4. There is a map

φBor(τ) : S(V (Af )) −→ CH1(M)C,

ϕ 7−→ φBor(τ, ϕ) = Z(0, ϕ) +
∑
t>0

Z(t, ϕ) qt

compatible with theH(Af ) actions. Moreover,φBor(τ, ϕ) is a holomorphic
modular form of weight32 . More precisely, for allγ ∈ SL2(Z),

φBor(γ(τ), ϕ) = j 3
2
(γ′, τ)φBor(τ, ρ(γ′)−1ϕ),

whereρ is the representation ofΓ′ onS(V (Af )) coming from the action of
K ′ and the homomorphismΓ′ → K ′.

Of course, for any compact open subgroupK ⊂ H(Af ), there is a result-
ing map

φBor(τ) : S(V (Af ))K −→ CH1(MK)C,

(4.6.23)

ϕ 7→ φBor(τ, ϕ;K) = Z(0, ϕ;K) +
∑
t>0

Z(t, ϕ;K) qt

as claimed in Theorem 4.5.1.

4.7 AN INTERTWINING PROPERTY

In this section, we show that the function on the metaplectic group defined
by the Borcherds generating functionφBor(τ, ϕ) has the same intertwining
property as the usual theta function with respect to the right action ofG′Af .

We lift the generating functionφBor(τ, ϕ) to a functionφ̃Bor(g′, ϕ) onG′A
by setting

(4.7.1) φ̃Bor(g′, ϕ) := j 3
2
(g′∞, i)

−1 φBor(g′∞(i), ω(k′)ϕ),

whereg′ = α g′∞ k′, for α ∈ G′Q, g′∞ ∈ G′R, andk′ ∈ K ′. The transforma-
tion law of Proposition 4.6.4 implies that this function is well defined; it is
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left G′Q-invariant by construction. In addition, sincejr(k′∞, i) = χ−r(k′∞),
we have

(4.7.2) φ̃Bor(g′k′∞k
′
f , ϕ) = χ 3

2
(k′∞) φ̃Bor(g′, ω(k′f )ϕ),

for k′f ∈ K ′. Thus,φ̃Bor has weight32 .
The main result of this section is the following intertwining property.

Proposition 4.7.1. For g′f ∈ G′Af ,

φ̃Bor(g′g′f , ϕ) = φ̃Bor(g′, ω(g′f )ϕ).

Proof. We define another function onG′A by

(4.7.3)
˜̃
φ(g′∞ g′f , ϕ) = j 3

2
(g′∞, i)

−1 φ(g′∞(i), ω(g′f )ϕ).

This function agrees with̃φ onG′RK
′ and, by construction, satisfies

(4.7.4)
˜̃
φ(g′g′0, ϕ) = ˜̃

φ(g′, ω(g′0)ϕ),

for g′0 ∈ G′Af . In particular,
˜̃
φ is left invariant under SL2(Z), and it suffices

to prove that it is, in fact, left invariant under all ofG′Q.

For a ∈ Q×
>0, let δ =

(
a

a−1

)
∈ G′Q. Write δ = δ′∞ δ′f for δ′∞ ∈ G′R

andδ′f ∈ G′Af .

Lemma 4.7.2. (i)

Z(t, ω(δ′f )ϕ) = j 3
2
(δ′∞, τ)Z(a2t, ϕ).

(ii)

φBor(a2τ, ω(δ′f )ϕ) = j 3
2
(δ′∞, τ)φBor(τ, ϕ).

Proof. Note thatϕ ∈ S(V (Af ))K for some compact open subgroupK ⊂
H(Af ), so (i) can be viewed as an identity between weighted0-cycles on
the generic fiberMK . Recall from Lemma 10.1 of [11],

(4.7.5) Z(t, ϕ;K) =
∑
j

∑
x∈V (Q)

Q(x)=t

mod Γj

ϕ(h−1
j x) pr(Dx),
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in the notation of Section 4.4 above, especially (4.4.2) and (4.4.3). On the
other hand, since|a|Af = a−

3
2 , we have

(4.7.6) ω(δ′f )ϕ(x) = j 3
2
(δ′∞, τ)ϕ(ax),

which, together with the previous identity, yields (i). Part (ii) is immediate
from (i) and the analogous relation forZ(0, ϕ), which is clear from (4.5.4).

Thus, we have˜̃
φ(δg′, ϕ) = ˜̃

φ(δ′∞ g′∞ δ′f g
′
f , ϕ)

= j 3
2
(δ′∞, τ)

−1 j 3
2
(g′∞, i)

−1 φBor(a2τ, ω(δ′f )ω(g′f )ϕ)(4.7.7)

= j 3
2
(g′∞, i)

−1 φBor(τ, ω(g′f )ϕ)

= ˜̃
φ(g′, ϕ).

Since SL2(Q) is generated by SL2(Z) together with theδ’s for a ∈ Q×
>0,

˜̃
φ

is leftG′Q invariant, and hence coincides with̃φBor. This finishes the proof
of Proposition 4.7.1.

Propositions 4.6.4 and 4.7.1 show thatφ̃Bor(g′, ϕ) behaves just like the
classical theta functionθ(g′, h;ϕ) as far asG′Af × H(Af )-equivariance
is concerned. More precisely, letA(G′) 3

2
,hol be the space of automorphic

forms onG′A of weight 3
2 (for the right action ofK ′

R) which are ‘holomor-
phic’ in the sense that the corresponding functions onH are holomorphic.
Then, we have a map
(4.7.8)
φ̃Bor : S(V (Af )) −→ A(G′) 3

2
,hol ⊗ CH1(M), ϕ 7→ φ̃Bor(g′, ϕ),

which isG′Af × H(Af )-equivariant. Note that since the action ofG′Af ×
H(Af ) onS(V (Af )) is smooth, anyϕ is fixed by some compact open sub-
groupK ′×K, and thus the functioñφBor(g′, ϕ) takes values in the finite di-
mensional space CH1(MK). Moreover,φ̃Bor(g′, ϕ) is rightK ′-invariant, so
that the component functions lie in the finite dimensional spaceA(G′)K

′
3
2
,hol

.
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Chapter Five

The central derivative of a genus two Eisenstein

series

In this chapter, we study an incoherent Eisenstein series of genus two in
detail and, in particular, compute its derivative ats = 0, the central point
for the functional equation. This Eisenstein series was first introduced in
[4]. In the first few sections, we consider the Fourier coefficients associated
to T ∈ Sym2(Q) with det(T ) 6= 0. These coefficients, which are given
by a product of local factors, were studied in [4] and [8]. In Sections 5.4
through 5.8, we deal with the Fourier coefficients forT ’s with rank(T ) = 1.
These coefficients, which are not given as a product of local factors, are of
global nature and are closely related to the Fourier coefficients of a genus
one Eisenstein series. The main point here is to make this relation precise
and explicit. The result of this effort, Theorems 5.8.1 and 5.8.7, express
the central derivative of the rank one Fourier coefficients of the genus two
Eisenstein series in terms of the derivative of a genus one Eisenstein series
at a criticalnoncentralpoint s = 1

2 . This genus one Eisenstein series was
studied in detail in [9] with this application in mind. In the last section, we
prove the analogous relation for the constant terms of the two Eisenstein se-
ries. In Chapter 6, we will use these results together with those of Chapter 3
to prove one of the main results in this book—the coincidence of the central
derivative of the genus two Eisenstein series computed here with the gener-
ating function for0-cycles on the arithmetic surface attached to a Shimura
curve.

5.1 GENUS TWO EISENSTEIN SERIES

In this section, we construct the Eisenstein series of genus two and weight
3
2 attached to an indefinite quaternion algebraB, by specializing the general
construction of incoherent Eisenstein series given in part 1 of [4]. For the
moment, we allow the caseB = M2(Q). More details can be found in [4].

We begin by fixing some notation and reviewing the structure of the space
of Siegel Eisenstein series. Let Sp2 be the rank2 symplectic group overQ
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and letGA be the metaplectic extension

(5.1.1) 1 −→ C1 −→ GA
pr−→ Sp2(A) −→ 1.

We write

(5.1.2) P = N M = { n(b)m(a) | b ∈ Sym2, a ∈ GL2 },

for the Siegel parabolic subgroup of Sp2, where

(5.1.3) n(b) =
(

1 b
1

)
, and m(a) =

(
a

ta−1

)
.

Let

(5.1.4) K = K∞ ·
∏
p

Kp,

whereKp = Sp2(Zp), for p <∞, andK∞ ' U(2) is the standard maximal
compact subgroup. Let

GR = pr−1(Sp2(R)),

Gp = pr−1(Sp2(Qp)),

GAf = pr−1(Sp2(Af )),(5.1.5)

PA = pr−1(P (A)),

MA = pr−1(M(A)),

K = pr−1(K), K∞ = pr−1(K∞),

and letGQ (resp.NA) be the image of Sp2(Q) (resp.N(A)) in GA under
the unique splitting homomorphism.

Let ψ be the standard character ofA/Q which is unramified and such
thatψ∞(x) = e(x) = e2πix. As explained in Section 8.5.5, there is then an
isomorphism of groups, via the Leray coordinates,

(5.1.6) P (A)× C1 ∼−→ PA (p, z) 7→ [p, z]L,ψ = [p, z]L.

Note that

(5.1.7) PQ := PA ∩GQ = [P (Q), 1]L.

For a characterχ of A×/Q×, we also writeχ for the character ofPA defined
by

(5.1.8) χ([n(b)m(a), z]L) = z χ(det(a)).
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The characterχ on PA depends on the isomorphism (5.1.6) and hence on
the choice ofψ, but we suppress this dependence from the notation. For
s ∈ C, let I(s, χ) be the global degenerate principal series representation of
GA on smooth functionsΦ(s) onGA satisfying

(5.1.9) Φ([n(b)m(a), z]Lg, s) = z χ(det(a)) |det(a)|s+
3
2 Φ(g, s).

We also require thatΦ(s) be rightK∞-finite, so thatI(s, χ) is a(g,K∞)×
GAf -module. A sectionΦ(s) is called standard if its restriction toK is inde-
pendent ofs. For such a sectionΦ(s), the corresponding Siegel Eisenstein
series

(5.1.10) E(g, s,Φ) =
∑

γ∈PQ\GQ

Φ(γg, s)

converges for Re(s) > 3
2 . The analytic continuation ofE(g, s,Φ) to the

whole s-plane is holomorphic at the points = 0 on the unitary axis and
hence there is a(g,K∞)×GAf -intertwining map

(5.1.11) E(0) : I(0, χ) −→ A(GA), Φ(0) 7→ E(·, 0,Φ),

whereA(GA) is the space of genuine automorphic forms onGA.
The representationI(s, χ) is a restricted product

(5.1.12) I(s, χ) = ⊗p≤∞Ip(s, χp)

of local degenerate principal series representations whereχ = ⊗p≤∞χp.
Assume thatχ2 = 1 and write

(5.1.13) χ(x) = (x, 2κ)A

for κ ∈ Q×, where( , )A is the global Hilbert symbol. For anyp ≤ ∞, the
representationIp(0, χp) is unitarizable and is the direct sum

(5.1.14) Ip(0, χp) = Rp(V +
p )⊕Rp(V −p )

of irreducible representations defined as follows. LetB±p be the quaternion
algebra overQp with invariant invp(B±p ) = ±1 and let

(5.1.15) V ±p = { x ∈ B±p | tr(x) = 0 },

with quadratic formQ(x) = −κ · ν(x) = κx2. Soon we will specialize to
the caseκ = −1. For the moment, writeVp = V ±p . If p <∞, the groupGp
acts in the Schwartz spaceS(V 2

p ) by the Weil representationωVp = ωVp,ψp .
If p = ∞, we letS(V 2

∞) be the subspace of the Schwartz space ofV 2
∞

which corresponds to the space of polynomial functions in a Fock model
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compatible withK∞ and some choice of maximal compact subgroup of
O(V∞), [2]. ThenS(V 2

∞) is a(g,K∞)-module via the Weil representation
ωV∞ = ωV∞,ψ∞ . The map
(5.1.16)

λ = λV : S((V ±p )2) −→ Ip(0, χp), ϕ 7→ (g 7→ ωψ,V (g)ϕ(0))

isGp-intertwining (resp.(g,K∞)-intertwining), and the image

(5.1.17) Rp(Vp) := λVp(S(V 2
p ))

is an irreducible submodule and is isomorphic to the spaceS(V 2
p )O(Vp) of

O(Vp)-coinvariants [12] (resp.(O(V∞),KO(V∞))-coinvariants [6]). In the
casep = ∞, we will sometimes write

R∞(V −∞) =

{
R∞(3, 0) if κ < 0,

R∞(0, 3) if κ > 0,
(5.1.18)

and

R∞(V +
∞) =

{
R∞(1, 2) if κ < 0,

R∞(2, 1) if κ > 0,
(5.1.19)

according to the signatures of the quadratic spaces involved. Note that
R∞(p, q) is a cyclic(g,K∞)-module generated by the vectorΦ`

∞(0) with
scalarK∞-type(det)` where` = 1

2(p− q), [6]. Let Φ`
∞(s) be the standard

section ofI∞(s, χ∞) having this scalarK∞-type and normalized so that
Φ`
∞(e, s) = 1.
For a global quaternion algebraB with corresponding ternary quadratic

spaceV B, where the quadratic form is defined byQ(x) = −κ·ν(x) = κx2,
let

(5.1.20) Π(V B) = ⊗pRp(V B
p )

be the associated irreducible summand ofI(0, χ). Similarly, for an incoher-
ent collectionC = {Cp}, Cp = V

εp
p , i.e., a collection of spaces which differs

from the collection{V B
p } at an odd number of places, there is an irreducible

summand

(5.1.21) Π(C) = ⊗pRp(Cp),

and

(5.1.22) I(0, χ) =
(
⊕B Π(V B)

)
⊕
(
⊕C Π(C)

)
is the decomposition ofI(0, χ) into irreducibles. The Siegel-Weil formula
describes the image of the summandsΠ(V B) under the Eisenstein map
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E(0) as spaces of theta functions [4], [7]. The summandsΠ(C) lie in the
kernel ofE(0) and occur only as subquotients of the space of automorphic
forms onGA [10].

We now specialize to the case of the Eisenstein series of weight3
2 whose

central derivative will be related to the genus two generating function to be
defined in Chapter 6.

Fix an indefinite quaternion algebraB, and takeκ = −1, so thatχ(x) =
(x,−2)A and the quadratic form onV B is given byQ(x) = ν(x) = −x2.
LetOB be a maximal order inB and letϕB ∈ S(V B(Af )2) be the charac-
teristic function of the set(V (Af ) ∩ (OB ⊗Z Ẑ))2. Then, letΦB

f (s) be the
standard section ofIf (s, χf ) with

(5.1.23) ΦB
f (0) = λV (ϕB).

Note thatR∞(V B
∞) = R∞(1, 2). Thus, the standard sectionΦ

− 1
2∞ (s) ⊗

ΦB
f (s) is coherent with

(5.1.24) Φ
− 1

2∞ (0)⊗ ΦB
f (0) ∈ Π(V B),

whereas the standard sectionΦ
3
2∞(s)⊗ ΦB

f (s) is incoherent with

(5.1.25) Φ
3
2∞(0)⊗ ΦB

f (0) ∈ Π(CB),

for the collectionCB = {CBp } with CBp = V B
p for p < ∞ and withCB∞ =

R∞(3, 0). This is almost the section we want, but it turns out that a further
modification is needed at the primesp | D(B).

For anyp, let B±p be the quaternion algebra overQp with invp(B±p ) =
±1, and let

V ±p = { x ∈ B±p | tr(x) = 0 }.(5.1.26)

Forp <∞, let

L0
p = M2(Zp) ∩ V +

p ,(5.1.27)

L1
p = {

(
a b
c d

)
∈M2(Zp) | ordp(c) > 0} ∩ V +

p ,(5.1.28)

and

Lra
p = Ora

p ∩ V −p ,(5.1.29)

whereOra
p is the maximal order in the division quaternion algebraB−p over

Qp. Let ϕ0
p, ϕ

1
p ∈ S((V +

p )2) andϕra
p ∈ S((V −p )2) be the characteristic
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functions of(L0
p)

2, (L1
p)

2, and(Lra
p )2 respectively. Then, letΦ0

p(s), Φ1
p(s),

andΦra
p (s) be the standard local sections with

Φ0
p(0) = λ(ϕ0

p),(5.1.30)

Φ1
p(0) = λ(ϕ1

p),(5.1.31)

and

Φra
p (0) = λ(ϕra

p ).(5.1.32)

The local modified sectioñΦp(s) is defined as follows [8]:

(5.1.33) Φ̃p(s) = Φra
p (s) +A(s) Φ0

p(s) +B(s) Φ1
p(s),

whereAp(s) andBp(s) are rational functions ofp−s with the property that

(5.1.34) Ap(0) = Bp(0) = 0,

(5.1.35)

A′p(0) = − 2
p2 − 1

log(p) and B′p(0) =
1
2
· p+ 1
p− 1

log(p).

Note thatΦ̃p(s) is not a standard section and thatΦ̃p(0) = Φra
p (0). This

particular combination of standard sections was originally defined in [8] to
match certain intersection numbers of special cycles on the Drinfeld upper
half space. It turns out to have good properties for the local doubling integral
as well; see Chapter 8.

Finally, we define the modified global section

(5.1.36) Φ̃B(s) = Φ
3
2∞(s)⊗

(
⊗p|D(B) Φ̃p(s)

)
⊗
(
⊗p-D(B) Φ0

p(s)
)

and the corresponding normalized Eisenstein series

(5.1.37) CD(B)(s) · E(g, s, Φ̃B),

where, for any square free positive integerD,

(5.1.38) CD(s) = −1
2
· (s+ 1) c(D) ΛD(2s+ 2)

with

(5.1.39) ΛD(2s) =
(
D

π

)s
Γ(s) ζ(2s)

∏
p|D

(1− p−2s),

and

(5.1.40) c(D) = (−1)ord(D)+1 D

2π

∏
p|D

(p+ 1)−1.
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We often abuse notation and writeCB(s) instead ofCD(B)(s). Note that,
in contrast to the situation in [9], the central derivativeE′(g, 0, Φ̃B) only
depends on the value

(5.1.41) CD(0) = (−1)ord(D) 1
24

∏
p|D

(p− 1)

of the normalizing factor, since

(5.1.42) E(g, 0, Φ̃B) = 0.

Since the sectioñΦB(s) is invariant under a suitable compact open sub-
group ofK of GAf (see Section 8.5 for details) and is an eigenfunction for
K∞,E2(g, s,B) is determined by its restriction toPR. Forτ = u+iv ∈ H2,
let

(5.1.43) gτ = [n(u)m(v
1
2 ), 1 ]L ∈ PR

and let

(5.1.44) E2(τ, s, B) := det(v)−
3
4 · CB(s)E(gτ , s, Φ̃B).

Of course,E2(τ, 0, B) = 0.
Our next task is to determine the Fourier expansion

(5.1.45) E ′2(τ, 0, B) =
∑

T∈Sym2(Q)

E ′2,T (τ, 0, B)

of the central derivative.

5.2 NONSINGULAR FOURIER COEFFICIENTS

In this section, we review the description obtained in [4] and [8] for the
Fourier coefficientsE ′2,T (τ, 0, B) whenT ∈ Sym2(Q) with det(T ) 6= 0.
First there is a product formula

ET (gτ , s, Φ̃B) =
∫

Sym2(Q)\Sym2(A)
E(n(b)gτ , s, Φ̃B)ψ(−tr(Tb)) db

=
∫

Sym2(A)
Φ̃B(w−1n(b)gτ , s)ψ(−tr(Tb)) db(5.2.1)

= WT,∞(gτ , s,Φ
3
2∞) ·

∏
p

WT,p(s, Φ̃B
p ),
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where
(5.2.2)

WT,∞(gτ , s,Φ
3
2∞) =

∫
Sym2(R)

Φ
3
2∞(w−1

∞ n(b)gτ , s)ψ∞(−tr(Tb)) d∞b

and

(5.2.3) WT,p(s, Φ̃B
p ) =

∫
Sym2(Qp)

Φ̃B
p (w−1

p n(b), s)ψp(−tr(Tb)) dpb

are local (degenerate) Whittaker integrals. Here, we are writingn(b) for
[n(b), 1]L =

∏
p[n(bp), 1]L,p, since the splitting homomorphismN(A) →

GA is unique. The global measuredb is the Tamagawa measure; this mea-
sure is self-dual with respect to the pairing[b1, b2] = ψ(tr(b1b2)) determined
by ψ. The local measuresdpb are self-dual with respect to the analogous
pairing determined local componentsψp of ψ. Also

(5.2.4) w =
(

12

−12

)
∈ GQ,

and we choose elementswp = [wp, 1]L ∈ Kp projecting tow in Kp and
withw =

∏
pwp inGA; see Sections 8.5.1 and 8.5.5. Since the local section

Φ̃p(s) is right invariant underN(Zp), we have immediately

Lemma 5.2.1. For T ∈ Sym2(Q) with

T /∈ Sym2(Z)∨ = { T ∈ Sym2(Q) | tr(Tb) ∈ Z, ∀b ∈ Sym2(Z) },

ET (gτ , s, Φ̃B) = 0.

We next discuss the individual factors in the product on the right side of
(5.2.1).

ForT ∈ Sym2(Z)∨ with det(T ) 6= 0, let

(5.2.5) S(T,B) = { p | p | 8D(B) det(T ) }.

By Proposition 4.1 of [4], for a finite primep /∈ S(B, T ), we have

(5.2.6) WT,p(s, Φ̃B
p ) = ζp(2s+ 2)−1.

ForT ∈ Sym2(Z)∨ with det(T ) 6= 0 andS = S(T,B), we have
(5.2.7)

ET (gτ , s, Φ̃B) = WT,∞(gτ , s,Φ
3
2∞) ·

∏
p∈S

WT,p(s, Φ̃B
p ) · ζS(2s+ 2)−1.

Note that, since the local Whittaker functions for nonsingularT ’s are entire
functions ofs, the finite product on the right side of (5.2.7) gives the analytic
continuation of the nonsingular Fourier coefficient.
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SinceET (gτ , 0, Φ̃B) = 0, at least one of the factors in the product must
vanish ats = 0, and, if more than one factor vanishes, thenE′T (gτ , 0, Φ̃B) =
0 as well. The vanishing of local factors is controlled by the following
principle.

Lemma 5.2.2. (i) For any standard local sectionΦp(s) for whichΦp(0) ∈
Rp(Vp),

WT,p(0,Φp) 6= 0 =⇒ T is represented byVp.

Similarly, for the nonstandard sectioñΦp(s) defined by (5.1.33),

WT,p(0, Φ̃p) 6= 0 =⇒ T is represented byV −p .

(ii) T ∈ Sym2(Qp) with det(T ) 6= 0 is represented byV ε
p if and only if

ε = εp(T )χV (det(T )) = εp(T ) (−det(T ),−1)p,

whereεp(T ) is the Hasse invariant ofT .

Note thatV ε
p has Hasse invariantεp(V ε

p ) = (−1,−1)p ε, so that there is a
twist here whenp = 2 or∞, as compared with Lemma 8.2 of [4].

Definition 5.2.3. ForT ∈ Sym2(Zp)∨ with det(T ) 6= 0, let

µp(T ) = εp(T ) (−det(T ),−1)p.

Note that, by (ii) of the previous lemma,µp(T ) = 1 if and only if T is
represented by the spaceV +

p of trace0 elements inM2(Qp), with quadratic
form given by the determinant. Ifp is odd andT is GL2(Zp)-equivalent to
the diagonal form diag(ε1pa1 , ε2p

a2) with 0 ≤ a1 ≤ a2 andε1, ε2 ∈ Z×p ,
then

(5.2.8) µp(T ) = (ε1, p)a2
p (ε2, p)a1

p (−1, p)a1a2
p ;

cf. Lemma 8.3 of [4].
Recall thatC = CB is the incoherent collection withC∞ = V (3, 0) = V −∞

andCBp = V B
p , for p < ∞. Let inv∞(CB) = −1 and invp(CB) = invp(B)

for p <∞. Then, the set

(5.2.9) Diff(T,B) = { p ≤ ∞ | invp(CB) 6= µp(T ) }

has odd cardinality, and, by the previous lemma,

(5.2.10) |Diff (T,B)| > 1 =⇒ E′T (gτ , 0, Φ̃B) = 0.

Thus, onlyT ’s with |Diff (T,B)| = 1 contribute to the central derivative.
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The following results concerning the values and derivatives of local fac-
torsWT,p(s) are collected from [4] forp - 2D(B), from [17] and [8] for
p | D(B), p 6= 2, and from [18] forp = 2. Forp ≤ ∞, let

(5.2.11) Cp(V ) = γp(V )2 |D(B)|2p |2|
3
2
p ,

where the quantityγp(V ) is a local Weil index defined in (8.5.21). This
quantity will frequently appear as a constant of proportionality. Note that

(5.2.12)
∏
p≤∞

Cp(V ) = 1.

Theorem 5.2.4.(Kitaoka [3] forp 6= 2, Yang [18], Theorem 5.7)
Suppose thatp - D(B), so thatΦ̃B

p (s) = Φ0
p(s). LetX = p−s.

(i) If T /∈ Sym2(Zp)∨, thenWT,p(s) = 0.
(ii) Suppose thatT ∈ Sym2(Zp)∨ and let(0, a1, a2), with 0 ≤ a1 ≤ a2, be
the Gross-Keating invariants of the matrixdiag(1, T ) ∈ Sym3(Zp)∨.
Then the quantity

WT,p(s, Φ̃B
p )

Cp(V ) · (1− p−2s−2)

is given by

a1−1

2∑
j=0

(
X2j + µp(T )Xa1+a2−2j ) pj

if a1 is odd, and

a1
2
−1∑

j=0

(
X2j + µp(T )Xa1+a2−2j ) pj + p

a1
2 Xa1

a2−a1∑
j=0

(ε0X)j

if a1 is even, whereε0 = ε0(T ) is the Gross-Keatingε-constant[1], p. 236,
and the constantCp(V ) is given by (5.2.11).

Note that, whenp is odd andT is GL2(Zp) equivalent to the matrix
diag(ε1pa1 , ε2p

a2), as above, then(0, a1, a2) are the Gross-Keating invari-
ants of diag(1, T ), andε0 = ε0(T ) = (−ε1, p)p.

Corollary 5.2.5. Suppose thatp - D(B) and thatT ∈ Sym2(Zp)∨ is as in
(ii) of Theorem 5.2.4.
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(i) If µp(T ) = +1, then

WT,p(0, Φ̃B
p )

Cp(V ) · (1− p−2)

=


2
∑a1−1

2
j=0 pj if a1 is odd,

2
∑a1

2
−1

j=0 pj + p
a1
2 if a1 is even andε0 = −1,

2
∑a1

2
−1

j=0 pj + p
a1
2 (a2 − a1 + 1) if a1 is even andε0 = 1.

(ii) If µp(T ) = −1, thenWT,p(0, Φ̃B
p ) = 0 and

W ′
T,p(0, Φ̃

B
p ) = Cp(V ) · (1− p−2) log(p) · νp(T ),

where

νp(T )

=


∑a1−1

2
j=0 (a1 + a2 − 4j) pj if a1 is odd,∑a1
2
−1

j=0 (a1 + a2 − 4j) pj + 1
2 (a2 − a1 + 1) p

a1
2 if a1 is even.

Next we consider the casep | D(B) and we recall that̃ΦB
p (0) = Φra

p (0)
and that, by (5.1.33),
(5.2.13)
W ′
T,p(0, Φ̃

B
p ) = W ′

T,p(0,Φ
ra
p )+A′p(0) ·WT,p(0,Φ0

p)+B′p(0) ·WT,p(0,Φ1
p),

where the coefficientsA′p(0) andB′p(0) are given by (5.1.35). Whenp 6= 2,
the following result is a combination of Proposition 8.7 of [4] and Corol-
lary 7.4 of [8]. These results, in turn, rely on the computation of the local
densities [11], [17] and their derivatives [17]. In the casep = 2, the den-
sities and their derivatives are computed in [18], and it is shown that the
statements of Proposition 8.7 of [4] and Corollary 7.4 of [8] remain valid
provided one uses the Gross-Keating invariants of diag(1, T ).

Theorem 5.2.6.Suppose thatp | D(B) and thatT ∈ Sym2(Zp)∨ is as in
(ii) of Theorem 5.2.4.
(i) If µp(T ) = −1, then

WT,p(0, Φ̃B
p ) = WT,p(0,Φra

p ) = Cp(V ) · 2 (p+ 1).

(ii) If µp(T ) = 1, thenWT,p(0, Φ̃B
p ) = 0, and

W ′
T,p(0, Φ̃

B
p ) = Cp(V ) · (p+ 1) log(p) · 1

2
· νp(T ),
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where

1
2
· νp(T ) = a1 + a2 + 1

−



p
a1
2 + 2 p

a1
2 − 1
p− 1 if a1 is even andε0 = −1,

(a2 − a1 + 1) p
a1
2 + 2 p

a1
2 − 1
p− 1 if a1 is even andε0 = 1,

2 p
a1+1

2 − 1
p− 1 if a1 is odd.

Note that this result is the analogue, forp | D(B), of Corollary 5.2.5.
At this point, we omit the analogue of Theorem 5.2.4, i.e., the expressions
for WT,p(s, Φ̃B

p ) for generals. These are rather messy and will be given in
Section 5.7 below.

Finally, we have the case in whichp = ∞, where we use the calculations
of [4], which are based on Shimura’s formulas for the confluent hypergeo-
metric functions [15]. Note, however, that in [4],[w−1, 1]R = [w−1,−i]L
was used as the preimage inGR of w−1. Thus the values here include an
extra factor ofi, since we are taking[w−1, 1]L for preimage ofw−1.

Theorem 5.2.7. (i) If T ∈ Sym2(R)>0 is positive definite, then, forτ =
u+ iv ∈ H2,

WT,∞(gτ , 0,Φ
3
2∞) = −2

√
2 (2π)2 det(v)

3
4 · qT ,

whereqT = e(tr(Tτ)).

(ii) If T ∈ Sym2(R) has signature(1, 1) or (0, 2), thenWT,∞(gτ , 0,Φ
3
2∞) =

0, and

W ′
T,∞(gτ , 0,Φ

3
2∞) = −2

√
2 · 2π2 · det(v)

3
4 · qT · ν∞(T, v),

whereν∞(T, v) is defined as follows.
If T has signature(1, 1), then

ν∞(T, v) =− 1
2

∫
H

Ei(−4πδ−y−2|z|2)

×
(
δ+ y

−2(1 + |z|2)2 − 1
2π

)
e−πδ+ ( y−2(1+|z|2)2−4 ) dµ(z),

where

v
1
2Tv

1
2 = tk(θ) · diag(δ+,−δ−) · k(θ),
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for k(θ) ∈ SO(2) and δ± ∈ R>0. Here, forz = x + iy ∈ H, dµ(z) =
y−2 dx dy, andEi is the exponential integral, as in (3.5.2).
If T has signature(0, 2), then

ν∞(T, v) =− 1
2

∫
H

Ei(−4πδ2 y−2|z|2)

×
(
δ1 y

−2(1− |z|2)2 − 1
2π

)
e−πδ1 ( y−2(1−|z|2)2+4 ) dµ(z),

where

v
1
2Tv

1
2 = −tk(θ) · diag(δ1, δ2) · k(θ),

for k(θ) ∈ SO(2) andδi ∈ R>0.

Proof. Part (i) and the signature(1, 1) part of (ii) are Proposition 9.5 and
Corollary 9.8 in [4], respectively. For the sake of completeness, we give the
calculation in the case of signature(0, 2), which is a variant of that given in
[4] for signature(1, 1).

The manipulations on pp. 585–588 of [4] yield the expression

WT,∞(g′τ , s,Φ
3
2 )

= i
√

2 det(v)
1
2
(s+ 3

2
) e(

β−α
2 ) (2π)3

2 Γ2(α) Γ2(β)
η(2 v, T ;α, β) · e(tr(Tu)),

whereα = 1
2(s+ 3) andβ = 1

2s, and

η(2 v, T ;α, β) =
∫

U>−πT
U>πT

e−2tr(Uv) det(U + πT )α−ρ det(U − πT )β−ρ dU,

whereρ = 3
2 . Writing π T = −tc c for c ∈ GL2(R)+, and using Lemma 9.6

of [4], we get

η(2 v, T ;α, β) · (π2 det(T ))−(α+β−ρ)

=
∫

U−1>0
U+1>0

e−2 tr(Ucvtc) det(U − 1)α−ρ det(U + 1)β−ρ dU

= e2π tr(Tv)
∫

U>0

e−2π tr(Uv′) det(U)α−ρ det(U + 2)β−ρ dU

= 22(α+β−ρ) e2π tr(Tv)
∫

U>0

e−4π tr(Uv′) det(U)α−ρ det(U + 1)β−ρ dU,
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wherev′ = π−1 cvtc. Writing

v′ = tk(θ) ∆ k(θ),

with ∆ = diag(δ1, δ2) andk(θ) ∈ SO(2), we obtain

η(2 v, T ;α, β) · (4π2 det(T ))−(α+β−ρ)

= e2π tr(Tv)
∫

U>0

e−4π tr(U∆) det(U)α−ρ det(U + 1)β−ρ dU.

Note that this integral is finite whens = 0. Since

Γ2(α) Γ2(β) = π Γ
(
s+ 3

2

)
Γ
(
s+ 2

2

)
Γ
(
s

2

)
Γ
(
s− 1

2

)
has a simple pole ats = 0 with residue−2π2, we obtain

W ′
T,∞(g′τ , 0,Φ

3
2 )

= −i
√

2 det(v)
3
4 · 2πi · qT · e4π tr(Tv)

∫
U>0

e−4π tr(U∆) det(U + 1)−
3
2 dU.

To put the integral here in a better form, we write

U =
(
x z
z y

)
and make the substitution

x = u,

z = u
1
2 (1 + v)

1
2 w,

y = v + (1 + v)w2 = w2 + (1 + w2)v.

Then

det(U) = uv,

det(U + 1) = (1 + v)(1 + u+ w2),∣∣∣∣ ∂(x, y, z)
∂(u, v, w)

∣∣∣∣ = u
1
2 (1 + v)

1
2 ,
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and we have∫
U>0

e−4π tr(U∆) det(U + 1)−
3
2 dU

=
∫
u>0

∫
v>0

∫
w
e−4π ( δ1 u+δ2 (w2+(1+w2)v) ) (1 + v)−

3
2

× (1 + u+ w2)−
3
2 u

1
2 (1 + v)

1
2 du dv dw.

Now putting(1 + w2)u for u, we obtain∫
u>0

∫
v>0

∫
w
e−4π ( δ1 (1+w2)u+δ2 (w2+(1+w2)v) )

× (1 + v)−1(1 + u)−
3
2 u

1
2 du dv dw.

The integral with respect tov here is∫
v>0

e−4π δ2 (1+w2)v (1 + v)−1 dv = −e4π δ2 (1+w2) Ei(−4π δ2 (1 + w2)).

Applying integration by parts to the integral with respect tou, we have∫
u>0

e−4π δ1 (1+w2)u (1 + u)−
3
2 u

1
2 du

= −2π
∫
u>0

e−4π δ1 (1+w2)u ( 4 δ1 (1 + w2)u− 1
2π

)
u−

1
2 (1 + u)−

1
2 du.

Combining these facts, we obtain the expression

2π e4π δ2
∫
w

∫
u>0

Ei(−4π δ2 (1 + w2))

× e−4π δ1 (1+w2)u ( 4 δ1 (1 + w2)u− 1
2π

)
u−

1
2 (1 + u)−

1
2 du dw.

which is the analogue of (9.57) of [4] in the present case.
Finally, for z = x+ iy ∈ H, we make the substitution given on p. 593 of

[4]:

w =
x

y
, u =

(
|z| − |z|−1

2

)2

,

so that

u−
1
2 (1 + u)−

1
2 du dw = 2 y−2 dx dy,

(1 + w2)u =
1
4
y−2(1− |z|2)2,

(1 + w2) = y−2 |z|2,
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and the previous expression becomes

2π e4π δ2
∫

H
Ei(−4π δ2 y−2 |z|2)

× e−π δ1 y
−2(1−|z|2)2 ( δ1 y−2(1− |z|2)2 − 1

2π
)
y−2 dx dy.

Returning to the function, this gives

W ′
T,∞(g′τ , 0,Φ

3
2 )

= 2
√

2 · 2π2 · det(v)
3
4 · qT · e4π tr(Tv) e4π δ2

∫
H

Ei(−4π δ2 y−2 |z|2)

× e−π δ1 y
−2(1−|z|2)2 ( δ1 y−2(1− |z|2)2 − 1

2π
)
y−2 dx dy

= −2
√

2 · 2π2 · det(v)
3
4 · qT · ν∞(T, v),

where

ν∞(T, v) = −1
2
· e−4π δ1

∫
D

Ei(−4π δ2 y−2 |z|2)

× e−π δ1 y
−2(1−|z|2)2 ( δ1 y−2(1− |z|2)2 − 1

2π
)
y−2 dx dy.

Here we note that tr(Tv) = −(δ1 + δ2).

In summary, we obtain the following formulas.

Proposition 5.2.8. Suppose thatT ∈ Sym2(Z)∨ with det(T ) 6= 0.
(i) If Diff (T,B) = {p} with p <∞, then

E ′2,T (τ, 0, B) = −CB(0) · 2
√

2 · 4π2 · qT ·W ′
T,p(0, Φ̃

B
p ) ·

∏
` 6=p

WT,`(0, Φ̃B
` ),

where

W ′
T,p(0, Φ̃

B
p ) = Cp(V ) · νp(T ) log(p) ·

(1− p−2) if p - D(B),
1
2 (p+ 1) if p | D(B).

(ii) If Diff (T,B) = {∞} andsig(T ) = (1, 1) or (0, 2),

E ′2,T (τ, 0, B) = −CB(0) · 2
√

2 · 2π2 · qT · ν∞(T, v) ·
∏
`

WT,`(0, Φ̃B
` ).

(iii) For all other T ∈ Sym2(Z)∨, i.e., if |Diff (T,B)| > 1,

E ′2,T (τ, 0, B) = 0.
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5.3 THE SIEGEL-WEIL FORMULA

In this section, we suppose thatT ∈ Sym2(Z)∨ with det(T ) 6= 0 and with
Diff (T,B) = {p} for p ≤ ∞, and we evaluate the products,

(5.3.1)
∏
` 6=p

WT,`(0, Φ̃B
` ),

whenp <∞, and

(5.3.2)
∏
`

WT,`(0, Φ̃B
` ),

whenp = ∞. Note that, both expressions are unchanged if, for each` |
D(B), we replace the sectioñΦB

` by Φra
` .

5.3.1 Whittaker functions and orbital integrals

We begin with some general remarks. Suppose thatV is any three di-
mensional anisotropic quadratic space overQ. For ϕ ∈ S(V (A)2), let
Φϕ(s) ∈ I(s, χV ) be the standard section such thatΦϕ(0) = λV (ϕ), where
λV : S(V (A)2) → I(0, χ) is the map given by (5.1.16). By the Siegel-Weil
formula [5], we know that

(5.3.3) E(g, 0,Φϕ) = 2 I(g, ϕ),

where

(5.3.4) I(g, ϕ) =
∫

O(V )(Q)\O(V )(A)
θ(g, h;ϕ) dh

is the theta integral, with vol(O(V )(Q)\O(V )(A), dh) = 1. In particular,
there is an identity of Fourier coefficients:

(5.3.5) ET (g, 0,Φϕ) = 2 IT (g, ϕ)

for all T ∈ Sym2(Q). Since the identity (5.3.5) for all nonsingularT ’s was
actually one of the key ingredients in theproof of the Siegel-Weil formula
in [5] and since we now need a little more information anyway, we return
to the proof of such identities given in [13], rather than viewing them as
consequences (5.3.3).

If det(T ) 6= 0, g ∈ GR, andϕ is factorizable, then

(5.3.6) ET (g, s,Φϕ) = WT,∞(g, s,Φϕ,∞) ·
∏
p

WT,p(s,Φϕ,p),
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as in (5.2.1) above. On the other hand, the corresponding Fourier coefficient
of the theta integral is given by

IT (g, ϕ) =
∫

O(V )(Q)\O(V )(A)

∑
x∈V (Q)2

Q(x)=T

ω(g)ϕ(h−1x) dh

=
∫

O(V )(Q)x0\O(V )(A)
ω(g)ϕ(h−1x0) dh(5.3.7)

=
1
2

∫
O(V )(A)

ω(g)ϕ(h−1x0) dh

=
1
2
·OT,∞(ω(g)ϕ∞) ·

∏
p

OT,p(ϕp),

wherex0 ∈ V 2(Q) with Q(x0) = T , and where, in the last step, we have
assumed thatϕ is factorizable and written

(5.3.8) OT,p(ϕp) =
∫

O(V )(Qp)
ϕp(h−1x0) dT,ph,

p ≤ ∞, for the local orbital integral. The measures are normalized as fol-
lows ([13], p. 95): Let

(5.3.9) Q : V 2 −→ Sym2, x 7→ Q(x) =
1
2

((xi, xj)),

be the moment map. Letα andβ be basis vectors for the1-dimensional
spaces

∧6(V 2)∗ and
∧3(Sym2)

∗, respectively. We also writeα andβ for
the corresponding translation invariant differential forms onV 2 and Sym2.
Let

(5.3.10) V 2
reg = { x ∈ V 2 | detQ(x) 6= 0 },

and note thatV 2
reg is a subset of the submersive set of the moment map, i.e.,

the set ofx = [x1, x2] ∈ V 2 such thatx1 andx2 span a2-plane inV .

Lemma 5.3.1. There is a3-formν onV 2
reg with the following properties.

(i)

α = Q∗(β) ∧ ν.

(ii) For (h, g) ∈ SO(V )×GL2, acting onV 2 byx 7→ hxg−1,

(h, g)∗ν = ν.

(iii) For all points x ∈ V 2
reg, the restriction ofν to ker dQx is nonzero.
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Proof. For x ∈ V 2
reg and s ∈ Sym2, we make the usual identifications

Tx(V 2
reg) = V 2 andTs(Sym2) = Sym2. Then, the differential ofQ is given

by

(5.3.11) dQx(v) =
1
2

(x, v) +
1
2

(v, x).

Here,v ∈ V 2, Q(x) = 1
2 ((xi, xj)), (x, v) = ((xi, vj)), etc. Forx ∈ V 2

reg,
we define the map

(5.3.12) jx : Sym2 −→ V 2 = Tx(V 2
reg), jx(u) =

1
2
x ·Q(x)−1 · u.

Then,(x, jx(u)) = u, and

(5.3.13) dQx ◦ jx(u) = u.

Let Sx = image(jx) ⊂ Tx(V 2
reg), and note that

(5.3.14) Tx(V 2
reg) = Sx ⊕ ker dQx.

We define a3-form ν onV 2
reg as follows. Choose a triple of tangent vectors

u = [u1, u2, u3] with ui ∈ Sym2 with β(u) 6= 0. For a triplet = [t1, t2, t3]
of tangent vectors inTx(V 2), let

(5.3.15) ν(t) = α(jx(u), t) · β(u)−1.

This quantity is independent of the choice ofu, and since the components
of jx(u) spanSx, ν(t) depends only on the projection oft onto ker dQx
with respect to the decomposition (5.3.14). Property (iii) is clear from the
definition.

To check (i), it suffices to evaluate both sides on any6-tuple of tangent
vectors whose components spanV 2, e.g., onv = [jx(u), t], where the com-
ponents oft spanker dQx. Then,

Q∗(β) ∧ ν(v) = β(dQx ◦ jx(u)) · ν(t)

= β(u) · α(jx(u), t) · β(u)−1(5.3.16)

= α(jx(u), t).

To check (ii), note that, ify = (h, g) · x, for (h, g) ∈ SO(V )×GL2, then

(5.3.17) (h, g) · jx(u) = jy(tg−1ug−1).
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Then

ν((h, g)∗(t)) = α(jy(u), (h, g)∗(t)) · β(u)−1

= α((h, g)∗(jx(tgug)), (h, g)∗(t)) · β(u)−1(5.3.18)

= det(g)−3 · α(jx(tgug), t) · β(tgug)−1 det(g)3

= ν(t).

If x ∈ V 2
reg with Q(x) = T , then there is an isomorphism

(5.3.19) ix : SO(V ) −→ Q−1(T ), h 7→ h−1x,

and by (ii) and (iii) of the previous lemma,ω = ωT = i∗x(ν) is a gauge form
on SO(V ).

Lemma 5.3.2. The gauge formω is independent ofT .

Proof. Sinceixg−1 = (1, g) ◦ ix, the invariance property (ii) yields

(5.3.20) ωT ′ = (ixg−1)∗(ν) = i∗x ◦ (1, g)∗(ν) = i∗x(ν) = ωT ,

whereT ′ = tg−1Tg−1. Over an algebraically closed field, the action of the
group GL2 on(Sym2)reg, the open subset of nonsingular elements of Sym2,
is transitive.

The formω determines the Tamagawa measuredh1 on SO(V )(A). On
O(V )(A) = SO(V )(A) × µ2(A), the measure fixed above isdh = dh1 ×
dc, where vol(µ2(A), dc) = 1. On the other hand,ω determines mea-
suresdph1 on the groups SO(V )(Qp), so thatdph = dph1 × dcp, with
vol(µ2(Qp), dcp) = 1, and a factorization

(5.3.21) dh =
∏
p≤∞

dph

of the Tamagawa measure. Moreover, by construction, the measuredph1

coincides, under the isomorphismix0 , with the measure onQ−1(T )(Qp)
determined byν.

Our fixed additive characterψ = ⊗pψp, determines factorizations of the
Tamagawa measures onV 2(A) and on Sym2(A) as follows. OnV 2(Qp),
we have fixed the measuredpx which is self-dual for the pairing[x, y] =
ψp(tr(x, y)), where( , ) is the bilinear form associated toQ. On the other
hand, the gauge formα onV 2 determines a measure

(5.3.22) dα,px = cp(α, ψ) dpx,
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for a positive real constantcp(α, ψ). Then, sincedαx = dx onV 2(A),

(5.3.23)
∏
p≤∞

cp(α, ψ) = 1.

Similarly, we have fixed the measuredpb on Sym2(Qp) which is self-dual
with respect to the pairing[b, c] = ψp(tr(bc)). The gauge formβ determines
a measure

(5.3.24) dβ,pb = cp(β, ψ) dpb,

on Sym2(Qp), for a positive real constantcp(β, ψ). Again, on Sym2(A),
dβb = db and so

(5.3.25)
∏
p≤∞

cp(β, ψ) = 1.

Finally, for the Weil representationωV,ψ = ⊗pωVp,ψp , we have, for allϕ ∈
S(V 2(A)) andϕp ∈ S(V 2(Qp)),

(5.3.26) ωV,ψ(w−1)ϕ(x) =
∫
V 2(A)

ϕ(y)ψ(−tr(x, y)) dy,

and

(5.3.27) ωVp,ψp(w
−1
p )ϕp(x) = γp(V )2 ·

∫
V 2(Qp)

ϕp(y)ψp(−tr(x, y)) dpy;

see (5.6.3) below and Section 8.5. Here, since we are takingw−1
p = [w−1, 1]L,p,

the constantγp(V )2 is given by (8.5.21). Again, by (5.3.26),

(5.3.28)
∏
p≤∞

γp(V ) = 1.

The following result is a very special case of the results of Chapter 4 of
[13].

Proposition 5.3.3. Let

Cp(V, α, β, ψ) =
γp(V )2 cp(β, ψ)

cp(α, ψ)
.

(i) For eachp <∞,

WT,p(0,Φϕ,p) = Cp(V, α, β, ψ) ·OT,p(ϕp).

(ii) For p = ∞, andg ∈ GR,

WT,∞(g, 0,Φϕ,∞) = C∞(V, α, β, ψ) ·OT,∞(ω(g)ϕ∞).
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Remark 5.3.4. Note that the constant of proportionality

γp(V )2 cp(β, ψ) cp(α, ψ)−1

does not depend onT . Moreover, the Fourier coefficient identity (5.3.5) is
an immediate consequence of the combination of this result with (5.3.7) and
the fact that

(5.3.29)
∏
p≤∞

Cp(V, α, β, ψ) = 1.

Corollary 5.3.5. For anyϕf =
∏
p<∞ ϕp ∈ S(V (Af )2),

∏
p<∞

WT,p(0,Φϕ,p) = C∞(V, α, β, ψ)−1 ·
∏
p<∞

OT,p(ϕp).

Proof of Proposition 5.3.3.For anyp ≤ ∞, the Whittaker integral

(5.3.30) WT,p(s,Φϕ) =
∫

Sym2(Qp)
Φϕ(w−1

p n(b), s)ψp(−tr(Tb)) dpb,

defined for Re(s) > 3/2, has an entire analytic continuation, and the linear
functional

(5.3.31) λT,p : ϕ 7→WT,p(0,Φϕ)

onS(V 2(Qp)) defines an O(V )(Qp)-invariant distribution such that

(5.3.32) λp(ω(n(b)ϕ) = ψp(tr(Tb))λT,p(ϕ).

In addition, ifp = ∞, λT,p satisfies the derivative conditions of Lemma 4.2
of [13]. By that lemma, the space of such distributions has dimension at
most1 and is spanned by the orbital integralϕ 7→ OT,p(ϕ). Thus, there is a
constantcp such that

(5.3.33) WT,p(0, ϕ) = cp ·OT,p(ϕ).

To determinecp, we evaluate on a functionϕ ∈ S(V 2
reg(Qp)), which we can

assume is even, i.e., invariant under the subgroupµ2(Qp) of O(Vp). Recall
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thatU := Q(V 2
reg) is a Zariski open subset of Sym2. Then,

WT,p(s,Φϕ)

(5.3.34)

= γp(V )2 ·
∫

Sym2(Qp)

∫
V 2(Qp)

ψp
(
tr(bQ(y))

)
ϕ(y) dpy

× |a(w−1
p n(b))|s ψp(−tr(Tb)) dpb

=
γp(V )2 cp(β, ψ)

cp(α, ψ)
·
∫

Sym2(Qp)

∫
Sym2(Qp)

ψp(tr(bu))Mϕ(u) dpu

× |a(w−1
p n(b))|s ψp(−tr(Tb)) dpb

=
γp(V )2 cp(β, ψ)

cp(α, ψ)
·
∫

Sym2(Qp)
M̂ϕ(b)|a(w−1

p n(b))|s ψp(−tr(Tb)) dpb.

Here

(5.3.35) M : S(V 2
reg(Qp)) −→ S(U(Qp)), ϕ 7→Mϕ,

is the map defined by integration over the fibers with respect to the measure
determined by the restriction of the gauge formν. Since the functionM̂ϕ

lies in the Schwartz spaceS(Sym2(Qp)), we can evaluate the last expression
in (5.3.34) ats = 0 to obtain

WT,p(0,Φϕ) =
γp(V )2 cp(β, ψ)

cp(α, ψ)
·
∫

Sym2(Qp)
M̂ϕ(b) · ψp(−tr(Tb)) dpb

=
γp(V )2 cp(β, ψ)

cp(α, ψ)
·Mϕ(T )(5.3.36)

= Cp(V, α, β, ψ) ·OT,p(ϕ).

Here, in the last step, we have used the fact that the measuredT,ph1 on
SO(V )(Qp) coincides with the measure determined by the restriction of
ν to Q−1(T )(Qp), as well as the fact thatϕ is µ2(Qp) invariant, so that
the orbital integral over O(V )(Qp) coincides with the orbital integral over
SO(V )(Qp). In the archimedean case, we now replaceϕ byω(g)ϕ to obtain
(ii).

We next derive a global expression for the product of local orbital inte-
grals in the preceding corollary.
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Write

(5.3.37) SO(V )(A) =
∐
j

SO(V )(Q) SO(V )(R)hjKH ,

whereKH ⊂ SO(V )(Af ) is a compact open subgroup and we take the
representativeshj ∈ SO(V )(Af ). Let

(5.3.38) Γj = SO(V )(Q) ∩
(

SO(V )(R) · hjKHh
−1
j

)
.

Proposition 5.3.6. For any factorizable functionϕf ∈ S(V (Af )2) which
isKH -invariant,

∏
p<∞

OT,p(ϕp) = vol(KH) ·
( ∑

j

∑
x∈V (Q)2

Q(x)=T

mod Γj

ϕev
f (h−1

j x)
)
,

where

ϕev
f (x) =

∫
µ2(Af )

ϕf (cx) dc

is the locally even component ofϕf . Here the measures used to define the
local orbital integrals are determined by the gauge formω andvol(KH) =
vol(KH , dhf ), wheredhf is the product of these measures.

Proof. Noting that vol(µ2(Q)\µ2(A), dc) = 1/2, we compute the integral
IT (gτ , ϕ) in another way:

IT (gτ , ϕ)

(5.3.39)

=
1
2
·
∫

SO(V )(Q)\SO(V )(A)
θT (gτ , h;ϕev) dh

=
1
2
· vol(KH) ·

∑
j

∫
Γj\SO(V )(R)

∑
x∈V (Q)2

Q(x)=T

ω(gτ )ϕev
∞(h−1

∞ x)ϕev
f (h−1

j x) dh∞

=
1
2
· vol(KH) ·

∑
j

∑
x∈V (Q)2

Q(x)=T

mod Γj

ϕev
f (h−1

j x)
∫

SO(V )(R)
ω(gτ )ϕev

∞(h−1
∞ x) dh∞
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=
1
2
· vol(KH) ·

( ∑
j

∑
x∈V (Q)2

Q(x)=T

mod Γj

ϕev
f (h−1

j x)
)
·OT,∞(ω(gτ )ϕ∞).

Here we have used the factorizationdh = dh∞ dhf , determined by the
gauge formω, and vol(KH) = vol(KH , dhf ). Note thatd∞h is the mea-
sure used to define the local orbital integral, as above. Comparing this ex-
pression with the last expression in (5.3.7), we find the claimed result.

We will also need a variant of the previous proposition. Fix a primep
such thatVp is isotropic. By strong approximation, we may then write

(5.3.40) SO(V )(A) = SO(V )(Q) · SO(V )(R) SO(V )(Qp)K
p
H

for any compact open subgroupKp
H ⊂ SO(V )(Ap

f ).

Proposition 5.3.7.Suppose thatϕ ∈ S(V (Ap
f )

2) is factorizable and invari-
ant underKp

H . Let

Γ = SO(V )(Q) ∩
(

SO(V )(R) SO(V )(Qp)K
p
H

)
.

Then ∏
` 6=p

OT,`(ϕ`) = vol(Kp
H) ·

∑
x∈V (Q)2

Q(x)=T

mod Γ

(ϕpf )
ev(x).

Proof. For convenience of notation, we temporarily writeH = SO(V ).
Then, forg ∈ GR andT nonsingular, we have

IT (g, ϕ)

(5.3.41)

=
1
2

∫
H(Q)\H(Q)·H(R)H(Qp)Kp

∑
x∈V (Q)2

Q(x)=T

ω(g)ϕev(h−1x) dh

=
1
2

vol(Kp
H)

∫
Γ\H(R)H(Qp)

∑
x∈V (Q)2

Q(x)=T

ω(g)ϕev(h−1x) dh

=
1
2

vol(Kp
H)
( ∑

x∈V (Q)2

Q(x)=T

mod Γ

(ϕpf )
ev(x)

)
·OT,∞(ω(g)ϕ∞) ·OT,p(ϕp).
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Here note that the stabilizer in SO(V ) is an elementx ∈ V 2 withQ(x) = T
is trivial. Again comparing this last expression with (5.3.7), we obtain the
claimed result.

A useful formula for the constantCp(V, α, β, ψ) can be obtained as fol-
lows. Fix an isomorphismV (Q) ' Q3 and write

(5.3.42) Q(x) = txSx

with S ∈ Sym3(Q). ThenV 2 ' M3,2(Q), and we can takeα = dx1,1 ∧
· · · ∧ dx3,2. For our standard additive characterψ, we then find that

(5.3.43) cp(α, ψ) = |det(2S) |−1
p .

If we takeβ = db1∧db2∧db3 whereb =
(
b1 b2
b2 b3

)
∈ Sym2, then it is easy

to check that

(5.3.44) cp(β, ψ) = |2|−
1
2

p .

In the particular case in whichV is the space of trace zero elements in a
quaternion algebra ramified at the primes dividing the square free integer
D(B), we can take an isomorphismV (Q) ' Q3 which identifiesOB ∩
V (Q) with Z3, whereOB is a given maximal order inB. In this case,

(5.3.45) |det(2S)|p = |D(B)|2p |2|p,

and hence, for these choices ofα, β andψ, we have

Cp(V, α, β, ψ) = γp(V )2 |D(B)|2p |2|
1
2
p(5.3.46)

= Cp(V ) · |2|−1
p ,

whereCp(V ) is the constant in (5.2.11).

5.3.2 The nonsingular coefficients ofE ′
2,T (τ, 0, B)

We now apply the above analysis to refine the expressions for the Fourier
coefficientsE ′2,T (τ, 0, B) given in Proposition 5.2.8.

The relevant three-dimensional quadratic spaces, Schwartz functions, etc.,
are defined as follows. For a finite primep, letB(p) be the definite quater-
nion algebra overQ whose invariants differ from those ofB at precisely
p and∞. Let V (p) be the space of elements ofB(p) of trace zero with
quadratic form given byQ(x) = −x2. Recall that we have fixed an isomor-
phism

(5.3.47) B(p)(Ap
f ) ' B(Ap

f )
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and hence an identification

(5.3.48) S(V (p)(Ap
f )

2) ' S(V (Ap
f )

2).

If p - D(B), the section

(5.3.49) Φ(p)(s) = Φ
3
2∞(s)⊗ Φra

p (s)⊗
⊗
` 6=p

Φ̃B
` (s),

obtained by replacing̃ΦB
p (s) by Φra

p (s), coincides ats = 0 with a Siegel-
Weil section forV (p) given by

(5.3.50) Φ(p)(0) = λV (p)(ϕ(p)),

where

(5.3.51) ϕ(p) = ϕ∞ ⊗ ϕra
p ⊗ ϕpf .

Hereϕ∞ ∈ S(V (p)(R)2) is the Gaussian,ϕra
p the characteristic function of

(Lra
p )2, and

(5.3.52) ϕpf = ⊗` 6=pϕB` .

Let OB(p) be the maximal order inB(p) determined by the maximal order

OB in B via the isomorphism (5.3.47). LetK(p)
H be the image of(OB(p) ⊗Z

Ẑ)× in SO(V (p))(Af ), and write

(5.3.53) SO(V (p))(A) =
∐
j

SO(V (p))(Q) SO(V (p))(R)hjK
(p)
H .

Also let

(5.3.54) Γj = SO(V (p))(Q) ∩
(

SO(V (p))(R)hjK
(p)
H h−1

j

)
.

If p | D(B), the spaceV (p)
p is isotropic, and we write

(5.3.55) SO(V (p))(A) = SO(V (p))(Q) SO(V (p))(R) SO(V (p))(Qp)K
p
H ,

and let

(5.3.56) Γ′ = SO(V (p))(Q) ∩
(

SO(V (p))(R) SO(V (p))(Qp)K
p
H

)
.

HereKp
H ⊂ SO(V (p))(Ap

f ) is obtained by removing the factor atp from

K
(p)
H .
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Theorem 5.3.8.Suppose thatT ∈ Sym2(Z)∨ with det(T ) 6= 0 and with
Diff (T,B) = {p}.
(i) If p - D(B),

E ′2,T (τ, 0, B) = qT · νp(T ) log(p) · 1
2
·
( ∑

j

∑
x∈V (p)(Q)2

Q(x)=T

mod Γj

ϕ
(p)
f (h−1

j x)
)
,

wherehj andΓj are as in (5.3.53) and (5.3.54), respectively, and the func-
tionϕ(p) ∈ S(V (p)(Af )2) is defined by (5.3.51).
(ii) If p | D(B), then

E ′2,T (τ, 0, B) = qT · νp(T ) log(p) · 1
2
·
( ∑
x∈V (p)(Q)2

Q(x)=T

mod Γ′

ϕpf (x)
)
,

whereΓ′ is as in (5.3.56) and the functionϕpf ∈ S(V (Ap
f )

2) is given by
(5.3.52).
(iii) If p = ∞ andsig(T ) = (1, 1) or (0, 2), then

E ′2,T (τ, 0, B) = qT · ν∞(T, v) · 1
2
·
( ∑
x∈V (Q)2

Q(x)=T

mod Γ

ϕBf (x)
)
,

whereΓ = SO(V )(Q) ∩ ( SO(V )(R) ·KH) andν∞(T, v) is given in The-
orem 5.2.7.

Proof. First suppose that Diff(T,B) = {p} for a finite primep. Recall that
T is then positive-definite.
Casep - D(B). By Corollary 5.3.5, Proposition 5.3.6, and (5.3.46), we
have

WT,p(0,Φra
p ) ·

∏
` 6=p

WT,p(0, Φ̃B
` )

(5.3.57)

= C∞(V (p))−1 |2|∞ · vol(K(p)
H ) ·

( ∑
j

∑
x∈V (p)(Q)2

Q(x)=T

mod Γj

ϕ
(p)
f (h−1

j x)
)
.
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Thus, using the value forWT,p(0,Φra
p ) given in (i) of Theorem 5.2.6, we

obtain ∏
` 6=p

WT,p(0, Φ̃B
` )(5.3.58)

= Cp(V (p))−1 1
2

(p+ 1)−1 · C∞(V (p))−1 2 · vol(K(p)
H )

×
( ∑

j

∑
x∈V (p)(Q)2

Q(x)=T

mod Γj

ϕ
(p)
f (h−1

j x)
)
.

Inserting this into the expression of Proposition 5.2.8, we have
(5.3.59)

E ′2,T (τ, 0, B) = C · qT · νp(T ) log(p) ·
( ∑

j

∑
x∈V (p)(Q)2

Q(x)=T

mod Γj

ϕ
(p)
f (h−1

j x)
)
,

where the constantC is given by

C = −CB(0) · 2
√

2 · 4π2 · Cp(V ) · (1− p−2) · Cp(V (p))−1C∞(V (p))−1

(5.3.60)

× (p+ 1)−1 vol(K(p)
H )

= −CB(0) · 2
√

2 · 4π2 · C∞(V )−1 · (1− p−2) (p+ 1)−1 vol(K(p)
H ),

since

(5.3.61) C∞(V (p))Cp(V (p)) = C∞(V )Cp(V ).

Casep | D(B). In this case, we use Proposition 5.3.7 and write

∏
` 6=p

WT,`(0, Φ̃B
` )

(5.3.62)

= C∞(V )−1|2|∞Cp(V )−1|2|p ·
∏
` 6=p

OT,`(ϕB` )

= C∞(V )−1|2|∞Cp(V )−1|2|p · vol(Kp
H) ·

( ∑
x∈V (p)(Q)2

Q(x)=T

mod Γ′

ϕpf (x)
)
.
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This gives

(5.3.63) E ′2,T (τ, 0, B) = C · qT · νp(T ) log(p) ·
( ∑
x∈V (p)(Q)2

Q(x)=T

mod Γ′

ϕpf (x)
)
,

whereC is given by

−CB(0) · 2
√

2 · 4π2 · Cp(V ) (p+ 1)C∞(V )−1Cp(V )−1|2|p vol(Kp
H)

(5.3.64)

= −CB(0) · 2
√

2 · 4π2 · C∞(V )−1 |2|p (p+ 1) vol(Kp
H).

Finally, in the casep = ∞, we use Corollary 5.3.5 and Proposition 5.3.6
for the spaceV to obtain

(5.3.65) E ′2,T (τ, 0, B) = C · qT · ν∞(T, v) ·
( ∑
x∈V (Q)2

Q(x)=T

mod Γ

ϕBf (x)
)
,

where

(5.3.66) C = −CB(0) · 2
√

2 · 4π2 · C∞(V )−1 · vol(KH).

In all of these statements, the measures are chosen as follows. The gauge
formsα on V 2 andβ on Sym2 are chosen as in the end of last subsection.
We then use the Haar measures on SO(V )(Af ) and SO(V )(Qp) given by
the gauge formν determined byα andβ. For these measures, we have the
following information about volumes:

Lemma 5.3.9. (i) If p - D(B),

vol(KH,p) = (1− p−2)|2|p.

(ii) If p | D(B), then

vol(KH,p) = (p+ 1)|2|p.

(iii) Globally,

vol(KH) =
1
2
ζD(B)(2)−1 ·

∏
p|D(B)

(p+ 1) =
3
π2

D(B)2
∏

p|D(B)

(p− 1)−1.
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Using these values, we see thatC is given by (5.3.66) in all cases. More
precisely, whenp | D(B), we have

(5.3.67) (1− p−2) (p+ 1)−1 vol(K(p)
H ) = vol(KH),

whereas, whenp - D(B),

(5.3.68) |2|p (p+ 1) vol(Kp
H) = vol(KH).

Then, since

(5.3.69) CB(0) · 4π2 · vol(KH) =
1
2
D(B)2,

and

(5.3.70) C∞(V ) = γ∞(V )2 ·D(B)2 2
√

2,

with

(5.3.71) γ∞(V )2 = γ(V +
∞)2 = (−i)2 = −1,

by (5.7.23), we obtainC = 1
2 .

Proof of Lemma 5.3.9.For completeness, we give the computation of these
volumes. In Proposition 5.3.3, setφ = char(L2

p) with Lp = Op ∩ Vp, the
standard maximal lattice ofVp, we obtain

(5.3.72) WT,p(0, Φ̃B
p ) = C(V, α, β, ψ) ·O1

T,p(ϕ),

whereO1
T,p(·) denotes the SO(V )-orbital integral. SinceKH,p preserves

Lp, one has by definition

(5.3.73) O1
T,p(ϕ) = vol(KH,p)[KH,x0 : KH,p].

Herex0 = (x01, x02) ∈ L2
p with Q(x0) = T , and

(5.3.74)
KH,x0 = {h ∈ SO(Vp) | hx0 ∈ L2

p } = {h ∈ SO(Vp) | hx01, hx02 ∈ Lp }.

Case 1.We first assume thatp | D(B), i.e.,Bp is a division algebra over
Qp. In this case, an elementx ∈ Vp is inLp if and only if its reduced norm
is in Zp. SoKH,x0 = SO(Vp) = B∗p/Q∗

p. But, by adjusting by a central
element, we can scale any element ofB×p to lie in Op and have reduced
norm of valuation0 or 1. Thus, the set

O×p ∪O×p ·Π
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maps surjectively onto SO(Vp). Here Π is a uniformizer ofBp. Thus,
SO(Vp) consists of precisely2 cosets forKH,p. Thus we have

(5.3.75) WT,p(0, Φ̃B
p ) = Cp(V, α, β, ψ) · 2 vol(KH,p).

On the other hand, Theorem 5.2.6 says

(5.3.76) WT,p(0, Φ̃B
p ) = Cp(V ) · 2 (p+ 1).

Now (5.3.46) gives

(5.3.77) vol(KH,p) = (p+ 1)|2|p

in this case.
Case 2.Now assumep - D(B), i.e.,Bp = M2(Qp). Let

(5.3.78) x01 =
(

1 0
0 −1

)
, x02 =

(
0 1
1 0

)
,

so thatx0 = [x01, x02] hasQ(x0) = T with T = −I2. In this case,
SO(Vp) = PGL2(Qp) andKH,p is the image of GL2(Zp) in PGL2(Qp).
Notice that

(5.3.79) PGL2(Qp) = {
(
pa u
0 1

)
: a ∈ Z, u ∈ Qp} ·KH,p.

A matrix g =
(
pa u
0 1

)
∈ KH,x0 if and only if

(5.3.80) gx01g
−1 ∈M2(Zp) and gx02g

−1 ∈M2(Zp).

A direct calculation shows thatg ∈ KH,x0 if and only if

(5.3.81) 2u ∈ Zp, a ≤ 0 and up−a + pa ∈ Zp.

Thus,

(5.3.82) KH,x0/KH,p =


{I2} if p 6= 2,

{I2,
(

1 1
0 2

)
} if p = 2.

This proves that

W−I2,p(0, Φ̃
B
p )(5.3.83)

= Cp(V, α, β, ψ) vol(KH,p) |2|−1
p = Cp(V ) |2|−2

p vol(KH,p).
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Whenp 6= 2, the Gross-Keating invariants of the matrix diag(1,−I2) are
just (0, 0, 0), and Corollary 5.2.5 gives

(5.3.84) WT,p(0,Φϕ,p) = Cp(V ) · (1− p−2).

This proves that

(5.3.85) vol(KH,p) = (1− p−2)|2|p = 1− p−2

in this case. Whenp = 2, however, the Gross-Keating invariants of the
matrix diag(1,−I2) are (0, 1, 1) by [18], Proposition B.5. So Corollary
5.2.5 gives

(5.3.86) WT,p(0,Φϕ,p) = 2Cp(V ) · (1− p−2),

and again

(5.3.87) vol(KH,p) = (1− p−2)|2|p.

This proves claims (i) and (ii). Claim (iii) follows from (i) and (ii).

5.4 SINGULAR COEFFICIENTS

We now begin the computation of the coefficientsE ′2(τ, 0, B) for singular
T . Let

(5.4.1) T =
(
t1 m
m t2

)
∈ Sym2(Z)∨

with det(T ) = 0. WhenT is of rank1, there is a unique integert and a pair
of relatively prime integers(n1, n2) such that

(5.4.2) t1 = n2
1 t, t2 = n2

2 t, m = n1n2 t.

The pair(n1, n2) is unique up to sign; for convenience, we require that
n2 > 0 or n2 = 0 andn1 ≥ 0. We write 4 t = n2 d where−d is the
fundamental discriminant of a quadratic field or−d = 1. Let

(5.4.3) γ0 =



(
1 0
n1 n2

)
if n2 6= 0,

(
0 1
1 0

)
if n2 = 0.

Then

(5.4.4) T = tγ0

(
0 0
0 t

)
γ0.
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WhenT = 0, we sett = 0, d = 0, andn = 0.
Let

(5.4.5) w1 =


1 0

0 1
0 1

−1 0

 ∈ GQ,

and choose elementsw1,p = [w1, 1]L ∈ Kp with imagew1 in Kp and with
w1 =

∏
pw1,p.

Proposition 5.4.1. Let Φ(s) = ⊗Φp(s) ∈ I(s, χ) be any factorizable sec-
tion.
(i) Whenrank(T ) = 1,

ET (g, s,Φ) = BT (m(γ0)g, s,Φ) +WT (g, s,Φ)

=
∏
p

BT,p(m(γ0)gp, s,Φp) +
∏
p

WT,p(gp, s,Φp),

where

BT,p(gp, s,Φp) =
∫

Qp
Φp(w−1

1,pn(
(

0 0
0 b

)
)gp, s)ψp(−tb) dpb,

and

WT,p(gp, s,Φp) =
∫

Sym2(Qp)
Φp(w−1

p n(b)gp, s)ψp(−tr(Tb)) dpb.

Heredpb is the standard Haar measure onQp (resp. Sym2(Qp)) which is
self-dual with respect toψp (resp.ψp ◦ tr).
(ii) The constant term ofE(g, s,Φ) is

E0(g, s,Φ) = Φ(g, s) +
∑

γ∈Γ∞\SL2(Z)

B0(m(γ)g, s,Φ) +W0(g, s,Φ),

whereW0 andB0 are defined as in (i) withT = 0.

In fact,BT (g, s,Φ) andWT (g, s,Φ) are both related to the Fourier co-
efficients of an Eisenstein series of genus one, which we recall in the next
section. The next few sections are devoted to making such relations precise
in the caseΦ(s) = ΦD(s) ∈ I(s, χ), a standard section defined as follows.
For every square free positive integerD, not necessarily the discriminant of
an indefinite quaternion algebra, we let

(5.4.6) ΦD(s) = Φ
3
2∞(s)⊗ (

⊗
`|D

Φra
` (s) )⊗ (

⊗
`-D

Φ0
`(s) ).
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HereΦ
3
2∞(s) ∈ I∞(s, χ∞) is the ‘weight 3

2 ’ section. Forp | D, we also
define a standard section

(5.4.7) Φ
D
p
,1(s) = Φ

3
2∞(s)⊗ Φ1

p(s)⊗ (
⊗
`|D/p

Φra
` (s) )⊗ (

⊗
`-D

Φ0
`(s) ).

Finally, if Φ(s) = Φ∞(s) ⊗ Φf (s) whereΦ∞(s) = Φl
∞(s) is of weight

l, we recall that the classical Eisenstein series is given byE(τ, s,Φ) =
(det v)−

l
2 E(gτ , s,Φ). In our present casel = 3

2 .

5.5 EISENSTEIN SERIES OF GENUS ONE

In this section, we recall the Eisenstein series of genus one studied in [9].
Let G′p andG′A be the metaplectic extension of SL2(Qp) and SL2(A), re-
spectively. We define the induced representationI(s, χ) = I1(s, χ) and
Eisenstein seriesE(g, s,Φ) for G′A as in Section 5.1.

Fix a quadratic characterχ = ⊗χp of Q×\Q×
A . For a quadratic spaceVp

overQp of dimension3 such thatχVp(·) = (−detVp, ·)p = χp(·), there is
a Weil representationωVp = ωVp,ψp of G′p on S(Vp) and aG′p-equivariant
map

(5.5.1) λVp : S(Vp) −→ Ip(
1
2
, χp), λVp(ϕ)(g) = ωVp(g)ϕ(0).

For a latticeLp of Vp, there is a unique standard sectionΦp(s) ∈ I(s, χp)
such that

(5.5.2) Φp(g,
1
2
) = λVp(charLp).

We say thatΦp(s) is associated toLp. In particular, we have the standard
sectionsΦ0

p, Φ1
p, andΦra

p in Ip(s, χp) associated toL0
p, L

1
p, andLra

p , respec-
tively.

Notice that we have writtenI(s, χ) for both genus one and genus two in-
duced representations. We will abuse notation in the same way for sections
and Eisenstein series, and we trust that the reader will be able to distinguish
by context which genus is involved. When necessary, we use a subscript to
indicate the genus. For example,ΦD

1 (s) ∈ I(s, χ) = I1(s, χ) is a section in
an induced representation for genus one andE(g, s,ΦD

1 ) is the correspond-
ing genus one Eisenstein series.

The followingnormalizedEisenstein series of genus one

(5.5.3) E(τ, s,ΦD
1 ) = −2CD(s− 1

2
)E(τ, s,ΦD

1 )
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was studied in detail in [9]. HereCD(s) is given by (5.1.38), so, in particu-
lar,

−2CD(s− 1
2
) = (s+

1
2
) c(D) ΛD(2s+ 1);

see (6.23) of [9]. The normalized Eisenstein series of genus one satisfies a
functional equation [9], Section 15,

(5.5.4) E(τ, s,ΦD
1 ) = E(τ,−s,ΦD

1 ).

As in [9], we actually need a modified Eisenstein series of genus one

(5.5.5) E1(τ, s, B) = E(τ, s,ΦD
1 ) +

∑
p|D

Cp(s) E(τ, s,Φ
D
p

1 ),

for an indefinite quaternion algebraB. HereD = D(B), andCp(s) is any
rational function ofp−s with

(5.5.6) Cp(
1
2
) = 0, and C ′p(

1
2
) = −p− 1

p+ 1
log p.

The main result of [9] is a precise relation betweenE ′1(τ, 1
2 , B) and an arith-

metic theta function. In addition, explicit formulas for the Fourier coeffi-
cients ofE ′1(τ, 1

2 , B) were obtained in [9]. We will not need these formulas
here.

5.6 BT

In this section, we relate the quantityBT (g, s,Φ) to the t-th Fourier co-
efficient of a certain Eisenstein series of genus one. Fix a primep. The
key point is to relate the local integralsBT,p(g, s,Φp) to local genus one
Whittaker integrals.

We consider the more general case whereVp is an arbitrary quadratic
space overQp such thatχVp = χp, with m = dimVp, andLp is a lattice
in Vp. For clarity, we use a subscripti, i = 1, 2, to stand for sections in
Ii(s, χV ) and frequently drop the subscriptp. For Φ2(s) ∈ I2(s, χV ) and
t ∈ Qp, we let

(5.6.1) Bt,p(g, s,Φ2) =
∫

Qp
Φ2(w−1

1 n(
(

0 0
0 b

)
)g, s)ψ(−tb) db.

Then, forT of rank 1 and with the conventions of (5.4.1), (5.4.2), and
(5.4.3),

(5.6.2) BT,p(g, s,Φ2) = Bt,p(m(γ0)g, s,Φ2).
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Lemma 5.6.1. Letϕ′1, ϕ
′′
1 ∈ S(Vp), and letγ =

(
a b
c d

)
∈ GL2(Qp). For

i = 1, 2, letϕi ∈ S(V i
p ) be given by

ϕ1(x) = ϕ′1(cx)ϕ
′′
1(dx), ϕ2 = ϕ′1 ⊗ ϕ′′1 ∈ S(V 2

p ).

LetΦi(s) ∈ Ii(s, χV ) be the standard section associated toϕi. Then

Bt,p(m(γ), s,Φ2) = χV (det γ)|det γ|s+
3
2

p Wt,p(1, s+
1
2
,Φ1).

Before giving the proof, we recall some basic formulas of the Weil rep-
resentation; see Lemma 8.5.6. Forϕ ∈ S(V 2), x = [x1, x2] ∈ V 2,
a ∈ GL2(Qp), andb ∈ Sym2(Qp),

ωV (w−1
1 )ϕ(x) = χV (−1) γp(V )

∫
V
ϕ(x1, y)ψ(−(x2, y)) dy,

ωV (w−1)ϕ(x) = γp(V )2
∫
V 2
ϕ(y)ψ(−tr(x, y)) dy,(5.6.3)

ωV (m(a))ϕ(x) = χV (det a)|a|
dimV

2 ϕ(xa),

ωV (n(b))ϕ(x) = ψ(
1
2

tr(b(x, x)))ϕ(x).

Here and throughout this chapter, we identifyg ∈ Sp2(Qp) with [g, 1]L
in Gp, andg ∈ SL2(Qp) with [g, 1]L ∈ G′p, Section 8.5 for the notation.
Similar formulae hold for the Weil representation ofG′p onS(V ). As before,
the local constant

γp(V ) = χV (−1) γp(η) γp(η ◦ V )−1(5.6.4)

= χV (−1) γp(η)
(
εp(V ) γp(η)3 γp(detV, η)

)−1
,

is defined in (8.5.21),εp(V ) is the Hasse invariant ofV , γp(η) is the local
Weil index [14], andη(x) = ψ(1

2x).

Proof of Lemma 5.6.1.Sets1 = m−2
2 , ands2 = m−3

2 = s1 − 1
2 , where

m = dimV . For a positive integerr, let V (r) = V ⊕ Vr,r whereVr,r be
the direct sum ofr copies of the standard hyperbolic plane. LetLr,r be

the direct sum ofr copies of the standard hyperbolic lattice, and letϕ
(r)
i =

ϕi ⊗ char(Lir,r), Then, unfolding the Weil representation and using Lemma
A.3 of [4], we have

Bt,p(m(γ),r + s2,Φ2)(5.6.5)

=
∫

Qp
ωψ
(
w−1

1 n(
(

0 0
0 b

)
)m(γ)

)
ϕ

(r)
2 (0)ψ(−tb) db.
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This integral is in turn equal to∫
Qp
χV (−1) γp(V )

×
∫
V (r)

ψ(
1
2
b(x, x))χ(det γ) |det γ|r+

m
2

p ϕ2((0, x)γ) dx · ψ(−tb) db

= χ(det γ)|det γ|r+s2+ 3
2

p

∫
Qp
χV (−1) γp(V )

×
∫
V (r)

ψ(
1
2
b(x, x))ϕ(r)

1 (x) dx · ψ(−tb) db

= χV (det γ)|det γ|r+s2+ 3
2

p Wt,p(1, r + s1,Φ1).

This proves the lemma.

The following simple corollary will be useful later.

Corollary 5.6.2. For a lattice Lp in Vp, and for i = 1 or 2, let Φi ∈
Ii(s, χVp) be the standard section associated tochar(Lip). Then, forγ =(
a b
c d

)
∈ GL2(Zp),

Bt,p(m(γ), s,Φ2) = χV (det γ)|det γ|s+
3
2

p Wt,p(1, s+
1
2
,Φ1).

Proof. In Lemma 5.6.1, setϕ′ = ϕ′′ = char(Lp). Then the fact that
min(ordpc,ordpd) = 0 implies thatϕi = char(Lip).

Next we look at the casep = ∞. For i = 1, 2, let Φl
i,∞(s) ∈ Ii(s, χ)

be the unique eigenfunction ofK ′
∞ with eigencharacterdetl normalized by

the conditionΦl
i,∞(1, s) = 1.

Lemma 5.6.3. For τ =
(
τ1 τ12
τ12 τ2

)
∈ H2,

Bt,∞(gτ , s,Φl
2,∞) =

(
det v
v2

) 1
2
(s+ 3

2
)

Wt,∞(g′τ2 , s+
1
2
,Φl

1,∞).

Proof. Write

(5.6.6) w1 n(
(

0 0
0 b

)
) gτ = n(x)m(y)

(
c d
−d c

)
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with c+ id ∈ U(2), x ∈ Sym2(R), andy ∈ Sym2(R)>0. Then multiplying
both sides on the right byt(i, 1), we obtain

(5.6.7) det y =
(det v)

1
2

|b+ τ2|
, det(c+ id) =

|b+ τ2|
b+ τ2

.

and thus

Φl
2,∞(w1n(

(
0 0
0 b

)
) gτ , s) = (det v)

1
2
(s+ 3

2
)|b+ τ2|l−s−

3
2 (b+ τ2)−l

=
(

det v
v2

) 1
2
(s+ 3

2
)

Φl
1,∞(w1n(b) gτ2 , s+

1
2
).(5.6.8)

Then,

Bt,∞(gτ , s,Φl
2,∞)

=
(

det v
v2

) 1
2
(s+ 3

2
) ∫

R
Φl

1,∞(wn(b)gτ2 , s+
1
2
)ψ(−tb) db

=
(

det v
v2

) 1
2
(s+ 3

2
)

Wt,∞(gτ2 , s+
1
2
,Φl

1,∞).

Finally, we return to the global situation.

Theorem 5.6.4. Let {Lp}p<∞ be a collection of quadratic lattices1 over
Zp of rank3 with χLp = χp. Let Φi,p be the standard section inIi(s, χp)
associated tochar(Lip), andΦi,f = ⊗p<∞Φi,p. Then

BT (τ, s,Φl
2,∞ ⊗ Φ2,f )

=
(

det v
t−1tr(Tv)

) 1
2
(s+ 3

2
−l)

Et(t−1tr(Tτ), s+
1
2
,Φl

1,∞ ⊗ Φ1,f ).

Proof. We assume thatt2 6= 0. Corollary 5.6.2 implies that forp <∞

BT,p(1, s,Φ2,p) = Bt,p(m(γ0), s,Φ2,p)

= χVp(n2)|n2|
s+ 3

2
p Wt,p(1, s+

1
2
,Φ1,p).

On the other hand, one hasm(γ0)gτ = gτ̃ with τ̃ = γ0τ
tγ0. In particular,

det ṽ = det v · det γ2
0 = (det v) · n2

2 and τ̃2 = t−1tr(Tτ).

1which almost everywhere agree with the completions of a global quadratic latticeL
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Thus, Lemma 5.6.3 and Proposition 5.4.1 give

BT,∞(gτ , s,Φl
2,∞)

= Bt,∞(gτ̃ , s,Φl
2,∞)

= n
s+ 3

2
2

(
det v

t−1tr(Tv)

) 1
2
(s+ 3

2
)

Wt,∞(gt−1tr(Tτ), s+
1
2
,Φ1,∞).

Sincen2 > 0, we have
∏
p<∞ χVp(n2) = 1, and thus

BT (gτ , s,Φl
2,∞ ⊗ Φ2,f )

=
(

det v
t−1tr(Tv)

) 1
2
(s+ 3

2
)

Et(gt−1tr(Tτ), s,Φ
l
1,∞ ⊗ Φ1,f ).

Multiplying both sides by(det v)−
l
2 , we prove the proposition.

5.7 WT

In this section, we will prove a relation betweenWT (τ, s,ΦD
2 ) and the coef-

ficientEt(t−1tr(Tτ), s− 1
2 ,Φ

D
1 ) of the genus one Eisenstein series. Recall

that, for a standard factorizable sectionΦ(s) = ⊗pΦp(s) ∈ I(s, χ),

(5.7.1) WT (τ, s,Φ) = WT,∞(τ, s,Φ∞) ·
∏
p<∞

WT,p(1, s,Φp).

WhenΦp(0) = λVp(ϕ) for someϕ ∈ S(Vp)2, (8.5.25) and formula (5.6.3)
yield

WT,p(r,Φp) =
∫

Sym2(Qp)
Φp(w−1n(b), r) · ψp(−tr(Tb)) dpb

=
∫

Sym2(Qp)
ωVp(w

−1n(b))ϕ(r)(0) · ψp(−tr(Tb)) dpb(5.7.2)

= γp(V )2
∫

Sym2(Qp)

∫
(V

(r)
p )2

ψp(tr(bQ(x)))ϕ(r)(x) dpx

× ψ(−tr(Tb)) dpb,

for a positive integerr. Here, as in Section 5.3, the Haar measuresdpx on

(V (r)
p )2 anddpb on Sym2(Qp) are taken to be self-dual with respect to the

pairings[x, y] 7→ ψp(tr(x, y)) and[b, c] 7→ ψp(tr(bc)), respectively. We fix
a latticeLp in Vp and let

(5.7.3) L#
p = {x ∈ Vp | ψp((x, y)) = 1 for all y ∈ Lp}
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be the dual latticeLp. We recall from [17] and [18] that there are rational
functionsFp(X,T, Lp) andFp(X, t, Lp) ∈ Q(X) such that, for any integer
r ≥ 0,

(5.7.4)

Fp(X,T, Lp)|X=p−r =
∫

Sym2(Qp)

∫
(L

(r)
p )2

ψp(tr(bQ(x)))ψp(−tr(Tb)) dx db

and

(5.7.5) Fp(X, t, Lp)|X=p−r =
∫

Qp

∫
L

(r)
p

ψ(bQ(x))ψp(−tb) dx db,

where the measuredx on (V (r)
p )2 (resp.db on Sym2(Qp)) is normalized so

that vol((L(r)
p )2, dx) = 1 (resp. vol(Sym2(Zp), db) = 1). We refer to the

functionsFp(X,T, Lp) andFp(X, t, Lp) as thelocal density functions.

Lemma 5.7.1. For a lattice Lp in Vp with ϕ = char(Lp) and Φi(s) ∈
Ii(s, χV ), the associated standard section, fori = 1, 2,

WT,p(s,Φ2) = γp(Vp)2[L#
p : Lp]−1|2|

1
2
p Fp(X,T, Lp),

and

Wt,p(s+
1
2
,Φ1) = χV (−1) γp(Vp)[L#

p : Lp]−
1
2 Fp(X, t, Lp),

whereX = p−s.

Notice thatγp(Vp)2[L#
p : Lp]−1|2|

1
2
p is exactly the constantCp(V ) in

(5.2.11) and Theorem 5.2.4 for the quadratic space considered there.
The local density functionsFp(X,T, Lp) andFp(X, t, Lp) are computed

explicitly in [17] and [18]. We recall the needed formulae here for con-
venience. We refer to Appendix B of [18] for the definition of the Gross-
Keating invariants and the Gross-Keatingε-constant.

Theorem 5.7.2. ([18], Theorem 5.7)Let (0, a2, a3) be the Gross-Keating
invariants ofdiag(1, T ). Let

µp(T ) = εp(T )(−detT,−1)p,

as in Definition 5.2.3, and let

δp,i = δp,i(T ) =

{
1 if i = 0, [a2

2 ] + 1,

1− p if 1 ≤ i ≤ [a2
2 ].
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(i) Whena2 is odd,

Fp(X,T, L0
p)

1− p−2X2
=

∑
0≤i≤a2−1

2

pi(X2i + µp(T )Xa2+a3−2i),

and

Fp(X,T, Lra
p ) =

∑
0≤i≤a2+1

2

δp,i p
i(X2i − µp(T )Xa2+a3−2i).

(ii) Whena2 is even,

Fp(X,T, L0
p)

1− p−2X2

=
∑

0≤i≤a2
2
−1

pi(X2i + µp(T )Xa2+a3−2i) + p
a2
2

∑
0≤k≤a3−a2

(εX)a2+k,

and

Fp(X,T, Lra
p ) =

∑
0≤i≤a2

2

δp,i p
i(X2i − µp(T )Xa2+a3+2−2i)

− εp
a2
2

+1(Xa2+1 − µp(T )Xa3+1).

Hereε = ε(T ) is the Gross-Keatingε-constant.

Theorem 5.7.3. ([18], Theorem 5.8) Let the notation be as in Theorem
5.7.2.
(i) Whena2 is odd,

Fp(X,T, L1
p)

= 1− µp(T )Xa2+a3+2 + p
a2−1

2

(
(p− 2)Xa2+1 + µp(T )pXa3+1

)
+ (p− 1)

∑
1≤i≤a2−1

2

pi−1
(
(p+ 2)X2i + µp(T )pXa2+a3+2−2i

)
.

(ii) Whena2 is even,

Fp(X,T, L1
p)

= 1− µp(T )Xa2+a3+2 + p
a2
2

∑
a2≤i≤a3

Ck(εX)k+1

+ (p− 1)
∑

1≤i≤a2
2

pi−1
(
(p+ 2)X2i + µp(T )pXa2+a3+2−2i

)
,
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with

Ck =


p if k = a2,

2(p− 1) if a2 < k < a3,

p− 2 if k = a3,

whena2 < a3, and

Ca2 = Ca3 = p− 2,

whena2 = a3.

WhenT ∈ Sym2(Q) is singular of rank1, let t be given as in(5.4.2),
and write4t = dn2 so that−d is a fundamental discriminant. Then the
Gross-Keating invariants of diag(1, T ) are(0, a2,∞), where(0, a2) are the
Gross-Keating invariants of diag(1, t). Concretely, fork = ordp(n),

a2 =

2k + 1 if p | d,

2k if p - d.

Notice that the local Gross-Keatingε-constant isε(T ) = χd(p) when de-
fined, i.e., whenp - d. WhenT = 0, one hasa2 = ∞ as well. In the
singular case, Theorems 5.7.2 and 5.7.3 imply the following:

Corollary 5.7.4. LetT , t, d, andn be as above and letk = ordpn. Then

Fp(X,T, L0
p)

1− p−2X2
=


∑

0≤i≤k(pX
2)i if p | d,∑

0≤i≤k−1(pX
2)i +

(pX2)k

1− χd(p)X
if p - d,

and

Fp(X,T, Lra
p ) =


∑

0≤i≤k+1 δp,i(pX
2)i if p | d,∑

0≤i≤k δp,i(pX
2)i − χd(p)pk+1X2k+1 if p - d.

Finally,

Fp(X,T, L1
p) = 1 + (p− 2)pkX2k+2 + (p− 1)(p+ 2)

∑
1≤i≤k

pi−1X2i

whenp | d, and

Fp(X,T, L1
p) = 1 + χd(p)pk+1X2k+1

+ (p− 1)(p+ 2)
∑

1≤i≤k
pi−1X2i +

2(p− 1)pkX2k+2

1− χd(p)X
,

whenp - d.



PUP.master.W.rev January 13, 2006

148 CHAPTER 5

Comparing this corollary with Proposition C.2 of [18], one sees immedi-
ately

Proposition 5.7.5. For p <∞, and forX = p−s

Fp(X,T, L0
p) = Fp(pX, t, L0

p) ·
ζp(2s)

ζp(2s+ 2)
,

and

Fp(X,T, Lra
p ) = Fp(pX, t, Lra

p ).

The following corollary will be used in the next section and follows im-
mediately from Corollary 5.7.4.

Corollary 5.7.6. Let the notation be as above withk = ordpn.
(i)

WT,p(s,Φ0
p) = γp(V +

p )2 |2|
3
2
p Fp(X,T, L0

p)

and

WT,p(s,Φ1
p) = γp(V +

p )2 |2|
3
2
p p

−2 Fp(X,T, L1
p).

(ii) Whenχd(p) = 0, i.e,p | d,

Fp(1, T, L0) = p−2(p+ 1)(pk+1 − 1),

Fp(1, T, L1) = 2 pk+1 − p− 1.

(iii) Whenχd(p) = −1,

Fp(1, T, L0) = p−2(p+ 1)
pk+1 + pk − 2

2
,

Fp(1, T, L1) = (p+ 1)(pk − 1).

(iv) Whenχd(p) = 1, bothFp(X,T, L0) andFp(X,T, L1) have a simple
pole atX = 1 with residues

ResX=1 Fp(X,T, L0) = −pk−2(p2 − 1),

ResX=1 Fp(X,T, L1) = −2(p− 1) pk.

We next turn to the archimedean factors.
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Proposition 5.7.7. For the standard sectionsΦ
3
2
2,∞(s) ∈ I2(s, χ∞) and

Φ
3
2
1,∞(s) ∈ I1(s, χ∞) of weight32 , and forT andt as in (5.4.1) and (5.4.2),

WT,∞(τ, s,Φ
3
2
2,∞) = Wt,∞( t−1tr(Tτ),s− 1

2
,Φ

3
2
1,∞) ·

(
det v

t−1tr(Tv)

)− s
2

× e(−1
4
)
√

2 · s

s+ 1
· ζ∞(2s)
ζ∞(2s+ 2)

,

whereζ∞(2s) = π−sΓ(s). The formula also holds fort = 0 andT = 0
with t−1tr(Tτ) = i andt−1tr(Tv) = 1.

To prove this proposition, we need some preparation.
Following Shimura [15], let

Γn(s) = π
n(n−1)

4

n−1∏
k=0

Γ(s− k

2
) =

∫
x>0

e−tr(x) det(x)s−
n+1

2 dx(5.7.6)

be the gamma function of degreen. For g ∈ Symn(R)>0, h ∈ Symn(R),
andα, β ∈ C with real parts are sufficiently large, let
(5.7.7)

η(g, h, α, β) =
∫
x±h>0

e−tr(gx) det(x+ h)α−
n+1

2 det(x− h)β−
n+1

2 dx.

We will sometimes writeη(g, h, α, β) = ηn(g, h, α, β) to emphasize the
degreen. The normalized function

(5.7.8) η∗(g, h, α, β) = (det g)α+β−n+1
2 η(g, h, α, β)

satisfies

(5.7.9) η∗(g,−h, α, β) = η∗(g, h, β, α),

and

(5.7.10) η∗(g, taha, α, β) = η∗(agta, h, α, β),

for a ∈ GLn(R).
Whenh is singular, the following reduction formula is a special case of

Proposition 4.1 of [15].

Lemma 5.7.8. Assumeg = diag(g1, g2) > 0 andh = diag(h1, 0), where
g1, h1 ∈ Symn1

(R) andg2 ∈ Symn2
(R) with n1 + n2 = n. Then

η∗n(g, h, α, β) = π
n1n2

2 Γn1(α+ β− n+ 1
2

) · η∗n1
(g1, h1, α−

n2

2
, β− n2

2
).
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Proof. To avoid more notation, we only recall the proof in the casen1 =
n2 = 1, which is needed in this paper. Write

x =
(
u v
v w

)
,

substitutey = u − v−1w2 and leavev andw unchanged. Then the domain
X ± h > 0 becomesy ± h1 > 0 andw > 0, and we have

ηn(g, h, α, β)

=
∫

y±h1>0

w>0

e−g1y−g1v
2w−1−g2w wα+β−3 (y + h1)α−

3
2 (y − h1)β−

3
2 dy dv dw

= ηn1(g1, h1, α−
1
2
, β − 1

2
) ·
∫
w>0

e−g2wwα+β−3
∫ ∞

−∞
e−g1w

−1v2dv dw

= π
1
2 g

− 1
2

1 ηn1(g1, h1, α−
1
2
, β − 1

2
) ·
∫
w>0

e−g2w wα+β− 5
2 dw

= π
1
2 g

− 1
2

1 g
−(α+β− 3

2
)

2 Γ(α+ β − 3
2
) · ηn1(g1, h1, α−

1
2
, β − 1

2
).

Thus,

η∗n(g, h, α, β) = π
1
2 Γ(α+ β − 3

2
) · η∗n1

(g1, h1, α−
1
2
, β − 1

2
),

as claimed.

In general, for a quadratic characterχ, let In(s, χ) be the degenerate
principal series representation of Spn(R) or of its metaplectic cover. Let
Φl
n,∞(s) ∈ In(s, χ) be the unique eigenfunction ofK = U(n), or the

preimage of U(n) in the metaplectic cover, with character(det)l, such that
Φl
n,∞(1, s) = 1 for all s. Forτ = u+iv ∈ Hn, the corresponding Whittaker

function is

(5.7.11) WT,∞(τ, s,Φl
n,∞)

= (det v)−
l
2

∫
Symn(R)

Φl
n,∞(w−1n(b)gτ , s) e(−tr(Tb)) db.
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First, the same calculation as Lemma 9.2 of [4] gives

(5.7.12)
WT,∞(τ, s,Φl

n,∞)
e(tr(Tu)) e(n8 )

= (det v)βn
∫

Symn(R)
e(−tr(Tb)) det(b+ iv)−αn det(b− iv)−βn db,

where

(5.7.13) αn =
1
2
(
s+

n+ 1
2

+ l
)
, βn =

1
2
(
s+

n+ 1
2

− l
)
.

Note that the factore(n8 ) is due to the fact that we are usingw−1 = [w−1, 1]L
here, whereas[w−1, 1]R = [w−1, β(w−1)]L, with β(w−1) = e(−n

8 ), was
used in [4]; see Section 8.5.3. Next, the same calculation as on pp. 585–586
of [4] (a special case of formula (1.29) of [15]) gives

(5.7.14)
WT,∞(τ, s,Φl

n,∞)
e(tr(Tu)) e(−n

4 (l − 1
2))

=
2−ns(2π)

n(n+1)
2

2
n(n−1)

2 Γn(αn) Γn(βn)
· (det v)βn−s · η∗n(2v, π T, αn, βn).

We will only need this forn = 1, 2. We remark that this formula, together
with Lemma 5.7.8, implies that the singular Fourier coefficients of an Eisen-
stein series of genusn are finite sums of Fourier coefficients of Eisenstein
series of genus less thann.

Proof of Proposition 5.7.7.For v ∈ Sym2(R)>0, let v
1
2 ∈ Sym2(R)>0 be

the unique positive definite symmetric matrix whose square isv. ForT ∈
Sym2(R) with detT = 0, choosek ∈ SO(2) such that

v
1
2 Tv

1
2 = tk · diag(tr(Tv), 0) · k.

Then (5.7.14) gives

η∗2(2v, π T, α2, β2) = η∗2(2,diag(π tr(Tv), 0), α2, β2)

(5.7.15)

= π
1
2 Γ(s) · η∗1(2, π tr(Tv), α2 −

1
2
, β2 −

1
2
),
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so that we have

WT,∞(τ, s,Φl
2,∞) = e(tr(Tu)) e(− 1

2
(l− 1

2
))

2−2s+2π
7
2 Γ(s)

Γ2(α2)Γ2(β2)
(det v)β2−s

× η∗(2, π tr(Tv),
1
2
(s+

1
2

+ l),
1
2
(s+

1
2
− l)).

On the other hand, (5.7.14) gives

(5.7.16)

Wt,∞(t−1tr(Tτ), s,Φl
1,∞) = e(tr(Tu)) e(− 1

4
(l− 1

2
))

2−s+1π(t−1tr(Tv))β1−s

Γ(α1)Γ(β1)

× η∗(2, π tr(Tv),
1
2
(s+ 1 + l),

1
2
(s+ 1− l)).

Thus,

(5.7.17) WT,∞(τ, s,Φl
2,∞) = C∞(s) ·Wt,∞(t−1tr(Tτ), s− 1

2
,Φl

1,∞),

with

C∞(s) = e(− 1
4
(l− 1

2
)) ·

π
5
2 Γ(s) Γ(1

2(s+ 1/2 + l)) Γ(1
2(s+ 1/2− l))

2s−
1
2 Γ2(α2) Γ2(β2)

×
(

det v
t−1tr(Tv)

)β2−s

= e(− 1
4
(l− 1

2
)) · 2−s+

1
2 π

3
2 Γ(s)

Γ(α2) Γ(β2)
·
(

det v
t−1tr(Tv)

)β2−s
.

Here we have used the fact thatβ2(s) − s = β1(s − 1
2) − (s − 1

2). When
l = 3

2 , note that

Γ(α2) Γ(β2) = Γ(
s+ 3

2
) Γ(

s

2
)

=
√
π 2−s (s+ 1) Γ(s)(5.7.18)

=
√
π 2−s

s+ 1
s

Γ(s+ 1)
√
π,

so that

C∞(s) = e(−1
4
) ·
√

2π
s+ 1

·
(

det v
t−1tr(Tv)

)− s
2

(5.7.19)

= e(−1
4
) ·

√
2s ζ∞(2s)

(s+ 1) ζ∞(2s+ 2)
·
(

det v
t−1tr(Tv)

)− s
2

.
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This proves Proposition 5.7.7.

We remark that, for a generall, one has

C∞(s) = ir
√

2π·
(r + s)(r − 2 + s) · · · (r − 2[ r2 ] + s)

(r − 1− s)(r − 3− s) · · · (r + 1− 2[ r−1
2 ]− s)

×
(

det v
t−1tr(Tv)

)− 1
2
(s− 3

2
+l)

.(5.7.20)

Herer = l − 1
2 .

Theorem 5.7.9.With the notation above,

WT (τ, s,ΦD
2 ) = (−1)ord(D)+1

(
det v

t−1tr(Tv)

)− s
2

× sΛD(2s)
(s+ 1) ΛD(2s+ 2)

· Et(t−1tr(Tτ), s− 1
2
,ΦD

1 ).

Hereord(D) is the number of prime factors ofD and

ΛD(2s) = π−s Γ(s) ζ(2s) ·Ds
∏
p|D

(1− p−2s).

Proof. By Lemma 5.7.1 and Proposition 5.7.5, we have

WT,p(1, s,Φ0
p) = χVp(−1) γp(V +

p ) |2|
1
2
p ·Wt,p(1, s−

1
2
,Φ0

p)
ζp(2s)

ζp(2s+ 2)
and

WT,p(1, s,Φra
p ) = χVp(−1) γp(V −p ) |2|

1
2
p p

−1 ·Wt,p(1, s−
1
2
,Φra

p ).

Combining these with Proposition 5.7.7, we obtain

C−1 s+ 1
s

·WT (τ, s,ΦD)

=
∏
p-D ζp(2s)

D
∏
p-D ζp(2s+ 2)

·
(

det v
t−1tr(Tv)

)− s
2

· Et(t−1tr(Tτ), s− 1
2
,ΦD)

=
ΛD(2s)

ΛD(2s+ 2)
·
(

det v
t−1tr(Tv)

)− s
2

· Et(t−1tr(Tτ), s− 1
2
,ΦD),

where the constantC is given by
(5.7.21)

C = e(−1
4
)
∏
p|D

γp(V −p )
∏
p-D∞

γp(V +
p )

∏
p<∞

χVp(−1) = (−1)o(D)+1,
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since

(5.7.22) γp(V −p ) = −γp(V +
p )

and

(5.7.23) γ∞(V +
∞)χV∞(−1) = i.

Remark 5.7.10. There is a direct way to compareWT with Wt in theory.
It can be proved that for any sectionΦ ∈ I2(s, χ),

WT (g, s,Φ) = Wt2(
1
2
− s) ◦M(s)Φ(m(γ0)g).

HereM(s)Φ = W0(g, s,Φ) is the intertwining operator. So it suffices to
computeM(s)Φ.

5.8 THE CENTRAL DERIVATIVE—THE RANK ONE CASE

In this section, we obtain formulas for the singular Fourier coefficients of the
normalized and the modified genus two Eisenstein series. The normalized
genus two Eisenstein series is defined by

(5.8.1) E(τ, s,ΦD
2 ) = −1

2
· c(D)(s+ 1)ΛD(2s+ 2) · E(τ, s,ΦD

2 ),

where the normalizing factor is similar to the one used in [9] in the genus
one case. Notice that, whenD = D(B) is the discriminant of an indefinite
quaternion algebraB, then

E′T (τ, 0,ΦD
2 ) = −1

2
· c(D)ΛD(2) · E′T (τ, 0,ΦD

2 )(5.8.2)

=
1
2
· vol(M(C)) · E′T (τ, 0,ΦD

2 ).

The following main theorem on the singular coefficients follows immedi-
ately from Theorems 5.6.4 and 5.7.9 and the functional equation(5.5.4).

Theorem 5.8.1.LetD be a square free positive integer and letΦD
2 (s) ∈

I2(s, χ) be the standard section defined in (5.4.6). LetΦD
1 (s) ∈ I1(s, χ)

be the analogous standard section, as explained in Section 5.5. LetT be of
rank1, and lett be given as in (5.4.2). Then

ET (τ, s,ΦD
2 ) = −1

2
·
(

det v
t−1tr(Tv)

) s
2

· Et(t−1tr(Tτ), s+
1
2
,ΦD

1 )

+
1
2
· (−1)ord(D)

(
det v

t−1tr(Tv)

)− s
2

· Et(t−1tr(Tτ),−s+
1
2
,ΦD

1 ).
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Remark 5.8.2. This formula showswhysuch singular Fourier coefficients
vanish ats = 0 in the caseD = D(B), when ord(D) is even. Note that this
vanishing arises for a global reason, i.e., comes from the functional equation
of the genus one Eisenstein series. In contrast, as explained in Section 5.2
above, the vanishing of the nonsingular Fourier coefficients depends on the
vanishing of local Whittaker functions and hence is local in nature. In the
next chapter, we will see that the geometric quantities corresponding to such
coefficients have a similar nature.

We next consider the modified Eisenstein seriesE2(τ, s, B) defined in
(5.1.44). LetΦ̃B(s) be the section defined in (5.1.36). By writing̃ΦB(s) as
a sum of products of standard sections with coefficients which are functions
of s, we have

(5.8.3) E(τ, s, Φ̃B) = E(τ, s,ΦD) +
∑
p|D

Ap(s)E(τ, s,Φ
D
p )

+
∑
p|D

Bp(s)E(τ, s,Φ
D
p
,1) +O(s2),

whereD = D(B) and where theO(s2) term is a combination of standard
Eisenstein series with coefficients having a zero of order at least2 ats = 0.

The three standard sectionsΦ
D
p
,1(s), Φ

D
p (s), andΦD(s) are the same ex-

cept for their local components atp | D, and these local components cor-
respond to the latticesL1

p, L
0
p, andLra

p , respectively; see (5.1.30)–(5.1.32).
TheT -th Fourier coefficient of the normalized series

(5.8.4) E2(τ, s, B) = −1
2
· c(D)(s+ 1)ΛD(2s+ 2) · E(τ, s, Φ̃B)

can then be written as

E2,T (τ, s, B)

(5.8.5)

= ET (τ, s,ΦD) +
∑
p|D

Ap(s)
c(D)
c(D/p)

(ps+1 − p−s−1) ET (τ, s,Φ
D
p )

+
∑
p|D

Bp(s)
c(D)
c(D/p)

(ps+1 − p−s−1) ET (τ, s,Φ
D
p
,1) +O(s2).

HereE(τ, s,Φ
D
p
,1) andE(τ, s,Φ

D
p ) are normalized by the factorCD/p(s),

given by (5.1.38). Since

(5.8.6)
c(D)
c(D/p)

= − p

p+ 1
,
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for T of rank1, we have, by Theorem 5.8.1,

E ′2,T (τ, 0, B) =− E′t(t−1tr(Tτ),
1
2
,ΦD

1 )(5.8.7)

− 1
2
· log

(
det v

t−1tr(Tv)

)
· Et(t−1tr(Tτ),

1
2
,ΦD

1 )

+
∑
p|D

(p− 1)A′p(0) · Et(t−1tr(Tτ),
1
2
,Φ

D
p

1 )

−
∑
p|D

(p− 1)B′p(0) · ET (τ, 0,Φ
D
p
,1).

It remains to identify the valueET (τ, 0,Φ
D
p
,1) occurring in the last line.

Recall thatET = BT + WT , where the bold letters indicate thatBT and
WT have been multiplied by the relevant normalizing factor. Theorem 5.6.4
implies that

BT (τ, s,Φ
D
p
,1

2 ) = −1
2
·
(

det v
t−1tr(Tv)

) s
2

· Et(t−1tr(Tτ), s+
1
2
,Φ

D
p
,1

1 ).

(5.8.8)

At the points = 0, a similar relation holds for theWT term.

Proposition 5.8.3.

WT (τ, 0,Φ
D
p
,1

2 ) = −1
2
· Et(t−1tr(Tτ),

1
2
,Φ

D
p
,1

1 ).

From this proposition and identities (5.8.7) and (5.8.8), we immediately ob-
tain the following formula.

Proposition 5.8.4. LetD = D(B) for an indefinite quaternion algebraB.

E ′2,T (τ, 0, B) = −E′t(t−1tr(Tτ),
1
2
,ΦD

1 )

− 1
2

log
(

det v
t−1tr(Tv)

)
· Et(t−1tr(Tτ),

1
2
,ΦD

1 )

+
∑
p|D

(p− 1)A′p(0) · Et(t−1tr(Tτ),
1
2
,Φ

D
p

1 )

+
∑
p|D

(p− 1)B′p(0) · Et(t−1tr(Tτ),
1
2
,Φ

D
p
,1

1 ).

To prove Proposition 5.8.3, we need the following lemma which follows
immediately from Proposition 8.1 of [9] or Proposition C.2 of [18].
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Lemma 5.8.5. Letk = ordp(n). Then
(i)

Wt,p(s+
1
2
,Φ0

p) = χVp(−1) γp(V +
p ) |2|

1
2
p Fp(X, t, L0

p),

Wt,p(s+
1
2
,Φ1

p) = χVp(−1) γp(V +
p ) |2|

1
2
p p

−1 Fp(X, t, L1
p),

Wt,p(s+
1
2
,Φ−p ) = χVp(−1) γp(V −p ) |2|

1
2
p p

−1 Fp(X, t, Lra
p ).

(ii)

Fp(1, t, L0) =


(p+ 1) p−k−2 (pk+1 − 1) if χd(p) = 0,

p−k−1 (pk+1 + pk − 2) if χd(p) = −1,

p−1 (p+ 1) if χd(p) = 1.

(iii)

Fp(1, t, L1) =


p−k−1 (2 pk+1 − p− 1) if χd(p) = 0,
2 p−k (pk − 1) if χd(p) = −1,

2 if χd(p) = 1.

(iv)

Fp(1, t, Lra) =


p−k−1 (p+ 1) if χd(p) = 0,

2 p−k if χd(p) = −1,

0 if χd(p) = 1.

(v)

Fp(X, t, Lra) + Fp(X, t, L1) = 2.

Proof of Proposition 5.8.3.Theorem 5.7.9 and the functional equation (5.5.4)
imply that

WT (τ, s,Φ
D
p
,1

2 ) ·
(

det v
t−1tr(Tv)

) s
2

(5.8.9)

= WT (τ, s,Φ
D
p

2 ) ·
WT,p(s,Φ1

2,p)
WT,p(s,Φ0

2,p)
·
(

det v
t−1tr(Tv)

) s
2

= −1
2
· Et(t−1tr(Tτ), s− 1

2
,Φ

D
p

1 ) ·
WT,p(s,Φ1

2,p)
WT,ps,Φ0

2,p)
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= −1
2
· Et(t−1tr(Tτ),−s+

1
2
,Φ

D
p

1 ) ·
WT,p(s,Φ1

2,p )
WT,p(s,Φ0

2,p)

= −1
2
· E(p)

t (t−1tr(Tτ),−s+
1
2

) ·
Wt,p(1

2 − s,Φ0
1,p )WT,p(s,Φ1

2,p)
WT,p(s,Φ0

2,p)
.

HereE(p)
t is the non-p-part of thet-th Fourier coefficient of the normal-

ized Eisenstein series. This quantity is the same forΦ
D
p (s) andΦ

D
p
,1(s).

Evaluating ats = 0, we have

(5.8.10) WT (τ, 0,Φ
D
p
,1

2 )

= −1
2
· E(p)

t (t−1tr(Tτ),
1
2
) · lim

s→0

Wt,p(1
2 − s,Φ0

1,p)WT,p(s,Φ1
2,p)

WT,p(s,Φ0
2,p)

,

and so it suffices to verify that

(5.8.11) lim
s→0

Wt,p(1
2 − s,Φ0

1,p)WT,p(s,Φ1
2,p)

WT,p(s,Φ0
2,p)

= Wt,p(s,Φ1
1,p).

In terms of local density functions, (5.8.11) is the same as the following
identity.

Lemma 5.8.6.

lim
X→1

p−1Fp(X, t, L0)Fp(X,T, L1)
Fp(X,T, L0)

= Fp(1, t, L1).

Proof. This follows from Corollary 5.7.6, Lemma 5.8.3, and a routine cal-
culation. Indeed, whenχd(p) = 0, one has from these results

Fp(1, T, L0) = pk Fp(1, t, L0) = p−2(p+ 1)(pk+1 − 1),
and

Fp(1, T, L1) = pk+1 Fp(1, t, L1) = 2pk+1 − p− 1.

The claim is thus clear in this case. Whenχd(p) = −1, one has, similarly,

(p+ 1)−1 Fp(1, T, L0) =
1
2
pk−1 Fp(1, t, L0) =

1
2
p−2(pk+1 + pk − 2),

and

(p+ 1)−1 Fp(1, T, L1) =
1
2
pk Fp(1, t, L1) = (pk − 1).
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The claim is again clear in this case. Finally, whenχd(p) = 1, both
Fp(X,T, L0) andFp(X,T, L1) have a simple pole atX = 1, which is
the reason for the limit sign. Then

lim
X→1

p−1 Fp(X, t, L0)Fp(X,T, L1)
Fp(X,T, L0)

= p−1−2(p− 1) pk · p−1(p+ 1)
−pk−2(p2 − 1)

= 2 = Fp(1, t, L1).

Our main result expresses the singular coefficients ofE ′2(τ, 0, B) in terms
of the modified genus one Eisenstein series.

Theorem 5.8.7.WhenD = D(B) > 1 is the discriminant of an indefinite
division quaternion algebraB,

E ′2,T (τ, 0, B) = −E ′1,t(t−1tr(Tτ),
1
2
, B)

− 1
2
· E1,t(t−1tr(Tτ),

1
2
, B) ·

(
log

( det v
t−1tr(Tv)

)
+ log(D)

)
.

Proof. We first write

Et(τ , s+
1
2
,ΦD

1 )

= (−1)ord(D)+1 D

2π
∏
p|D(p+ 1)

ΛD(2s+ 2)Et(τ, s+
1
2
,ΦD

1 )

=
1
2π

Wt,∞(τ, s+
1
2
,Φ

3
2
1,∞) ·

∏
p<∞

Wt,p(s,Φ1,p),

with

Wt,p(s+
1
2
,Φ1,p) =

−p
s+2 (p+ 1)−1Wt,p(s+ 1

2 ,Φ
ra
1,p) if p | D,

ζp(2s+ 2)Wt,p(s+ 1
2 ,Φ

0
1,p) if p - D∞,

and

Wt,∞(τ, s+
1
2
,Φ

3
2
1,∞) = −ζ∞(2s+ 2)Wt,∞(τ, s+

1
2
,Φ

3
2
1,∞).

Let E(p)
t be the non-p-part ofEt, which is the same forΦD

1 , Φ
D
p

1 , andΦ
D
p
,1

1 .
By Proposition 5.8.4, one has

−E ′2,T (τ, 0, B) = E ′1,t(t−1tr(Tτ),
1
2
, B)

+
1
2

Et(t−1tr(Tτ),
1
2
,ΦD

1 ) · log
(

det v
t−1tr(Tv)

)
+
∑
p|D

Diff p · log(p),
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with

Diff p · log(p)

= −
(
(p− 1)A′p(0) + C ′p(

1
2
)
)
· Et(t−1tr(Tτ),

1
2
,Φ

D
p

1 )

− (p− 1)B′p(0) · Et(t−1tr(Tτ),
1
2
,Φ

D
p
,1

1 )

= Et(t−1tr(Tτ),
1
2
,Φ

D
p

1 ) log(p)

− 1
2
(p+ 1) Et(t−1tr(Tτ),

1
2
,Φ

D
p
,1

1 ) log(p)

= E(p)
t (t−1tr(Tτ),

1
2
)
(

Wt,p(
1
2
,Φ0

1,p)−
1
2
(p+ 1) Wt,p(

1
2
,Φ1

1,p)
)

log(p).

Now Lemma 5.8.5 implies that

Wt,p(
1
2
,Φ0

1,p)−
1
2
(p+ 1) Wt,p(

1
2
,Φ1

1,p)

= χVp(−1) γp(V +
p )|2|

1
2
p ζp(2) ·

(
Fp(1, t, L0

p)−
p+ 1
2p

Fp(1, t, L1
p)
)

= χVp(−1) γp(V +
p )|2|

1
2
p ·


1
2 p

−k if χd(p) = 0,

p−k+1(p+ 1) if χd(p) = −1,

0 if χd(p) = 1.

Recall thatγp(V −p ) = −γp(V +
p ). Comparing this with

Wt,p(
1
2
,Φra

1,p) = χVp(−1) γp(V −p )|2|
1
2
p
−p2

p+ 1
p−1 Fp(1, t, Lra

p )

and (iv) of Lemma 5.8.5, we see that

Wt,p(
1
2
,Φ0

1,p)−
1
2
(p+ 1) Wt,p(

1
2
,Φ1

1,p) =
1
2

Wt,p(
1
2
,Φra

1,p).

Thus,

Diff p =
1
2

Et(t−1tr(Tτ),
1
2
,ΦD

1 ) =
1
2
E1,t(t−1tr(Tτ),

1
2
, B),

and ∑
p|D

Diff p · log p =
1
2
E1,t(t−1tr(Tτ),

1
2
, B) · log(D).
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5.9 THE CONSTANT TERM

First, we record part of Proposition 5.4.1 on the constant term here.

Proposition 5.9.1. For any sectionΦ(s) ∈ I2(s, χ),

E0(g, s,Φ) = Φ(g, s) +
∑

γ∈Γ∞\SL2(Z)

B0(m(γ)g, s,Φ) +W0(g, s,Φ),

whereΓ∞ is the upper triangle subgroup ofSL2(Z).

Proposition 5.9.2. Let Qv(x, y) = (x, y)vt(x, y) be the quadratic form
associated to the matrixv = Im(τ) ∈ Sym2(R)>0, and let

E(s, v) =
∑(

a b
c d

)
∈Γ∞\SL2(Z)

1
Qv(c, d)s

be the associated Eisenstein series. Then∑
γ∈Γ∞\SL2(Z)

B0(m(γ)τ, s,ΦD)

= (−1)ord(D)+1 sΛ(2s+ 1)
(s+ 1)Λ(2s+ 2)

·
∏
p|D

1− p−2s

p (1− p−2s−2)
· E(s+

1
2
, v)

Proof. Corollary 5.6.2 asserts that

(5.9.1) B0,p(m(γ), s,Φ2,p) = W0,p(1, s+
1
2
,Φ1,p).

Thus, by Proposition 8.1 of [9],

(5.9.2) B0,p(m(γ), s,Φ2,p)

= χVp(−1) |2|
1
2
p



γp(V +
p ) ζp(2s+ 1)

ζp(2s+ 2) if Φ2,p = Φ0
2,p,

γp(V −p )p−1 ζp(2s+ 1)
ζp(2s)

if Φ2,p = Φra
2,p,

γp(V +
p ) p−1 1 + p−2s − 2p−1−2s

1− p−2s−1 if Φ2,p = Φ1
2,p.

On the other hand, if we writem(γ)gτ = gτ̃ with τ̃ = γτ tγ, then(τ̃)22 =
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Qv(c, d). Now Lemma 5.6.3 and Proposition 14.1 of [9] imply that

B0,∞(m(γ)τ, s,Φ
3
2
2,∞)

=
(

det v
Qv(c, d)

) 1
2
s

W0,∞(iQv(c, d), s+
1
2
,Φ

3
2
1,∞)

=
(

det v
Qv(c, d)

) 1
2
s

e(−1/4)Qv(c, d)
1
2
(−1−s) 2π 2−s−

1
2 Γ(s+ 1

2)
Γ( s+3

2 )Γ( s2)

= e(−1/4) (det v)
s
2 Qv(c, d)−

1
2
−s

√
2 Γ(s+ 1

2)
(s+ 1)

√
π Γ(s)

=
√

2 e(−1/4) (det v)
s
2 Qv(c, d)−

1
2
−s s ζ∞(2s+ 1)

(s+ 1) ζ∞(2s+ 2)
.

Recalling the identity (5.7.21)

e(−1/4)
∏
p<∞

χVp(−1) γp(Vp) = (−1)ord(D)+1,

we then have

B0(m(γ)τ, s,ΦD
2 )

= (−1)ord(D)+1 Λ(2s+ 1)∏
p-D ζp(2s+ 2)

∏
p|D p ζp(2s)

(det v)
s
2 Qv(c, d)−

1
2
−s

= (−1)ord(D)+1 Λ(2s+ 1)
Λ(2s+ 2)

∏
p|D

1− p−2s

p (1− p−2−2s)
(det v)

s
2 Qv(c, d)−

1
2
−s.

This proves the proposition.

From the proof just given, we see that the series∑
γ∈Γ∞\SL2(Z)

B0(m(γ)g, s,Φ
D
p
,1)

has a very similar formula. It is well known thatE(s, v) is holomorphic at
s = 1

2 , [16], and so the middle sum in the expression in Proposition 5.9.1
vanishes to order at least ord(D) at s = 0 whenΦ = ΦD, and to order at
least ord(D) − 1 whenΦ = ΦD/p or ΦD/p,1. Thus, this middle sum does
not contribute to our calculation whenD has at least two prime factors.

Proposition 5.9.3. LetΦ(s) = ΦD
2 (s), and

GD(s) = (det v)
s
2 (1 + s) ΛD(2s+ 2).
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Then

Φ(τ, s) +W0(τ, s,Φ) =
(det v)

s
2

GD(s)
(GD(s)− (−1)ord(D)GD(−s) ).

Proof. By Propositions 5.7.5 and 5.7.7, we have

(5.9.3) W0,p(τ, s,Φp)

= |2|p



ζp(2s− 1)
ζp(2s+ 2) · γp(V

+
p )2 if p - D∞,

ζp(2s− 1)
p2 ζp(2s− 2)

· γp(V −p )2 if p | D,

(s− 1) ζ∞(2s− 1)
(s+ 1) ζ∞(2s+ 2) (det v)−

s
2 · e(−1/4)2 if p = ∞.

Thus

W0(τ, s,Φ) = (det v)−
s
2
s− 1
s+ 1

· Λ(2s− 1)∏
p-D ζp(2s+ 2)

∏
p|D p

2 ζp(2s− 2)

= −(det v)−
s
2

(1− s)Λ(2− 2s)
(1 + s)Λ(2 + 2s)

∏
p|D

1− p−2s+2

p2 (1− p−2−2s)
(5.9.4)

= (−1)ord(D)+1(det v)−
s
2

(1− s)ΛD(2− 2s)
(1 + s)ΛD(2 + 2s)

= (−1)ord(D)+1(det v)
s
2
GD(−s)
GD(s)

.

SinceΦ(τ, s) = (det v)
s
2 , this proves the proposition.

The same argument, using the last two formulas in Corollary 5.7.4 also
gives
(5.9.5)

W0(τ, s,Φ
D
p
,1

2 ) = (−1)ord(D) (det v)
s
2
GD/p(−s)
GD/p(s)

· 1− 2p−2s + p2−2s

p2(1− p−2−2s)
.

Corollary 5.9.4. Assume thatord(D) ≥ 2 is even.
(i)

E0(τ, 0,ΦD
2 ) = 0,

E0(τ, 0,Φ
D
p

2 ) = 2E0(idet v,
1
2
,Φ

D
p

1 ) = 2,

E0(τ, 0,Φ
D
p
,1

2 ) = 2.
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(ii)

E′0(τ, 0,Φ
D
2 ) = 2 + 4

Λ′D(2)
ΛD(2)

+ log(det v).

Theorem 5.9.5.LetD = D(B) > 1 for an indefinite quaternion algebra
B. Then

E′0(τ, 0,ΦD
2 ) = −E′0(idet(v),

1
2
,ΦD

1 ),

and

E ′2,0(τ, 0, B) = −E ′1,0(idet v,
1
2
, B)− 1

2
E1,0(idet(v),

1
2
, B) · log(D)

= CD(0) ·
[

2 + 4
Λ′D(2)
ΛD(2)

+ log(D det v) + 2
∑
p|D

log p
p+ 1

]
.

Proof. The first identity follows from (ii) of Corollary 5.9.4 and the identity

E′0(τ,
1
2
,ΦD

1 ) =
1
2
· c(D) ΛD(2) ·

[
2 + 4

Λ′D(2)
ΛD(2)

+ log(v)
]
,

which is (8.30) of [9]. Since

E0(τ, s, Φ̃D
2 ) = E0(τ, s,ΦD

2 ) +
∑
p|D

Ap(s)E0(τ, s,Φ
D
p

2 )

+
∑
p|D

Bp(s)E0(τ, s,Φ
D
p
,1

2 ) +O(s2),

we have, by (i) of Corollary 5.9.4,

E′0(τ, 0, Φ̃
D
2 ) = E′0(τ, 0,Φ

D
2 ) + 2

∑
p|D

(A′p(0) +B′p(0)).

Multiplying both sides by

CD(0) = −1
2
· c(D)ΛD(2),

we have

E ′2,0(τ, 0, B) = CD(0) · E′0(τ, 0, Φ̃D
2 )

= E′0(τ, 0,ΦD
2 ) + 2CD(0)

∑
p|D

(A′p(0) +B′p(0)).
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On the other hand, recalling that

E0(τ,
1
2
,ΦD

1 ) = c(D) ΛD(2) = −2CD(0)

and that

c(D/p) ΛD/p(2) = − 1
p− 1

c(D) ΛD(2) =
2CD(0)
p− 1

,

we have

E ′1,0(idet v,
1
2
,ΦD

1 ) = E′0(idet v,
1
2
,ΦD

1 ) +
∑
p|D

C ′p(
1
2
) E0(idet v,

1
2
,Φ

D
p

1 )

= E′0(idet v,
1
2
,ΦD

1 ) + 2CD(0)
∑
p|D

1
p− 1

C ′p(
1
2
).

Thus, recalling (5.1.35) and (5.5.6), we have

E ′2,0(τ, 0, B) + E ′1,0(idet v,
1
2
, B)

= 2CD(0)
∑
p|D

(A′p(0) +B′p(0) +
1

p− 1
C ′p(

1
2
))

= CD(0)
∑
p|D

log p

= CD(0) logD,

as claimed.
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Chapter Six

The generating function for 0-cycles

In this chapter, we give the definition of a generating function for0-cycles
on the arithmetic surfaceM. More precisely, we consider a generating
series of the form

(6.0.1) φ̂2(τ) =
∑

T∈Sym2(Z)∨

Ẑ(T, v) qT ,

whereτ = u+iv ∈ H2, the Siegel space of genus two,qT = e(tr(Tτ)), and

Ẑ(T, v) ∈ ĈH
2
(M). Since we are working with arithmetic Chow groups

with real coefficients, as explained in Chapter 2, there is an isomorphism

(6.0.2) d̂eg: ĈH
2
(M) ∼−→ R.

For example, ifZ is a0-cycle onM with Z ' Spec(R) for an Artin ring
R, then

(6.0.3) d̂eg: (Z, 0) 7−→ log |R|

is the usual arithmetic degree ofZ. The first step is to define the terms for
‘good’ positive definiteT ’s.

For a positive definiteT ∈ Sym2(Z)∨, we can consider the moduli stack
Z(T ) for triples(A, ι,x), where(A, ι) is, as usual, an abelian scheme with
a specialOB-actionι, and wherex = [x1, x2] ∈ V (A, ι) is a pair of special
endomorphisms ofA such that

(6.0.4) Q(x) =
1
2

((xi, xj)) = T.

As explained in Chapter 3, any nonsingular matrixT determines a set of
primes Diff(T,B) of odd cardinality and, ifT > 0, then∞ /∈ Diff (T,B).
Moreover,|Diff (T,B)| > 1 implies thatZ(T ) = φ, so that the only positive
definiteT ’s of interest are those for which Diff(T,B) = {p} for a primep.
A matrix T ∈ Sym2(Z)∨>0 will be calledgood if Diff (T,B) = {p} with
p - D(B). For such aT , Z(T ) is a0-cycle supported in the fiberMp, and
there is an associated class

(6.0.5) Ẑ(T, v) = (Z(T ), 0 ) ∈ ĈH
2
(M).
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The partial generating series

(6.0.6)
∑

T∈Sym2(Z)∨>0

T good

Ẑ(T, v) qT

thus has a natural geometric definition, and our first goal in this chapter is
to complete it by defining termŝZ(T, v) for the remainingT ∈ Sym2(Z)∨.
We then compute the quantitieŝdeg(Ẑ(T, v)) in all cases and compare them
with the Fourier coefficients of the central derivative of the Siegel Eisenstein
seriesE ′2(τ, 0;B) computed in Chapter 5. In this way, we prove the follow-
ing result:

Theorem B. The generating function̂φ2(τ) is a Siegel modular form of
genus two and weight32 for Γ0(4D(B)o) ⊂ Sp2(Z), whereD(B)o is the
odd part ofD(B). More precisely

φ̂2(τ) = E ′2(τ, 0;B),

so that

φ̂2(γ(τ)) = sgn(det d) · j 3
2
(γ, τ) · φ̂2(τ),

for all γ =
(
a b
c d

)
∈ Γ0(4D(B)o).

The transformation law ofE2(τ, s;B) used here is determined in Section
8.5.6. Note that sgn(det d) = (det d,−1)2 and that the automorphy factor
j 3

2
(γ, τ), which is described explicitly in that appendix, satisfies

j 3
2
(γ, τ)2 = det(cτ + d)3.

To complete the definition of̂φ2(τ), we must considerT ’s of the follow-
ing types:

(i) T > 0 with Diff (T,B) = {p} for p | D(B), i.e.,T is not good.

(ii) T with signature(1, 1) or (0, 2) with Diff (T,B) = {∞}.

(iii) T ≥ 0 with det(T ) = 0, butT 6= 0.

(iv) T ≤ 0 with det(T ) = 0, butT 6= 0.

(v) T = 0.
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In some cases, we definêZ(T, v) by giving the real number̂deg(Ẑ(T, v))
directly. On the one hand, it is clear that we want these quantities to coincide
with the corresponding Fourier coefficients ofE ′2(τ, 0;B), since we would
like a generating function which is modular. On the other hand, we would
like to give a definition which is as natural as possible from the point of
view of arithmetic geometry. The main result of Chapter 7, which identifies
the inner product〈 φ̂1(τ1), φ̂1(τ2) 〉 of two genus one generating functions
with the restriction to the diagonal̂φ2(diag(τ1, τ2)) gives a further geometric
justification for our definitions.

The fact that the generating seriesφ̂2(τ) is theq-expansion of a Siegel
modular form implies that the numberŝZ(T, v) must satisfy some highly
nontrivial identities. For example, forα ∈ GL2(Z), the transformation law

(6.0.7) φ̂2(τ) = φ̂2(ατ tα) =
∑
T

d̂eg(Ẑ(T, αvtα)) q
tαTα

implies that

(6.0.8) d̂eg(Ẑ(tαTα, v)) = d̂eg(Ẑ(T, αvtα)),

for anyT andv. ForT ∈ Sym2(Z)∨>0,good, this amounts to

(6.0.9) d̂eg(Z(tαTα)) = d̂eg(Z(T )).

This identity is immediate from the definition ofZ(T ), since the length
of the local deformation ring where a pairx of special endomorphisms of
(A, ι) deforms is the same as the one whereα · x deforms, since this length
only depends on theZp-span of the componentsx1 andx2 of x. On the
other hand, ifT ∈ Sym2(Z)∨>0 is not good, then the equality above is true
for anyα ∈ GL2(Zp), but this is one of the main results of [5].

6.1 THE CASET > 0 WITH Diff (T,B) = {p} FOR p - D(B)

For a positive definiteT with Diff (T,B) = {p} for p - D(B), the class

Ẑ(T, v) = (Z(T ), 0) ∈ ĈH
2
(M) is defined above, and it remains to com-

pute the real number̂deg(Ẑ(T, v)) = d̂eg(Z(T )) and to compare it with the
corresponding Fourier coefficientE ′2,T (τ, 0;B) of E ′2(τ, 0;B).

To computêdeg(Z(T )) we use the Gross-Keating theorem in the form of
Theorem 3.6.1. According to this theorem, the stackZ(T ) has support in
the supersingular locus ofMp. LetB(p) be the definite quaternion algebra
overQ whose invariants differ from those ofB at preciselyp and∞. Let
H(p) = B(p),× and

(6.1.1) V (p) = {x ∈ B(p) | tr(x) = 0}.
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We choose a maximal orderO(p) in B(p) and an isomorphismB(p)(Ap
f ) '

B(Ap
f ) which carriesO(p) ⊗ Ẑp toOB ⊗ Ẑp. We write

(6.1.2) H(p)(Af ) =
∐
j

H(p)(Q)hjK(p),

where

(6.1.3) K(p) = K(p)
p ·Kp = (O(p) ⊗ Ẑ)×.

Also letV (p)(Ẑ) = V (p)(Ẑp)× V (p)(Zp), with

V (p)(Ẑp) = V (p)(Ap
f ) ∩ (O(p) ⊗ Ẑp)

andV (p)(Zp) = V (p)(Qp)∩(O(p)⊗Zp). Letϕ(p) ∈ S((V (p)(Af ))2) be the
characteristic function of the set(V (p)(Ẑ))2. Finally, fory ∈ V (p)(Q)2, we

denote byey,j the stabilizer ofy in the groupΓ(p)
j = H(p)(Q)∩hjK(p)h−1

j .
The following proposition gives the number of points in the stack sense

of the finite stackZ(T ) (recall that we are assuming thatT > 0 with
Diff (B, T ) = p is good).

Proposition 6.1.1.

∑
x∈M(F̄p)ss

∑
y∈V (A,ι)2

1
2
(y,y)=T

1
|Aut(Ax, ιx,y)|

=
∑
j

∑
y∈V (p)(Q)2

1
2
(y,y)=T

e−1
y,j · ϕ

(p)(h−1
j · y)

Proof. The proof is based on the description ofM(F̄p)ss as a double coset
space,

(6.1.4) M(F̄p)ss = H(p)(Q)\H(p)(Af )/K(p).

We recall that this is obtained by parametrizing the elements ofM(F̄p)ss by
quasi-isogenies with source a fixed base point(A0, ι0), chosen so that the

stabilizer of its Dieudonne moduleD(A0) inH(p)(Qp) is equal toK(p)
p and

the stabilizer of its Tate modulêT p(A0) in H(p)(Ap
f ) is equal toKp. We

also identifyV (A0, ι0)⊗Q with V (p)(Q). Now if (A, ι) corresponds to the
double cosetH(p)(Q)hK(p), thenV (A, ι) can be identified with

(6.1.5) V (A, ι) = {y ∈ V (p)(Q) | h−1 · y ∈ V (p)(Ẑ)}.
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Hereh · y = hyh−1. This is an immediate consequence of the fact that

End(A, ι)
(6.1.6)

= {y ∈ B(p)(Q) | yhD(A0) ⊂ hD(A0), yh T̂ p(A0) ⊂ h T̂ p(A0)}

= B(p)(Q) ∩ h(O(p) ⊗ Ẑ)h−1.

It follows that the left-hand side of the identity in the proposition is equal to

(6.1.7)
∑
j

∑
y∈V (p)(Q)2

1
2
(y,y)=T

h−1
j y∈V (p)(Ẑ)2

mod Γ
(p)
j

1,

which then leads to the expression of the right-hand side of the proposition.

We note that the lengths of the local rings ofZ(T ) are all identical and
are denoted byνp(T ). They are given by the Gross-Keating formula of
Theorem 3.6.1. We therefore have the following expression ford̂eg Z(T ):

Corollary 6.1.2. Let T be positive definite withDiff (T,B) = {p} for p 6 |
D(B). Then

d̂eg Z(T ) = νp(T ) log p ·
(∑

j

∑
y∈V (p)(Q)2

1
2

(y,y)=T

e−1
y,j · ϕ

(p)(h−1
j · y)

)
,

whereνp(T ) is given by Theorem 3.6.1 in terms of the Gross-Keating in-
variants(0, a1, a2) of T̃ = diag(1, T ) ∈ Sym3(Zp)∨:

νp(T ) =


∑a1−1

2
j=0 (a1 + a2 − 4j) pj if a1 is odd,∑a1
2
−1

j=0 (a1 + a2 − 4j) pj + 1
2(a2 − a1 + 1) p

a1
2 if a1 is even.

Comparing this expression with the corresponding Fourier coefficient of
the central derivative of the Eisenstein series computed in Theorem 5.3.8,
we have.

Corollary 6.1.3. For T ∈ Sym2(Z)∨ with det(T ) 6= 0 andDiff (T,B) =
{p} with p - D(B),

E ′2,T (τ, 0, B) = d̂eg(Ẑ(T, v)) · qT .
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Proof. Indeed, the stabilizer ofy in Γ(p)
j has twice the size of the stabilizer

of y in the group that was denotedΓj in Theorem 5.3.8 and (5.3.54).

Remark 6.1.4. Whenp 6= 2, this computation and comparison is implicitly
done in section 14 of [3]. There, the arithmetic intersection number of a pair

of classesẐ(t1, v1), Ẑ(t2, v2) ∈ ĈH
1
(M) was computed in the case when

t1t2 is not a square, so that the cyclesZ(t1) andZ(t2) do not meet in the
generic fiber. The intersection of such cycles in a fiberMp, for p - D(B),
is a finite union ⋃

T∈Sym2(Z)∨

diag(T )=(t1,t2)

Diff (T,B)={p}

Z(T )

of 0-cycles, and the corresponding contribution to the arithmetic intersec-
tion number is the sum of thêdeg(Z(T ))’s, which are given by the Gross-
Keating formula.

6.2 THE CASET > 0 WITH Diff (T,B) = {p} FOR p | D(B)

In this case, the naive cycleZ(T ) defined by imposing a pair of special
endomorphisms with fundamental matrixT is supported in the fiberMp,
but whenp2 | T , this cycle has components of dimension1, as described
in Chapter 3. To overcome this difficulty, we define the classẐ(T, v) ∈
ĈH

2
(M) by giving directly the number̂deg(Ẑ(T, v)).

Write

(6.2.1) T =
(
t1 m
m t2

)
∈ Sym2(Z)>0

and recall thatZ(T ) is the union of those connected components of the
intersectionZ(t1) ×M Z(t2) where the fundamental matrix, as defined in
[5], is equal toT . After base change toZp, we let, by [4],
(6.2.2)

d̂eg(Ẑ(T, v)) := χ(Z(T ),OZ(t1) ⊗L OZ(t2)) · log p ∈ R ' ĈH
2
(M),

whereχ is the Euler-Poincaré characteristic of the derived tensor product of
the structure sheavesOZ(t1) andOZ(t2); see [5], Section 4. Whenp 6= 2, the

numberd̂eg(Ẑ(T, v)) was computed in [5], Theorem 8.6. There the result
was expressed as the product of a local multiplicity (which is actually global
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on the Drinfeld space) and an orbital integral. The calculation of the mul-
tiplicity comes down to a combinatorial problem. The same method works
whenp = 2, although, as described in the appendix to this chapter, the com-
binatorics become considerably more elaborate. Also, here we replace the
orbital integral by an expression which is more in analogy with the formula
obtained in the previous section in the case whenp - D(B). To state the re-
sult, we introduce, as in the previous section, the twisted quaternion algebra
B(p) overQ whose invariants differ from those ofB at preciselyp and∞.
We again introduceH(p) = B(p),× andV (p). By strong approximation, we
have

(6.2.3) H(p)(Af ) = H(p)(Q)H(p)(Qp)Kp,

whereKp = (O(p)⊗Ẑp)×. Letϕ(p) ∈ S((V (p)(Ap
f ))

2) be the characteristic

function of the set(V (p)(Ẑp))2. We also set

(6.2.4) Γ′ = H(p)(Q) ∩Kp.

Using this notation, we have

Theorem 6.2.1.Let T ∈ Sym2(Z)∨ with det(T ) 6= 0 and Diff (T,B) =
{p} for p | D(B). Then

d̂eg(Ẑ(T, v)) = νp(T ) · log p · 1
2

∑
y∈V (p)(Q)2

1
2
(y,y)=T

mod Γ′

ϕ(p)(y).

Furthermore, the multiplicityνp(T ), defined in (6.2.11), is given as follows
in terms of the Gross-Keating invariants(0, a1, a2) and the Gross-Keating
ε-constantε0 = ε0(T̃ ) , [2], p. 236, ofT̃ = diag(1, T ) ∈ Sym3(Zp)∨:

1
2
νp(T ) = a1 + a2 + 1

−



p
a1
2 + 2 p

a1
2 − 1
p− 1 if a1 is even andε0 = −1,

(a2 − a1 + 1) p
a1
2 + 2 p

a1
2 − 1
p− 1 if a1 is even andε0 = 1,

2 p
a1+1

2 − 1
p− 1 if a1 is odd.

Proof. (Cf. also Section 7.6.) We use thep-adic uniformization ofM⊗Zp
and ofZ(T ) ⊗ Zp. After base changing toW (F̄p), we have the Drinfeld-
Cherednik uniformization ofM,

(6.2.5) M⊗W (F̄p) = H(p)(Q)\
(
Ω̂• ×H(p)(Ap

f )/K
p),
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whereΩ̂• = Ω̂ × Z is the disjoint union of copies of the Drinfeld space
parametrized byZ. The isomorphism depends on the choice of a base point
(A0, ι0) ∈ M(F̄p). We also fix an identification ofO(p) with End(A0, ι0).
Now the analysis of [5], pp. 214–215, gives a uniformization of the formal
completion ofCT = Z(T )⊗W (F̄p) as an injection

(6.2.6) ĈT ↪→ H(p)(Q)\
(
V (p)(Q)2T × Ω̂• ×H(p)(Ap

f )/K
p),

where

(6.2.7) V (p)(Q)2T = {y ∈ V (p)(Q)2 | 1
2
(y,y) = T}.

By [5], (8.30), the conditions describinĝCT inside the right-hand side of
(6.2.6) are the following:(y, (X, ρ), gKp) ∈ ĈT if and only if

(i) g−1yg ∈ (V (p)(Ẑp))2, and

(ii) (X, ρ) ∈ Z•(j).

Herej is theZp-span of the imagesj1 andj2 of y1 andy2 under the injection

End(A0, ι0) → End(X)

into the endomorphism algebra of thep-divisible groupA0(p) = X2; see
[5].

Using strong approximation, we can write the right-hand side of (6.2.6)
as

(6.2.8) Γ′\
(
V (p)(Q)2T × Ω̂•

)
.

Taking into account the description ofĈT above, we obtain

(6.2.9) ĈT =
∐

y∈V (p)(Q)2T∩V
(p)(Ẑp)2

mod Γ′

[
Γ′y\Z•(j)

]
.

The stabilizerΓ′y is the intersection ofΓ′ with the center ofB(p),×, hence
Γ′y = Z[p−1]× ' {±1} × Z. The generator of the infinite factor acts by
translating the ‘sheets’ ofZ•(j) by 2, and the contribution of each sheet to
the Euler-Poincaré characteristic (6.2.2) is the same, see [5]. Denoting by
Z(j) the0-th sheet, we therefore see that the contribution ofy to d̂eg(ĈT )
is equal to

(6.2.10) e−1
y · 2 · χ(Z(j),OZ(j1) ⊗L OZ(j2)) · log p,
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whereey = 2 is the order of the stabilizer ofy in the first factor ofΓ′y. Now
the quantity

(6.2.11) νp(T ) := 2 · χ(Z(j),OZ(j1) ⊗L OZ(j2)) = 2 · (Z(j1),Z(j2))

only depends on the GL2(Zp)-equivalence class ofT ; see [5], Section 5.
Then, as is proved forp 6= 2 in Section 6 of [5], and forp = 2 in the
appendix to this chapter,νp(T ) is given by the expression appearing in the
statement of the theorem. In any case we obtain

(6.2.12)

d̂eg(Z(T )) = log p ·
∑

y∈V (p)(Q)2T∩(V (p)(Ẑp))2

mod Γ′

e−1
y · νp(T )

= νp(T ) · log p · 1
2

∑
y∈V (p)(Q)2

1
2
(y,y)=T

mod Γ′

ϕ(p)(y) ,

as was to be shown.

A comparison with Theorem 5.3.8 yields

Corollary 6.2.2. For T ∈ Sym2(Z)∨ with det(T ) 6= 0 andDiff (T,B) =
{p} for p | D(B),

E ′2,T (τ, 0, B) = d̂eg(Ẑ(T, v)) · qT .

6.3 THE CASE OF NONSINGULAR T WITH sig(T ) = (1, 1) OR (0, 2)

ForT ∈ Sym2(Z) nonsingular of signature(1, 1) or (0, 2), the cycleZ(T )
is empty, since the quadratic form on anyV (A, ι) is positive definite. Thus,
the termẐ(T, v) arises as a purely archimedean contribution. For a pair of
vectorsx = [x1, x2] ∈ V (Q)2 with nonsingular matrix of inner products
Q(x) = 1

2

(
(xi, xj)

)
, the quantity

(6.3.1) Λ(x) :=
1
2

∫
D
ξ(x1) ∗ ξ(x2),

whereξ(x1)∗ξ(x2) is the∗-product of the Green functionsξ(x1) andξ(x2),
[1], is well defined and depends only onQ(x). In addition,Λ(x), which was
denoted byHt(x)∞ in [3], section 11, has the following invariance property.

Theorem 6.3.1.([3], Theorem 11.6)For k ∈ O(2), Λ(x · k) = Λ(x).
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For T ∈ Sym2(Z) of signature(1, 1) or (0, 2) and forv ∈ Sym2(R)>0,

choose1 v
1
2 ∈ GL2(R) such thatv = v

1
2 · tv

1
2 , and define

(6.3.2) d̂eg(Ẑ(T, v)) :=
∑

x∈L2

Q(x)=T

mod Γ

e−1
x · Λ(x v

1
2 ) ∈ R ' ĈH

2
(M).

HereL = OB ∩ V , Γ = O×B , andex is the order of the stabilizerΓx of
x in Γ. In fact, ex = 2 for anyx with T = Q(x) nonsingular. Note that
the invariance property of Theorem 6.3.1 is required to make the right side
independent of the choice ofv

1
2 .

Remark 6.3.2. Notice that̂deg(Ẑ(T, v)) = 0 if T is not represented byV ,
since then the summation in the definition is empty; see also Remark 3.5.3.
Recall thatT is represented byV if and only if Diff(T,B) = {∞}. For
example, ifm 6= 0, the matrix

T =
(
t1 m
m 0

)
has signature(1, 1) but is not represented by any anisotropicVp. Thus the
primes dividingD(B) all lie in Diff (T,B) and the correspondinĝZ(T, v)
is zero.

Proposition 6.3.3. (i) Suppose thatT has signature(1, 1) and write

v
1
2Tv

1
2 = tk(θ) · diag(δ+,−δ−) · k(θ)

for k(θ) ∈ SO(2) andδ± ∈ R>0. Then

Λ(x v
1
2 ) = −1

2

∫
D

Ei(−4πδ−y−2|z|2) ·
(
δ+ y

−2(1 + |z|2)2 − 1
2π

)
× e−πδ+ [y−2(1+|z|2)2−4] · dµ(z),

where, forz = x+ iy ∈ D, dµ(z) = y−2 dx dy.
(ii) Suppose thatT has signature(0, 2) and write

v
1
2Tv

1
2 = −tk(θ) · diag(δ1, δ2) · k(θ)

for k(θ) ∈ SO(2) andδ1, δ2 ∈ R>0. Then

Λ(x v
1
2 ) = −1

2

∫
D

Ei(−4πδ1y−2|z|2) ·
(
δ2 y

−2(1− |z|2)2 − 1
2π

)
× e−πδ2 [y−2(1−|z|2)2+4] · dµ(z).

1Note that we may choosev
1
2 ∈ Sym2(R) with det(v

1
2 ) > 0.
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Proof. Part (i) is Theorem 6.3.1 together with Lemma 11.7 of [3]. To prove
(ii), we write

y1 =
√
δ1

(
1

−1

)
and y2 =

√
δ2

(
1

1

)
.

Then, writingRi = 1
2(yi, x(z))2 + 2δi, we have

2R1 = 4 δ1 y−2|z|2 and 2R2 = δ2 (y−2(1− |z|2)2 + 4).

Now we use the expression of Lemma 11.5 of [3], taking into account the
fact that there is no point evaluation term when bothy1 andy2 have negative
length.

Corollary 6.3.4. For T of signature(1, 1) or (0, 2), and for anyx ∈ V (R)2

withQ(x) = T ,

Λ(x v
1
2 ) = ν∞(T, v),

whereν∞(T, v) is as in (ii) of Theorem 5.2.7, and

Ẑ(T, v) = ν∞(T, v) · 1
2

∑
x∈V (Q)2

Q(x)=T

mod Γ

ϕBf (x) .

Comparing this expression with Theorem 5.3.8, we obtain

Corollary 6.3.5. For T of signature(1, 1) or (0, 2),

E ′2,T (τ, 0, B) = d̂eg(Ẑ(T, v)) · qT .

6.4 SINGULAR TERMS, T OF RANK 1

We now turn to the case

(6.4.1) T =
(
t1 m
m t2

)
∈ Sym2(Z)∨

with det(T ) = 0. If T 6= 0, we may writet1 = n2
1t, t2 = n2

2t, and
m = n1n2t for relatively prime integersn1 andn2 andt ∈ Z6=0. The pair
n1, n2 is unique up to simultaneous change in sign. Also note that ift1 = 0,
thenn1 = 0, n2 = 1, andt = t2. Similarly if t2 = 0, thenn1 = 1, n2 = 0,
andt = t1. For the cycle associated to such a singularT , we have simply

Lemma 6.4.1.Z(T ) = Z(t).
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Proof. We fix a choice of the pairn1 andn2. First suppose thatn1n2 6= 0.
Then if an object(A, ι,x) is given, withx = [x1, x2] ∈ V (A, ι)2, we have
Q(n2x1 − n1x2) = 0, so thatn2x1 = n1x2 ∈ V (A, ι). Sincen1 andn2

are relatively prime, it follows thaty := n−1
1 x1 = n−1

2 x2 ∈ V (A, ι). Note
thatQ(y) = t, so that(A, ι, y) is an object forZ(t). Conversely, for a
given (A, ι, y), we have(A, ι, [n1y, n2y]) for Z(T ). If, say, t1 = n1 = 0
so thatn2 = 1 andt = t2, and(A, ι,x) is given, we haveQ(x1) = 0 so
thatx1 = 0 and(A, ι, x2) defines an element ofZ(t). Conversely, given
(A, ι, y) we can take(A, ι, [0, y]). Of course, ift < 0, then both sides are
empty.

We defineẐ(T, v) ∈ R ' ĈH
2
(M) by setting

(6.4.2) d̂eg(Ẑ(T, v)) := −
〈
Ẑ(t, t−1tr(Tv)) , ω̂

〉
− 1

2
degQ(Z(t))

(
log

( det(v)
t−1tr(Tv)

)
+ log(D)

)
.

As motivation for this definition, note that we are, in some sense, shifting
the ‘naive’ class

(6.4.3) Ẑ(t, t−1tr(Tv)) ∈ ĈH
1
(M),

which occurs in the wrong degree, by taking its pairing with−ω̂. The ad-
ditional terms involvingv are added in order to obtain agreement with the
Fourier coefficient ofE ′2(τ, 0;B). Note that, for allα ∈ GL2(Z),

(6.4.4) d̂eg(Ẑ(T, αvtα)) = d̂eg(Ẑ(tαTα, v)),

so that our definition has the invariance which must hold for a Fourier coef-
ficient of a Siegel modular form.

Now the results of [6] give explicit expressions for all such singular terms.
More precisely, letE1(τ, s;B) be the modified Eisenstein series of genus
one associated toB. We then quote from [6] the following statement:

Theorem 6.4.2.For t 6= 0,

E1,t(τ,
1
2
;B) = degQZ(t) · qt,

and

E ′1,t(τ,
1
2
;B) = 〈 Ẑ(t, v), ω̂ 〉 · qt.
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Corollary 6.4.3. For T ∈ Sym2(Z)∨ of rank1,

d̂eg(Ẑ(T, v)) · qT = −E ′1,t(t−1tr(Tτ),
1
2
;B)

− 1
2
E1,t(t−1tr(Tτ),

1
2
;B) ·

(
log

( det(v)
t−1tr(Tv)

)
+ log(D)

)
.

Comparing this with Theorem 5.8.7, we have

Corollary 6.4.4. For T ∈ Sym2(Z)∨ of rank1,

E ′2,T (τ, 0;B) = d̂eg(Ẑ(T, v)) · qT .

6.5 THE CONSTANT TERM, T = 0

We complete the definition of̂φ2(τ) by setting

(6.5.1) d̂eg(Ẑ(0, v)) :=
〈
ω̂, ω̂

〉
+

1
2

degQ(ω̂)·
(

log det(v)−c+logD
)
,

as a class in̂CH
2
(M) ' R, where the constantc is introduced in [6]. We

will sometimes writeẐ(0, v) = Ẑ2(0, v) to distinguish this constant term
of the genus two generating function from the constant termẐ1(0, v) of the
genus one generating function. Recall from [6] that

(6.5.2) Ẑ1(0, v) = −ω̂ − (0, log(v)) + (0, c) ∈ ĈH
1
(M)

satisfies the identity

(6.5.3)
E ′1,0(τ,

1
2
;B) = 〈 Ẑ1(0, v), ω̂ 〉

= −〈 ω̂, ω̂ 〉 − 1
2

degQ ω̂ ·
(

log(v)− c
)

and that this identity determines the constantc. Also,

(6.5.4)
E1,0(τ,

1
2
;B) = degQ Ẑ1(0, v)

= −degQ ω̂.

Thus we have
(6.5.5)

d̂eg(Ẑ2(0, v)) = −E ′1,0(idet(v),
1
2
;B)− 1

2
· E1,0(idet(v),

1
2
;B) · log(D).

Comparing this with the result of Theorem 5.9.5, we have the following
identity:
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Theorem 6.5.1.

E ′2,0(τ, 0;B) = d̂eg(Ẑ2(0, v)).

This concludes the proof of Theorem B above.

Bibliography
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Chapter Six: Appendix

The case p = 2, p | D(B)

In this appendix, we extend the results of [3] concerning intersections of
the special cycles on the Drinfeld space to the casep = 2. We will denote
by B′ = M2(Qp) the matrix algebra overQp and byV ′ its subspace of
traceless elements.To anyj ∈ V ′ there is associated a special cycle on the
Drinfeld space. In the appendix to section 11 of [4] the geometry of an
individual special cycleZ(j) is described in the casep = 2. What we have
to deal with, then, is the relative position of two such special cycles.

We remark that elsewhere in this book we used the quadratic form on the
space of traceless elements of a quaternion algebra given by the reduced
norm,Q(x) = Nm(x) = xιx. On the other hand, in the local context,
we used in the appendix to section 11 of [4] the quadratic form given by
squaring,q(x) = x2, which differs fromQ by a sign change. This sign
change also occurs in [3] when we make the transition from the local results
to the global results. It turns out that the main result of this appendix is best
expressed in terms of the quadratic formQ; at the same time, to make the
relation to the local calculations in our previous papers [3] and [4] easier, in
the explicit calculations we use the quadratic formq. The miracle is that,
just as in the Gross-Keating formula (Theorem 3.6.1), the same formula for
the local intersection index as in the casep 6= 2 continues to hold in the case
p = 2 when the result is expressed in terms of the Gross-Keating invariants
of the matrixT̃ = diag(1, T ) ∈ Sym3(Z)∨.

6A.1 STATEMENT OF THE RESULT

We consider a pair of special endomorphismsj andj′ ∈ V ′ and assume
that they span a2-dimensional subspace on which the quadratic form is
nondegenerate, i.e., such thatdet(T ) 6= 0, where

(6A.1.1) T =

(
Q(j) 1

2(j, j′)
1
2(j′, j) Q(j′)

)
∈ Sym2(Q2).
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Theorem 5.1 of [3], whose proof involves no restriction on the residue char-
acteristic, implies that for intersection numbers

(6A.1.2) (Z(j), Z(j′)) = (Z(j)pure, Z(j′)pure).

Moreover, this intersection number depends only on theZ2-submodulej of
V spanned byj andj′. Our main result supplements Theorem 6.1 of [3].

To formulate our result we consider the 3-dimensionalZp-lattice given
by

(6A.1.3) T̃ = diag(1, T ).

Then Gross and Keating associate toT̃ its GK-invariant

(6A.1.4) GK(T̃ ) = (0, a2, a3) ∈ Z3

where0 ≤ a2 ≤ a3, and furthermore its GK-constant

(6A.1.5) ε(T̃ ) ∈ {±1},

provided thata2 ≡ 0 mod 2 anda2 < a3, [5], appendix B. These terms
only depend on the GL2(Zp)-equivalence class ofT . Note that ifp 6= 2
andT is GL2(Zp)-equivalent todiag(ε1pα, ε2pβ) with 0 ≤ α ≤ β with
εi ∈ Z×p for i = 1, 2, then

(6A.1.6) GK(T̃ ) = (0, α, β) and ε(T̃ ) = χ(−ε1),

whereχ is the quadratic residue character modulop.

Theorem 6A.1.1. The intersection number

(Z(j), Z(j′)) =
1
2
ν2(T )

is equal to

a2 + a3 + 1

−



2
p(a2+1)/2 − 1

p− 1
if a2 is odd,

(a3 − a2 + 1) pa2/2 + 2
pa2/2 − 1
p− 1

if a2 is even andε(T̃ ) = 1,

pa2/2 + 2
pa2/2 − 1
p− 1

if a2 is even andε(T̃ ) = −1.

HereGK(T̃ ) = (0, a2, a3).1

1The meaning of the formula in the case wherea2 = a3 is even (in which caseε(T̃ ) is
not defined) is that one takes either of the last two (identical) alternatives.
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If p 6= 2, this formula is exactly the one of Theorem 6.1 of [3] by the
remarks preceding the theorem. As a first step of the proof of the above
theorem forp = 2, we calculate the Gross-Keating invariants and constants
of T̃ . Before giving the result, we recall from the appendix to section 11 of
[4] the case distinction forq = ε 2α ∈ Z2, with ε ∈ Z×2 . We callq of type
(1)-(4)according to

(1) α even,ε ≡ 1 mod 8
(2) α even,ε ≡ 5 mod 8
(3) α even,ε ≡ 3 mod 4
(4) α odd.

The values are now given in Table 2, which is organized as follows: ifT
is GL2(Z2)-equivalent to a diagonal matrix, we writeT ∼ diag(ε12α, ε22β)
with 0 ≤ α ≤ β and callT of type(i):(j) if −ε12α is of type(i) and−ε22β
is of type(j) .

Table 2. Values for Gross-Keating Invariants

Diagonal Cases GK(T̃ ) ε(T̃ )

(1):(*) , β ≤ α+ 1 (0, α+ 1, β + 1)

(1):(*) , β ≥ α+ 2 (0, α+ 2, β) +1

(2):(*) , β ≤ α+ 1 (0, α+ 1, β + 1)

(2):(*) , β ≥ α+ 2 (0, α+ 2, β) −1

(3):(*) (0, α+ 1, β + 1)

(4):(*) (0, α, β + 2)

Other Cases

−2α
(
b 1

2
1
2 b

)
(0, α, α)

b = 0, 1

In Table 2,(*) means that the type of−ε22β is arbitrary.

Proof. If T ∼ diag(ε12α, ε22β), with α ≤ β, then

(6A.1.7) T̃ ∼ diag(1, ε12α, ε22β).
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Using the notation of [5], Proposition B.5, we have

(6A.1.8) β1 = 0, β2 = α, β3 = β.

In Cases(1):(*) , or (2):(*) , one hasε1 ≡ −1 mod 4, andβ2−β1 = α ≡
0 mod 2. So Proposition B.5 says that the GK-invariant ofT̃ = diag(1, T )
is

(6A.1.9) GK(T̃ ) =

{
(0, α+ 1, β + 1) if β ≤ α+ 1,
(0, α+ 2, β) if β ≥ α+ 2.

Moreover, whenβ ≥ α+2, then by [2], the Gross-Keating constant is equal
to (−ε1, 2)2 as claimed.

In Case(3):(*) , one hasε1 ≡ 1 mod 4, hence [5], Proposition B.5 gives

(6A.1.10) GK(T̃ ) = (0, α+ 1, β + 1).

The Case(4):(*) is simply [5], Proposition B.5, (1).
Finally in the nondiagonal cases, the assertion is [5], Proposition B.4.

Taking into account Table 2, it is now an elementary matter to calculate
the expression occurring in Theorem 6A.1.1 in all cases. In the reformula-
tion we have passed to the quadratic formq onV ′ which absorbs the minus
sign occurring in our definition of the type of a diagonal matrixT in Table 2.
Therefore the following statement is equivalent to Theorem 6A.1.1. We will
prove Theorem 6A.1.1 by going through all cases in the following theorem.

Theorem 6A.1.2. The intersection number

(Z(j), Z(j′)) =
1
2
ν2(T )

depends only on theGL2(Z2)-equivalence class ofT . The values of12ν2(T )
are the following:

Diagonal cases

Suppose thatT is GL2(Z2)-equivalent to the matrixdiag(ε12α, ε22β). In
the following list, the initial pair of numbers indicates the types ofq(j) and
q(j′), e.g., (1):(3) indicates thatq(j) has type(1) and q(j′) has type(3)
in the notation introduced above. The comment ‘classical’ indicates that
the corresponding configuration, as defined in Section A.3 below, already
occurs forp 6= 2.
Case (1):(1)with α ≤ β.

1
2
ν2(T ) = α+ β + 3−

{
(β − α− 1)2

α
2
+1 − 2(2

α
2
+1 − 1) if α < β,

2 (2
α
2
+1 − 1) if α = β.
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Case (1):(2).

1
2
ν2(T ) = α+ β + 3−


(β − α− 1)2

α
2
+1 + 2 (2

α
2
+1 − 1) if α < β,

2 (2
α
2
+1 − 1) if α = β,

2
β
2
+1 + 2 (2

β
2
+1 − 1) if β < α.

Case (1):(3).

1
2
ν2(T ) = α+ β + 3−

(β − α− 1)2
α
2
+1 + 2(2

α
2
+1 − 1) if α < β

2(2
β
2
+1 − 1) if β ≤ α.

Case (1):(4)(classical).

1
2
ν2(T ) = α+ β + 3−

(β − α− 1)2
α
2
+1 + 2(2

α
2
+1 − 1), if α < β,

2(2
β+1

2 − 1), if α > β.

Case (2):(2)with α ≤ β.

1
2
ν2(T ) = α+ β + 3−

{
2
α
2
+1 + 2(2

α
2
+1 − 1) if α < β,

2(2
α
2
+1 − 1) if α = β.

Case (2):(3).

1
2
ν2(T ) = α+ β + 3−

2
α
2
+1 + 2(2

α
2
+1 − 1) if α < β,

2(2
β
2
+1 − 1) if β ≤ α.

Case (2):(4)excluded.
Case (3):(3)excluded.
Case (3):(4)(classical).

1
2
ν2(T ) = α+ β + 3−

{
2(2

α
2
+1 − 1) if α < β,

2(2
β+1

2 − 1) if β < α.

Case (4):(4)(classical),α ≤ β.

1
2
ν2(T ) = α+ β + 3− 2(2

α+1
2 − 1).

Additional cases

T ' −2α
(

0 1
2

1
2 0

)

1
2
ν2(T ) = 2α+ 1−

2(2
α+1

2 − 1) if α is odd,

2
α
2 + 2(2

α
2 − 1) if α is even.
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T ' −2α
(

1 1
2

1
2 1

)
, α even

1
2
ν2(T ) = 2α+ 1− 2

α
2 − 2(2

α
2 − 1).

The case whenα is odd is excluded.

6A.2 REVIEW OF THE SPECIAL CYCLES Z(j), FOR q(j) ∈ Zp \ {0}

When computing intersection numbers, the divisorsZ(j) can be replaced
by the corresponding cyclesZ(j)pure and these have a simple combinatorial
description.

Definition 6A.2.1. A set ofcycle datais a triple(S, µ, Zh), whereS ⊂ B
is a subset of the building,µ ∈ Z ≥ 0, andZh is a horizontal divisor onM.

Note that, for the computation of the intersection multiplicities ofZh with
vertical divisors, it is enough to give a small amount of incidence data about
Zh.

A set of cycle data(S, µ, Zh) determines a divisor onM,

(6A.2.1) Z(S, µ, Zh) =
∑
[Λ]

m[Λ](S, µ) P[Λ] + Zh,

where

(6A.2.2) m[Λ](S, µ) = max {µ− d([Λ], S), 0}.

ThenZh is the horizontal part of the divisorZ(S, µ, Zh), and the first sum
is the vertical part ofZ(S, µ, Zh). Conversely, the divisorZ(S, µ, Zh) de-
termines the set of cycle data(S, µ, Zh) (except whenµ = 0).

In the ‘classical’ case,p 6= 2, for q(j) = εpα,Z(j)pure has the following
description:

(i) α even andχ(ε) = 1. Then

(6A.2.3) S = A = Bj , µ =
α

2
, Zh = 0.

HereA denotes an apartment inB.
(ii) α even andχ(ε) = −1. Then

(6A.2.4) S = [Λ0] = Bj , µ =
α

2
, Zh = 2Spf(W).
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Here the horizontal componentZh meets the vertical part only in the central
componentP[Λ0], in two ordinary special points.
(iii) α odd. Then

(6A.2.5) S = [[Λ0,Λ1]], µ =
α− 1

2
, Zh = Spf(W′).

ThenBj is the midpoint of the edge[Λ0,Λ1], andZh meets the vertical part
at the superspecial point corresponding to the edge[Λ0,Λ1]. Here we use
the notation[[Λ0,Λ1]] for the union of the edge[Λ0,Λ1] and its endpoints.

In the case wherep = 2, again forq(j) = εpα, Z(j)pure is described in
the Appendix to section 11 of [4]:2

(1) α even andε ≡ 1 mod (8). Then

(6A.2.6) S = A = BO× , µ =
α

2
+ 1, Zh = ∅,

where againA is an apartment inB. In this case

(6A.2.7) Bj = { x ∈ B | d(x,A) ≤ 1 }.

(2) α even andε ≡ 5 mod (8). Then

(6A.2.8) S = [Λ0] = BO× , µ =
α

2
+ 1, Zh = 2Spf(W),

whereZh meets the vertical part only in the central componentP[Λ0] in two
ordinary special points. Here

(6A.2.9) Bj = {x ∈ B | d(x, [Λ0]) ≤ 1}.

(3) α even andε ≡ 3 mod (4). Then
(6A.2.10)

S = [[Λ0,Λ1]] = BO× = Bj , µ =
α

2
, Zh = Spf(W′),

as in the classical case (iii).
(4) α odd. Then

(6A.2.11) S = [[Λ0,Λ1]] = BO× , µ =
α− 1

2
, Zh = Spf(W′),

2We take the occasion to correct an error concerning Case(1) in the Appendix to Section
11 of [4]. It is erroneously asserted on pp. 934–935 thatZ2[j̄]

× ( O× and that for the

associated apartmentA one hasA = BO
×

. In fact, in this caseBO
×

= B j . In the table on
p. 934 the header of the last column should be namedS(j) and defined to beA in Case(1)
andBO

×
in Cases(2)–(4). In the rest of the appendix,BO

×
should be replaced everywhere

by S(j). Then the statements become correct in all cases.
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again as in the classical case (iii). Here

(6A.2.12) Bj = midpoint of[Λ0,Λ1].

Note that each of these cycles has the same type of cycle data as one of
the classical cases. Also note thatS andZh are unchanged ifj is replaced
by a scalar multiple.

6A.3 CONFIGURATIONS

In this section, we suppose that a pairj andj′ is given withq(j) andq(j′)
both nonzero and with matrix of inner productsT , as in the previous section,
and we describe the possible configurations(S, S′), i.e., relative positions,
of the setsS andS′ occuring in the cycle data ofZ(j) andZ(j′). In the
diagonal cases, these configurations depend only on the types ofj andj′,
rather than on the full matrixT .

First suppose thatp 6= 2. Then the matrixT is diagonalizable. When
it has diagonal form, thenjj′ = −j′j, and hencej (resp. j′) preserves
the setBj′ (resp.Bj). From this fact, it is easy to check that the possible
configurations are the following (cf. [3]):

(i):(i) S andS′ are apartments which meet at a unique vertex[Λ0].
(i):(ii) S is an apartment containing the unique vertexS′ fixed byj′.
(i):(iii) S is an apartment containing the edgeS′ whose midpoint is the
unique fixed point ofj′.
(ii):(ii) S = S′ = [Λ0] is the common fixed vertex ofj andj′.
(ii):(iii) excluded.
(iii):(iii) S = S′ = [[Λ0,Λ1]] with midpoint the common fixed point ofj
andj′.

We will refer to these possibilities as theclassical configurations.

Proposition 6A.3.1. Suppose thatp = 2. Then the possible configurations
are the following:
When the matrixT is diagonal,

(1):(1) S andS′ are apartments withd(S, S′) = 1.
(1):(2) S is an apartment andS′ is a vertex withd(S, S′) = 1.
(1):(3)S is an apartment andS′ = [[Λ′0,Λ

′
1]] with [Λ′0] ∈ S but [Λ′1] /∈ S.

(1):(4) S is an apartment andS′ = [[Λ′0,Λ
′
1]] ⊂ S.

This coincides with the classical configuration(i):(iii) .
(2):(2) S = [Λ0], S′ = [Λ′0], whered([Λ0], [Λ′0]) = 1.
(2):(3) S = [Λ0] andS′ = [[Λ0,Λ′1]], where[[Λ0,Λ′1]] = Bj′ .
(2):(4) excluded.
(3):(3) excluded.
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(3):(4) S = S′ = [[Λ0,Λ1]] = Bj andBj′ the midpoint.
(4):(4) S = S′ = [[Λ0,Λ1]] withBj = Bj′ the midpoint.

These last two configurations coincide with the classical configuration for
(iii):(iii) .

Finally, if T = −2α
(

1 1
2

1
2 1

)
, thenα is even andS andS′ are apartments

with d(S, S′) = 2.

Proof. First note that, whenT is diagonal so thatj and j′ anticommute,
then conjugation byj preservesO′ and acts by the Galois automorphism
and similarly forj′ andO. In particular, the action ofj′ must preserve both
fixed-point setsBj andBO× , and the action ofj must preserve both fixed-
point setsBj′ andBO′,× We now prove selected cases. For(1):(1), j must
act by a nontrivial automorphism of order2 on the apartmentS′ = BO′,× .
It thus has a unique fixed pointx0 on the apartmentS′, which then has
distance≤ 1 from the apartmentS = BO× . But this point must have
distance exactly1 from S, since otherwise the intersection ofS′ with the
tube of radius1 aroundS, i.e., the fixed-point setBj , would contain another
point. This confirms the configuration claimed for(1):(1). Case(1):(3) is
similar, sincej′ must have a unique fixed point on the apartmentS. In Case
(1):(2), the fixed points ofj′ all have distance≤ 1 fromS′ = [Λ0]; since the
apartmentS contains exactly one of them, we must haved(S, S′) = 1. The
reasoning for Case(1):(4) is as in the classical situation. In Case(2):(2) we
haveS = [Λ0] andBj = {x | d(x, [Λ0]) ≤ 1} and similarly forS′ = [Λ′0]
andBj′ . It follows that [Λ0] ∈ Bj

′
and[Λ′0] ∈ Bj . On the other hand, we

must have[Λ0] 6= [Λ′0]. To see this, let us choose a basis ofΛ0 as in (A.10)
of [4], so thatj is given by the matrixj = 2

α
2 j̄ with

(6A.3.1) j̄ =
(
−1 2λ
2 1

)
with λ ∈ Z×2 .

Let j′ = 2
β
2 j̄′, where

(6A.3.2) j̄′ =
(
a b
c −a

)
.

The condition thatj′ anticommute withj is given byb = a− λc. If [Λ0] =
[Λ′0] thenj̄′ would have to be a scalar matrix modulo 2. But then2 | c and
2 | a which contradictsdet(j̄′) ∈ Z×2 .

In Case(2):(3), [Λ0] = BO× has to be fixed byj′, which yields the
assertion. For the same reason, Case(2):(4) is excluded since thenj′ fixes
no vertex. This case could also have been excluded from the fact thatj and
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j′ generate the matrix algebra M2(Qp) which yields(ε 2α, ε′2β)2 = 1. For
the same reason, Case(3):(3) does not occur. The remaining diagonal cases
are obvious.

ForT = −2α
(

1 1
2

1
2 1

)
, we note thatT is representable by the quadratic

space of the traceless matrices in M2(Q2) (with q given by squaring) only
whenα is even. Letj = 2

α
2 j̄ andj′ = 2

α
2 j̄′. Thenj̄2 = j̄′

2 = 1. We may
choose a basis ofQ2

2 such that

(6A.3.3) j̄ =
(

1 0
0 −1

)
.

Thenj̄′ = gj̄g−1 for a suitableg ∈ GL2(Qp). By the Bruhat decomposition
we may assume thatg ∈ NA or g ∈ NwNA, whereN is the subgroup of
unipotent upper triangular matrices,A the subgroup of diagonal matrices,

and wherew =
(

0 1
1 0

)
. The condition is that

(6A.3.4) 1 = (j̄, j̄′) = −tr(j̄ · j̄′ ι),

wherex 7→ xι denotes the main involution onM2(Q2). It is easy to see that
g ∈ NA yields no solution. Ifg ∈ NwNA, we may assume that

(6A.3.5) g =
(

1 b1
0 0

)
·
(

0 1
1 0

)
·
(

1 b2
0 1

)
.

Then (6A.3.4) is equivalent tob1b2 = −3
4 , and hence we may take

(6A.3.6) g =

(
1 1

4
1 −3

4

)
.

NowS is the standard apartmentA = {[Λr] | r ∈ Z}, with Λr = [e0, 2re1],
andS′ = gS. But
(6A.3.7)

g[Λr] = [[e0 + e1, 2r−2(e0 − 3e1)]] =

[[e0 + e1, 2re1]] if r ≥ 2,

[[e0 − 3e1, 24−re1]] if r < 2.

It is now easy to see thatS ∩ S′ = ∅. It follows thatd(S, S′) = 2, the
geodesic betweenS andS′ being formed by the vertices
(6A.3.8)

S 3 [e0, e1] = [e0 + e1, e1] ⊃ [e0 + e1, 2e1] ⊃ [e0 + e1, 22e1] ∈ S′.
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6A.4 CALCULATIONS

The principle of the proof of Theorem 6A.1.2 is the same as that of Theorem
6.1 of [3], which is as follows. We write(Z(j), Z(j′)) as the sum of two
terms, namely of

(6A.4.1) (Z(j)h, Z(j′)h) + (Z(j)h, Z(j′)v) + (Z(j)v, Z(j′)h)

and of(Z(j)v, Z(j′)v). For the first term we use the Genestier equations and
the information onZ(j)h andZ(j′)h encoded in the cycle data ofZ(j) and
Z(j′). The second term is purely combinatorial and only depends on the first
two entries of the cycle data forZ(j) andZ(j′). This allows us to dispose
immediately of(Z(j)v, Z(j′)v) in the cases which are termed classical in
the list, i.e.,(1):(4), (3):(4), and(4):(4). Indeed, these cases have already
been dealt with in Section 6 of [3], except that there the multiplicitiesµ and
µ′ of the central components ofZ(j)v andZ(j′)v were equal toα andβ
with α ≤ β. Similarly, the calculation of the last two summands of (6A.4.1)
is as in Section 6 of [3]. This gives the result claimed in Case(1):(4). For
the term(Z(j)h, Z(j′)h) in the Cases(3):(4) and(4):(4) we have to use the
Genestier equation — and here the result is different from the casep 6= 2.

Case (3):(4). In this case(Zh(j), Zh(j′)) = 2 (and not 1, as in the case
p 6= 2). Indeed, let us choose coordinates as in (A.14) of the appendix to
section 11 of [4] (relative toj) for

(6A.4.2) Λ0⊃
6=

Λ1⊃
6=

2Λ0.

Thenj = p
α
2 j̄ with

(6A.4.3) j̄ =
(
−1 −2(1− 2λ)
1 1

)
, whereε1 = 4λ− 1 .

FurthermoreZh(j) equals, withµ = −(1− 2λ)−1,
(6A.4.4)
SpecW [X]/(X2+2µX−2µ) ' SpecW [T0, T1]/(T0T1−2, T0+2µ−µT1)

(whereT0 7→ X, T1 7→ µ−1 (X + 2µ)). Now j′ = 2
β−1

2 j̄′, wherej̄′ is
given terms of the above coordinates as

(6A.4.5) j̄′ =
(

2a0 2b0
c −2a0

)
,

where b0 and c are units; cf. (A.17) of the Appendix to Section 11 of
[3]. Then Zh(j′) is given by the equationb0T0 − 4a0 − cT1 = 0 in
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Spec W [T0, T1]/(T0T1 − 2). Hence(Zh(j), Zh(j′)) equals the length of
the Artin ring

(6A.4.6) W [X]/(X2 + 2µX − 2µ, b0X − 4a0 −
c

µ
(X + 2µ)).

Now W [X]/(X2 + 2µX − 2µ) = W̃ is the ring of integers in a ramified
quadratic extension, with the residue classπ̃ of X as uniformizer. Hence
the length is equal to thẽπ-valuation of

(6A.4.7) (b0 −
c

µ
)π̃ − 2(c+ 2a0) = (b0 + c(1 + λ))π̃ − 2(c+ 2a0).

The condition thatj anticommute withj′ is given as−2a0+b0−c (1−2λ) =
0. Hence(b0+c(1+λ))π̃ = 2(b0−a0)π̃, so that thẽπ-valuation of (6A.4.7)
is equal to 2, as claimed.
Case (4):(4). In this case(Zh(j), Zh(j′)) = 3 (and not 1 as in the case
p 6= 2). In this case we may choose standard coordinates as in (A.17) in
the Appendix to section 11 in [4] forΛ0⊃

6=
Λ1⊃

6=
2Λ0. Thenj = 2

α−1
2 j̄ and

j′ = 2
β−1

2 j̄′ where

(6A.4.8) j̄ =
(

2a0 2b0
c −2a0

)
, j̄′ =

(
2a′0 2b′0
c′ −2a′0

)
,

whereb0, c, b′0, c
′ are units. ThenZh(j) equals, withµ = c/b0 andν =

2a0/c,

(6A.4.9) Spec W [X]/(X2 − 2µνX − 2µ)

' Spec W [T0, T1]/(T0T1 − 2, b0T0 − 4a0 − cT1)

(whereT0 7→ X, T1 7→ µ−1X − 2ν). FurthermoreZh(j′) is given by the
equationb′0T0−4a′0−c′T1 = 0 in SpecW [T0, T1]/(T0T1−p). Denoting by
π̃ the residue class ofX in W̃ = W [X]/(X2 − 2µνX − 2µ), we therefore
have to determine thẽπ-order of

b′0π̃ − 4a′0 − c′(µ−1π̃ − 2ν)

= (b′0 − c′/µ)π̃ + 2(νc′ − 2a0)(6A.4.10)

= c−1((b′0c− b0c
′)π̃ + 4(a0c

′ − a0)).

The condition thatj andj′ anticommute is given by4a0a
′
0+(b0c′+b′0c) = 0.

Hence(b′0c − b0c
′)π̃ = 2(b′0c + 4a0a

′
0)π̃ and theπ̃-valuation of (6A.4.10)

is 3, as claimed.
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We now go through the remaining cases. In the combinatorial problem
of calculating(Z(j)v, Z(j′)v), we use the following terminology. By the
contribution of a vertex[Λ] we mean the number

(6A.4.11) m[Λ](S, µ) · (P[Λ], Z(j′)v).

To calculate(Z(j)v, Z(j′)v), we have to add the contributions of all ver-
tices.

It will be useful to note the following elementary results, valid for arbi-
traryp:

(I) A vertex [Λ] of multiplicity ν ≥ 1 in Z(j′) will be called regular
in Z(j′) if it has one neighbor with multiplicityν + 1 and p neighbors
with multiplicity ν − 1. Then(P[Λ], Z(j′)v) = 1 − p. If a vertex[Λ] has
multiplicity 0 in Z(j′)v and has a unique neighbor with multiplicity1, then
(P[Λ], Z(j′)v) = 1.

(II) We have the following summation formulae, whereν ≤ µ in the
second formula,

(6A.4.12) µ+
µ−1∑
t=1

(µ− t)(p− 1)pt−1 =
pµ − 1
p− 1

.

(6A.4.13) µ+
ν−1∑
t=1

(µ− t)(p− 1)pt−1 − (µ− ν)pν−1 =
pν − 1
p− 1

.

Case (1):(1). In this caseZ(j)h = Z(j′)h = 0. It remains to compute
(Z(j)v, Z(j′)v). We are assuming thatµ ≤ µ′. We divide the vertices[Λ]
into two groups:
Group 1:d([Λ], S′) < d([Λ], S).

Each vertex[Λ] with m[Λ](S, µ) > 0 is regular forZ(j′). Therefore this
group contributes

(6A.4.14) −
µ−1∑
t=1

(µ− t) 2t−1 = −(2µ − 1) + µ.

Here we used (I) above.

Group 2:d([Λ], S) ⊂ d([Λ], S′).
The automorphismj′ acts on this group, with a unique fixed point[Λ0],

the vertex onS closest toS′. This vertex contributes−µ. The contributions
of the other vertices in this group are summed according to the closest vertex
in S. Therefore this sum is twice (for the symmetry)

(6A.4.15) −
µ′−2∑
s=1

(2min(µ,µ′−1−s) − 1) + µ.
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Therefore, ifµ ≤ µ′ − 1, Group 2 contributes

−µ+ 2(−
µ−1∑
t=1

(2t − 1)− (µ′ − µ− 1) (2µ − 1) + µ)

= −µ+ 2(µ− 1)− 4(2µ−1 − 1)− 2(µ′ − µ− 1) (2µ − 1) + 2µ

= µ+ 2µ′ − 2(µ′ − µ) 2µ.

Therefore, adding the contribution of Group 1, we obtain forµ ≤ µ′ − 1,
i.e.,α < β,

(6A.4.16) 2(µ+ µ′) + 1− (2(µ′ − µ) + 1) 2µ,

which confirms the formula in this case.
If µ = µ′, the contribution of Group 2 equals

(6A.4.17) −µ+ 2(−
µ−2∑
s=1

(2s − 1) + µ) = 3µ− 2µ.

Therefore, adding the contribution of Group 1, we obtain forµ = µ′, i.e.,
α = β,

(6A.4.18) 4µ+ 1− 2 · 2µ,

which confirms the formula in this case.

Case (1):(2). In this caseZ(j)h = 0 andZ(j′)h meets the special fiber in
the central componentP[Λ′0] of Z(j′) in two ordinary special points. There-
fore, sincem[Λ′0](S, µ) = µ− 1,
(6A.4.19)

(Z(j)h, Z(j′)h) + (Z(j)h, Z(j′)v) + (Z(j′)h, Z(j)v) = 2(µ− 1).

To calculate(Z(j)v, Z(j′)v), we divide the vertices into two groups:

Group 1:d([Λ], [Λ′0]) < d([Λ], S).
The contribution of[Λ′0] is −3(µ − 1). The other vertices in group 1

contribute

(6A.4.20)

−
∑µ−2
t=1 (µ− 1− t) 2t if µ ≤ µ′ + 1,

−
∑µ′−1
t=1 (µ− 1− t) 2t + (µ− µ′ − 1) 2µ

′
if µ > µ′ + 1.

Group 2:d([Λ], [Λ′0]) > d([Λ], S).
The automorphismj′ acts onS with a unique fixed vertex[Λ0] charac-

terized byd([Λ0], [Λ′0]) = 1. The contribution of[Λ0] is equal to−µ. The
contributions of the other vertices in this group are summed according to the
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vertex inS closest to the given vertex. Therefore this sum is twice (for the
symmetry) the sum

(6A.4.21) −
µ′−2∑
s=1

(2min(µ,µ′−1−s) − 1) + µ.

This last sum is equal to
(6A.4.22)−(µ′ − µ− 1) (2µ − 1)−

∑µ−1
s=1 (2s − 1) + µ if µ ≤ µ′ − 1,

−
∑µ′−2
s=1 (2s − 1) + µ if µ > µ′ − 1.

Using (II) above, this is equal to
(6A.4.23)−(µ′ − µ− 1) (2µ − 1) + (µ− 1)− 2(2µ−1 − 1) + µ if µ ≤ µ′ − 1,

(µ′ − 2)− 2(2µ
′−2 − 1) + µ if µ > µ′ − 1.

The total for(Z(j), Z(j′)) is for µ ≤ µ′ − 1, i.e.,α < β, equal to

2(µ−1)− 3(µ− 1)−
µ−1∑
t=2

(µ− t) 2t−1 − µ

= −2(µ′ − µ− 1) (2µ − 1) + 2(µ− 1)− 4 (2µ−1 − 1) + 2µ

= −(2µ − 1)− 2(µ′ − µ− 1) (2µ − 1) + 4µ− 2(2µ − 1)

= 4µ− (3 + 2(µ′ − µ− 1)) (2µ − 1).

This equals

(6A.4.24) 2(µ+ µ′) + 1− (2(µ′ − µ) + 1) 2µ,

which confirms the given formula in this case (recallµ = α
2 +1, µ′ = β

2 +1).
Forµ = µ′, i.e.,α = β, we obtain

(6A.4.25) −(2µ − 1) + 2(µ− 2)− 4(2µ−2 − 1) + 2µ = 4µ+ 1− 2 · 2µ,

which confirms the formula in this case.
Forµ = µ′ + 1, i.e.,α = β + 1, we obtain

2(µ− 1)− 3(µ− 1)−
µ−1∑
t=2

(µ− t) 2t−1

− µ+ 2(µ− 3)− 4(2µ−3 − 1) + 2µ

= −(2µ − 1) + 2(µ− 3)− 4(2µ−3 − 1) + 2µ.
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This equals

(6A.4.26) 4µ− 1− 2µ−1 − 2µ,

which confirms the formula in this case.
Forµ > µ′ + 1, i.e.,α > β, the total for(Z(j), Z(j′)) is equal to

2(µ− 1)− 3(µ− 1)−
µ′∑
t=2

(µ− t) 2t−1

+ (µ− µ′ − 1) 2µ
′ − µ+ 2(µ′ − 2)− 4(2µ

′−2 − 1) + 2µ

= −(2µ
′+1 − 1) + 2(µ′ − 2)− 4(2µ

′−2 − 1) + 2µ.

This equals

(6A.4.27) 2(µ+ µ′) + 1− 2µ
′ − 2µ

′+1,

which confirms the formula in this case.

Case (1):(3). In this caseZ(j)h = 0 andZ(j′) is the spectrum of a ramified
quadratic extension ofW which passes through the double pointpt[Λ′0],[Λ′1].
Hence
(6A.4.28)

(Z(h)h, Z(j′)h) + (Z(j)h, Z(j′)v) + (Z(j′)h, Z(j)v) = 2µ− 1 .

To calculate(Z(j)v, Z(j′)v), we first note that the contribution of[Λ′0] ∈ S
is equal to−2µ and the contribution of[Λ′1] is equal to−2(µ − 1). The
remaining vertices are divided into two groups.

Group 1:0 < d([Λ], [Λ′1]) < d([Λ], [Λ′0]).
These vertices contribute

(6A.4.29)

−
∑µ−1
t=2 (µ− t) 2t−1 if µ ≤ µ′ + 1,

−
∑µ′

t=2(µ− t) 2t−1 + (µ− (µ′ + 1)) 2µ
′

if µ > µ′ + 1.

Group 2:0 < d([Λ], [Λ′0]) < d([Λ], [Λ′1]).
Here we sum the contributions of the lattices according to the closest

vertex onS. We obtain, taking into account the involution ofS induced by
j′,

(6A.4.30) −2
µ′−1∑
s=1

(2min(µ,µ′−s) − 1) + 2µ.
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This equals
(6A.4.31)−2 (µ′ − µ) (2µ − 1)− 2

∑µ−1
s=1 (2s − 1) + 2µ if µ ≤ µ′,

−2
∑µ′−1
s=1 (2s − 1) + 2µ if µ ≥ µ′ + 1.

Forµ ≤ µ′, the total for(Z(j), Z(j′)) is equal to

2µ− 1− 2µ− 2(µ− 1)−
µ−1∑
t=2

(µ− t) 2t−1 − 2(µ′ − µ)(2µ − 1)

− 2
µ−1∑
s=1

(2s − 1) + 2µ.

This equals

(6A.4.32) 2(µ+ µ′) + 3− (2(µ′ − µ) + 3) 2µ,

which confirms the formula in this case (note thatµ = α
2 + 1, µ′ = β

2 and
thatµ ≤ µ′ ⇔ α < β).

If µ = µ′ + 1, i.e.,α = β, the total is

2µ− 1− 2µ− 2(µ− 1)−
µ−1∑
t=2

(µ− t) 2t−1 − 2
µ−2∑
s=1

(2s − 1) + 2µ

= −(2µ − 1) + 2(µ− 2)− 4(2µ−2 − 1) + 2µ.

This equals

(6A.4.33) 4µ+ 1− 2 · 2µ,

which confirms the formula in this case.
If µ > µ′ + 1, i.e.,α > β, the total is

−2µ+ 1−
µ′∑
t=2

(µ− t) 2t−1 + (µ− (µ′ + 1)) 2µ
′ − 2

µ′−1∑
s=1

(2s − 1) + 2µ

= −(2µ
′+1 − 1) + 2(µ′ − 1)− 4(2µ

′−1 − 1) + 2µ.

This equals

(6A.4.34) 2(µ+ µ′) + 3− 2 · 2µ′+1,

which confirms the formula in this case.
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Case (2):(2). In this caseS = [Λ0] andS′ = [Λ′0] with d([Λ0], [Λ′0]) = 1.
Now Z(j)h meetsZ(j′)v in the two ordinary special points ofP[Λ0] and
Z(j′)h meetsZ(j)v in the two ordinary special points ofP[Λ′0]. Hence
(6A.4.35)
(Z(j)h, Z(j′)h)+(Z(j)h, Z(j′)v)+(Z(j)v, Z(j′)h) = 2(µ−1)+2(µ′−1).

To calculate(Z(j)v, Z(j′)v) we divide the vertices into two groups. We
may assumeµ ≤ µ′ by symmetry.

Group 1:0 ≤ d([Λ], [Λ0]) < d([Λ], [Λ′0]).
This group contributes

(6A.4.36)−µ− 2
∑µ−1
t=1 (µ− t) 2t−1 if µ ≤ µ′ − 1

−µ−
∑µ−2
t=1 (µ− t) 2t + (µ− (µ− 1)) 2µ−1 if µ = µ′.

The quantity forµ = µ′ is equal to
(6A.4.37)

µ− 2
(
µ+

µ−2∑
t=1

(µ− t) 2t−1 − (µ− (µ− 1)) 2µ−2) = µ− 2(2µ−1 − 1).

Hence the contribution of this group is equal to

(6A.4.38)

{
µ− 2 (2µ − 1) if µ ≤ µ′ − 1,

µ− 2(2µ−1 − 1) if µ = µ′.

Group 2:0 ≤ d([Λ], [Λ′0] < d([Λ], [Λ0]).
Here [Λ′0] contributes−3(µ − 1). The remaining vertices in this group

contribute

(6A.4.39) −
µ−1∑
t=2

(µ− t) 2t−1.

Hence this group contributes

(6A.4.40) −µ+ 2− (2µ − 1).

For the total, we obtain in caseµ ≤ µ′ − 1, i.e.,α < β,

2(µ− 1) + 2(µ′ − 1) + µ− 2(2µ − 1)− µ+ 2− (2µ − 1)(6A.4.41)

= 2(µ+ µ′) + 1− 3 · 2µ,

which yields the formula in this case. Whenµ = µ′, i.e.,α = β, we get

4(µ− 1) + µ− 2(2µ−1 − 1)− µ+ 2− (2µ − 1)(6A.4.42)

= 4µ+ 1− 2 · 2µ,
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which confirms the formula in this case.

Case (2):(3). In this caseZ(j)h is unramified and meets the special fiber in
two ordinary special points ofP[Λ0], andZ(j′)h is ramified and meets the
special fiber in the double pointpt[Λ0],[Λ′1]. Hence

(Z(j)h, Z(j′)h) + (Z(j)h, Z(j′)v) + (Z(j)v, Z(j′)h)(6A.4.43)

= 2µ′ + 2µ− 1 = 2(µ+ µ′)− 1.

To calculate(Z(j)v, Z(j)v), we note that the contribution of[Λ′1] is−2(µ−
1) and that the contribution of[Λ0] is −2µ. The remaining vertices are
divided into two groups.

Group 1:0 < d([Λ], [Λ′1]) < d([Λ], [Λ0]).
These vertices contribute

(6A.4.44)

{
−
∑µ−1
t=2 (µ− t)2t−1 if µ− 1 ≤ µ′,

−
∑µ′

t=2(µ− t) 2t−1 + (µ− (µ′ + 1)) 2µ
′

if µ− 1 > µ′.

Group 2:0 < d([Λ], [Λ0]) < d([Λ], [Λ′1]).
These vertices contribute

(6A.4.45)

{
−2

∑µ−1
t=1 (µ− t) 2t−1 if µ ≤ µ′,

−2
∑µ′−1
t=1 (µ− t) 2t−1 + 2(µ− µ′) 2µ

′−1 if µ > µ′.

The total for(Z(j), Z(j′)) for µ ≤ µ′, i.e.,α < β, is equal to

2(µ+ µ′)− 1− 4µ+ 2−
µ−1∑
t=2

(µ− t) 2t−1 − 2
µ−1∑
t=1

(µ− t) 2t−1

= 2(µ+ µ′)− (2µ − 1)− 2(2µ − 1).

This equals

(6A.4.46) 2(µ+ µ′) + 3− 3 · 2µ,

which confirms the formula in this case.
Forµ = µ′ + 1, i.e.,α = β, the total is

2(µ+ µ′)− 1− 4µ+ 2−
µ−1∑
t=2

(µ− t) 2t−1

− 2
µ′−1∑
t=1

(µ− t) 2t−1 + 2(µ− µ′)2µ
′−1

= 2(µ+ µ′)− (2µ − 1)− 2(2µ−1 − 1).



200 CHAPTER 6: APPENDIX

This equals

(6A.4.47) 2(µ+ µ′) + 3− 2 · 2µ,

which confirms the formula in this case.
Forµ− 1 > µ′, i.e.,α > β, the total is

2(µ+ µ′)− 1− 4µ+ 2−
µ′∑
t=2

(µ− t) 2t−1 + (µ− (µ′ + 1)) 2µ
′

− 2
µ′−1∑
t=1

(µ− t) 2t−1 + 2(µ− µ′) 2µ
′−1.

This equals

(6A.4.48) 2(µ+ µ′) + 3− 4 · 2µ′ ,

which confirms the formula in this case.

CaseT = −2α
(

1 1
2

1
2 1

)
, α even. In this caseZ(j)h = Z(j′)h = 0. To

calculate(Z(j)v, Z(j′)v), we divide the vertices into three groups.

Group1:d([Λ], S) = d([Λ], S′).
The contribution of these vertices is

(6A.4.49) −(µ− 1)−
µ−2∑
t=1

(µ− 1− t) 2t−1 = −(2µ−1 − 1).

Group 2:d([Λ], S′) < d([Λ], S).
The vertex[Λ′0] ∈ S′ closest toS contributes−(µ − 2). The remaining

vertices are grouped according to the closest vertex onS′. If that vertex has
distancet ≥ 1 from [Λ′0], the contribution is equal to

(6A.4.50) −(µ−2− t)−
µ−2−t−1∑
s=1

(µ−2− t− s) 2s−1 = −(2µ−2−t−1).

We see that the group 2 contributes

(6A.4.51) −(µ− 2)− 2
µ−3∑
t=1

(2µ−2−t − 1) = −(µ− 2)− 2
µ−3∑
t=1

(2t − 1).

Group 3:d([Λ], S) < d([Λ], S′).
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The vertex[Λ0] ∈ S closest toS′ contributes−µ. The remaining vertices
are grouped according to the closest vertex onS. If that vertex onS has
distancet with 1 ≤ t ≤ µ− 3 from [Λ0], the contribution is equal to

−µ−
µ−2−t−1∑
s=1

(µ− s) 2s−1 + (µ− (µ− 2− t)) 2µ−2−t(6A.4.52)

= −(2µ−2−t − 1).

Finally a vertex onS with distanceµ − 2 from [Λ0] contributesµ. We see
that Group 3 contributes

(6A.4.53) −µ− 2
µ−3∑
t=1

(2µ−2−t − 1) + 2µ = µ− 2
µ−3∑
t=1

(2t − 1).

The total is

−(2µ−1 − 1)− (µ− 2)− 2
µ−3∑
t=1

(2t − 1) + µ− 2
µ−3∑
t=1

(2t − 1)

which equals

(6A.4.54) 4µ− 1− 3 · 2µ−1,

which confirms the formula in this case.

6A.5 THE FIRST NONDIAGONAL CASE

In this section we consider the caseT = −2α
(

0 1
2

1
2 0

)
. This case is dif-

ferent from the above cases in that the endomorphismsj andj′ do not anti-
commute and, while being6= 0, satisfyq(j) = q(j′) = 0. The case where
j ∈ V ′ hasq(j) = 0 was excluded from [3], therefore we have to describe
first the special cycleZ(j) in M in this case. The method is the same as in
[3], therefore we will be brief.

Let, thus,j ∈ V ′ be nonzero withq(j) = 0. The proof of Proposition 2.2
of [3] carries over to show thatZ(j) ∩ P[Λ] 6= ∅ iff j(Λ) ⊂ Λ, and in fact
P[Λ] then occurs inZ(j) with multiplicity

(6A.5.1) mult[Λ](j) = max{r ≥ 0 | j(Λ) ⊂ 2rΛ}.

Indeed, this follows from the local equation forZ(j) alongΩ̂[Λ], (see [3],

equation (3.13)): ifj = 2r
(
a b
c −a

)
with a, b, c ∈ Z2 not all simultane-

ously divisible by 2, then sincedet(j) = 0, not bothb andc are divisible by
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2, so that the second factor in (3.13) of [3], which isbT 2 − 2aT − c, is not
divisible by 2.

Furthermore, the horizontal componentZ(j)h is trivial. This can be
proved by considering the local equations as in section 3 of [3]; the global
argument of Remark 8.2 of [3], that 0 is not represented by a division alge-
bra, can also be applied.

We choose a basise1, e2 of Q2
2 such that

(6A.5.2) j =
(

0 1
0 0

)
.

Then forΛr = [e1, 2re2] on the standard apartment we haveP[Λr] ∩Z(j) 6=
∅ iff r ≥ 0 and thenmult[Λr](j) = r. Conversely, letΛ be such that
j(Λ) ⊂ Λ, i.e.,P[Λ] ∩Z(j) 6= ∅. ThenΛ∩Ker j is generated by a multiple
e′1 = λe1 of e1. Furthermore there ise′2 ∈ Λ such thatj(e′2) = pre′1 and
such thatΛ = [e′1, e

′
2]. Thenr = mult[Λ](j). In other words,Λ is ther-th

vertex on the apartment corresponding to the basise′1, e
′
2; and this apartment

shares a half-apartment with the standard apartment. For the multiplicity
mult[Λ](j) there is the formula

(6A.5.3) mult[Λ](j) = dist([Λ], ∂S) + 1.

HereS = {[Λ] | mult[Λ](j) > 0} and [Λ] ∈ S. We therefore obtain the
picture forZ(j) shown in the frontispiece of this book.

Now let j, j′ ∈ V ′ with matrixT = −2α
(

0 1
2

1
2 0

)
, i.e.,q(j) = q(j′) = 0

andjj′ + j′j = 2α. Let e2 be a generator ofker(j′) and lete1 = j(e2).
Thene1 is a generator ofker(j). Thuse1, e2 is a basis ofQ2

2 defining an
apartmentAwith one half-apartment belonging toj (in the sense made clear
above) and the opposite half-apartment belonging toj′, i.e.,

(6A.5.4) j =
(

0 1
0 0

)
, j′ =

(
0 0
2α 0

)
.

It is immediate that

(6A.5.5) S ∩ A = {Λr | r > 0}, S′ ∩ A = {Λr | r < α}.

All vertices inS′ \ ∂S′ are regular forZ(j′). Therefore the contribution of
a vertex[Λ] which is joined by a geodesic of lengtht toA and meets there
the vertex[Λr] is equal to

(6A.5.6)


−(r − t) if t ≤ r andt ≤ α− r − 1,

r − t if t ≤ r andt = α− r,

0 in all other cases.
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Therefore the sum of the contributions of vertices with[Λr] as the closest
vertex onA is equal to
(6A.5.7)

−r −
∑α−r−1
t=1 (r − t) 2t−1 + (r − (r − α)) 2r−α−1 if α

2 ≤ r < α,

−r −
∑r−1
t=1 (r − t) 2t−1 if 0 < r < α

2 ,

α if r = α.

This equals

(6A.5.8)


−(2α−r − 1) if α

2 ≤ r < α,

−(2r − 1) if 0 < r < α
2 ,

α if r = α.

If α is even, the total contribution is equal to

−
α−1∑
s=α

2

(2α−s − 1)−
α
2
−1∑

s=1

(2s − 1) + α

= −
α
2∑

s=1

(2s − 1)−
α
2
−1∑

s=1

(2s − 1) + α

= −2

α
2
−1∑

s=1

(2s − 1)− (2
α
2 − 1) + α.

This equals

(6A.5.9) 2α+ 3− 3 · 2
α
2 ,

which confirms the formula in this case.
If α is odd, the total contribution is equal to

(6A.5.10) −
α−1∑
s=α+1

2

(2α−s− 1)−
α−1

2∑
s=1

(2s− 1)+α = −2

α−1
2∑

s=1

(2s− 1)+α.

This equals

(6A.5.11) 2α+ 3− 2 · 2
α+1

2 ,

which confirms the formula in this case.
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Chapter Seven

An inner product formula

In Chapter 4 we defined thêCH
1
(M)-valued generating function̂φ1(τ) =∑

t∈Z Ẑ(t, v) qt and showed its modularity. It follows that the height pairing
〈 φ̂1(τ1), φ̂1(τ2) 〉 of two of these generating functions is then a series with
coefficients inR which is a modular form of two variables, of weight3

2

in each. Here we are identifying, as in Chapter 2,̂CH
2
(M) with R via

the arithmetic degree map. On the other hand, in the previous chapter, we

defined a generating series for 0-cycles with coefficients in̂CH
2
(M) and

proved that it is a Siegel modular form of genus two and weight3
2 . This was

done by calculating explicitly all coefficients of this generating series and
showing that they coincide term by term with the corresponding coefficients
of the Siegel Eisenstein series considered in Chapter 5.

In the present chapter we prove an inner product formula which asserts
that after pulling back the generating series for 0-cycles under the diagonal
map, it coincides with the inner product of the generating function for divi-
sors with itself under the height pairing. Recall that there seemed to be some
arbitrariness in which the coefficients of the generating series for 0-cycles
was defined in Chapter 6, outside the case when the indexT ∈ Sym2(Z)∨

is positive definite and good. Therefore we may view the inner product for-
mula as an additional justification of these definitions, since this formula
shows their coherence. It should be stressed that this result is purely geo-
metric, and that formulas for the Fourier coefficients of Eisenstein series do
not enter into its proof. In fact, it turns out that we do not need the explicit
expressions that we obtained for the coefficients, but we do need the way in
which these calculations were organized.

When forming the inner product of̂φ1(τ) with itself, there are the pair-
ings of those special divisorsZ(t, v) which have no common intersection
in the generic fiber. For this part of the intersection product, the claimed
formula turns out to be essentially equivalent to the decomposition of the
intersection of two such special divisors according to their ‘fundamental
matrices’; see [3], (8.24). This part of the formula is therefore essentially
tautological. For the special divisors which do have an intersection in the
generic fiber, we use the adjunction formula in the form of Section 2.10.
For this we construct in Section 7.3 a weakly biadmissible Green function
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onH×H \∆ and show that the induced metric on the sheaf of differentials
onM(C) coincides exactly with the metric onω defined in [4], including
the mysterious constant2C = γ + log(4π). To apply then the adjunction
formula, we decompose the cycles into irreducible components according
to the conductor of the order generated by the special endomorphism (the
‘type’ of the special endomorphism). To calculate all the terms occurring in
the adjunction formula, there are archimedian calculations similar to those
in [4]. The calculations at the finite primes lead to Gross’s theory of quasi-
canonical liftings and the study of their ramification behavior.

7.1 STATEMENT OF THE MAIN RESULT

Let

(7.1.1) φ̂1(τ) =
∑
t∈Z

Ẑ(t, v) qt

be the generating function for divisors onM.1 In Chapter 4, it was proved

that this is a modular form of weight32 , valued inĈH
1
(M).

On the other hand, in Chapter 6 we introduced the generating function for
0-cycles

(7.1.2) φ̂2(τ) =
∑

T∈Sym2(Z)∨

Ẑ(T, v) qT

and have proved that this is a Siegel modular form2 of weight 3
2 . Therefore,

the pullback of this function under the diagonal map

(7.1.3) H× H −→ H2, (τ1, τ2) 7→
(
τ1

τ2

)
is a modular form of two variables, of weight3

2 in each of them. In this
chapter we will prove that this pullback coincides with the inner product of
φ̂1 with itself under the height pairing.

Theorem C. For τ1 andτ2 ∈ H,

〈 φ̂1(τ1), φ̂1(τ2) 〉 = φ̂2(
(
τ1

τ2

)
).

1We are using the convention thatZ(t) denotes both the moduli stack of triples(A, ι, x)
and its image inM, viewed as a divisor.

2Recall that, as explained in Chapter 2, we identifŷCH
2
(M) with R via d̂eg.
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Equivalently, for allt1, t2 ∈ Z, andv1, v2 ∈ R>0,

((?)) 〈 Ẑ(t1, v1), Ẑ(t2, v2) 〉 =
∑

T∈Sym2(Z)∨

diag(T )=(t1,t2)

Ẑ(T,
(
v1

v2

)
).

Here

(7.1.4) Sym2(Z)∨ = { T ∈ Sym2(Q) | tr(Tb) ∈ Z, ∀b ∈ Sym2(Z) }.

To prove the equality ((?)) of Theorem C, we first consider the caset1t2 6= 0.
We write

(7.1.5) Z(ti) = Zhor(ti) + Zver(ti),

whereZhor(ti) is the closure inM of the generic fiberZhor(ti)Q and where
Zver(ti) is a divisor supported in the fibersMp for somep | D(B).3 By
equipping these cycles with the ‘standard’ Green functions recalled in Sec-
tion 3.5, we obtain classes

(7.1.6) Ẑ(ti, vi) = Ẑhor(ti, vi) + Ẑver(ti) ∈ ĈH
1
(M),

where

(7.1.7) Ẑhor(ti, vi) = (Zhor(ti),Ξ(ti, vi)) ∈ ĈH
1
(M),

and

(7.1.8) Ẑver(ti) = (Zver(ti), 0) ∈ ĈH
1
(M).

Notice that, whenti < 0, thenZ(ti) = φ, and we have

Ẑ(ti, vi) = (0,Ξ(ti, vi)) ∈ ĈH
1
(M).

Such classes might be thought of as being ‘vertical at infinity’. We need to
compute

〈 Ẑ(t1, v1), Ẑ(t2, v2) 〉 = 〈 Ẑhor(t1, v1), Ẑhor(t2, v2) 〉

+ 〈 Ẑhor(t1, v1), Ẑver(t2) 〉(7.1.9)

+ 〈 Ẑver(t1), Ẑhor(t2, v2) 〉

+ 〈 Ẑver(t1), Ẑver(t2) 〉

3Here it is essential to interpret the notationZ(ti) as the image divisor inM.
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in terms of theẐ(T, v)’s with diag(T ) = (t1, t2). Whent1t2 is not a square,
so that only nonsingularT ’s can arise, the required identity comes down
essentially to the statement that the intersection can be written as a disjoint
union according to the fundamental matrices in the form as, e.g., in [3]. We
recall this in Section 7.2. Then, in Sections 7.3–7.9, we handle the cases in
whicht1t2 = m2 andti > 0. In Section 7.10, we consider the case in which
t1t2 = m2 but t1, t2 < 0.

Finally, the cases wheret1t2 = 0 are considered in Section 7.11. Here we
rely on arguments involving modularity of our various generating functions
combined with the identities ((?)) for t1t2 6= 0 to conclude that the remain-
ing terms must agree. As a consequence, we obtain the explicit value for
〈 ω̂, ω̂ 〉, which had been conjectured in [4].

Theorem 7.1.1.

〈 ω̂, ω̂ 〉 = ζD(B)(−1)
[
2
ζ ′(−1)
ζ(−1)

+ 1− 2C − 1
2

∑
p|D(B)

p+ 1
p− 1

· log(p)
]
,

where2C = log(4π) + γ, for Euler’s constantγ.

7.2 THE CASE t1t2 IS NOT A SQUARE

Whent1t2 is not a square, the cyclesZ(t1) andZ(t2) can have horizontal
components, but these components are disjoint on the generic fiber. Thus,
every height pairing on the right-hand side of (7.1.9) can be written as a sum
over primesp, p ≤ ∞, of local contributions,〈 Ẑhor(t1, v1), Ẑhor(t2, v2) 〉p,
〈 Ẑhor(t1, v1), Ẑver(t2) 〉p, etc. For a finite primep, these contributions come
from intersections in the fiber atp. Forp = ∞, they come from the Green
functions.

Theorem 7.2.1.Suppose thatt1t2 is not a square.
(i) For a finite primep with p - D(B),

〈 Ẑ(t1, v1), Ẑ(t2, v2) 〉p = 〈 Ẑhor(t1, v1), Ẑhor(t2, v2) 〉p
=
(
Zhor(t1),Zhor(t2)

)
p
· log p

=
∑
T>0

diag(T )=(t1,t2)

Diff (T,B)={p}

Ẑ(T ).

Here the quantity

Ẑ(T ) = Ẑ(T,
(
v1

v2

)
)
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is independent ofv1 andv2.
(ii) For a finite primep with p | D(B),

〈 Ẑ(t1, v1), Ẑ(t2, v2) 〉p =
∑
T>0

diag(T )=(t1,t2)

Diff (T,B)={p}

Ẑ(T ).

and, again,Ẑ(T ) is independent ofv.
(iii) For p = ∞,

〈 Ẑ(t1, v1), Ẑ(t2, v2) 〉∞ =
∑
T

diag(T )=(t1,t2)

Diff (T,B)={∞}

Ẑ(T,
(
v1

v2

)
).

The statement in this theorem reflects the decomposition of the intersec-
tion pairing of theẐ(ti, vi) according to ‘fundamental matrices’, as is im-
plicit in [2], Theorem 14.11 (resp. Proposition 12.5) in the casep - D(B)
(resp. the casep = ∞), and explicit in [3], Theorem 8.6 in the case
p | D(B).

Sketch of Proof.For a fixed primep <∞, letB′ be the definite quaternion
algebra with invariants inv̀(B′) = inv`(B) for ` 6= p, ∞ and invp(B′) =
−invp(B). Let H ′ = (B′)×, and letV ′ = {x ∈ B′ | tr(x) = 0}. For a
fixed maximal orderOB′ in B′, we fix an isomorphismB′(Ap

f ) ' B(Ap
f ),

so thatOB⊗Z Ẑp is identified withOB′⊗Z Ẑp. We then have identifications
H(Ap

f ) = H ′(Ap
f ) andV (Ap

f ) = V ′(Ap
f ), and we setKp = (OB ⊗ Ẑp)×.

First suppose thatp - D(B). In this case,B′ is ramified atp. Sincet1t2
is not a square, the cyclesZ(t1) andZ(t2) are disjoint on the generic fiber
and only meet inMp at supersingular points. We have

(7.2.1) 〈Ẑ(t1, v1), Ẑ(t2, v2)〉p = (Z(t1),Z(t2))p · log (p),

where the geometric intersection number can be written as a sum of local
intersection numbers

(7.2.2) (Z(t1),Z(t2))p =
∑

x∈Mp(F̄p)ss
(Z(t1),Z(t2))x .

If x ∈Mp(F̄)ss corresponds to(A, ι), then

(7.2.3) (Z(t1),Z(t2))x =
∑

y=(y1,y2)∈V (A,ι)2

Q(yi)=ti

νp(y).
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Hereνp(y) denotes the length of the deformation space of the pair of en-
domorphismsy = (y1, y2) of (A, ι), and each point is counted with mul-
tiplicity e−1

y . But νp(y) = νp(T ) only depends on thefundamental matrix
T = Q(y) of (A, ι,y). Therefore, rearranging the sum according to the
possible fundamental matrices we obtain, as in Section 6.1,

(Z(t1),Z(t2))p =
∑

T∈Sym2(Z)∨

diag(T )=(t1,t2)

∑
x=(A,ι)∈Mp(F̄p)ss

∑
y∈V (A,ι)2

Q(y)=T

e−1
y νp(T )

(7.2.4)

=
∑

T∈Sym2(Z)∨

diag(T )=(t1,t2)

|ΛT | · νp(T ),

with

(7.2.5) |ΛT | =
∑

x∈Mp(F̄p)ss
|{y ∈ V (A, ι)2; Q(y) = T}|,

where again the cardinality is to be taken in the stack sense, i.e.,(A, ι,y)
counts with multiplicity1/|Aut (A, ι,y)|. Note that sincet1t2 is not a
square, the sum (7.2.4) runs only over nonsingular matricesT .

Next, we consider the contributions of terms wherep | D(B). In this
case, we also have to take into account the additional terms coming from
vertical components. Let

(7.2.6) OB′ [p−1] = OB′⊗Z Z[p−1], (resp.L′[p−1] = L′⊗Z Z[p−1] ),

and letΓ′ = (OB′ [p−1])×. Note thatΓ′ can be identified with an arithmetic
subgroup ofB′(Qp)× ' GL2(Qp).

Recall that we are assuming thatt1t2 is not a square. Then we can write
as in the development leading up to [3], Theorem 8.5, (cf. also the proof of
Theorem 6.2.1)

〈 Ẑ(t1, v1), Ẑ(t2, v2) 〉p

= 〈 Ẑhor(t1, v1), Ẑhor(t2, v2) 〉p + 〈 Ẑhor(t1, v1),Zver(t2) 〉p

+ 〈Zver(t1), Ẑhor(t2, v2) 〉p + 〈Zver(t1),Zver(t2) 〉p

=
∑

T∈Sym2(Z)∨

diag(T )=(t1,t2)

∑
y=[y1,y2]∈(L′[p−1])2

Q(y)=T

mod Γ′

e−1
y · νp(T ) log(p),(7.2.7)
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=
∑

T∈Sym2(Z)∨

diag(T )=(t1,t2)

|ΛT | · νp(T ) log(p),

whereey is the order of the stabilizer ofy in

(7.2.8) Γ′,1 = { γ ∈ Γ′ | ordp(ν(γ)) = 0 },

and where

(7.2.9) ΛT =
[
Γ′\{ y ∈ (L′[p−1])2 | Q(y) = T }

]
,

and

(7.2.10) |ΛT | =
∑

y∈ΛT

e−1
y .

The computation is done using thep-adic uniformization of the formal com-
pletion of the special fiberMp. The quantity

(7.2.11)
1
2
νp(T ) = χ(Z(j),OZ(j1) ⊗L OZ(j2)),

which depends only on the GL2(Zp)-equivalence class ofT ∈ Sym2(Zp),
is ‘global’ on the Drinfeld spacêΩ. Note that when the matrixT is changed
by an element of GL2(Zp), the geometry of the formal cycleZ(j) changes,
althoughνp(T ) does not. An explicit example is given in Example 5.5 at
the end of Section 5 of [3]. This fact will be relevant to us here, since later,
in the case in whicht1t2 is a square, we will need to compute the individual
terms〈 Ẑhor(t1, v1), Ẑhor(t2, v2) 〉p and〈Zver(t1),Zver(t2) 〉p.

Finally, we consider the archimedean part of the height pairing in the case
in which t1t2 is not a square. This part of the pairing is given by the star
product of the Green functions. LetD be the union of the upper and the
lower half planes and letM = MC = [Γ \ D]. Then, as in the proof of
Proposition 12.5 of [2],

〈 Ẑ(t1, v1), Ẑ(t2, v2) 〉∞ =
1
2

∫
M

Ξ(t1, v1) ∗ Ξ(t2, v2)

=
1
2

∫
[Γ\D]

∑
x1∈L

Q(x1)=t1

∑
x2∈L

Q(x2)=t2

ξ(v
1
2
1 x1) ∗ ξ(v

1
2
2 x2)

=
∑

T∈Sym2(Z)∨

diag(T )=(t1,t2)

∑
x=[x1,x2]∈L2

Q(x)=T

mod Γ

e−1
x · ν∞(T, v)(7.2.12)
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=
∑

T∈Sym2(Z)∨

diag(T )=(t1,t2)

|ΛT | · ν∞(T, v),

where

(7.2.13) ν∞(T, v) =
1
2

∫
D
ξ(v

1
2
1 x1) ∗ ξ(v

1
2
2 x2),

and

(7.2.14) ΛT =
[
Γ\{ x ∈ (L)2 | Q(x) = T }

]
.

As usual,

(7.2.15) |ΛT | =
∑

x=[x1,x2]∈L2

Q(x)=T

mod Γ

e−1
x .

Summarizing, we have, for anyT ∈ Sym2(Z)∨ with det(T ) 6= 0 and
Diff (T,B) = {p},

(7.2.16) Ẑ(T, v) =

|ΛT | · νp(T ) · log(p) if p <∞,

|ΛT | · ν∞(T, v) if p = ∞,

where|ΛT | is given by (7.2.5), (7.2.10), and (7.2.15), respectively,νp(T ) is
given in (7.2.4) and (7.2.11), andν∞(T, v) is given by (7.2.13). This yields
the claimed result.

7.3 A WEAKLY ADMISSIBLE GREEN FUNCTION

In this section, we construct a weaklyµ-biadmissible Green function onH×
H−∆, as defined in Section 2.7, for the hyperbolic metricµ = y−2 dx∧dy
on the upper half planeH. This Green function is rapidly decreasing away
from the diagonal. The Green functions introduced in [2] (see also Section
3.5) can be recovered by restriction to the ‘slices’ of the formz1 × H.

For t > 0, let

(7.3.1) β1(t) = −Ei(−t) =
∫ ∞

1
e−tr r−1 dr

be the exponential integral.

Proposition 7.3.1. For t ∈ R>0, the function

g0
t (z1, z2) = β1(4πt sinh2(d(z1, z2))),
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whered(z1, z2) is the hyperbolic distance betweenz1 andz2 ∈ H, defines
a weaklyµ-biadmissible Green function onH × H − ∆. The associated
functionφ0

t is given by

φ0
t (z1, z2) =

[
4t cosh2(d(z1, z2))−

1
2π

]
e−4πt sinh2(d(z1,z2)).

For anyγ ∈ GL2(R)+,

g0(γz1, γz2) = g0(z1, z2) and φ0(γz1, γz2) = φ0(z1, z2).

Proof. The symmetry (ii) in Definition 2.7.1 is obvious and condition (i) is
immediate from the asymptotics ofβ1 near zero; see Lemma 7.3.3. For the
Green equation, we letR = 2 sinh2(d(z1, z2)) and compute, first on all of
H× H−∆,

ddc g0
t (z1, z2)

(7.3.2)

=
1

2πi
[
− 2πtR−1 ∂R ∧ ∂̄R−R−2 ∂R ∧ ∂̄R+R−1 ∂∂̄R

]
e−2πtR

=
1

2πi
[
− 2πtR ∂ log(R) ∧ ∂̄ log(R) + ∂∂̄ log(R)

]
e−2πtR.

Since

(7.3.3) cosh(d(z1, z2)) =
|z1 − z2|2

2y1y2
+ 1,

we have

(7.3.4) R = 2
|z1 − z2|2

2y1y2
· |z1 − z̄2|2

2y1y2
,

(7.3.5) log(R) = −2 log(y1y2)− log(2) + log |z1− z2|2 + log |z1− z̄2|2,

and

∂ log(R)

(7.3.6)

=
(
iy−1

1 +
1

z1 − z2
+

1
z1 − z̄2

)
dz1 +

(
iy−1

2 +
1

z2 − z1
+

1
z2 − z̄1

)
dz2

= ( ρ−1 + σ1) dz1 + (−ρ−1 + σ2) dz2,
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where, for convenience, we writeρ = z1 − z2, and

(7.3.7) σ1 = iy−1
1 +

1
z1 − z̄2

, σ2 = iy−1
2 +

1
z2 − z̄1

.

Then

(7.3.8) ∂̄ log(R) = (ρ̄−1 + σ̄1) dz̄1 + (−ρ̄−1 + σ̄2) dz̄2

and

R∂ log(R) ∧ ∂̄ log(R)

(7.3.9)

= 2(2y1y2)−2|z1 − z̄2|2
(
|1 + ρσ1|2 dz1 ∧ dz̄1 + | − 1 + ρσ2|2 dz2 ∧ dz̄2

+ (1 + ρσ1)(−1 + ρ̄σ̄2)dz1 ∧ dz̄2 + (−1 + ρσ2)(1 + ρ̄σ̄1)dz2 ∧ dz̄1
)
.

In addition,

∂∂̄ log(R) =− iy−2
1 dx1 ∧ dy1 − iy−2

2 dx2 ∧ dy2(7.3.10)

+ (z1 − z̄2)−2 dz1 ∧ dz̄2 + (z2 − z̄1)−2 dz2 ∧ dz̄1.

Note that the 2-forms in (7.3.9) and (7.3.10) are both smooth on all ofH×H.
Now, fixing z1, we obtain
(7.3.11)
R∂2 log(R) ∧ ∂̄2 log(R) = 2 (2y1y2)−2|z1 − z̄2|2 | − 1 + ρσ2|2 dz2 ∧ dz̄2,

and

(7.3.12) ∂2∂̄2 log(R) = −iy−2
2 dx2 ∧ dy2,

so that

d2d
c
2g

0
t (z1, z2) =

[
ty−2

1 |z1 − z̄2|2|1− ρσ2|2 −
1
2π

]
e−2πtRy−2

2 dx2 ∧ dy2

=
[
4t
( |z1 − z2|2

2y1y2
+ 1

)2 − 1
2π

]
e−2πtR y−2

2 dx2 ∧ dy2(7.3.13)

=
[
4t cosh2(d(z1, z2))−

1
2π

]
e−2πtR y−2

2 dx2 ∧ dy2.

In fact, to finish the proof of (iii) of Definition 2.7.1, we must still check the
Green equation for currents, but this will follow from the calculation in [2],
Proposition 11.1, once we have identified the restriction ofg0

t to the ‘slice’
z1 × H.
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Remark 7.3.2. Away from the diagonal,

(7.3.14) g0
t (z1, z2) = O( exp(−4πt sinh2(d(z1, z2))) ),

and hence decays doubly exponentially with respect to the hyperbolic dis-
tance.

Next, we consider the pullback of the metric onOH×H(∆) determined,
onH× H−∆, by the identity

(7.3.15) g0
t (z1, z2) = − log ||s∆||2,

wheres∆ = z1 − z2. The point is to determine the behavior of this metric
along∆.

Lemma 7.3.3. For the exponential integralβ1 of (7.3.1),

lim
t↓0

(
β1(t) + log(t)

)
= −γ,

whereγ is Euler’s constant. More precisely

β1(t) = −γ − log(t) + β0
1(t)

whereβ0
1(t) is given by

β0
1(t) =

∫ t

0

eu − 1
u

du.

In particular, limt↓0 β
0
1(t) = 0.

It follows from this lemma together with (7.3.4) that

(7.3.16) g0
t (z1, z2) = − log |z1 − z2|2 − γ − log(4πt)

+ 2 log(2y1y2)− log |z1 − z̄2|2 + β0
1(2πtR).

Recalling thatρ = z1 − z2 and using (7.3.6), we compute

− log ||1||2 = − log ||ρ−1 s∆||2

= log |z1 − z2|2 + g0
t (z1, z2)(7.3.17)

= log |z1 − z2|2 − γ − log(2πtR) + smooth

= −γ − log(πt) + 2 log(y1y2)− log |z1 − z̄2|2 + smooth.

Restricting to the diagonalz = z1 = z2, we get

(7.3.18)
(
− log ||1||2

)
|∆ = −γ − log(4πt) + 2 log(y).
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Note that the corresponding Chern form is

(7.3.19) −ddc
(
log ||1||2

)
|∆ = ddc(2 log(y)) = − 1

2π
µ.

Formula (7.3.18) can be interpreted as follows. LetI be the ideal of
holomorphic functions vanishing on the diagonal inH × H. Takings∨∆ =
(z1−z2)−1, as a section ofOH×H(−∆), with divisor−∆, then for any open
setU in H× H, there is an isomorphism

(7.3.20) Γ(U, I) ∼−→ Γ(U,OH×H(−∆)), f 7→ f · s∨∆.

Then the canonical isomorphism

(7.3.21) i∗∆(OH×H(−∆)) ∼−→ Ω1
H

is given explicitly by

(7.3.22) f · s∨∆ 7→ i∗∆(h) · dz,

where

(7.3.23) f(z1, z2) = h(z1, z2) (z1 − z2).

In particular,ρ · s∨∆ 7→ dz in (7.3.21). The metric onΩ1
H which makes

(7.3.21) an isometry is then determined by

(7.3.24) − log ||dz||2 = − log ||ρ · s∨∆||2 = γ + log(4πt)− 2 log(y),

where the sign has changed compared to (7.3.18), since we are considering
OH×H(−∆), rather thanOH×H(∆).

Suppose thatΓ ⊂ GL+
2 (R) is a discrete group acting properly discontinu-

ously onH with compact quotientΓ\H. LetM = [Γ\H] be the correspond-
ing compact orbifold, and let

(7.3.25) pr: H −→ [Γ\H] = M

be the natural projection. We also suppose that there is a normal subgroup
Γ′ ⊂ Γ of finite index which acts without fixed points inH. Thus, there
is a compact Riemann surfaceX = Γ′\H with a finite group of automor-
phismsΓ0 = Γ/Γ′ so thatM = [Γ0\X]. Thus, we are in the situation of
Sections 2.3 and 2.7. The function

(7.3.26) gt(P,Q) =
∑
γ∈Γ′

g0
t (z1, γ z2),
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for P = pr(z1) andQ = pr(z2) ∈ X, is then a weaklyµ-biadmissible
Green function onX ×X −∆X with associated function

(7.3.27) φt(P,Q) =
∑
γ∈Γ′

φ0
t (z1, γz2).

SinceΓ′ is normal inΓ, these functions are invariant with respect to the
diagonal action ofΓ0 = Γ/Γ′.

In the arithmetic adjunction formula of Section 2.7, we need to compute
the metric onΩ1

X = i∗∆OX×X(−∆) determined by the function−gt. Since
Γ′ has no elliptic fixed points onH, we have4

(7.3.28) − log ||dz||2 = γ + log(4πt)− 2 log(y)− ψt(z),

where

(7.3.29) ψt(z) =
∑
γ∈Γ′

γ 6=1

g0
t (z, γz).

Here, the first three terms on the right-hand side are the contribution for
γ = 1, as computed in (7.3.24) above. SinceΓ′ is normal inΓ, the function
ψt(z) is actuallyΓ-invariant, as is the quantity− log ||dz||2 + 2 log(y). In
particular,ψt defines a function onM . If f is a holomorphic automorphic
form of weight2 with respect toΓ, then the corresponding sectionf(z) dz
of Ω1

M has norm

(7.3.30) ||f(z)dz||2 = |f(z)|2 y2 · e−2C−log(t)+ψt(z),

where

(7.3.31) 2C = γ + log(4π).

Note that the constantC is exactly the quantity occurring in Definition 3.4
of [4], so that its, seemingly mysterious, appearance there is explained in a
natural way by (7.3.30). Also note that the Chern form of the metric onΩ1

M
determined by−gt is

(7.3.32)
1
2π

µ− ddcψt.

Of course,X, ψt, etc. depend on the choice of the subgroupΓ′.

4Of course, the reader will not confuse theγ here, which is Euler’s constant, with an
element ofΓ!
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Next, we return to the orbifoldM = [Γ\D] = M(C), whereΓ = O×B ,
so that we now have a uniformization byD = H+ ∪ H−,

(7.3.33) pr: D −→ [ Γ\D ] = M,

whereΓ ⊂ GL2(R). We want to determine the relation between the Green
functionsg0

t just constructed and the Green functions introduced in Section
3.5. As in [2], let

(7.3.34) V = {x ∈ M2(R) | tr(x) = 0},

with quadratic formQ(x) = det(x) = xιx and associated bilinear form
(x,y) = tr(xιy), whereι is the main involution on M2(R).5 The quadratic
space(V,Q) has signature(1, 2). Let

(7.3.35) H = {x ∈ V | Q(x) = 1}

be the hyperboloid of two sheets. We embedD = H+ ∪ H− into V by the
map

(7.3.36) z = x+ iy 7→ x(z) = y−1
(
−x |z|2
−1 x

)
.

Note thatQ(x(z)) = 1 and thatx(z̄) = −x(z). This embedding identifies
D with H and is equivariant for the action of GL2(R):

(7.3.37) g · x(z) = g x(z)g−1 = x(g(z)).

Note that everyx ∈ V with t = Q(x) > 0, i.e., every vector inside the light
cone, can be written uniquely in the formx =

√
t · x(z) for z ∈ D.

Remark 7.3.4. Note that this parametrization is different from the one in-
troduced in Section 3.2. Here it is more convenient to identifyD with the
oriented positive lines inV . Thus we usez 7→ R · x(z) rather than the map
z 7→ C× · w(z) of (3.2.4).

Givenz ∈ D, there is an orthogonal decomposition

V = Rx(z)⊕ x(z)⊥,(7.3.38)

x =
(x,x(z))

(x(z),x(z))
x(z) + x′,

5We apologize for the awkward notation withx ∈ V andz = x+ iy ∈ H. Soon the real
part ofz will no longer be mentioned, and we will revert tox ∈ V andz ∈ H.
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and the restriction ofQ to x(z)⊥ is negative definite. In these coordinates,
the quantityR(x, z), defined in (3.5.1) can be written as

(7.3.39) R(x, z) := −(x′,x′) =
1
2
(x,x(z))2 − (x,x).

Recall thatR(x, z) ≥ 0 and thatR(x, z) = 0 if and only if x ∈ Rx(z).
Also,R(−x, z) = R(x, z̄) = R(x, z). Similarly, in these coordinates, the
functionsϕ andξ of (3.5.4) and (3.5.6) become

(7.3.40) ϕ(x, z) =
(

(x,x(z))2 − 1
2π

)
e−2πR(x,z),

and

(7.3.41) ξ(x, z) = β1(2πR(x, z)), R(x, z) > 0.

The following result shows that these Green functions are, indeed, the
Green functions determined byg0

t via restriction to slices. First, we extend
g0
t andφ0

t , defined in Proposition 7.3.1, toD ×D by setting:

(7.3.42) g0
t (z1, z2) =


g0
t (z1, z2), if z1 andz2 ∈ H+,

g0
t (z̄1, z̄2), if z1 andz2 ∈ H−,

0, otherwise,

and similarly forφ0
t . These extensions are invariant under the diagonal ac-

tion of GL2(R).

Lemma 7.3.5. If x = ±
√
tx(z0), with z0 ∈ H, then,

ξ(x, z) = g0
t (z0, z) + g0

t (z̄0, z),

ϕ(x, z) = φ0
t (z0, z) + φ0

t (z̄0, z).

Proof. Forz1 andz2 in H = H+,

(7.3.43) (x(z1),x(z2)) = 2 cosh(d(z1, z2)).

Also note that, ift = Q(x) > 0 andx = ±
√
t · x(z0), for z0 ∈ H, then, for

z ∈ H,

(7.3.44) R(x, z) = t · 2 sinh2(d(z0, z)).

The claimed identities are then immediate.
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For x ∈ V with Q(x) = t > 0, andx = ±
√
tx(z0), we haveDx =

{z0, z̄0}. Recall from Propsition 3.5.1 that

(7.3.45) ddcξ(x) + δDx = ϕ(x) · µ,

as currents onD, and hence that

(7.3.46)
∫
D
ϕ(x, z) dµ(z) = 2.

The first of these identities completes the proof forg0
t of property (iii) of

Definition 2.7.1. Note thatξ(x) is a Green function for the cycleDx con-
sisting of 2 points.

From the definition of the∗-product and Lemma 7.3.5, we obtain the
following fact will be useful in Section 7.5 below.

Lemma 7.3.6. Writex1 = ±
√
t1 x(z1) andx2 = ±

√
t2 x(z2) with z1 and

z2 ∈ H. Then∫
D
ξ(x1) ∗ ξ(x2) = g0

t1(z1, z2) +
∫
D
g0
t2(z2, ζ)φ

0
t1(z1, ζ) dµ(ζ)

+ g0
t1(z̄1, z̄2) +

∫
D
g0
t2(z̄2, ζ)φ

0
t1(z̄1, ζ) dµ(ζ).

Forx ∈ V , withQ(x) = t > 0, andz ∈ D, we set

(7.3.47) Ξ(x, z) =
∑

γ∈Γx\Γ
ξ(x, γz) = ē−1

x

∑
γ∈Γ̄

ξ(x, γz),

and

(7.3.48) Φ(x, z) =
∑

γ∈Γx\Γ
ϕ(x, γz) = ē−1

x

∑
γ∈Γ̄

ϕ(x, γz).

HereΓ̄ = Γ/ΓD, whereΓD is the subgroup ofΓ acting trivially onD. Note
that the functionΞ(t, v) in Corollary 3.5.2 is then obtained by summing
Ξ(x, v) over theΓ orbits in the set{x ∈ OB ∩ V | Q(x) = t}.

Lemma 7.3.7. Ξ(x) is a Green function on the stackM for the divisor
pr(Dx); see Section 2.3. Explicitly,

ddcΞ(x) + δpr(Dx) = Φ(x) · µ.
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Proof. In fact, if φ ∈ C∞(M), we have

〈 ddcΞ(x), φ 〉M =
∫
M

Ξ(x) · ddcφ

=
∫
[Γ\D]

Ξ(x) · ddcφ

= e−1
x

∫
D
ξ(x, z) · pr∗(ddcφ)(z)

= e−1
x 〈 ddcξ(x),pr∗φ 〉

= e−1
x

(
− 〈 δDx ,pr∗φ 〉+

∫
D
ϕ(x, z) · pr∗φ(z) · dµ(z)

)
= −〈 δpr(Dx), φ 〉M +

∫
M

Φ(x) · φ · µ.

Here the points in pr(Dx) on the orbifoldM are counted with multiplicity
e−1
x = |Γx|−1. Note, for example, that, if1M is the constant function on
M , then

〈 δpr(Dx), 1M 〉M = 2 e−1
x .

7.4 A FINER DECOMPOSITION OF SPECIAL CYCLES

There is a decomposition of the cycleZhor(t) via the ‘conductor’, defined
as follows. Fort ∈ Z>0, write 4t = n2d where−d is a fundamental
discriminant. Letkt = Q(

√
−t) = Q(

√
−d). Then, on the generic fiber,

there is a decomposition

(7.4.1) Zhor(t)Q =
∐
c|n

(c,D(B))=1

Zhor(t : c)Q,

whereZhor(t : c)Q is the locus of triples(A, ι, x) in Zhor(t)Q such that, for
the embeddingφx : kt ↪→ End0(A, ι) determined byx,

(7.4.2) φ−1
x ( Q[x] ∩ End(A, ι) ) = Oc2d.

HereOc2d ⊂ Od is the order of conductorc; see Section 10 of [4]. Recall
that the order on the left-hand side of (7.4.2) is maximal at all primes divid-
ingD(B), hence the restriction(c,D(B)) = 1 in the decomposition. Note
that, forr ≥ 1,

(7.4.3) Zhor(r2t : c)Q = Zhor(t : c)Q,
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since both are the locus of triples(A, ι, ι′), whereι′ is an embedding

(7.4.4) ι′ : Oc2d ↪→ End(A, ι)

which is optimal, in the obvious sense. Let6

(7.4.5) Zhor(t : c) = Zhor(t : c)Q,

Note that, by (7.4.3),

(7.4.6) Zhor(r2t : c) = Zhor(t : c).

Remark 7.4.1. The conductor condition (7.4.2) does not lead to a good
moduli problem overZ(p), so that we are forced to use the closure in our
global definition ofZhor(t : c).

Lemma 7.4.2.Zhor(t : c)Q is irreducible. More precisely, its coarse moduli
space is isomorphic toSpeckt,c, wherekt,c is the ray class field ofkt with
norm subgroupk×t · C× · Ô×c2d in A×kt .

Proof. Let (A, ι, x) be aC-valued point ofZhor(t : c). ThenA is of the
form Lie(A)/Γ, whereΓ is anOB-module from the left and where the order
Oc2d acts from the right onΓ through holomorphic endomorphisms, and is
maximal with this property. Now the finite ideles ofkt act in the usual way
transitively on the set of suchΓ’s with stabilizer equal tok×t · Ô×c2d. Since
this action commutes with the action of the Galois group ofkt, the action of
an elementσ ∈ Galkt is given by translation by an element ofA×kt,f . Now
the theory of complex multiplication shows that this element is the image
of σ under the class field isomorphism. The assertion concerning the coarse
moduli space ofZhor(t : c) follows, and this also implies the first claim.

We have the decomposition

(7.4.7) Z(t) =
⋃
c|n

(c,D(B))=1

Zhor(t : c) ∪ Zver(t).

To obtain the decomposition of the classẐ(t, v) ∈ ĈH
1
(M) corresponding

to (7.4.7), we must decompose the Green function. As in Section 5 of [4],
letL = OB ∩ V ,

L(t) = { x ∈ L | Q(x) = t }(7.4.8)

and

6Here again, as in the definition ofZhor(t), we use the notationZhor(t : c)Q to denote the
corresponding image divisor inMQ.
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L(t : c) = { x ∈ L | Q(x) = t, type(x) = c },(7.4.9)

where type(x) = c means that

(7.4.10) Q[x] ∩OB = an order of conductorc in Q[x].

HereQ[x] ' Q[
√
−Q(x)]. Green functions forZhor(t) andZhor(t : c) are

given by

Ξ(t, v)(z) =
∑

x∈L(t)

ξ(v
1
2x, z),(7.4.11)

and

Ξ(t : c, v)(z) =
∑

x∈L(t:c)

ξ(v
1
2x, z).(7.4.12)

By the constructions explained in Section 7.3, ifQ = pr(z), then7

Ξ(t, v)(z) =
∑

P∈Zhor(t)(C)

gtv(P,Q),(7.4.13)

and

Ξ(t : c, v)(z) =
∑

P∈Zhor(t:c)(C)

gtv(P,Q)(7.4.14)

=
∑

P∈Zhor(r2t:c)(C)

gtv(P,Q)

= Ξ(r2t : c, r−2v).

In the last steps we used (7.4.6). Let

(7.4.15) Ẑhor(t : c, v) = (Zhor(t : c),Ξ(t : c, v)) ∈ ĈH
1
(M).

Thus we obtain the decomposition

(7.4.16) Ẑhor(t, v) =
∑
c|n

Ẑhor(t : c, v).

Note that, by (7.4.6) and (7.4.14),

(7.4.17) Ẑhor(r2t : c, v) = Ẑhor(t : c, r2v).

We now consider the pairing〈 Ẑ(t1, v1), Ẑ(t2, v2) 〉 in the case wheret1t2
is a square. We begin by determining the common components ofZhor(t1)
andZhor(t2).

7Here the points inZhor(t)(C) are counted with their fractional multiplicities.
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Lemma 7.4.3. Write t1 = n2
1 t and t2 = n2

2 t with (n1, n2) = 1, and, as
above, write4t = n2d. Then the greatest common divisor of the divisors8

Zhor(t1) andZhor(t2) is equal to

Zhor(t) =
∑
c |n

Zhor(t : c).

Proof. We have

(7.4.18) Zhor(ti) =
∑
c|nin

(c,D(B))=1

Zhor(n2
i t : c).

Thus, the common part is the sum of theZhor(n2
i t : c)’s wherec divides both

n1n andn2n, hencec | n. Since, for suchc, Zhor(n2
i t : c) = Zhor(t : c),

this sum is justZhor(t).

Then, we can write〈 Ẑ(t1, v1), Ẑ(t2, v2) 〉 = A+B + C, where

A =
∑
c1,c2

c1|n1n, c2|n2n

c1 6=c2

〈 Ẑhor(t1 : c1, v1), Ẑhor(t2 : c2, v2) 〉,(7.4.19)

B =
∑
c|n

〈 Ẑhor(t1 : c, v1), Ẑhor(t2 : c, v2) 〉,(7.4.20)

and
(7.4.21)
C = 〈 Ẑhor(t1), Ẑver(t2) 〉+ 〈 Ẑver(t1), Ẑhor(t2) 〉+ 〈 Ẑver(t1), Ẑver(t2) 〉.

There are, thus, several types of intersections to be computed. First, in
the terms in (7.4.19), sincec1 6= c2, the cycles are disjoint on the generic
fiber, and hence

(7.4.22) 〈 Ẑhor(t1 : c1, v1), Ẑhor(t2 : c2, v2) 〉

=
∑
p≤∞

〈 Ẑhor(t1 : c1, v1), Ẑhor(t2 : c2, v2) 〉p.

We letA =
∑
p≤∞Ap, where

(7.4.23) Ap =
∑
c1,c2

c1|n1n, c2|n2n

c1 6=c2

〈 Ẑhor(t1 : c1, v1), Ẑhor(t2 : c2, v2) 〉p.

8Here theZhor(ti)’s denote the image divisors onM.
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Similarly, letC =
∑
pCp, where

(7.4.24) Cp = 〈 Ẑhor(t1, v1), Ẑver(t2) 〉p

+ 〈 Ẑver(t1), Ẑhor(t2, v2) 〉p + 〈 Ẑver(t1), Ẑver(t2) 〉p.

Here only primesp with p | D(B) occur. Finally, by (7.4.17), the terms in
B have the form
(7.4.25)
〈 Ẑhor(t1 : c, v1), Ẑhor(t2 : c, v2) 〉 = 〈Ẑhor(t : c, n2

1 v1), Ẑhor(t : c, n2
2 v2)〉.

These terms are not a sum of local contributions and will be computed in
the next section.

7.5 APPLICATION OF ADJUNCTION

In this section, we apply the arithmetic adjunction formula, as formulated
in Section 2.7, to compute the arithmetic intersection numbers (7.4.25) of
common components of̂Zhor(t1, v1) and Ẑhor(t2, v2). Recall that, as in
(7.3.33),M = M(C) = [Γ\D].

We begin by making explicit what the adjunction formula of Section 2.7
gives for the self-intersection number of an irreducible horizontal divisorZ
onM. We write

Z(C) =
∑
i

Pi.

Takingzi ∈ D with pr(zi) = Pi, the Green function forZ determined by
g0
v , for a parameterv > 0, is given by

ΞZ(v) =
∑
i

e−1
zi

∑
γ∈Γ

g0
v(zi, γz),

with associated function

ΦZ(v) =
∑
i

e−1
zi

∑
γ∈Γ

φ0
v(zi, γz).

The adjunction formula of Theorem 2.7.2 can be applied here for the infinite
presentationM = [Γ\D].

Proposition 7.5.1. Let Z = Zhor be an irreducible, reduced, horizontal
divisor onM. For v1 and v2 ∈ R>0, let Ξ(v1) and Ξ(v2) be the Green
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functions onM forZ with parametersv1 andv2. LetẐ(v1) = (Z,ΞZ(v1))
andẐ(v2) = (Z,ΞZ(v2)) ∈ ĈH

1
(M) be the corresponding classes. Then,

〈 Ẑ(v1), Ẑ(v2) 〉M

= −hω̂(Z)− 1
2

degQ(Z) · log(4D(B) v1) + dZ

+
∑

P,P ′∈Z(C)

e−1
P e−1

P ′

∑
γ∈Γ

z 6=γz′

1
2

(
g0
v1(z, γz

′)

+
∫
D
φ0
v1(z, ζ) g

0
v2(γz

′, ζ) dµ(ζ)
)

+
∑

P∈Z(C)

e−1
P

1
2

∫
D
φ0
v1(z, ζ) g

0
v2(z, ζ) dµ(ζ),

whereω̂ is the Hodge bundleω onM with the metric defined by (3.3.4),
and wheredZ is the discriminant degree ofZ.

Proof. The formula of Theorem 2.7.2 involves the height ofZ with respect
to ω̂1 = ω̂M/S , whereωM/S is the relative dualizing sheaf and the metric
is determined by−g0

v1 onD×D−∆D, as in Section 7.3 above. By Propo-
sition 3.3.1, as sheavesωM/S = ω, whereω is the Hodge bundle onM.
The following lemma compares the two metrics on this sheaf.

Lemma 7.5.2. As classes in̂CH
1
(M),

ω̂1 = ω̂ +
(

0, log(v1) + log(4D(B))
)
.

Proof. This follows by comparison of the metric on̂ω1 determined by for-
mula (7.3.24) above with that on̂ω given in (3.3.4). To compare them, we
use the fact that, under the Kodaira-Spencer isomorphism

(7.5.1) ω = ∧2(Ω1
A/M) ∼−→ ω1,

we have

(7.5.2) 2πi f(z)αz 7→ f(z) dz,

wheref(z)αz is as in the discussion after (3.13) of [4]. Now the claimed
identity is evident.

Using the expression of the lemma, we obtain

(7.5.3) hω̂1
(Z) = hω̂(Z) +

1
2

degQ(Z)
(

log(v1) + log(4D(B))
)

as claimed.
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It will be important to note that the adjunction formula is not ‘homoge-
neous’; some of the terms involved are linear in the cycleZ, while others
are quadratic. For example, ifZ = 2Z0, with Z0 irreducible, reduced, and
horizontal, then

〈 Ẑ(v1), Ẑ(v2) 〉M

= 4 〈 Ẑ0(v1), Ẑ0(v2) 〉M

= −2hω̂(Z)− degQ(Z) · log(4D(B) v1) + 2 dZ

+
∑

P,P ′∈Z(C)

e−1
P e−1

P ′

∑
γ∈Γ

z 6=γz′

1
2

(
g0
v1(z, γz

′)(7.5.4)

+
∫
D
φ0
v1(z, ζ) g

0
v2(γz

′, ζ) dµ(ζ)
)

+
∑

P∈Z(C)

e−1
P

∫
D
φ0
v1(z, ζ) g

0
v2(z, ζ) dµ(ζ).

Here, hω̂(Z) = 2hω̂(Z0), deg(Z) = 2 deg(Z0), anddZ = 2 dZ0 , so
that these terms occur multiplied by an additional factor of2 in the pairing
〈 Ẑ(v1), Ẑ(v2) 〉M = 4 〈 Ẑ0(v1), Ẑ0(v2) 〉M. The same is true for the last
sum, over points ofZ(C). On the other hand, the sum over pairs of points
of Z(C) amounts to4 times the corresponding sum over pairs of points of
Z0(C), and hence has no additional factor.

Since(A, ι, y) and(A, ι,−y) occur together inZhor(t : c), all compo-
nents ofZhor(t) occur with multiplicity 2. Thus, applying (7.5.4) and the
irreducibility ofZhor(t : c) , Lemma 7.4.2, we get

Corollary 7.5.3. Let t1t2 be a square, and definet as in Lemma 4.2. Then,
for c | n,

〈 Ẑhor(t1 : c, v1), Ẑhor(t2 : c, v2) 〉

= −2hω̂(Zhor(t : c))− degQ(Zhor(t : c)) · log(4D(B) t1v1) + 2 dZhor(t:c)

+
∑

P,P ′∈Zhor(t:c)(C)

e−1
P e−1

P ′

∑
γ∈Γ

z 6=γz′

1
2

(
g0
t1v1(z, γz

′)

+
∫
D
φ0
t1v1(z, ζ) g

0
t2v2(γz

′, ζ) dµ(ζ)
)

+
∑

P∈Zhor(t:c)(C)

e−1
P

∫
D
φ0
t1v1(z, ζ) g

0
t2v2(z, ζ) dµ(ζ).
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Using Lemma 7.3.6, we obtain the identity

∑
P,P ′∈Zhor(t:c)(C)

e−1
P e−1

P ′

∑
γ∈Γ

z 6=γz′

1
2

(
g0
t1v1(z, γz

′)

(7.5.5)

+
∫
D
φ0
t1v1(z, ζ) g

0
t2v2(γz

′, ζ) dµ(ζ)
)

=
∑

x1∈L(t1:c)

mod Γ

∑
x2∈L(t2:c)

mod Γ

e−1
x1
e−1
x2

∑
γ∈Γ

γDx2 6=Dx1

1
2

∫
D
ξ(v

1
2
1 x1) ∗ ξ(v

1
2
2 γx2).

=
∑

T∈Sym2(Z)∨

diag(T )=(t1,t2)

det(T ) 6=0

∑
x=[x1,x2]∈L2

Q(x)=T

type(x)=(c,c)

mod Γ

e−1
x

1
2

∫
D
ξ(v

1
2
1 x1) ∗ ξ(v

1
2
2 x2)

=
∑

T∈Sym2(Z)∨

diag(T )=(t1,t2)

det(T ) 6=0

|ΛT (c, c)| · ν∞(T, v),

whereν∞(T, v) is given by (7.2.13) and
(7.5.6)
ΛT (c1, c2) =

[
Γ\{ x = [x1, x2] ∈ L2 | Q(x) = T, type(x) = (c1, c2) }

]
.

It is interesting to compare this expression with the ‘nonsingular’ part of
the archimedean height pairing from Definition 12.3 of [2]. Recall that, for
x ∈ L, the type ofx is defined by (7.4.10).

We need to evaluate the integrals in the last term of Corollary 7.5.3.

Lemma 7.5.4.∫
D
φ0
v1(z, ζ) g

0
v2(z, ζ) dµ(ζ) = log(

v1 + v2
v2

)− J(4π(v1 + v2)),

where

J(t) =
∫ ∞

0
e−tw

[
(w + 1)

1
2 − 1

]
w−1 dw.

Proof. Note that we may as well assume thatz ∈ H, so that the contribution
of H− is zero. Letρ = d(z, ζ) be the hyperbolic distance fromz to ζ. Then

φ0
v1(z, ζ) =

[
4v1 cosh2(ρ)− 1

2π
]
e−4πv1 sinh2(ρ)(7.5.7)

and
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g0
v2(z, ζ) = β1(4πv2 sinh2(ρ)).(7.5.8)

As in the proof of Proposition 12.1 of [4],

∫
D
φ0
v1(z, ζ) g

0
v2(z, ζ) dµ(ζ)

(7.5.9)

=
∫ π

0

∫ ∞

0

[
4v1 cosh2(ρ)− 1

2π
]
e−4πv1 sinh2(ρ)

× β1(4πv2 sinh2(ρ)) 2 sinh(ρ) dρ dθ

= π

∫ ∞

0

∫ ∞

1

[
4v1(w + 1)− 1

2π
]
e−4π(v1+v2r)w r−1 dr (w + 1)−

1
2 dw.

By integration by parts, we have∫ ∞

0
e−4π(v1+v2r)w (w + 1)−

1
2 dw(7.5.10)

= 8π(v1 + v2r)
∫ ∞

0
e−4π(v1+v2r)w

[
(w + 1)

1
2 − 1

]
dw.

Multiplying this by−(2π)−1 and substituting back into the main integral,
we obtain

∫ ∞

0

∫ ∞

1

[
− 4πv2r

[
(w + 1)

1
2 − 1

]
+ 4πv1

]
e−4π(v1+v2r)w r−1 dr dw

(7.5.11)

= −
∫ ∞

0
e−4π(v1+v2)w [ (w + 1)

1
2 − 1

]
w−1 dw

+
∫ ∞

1
v1(v1 + v2r)−1 r−1 dr

= −J(4π(v1 + v2)) + log(v1 + v2)− log(v2).

Thus, the last term in Corollary 7.5.3 becomes

∑
P∈Zhor(t:c)(C)

e−1
P

∫
D
φ0
t1v1(z, ζ) g

0
t2v2(z, ζ) dµ(ζ)

(7.5.12)

= degQZhor(t : c)
[
−J(4π(t1v1 + t2v2))+ log(t1v1 + t2v2)− log(t2v2)

]
.

Thus, we obtain the following pretty result:
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Proposition 7.5.5.

〈 Ẑhor(t1 : c, v1), Ẑhor(t2 : c, v2) 〉

= −2hω̂(Zhor(t : c)) + 2 dZhor(t:c) − degQ(Zhor(t : c)) · log(4D(B))

+ degQ(Zhor(t : c))
[
log(t1v1 + t2v2)− log(t1v1)− log(t2v2)

]
− degQ(Zhor(t : c))J(4π(t1v1 + t2v2))

+
∑

T∈Sym2(Z)∨

diag(T )=(t1,t2)

det(T ) 6=0

|ΛT (c, c)| · ν∞(T, v).

Summing onc, this yields the following expression forB from (7.4.20).

Corollary 7.5.6. The quantity

B =
∑
c|n

〈 Ẑhor(t1 : c, v1), Ẑhor(t2 : c, v2) 〉

is given by

B = −2hω̂(Zhor(t)) + 2
∑
c|n

dZhor(t:c) − degQ(Z(t)) · log(4D(B))

+ degQ(Z(t))
[
log(t1v1 + t2v2)− log(t1v1)− log(t2v2)

]
− degQ(Z(t))J(4π(t1v1 + t2v2)) +B∞,

where

B∞ =
∑

T∈Sym2(Z)∨

diag(T )=(t1,t2)

det(T ) 6=0

∑
c|n
|ΛT (c, c)| · ν∞(T, v).

Similarly, whent1t2 is a square, by the same calculations as in Section 2,
we have

Proposition 7.5.7. The quantity

A∞ =
∑
c1 6=c2

〈 Ẑhor(t1 : c1, v1), Ẑhor(t2 : c2, v2) 〉∞

is given by

A∞ =
∑

T∈Sym2(Z)∨

diag(T )=(t1,t2)

∑
c1 6=c2

|ΛT (c1, c2)| · ν∞(T, v).
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Here note that the conditionc1 6= c2 does not allowx1 andx2 to be
colinear, so that onlyT ’s with det(T ) 6= 0 contribute to the sum.

7.6 CONTRIBUTIONS FOR p | D(B)

In this section, we consider the contributions of termsAp andCp for fixedp
wherep | D(B). To do this, we use the analysis on pp. 214–215 of [3]. For
convenience, let̂Ci denote the base change toW = W (F̄p) of the formal
completion ofZ(ti) for i = 1, 2, along its special fiber, and write

(7.6.1) Ĉ = Ĉ1 ×Â Ĉ2 =
∐
T

ĈT ,

as in (8.27) and (8.28) of [3]. HereT ranges over allT ∈ Sym2(Z)∨≥0 with
diag(T ) = (t1, t2).

Now [3], (8.30), gives, as already used in Section 6.2, a description ofĈT
as a subset of a quotient space,

(7.6.2) ĈT ↪→ H ′(Q)\
(
V ′(Q)2T × Ω̂• ×H(Ap

f )/K
p
)
.

By strong approximation, we have

(7.6.3) H ′(Af ) = H ′(Q)H ′(Qp)Kp,

so that, sinceΓ′ = H ′(Q) ∩ H ′(Qp)Kp, the quotient on the right side in
(7.6.2) can be written as

(7.6.4) Γ′\
(
V ′(Q)2T × Ω̂•

)
.

Recalling the incidence relations given after (8.30) in [3], which describe
the image ofĈT in the right side of (7.6.2), we have

(7.6.5) ĈT '
∑

y=[y1,y2]∈(L′[p−1])2

Q(y)=T

mod Γ′

Γ′y\Z•(j).

Here, as in [3],j is theZp-span of the pair(j1, j2) of endomorphisms asso-
ciated toy = (y1, y2), of the modelp-divisible groupX.

Recall from [3] that the quantity

(7.6.6) νp(T ) = 2χ(Z(j),OZ(j1) ⊗L OZ(j2)),
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(see (7.2.11) above) is finite provideddet(T ) 6= 0 and gives twice the full
intersection number(Z(j1),Z(j2)) of the cyclesZ(j1) andZ(j2) in the
Drinfeld spacêΩ, [3], Theorem 6.1. We can decompose this quantity further
by writing

(7.6.7) Z(ji) = Zhor(ji) + Zver(ji)

for the vertical and horizontal components. Then, let

(7.6.8) G := OZhor(j1) ⊗L OZhor(j2).

Fordet(T ) 6= 0, the quantity

(7.6.9) νhor
p (T ) := 2χ(Z(j),G)

is finite and gives twice the intersection number(Zhor(j1),Zhor(j2)) of the
horizontal parts.

Remark 7.6.1. It is asserted here implicitly that the right-hand side of
(7.6.9) only depends on the matrixT . To see this, note that if a pair of special
endomorphisms(j′1, j

′
2) has the same matrix of inner products as(j1, j2),

then it follows from Witt’s theorem that there is an elementg ∈ GL2(Qp)
which carries the pair(j1, j2) into the pair(j′1, j

′
2). But theng induces an

automorphism of̂Ω which carries the pair of special cycles[Z(j1),Z(j2)]
into [Z(j′1),Z(j′2)], and this automorphism preserves the intersection num-
bersχ(Z(j),OZhor(j1) ⊗L OZhor(j2)), resp.χ(Z(j),OZhor(j′1) ⊗L OZhor(j′2)).

We now consider

Ap =
∑
c1 6=c2

〈 Ẑhor(t1 : c1, v1), Ẑhor(t2 : c2, v2) 〉p.

By the same method as in the case wheret1t2 is not a square (see (7.2.7)),
i.e., decomposing according to fundamental matrices, we have,

Proposition 7.6.2.

Ap =
∑

T∈Sym2(Z)∨

diag(T )=(t1,t2)

Ap(T ),

where onlyT with det(T ) 6= 0 occur, and where

Ap(T ) =
∑
c1 6=c2

|ΛT (c1, c2)| · νhor
p (T ) log(p),
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Here, for anyT ∈ Sym2(Z)∨,

(7.6.10) ΛT (c1, c2) =
[
Γ′\{ y = [y1, y2] ∈ (L′[p−1])2

| Q(y) = T, type(y1, y2) = (c1, c2) }
]
.

Fory ∈ L′[p−1], type(y) = c means

(7.6.11) Q[y] ∩ L′[p−1] = aZ[
1
p
]-order of conductorc in Q[y].

Note thatc is prime top. In particular, the conditionc1 6= c2 implies
thaty1 andy2 are not colinear, and hencedet(T ) 6= 0. Also, the factor 2
occurs in the definition (7.6.9) ofνhor

p (T ) since two ‘sheets’Z(j) occur in
the quotientΓ′y\Z•(j); see [3], (8.37) and (8.40).

Next we compute

(7.6.12) Cp = 〈 Ẑhor(t1, v1),Zver(t2) 〉p

+ 〈Zver(t1), Ẑhor(t2, v2) 〉p + 〈Zver(t1),Zver(t2) 〉p .

To do this, note that the analysis on pp. 214–215 of [3] leading up to formula
(8.30) makes no use of the fact that the given pair of special endomorphisms
span a rank2 module overZp. Thus, the same argument applies in the
present situation. We write

(7.6.13) Ĉi = Ĉhi + Ĉvi
for the vertical and horizontal components. Then, using the intersection
calculus of Section 4 of [3], we have

(7.6.14)
Cp

log(p)
= (Ĉh1 , Ĉv2 )p+(Ĉv1 , Ĉh2 )p+(Ĉv1 , Ĉv2 )p =

∑
T

χ( ĈT ,F ),

where

(7.6.15) F = OĈh1 ⊗
L OĈv2 +OĈv1 ⊗

L OĈh2 +OĈv1 ⊗
L OĈv2 .

The quantity

(7.6.16) Cp(T ) := χ( ĈT ,F ) · log(p),

is finite for anyT with diag(T ) = (t1, t2) and depends only onT ; see
Remark 7.6.1.

Proposition 7.6.3. For det(T ) 6= 0 with diag(T ) = (t1, t2),

Cp(T ) = |ΛT | · (νp(T )− νhor
p (T )) log(p),

where|ΛT | is as in (7.2.10).



PUP.master.W.rev January 13, 2006

234 CHAPTER 7

Proof. The conditiondet(T ) 6= 0 allows us the make essentially the same
analysis as on pp. 215–216 of [3]. Using (7.6.5), we have

(7.6.17)
Cp(T )
log(p)

=
∑

y∈(L′[p−1])2

Q(y)=T

mod Γ′

χ(Γ′y \ Z•(j),F).

The stabilizer ofy in Γ′ is Γ′ ∩ Z ′(Q), whereZ ′(Q) is the center of
H ′(Q). ThusΓ′ ∩ Z ′(Q) ' Z[p−1]× ' {±1} × Z, and the generator of
the infinite factor of this group acts onZ•(j) by translating the ‘sheet’ by2.
The contribution ofy to (7.6.17) is then

e−1
y · 2 ·

(
χ(Z(j),OĈ1 ⊗

L OĈ2)− χ(Z(j),G)
)

(7.6.18)

= e−1
y · (νp(T )− νhor

p (T )).

Here the2 arises from the two sheets, as in (8.40) of [3], andey = 2 is the
order of the remaining part of the stabilizer ofy.

Finally, we determine the contribution of the two singularT ’s which oc-
cur in the sum (7.6.14).

Proposition 7.6.4. For a matrixT ∈ Sym2(Z)∨ with diag(T ) = (t1, t2)
anddet(T ) = 0, i.e., for

T =
(
t1 m
m t2

)
, m2 = t1t2,

write t1 = n1t and t2 = n2t with (n1, n2) = 1, and let4t = n2d, where
−d is the discriminant of the quadratic extensionk = Q(

√
−t). Let k =

ordp(n) and letχ = χd(p).
(i) If p is ramified or inert inQ(

√
−t), then

Cp(T ) =
1
2

deg Z(t)Q · ν̃p(T ) · log(p).

Here,

ν̃p(T ) = ordp(t1t2)+2(1+χ−ordp(d/4))−


(p+1)(pk−1)

p−1 if p is inert,

2 pk+1−1
p−1 if p is ramified.

(ii) If p is split inQ(
√
−t), then

Cp(T ) = δ(d;D(B)/p) ·H0(t;D(B)) · ν̃p(T ) · log(p),
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with δ(d;D(B)/p) andH0(t;D(B)) given by (7.6.21) and (7.6.22), and

ν̃p(T ) = −2 · (pk − 1).

Proof. Since in this case the componentsy1 andy2 of y with Q(y) = T ,
and hencej1 and j2, are colinear, the analysis is nearly the same as that
dealt with in Section 11 of [4] for the cycle given by a single special endo-
morphism. More precisely, writingt1 = n2

1t andt2 = n2
2t, with n1 andn2

relatively prime, we haven2y1 = n1y2 and we lety = n−1
1 y1 = n−1

2 y2,
and similarly for the correspondingj1, j2 we letj = n−1

1 j1 = n−1
2 j2. There

will be three cases depending on whetherp is inert, ramified, or split in the
field k = Q(

√
−t). Let

(7.6.19)
α = min{ordp(t1),ordp(t2)} and β = max{ordp(t1),ordp(t2)}.

In particular,α = ordp(t) = 2k + ordp(d/4) andα+ β = ordp(t1t2).
If p is either inert or ramified ink = Q(

√
−t), then the discussion of the

first part of Section 11 of [4] can be applied, so that the intersection number
attached tôCT will be given by

(7.6.20) δ(d;D(B)) ·H0(t;D(B)) ·
[
(Zhor(j1),Zver(j2))

+ (Zver(j1),Zhor(j2)) + (Zver(j1),Zver(j2))
]
,

where the effect of the ‘sheets’ is taken into account; see Lemma 11.4 of
[4]. Here

(7.6.21) δ(d;D) =
∏
`|D

(1− χd(`))

and

(7.6.22) H0(t;D) =
h(d)
w(d)

∑
c |n

(c,D)=1

c
∏
` | c

(1− χd(`)`−1).

Recall that by [4], Proposition 9.1,

(7.6.23) degZ(t)Q = 2 δ(d;D(B))H0(t;D(B)).

The sum of intersection numbers on the right-hand side of (7.6.20) can be
computed using the results of [3], forp 6= 2, and of the Appendix to Section
11 of [4].

Recall from the appendix to Chapter 6 that, for anyj, the vertical cycle
Zver(j) is determined by data(S, µ), whereS = S(j) is a subset of the
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buildingB andµ = µ(j) ≥ 0, by the formula

(7.6.24) Zver(j) =
∑
[Λ]

mult[Λ](S, µ) P[Λ],

where the multiplicity function is given by

(7.6.25) mult[Λ](S, µ) = max{µ− d([Λ], S), 0}.

Write q(j) = j2 = ε pα, with α = ordp(q(j)), and letkp = Qp(
√
q(j)).9

Forp inert inkp, we haveS = [Λ0] and,

(7.6.26) µ =


α
2 if p 6= 2,
α
2 + 1 if p = 2.

Forp ramified inkp, we haveS = [[Λ0,Λ1]], the closure of an edge, and

(7.6.27) µ =


α−1

2 if p 6= 2,
α
2 if p = 2, andα is even,
α−1

2 if p = 2, andα is odd.

Forp split in kp, we haveS = A, an apartment inB, and

(7.6.28) µ =


α
2 if p 6= 2,
α
2 + 1 if p = 2.

Now suppose thatj1 and j2 are colinear special endomorphisms, such
that

{ordp(q(j1)),ordp(q(j2))} = {α, β},

with α ≤ β. The resulting pair of vertical cyclesZver(j1), Zver(j2) is
determined by the collection of data(S, µ1, µ2).

If p is either inert or ramified, the data(S, µ1, µ2) coincides with one
considered in [3] for a pair ofanticommutingspecial endomorphismsj′1
andj′2, and so, by the chart (6.15) in [3],

(Zver(j1),Zver(j2)) =

−(p+ 1)p
µ−1
p−1 if χd(p) = −1,

2− 2 pµ+1−1
p−1 if χd(p) = 0,

9Note that, ifj arises from a global special endomorphismy withQ(y) = −y2 = t, then
q(j) = −t. The same change of sign occurs in [3] and in the appendix to Chapter 6.
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whereµ = min{µ1, µ2}. Adding the quantity

(7.6.29) (Zhor(j1),Zver(j2)) + (Zver(j1),Zhor(j2)) = 2µ1 + 2µ2,

and recalling (7.6.17), (7.6.26), and (7.6.27), we get the claimed value.
Finally, we consider the case in whichp splits ink, so that there are no

horizontal components. The situation is now like the one considered after
Lemma 11.4 in [4]. By (11.19) and (11.20) of [4], the intersection number
attached tôCT will be given by

(7.6.30) δ(d;D(B)/p) ·H0(t;D(B))

times the intersection multiplicity of〈ε(y)Z〉\Z(j). To compute this multi-
plicity, recall that the configurationZ(j) in question is now determined by
data(S, µ1, µ2), whereS = A is an apartment. We use the following easy
projection formula:

Lemma 7.6.5. Let pr : Ω̂ → ∆\Ω̂ be the natural projection, where∆ =
〈ε(y)Z〉. LetZ1 ⊂ ∆\Ω̂ andZ2 ⊂ Ω̂ be divisors such that the intersections
of the supports|Z1| ∩ |pr∗(Z2)| and |pr∗(Z1)| ∩ |Z2| are subsets of the
special fibers proper over the base. Then

(Z1,pr∗(Z2))∆\Ω̂ = (pr∗(Z1),Z2)Ω̂.

Now takeZ1 to be the image ofZ(j1) in ∆\Ω̂ and letZ2 be a funda-
mental domain for the action of∆ onZ(j2). Since∆ acts by translation
by 2 along the fixed apartment, we can takeZ2 to be the collection ofP[Λ]’s
associated to two neighboring vertices on the apartment and to the set of all
vertices joined to them by geodesics running away from the apartment and
having a distance at mostµ2 from them. TheP[Λ]’s occur with the multi-
plicity associated toZ(j2), i.e.,

(7.6.31) mult(P[Λ]) = mult[Λ](j2) = µ2 − d([Λ],Bj).

We then compute the sum of the intersection numbers of components in
Z(j1) andZ2, as in the proof of Theorem 6.1 of [3]. The total is

(7.6.32) −2( pµ − 1),

whereµ = min{µ1, µ2}, and we get the claimed result from (7.6.28).
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7.7 CONTRIBUTIONS FOR p - D(B)

In this section we compute the quantity

(7.7.1) Ap =
∑
c1,c2

c1|n1n, c2|n2n

c1 6=c2

〈 Ẑhor(t1 : c1, v1), Ẑhor(t2 : c2, v2) 〉p

of (7.4.23) in the casep - D(B). Note that

(7.7.2) 〈 Ẑhor(t1 : c1, v1), Ẑhor(t2 : c2, v2) 〉p

= (Zhor(t1 : c1),Zhor(t2 : c2) )p · log(p),

where( , )p is the geometric intersection number at points in the fiberMp.

Lemma 7.7.1. (i) If p - D(B) is not split (resp. split) inkt = Q(
√
−t),

then all points ofZhor(t : c)(F̄p) are supersingular (resp. ordinary).
(ii) Suppose that̃x ∈ Zhor(t : c)(F̄p) corresponds to(A, ι, y), and let

ψy : kt ↪→ End(A, ι)⊗Z Q,
√
−t 7→ y.

Then, the orderψ−1
y (End(A, ι)) in kt has conductorc0, wherec = c0 ps

with p - c0.
(iii) Suppose thatp is split in kt. Then the embeddingψy in (ii) is an iso-
morphism, and

V (A, ι)⊗Z Q ' { x ∈ kt | tr(x) = 0 }

is one-dimensional. Forc1 = c01 p
s1 andc2 = c02 p

s2 with p - c0i ,

c01 6= c02 =⇒ (Zhor(t1 : c1),Zhor(t2 : c2) )p = 0.

Proof. (i) Let x ∈ M(F̄p) corresponding to(A, ι) be a point in the image
of Zhor(t : c)(F̄p). Then the action ofOB ⊗ Zp ' M2(Zp) shows that the
p-divisible group of(A, ι) is isomorphic toX2, whereX is a p-divisible
group of dimension 1 and height 2. Ifp splits inkt, thenX ∼ Ĝm×Qp/Zp
and conversely, which proves (i).

To prove (ii), letx̃ be the specialization of a point̃x of Zhor(t : c) with
values in a complete discrete valuation ring with residue fieldF̄p and frac-
tion field of characteristic 0. If̃x corresponds to(A , ι, y) then the order
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ψ−1
y (End(A , ι)) in kt has conductorc. We have the commutative diagram

(7.7.3)

kt
ψy
↪→ End(A , ι)⊗Q

‖ ↓∩

kt
ψy
↪→ End(A, ι)⊗Q .

Hence it suffices to show that the inclusionEnd(A , ι) ↪→ End(A, ι) in-
duces an isomorphism

(7.7.4) ψ−1
y (End(A , ι)⊗ Z[p−1]) = ψ−1

y (End(A, ι)⊗ Z[p−1]).

This comes down to showing that any endomorphismα of (A , ι) whose
reduction modulop is divisible by a prime number̀ 6= p in End(A, ι) is
itself divisible by`. But α is divisible by` if and only if α annihilates the
group schemeA [`]. Since this group scheme isétale, the assertion follows.

(iii) The first assertion of (iii) is trivial. To prove the second, suppose that
(A, ι) is a point of intersection ofZ(t1 : c1) andZ(t2 : c2) in the fiberMp

for a primep split in kt. Thus,(A, ι) has special endomorphismsy1 andy2

with Q(y1) = t1 andQ(y2) = t2. By (ii), the ordersψ−1
y1 (End(A, ι)) and

ψ−1
y2 (End(A, ι)) have conductorsc01 andc02 respectively. On the other hand,

by the first part of (iii),ψy2 = ψ±y1 , so thatc01 = c02.

Remark 7.7.2. If p is not split inkt, and if (A, ι) corresponds to a point
x ∈ M(F̄p)ss, then the spaceV (A, ι) ⊗ Q has dimension3, so that there
can be pairsy = [y1, y2] of special endomorphisms with nonsingular fun-
damental matrixT = Q(y). The corresponding ordersψ−1

y1 (End(A, ι)) and
ψ−1
y2 (End(A, ι)) can have conductorsc01 andc02 with c01 6= c02, wherec1 | n1n

andc2 | n2n. In particular,(Z(t1 : c1),Z(t2 : c2) )p can be nonzero in this
case.

By (i) of the lemma, we can write

(7.7.5) (Z(t1 : c1),Z(t2 : c2) )p =
∑

x∈Mp(F̄p)•
(Z(t1 : c1),Z(t2 : c2) )x,

where

(7.7.6) • =

s.s. ifp is not split ink,

ord if p is split ink.
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For a pointx ∈ Mp(F̄p)• corresponding to(A, ι), we now describe the
local structure of a cycleZhor(t : c) in the formal neighborhood(M)∧x of
x. Let y ∈ V (A, ι) be a special endomorphism withQ(y) = t = −y2.
The corresponding embeddingkt = Q(

√
−t) → End(A, ι)Q defines an

embedding

(7.7.7) ψ = ψy : Qp(
√
−t) −→ End(A(p), ι)⊗Zp Qp,

whereA(p) is thep-divisible group ofA. Note that the action of the idem-
potents inOB ⊗ Zp ' Mp(Zp) gives a decompositionA(p) ' X2, where
X is thep-divisible group of a supersingular (resp. ordinary) elliptic curve
over F̄p whenp is not split (resp. split) inkt . Sinceψ embedsQp(

√
−t)

into End(X)Qp , we may apply the theory of quasicanonical liftings of Gross
[1]. In the case in whichp is split inkt, Gross’s theory amounts to the clas-
sical Serre-Tate theory for an ordinary elliptic curve overF̄p, as is pointed
out at the end of [1], so we will use the same terminology in the two cases.

For s ∈ Z≥0, letWs(ψ) be the quasi-canonical divisor of levels asso-
ciated toψ. Recall10 thatWs(ψ) is a reduced, irreducible, regular divisor
in the spectrum of the formal completion ofM atx, such that the pullback
of the universalp-divisible group onM toWs(ψ) has as its endomorphism
algebra the orderZp + psOkp of conductorps in kp. For example, whenp
splits ink,Okp ' Zp⊕Zp, the order of conductorps is {(a, b) ∈ Z2

p | a ≡ b
mod ps }, and

(7.7.8) Ws(ψ) ' SpfW [T ]/Φs(T ),

whereΦs(T ) is the cyclotomic polynomial whose roots are the primitive
ps-th roots of1. LetM be the quotient field ofW = W (F̄p), and letMs be
the Galois extension ofM over which the quasi-canonical liftings of levels
are defined. Recall that the extensionMs/M is totally ramified, and, in the
case whenp is split inkt,Ms is the extension generated by a primitivepsth
root of unity. Also note that

(7.7.9) m0(p) := |M0 : M | =

2 if p is ramified inkt,

1 otherwise.

We write

(7.7.10) Ws(ψ) = SpfWs,

whereWs is the integral closure ofW in Ms.

10Note that the fact that the canonical morphism fromWs(ψ) to (M)∧x is a closed im-
mersion follows from [1], Proposition 5.3, (3).
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Lemma 7.7.3. Suppose that̃x ∈ Z(t)(F̄p) corresponding to(A, ι, y). Let
Z(t)∧x̃ be the formal completion ofZ(t) at x̃. Then, for4t = n2d, as usual,
there is an equality of formal schemes

Z(t)∧x̃ =
ordp(n)⋃
s=0

Ws(ψ),

whereψ = ψy : kt,p ↪→ End(A(p), ι)⊗Zp Qp is the embedding correspond-
ing toy.

Proposition 7.7.4. Let i : Z(t) →M be the natural morphism, defined by
(A, ι, y) 7→ (A, ι). Theni is unramified, and, forx ∈Mp corresponding to
(A, ι), there is an equality of formal divisors11

(
i∗Z(t)

)∧
x

=
∑

y∈V (A,ι)

Q(y)=t

ordp(n)∑
s=0

Ws(ψ).

Similarly, if c = c0ps with p - c0, then(
i∗Zhor(t : c)

)∧
x

=
∑

y∈V (A,ι)

Q(y)=t

type(y)=c0

Ws(ψ).

Here, fory ∈ V (A, ι), type(y) = c0 if the orderψ−1
y (End(A, ι)) in kt

has conductorc0.
Since the intersection number

(
Ws1(ψy1),Ws2(ψy2)

)
of two distinct

quasi-canonical divisors is always finite, we obtain

Corollary 7.7.5. Letx ∈Mp(F̄p)• be a point corresponding to(A, ι). For
c1 6= c2, write c1 = c01 p

s1 and c2 = c02 p
s2 , wherep - c01 and p - c02, as

above. Then

(Zhor(t1 : c1),Zhor(t2 : c2) )x

=
∑
T

diag(T )=(t1,t2)

∑
y=[y1,y2]∈V (A,ι)2

Q(y)=T

type(y)=(c01,c
0
2)

e−1
y

(
Ws1(ψy1),Ws2(ψy2)

)
.

11Note that, elsewhere in this paper, we have been omittingi∗ from the notation, often
writing Z(t) for i∗Z(t).



PUP.master.W.rev January 13, 2006

242 CHAPTER 7

Taking the sum onc1, c2, andx and regrouping according to the funda-
mental matricesT , we obtain

Corollary 7.7.6.

Ap =
∑
T

diag(T )=(t1,t2)

Ap(T ),

where

Ap(T ) =
∑

x∈M(F̄p)•

∑
c1,c2

c1|n1n, c2|n2n

c1 6=c2∑
y=[y1,y2]∈V (A,ι)2

Q(y)=T

type(y)=(c01,c
0
2)

e−1
y

(
Ws1(ψy1),Ws2(ψy2)

)
· log(p).

Forp inert or ramified ink, both singular and nonsingular matricesT can
make a nonzero contribution toAp. For nonsingularT ’s, the expression for
Ap(T ) given in Corollary 7.7.6 will be just what is needed for the compari-
son to be made in Section 7.9, so it only remains to determine the contribu-
tion of singularT ’s. On the other hand, forp split in kt, only singularT ’s
can contribute toAp, due to (iii) of Lemma 7.7.1. Thus, for the remainder
of this section, we consider the quantityAp(T ) for T ∈ Sym2(Z)∨ with
diag(T ) = (t1, t2) anddet(T ) = 0. Note that there are precisely two such
T ’s.

Whendet(T ) = 0, a pair of special endomorphismsy ∈ V (A, ι)2 with
fundamental matrixQ(y) = T has colinear componentsy1 andy2. By (ii)
of Lemma 7.7.1, it follows thatc01 = type(y1) = type(y2) = c02. Since
c1 | n1n andc2 | n2n, and(n1, n2) = 1, we must havec01 = c02 = c0 with
c0 | n. Thus, we obtain,

Ap(T ) =
∑

x∈M(F̄p)•

∑
c0

∑
y=[y1,y2]∈V (A,ι)2

Q(y)=T

type(y)=(c0,c0)

(7.7.11)

e−1
y

ordp(n1n)∑
s1=0

ordp(n2n)∑
s2=0

s1 6=s2

(
Ws1(ψy1),Ws2(ψy2)

)
· log(p)
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= |ΛT | ·
ordp(n1n)∑
s1=0

ordp(n2n)∑
s2=0

s1 6=s2

(
Ws1(ψ),Ws2(ψ)

)
· log(p).

Herec0 runs over divisors ofn which are prime topD(B), and

|ΛT | =
∑

x∈M(F̄p)•

∑
y∈V (A,ι)2

Q(y)=T

e−1
y(7.7.12)

=
∑

x∈M(F̄p)•

∑
y∈V (A,ι)

Q(y)=t

e−1
y

=: |Λt|.

Here, we have used the bijection given by the mapy 7→ [n1y, n2y] = y
and thatey = ey wheny is mapped toy.

Proposition 7.7.7. (i) For an embeddingψ : Qp(
√
−t) → End0(X), and

for s = min{s1, s2},

(Ws1(ψ),Ws2(ψ)) = |Ms : M | = m0(p) ·

1 if s = 0,

ps−1(p− χd(p)) if s ≥ 1.

(ii)

degZ(t)Q = |Λt| ·
ordp(n)∑
s=0

|Ms : M |

= |Λt| ·m0(p) ·
(

1 + (p− χd(p))
pordp(n) − 1
p− 1

)
,

where|Λt| is given by (7.7.12) andm0(p) = |M0 : M |, as in (7.7.9).

Proof. The closed embedding ofWs(ψ) intoM∧
x is given by a homomor-

phism of completeW -algebras,

(7.7.13) W [[T ]] −→Ws, T 7−→ πs

whereπs is a uniformizer ofWs, provided that|Ms : M | > 1. In this case,
sinceMs/M is totally ramified we have

(7.7.14) Ws = W [T ]/(Ps(T )),



PUP.master.W.rev January 13, 2006

244 CHAPTER 7

wherePs(T ) is the minimal polynomial ofπs overM and is an Eisenstein
polynomial of degree|Ms : M |. Now for s1 < s2, and if |Ms1 : M | > 1,
we obtain

(Ws1(ψ),Ws2(ψ)) = length Ws1 ⊗W [[T ]] Ws2

= length (W [T ]/(Ps1(T )))⊗W [T ] (W [T ]/(Ps2(T )))(7.7.15)

= length Ws2/(Ps1(πs2))

= |Ms1 : M |.

The situation is a little different whenMs1 = M . In this case, in (7.7.13),
T ∈ W [[T ]] is sent to some elementa ∈ W , and the same argument as
before works provided|Ms2 : M | > 1. There is one exceptional case which
occurs whenp = 2 is split in k, s1 = 0 ands2 = 1. In this case,M0 =
M1 = M . Then one checks that the mapsW [[T ]] →W0 andW [[T ]] →W1

sendT to 0 and−2, respectively, and henceW0 ⊗W [[T ]] W1 ' W/2W , so
that the formula in the proposition is again true.

Part (ii) follows from Lemma 7.7.3 and (7.7.12), since

(7.7.16) degZ(t)Q =
∑

x∈M(F̄p)•

∑
y∈V (A,ι)

Q(y)=t

e−1
y

ordp(n)∑
s=0

|Ms : M |,

where the inner sum is independent ofy.

Corollary 7.7.8. For T ∈ Sym2(Z)∨ with diag(T ) = (t1, t2) and
det(T ) = 0,

Ap(T )
log(p)

= degZ(t)Q ·
[
ordp(n1n2) + 2ordp(n)

]
− 2 |Λt| ·m0(p) ·

p− χ

p− 1

(
kpk − pk − 1

p− 1

)
,

whereχ = χd(p) andk = ordp(n).

Proof. Setting

k = min{ordp(n1n),ordp(n2n) }

and

` = max{ordp(n1n),ordp(n2n) },
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we havek = ordp(n) and ` − k = ordp(n1n2). Then, by (7.7.11) and
Proposition 7.7.7,

(7.7.17) Ap(T ) = |Λt| · µp(k, `) log(p),

where

µp(k, `) =
k∑

s1=0

∑̀
s2=0

s1 6=s2

|Mmin{s1,s2} : M |(7.7.18)

= (`− k)
k∑
s=0

|Ms : M |+ 2
k−1∑
s=0

|Ms : M | (k − s)

= [ (`− k) + 2k ]
k∑
s=0

|Ms : M | − 2
k∑
s=0

|Ms : M | s.

7.8 COMPUTATION OF THE DISCRIMINANT TERMS

In this section we will calculate the discriminant term occurring in Corollary
7.5.3:

(7.8.1) dZhor(t) =
∑
c|n

dZhor(t:c) =
∑
c|n

log |D(c)−1 : O(c)|.

HereO(c) is the ring of regular functions onZhor(t : c) and

(7.8.2) D(c)−1 = {α ∈ O(c)⊗Z Q | tr(α ·O(c)) ⊂ Z }.

Let Z̃hor(t : c) be the normalization ofZhor(t : c) and let Õ(c) be its
ring of regular functions. The inclusionO(c) ⊂ Õ(c) corresponds to the
normalization morphism

(7.8.3) π : Z̃hor(t : c) −→ Zhor(t : c).

Let D̃(c)−1 = {α ∈ O(c) ⊗Z Q | tr(α · Õ(c)) ⊂ Z} be the dual ofÕ(c)
with respect to the trace form. Then

(7.8.4) O(c) ⊂ Õ(c) ⊂ D̃(c)−1 ⊂ D(c)−1

and|Õ(c) : O(c)| = |D(c)−1 : D̃(c)−1|, so that

(7.8.5) dZhor(t:c) = 2 · log |Õ(c) : O(c)|+ log |D̃(c)−1 : Õ(c)|.

We then write

(7.8.6) dZhor(t) =
∑
p

(
2δp(t) + ∂p(t)

)
log(p),
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where

δp(t) =
∑
c

ordp|Õ(c) : O(c)|,(7.8.7)

and

∂p(t) =
∑
c

ordp|D̃(c)−1 : Õ(c)|.(7.8.8)

To calculateδp(t), recall Serre’sδ-invariant [7] associated to a pointx̃ ∈
Zhor(t : c)(F̄p), given by

(7.8.9) δx̃ = length(π∗OZ̃hor(t:c)/OZhor(t:c) )x̃.

Then,δx̃ = 0 unless̃x is a singular point ofZhor(t : c). Furthermore

(7.8.10) δp(t) =
∑
c|n

ordp|Õ(c) : O(c)| =
∑
c|n

∑
x̃∈Zhor(t:c)(F̄p)

δx̃.

To calculateδx̃, we use the following elementary fact.

Lemma 7.8.1. Let (X,x) be the spectrum of a complete regular local ring
R of dimension 2. LetC be a reduced divisor onX throughx and let

C =
n∑
i=1

Ci

be the decomposition ofC into its formal branches throughx, i.e., Ci is
irreducible, for all i. We assume thatCi is regular atx, ∀i. Let

π : C̃ −→ C

be the normalization morphism, i.e.,C̃ =
n∐
i=1

Ci. Let

δx = length(π∗OC̃/OC)x

be the Serre invariant ofC at x. Then

2δx =
∑
i6=j

(Ci, Cj)x.

Proof. We proceed by induction onn, the casen = 1 being trivial since

thenδ = 0. LetC ′ =
n−1∑
i=1

Ci, so thatC = C ′+Cn. Then the normalization

morphism factors as

(7.8.11) C̃
π′−→ C ′

∐
Cn

π1−→ C.
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Let f ′ = 0, resp.fn = 0, be the equations ofC ′, resp.Cn. Thenf ′ andfn
are relatively prime elements ofR. We have the following diagram of local
rings atx with exact rows and columns:

(7.8.12)

0 0 0x x x
0 → OC → OC′ ⊕OCn → ∆ → 0x x x
0 → R → R⊕R → R → 0x x x
0 → (f ′fn) → (f ′)⊕ (fn) → (f ′, fn) → 0x x x

0 0 0

The first row shows that length∆ = length(π1∗(OC′tCn)/OC)x. The last
column shows that length∆ = (C ′, Cn)x. By induction hypothesis,

(7.8.13) length(π′∗(OC̃)/OC′)x =
∑

1≤i<j≤n−1

(Ci, Cj)x.

Hence

δx = length(π∗(OC̃)/OC)x
= length(π′∗(OC̃)/OC′tCn)(x,x)(7.8.14)

+ length(π′1∗(OC′tCn)/OC)x

=
∑

1≤i<j≤n−1

(Ci, Cj)x +
n−1∑
i=1

(Ci, Cn)x

=
∑

1≤i<j≤n
(Ci, Cj)x.

From these calculations we obtain the following formula.

Proposition 7.8.2. Let t1t2 be a square and definet as in Lemma 7.4.3.
Then

2 δp(t) =
∑

T∈Sym2(Z)∨

diag(T )=(t1,t2)

det(T ) 6=0

2 δp(T ),

where2 δp(T ) is given as follows:
(i) If p - D(B), then, forp split in kt, 2δp(T ) = 0, while for p inert or
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ramified,

2 δp(T ) =
∑

x∈M(F̄p)ss

∑
c0

∑
y=[y1,y2]∈V (A,ι)2

Q(y)=T

type(y)=(c0,c0)

e−1
y

ordp(n)∑
s=0

(Ws(ψy1),Ws(ψy2)),

wherec0 runs over divisors ofn which are prime topD(B).
(ii) If p | D(B), then

2 δp(T ) =
∑
c

∑
y=[y1,y2]∈ΛT (c,c)

e−1
y 2 (Zhor(j1),Zhor(j2) )

=
∑
c

|ΛT (c, c)| · νhor
p (T ),

wherec runs over divisors ofn which are prime toD(B).

Note thatδp(T ) can only be nonzero when Diff(T,B) = {p}, and that, in
(ii), the conductorc is prime top.

Proof. By (7.8.10), we must sum the intersection number expression of
Lemma 7.8.1 over the (singular) pointsx ∈ i∗Zhor(t : c)(F̄p).

First suppose thatp - D(B). Using the expression for
(
i∗Zhor(t : c)

)∧
x

given by Proposition 7.7.4, we have

(7.8.15) 2 δx =
∑

T ′∈Sym2(Z)∨

diag(T ′)=(t,t)

det(T ′) 6=0

∑
y′=[y′1,y

′
2]∈V (A,ι)2

Q(y′)=T ′

type(y′)=(c0,c0)

e−1
y′ (Ws(ψy′1),Ws(ψy′2) ),

wherec = c0 ps with s = ordp(c). If p is split in kt, (iii) of Lemma 7.8.1
implies that the sum here is empty so thatδp(t) = 0. If p is inert or ramified,
we use the following fact.

Lemma 7.8.3. There is a bijection between the sets

{ y′ ∈ V (A, ι)2 | Q(y′) = T ′, type(y′) = (c0, c0) }

and

{ y ∈ V (A, ι)2 | Q(y) = T, type(y) = (c0, c0) }

given byy′ = [y′1, y
′
2] 7→ [n1y

′
1, n2y

′
2] = y. Furthermore,Aut(A, ι,y′) =

Aut(A, ι,y). Here

T = [n1, n2]T ′
[
n1

n2

]
.
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Proof. We must show that the map is surjective. It suffices to show that,
if y ∈ V (A, ι) is of type c with Q(y) = m2t, wherec | n and p - c,
thenm−1y ∈ End(A, ι). By the definition of the type, this is equivalent to
showing thatψ−1

y (m−1y) = n
2

√
−d is in the orderOc2d of conductorc. If

d = 4d0, thenOc2d = Z[c
√
−d0] 3 n

√
−d0. If d is odd, we have4t = n2d,

so that2 | n. But then, forc even, we havec2
√
−d ∈ Oc2d and c

2 |
n
2 , while,

for c odd,c
√
−d ∈ Oc2d andc | n2 .

SinceWs(ψniy′i) = Ws(ψy′i), we obtain the claimed expression by sum-
ming (7.8.15) overx andc0 and collecting the terms with a fixedT .

The proof in the casep | D(B) is similar. Again, by the argument in
Remark 7.6.1, the term in between the two equality signs in (ii) only depends
onT .

Next, we calculate the quantity∂p(t).

Proposition 7.8.4. (i) For p - D(B),

∂p(t) = |Λt| ·m0(p) ·
[
p− χ

p− 1

(
k pk − 2

pk − 1
p− 1

)
+

1− χ

p− 1
k

]

+
1
2

degZ(t)Q · ordp(d),

whereχ = χd(p), k = ordp(n), andm0(p) = 2 if p is ramified inkt and1
otherwise.
(ii) For p | D(B),

∂p(t) =
1
2

degZ(t)Q · ordp(d).

Proof. Using elementary properties of the different, we have

ordp|OZ̃hor(t:c)/D̃(c)|

= ordp|OZ̃hor(t:c)Zp
/D̃(c)Zp |(7.8.16)

=
∑

x̃∈Z̃hor(t:c)(F̄p)

e−1
x̃ length(OZ̃hor(t:c)(x̃)

/D̃(c)(x̃)).

HereD̃(c) denotes the sheaf associated to the module above with the same
name.
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If p - D(B), and summing over allc, we obtain

∂p(t) =
∑

x∈M(F̄p)•

∑
y∈V (A,ι)

Q(y)=t

e−1
y

ordp(n)∑
s=0

∂(s)(7.8.17)

= |Λt| ·
ordp(n)∑
s=0

∂(s),

where

(7.8.18) ∂(s) = lengthWs : D(Ws/W ) = ordMs(D(Ms/M)),

for D(Ws/W ) = D(Ms/M), the different ofWs overW , hence ofMs

overM .

Proposition 7.8.5. For χ = χp(d),

∂(s) = |M0 : M | ·
(
ps−1(p−χ) s− ps − χps−1 + χ− 1

p− 1

)
+ ps ordp(d).

Proof. First suppose thatp is split ink. Then,W0 = W = W (F̄p), andMs

is the totally ramified extension ofM0 = M = W ⊗Zp Qp generated by the
psth roots of unity. Under the reciprocity isomorphism

(7.8.19) (Zp/psZp)×
∼−→ Gal(Ms/M),

the ramification functioniG, [6], p. 70, pulls back to the functioniG(a) =
pr if ordp(a− 1) = r, for r < s. Then, by [6], Chapter 4, Proposition 4, we
have, fors ≥ 1, the well-known formula
(7.8.20)

ordMs(D(Ms/M)) =
∑

a∈(Zp/psZp)×

a 6=1

pordp(a−1) = ps−1(p− 1)s− ps−1.

If p is inert or ramified ink, we follow [1], but with slightly modified no-
tation. LetO = Okp be the ring of integers ofkp, and letπ be a uniformizer.
Let q = |O/πO| be the order of the residue field. We identifyM0 with the
completion of the maximal unramified extension ofkp andW0 with its ring
of integers. Recall that, ifp is inert,M0 = M , while, if p is ramified, then
M0 is a ramified quadratic extension ofM . LetG be the base change toW0

of the Lubin-Tate formal group overO for which

(7.8.21) [π](x) = πx+ xq.
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Let L = M0(G[πn]) be the extension ofM0 which is generated by all of
theπn-division points ofG. Then, under the reciprocity law for Lubin-Tate
groups, there is an isomorphism

(7.8.22) ( O/πnO )× ∼−→ Gal(L/M0).

Moreover, the pullback under this isomorphism of the ramification function
iG on Gal(L/M0) is given by

(7.8.23) iG(α) = qordO(α−1),

for ordO(α− 1) < n, [5], p. 371. Thus, we have
(7.8.24)

ordL(D(L/M0)) =
∑

α∈(O/πsO )×

α 6=1

qordO(α−1) = qn−1(q − 1)n− qn−1.

Now let Ls be the extension ofM0 generated by theps-division points
of G, so thatLs = M0(G[πs]), if p is inert ink, andLs = M0(G[π2s]), if
p is ramified ink. Then, by [1], the fieldMs is the fixed field inLs of the
subgroup(Zp/psZp)× ⊂ (O/psO )×. Note that the extensionMs is totally
ramified overM and that

(7.8.25) |Ms : M | = |M0 : M | · ps−1(p− χ),

for χ = χd(p). Again by the formula from [6], we have

ordLs(D(Ls/Ms))(7.8.26)

=
∑

a∈(Zp/psZp)×

a 6=1

qordO(a−1)

= (p− 2)ps−1 + (p− 1)ps−2 · p2

+ . . . (p− 1)ps−r · p2r−2 + · · ·+ (p− 1)p2s−2

= p2s−1 − 2ps−1.

Note that here, in the inert case,q = p2 and ordO(a − 1) = ordp(a − 1)
and, in the ramified case,q = p and ordO(a − 1) = 2 ordp(a − 1), so that
the result is the same in both cases. Finally, we use the relation
(7.8.27)
ordLs(D(Ls/M0)) = |Ls : Ms| ·ordMs(D(Ms/M0))+ordLs(D(Ls/Ms)).

Solving for ordMs(D(Ms/M0)), we obtain
(7.8.28)

ordMs(D(Ms/M0)) = |M0 : M |
(
ps−1(p−χ)s− p

s − χps−1 + χ− 1
p− 1

)
.
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Finally, to get the formulas stated, we must add the term

(7.8.29) |Ms : M0| · ordM0(D(M0/M)) = ps ordp(d),

whenp is ramified ink.

To finish the proof of (i) of Proposition 7.8.4, we sum the expression
for ∂(s) over s and multiply by|Λt|. For the ordp(d) term, we use (ii) of
Proposition 7.7, so that

(7.8.30) degZ(t)Q = 2 |Λt|
pk+1 − 1
p− 1

,

whenp is ramified.
To prove (ii), we need to evaluate the last expression in (7.8.16). This

sum is empty ifp is split inkt and is zero ifp is inert since thenZhor(t) is
unramified over SpecZp. If p is ramified, thenZ̃hor(t : c)(x̃) is the spectrum

of a ramified quadratic extension ofW (F̄p). If p 6= 2, thenD̃(x̃) generates

the maximal idealmx̃ in Ox̃, whereas ifp = 2, thenD̃(x̃) is equal tomδ
x̃

whereδ = ordp(d), as one calculates using the equations (A.16) resp. (A.18)
of [4]. Hence the last expression of (7.8.16) is equal to

ordp(d) ·
∑

x̃∈Z̃hor(t:c)(F̄p)

e−1
x̃

=
1
2

ordp(d) ·
∑

x̃∈Z̃hor(t)(F̄p)

e−1
x̃ · ramx̃(7.8.31)

=
1
2

ordp(d) · degZhor(t : c)Q,

whereramx̃ = 2 denotes the ramification index of̃Zhor(t : c)(x̃) overW .
Summing overc|n yields now (ii).

7.9 COMPARISON FOR THE CASE t1, t2 > 0, AND t1t2 = m2

In this section, we complete the computation of the arithmetic intersection
number

(7.9.1) 〈 Ẑ(t1, v1), Ẑ(t2, v2) 〉 = A+B + C

in the caset1t2 = m2, with t1 and t2 > 0, by assembling the quantities
computed above and comparing with the right hand side of the identity ((?))
of Theorem C.
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First, recall that the termB, computed via adjunction, can be written as

B = −2hω̂(Zhor(t)) + 2
∑
p

∂p(t) log(p) +
∑
p

∑
T

2δp(T ) log(p)

+ degQ(Z(t))
[
log(t1v1 + t2v2)− log(t1v1)− log(t2v2)

]
(7.9.2)

− degQ(Z(t))J(4π(t1v1 + t2v2))

+B∞ − degQ(Z(t)) · log(4D(B)).

We also have

(7.9.3) A =
∑
p≤∞

∑
T∈Sym2(Z)∨

diag(T )=(t1,t2)

det(T ) 6=0

Ap(T ) +
∑
p<∞
p-D(B)

∑
T∈Sym2(Z)∨

diag(T )=(t1,t2)

det(T )=0

Ap(T ),

and

(7.9.4) C =
∑

p|D(B)

∑
T∈Sym2(Z)∨

diag(T )=(t1,t2)

det(T ) 6=0

Cp(T ) +
∑

p|D(B)

∑
T∈Sym2(Z)∨

diag(T )=(t1,t2)

det(T )=0

Cp(T ).

Of course, whendet(T ) 6= 0, Ap(T ) andCp(T ) can only be nonzero when
Diff (T,B) = {p}. There is no such restriction onp for the two singularT ’s
in the sums.

We must compare the quantity in (7.9.1) with the sum
(7.9.5)∑

p≤∞

∑
T∈Sym2(Z)∨

diag(T )=(t1,t2)

det(T ) 6=0

Diff (T,B)={p}

Ẑ(T,
(
v1

v2

)
) +

∑
T∈Sym2(Z)∨

diag(T )=(t1,t2)

det(T )=0

Ẑ(T,
(
v1

v2

)
).

Here, for anyT ∈ Sym2(Z)∨ with det(T ) 6= 0 and Diff(T,B) = {p},

(7.9.6) Ẑ(T, v) =


|ΛT | · νp(T ) · log(p) if p <∞, p - D(B),

|ΛT | · νp(T ) · log(p) if p <∞, p | D(B),

|ΛT | · ν∞(T, v) if p = ∞,

where|ΛT | is given by (7.2.5), (7.2.10), and (7.2.14), respectively,νp(T ) is
given in (7.2.4) and (7.2.11), andν∞(T, v) is given by (7.2.13). In the rank
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1 case we defined in Section 6.4,
(7.9.7)

Ẑ(T, v) =−
〈
Ẑ(t, t−1tr(Tv)) , ω̂

〉
+

1
2

degQ(Z(t))·log
(

tr(Tv)
tdet(v)D(B)

)
.

This can be made more explicit.

Lemma 7.9.1. Suppose thatT ∈ Sym2(Z)∨ with det(T ) = 0 has rank1
with t1 andt2 > 0, and thatv = diag(v1, v2). Then

Ẑ(T, v)

= −hω̂(Zhor(t))− hω̂(Zver(t))− 1
2

degQ(Z(t)) · J(4π(t1v1 + t2v2))

− 1
2

degQ(Z(t))
(

log(v1v2)− log(t1v1 + t2v2) + log(t) + log(D(B))
)
.

Here,

hω̂(Zver(t)) =
∑

p|D(B)

hω̂(Zver(t)p),

and, by Theorem 11.5 of [4], forp | D(B) and4t = n2d,

hω̂(Zver(t)p)
log p

= −degQ(Z(t)) ·

 k −
(p+1)(pk−1)

2(p−1) if χd(p) = −1,

k + 1− pk+1−1
p−1 if χd(p) = 0,

wherek = ordp(n). If χd(p) = 1, i.e., ifp splits inkd, then

hω̂(Zver(t)p)
log p

= 2H0(t;D(B)) δ(d;D(B)/p) · (pk − 1),

whereH0(t;D(B)) and δ(d;D(B)/p) are given by (7.6.21) and (7.6.22),
respectively.

Proof. Forv = diag(v1, v2), we have

Ẑ(T, v)

= −hω̂(Zhor(t))− hω̂(Zver(t))− 1
2

∫
M(C)

Ξ(t, t−1tr(Tv)) dµ

− 1
2

degQ(Z(t))
(

log(v1v2)− log(t1v1 + t2v2) + log(t) + log(D(B))
)
.
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By Proposition 12.1 of [4], fort > 0, we have
(7.9.8)

1
2

∫
M(C)

Ξ(t, t−1tr(Tv)) dµ =
1
2

degZ(t)Q · J(4π(t1v1 + t2v2)).

We can now begin the comparison. First, comparing Corollary 7.5.6 and
Proposition 7.5.7 with (7.2.16) forp = ∞, it is immediate that

A∞ +B∞

(7.9.9)

=
∑

T∈Sym2(Z)∨

diag(T )=(t1,t2)

det(T ) 6=0

Diff (T,B)={∞}

( ∑
c1 6=c2

|ΛT (c1, c2)|+
∑
c

|ΛT (c, c)|
)
· ν∞(T, v)

=
∑

T∈Sym2(Z)∨

diag(T )=(t1,t2)

det(T ) 6=0

Diff (T,B)={∞}

Ẑ(T, v),

as required.
Next suppose thatp | D(B), and thatT ∈ Sym2(Z)∨, with diag(T ) =

(t1, t2), det(T ) 6= 0, and Diff(T,B) = {p}. Then, Propositions 7.6.2
and 7.6.3 together with (ii) of Proposition 7.8.2 yield

Ap(T ) + 2 δp(T ) log(p) + Cp(T )
(7.9.10)

=
∑
c1 6=c2

|ΛT (c1, c2)| · νhor
p (T ) log(p) +

∑
c

|ΛT (c, c)| · νhor
p (T ) log(p)

+ |ΛT | · (νp(T )− νhor
p (T )

)
log(p)

= |ΛT | · νp(T ) log(p)

= Ẑ(T, v).

Finally, suppose thatp - D(B), and thatT ∈ Sym2(Z)∨, with diag(T ) =
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(t1, t2), det(T ) 6= 0 and Diff(T,B) = {p}. Then, by Corollary 7.7.6

Ap(T )

(7.9.11)

=
∑
c01 6=c

0
2

|ΛT (c01, c
0
2)| ·

ordp(n1n)∑
s1=0

ordp(n2n)∑
s2=0

(
Ws1(ψ1),Ws2(ψ2)

)
· log(p)

+
∑
c0

|ΛT (c0, c0)| ·
ordp(n1n)∑
s1=0

ordp(n2n)∑
s2=0

s1 6=s2

(
Ws1(ψ1),Ws2(ψ2)

)
· log(p),

whereas, by (i) of Proposition 7.8.2,
(7.9.12)

2 δp(T ) log(p) =
∑
c0

|ΛT (c0, c0)| ·
ordp(n)∑
s=0

(Ws(ψ1),Ws(ψ2)) log(p).

Thus, we have

(7.9.13) Ap(T ) + 2δp(T ) log(p) = Ẑ(T, v).

Note that identities (7.9.9), (7.9.10), and (7.9.13) account for all terms asso-
ciated to nonsingularT ’s on the two sides.

It remains to compare the global terms and terms associated to the two
singularT ’s with diagonal(t1, t2). First, there is the remaining part ofB:

Bglobal = −2hω̂(Zhor(t)) + 2
∑
p

∂p(t) log(p)
(7.9.14)

− degQ(Z(t)) · log(4D(B))

+ degQ(Z(t))
[
log(t1v1 + t2v2)− log(t1t2)− log(v1v2)

]
− degQ(Z(t))J(4π(t1v1 + t2v2)).

Next, there is the contribution of each of the two singularT ’s. For any
p - D(B), Corollary 7.7.8 gives

(7.9.15)
Ap(T )
log(p)

= degZ(t)Q ·
[
ordp(n1n2) + 2ordp(n)

]
− 2 |Λt|m0(p) ·

p− χ

p− 1

(
kpk − pk − 1

p− 1

)
,
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whereχ = χd(p) andk = ordp(n). For p | D(B), recalling Proposi-
tion 7.6.4 and the expression forhω̂(Zver(t)p) in Lemma 7.9.1, we have for
p inert or ramified inkt,

Cp(T )

(7.9.16)

= deg Z(t)Q log(p) ·


1
2 ordp(t1t2)− (p+1)(pk−1)

2(p−1) if p is inert,

1
2 ordp(t1t2)− pk+1−1

p−1 if p is ramified,

+ deg Z(t)Q log(p) · (1 + χ− ordp(d/4))

= −hω̂(Zver(t)p) + degZ(t)Q
[ 1

2
ordp(t1t2)− k − ordp(d/4)

]
log(p).

If p is split in kt, then the comparison of Proposition 7.6.4 and Lemma
7.9.1 shows that

(7.9.17) Cp(T ) = −hω̂(Zver(t)p).

Taking into account that there are two singularT ’s and cancelling the terms
which the expressionsBglobal + 2Ap(T ) + 2Cp(T ) and2Z(T, v) have in
common, we are left with

2
∑
p

∂p(t) log(p)− degQ(Z(t)) log(4 t1t2)

(7.9.18)

+ 2
∑

p|D(B)

degZ(t)Q
[ 1

2
ordp(t1t2)− k − ordp(d/4)

]
log(p)

+ 2
∑

p-D(B)

(
degZ(t)Q ·

[
ordp(n1n2) + 2 ordp(n)

]

− 2 |Λt|m0(p) ·
p− χ

p− 1

(
kpk − pk − 1

p− 1

) )
,

on the intersection pairing side, and

(7.9.19) −degZ(t)Q log(t),

on the genus two generating function side.
Finally, we use the values for the discriminant terms∂p(t) and compute

the coefficient of eachlog(p) in (7.9.18).
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First suppose thatp - D(B). We then have terms

(7.9.20) ∂p(t) = |Λt|m0(p)
[
p− χ

p− 1

(
k pk − 2

pk − 1
p− 1

)
+

1− χ

p− 1
k

]

+
1
2

degZ(t)Q · ordp(d),

(7.9.21)
Ap(T )
log(p)

= degZ(t)Q ·
[
ordp(n1n2) + 2 ordp(n)

]
− 2 |Λt|m0(p) ·

p− χ

p− 1

(
kpk − pk − 1

p− 1

)
,

and

(7.9.22) − 1
2

degZ(t)Q ordp(4t1t2)

= −degZ(t)Q
[
ordp(n1n2) + 2 ordp(n) + ordp(d/2) ],

whose sum is

degZ(t)Q
[
ordp(2)− 1

2
ordp(d)

]
− k|Λt|m0(p)

(
pk+1 − χpk + χ− 1

p− 1

)
= degZ(t)Q

[
ordp(2)− 1

2
ordp(d) − ordp(n)

]
(7.9.23)

= −1
2

degZ(t)Q · ordp(t).

Here we have used (ii) of Proposition 7.7.7,

(7.9.24) degZ(t)Q = |Λt|m0(p)
(

1 + (p− χ)
pk − 1
p− 1

)
.

Since there are two such terms in (7.9.18), we get the required coincidence
with thelog(p) part of (7.9.19).

Next suppose thatp | D(B). We then have terms

1
2

degZ(t)Q · ordp(d),(7.9.25)

degZ(t)Q ·
[ 1

2
ordp(t1t2)− ordp(n)− ordp(d/4)

]
,(7.9.26)

and



PUP.master.W.rev January 13, 2006

AN INNER PRODUCT FORMULA 259

− 1
2

degZ(t)Q · ordp(4t2t2),(7.9.27)

In this case, the sum is

−1
2

degZ(t)Q · ordp(t),

so that we again have the claimed agreement. This finishes the proof of the
identity ((?)) of Theorem C in the case in whicht1t2 is a square andt1,
t2 > 0.

7.10 THE CASE t1, t2 < 0 WITH t1t2 = m2

In this case, the classes

Ẑ(t1, v1) = (0,Ξ(t1, v1)), Ẑ(t2, v2) = (0,Ξ(t2, v2)) ∈ ĈH
1
(M)

only involve the Green functions. More precisely, the cyclesZ(ti) are
empty and the functionsΞ(ti, vi) are smooth onM(C). We then have

〈 Ẑ(t1, v1), Ẑ(t2, v2) 〉 =
1
2

∫
M(C)

Ξ(t1, v1) ∗ Ξ(t2, v2)

=
1
2

∫
[Γ\D]

∑
x1∈L

Q(x1)=t1

∑
x2∈L

Q(x2)=t2

ξ(v
1
2
1 x1) ∗ ξ(v

1
2
2 x2)

=
∑

T∈Sym2(Z)∨

diag(T )=(t1,t2)

1
2

∫
[Γ\D]

∑
x∈L2

Q(x)=T

ξ(v
1
2
1 x1) ∗ ξ(v

1
2
2 x2)

=
∑

T∈Sym2(Z)∨

diag(T )=(t1,t2)

detT 6=0

|ΛT | · ν∞(T, v)(7.10.1)

+
∫
[Γ\D]

∑
x∈L2

Q(x)=T0

ξ(v
1
2
1 x1) ∗ ξ(v

1
2
2 x2)
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=
∑

T∈Sym2(Z)∨

diag(T )=(t1,t2)

detT 6=0

Ẑ(T, v)

+
∫
[Γ\D]

∑
x∈L2

Q(x)=T0

ξ(v
1
2
1 x1) ∗ ξ(v

1
2
2 x2),

where, just as in (7.2.12),ν∞(T, v) is given by (7.2.13) and|ΛT | is given
by (7.2.15). Here the matrixT0 is one of the two singular matrices with
diag(T0) = (t1, t2). It remains to prove the following identity.

Proposition 7.10.1.For a singular matrixT0 with diag(T0) = (t1, t2), and
for v = diag(v1, v2),

Ẑ(T0, v) = −〈 Ẑ(t, t−1tr(Tv)), ω̂ 〉 =
1
2

∫
[Γ\D]

∑
x∈L2

Q(x)=T0

ξ(v
1
2
1 x1)∗ξ(v

1
2
2 x2).

Here recall thatẐ(T0, v) is defined as in Section 6.4.

Proof. As in Section 6.4, we write

T0 =
(
t1 m
m t2

)
,

and choosen1 andn2 relatively prime witht1 = n2
1t, t2 = n2

2t,m = n1n2t.
Note that we havet−1tr(Tv) = v1n

2
1 + v2n

2
2. Thus, by the results of [4]

(see (iii) of Theorem 8.8),

−〈 Ẑ(t,t−1tr(Tv)), ω̂ 〉 = −2 δ(d;D(B))H0(t;D(B))

(7.10.2)

× 1
4π
|t|−

1
2 (v1n2

1 + v2n
2
2)
− 1

2

∫ ∞

1
e−4π|t|(v1n2

1+v2n2
2)u u−

3
2 du.

Now for anyx in the sum in the last expression in the proposition, we can
write x1 = n1y andx2 = n2y, for a unique vectory ∈ L with Q(y) = t.
Using Lemma 11.4 of [2] and unwinding, we have

1
2

∫
[Γ\D]

∑
x∈L2

Q(x)=T0

ξ(v
1
2
1 x1) ∗ ξ(v

1
2
2 x2)(7.10.3)

=
∑

y∈L(t)

mod Γ

1
4

∫
Γy\D

ξ(v
1
2
1 n1y, z) · ϕ(v

1
2
2 n2y, z) dµ(z),
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whereϕ is as in (3.5.5). The extra factor of1
2 in the second line comes from

the stack[Γ\D] in the first line. The integral here can be computed by the
method used in the second part of the proof of Proposition 12.1 of [4]. To
clean up the notation, we temporarily writev1 for v1n2

1 andv2 for v2n2
2. As

in (12.9) of [4], we shifty to a standard vector and choose polar coordinates
z = reiθ in H. By Lemma 11.5 of [2], we can write the integrand as

−Ei(−2πR1) · (2R2 − 4v2|t| −
1
2π

) · e−2πR2 ,

where

R1 =
2v1|t|
sin2(θ)

and R2 =
2v2|t|
sin2(θ)

.

Then, the integral becomes12

2 δ−1
y

∫
Γ+
y \D+

ξ(v
1
2
1 y, z) · ϕ(v

1
2
2 y, z) dµ(z)

= 8 δ−1
y log |ε(y)| ·

∫ π
2

0
−Ei

(
−4πv1|t|

sin2(θ)

)
·
(

4v2|t| cos2(θ)
sin2(θ)

− 1
2π

)

× exp

(
−4πv2|t|

sin2(θ)

)
· (sin2(θ))−1 dθ

= 4 δ−1
y log |ε(y)| ·

∫ ∞

1

(∫ ∞

1
e−4πv1|t|rw w−1 dw

)
×
(

4v2|t|(r − 1)− 1
2π

)
e−4πv2|t|r (r − 1)−

1
2 dr

= 4 δ−1
y log |ε(y)| ·

∫ ∞

1
e−4π|t|(v1w+v2)

∫ ∞

0
e−4π|t|r(v1w+v2)

×
(

4v2|t|r −
1
2π

)
r−

1
2 dr w−1 dw.

The integral with respect tor here is

− 1
4π

· |t|−
1
2 (v1w + v2)−

3
2 v1w,

12Note that in [4],dµ(z) = 1
2π
y−2 dx dy, whereas here we omit the1

2π
; see Section 3.5.
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so we get the expression

− 4 δ−1
y log |ε(y)| · |t|−

1
2

∫ ∞

1
e−4π|t|(v1w+v2) v1

4π
(v1w + v2)−

3
2 dw

= −4 δ−1
y log |ε(y)| · |t|−

1
2

1
4π

(v1 + v2)−
1
2

∫ ∞

1
e−4π|t|(v1+v2)u u−

3
2 du,

where we have used the substitutionu = (v1w + v2)/(v1 + v2) in the last
step. Returning to (7.10.3), we obtain∑
y∈L(t)

mod Γ

−δ−1
y log |ε(y)| · |t|−

1
2

× 1
4π

(v1n2
1 + v2n

2
2)
− 1

2

∫ ∞

1
e−4π|t|(v1n2

1+v2n2
2)u u−

3
2 du

= −2 δ(d;D(B))H0(t;D(B)) · |t|−
1
2

× 1
4π

(v1n2
1 + v2n

2
2)
− 1

2

∫ ∞

1
e−4π|t|(v1n2

1+v2n2
2)u u−

3
2 du,

by Lemma 12.2 of [4].

7.11 THE CONSTANT TERMS

In this section we prove the remaining cases of identity ((?)) of Theorem C.
For clarity, we will writeẐ2(T, v) for a coefficient of the genus two gener-
ating function.

Theorem 7.11.1.(i) For t1 6= 0,

〈 Ẑ(t1, v1), Ẑ(0, v2) 〉 = Ẑ2(T, v),

whereT = diag(t1, 0) andv = diag(v1, v2).
(ii)

〈 Ẑ(0, v1), Ẑ(0, v2) 〉 = Ẑ2(0, v),

wherev = diag(v1, v2).

Corollary 7.11.2. The constantc = − log(D(B)) and so

〈 ω̂, ω̂ 〉 = ζD(B)(−1)
[
2
ζ ′(−1)
ζ(−1)

+ 1− 2C − 1
2

∑
p|D(B)

p+ 1
p− 1

· log(p)
]
.
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Proof. Recall that, by (5.13) of [4],

(7.11.1) Ẑ(0, v) = −ω̂ − (0, log(v)− c),

for the constantc given, as in (0.15) of [4], by the relation
(7.11.2)
1
2

deg(ω̂)·c = 〈 ω̂, ω̂ 〉−ζD(B)(−1)
[
2
ζ ′(−1)
ζ(−1)

+1−2C−
∑

p|D(B)

p log(p)
p− 1

]
.

Therefore,

〈 Ẑ(t1, v1), Ẑ(0, v2) 〉 = −〈 Ẑ(t1, v1), ω̂ 〉 −
1
2

degQ(Z(t1))(log(v2)− c)

(7.11.3)

and

〈 Ẑ(0, v1), Ẑ(0, v2) 〉 = 〈 ω̂, ω̂ 〉+
1
2

degQ(ω̂) · ( log(v1v2)− 2 c ).

(7.11.4)

On the other hand, in the sum on the right-hand side of ((?)), all contribu-
tions of nonsingular matricesT are zero by Remark 6.3.2. Therefore the
only matrix T which contributes is the matrixT = diag(t1, 0). But for
T andv as in (i) of the theorem, we havet = t1, n1 = 1, n2 = 0, and
t−1tr(Tv) = v1, so that, by (7.9.7),
(7.11.5)

Ẑ2(T, v) = −〈 Ẑ(t1, v1), ω̂ 〉 −
1
2

degQ(Z(t1)) ·
(
log(v2) + log(D(B))

)
.

Finally, for v = diag(v1, v2),

(7.11.6) Ẑ2(0, v) = 〈 ω̂, ω̂ 〉+ 1
2

degQ(ω̂) ·
(
log(v1v2)−c+log(D(B))

)
.

Now, for a fixed cycleẐ(t1, v1), with t1 > 0, the function

(7.11.7) 〈 Ẑ(t1, v1), φ̂1(τ2) 〉 =
∑
t2∈Z

〈 Ẑ(t1, v1), Ẑ(t2, v2) 〉 qt22

is a modular form of weight32 , as is the function

(7.11.8) φ̂2(diag(τ1, τ2))t1 ,

obtained by taking thet1 Fourier coefficient of̂φ2(diag(τ1, τ2)). We have
proved that, for anyt2 6= 0,

(7.11.9) 〈 Ẑ(t1, v1), φ̂1(τ2) 〉t2 = φ̂2(diag(τ1, τ2))t1,t2 ,
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and hence, it follows that the constant terms must agree as well (!), i.e.,

(7.11.10) 〈 Ẑ(t1, v1), Ẑ(0, v2) 〉 = φ̂2(diag(τ1, τ2))t1,0 = Ẑ2(T, v)

for T = diag(t1, 0) andv = diag(v1, v2). Comparing (7.11.3) and (7.11.5),
we conclude that

c = − log(D(B)).

Inserting this value into (7.11.4) and (7.11.6), we obtain (ii) of the Theorem.
Since

deg(ω̂) = vol(M(C)) = −ζD(B)(−1),

we obtain the corollary.

The proof of Theorem C is now complete.
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Chapter Eight

On the doubling integral

In this chapter, we obtain some information about the doubling zeta integral
for the metaplectic coverG′A of SL2(A). In the standard doubling integral,
as considered in [5], one integrates the pullback to Spn(A) × Spn(A) of a
Siegel Eisenstein series on Sp2n(A) against a pair of cusp formsf1 andf2

on Spn(A). If f1 andf2 lie in an irreducible cuspidal automorphic repre-
sentationσ, the result is a product of a partial L-functionLS(s + 1

2 , σ) of
σ associated to the standard degree2n + 1 representation of the L-group
LSpn = SO2n+1 and certain ‘bad’ local zeta integrals at the places in the
finite setS where the data is ramified. Iff1 andf2 lie in different irreducible
cuspidal automorphic representations, then the global doubling integral van-
ishes. A similar construction can be made for cusp forms on the metaplectic
group [15].

Here, we consider a variant of this procedure, which is closer to what is
done in [3] and [2]. The pullbackE(ι(g1, g2), s,Φ) of the Siegel Eisenstein
series determines a kernel function on Spn(A) × Spn(A), and the associ-
ated integral operator on the space of cusp forms preserves each irreducible
cuspidal automorphic representationσ. If the Eisenstein series is defined by
a factorizable section, the resulting endomorphism ofσ ' ⊗pσp is given
as a product of endomorphisms of the local componentsσp, and, when all
the data is unramified, the unramified vector inσp is an eigenvector with
eigenvalueLp(s + 1

2 , σp) (up to a standard normalizing factor independent
of σp). The difficulty is to determine what happens at the ramified places,
including the archimedean places.

In this chapter, we restrict ourselves to the casen = 1, and we consider
genuine irreducible cuspidal automorphic representationsσ of the meta-
plectic extensionG′A of Sp1(A) = SL2(A). In this case, the doubling
integral represents the degree2 standard L-function of the representation
π = Wald(σ, ψ) associated toσ by the Shimura-Waldspurger lift. Our
main result is an explicit construction of ‘good test vectors’,fp ∈ σp
andΦp(s) ∈ Ip(s, χp), the local induced representation, such thatfp is
an eigenvector of the local zeta integral operator defined byΦp(s). We do
this only for unramified principal series and special representations, forp
odd, and for mildly ramified principal series and special representations for
p = 2. The main local result is Theorem 8.3.1. As a consequence, we can
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construct certain global eigenfunctionsf ∈ σ for the doubling integral op-
erator described above. The resulting explicit doubling formulas are given
in Theorem 8.3.2 and Theorem 8.3.3. The latter of these formulas will be
used in Chapter 9 to prove, in certain cases, a nonvanishing criterion for the
arithmetic theta lift.

This chapter is quite long for two reasons. First, in Section 8.2, we have
provided a sketch, from our point of view, of Waldspurger’s results [23],
[28], which we need in order to best formulate our results. The most im-
portant of these are the relations among central signs, local dichotomy in-
variants, and local root numbers. Second, we have provided a substantial
amount of background material concerning coordinates on the metaplectic
groups, Weil representations, etc., which is not readily accessible in the lit-
erature in the form we need. We hope that the resulting precision will justify
the additional space required.

8.1 THE GLOBAL DOUBLING INTEGRAL

As in Sections 5.1 and 5.5, we letG′A be the metaplectic extension of
Sp1(A) = SL2(A) andGA be the metaplectic extension of Sp2(A). Let
P ′ ⊂ Sp1 (resp. P ⊂ Sp2) be the upper triangular Borel subgroup (resp.
the Siegel parabolic subgroup), and letP ′A (resp. PA) be the full inverse
image ofP ′(A) (resp.P (A)) in G′A (resp.GA).

Let i0 : Sp1 × Sp1 → Sp2 be the embedding

(8.1.1) i0 :
(
a1 b1
c1 d1

)
×
(
a2 b2
c2 d2

)
7−→


a1 b1

a2 b2
c1 d1

c2 d2

 .
Also let

(8.1.2) g∨ = Ad
(

1
−1

)
· g,

and put

(8.1.3) i(g1, g2) = i0(g1, g
∨
2 ).

Recall that there are two orbits of Sp1(Q) × Sp1(Q) on the coset space
P (Q)\Sp2(Q), so that

Sp2(Q) = P (Q) i(Sp1(Q)× Sp1(Q)) ∪ P (Q)δ i(Sp1(Q)× Sp1(Q)),
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where

(8.1.4) δ =


1

1
−1 1

1 1

 = w1m(

(
1 −1

1

)
).

Herew1 = i0(w1, 1), in the notation of Section 8.5.1. The stabilizers of the
chosen orbit representatives are

P (Q) ∩ i(Sp1(Q)× Sp1(Q)) = i(P ′(Q)× P ′(Q)),

and

δ−1P (Q)δ ∩ i(Sp1(Q)× Sp1(Q)) = i ◦∆(Sp1(Q)),

where∆ is the diagonal embedding. In fact, we have

δ i(g, g) = p(g) δ,

where

p(g) =


d c −c
b a −b

a −b
−c d

 .
The mapi has a unique lift to a homomorphism

i : G′A ×G′A −→ GA,

whose restriction toC1 × C1 is given byi(z1, z2) = z1z
−1
2 .

Let ψ be the standard character ofA/Q which is unramified and such
thatψ∞(x) = e(x) = e2πix. For ξ ∈ Q×, letψξ be the characterψξ(x) =
ψ(ξx). As explained in Section 8.5.5, there is then a group isomorphism

P (A)× C1 ∼−→ PA, (p, z) 7→ [p, z]L,ψ = [p, z]L.

As in Chapter 5, for a characterχ of A×/Q×, we also writeχ for the char-
acter ofPA defined by

χ([n(b)m(a), z]L) = z χ(det a),

and, fors ∈ C, we let I(s, χ) be the global degenerate principal series
representation ofGA on smooth functionsΦ(s) satisfying

(8.1.5) Φ([nm(a), z]Lg, s) = z χ(det a) |det a|s+
3
2 Φ(g, s),
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where we require thatΦ(s) beK∞-finite. A sectionΦ(s) ∈ I(s, χ) is called
standard if its restriction toK is independent ofs. For a standard section
Φ(s) ∈ I(s, χ), the corresponding Siegel Eisenstein series

(8.1.6) E(g, s,Φ) =
∑

γ∈P (Q)\G(Q)

Φ(γg, s)

converges for Re(s) > 3
2 .

Let σ ' ⊗p≤∞σp be an irreducible cuspidal automorphic representation
ofG′A lying in the spaceA00(G′) of cusp forms orthogonal to all O(1) theta
functions. For a functionf ∈ σ and a sectionΦ(s) ∈ I(s, χ), we consider
the global doubling integral defined by

(8.1.7) Z(s,Φ, f)(g′1) =
∫

Sp1(Q)\Sp1(A)
E(i(g′1, g

′
2), s,Φ) f(g′2) dg2.

Hereg′2 ∈ G′A is any element with imageg2 ∈ Sp1(A), and we take Tam-
agama measuredg2 on Sp1(Q)\Sp1(A). Note that this is not quite the stan-
dard doubling integral of Piatetski-Shapiro and Rallis [5], since we are inte-
grating against only one cusp form, but is of the type considered by Böcherer
[2] in classical language.

Unwinding in the usual way, using the coset information above, we get

Z(s,Φ, f)(g′1) =
∫

Sp1(A)
Φ(δ i(g′1, g

′
2), s) f(g′2) dg2

+
∫
P ′(Q)\Sp1(A)

∑
γ1∈P ′(Q)\Sp1(Q)

Φ(i(γ1g
′
1, g

′
2), s) f(g′2) dg

′
2.

The second term here vanishes identically, since it can be expressed in terms
of the constant term off . By (i) of Lemma 8.4.1, below, we have

Φ(δ i(g′1, g
′
2), s) = Φ(δ i(1, (g′1)

−1g′2), s),

so that, for Re(s) > 3
2 ,

Z(s,Φ, f)(g′1) =
∫

Sp1(A)
Φ(δ i(1, g′2), s) f(g′1g

′
2) dg2.

Thus, the functionZ(s,Φ, f) again lies in the space ofσ, and the doubling
integral gives the operation of the functiong′ 7→ Φ(δ i′(1, g′), s) onG′A in
the representationσ.

Recall that

I(s, χ) = ⊗p≤∞Ip(s, χp),
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and suppose thatΦ(s) = ⊗p≤∞Φp(s) and thatf ' ⊗p≤∞fp under the
isomorphismσ ' ⊗p≤∞σp. Then, under the latter isomorphism,

(8.1.8) Z(s,Φ, f) '
⊗
p≤∞

Zp(s,Φp, fp),

where

(8.1.9) Zp(s,Φp, fp) =
∫

Sp1(Qp)
Φp(δp i(1, g′), s)σp(g′)fp dg ∈ σp

is the local doubling integral. Hereδp ∈ Gp is an element projecting toδ ∈
Sp2(Qp), with δp ∈ Kp for almost allp, and such thatδ =

∏
p δp ∈ GQ. For

p <∞ we choose the measuredgp on SL2(Qp) for which vol(SL2(Zp)) =
1. The measuredg∞ on SL2(R) is then determined by the requirement that
the product measure

∏
p dgp is Tamagawa measure. See Lemma 8.4.29 for

an explicit description ofdg∞.
In Section 8.4 below, we will consider the case in whichσ has ‘square

free’ level and will calculate the local integralsZp(s,Φp, fp) ∈ σp explic-
itly for a certain good choice offp andΦp(s). To describe the results, it
will be helpful to first review Waldspurger’s theory of the Shimura-Shintani
correspondence.

8.2 REVIEW OF WALDSPURGER’S THEORY

8.2.1 Local theory

In this section, we review local theta dichotomy as proved by Waldspurger
in [28], in particular the important relations among Whittaker models, the
central sign, and the representation1 Wald(σ, ψ) and its root number. In
addition, we recall the definition of the Waldspurger involution. Since our
formulation differs slightly from that given in [28], we explain in some detail
how to derive our statements from those of Waldspurger.

LetF be a local field and letG′ be the metaplectic extension of Sp1(F ) =
SL2(F ). As described in the Section 8.5, for a nondegenerate additive
characterψ of F , there is an isomorphism[ , ]R : Sp1(F ) × C1 ∼−→ G′

giving the Rao coordinatesg′ = [g, z]R of an elementg′ ∈ G′. We will
sometimes writeN ′ for the group ofF -points of the unipotent radicalN ′ of
the standard Borel subgroupP ′ ⊂ Sp1, and we identify this group with its
image under the unique splitting homomorphismN ′ → G′, n 7→ [n, 1]R.

Thecentral signof an irreducible admissible genuine representationσ of
G′ is defined as follows ([28], p. 225):

1This notation was introduced in [7].
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We have

σ([m(−1), 1]R)2 = σ([m(−1), 1]2R) = σ([1, (−1,−1)F ]R) = (−1,−1)F ,

where(·, ·)F is the quadratic Hilbert symbol forF . Since the Weil index
γF (−1, ψ) satisfies

γF (−1, ψ)2 = (−1,−1)F ,

there is a signz(σ, ψ) defined by the relation

(8.2.1) σ([m(−1), 1]R) = z(σ, ψ) γF (−1, ψ)−1.

Since

σ([m(−1), 1]L) = γF (−1, ψ 1
2
)σ([m(−1), 1]R)(8.2.2)

= (−1, 2)F γF (−1, ψ)σ([m(−1), 1]R),

in Leray coordinates we have

(8.2.3) z(σ, ψ) = σ([m(−1), 1]L)χ2(−1),

whereχ2(x) = (x, 2)F .
For an irreducible admissible genuine representationσ of G′, let

(8.2.4) F̂ (σ) = { ψ ∈ F̂ |W (σ, ψ) 6= 0 },

whereW (σ, ψ) is theψ-Whittaker model ofσ.
For a quadratic space(V,Q) overF and a nondegenerate additive charac-

terψ of F , letωψ,V be the Weil representation ofG′ on the spaceS(V ); see
Section 8.5.3 for the conventions used. We assume thatdimF (V ) is odd.

Suppose thatξ ∈ F× is such that
(i) ψξ ∈ F̂ (σ), and
(ii) there is a vectorxξ ∈ V such thatQ(xξ) = ξ.
Then, forW ∈W (σ, ψξ), ϕ ∈ S(V ), andh ∈ SO(V ), we can consider the
integral

uψ(h;W,ϕ; ξ, V ) =
∫
N ′\Sp1(F )

W (g′)ωψ,V (g′)ϕ(h−1xξ) dg,(8.2.5)

as in [28], IV, p. 238, up to a change in notation. Hereg′ ∈ G′ is any
element which projects tog ∈ Sp1(F ). Note that a central element[1, z]R
acts by multiplication byz in both σ and the Weil representation so that
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the integrand is invariant underC1. Formally, we may view this integral as
defining a map2

(8.2.6) uψ(ξ, V ) : S(V ) −→W (σ, ψξ)∨ ⊗ C∞(SO(V )xξ\SO(V )).

This map isG′ × SO(V )-equivariant. Let

(8.2.7) θψ(σ; ξ, V ) ⊂ C∞(SO(V )xξ\SO(V ))

be the subspace spanned by the functionsuψ(h;W,ϕ; ξ, V ) asW andϕ
vary; this submodule is stable under the action of SO(V ).

For a quaternion algebraB overF , let

VB = { x ∈ B | tr(x) = 0 },

with quadratic form3 q(x) = −ν(x) = x2, and letHB = B×. Recall
that the action ofHB on VB by conjugation gives an isomorphismHB '
GSpin(VB). We write

VB = V±

andHB = H±, if inv(B) = ±1.
Let P̃ be the set of (isomorphism classes of) irreducible admissible, gen-

uine unitary representations ofG′ which are not of the formθψ(11, Uα),
whereθψ(11, Uα) is the Weil representationωψ,Uα of G′ on the space of
even functions in the Schwartz spaceS(Uα), whereUα = F with quadratic
formQ(x) = αx2.

Waldspurger proves the following result in [28].

Theorem 8.2.1.(Waldspurger).Assume thatσ ∈ P̃. Suppose thatξ ∈ F×
withψξ ∈ F̂ (σ).
(i) If V = V+, then

θψ(σ; ξ,V+) 6= 0 ⇐⇒ ψ ∈ F̂ (σ).

If ψ ∈ F̂ (σ), thenθψ(σ; ξ,V+) is an irreducible representation ofH+.
Moreover, the isomorphism class ofθψ(σ; ξ,V+) is independent ofξ.

2We get aC-linear map by composing with complex conjugationϕ 7→ ϕ̄ on S(V ).
The resulting mapS(V ) −→ W (σ, ψξ)

∨ ⊗ C∞(SO(V )xξ\SO(V )) is equivariant for
G′ × SO(V ), whereG′ acts onS(V ) by g 7→ ωV,ψ(g∨); see Lemma 8.5.8. Since the
representationσ(g∨) is isomorphic to the contragradientσ∨(g), [17], Chapitre 4, we ob-
tain an intertwining mapS(V ) −→ σ ⊗ C∞(SO(V )xξ\SO(V )). Thus, the representation
θψ(σ;V ) defined below corresponds toσ under local Howe duality [6].

3Here we follow the convention in [28], and hence use the notationVB to distinguish
this space from the spaceV B where the quadratic formQ(x) = ν(x) = −x2 is used.
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(ii) If V = V−, there is anxξ ∈ V− withQ(xξ) = ξ if and only ifξ /∈ F×,2.
Then

θψ(σ; ξ,V−) 6= 0 ⇐⇒ ψ /∈ F̂ (σ).

If ψ /∈ F̂ (σ), thenθψ(σ; ξ,V−) is an irreducible representation ofH− and
the isomorphism class ofθψ(σ; ξ,V−) is independent ofξ.

In case (i) of the theorem, let

θψ(σ,V+) ' θψ(σ; ξ,V+),

and letθψ(σ,V−) = 0. In case (ii) of the theorem, let

θψ(σ,V−) ' θψ(σ; ξ,V−),

and letθψ(σ,V+) = 0. Define thedichotomy signto be

(8.2.8) δ(σ, ψ) =

+1 if θψ(σ,V+) 6= 0,

−1 if θψ(σ,V−) 6= 0.

It follows that, ifσ is as in Theorem 8.2.1, then

(8.2.9) δ(σ, ψ) = +1 ⇐⇒ ψ ∈ F̂ (σ).

For example, ifσ is an irreducible principal series representation, then, by
[28], Lemma 3, p. 227,̂F (σ) = F̂ , and soδ(σ, ψ) = +1 for all ψ.

Forσ ∈ P̃, takeξ so thatψξ ∈ F̂ (σ), and let

(8.2.10) Wald(σ, ψ) := θψξ(σ,V
+)⊗ χξ,

whereχξ(x) = (x, ξ)F is the quadratic character attached toξ.4 In [28],
Proposition 15, p. 266, Waldspurger proves that this representation is inde-
pendent of the choice ofξ, for σ ∈ P̃. Note that the relation

(8.2.11) Wald(σ, ψα) = Wald(σ, ψ)⊗ χα

is immediate from the definition.
The following result, which is implicit in [28], relates the dichotomy sign,

the central sign, and the root number of Wald(σ, ψ).

Theorem 8.2.2.(Waldspurger).For σ ∈ P̃,

δ(σ, ψ) = ε
(1
2
,Wald(σ, ψ)

)
· z(σ, ψ).

4This space is calledSψ(T ) in [28], p. 280.
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Proof. First recall that Waldspurger defines Shintani liftings taking irre-
ducible admissible unitary representations ofH± = SO(V±) to irreducible
admissible genuine representations ofG′: π 7→ θ(π, ψ), p. 228 (resp.
π′ 7→ θ(π′, ψ), p. 235). For the first of these, he proves in [28], Theorem
1, p.249, that the mapsπ 7→ θ(π, ψ) andσ 7→ θψ(σ,V+) define reciprocal
bijections:

(8.2.12)


irreducible, admissible,

unitary, generic
rep’sπ of PGL(2)

 ↔



irreducible, admissible,
unitary, genuine
rep’sσ of G′

σ 6' θψ(11, Uα)
with ψ ∈ F̂ (σ)


.

On the left-hand side here, generic just means infinite dimensional. For the
second of these, he proves in [28], Proposition 14, p. 266, that the maps
π′ 7→ θ(π′, ψ) andσ 7→ θψ(σ,V−) define reciprocal bijections:

(8.2.13)
{

irreducible, spherical
rep’sπ′ of SO(V−)

}
↔


special or supercuspidal

(resp., discrete series)
rep’sσ of G′

with ψ /∈ F̂ (σ)

 .
On the left-hand side here, spherical means that the representationπ′ occurs
in the spaceC∞(H−

x \H−) for some nonzerox ∈ V −. On the right-hand
side here,σ is special or supercuspidal in the nonarchimedean case and
is a discrete series representation in the archimedean case. In the nonar-
chimedean case,π′ has dimension> 1 if and only if σ is supercuspidal and
is not an odd Weil representation. Note that, in fact, all irreducible repre-
sentations of SO(V−) are spherical [28], Proposition 18, p. 277.

Also recall that for an irreducible admissible unitary generic representa-
tion π of PGL(2) = SO(V+),

(8.2.14) F (π) := { ξ ∈ F× | U(π, ξ) 6= 0 },

whereU(π, ξ) is the ‘hyperboloid model’ ofπ, [28], p. 226, i.e., a realiza-
tion of π in the space of functionsC∞(Hxξ\H) for H = GL2(F ).

The following fundamental relation is then Lemma 6, p. 234 in [28].

Lemma 8.2.3. (i)

F̂ (θ(π, ψ)) = { ψξ | ξ ∈ F (π) }.

(ii)

z(θ(π, ψ), ψ) = ε(
1
2
, π).
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This second relation says that the central sign ofθ(π, ψ) coincides with
the root number ofπ.

Suppose thatσ lies in the set on the right side of (8.2.12). Then, on
the one hand,θψ(σ,V+) 6= 0, so thatδ(σ, ψ) = +1. On the other hand,
σ = θ(π, ψ) for someπ on the left side of (8.2.12), and, by (ii) of the
fundamental relation,

(8.2.15) z(σ, ψ) = ε(
1
2
, π).

Moreover,ψ ∈ F̂ (σ), so that

(8.2.16) π = θψ(σ,V+) = Wald(σ, ψ),

where the first equality is given by the bijection (8.2.12). This gives the
identity of Theorem 8.2.2 in this case.

Next suppose thatσ is as on the right side of (8.2.12), except thatψ /∈
F̂ (σ). This condition implies thatσ is not an irreducible principal series,
and hence lies in the set on the right side of (8.2.13), since the even Weil
representations have been excluded. Henceσ = θ(π′, ψ) for someπ′ in the
set of representations on the left side of (8.2.13). Letπ be the representa-
tion of SO(V+) = PGL(2) associated toπ′ under the Jacquet-Langlands
correspondence, and letσ′ = θ(π, ψ). Here is the picture:

(8.2.17)

G′ σ ↔ π′ SO(V−)

W.inv. l l JL

G′ σ′ ↔ π SO(V+),

where the vertical arrow on the right is the Jacquet-Langlands correspon-
dence and the vertical arrow on the left is, by definition, the Waldspurger
involution. On the one hand, sinceθψ(σ,V−) 6= 0, we haveδ(σ, ψ) = −1.
On the other hand, by (3) of Theorem 2, p. 277 of [28] combined with (ii)
of Lemma 8.2.3, we have

(8.2.18) z(σ, ψ) = −z(σ′, ψ) = −ε(1
2
, π).

It then remains to relateπ and Wald(σ, ψ). First suppose thatσ is not an odd
Weil representation, so thatσ lies in Waldspurger’s set̃P1. Then Proposition
15, p. 266 of Waldspurger implies that

π = Wald(σ, ψ).

This proves Theorem 8.2.2 in this case.
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Finally, we need to consider the case in whichσ is an odd Weil represen-
tation, i.e.,σ = θψ(sgn, Uα), whereUα = (F, αx2). The condition

(8.2.19) ψ /∈ F̂ (σ) = {ψξ | ξ ∈ α · F×,2}

implies thatα /∈ F×,2. By Lemma 20, p. 249 of [28], we have

(8.2.20) θψα(σ,V+) = σ(| |
1
2 , | |−

1
2 ),

and hence

(8.2.21) Wald(σ, ψ) = σ(| |
1
2 , | |−

1
2 )⊗ χα.

Sinceχα 6= 1, we have

ε(
1
2
,Wald(σ, ψ)) = ε(

1
2
, σ(| |

1
2 , | |−

1
2 )⊗ χα)(8.2.22)

= χα(−1),

by the relation given on p. 274 of [28]. On the other hand, the central sign
can be computed from the formulas for the Weil representation:

(8.2.23) ωψ,U ([m(a), 1]R)ϕ(x) = γF (a, ψ)−1 |a|
1
2 χα(a)ϕ(xa).

Takinga = −1 and assuming thatϕ is an odd function, we have, via (8.2.1),

(8.2.24) z(σ, ψ) = −χα(−1),

so that the relation of Theorem 8.2.2 holds.

Finally, we give a small table of the corresponding representations. Recall
that, in [28], for a characterµ of F×, the principal series representation is
defined on the space of functionsB(µ) onG′ satisfying

(8.2.25) f([nm(a), z]Rg′) = z µ(a) γF (a, ψ)−1 |a| f(g′).

Note that this parametrization depends onψ. Notice also thatB(µ) =
I(µχ2) in our notation for induced representations ofG′; see (8.4.3) be-
low. If the action ofG′ on this space is irreducible, the resulting principal
series representation is denoted byπ̃(µ). In the nonarchimedean case, if
µ = χα| |

1
2 , the action ofG′ is not irreducible. The irreducible subrep-

resentation ofB(µ) will be the special representatioñσ(χα| |
1
2 ) and the

irreducible quotient will beθψ(11, Uα), the even Weil representation for the
one-dimensional quadratic spaceUα = (F, αx2).

In this table, the additive characterψ is fixed and the parameterization of
the representations in the first column depends onψ, as just explained.
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Table 2. The Local Theta Correspondence

σ Wald(σ, ψβ) ε(1
2 ,Wald(σ, ψβ)) δ(σ, ψβ) z(σ, ψβ)

π̃(µ) π(χβµ, χβµ−1) χβµ(−1) +1 χβµ(−1)

σ̃(χα| |
1
2 ) σ(χαβ | |

1
2 , χαβ | |−

1
2 ) χαβ(−1) +1 χαβ(−1)

σ̃(χβ| |
1
2 ) σ(| |

1
2 , | |−

1
2 ) −1 −1 1

θψ(sgn, Uα) σ(χαβ | |
1
2 , χαβ | |−

1
2 ) χαβ(−1) −1 −χαβ(−1)

θψ(sgn, Uβ) σ(| |
1
2 , | |−

1
2 ) −1 +1 −1

other s.c. s.c. . . . . . . . . .

π̃±` DS2`−1 (−1)`−
1
2 ±χβ(−1) ±χβ(−1) (−1)`−

1
2

Here, in the second and fourth rows,χαβ 6= 1. In the next to last row,
‘s.c.’ stands for supercuspidal representations other than the odd Weil repre-
sentations. For these, we do not record information about the root number,
dichotomy invariant, and central sign, since these quantities depend on the
detailed parametrization of such representations [16], and we will not need
this information.

In the last row, for the archimedean case,` ≥ 3
2 , and we suppose that

ψ(x) = e(x). Here π̃+
` = HDS̀ is the holomorphic discrete series rep-

resentation with lowest weight`, while π̃−` is the antiholomorphic discrete
series representation with highest weight−`. Note that the signatures of the
quadratic spaces in [28] are sig(V+) = (2, 1) and sig(V−) = (0, 3). Also
DS2`−1 denotes the discrete series representation of PGL2(R) of weight
2`− 1.

The action of the Waldspurger involution can be seen in the table.5 The
pairs of representations which are switched by the involution are

(8.2.26) { σ̃(χα| |
1
2 ), θψ(sgn, Uα) } and { π̃+

` , π̃
−
` }.

8.2.2 Global theory

We now review parts of Waldspurger’s global theory. For simplicity, we
work overQ. LetA0(G′) be the space of genuine cusp forms onG′A and let
A00(G′) be the orthogonal complement inA0(G′) of the subspace spanned
by the theta functions coming from one-dimensional quadratic spaces.

For an irreducible genuine cuspidal representationσ ' ⊗p≤∞σp of G′A
occuring inA00(G′), the representation

(8.2.27) Wald(σ, ψ) = ⊗p≤∞Wald(σp, ψp)

5except for the supercuspidals, of course, whose data we have not recorded.
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is, in fact, a cuspidal automorphic representation of PGL2(A). It can also
be defined by using global theta integrals; see [23] and [28], p. 280.6 The
central signs of the componentsσp of σ satisfy the product formula, see
[28], p. 280 (1),

(8.2.28)
∏
p≤∞

z(σp, ψp) = 1,

and the fibers of the mapσ 7→ Wald(σ, ψ) have the following description,
see [28], Corollaire 2, p. 286:

Proposition 8.2.4. Let Σ be the set of allp ≤ ∞ at whichWald(σp, ψp)
is not an irreducible principal series representation. Then the set of all
irreducible cuspidal genuineσ′’s such thatWald(σ′, ψ) = Wald(σ, ψ) has
cardinality 1 if |Σ| = 0 and 2|Σ|−1 if |Σ| > 0. In the latter case, the
representationsσ′ have the form

σ′ ' (⊗p∈Σ′σ
W
p )⊗ (⊗p/∈Σ′σp),

whereΣ′ ⊂ Σ is any subset with even cardinality. Hereσp 7→ σWp is the
Waldspurger involution.

Note that, since the Waldspurger involution switches the central sign, the
condition on the cardinality ofΣ′ is necessary in order to preserve the prod-
uct formula for the central signs of the local components ofσ′.

Because of the product formula for central signs, Theorem 8.2.2 implies
the relation

(8.2.29)
∏
p≤∞

δ(σp, ψp) =
∏
p≤∞

ε(
1
2
,Wald(σp, ψp)) = ε(

1
2
,Wald(σ, ψ))

between the product of the local dichotomy signs and the global root number
of Wald(σ, ψ).

As usual, for any quaternion algebraB overQ, let VB be theQ-vector
space of trace zero elements inB with quadratic formq(x) = −ν(x) = x2,
and letHB = B× ' GSpin(VB). For g′ ∈ G′A, h ∈ HB(A) andϕ ∈
S(VB(A)), there is a theta function

(8.2.30) θ(g′, h;ϕ) =
∑

x∈VB(Q)

ω(g′)ϕ(h−1x),

whereω = ωVB ,ψ is the Weil representation ofG′A in S(VB(A)). For a
cusp formf ∈ σ, whereσ is as above, and forϕ ∈ S(VB(A)), the global

6where Wald(σ, ψ) is denoted bySψ(T ).
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theta integral is given by

(8.2.31) θ(f , ϕ)(h) =
∫

SL2(Q)\SL2(A)
f(g′) θ(g′, h;ϕ) dg,

whereg′ ∈ G′A is any element mapping tog ∈ SL2(A). This function lies in
the spaceA0(HB) of cusp forms onHB(A) with trivial central character.
Let

(8.2.32) θψ(σ,VB) ⊂ A0(HB)

be the subspace spanned by theθ(f , ϕ)’s as f varies inσ andϕ varies in
S(VB(A)). This global construction is compatible with the local construc-
tion of Section 8.2.1, and we have

(8.2.33) θψ(σ,VB) '

⊗p≤∞θψp(σp,V
B
p ),

0,

so thatθψ(σ,VB) is either an irreducible cuspidal automorphic representa-
tion or zero. Now local theta dichotomy comes into play, and

(8.2.34) θψ(σ,VB) 6= 0 =⇒ invp(B) = δ(σp, ψp), ∀p ≤ ∞.

Waldspurger’s beautiful result is then the following.

Theorem 8.2.5. (i) If ε(1
2 ,Wald(σ, ψ)) = −1, thenθψ(σ,VB) = 0 for all

B.
(ii) If ε(1

2 ,Wald(σ, ψ)) = 1, then there is a unique quaternion algebraB
overQ such that

⊗p≤∞θψp(σp,VB
p ) 6= 0.

In this case,

θψ(σ,VB) 6= 0 ⇐⇒ L(
1
2
,Wald(σ, ψ)) 6= 0.

Note: Elsewhere in this chapter and, indeed, throughout the book, we work
with the quadratic spacesV B with quadratic formQ(x) = ν(x) = −x2. As
explained in Section 8.5, the associated Weil representation can be written
as

(8.2.35) ωV B ,ψ = ωVB ,ψ−1

in both the local and global situations. This implies that

(8.2.36) θψ(σ, V B) = θψ−1(σ,V
B).

For convenient later reference, we state the corresponding version of Theo-
rem 8.2.5.
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Corollary 8.2.6. (i) If ε(1
2 ,Wald(σ, ψ−1)) = −1, thenθψ(σ, V B) = 0 for

all B.
(ii) If ε(1

2 ,Wald(σ, ψ−1)) = 1, then there is a unique quaternion algebraB
overQ such that

⊗p≤∞θψp(σp, V B
p ) 6= 0.

In this case,

θψ(σ, V B) 6= 0 ⇐⇒ L(
1
2
,Wald(σ, ψ−1)) 6= 0.

In the caseε(1
2 ,Wald(σ, ψ−1)) = −1, a result analogous to (ii) on the

nonvanishing of thearithmetictheta lifting in terms of the centralderivative
L′(1

2 ,Wald(σ, ψ−1)) is proved in Chapter 9 in some special cases.

8.3 AN EXPLICIT DOUBLING FORMULA

We now return to the doubling integral of Section 8.1. The additive character
ψ is now fixed to be unique unramified character withψ∞(x) = e(x). Let
χ = χ2κ, whereκ = ±1, be a global quadratic character. For convenience,
we will write ψκp for the local component atp of ψκ.

Let σ ' ⊗p≤∞σp be an irreducible genuine cuspidal automorphic rep-
resentation in the spaceA00(G′). We will determine good ‘test vectors’
fp ∈ σp andΦp(s) ∈ Ip(s, χ) such thatfp is an eigenvector for the operator
Z(s,Φp, ·). We limit ourselves to thoseσp’s which occur in our arithmetic
application, although our method can be extended to allσp’s. Specifically,
we will prove the following result, which collects together from Section
8.4 the results of the calculations of local doubling integrals. Recall that
we normalize the Haar measure on SL2(Qp) used in the definition of the
local doubling integral by vol(SL2(Zp)) = 1, for p < ∞, and we take
dg = 12

π · a
−3 da db dθ, for g = n(b)m(a)kθ ∈ SL2(R) with a > 0, so that

the product of these local measures gives Tamagawa measure on SL2(A);
see Lemma 8.4.29. Also, recall that the parametrization of local components
σp is as in Table 2 of Section 8.2 with respect to the local additive character
ψp determined byψ.

Theorem 8.3.1.For a finite primep, and forκ ∈ Z×p , letΦ0
p(s), Φ

1
p(s), and

Φra
p (s) ∈ Ip(s, χ2κ) be the standard sections defined in (8.4.13) below.

(i) For p 6= 2, suppose thatσp = I(µp) = π̃(χ2µp) is an unramified princi-
pal series representation. Letfp ∈ σp be the unramified vector. Then

Z(s,Φ0
p,fp) =

L(s+ 1
2 ,Wald(σp, ψκp ))
ζp(2s+ 2)

· fp.
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(ii) For p 6= 2, suppose thatσp = σ̃(χα| |
1
2 ), withα ∈ Z×p , is an unramified

special representation, and letfp = fsp ∈ σp be the Iwahori fixed vector.
Then,Z(s,Φ0

p,fp) = 0,

Z(s,Φ1
p,fp) = p−2 p− 1

p+ 1
(1 + δ(σp, ψκp ) p

−s)L(s+
1
2
,Wald(σp, ψκp ))fp

and

Z(s,Φra
p ,fp ) = −p−2(1− δ(σp, ψκp ) p

−s)L(s+
1
2
,Wald(σp, ψκp ))fp.

Hereδ(σp, ψκp ) is the local dichotomy invariant defined in (8.2.8); see The-
orem 8.2.2.
(iii) For p = 2, suppose thatσp = I(µp) = π̃(χα| |t), with µp = χ2α | |t,
α ∈ Z×p andt 6= ±1

2 , is an irreducible principal series representation. Let

fp = fev ∈ σ
(J′,χα)
p be the ‘good newvector’ defined in part (i) of Theo-

rem 8.4.26. Assume thatα ≡ κ mod 4. Then

Z(s,Φ0
p,fp) = δκ

1
2
√

2
·
L(s+ 1

2 ,Wald(σp, ψκp ))
ζp(2s+ 2)

· fp,

whereδκ = 1 if κ ≡ 1 mod 4 andδκ = i if κ ≡ 3 mod 4.
(iv) For p = 2, suppose thatσp = σ̃(χα| |

1
2 ) with α ∈ Z×p is a special

representation, and letfp = fsp ∈ σ
(J′,χα)
p be the ‘good newvector’ de-

fined in part (ii) of Theorem 8.4.26. Assume thatα ≡ κ mod 4. Then,
Z(s,Φ0

p,fp) = 0,

Z(s,Φ1
p,fp) = ? p−2 p− 1

p+ 1
(1 + δ(σp, ψκp ) p

−s)L(s+
1
2
,Wald(σp, ψκp ))fp

and

Z(s,Φra
p ,fp ) = − ? p−2(1− δ(σp, ψκp ) p

−s)L(s+
1
2
,Wald(σp, ψκp ))fp,

where? = δκ
1

2
√

2
.

(v) Suppose thatp = ∞ and thatσ∞ = π̃+
` is the holomorphic discrete

series representation of weight` ∈ 1
2 + Z>0. Letf∞ ∈ σ∞ be the weight̀

vector. LetΦ`
∞(s) ∈ I∞(s, χ) be the standard normalized section of weight

`. Hereχ(−1) = χ2κ(−1) = (−1)`−
1
2 . Then

Z(s,Φ`
∞,f∞) = 24 · e(− 1

4
(`− 1

2
)) · 1

2s+
1
2 (s+ `− 1

2)
· f∞.

Returning to the global representationσ ' ⊗pσp, we make the following
assumptions about the local components:
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(i) For p = ∞

σ∞ ' π̃+
` ,

for somè ∈ 1
2 + Z>0 with κ = (−1)`−

1
2 .

(ii) For p = 2,

σp '

π̃(χα| |t) with α ∈ Z×p andt 6= 1
2 , or

σ̃(χα| |
1
2 ) with α ∈ Z×p .

(iii) For a square free odd integerNo,

σp '

π̃(χα| |t) with α ∈ Z×p andt 6= 1
2 , if p - 2No,

σ̃(χα| |
1
2 ) with α ∈ Z×p , if p | No.

Note that in (ii) we are allowing a small amount of ramification.
Recall that, by (8.2.1) and (8.2.28), the product over allp of the central

signsz(σp, ψp) must be1. Note thatz(σp, ψp) is given in the last column
of Table 2. Under assumption (iii),z(σp, ψp) = 1 for p 6= 2, ∞, since
χα(−1) = 1 for suchp’s. Thus we have

(8.3.1) 1 =
∏
p≤∞

z(σp, ψp) = (−1)`−
1
2 · χα,2(−1),

whereχα = χα,2 is the character occurring inσ2. From this relation and
(i), it follows thatχα,2(−1) = κ, and so

(8.3.2) α ≡ κ mod 4.

Let N = No if σ2 is an irreducible principal series representation and
N = 2No if σ2 is a special representation. The level of Wald(σ, ψκ) is then
N . Forp odd, this is clear, while forp = 2, it follows from the fact that

Wald(σ2, ψ
κ
2 ) = Wald(σ2, ψ2)⊗ χκ =

σ(χακ| |
1
2 , χακ| |−

1
2 ) if 2 | N ,

π(χακ| |t, χακ| |−t) if 2 - N ,

where, by (8.3.2), the characterχακ is unramified. Note that

δ(σp, ψκp ) =

−1 if p | N andχακ,p = 1,

+1 otherwise.
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We writeN = N+N−, where

N± =
∏
p|N

δ(σp,ψκp )=±1

p.

We then takef ∈ σ, with f ' f∞ ⊗ (⊗p<∞fp), and

Φ(s) = Φ`
∞(s)⊗ (⊗p|N+Φ1

p(s))⊗ (⊗p|N−Φra
p (s))⊗ (⊗p-NΦ0

p(s)),

for the test vectors described in Theorem 8.3.1. Here, of course, for almost
all p, fp is normalized to be the distinguished unramified vector inσp used
in the definition of the restricted tensor product. We will refer tof as the
good newvector inσ; it is unique up to scaling. Note that, by (8.4.17), the
finite partΦf (s) of the sectionΦ(s) = Φ`

∞(s)⊗Φf (s) is a standard Siegel-
Weil section associated to the quadratic spaceV B

κ of trace zero elements in
the quaternion algebraB with invariants at the finite primes given by

invp(B) =

+1 if δ(σp, ψκp ) = +1,

−1 if δ(σp, ψκp ) = −1.

ThusD(B) = N−. By the relation (8.2.29),

inv∞(B) = ε(
1
2
,Wald(σ, ψκ)) · δ(σ∞, ψκ∞).

The quadratic form onV B
κ is given byQ(x) = −κ ν(x). Then

Φf (0) = λV (ϕ⊗ ϕ),

whereϕ ∈ S(V B
κ (Af )) is the characteristic function of the setÔ∩V B

κ (Af ),
whereO is an Eichler order inB of levelN+.

As a consequence of Theorem 8.3.1, we obtain the following explicit dou-
bling formula, which is the main result of this chapter.

Theorem 8.3.2.Suppose thatσ satisfies conditions (i), (ii), and (iii) stated
after Theorem 8.3.1. For the choice off ∈ σ andΦ(s) ∈ I(s, χ2κ) made
above

Z(s,Φ,f)(g′1) =
∫

Sp1(Q)\Sp1(A)
E(i(g′1, g

′
2), s,Φ) f(g′2) dg2

= C(s,N+, N−) ·
L(s+ 1

2 ,Wald(σ, ψκ))
(s+ `− 1

2) ζN (2s+ 2)
· f(g′1),
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where

C(s,N+, N−) = (−1)∗ · 6
2sN2

·
∏
p|N

Cp(s,N+, N−),

with

Cp(s,N+, N−) = (1 + p−s) ·


p−1
p+1 if p | N+,

−1 if p | N−,

and

(−1)∗ =

1 if ` ≡ 1
2 ,

3
2 mod (4),

−1 if ` ≡ 5
2 ,

7
2 mod (4).

Recall thatdg is Tamagawa measure on Sp1(Q)\Sp1(A), and note that

(−1)∗ = e(− 1
4
(`− 1

2
)) δκ.

In Chapter 9, we will need a variant of Theorem 8.3.2 that involves the
normalized Eisenstein series studied in Chapter 5. LetB be an indefinite
quaternion algebra overQ ramified precisely at the primes dividing the
square free positive integerD(B). Forχ = χ2κ with κ = −1, let Φ̃B(s) be
the (nonstandard) section given by (5.1.36):

Φ̃B(s) = Φ
3
2∞(s)⊗

(
⊗p|D(B) Φ̃p(s)

)
⊗ ( ⊗p-D(B)Φ

0
p(s)

)
,

where, as in (5.1.33),

Φ̃p(s) = Φ−p (s) +Ap(s) Φ0
p(s) +Bp(s) Φ1

p(s),

with rational functionsAp(s) andBp(s) of p−s satisfying conditions (5.1.34)
and (5.1.35). Then, the normalized Eisenstein series is given by

(8.3.3) E2(g, s, B) = −1
2
c(D)(s+ 1)ΛD(2s+ 2) · E(g, s,Φ),

whereD = D(B),

ΛD(2s+ 2) =
(D
π

)s+1Γ(s+ 1) ζD(2s+ 2),

and

c(D) = −D

2π

∏
p|D

(p+ 1)−1.
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Let D(B)o be the odd part ofD(B). Let σ ' ⊗p≤∞σp be a genuine
cuspidal automorphic representation of weight3

2 , satisfying the conditions
above withN = D(B). Let f ∈ σ be the good newvector. Then the
same argument using Corollary 8.4.9 instead of Corollary 8.4.8 gives the
following:

Theorem 8.3.3.Let

Z(s,f , B)(g′1) =
∫

Sp2(Q)\Sp1(A)
E2(i(g′1, g

′
2), s, B) f(g′2) dg2.

Then,

Z(s,f , B) = C(s) · L(s+
1
2
,Wald(σ, ψ−1)) · f ,

where

C(s) =
3

2π2

(
D

2π

)s
Γ(s+ 1) ·

∏
p|D

(p+ 1)−1 Cp(s),

with

Cp(s) = (1− δ(σp, ψ−p ) p−s)− p− 1
p+ 1

(1 + δ(σp, ψ−p ) p−s)Bp(s).

Here we note that local theta dichotomy is evident in the factorsCp(s),
where

Cp(0) =

2 if δ(σp, ψ−p ) = −1,

0 if δ(σp, ψ−p ) = +1.

Also note that, ifδ(σp, ψ−p ) = +1, then

(8.3.4) C′p(0) = log(p)− p− 1
p+ 1

2 ·B′p(0) = 0.

Thus, the seemingly strange sectionΦ̃p(s), which arises from geometric
considerations in the fibers of bad reduction of the arithmetic surfaceM
([13] and Chapter 5), also gives very clean constants in the local doubling
formula for the special representation and the somewhat remarkable cancel-
lation (8.3.4).7

Recall that

Λ(s+
1
2
, π) = 2 (

D

2π
)s+1Γ(s+ 1) · L(s+

1
2
, π)

7When writing [11], the author had the wrong sign in the second term inCp(s). Thus the
remarks made there about the caseε( 1

2
,Wald(σ, ψκ)) = +1 are incorrect.
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is the completeL-function ofπ = Wald(σ, ψ−1). Thus

Z(s,f , B) = C0(s) · Λ(s+
1
2
,Wald(σ, ψ−1)) · f ,

where

C0(s) =
3

2πD
·
∏
p|D

(p+ 1)−1 Cp(s).

8.4 LOCAL DOUBLING INTEGRALS

In this section, we derive the local doubling formulas that are stated in The-
orem 8.3.1. After reviewing some notation, we compute the local zeta inte-
grals in the case of a nonarchimedean local fieldF of residue characteristic
p, first for p odd and then forp = 2. Then we consider the case where
F = R. In the nonarchimedean case,F has ring of integersO, uniformizer
$, residue fieldFq, and a fixed nontrivial unramified additive characterψ.

8.4.1 Coordinates and local doubling integrals

We use the following notation, which is explained in more detail in Sec-
tion 8.5.8 Let G (resp.G′) be the metaplectic extension of Sp2(F ) (resp.
Sp1(F )). LetP ′ be the upper triangular Borel subgroup of Sp1 = SL2 and
letP ′ be the full inverse image ofP ′(F ) inG′. Similarly, letP be the Siegel
parabolic subgroup of Sp2 and letP be the full inverse image ofP (F ) in
G. We letK ′ = Sp1(O) andK = Sp2(O), and we writeK ′ andK for the
full inverse images of these groups in the metaplectic extensionsG′ andG
respectively.

We will frequently use the notation

m(a) = [m(a), 1]L and n(b) = [n(b), 1]L

for the images of the elementsm(a) andn(b) under the splitting homomor-
phismP (F ) −→ G, p 7→ [p, 1]L in Leray coordinates; see Section 8.5.1.

When the residue characteristicp of F is odd, there are normalized coor-
dinates

Sp2(F )× C1 ∼−→ G, (g, z) 7→ [g, z] = [g, z λ(g)]L,

whereλ is given by (8.5.10), whose cocycle is trivial onK×K. Thus, there
is a splitting homomorphism

K −→ G, k 7→ k = [k, 1].

8Note that there is a slight shift in notation here from that used in the Section 8.5.
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The two splittings agree onP (O) = P (F ) ∩ K. The situation forG′,
P ′(F ), andK ′ is the same.

The embeddingi : Sp1(F ) × Sp1(F ) → Sp2(F ), defined as in (8.1.1)–
(8.1.3), lifts to an embeddingi : G′ ×G′ → G given, in Leray coordinates,
by

(8.4.1) i : [g1, z1]L × [g2, z2]L 7−→ [ i(g1, g2), z1z−1
2 ]L.

In the case of odd residue characteristic and forψ unramified, the same
formula holds for the normalized coordinates.

As in Section 8.1, ifχ is a character ofF×, we define a characterχ of P
by

χ([n(b)m(a), z]L) = z χ(det a).

For s ∈ C, the induced representationI(s, χ) of G is realized on the space
of smooth functionsΦ(s) onG such that, forg ∈ G andp ∈ P ,

Φ(p g, s) = χ(p) |det a |s+
3
2 Φ(g, s).

For convenience, we will sometimes writeΦs(g) instead ofΦ(g, s).
Let (σ,Vσ) be an irreducible, admissible, genuine representation ofG′.

Then, for a fixed preimage9 δ ∈ G of δ, given by (8.1.4), and forf ∈ Vσ
andΦ(s) ∈ I(s, χ), the local doubling integral is given by

(8.4.2) Z(s,Φ, f) =
∫

Sp1(F )
Φs(δ i(1, g′))σ(g′)f dg ∈ Vσ,

whereg′ ∈ G′ is any element projecting tog ∈ Sp1(F ); note that the
integrand depends only ong, via (8.4.1). The integral (8.4.2) is absolutely
convergent for Re(s) sufficiently large [5] and can be viewed as giving the
action in the representation(σ,Vσ) of the functiong′ 7→ Φs(δ i(1, g′)) on
G′.

The proof of (i) of the following result will be given in the Section 8.5; see
Lemma 8.5.5. The other statements are easy consequences of the definition.

Lemma 8.4.1. (i) For any choice ofδ ∈ G with imageδ ∈ Sp2(F ) and for
anyg′ ∈ G′,

δ i(g′, g′) = p(g′) δ,

where the elementp(g′) ∈ P satisfiesχ(p(g′)) = 1. In particular, for g′0,
g′1, andg′2 ∈ G′,

Φs(δi(g′0g
′
1, g

′
0g
′
2)) = Φs(δi(g′1, g

′
2)).

9A specific choice will be made in Lemma 8.4.3 below.
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(ii) For g′ ∈ G′,

Z(s, r(i(1, g′))Φ, σ(g′)f) = Z(s,Φ, f).

and

σ(g′)Z(s,Φ, f) = Z(s, r(i(g′, 1))Φ, f).

Herer is the right multiplication.

Part (ii) says that the zeta integral gives aG′ ×G′-intertwining map

Z(s) : I(s, χ) −→ Hom(σ, σ), Φ 7→ Z(s,Φ, ·),

where the action on Hom(σ, σ) is given by pre- and post-multiplication, i.e.,

Z(s, r(i(g′1, g
′
2))Φ, f) = σ(g′1)Z(s,Φ, σ(g′2)

−1f).

Corollary 8.4.2. Suppose that there exists a subgroupA ⊂ G′ such thatΦ
is invariant underi(A, 1). Then

Z(s,Φ, f) ∈ σA.

In particular, if σA = 0, thenZ(s,Φ, f) = 0 for all f ∈ σ.

8.4.2 Induced representations

Suppose thatµ is a character ofF× and letI(µ) be the genuine principal
series representation ofG′ on the space of smooth functionsf onG′ such
that

f([n(b)m(a), z]L g′) = z µ(a)|a|f(g′).

Note that this definition depends on the fixed additive characterψ used to
define the Leray coordinates. In particular, since the Rao and Leray coordi-
nates are related by

[m(a), z]R = [m(a), zβ(m(a))]L

with

β(m(a)) = γ(a, ψ 1
2
)−1 = (a, 2)F γ(a, ψ)−1,

(see (8.5.17)), we have10

f([n(b)m(a), z]R g′) = z χ2(a)µ(a) γ(a, ψ)−1 |a|f(g′),

10In [28], Waldspurger uses the restriction to SL2(F ) of the cocycle from [4], p. 19. The
cocycleα∗ there restricts tocR on SL2(F ). Thus, the corresponding ‘coordinates’ used in
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whereχ2(a) = (a, 2)F . Hence, comparing with p. 225 of [28], we find that

(8.4.3) I(µ) = B(µχ2)

in the parametrization of Waldspurger used in Table 2 in Section 8.2.
Suppose thatσ ⊂ I(µ) is an irreducible submodule. Then, forf ∈ σ,

Z(s,Φ, f) ∈ σ ⊂ I(µ), and its value at the pointg′0 ∈ G′ is

Z(s,Φ, f)(g′0)

(8.4.4)

=
∫

Sp1(F )
Φs(δi(1, g′)) f(g′0g

′) dg

=
∫

Sp1(F )
Φs(δi(g′0, g

′)) f(g′) dg

=
∫
K′

∫
F×

∫
F

Φs(δi(g′0,n(b)m(a)k′))µ(a)|a|−1 db d∗a f(k′) dk

We now use an interpolation method. Recall that, for a quadratic space
(V,Q) overF , G acts onS(V 2) via the Weil representation determined by
ψ and there is aG-intertwining map

λV : S(V 2) −→ I(s0, χV ), ϕ 7→ λV (ϕ)(g) := ωV (g)ϕ(0),

with s0 = 1
2 dim(V )− 3

2 . The following basic observation can be found in
[15].

Lemma 8.4.3. Suppose thatΦs0 = λV (ϕ1 ⊗ ϕ2) ∈ I(s0, χV ), with ϕi ∈
S(V ). Then

Φs0(δi(g
′
0, g

′)) = γ(V )
∫
V
ωV (g′0)ϕ1(x) · ωV (g′)ϕ2(−x) dx,

where

δ = [w1, 1]L m(
(

1 −1
1

)
),

[28] are given by
[g, z]Wald = [g, z s(g)]R,

where

s(g) =

{
(c, d) if cd 6= 0 and ord(c) is odd,

1 otherwise.

Sinces is identically1 onP ′(F ), we can use[m(a), z]Wald = [m(a), z]R in the calculation
above.
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and

γ(V ) = χV (−1) γ(η) γ(η ◦ V )−1,

for η = ψ 1
2
.

Proof. Writing α =
(

1 −1
1

)
and using the properties of the Weil repre-

sentation reviewed in Section 8.5.2, we have

Φs0(δi(g
′
0, g

′)) = ωV
(
[w′1, 1]L m(α) i(g′0, g

′)
)(
ϕ1 ⊗ ϕ2

)
(0)

= ωV ([w′1, 1]L m(α))
(
ωV (g′0)ϕ1 ⊗ ωV (g′)ϕ2

)
(0).

Absorbingg′0 andg′ intoϕ1 andϕ2, for convenience, we have

ωV ([w′1, 1]L m(α))
(
ϕ1 ⊗ ϕ2

)
(0)

= γ(V )
∫
V
ωV (m(α))

(
ϕ1 ⊗ ϕ2

)
(x, 0) dx

= γ(V )
∫
V
ϕ1(x)ϕ2(−x) dx,

whereγ(V ) = χV (−1) γ(η) γ(η ◦ V )−1; see Lemma 8.5.6.

Using this lemma and takingg′ = n(b)m(a)k′, we obtain the following
expression:

(8.4.5) Z(s0,Φ, f)(g′0) = γ(V )
∫
F×

χV µ(a)|a|
m
2
−1

×
∫
F

∫
V
ωV (g′0)ϕ1(x) · I(f, ϕ2)(−xa) · ψ(−bQ(x)) dx db d×a,

whereI(f, ϕ2) ∈ S(V ) is given by

(8.4.6) I(f, ϕ2)(x) =
∫
K′
f(k′)ωV (k′)ϕ2(x) dk.

Here, as usual,k′ is any element ofK ′ with imagek in K ′.

We now assume thatψ is unramified.
Let Vr = V + Vr,r, whereVr,r = F 2r with bilinear form with matrix(

1r
1r

)
. For anyϕ ∈ S(V ), let ϕ(r) = ϕ ⊗ ϕ0

r , whereϕ0
r is the char-

acteristic function of the latticeO2r in Vr,r; this lattice is self-dual, andϕ0
r
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is invariant underK ′ for the Weil representationωVr,r . Then we obtain the
useful formula

(8.4.7) Z(s0 + r, Φ, f)(g′0) = γ(V )
∫
F×

χV µ(a)|a|
m
2

+r−1 d×a

×
∫
F

∫
Vr
ωVr(g

′
0)ϕ

(r)
1 (x) · I(f, ϕ2)(r)(−ax) · ψ(−bQ(x)) dx db,

where

I(f, ϕ2)(r) = I(f, ϕ2)⊗ ϕ0
r .

We define a family of bilinear pairings onS(V ) by

(8.4.8) B(r, a;ϕ1, ϕ2) =
∫
F

∫
Vr
ϕ

(r)
1 (x)ϕ(r)

2 (−ax)ψ(−bQ(x)) dx db,

whereϕ1 andϕ2 ∈ S(V ). Note that

(8.4.9) B(r, a;ϕ1, ϕ2) = |a|2−m−2r B(r, a−1;ϕ2, ϕ1).

Then, since, fork′ ∈ K ′, ωVr(k′)ϕ
(r)
1 = (ωV (k′)ϕ1)(r), we may write

(8.4.10) Z(s0 + r,Φ, f)(k′)

= γ(V )
∫
F×

χV µ(a) |a|
m
2

+r−1B(r, a;ωV (k′)ϕ1, I(f, ϕ2)) d×a.

Also, forϕL ∈ S(V ) the characteristic function of a latticeL ⊂ V , we let

(8.4.11) W0(r, L) :=
∫
F

∫
Vr
ϕ

(r)
L (x)ψ(−bQ(x)) dx db.

Note that (8.4.11) is precisely the type of integral appearing in (13.2) of
[14], except that we requiredx to be the Haar measure onVr which is self-
dual with respect toψ ◦ ( , ), where( , ) is the bilinear form associated toQ.
It will be useful to record the following fact for future use.

Lemma 8.4.4. LetL andL′ be lattices inV such that

$L′ ⊂ L ⊂ L′.

LetϕL, ϕL′ ∈ S(V ) be their characteristic functions. Then

B(r, a;ϕL, ϕL′) =

W0(r, L) if ord(a) ≥ 0,

|a|−2s0−2rW0(r, L′) if ord(a) < 0,
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wheres0 = m
2 − 1. If χ is unramified, then∫

F×
χ(a)|a|s0+r B(r, a;ϕL, ϕL′) d×a = L(s0 + r, χ) ·W0(r, L)

+ χ($)−1 q−s0−r L(s0 + r, χ−1) ·W0(r, L′).

If χ is ramified, this integral is identically zero.

Proof. If ord(a) ≥ 0, thenϕ(r)
L (x)ϕ(r)

L′ (−ax) = ϕ
(r)
L (x), and the contribu-

tion to the integral becomes

Z1 =
∫

ord(a)≥0
χ(a)|a|s0+r d×a ·

∫
F

∫
Vr
ϕ

(r)
L (x)ψ(−bQ(x)) dx db

= L(s0 + r, χ) ·W0(r, L).

If ord(a) < 0, thenϕ(r)
L (x)ϕ(r)

L′ (−ax) = ϕ
(r)
L′ (ax) and the integral becomes

Z2 =
∫

ord(a)<0
χ(a)|a|s0+r ·

∫
F

∫
Vr
ϕ

(r)
L′ (ax)ψ(−bQ(x)) dx db d×a

=
∫

ord(a)<0
χ(a)|a|−s0−r d×a ·

∫
F

∫
Vr
ϕ

(r)
L′ (x)ψ(−bQ(x)) dx db

= χ($)−1 q−s0−r L(s0 + r, χ−1) ·W0(r, L′).

Together these give the claimed expression.

8.4.3 Unramified representations

Suppose that the residue characteristic ofF is odd and that the additive char-
acterψ and the charactersχ, with χ2 = 1, andµ are unramified. LetK′

be the image ofK ′ = Sp1(O) in G′ under the splitting homomorphism,
and letf0 be the unique rightK′-invariant function inI(µ) with f0(1) = 1.
Similarly, letK be the image ofK = Sp2(O) inG under the splitting homo-
morphism, and letΦ0(s) ∈ I(s, χ) be the unique rightK-invariant function
with Φ0(1, s) = 1. SinceΦ0(s) is i(K′ × 1)-invariant and sinceI(µ)K

′
is

one-dimensional with basis vectorf0, it follows from Corollary 8.4.2 that
Z(s,Φ0, f0) is a multiple off0.

Proposition 8.4.5.

Z(s,Φ0, f0) =
L(s+ 1

2 , χµ)L(s+ 1
2 , χµ

−1)
ζ(2s+ 2)

· f0.

Hereζ(s) = (1− q−s)−1.
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Proof. We evaluateZ(r,Φ0, f0)(1) by using (8.4.10) and Lemma 8.4.4.
Write χ(x) = (x, 2κ)F for κ ∈ F× with ord(κ) = 0. Let V = V B

κ with
B = M2(Qp), and with quadratic formQ(x) = −κ ν(x) = κx2. Note
that this normalization givesχV = χ. LetϕL be the characteristic function
of L = V ∩ M2(Zp), so thatϕL is K′-invariant. Also note that, setting

ϕ
(r)
L = ϕL ⊗ ϕ0

r , we have

λV+Vr,r(ϕ
(r)
L ⊗ ϕ

(r)
L ) = Φ0(r) ∈ I(r, χ),

whereΦ0(r) is the unique normalizedK-fixed vector. Note thatγ(η ◦V ) =
γ(κ, η) γ(η) = 1, so that the constantγ(V ) = 1 in (8.4.10).

In addition, sincef0(k′) = 1 for k′ ∈ K′, andϕL is K′ fixed,

I(f0, ϕL)(x) = ϕL(x) = ϕL(x) and I(f0, ϕL)(r)(x) = ϕ
(r)
L (x).

Thus,

Z(r,Φ0, f0)(1)

=
∫
F×

χµ(a)|a|r+
1
2 B(r, a;ϕL, ϕL) d×a

=
(
L(r +

1
2
, χµ) + χµ($)−1 q−

1
2
−r L(r +

1
2
, χ−1µ−1)

)
·W0(r, L)

=
L(r + 1

2 , χµ)L(r + 1
2 , χµ

−1)
ζ(2r + 1)

·W0(r, L).

Finally, we use the formula

W0(s, L) =
ζ(2s+ 1)
ζ(2s+ 2)

,

which is given in [14], Section 13.

In the notation of Table 2 in Section 8.2, we are considering the rep-
resentationσ = π̃(µχ2), so that Wald(σ, ψ) = π(µχ2, µ

−1χ2), whereas
χ = χ2κ. Thus, since Wald(σ, ψκ) = Wald(σ, ψ) ⊗ χκ, theL-function in
the numerator isL(s + 1

2 ,Wald(σ, ψκ)) and we have the following expres-
sion for the unramified local zeta integral.

Corollary 8.4.6. Suppose thatp 6= 2 and thatχ = χ2κ is unramified. Then
for f0 ∈ σK′

and forΦ0(s) ∈ I(s, χ), the normalized unramified section,

Z(s,Φ0, f0) =
L(s+ 1

2 ,Wald(σ, ψκ))
ζ(2s+ 2)

· f0.
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8.4.4 Special representations,p 6= 2

In this section, we assume that the residue characteristic ofF is odd and
consider the case in whichσ is an unramified special representation. We
also assume thatχ(x) = χ2κ(x) = (x, 2κ)F is unramified, so thatκ is a
unit. Let µ = | |

1
2χ2α with α ∈ Z×p , and letσ = σ(µ) ⊂ I(µ) be the

unique irreducibleG′ submodule. Note thatσ = σ̃(µχ2) = σ̃(χα| |
1
2 ) in

the notation of the Table 2 in Section 8.2.
Let J ′ ⊂ K ′ = Sp1(O) be the Iwahori subgroup and letJ′ ⊂ K′ be its

image inG′ under the splitting homomorphismK ′ → G′. ThendimσJ′ =
1, and we takefsp ∈ σ to be the uniqueJ′ fixed vector withfsp(1) = 1.

Similarly, we letJ be the Siegel parahoric subgroup ofK = Sp2(O) and
let J ⊂ K be its image inG under the splitting homomorphismK → G.
The spaceI(s, χ)J has dimension3 and is spanned by the functionsΦ0(s),
Φ1(s), andΦra(s) whose restrictions toK, which are independent ofs,
are defined as follows. LetV ±κ be the space of trace zero elements in the
quaternion algebraB± overF with invF (B±) = ±1 with quadratic from
Qκ(x) = −κν(x) = κx2.

L0 = M2(O) ∩ V +
κ ,

L1 = {
(
a b
$c d

)
| a, b, c, d ∈ O} ∩ V +

κ ,(8.4.12)

Lra = OB− ∩ V −κ ,

whereOB− is the maximal order inB−. Let ϕ0, ϕ1 ∈ S(V +
κ ) andϕra ∈

S(V −κ ) be their characteristic functions. Then, forr ∈ Z≥0,

Φ0(r) = λ(ϕ(r)
0 ⊗ ϕ

(r)
0 ),

Φ1(r) = λ(ϕ(r)
1 ⊗ ϕ

(r)
1 ),(8.4.13)

Φra(r) = λ(ϕ(r)
ra ⊗ ϕ

(r)
ra ),

for standard sectionsΦ0(s), Φ1(s) andΦra(s) of I(s, χ2κ). By Lemma 8.5.10,
these sections are rightJ-invariant. Sincei(J′×J′) ⊂ J, for Φ(s) = Φ0(s),
Φ1(s), orΦra(s),Z(s,Φ, f) is aJ′-invariant vector inσ and hence is a mul-
tiple of fsp. We want to calculateZ(s,Φ,fsp) in each case.

Theorem 8.4.7.For odd residue characteristic and forfsp theJ′-fixed vec-

tor in the unramified special representationσ(µ), whereµ = χ2α| |
1
2 ,

Z(s,Φ0,fsp) = 0,
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Z(s,Φ1,fsp) = q−2 q − 1
q + 1

· (1− χακ($) q−s) · L(s+
1
2
, χ2κµ) · fsp,

and

Z(s,Φra,fsp) = −q−2 · (1 + χακ($) q−s) · L(s+
1
2
, χ2κµ) · fsp.

Again, in the notation of Table 2 in Section 8.2, we are considering the
special representationσ = σ̃(µχ2) = σ̃(χα| |

1
2 ), so that Wald(σ, ψ) =

σ(χα| |
1
2 , χα| |−

1
2 ). Thus,

L(s+
1
2
, χ2κµ) = L(s+

1
2
,Wald(σ, ψ)⊗ χκ) = L(s+

1
2
,Wald(σ, ψκ)).

Also note that, since Wald(σ, ψκ) = σ(χακ| |
1
2 , χακ| |−

1
2 ), Table 2 in Sec-

tion 8.2 gives

−χακ($) = δ(σ, ψκ).

Thus, the factor(1 + χακ($) q−s) occurring for the sectionΦ1(s) associ-
ated toV + is nonvanishing whenδ(σ, ψκ) = +1, and the analogous factor
(1−χακ($) q−s) occurring for the sectionΦra(s) associated toV − is non-
vanishing whenδ(σ, ψκ) = −1.

Corollary 8.4.8. Let the notation be as in Theorem 8.4.7. Then

Z(s,Φ1,fsp) = q−2 q − 1
q + 1

(1+ δ(σ, ψκ)q−s) ·L(s+
1
2
,Wald(σ, ψκ)) ·fsp,

and

Z(s,Φra,fsp) = −q−2(1− δ(σ, ψκ)q−s) · L(s+
1
2
,Wald(σ, ψκ)) · fsp.

In later applications, we will be interested in the sectionΦ̃(s) defined as
follows11 (see (5.1.33) and [13]):

(8.4.14) Φ̃(s) = Φra(s) +A(s) Φ0(s) +B(s) Φ1(s),

whereA(s) andB(s) are rational functions ofq−s with the property that
(8.4.15)

A(0) = B(0) = 0, A′(0) =
−2

q2 − 1
log(q), B′(0) =

1
2
q + 1
q − 1

log(q).

11The section here is a little more general, since we allowχ = χ2κ for any unitκ,
whereas, in Chapter 5,κ = −1.
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Corollary 8.4.9. For fsp as in Theorem 8.4.7,

Z(s, Φ̃,fsp) =
[
− (1− δ(σ, ψκ) q−s) +

q − 1
q + 1

(1 + δ(σ, ψκ) q−s)B(s)
]

× q−2 · L(s+
1
2
,Wald(σ, ψκ)) · fsp.

Proof of Theorem 8.4.7.To calculate the expression on the right side of
(8.4.10), forϕ = ϕ0, ϕ1, orϕra, we need to calculate

I(fsp, ϕ)(x) =
∫
K′

fsp(k
′)ωV (k′)ϕ(x) dk′,

wherek′ = [k′, 1] is the image ofk′ under the splitting homomorphism.
Using the coset decomposition

K ′ = J ′ ∪ (N ′ ∩K ′)wJ ′,

with w =
(

1
−1

)
, and theJ′-invariance ofϕ, we have

(8.4.16) I(fsp, ϕ)(x) = fsp(1) vol(J ′)ϕ(x)

+ fsp(w) vol(J ′)
∑

b∈O/$O
ψ(−bQ(x))ωV (w)ϕ(x),

wherew = [w, 1] = [w, 1]L. Note thatfsp is determined by its values
fsp(1) = 1 andfsp(w).

Lemma 8.4.10.fsp(w) = −q−1.

Proof. SinceΦ0(s) is right invariant underi(K′×K′) andσK′
= 0, Lemma

8.4.2 implies thatZ(s,Φ0,fsp) = 0. Sinceϕ = ϕ0 is K′-invariant, we get

I(fsp, ϕ0)(x) = vol(J ′) (fsp(1) + q fsp(w))ϕ0(x),

and the same calculation as in the unramified case yields

Z(s,Φ0,fsp)(1) = vol(J ′)
[
fsp(1) + q fsp(w)

]
×
L(s+ 1

2 , χµ)L(s+ 1
2 , χµ

−1)
ζ(2s+ 1)

·W0(s, L).

Since this function ofs must vanish identically, we obtain the relation

fsp(w) = −q−1 fsp(1).
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To calculate the zeta integralsZ(s,Φ,fsp) in the remaining two cases,
using (8.4.10) and (8.4.16), we note that

ωV (w)ϕ(x) = γ(V ) ϕ̂(x) = γ(V )
∫
V
ψ((x, y))ϕ(y) dy,

wheredy is self-dual with respect toψ ◦ ( , ) and

γ(V ) = χV (−1) γF (η) γF (η ◦ V )−1.

Lemma 8.4.11.γ(V ) = γ(V ±κ ) = ±1.

Proof. Note thatχV (−1) = χ2κ(−1) = 1. Now γF (η ◦ V ) = γF (ψ ◦Q),
and we have

γF (η) = γF (ψ 1
2
) = γF (

1
2
, ψ) γF (ψ) = γF (ψ) = 1,

since the residue characteristic is odd andψ is unramified. Also,

Q1 = κ

1
$

−$

 and Qra = κ

β $
−$β

 ,
so that, sinceκ is a unit,ε(Q1) = 1, ε(Qra) = −1. Thus

γ(ψ ◦Q0) = γ(−κ, ψ)γ(ψ)3 ε(Q0) = 1,

and

γ(ψ ◦Qra) = γ(−κ, ψ)γ(ψ)3 ε(Qra) = −1,

so thatγ(V ) = γ(V ±κ ) has the claimed value.

Using these facts and (8.4.16) , we get

I(fsp, ϕ)(x)

= fsp(1) vol(J ′)ϕ(x) + γ(V ) fsp(w) vol(J ′)
∑

b∈O/$O
ψ(−bQ(x))ϕ̂(x)

= fsp(1) vol(J ′)ϕ(x) + γ(V ) fsp(w) vol(J ′) · q charO(Q(x)) · ϕ̂(x)

= vol(J ′)
[
ϕ(x)− γ(V ) · charO(Q(x)) · ϕ̂(x)

]
.

Consider the case ofL1 = O3, where the dual lattice isL1,] = O ⊕
$−1O2. Let

L1,± =
{

[x0, x1, x2] ∈ L1,] | x1 ≡ ±x2 mod O
}
,
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and note that the quadratic formQ±1 on this lattice is GL3(O) equivalent to

Q0 = κ

1
1

−1

 .
An easy calculation yields the following:

Lemma 8.4.12. (i) Let ϕ1 ( resp. ϕ1,± ) be the characteristic function of
L1 (resp.L1,±). Then

(char(O) ◦Q ) · ϕ̂1 = q−1 [ϕ1,+ + ϕ1,− − ϕ1
]
.

(ii)

(char(O) ◦Q ) · ϕ̂ra = q−1ϕra.

Here note that vol(L1) = q−1 with respect to the measure onV which
is self-dual with respect toψ ◦ ( , ). Using this expression and noting that
vol(J ′) = (q + 1)−1, we obtain

q(q + 1) I(f, ϕ1) = (q + 1)ϕ1 − ϕ1,+ − ϕ1,−,(8.4.17)

and

q(q + 1) I(f, ϕra) = (q + 1)ϕra.(8.4.18)

In the case ofϕra, this gives immediately, using (8.4.10) and Lemma 8.4.4,

Z(s,Φra,fsp)(1) = γ(V −)
∫
F×

χµ(a) |a|
m
2

+r−1B(r, a;ϕra, I(f, ϕra)) d×a

= −
L(s+ 1

2 , χµ)L(s+ 1
2 , χµ

−1)
ζ(2s+ 1)

· q−1W0(s, Lra).

In the remaining case, we observe that$L1,± ⊂ L1 and use Lemma 8.4.4
again to obtain

q(q + 1)Z(s,Φ1,fsp)(1)

(8.4.19)

= (q + 1)
[
L(s+

1
2
, χµ) + χµ($−1) q−s−

1
2 L(s+

1
2
, χµ−1)

]
W0(s, L1)

− 2
[
L(s+

1
2
, χµ)W0(s, L1)

+ χµ($−1) q−s−
1
2 L(s+

1
2
, χµ−1)W0(s, L0)

]
.

Next, we recall the following result.
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Proposition 8.4.13.([30], Section 8)Let the notation be as above. Then

W0(s, L0) =
ζ(2s+ 1)
ζ(2s+ 2)

,

W0(s, L1) = q−1
(

2− ζ(2s+ 1)
ζ(2s)

)
,

and

W0(s, Lra) = q−1 ζ(2s+ 1)
ζ(2s)

.

Writing these as

W0(s, L0) = ζ(2s+ 1) (1− q−2s−2)
and

W0(s, L1) = q−1 ζ(2s+ 1)
(

1 + q−2s − 2 q−2s−1
)

and substituting into (8.4.19), we obtain, after a short manipulation,

q(q + 1)Z(s,Φ1,fsp)

= q−1(q − 1) ζ(2s+ 1)L(s+
1
2
, χµ)L(s+

1
2
, χµ−1)

× (1− q−2s−1)(1− χµ−1q−s−
1
2 )2

= q−1(q − 1)L(s+
1
2
, χµ) (1− χµ−1q−s−

1
2 ).

8.4.5 The case whenp = 2

In this section we compute the local doubling integrals for certain principal
series and special representations with mild ramification in the caseF =
Q2. We use the results of the Section 8.5.4, with a slight shift in notation.
In particular, we let

J ′ = {
(
a b
c d

)
∈ Sp1(Z2) | ord(c) ≥ 2 }.

Recall that there is a splitting homomorphismJ ′ → G′ given byk 7→ k =
[k, λ(k)]L, and letJ′ be the image ofJ ′ in G′. LetK ′ be the full inverse
image ofK ′ in G′.

We let I(µ) be the induced representation ofG′, defined as in Section
8.4.2 above, for a characterµ of Q×

2 . We begin by determining the charac-
tersξ of J′ for which theξ- eigenspaceI(µ)(J

′,ξ) is nonzero.
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Notice that every element ofJ ′ can be uniquely written as

(8.4.20) k = n(b)m(a)n−(4c), a ∈ Z×2 , b, c ∈ Z2,

so that every character ofJ ′ has the form

(8.4.21) ξ = (χ, ψ+, ψ−) : ξ(n(b)m(a)n−(4c)) = χ(a)ψ+(b)ψ−(c),

whereχ is a character ofZ×2 , andψ± are additive characters ofZ2.

Proposition 8.4.14.Let the notation be as above. Thenξ = (χ, ψ+, ψ−)
gives a character ofJ ′ if and only if the following two conditions hold.

(i) The conductors ofχ and ψ± are all less than or equal to3, i.e.,
ψ±(8Z2) = 1 andχ(1 + 8Z2) = 1. In particular,χ2 = 1 onZ×2 .

(ii) χ(5) = ψ+(4)ψ−(4).

Proof. It is easy to check the identity

n(b1)m(a1)n−(c1)n(b2)m(a2)n−(c2)(8.4.22)

= n

(
b1 +

b2a
2
1

1 + b2c1

)
m

(
a1a2

1 + b2c1

)
n−

(
c2 +

c1a
2
2

1 + b2c1

)
.

Then,ξ is a character if and only if, for allai ∈ Z×2 , bi, ci ∈ Z2,
(8.4.23)

χ(1 + 4b2c1)−1ψ+

(
b2a

2
1

1 + 4b2c1

)
ψ−

(
c1a

2
2

1 + 4b2c1

)
= ψ+(b2)ψ−(c1).

Settingb2 = 1 andc1 = 0, one getsψ+(a2
1 − 1) = 1, for all a1 ∈ Z×2 .

This implies thatψ+ has conductor≤ 3, i.e., ψ+(8Z2) = 1. The same
argument withb2 = 0 and c1 = 1 shows thatψ− has conductor≤ 3.
Settinga1 = a2 = 1, one sees from (8.4.23) that

(8.4.24) χ(1 + 4bc) = ψ+

(
−4b2c
1 + 4bc

)
ψ−

(
−4bc2

1 + 4bc

)

for all b, c ∈ Z2. Sinceψ± has conductor≤ 3, this identity implies that
χ has conductor≤ 3 as well. This proves that condition (i) holds ifξ is a
character. Whenb = c = 1, the identity (8.4.24) becomes condition (ii).
Conversely, ifξ = (χ, ψ+, χ−) satisfies conditions (i) and (ii), condition
(ii) implies (8.4.24) and then(8.4.23) via condition (i).



PUP.master.W.rev January 13, 2006

300 CHAPTER 8

Proposition 8.4.15.Let µ be a character ofQ×
2 and letξ = (χ, ψ+, χ−)

be a character ofJ ′ ' J′. Let I(µ)(J
′,ξ) be theξ-eigenspace for the right

action ofJ′ on I(µ).
(i) Whenψ± = 1, andχ = µχ2 has conductor≤ 2, i.e.,χ(x) = (α, x)2 for
someα ∈ Z×2 , then

I(µ)(J
′,ξ) = Cf1 ⊕ Cfw,

wherefg ∈ I(µ)(J
′,ξ) is supported oñPgJ′ and is given by

fg([n(b)m(a), z][g, 1]Lk) = zµ(a)|a|ξ(k).

(ii) Whenψ+ = 1, ψ− 6= 1, andχ = χ2µ with χ(5) = ψ−(4),

I(µ)(J
′,ξ) = Cf1.

(iii) Whenψ− = 1, ψ+ 6= 1, andχ = χ2µ with χ(5) = ψ+(4),

I(µ)(J
′,ξ) = Cfw.

(iv) In all other cases,I(µ)(J
′,ξ) = 0.

Proof. Since

G′ = P ′J′ ∪ P ′[n−(2), 1]LJ′ ∪ P ′[w, 1]LJ′,

we have

(8.4.25) I(µ)(J
′,ξ) = Cf1 ⊕ Cfn−(2) ⊕ Cfw.

Here it is understood that iffg, as given in the proposition, is not well de-
fined, it is deleted from the the right-hand side of (8.4.25). Now,fg is well
defined if and only if the obvious compatibility condition of characters on
P ′ ∩ gJ′g−1 is satisfied.

First, for a givenξ, f1 is well defined if and only if

µ(a) = f1([n(b)m(a), 1]L) = χ(a)χ2(a)ψ+(b), a ∈ Z×2 , b ∈ Z2.

This is equivalent toψ+ = 1 andχ = µχ2 on Z×2 . The fact thatψ−(4) =
χ(5) comes from the previous proposition.

Next, assume thatfw is well defined. Note that

wn(b)m(a)n−(c)w−1 = n−(−b)m(a−1)n(−c) ∈ P ′ ⇐⇒ b = 0.

Now

[w, 1]L[m(a), χ2(a)]L = [m(a−1), χ2(a)]L[w, 1]L
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so that we must have

χ(a) = µ(a)−1χ2(a), a ∈ Z×2 .

On the other hand, it is easy to check that

(8.4.26) [w, 1]L[n−(c), λ(n−(c))]L = [n(−c), 1]L[w, 1]L,

(see Lemma 8.5.13), and this implies thatψ−(c) = 1 for all c ∈ Z2. This
proves that, iffw is well defined, thenψ− = 1 andχ = χ2µ on Z×2 . The
converse is also true and left to the reader to check.

Finally, we prove thatfn−(2) is never well defined. This will finish the
proof of the proposition. Note that

n−(2)n(b)m(a)n−(c) =
1
a

(
a2 + bc b

2a2 + (1 + 2b)c (1 + 2b)

)
and that

n−(2)n(b)m(a)n−(c)n−(2)−1 =
1
a

(
a2 + b(c− 2) b

2a2 + (1 + 2b)(c− 2) (1 + 2b)

)
.

Writing c = 4c0, we see that this last element lies inP ′ if and only if

(8.4.27) a2 = (1 + 2b)(1− 2c0),

and that, when (8.4.27) holds, then

n−(2)n(b)m(a)n−(c)n−(2)−1 =
(
a−1(1− 2c0) a−1b

0 a−1(1 + 2b)

)
= n(b(1 + 2b)−1)m(a−1(1− 2c0)).

Then, fork = n(b)m(a)n−(c) ∈ J ′, we have

[n−(2), 1]L[n(b)m(a)n−(c), λ2(k)]L

= [n−(2)n(b)m(a)n−(c), ∗]L

= [n(b(1 + 2b)−1)m(a−1(1− 2c0)), ∗]L[n−(2), 1]L,

where, after a short calculation given in Lemma 8.5.13,

∗ = cL(n−(2), k) · λ2(k) = γ(1− 2c0, ψ).

Thus, iffn−(2) is well defined, then

χ(a)ψ+(b)ψ−(c0) = µ(
1− 2c0
a

)γ(1− 2c0, ψ)
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whenever

a2 = (1 + 2b)(1− 2c0).

Settingc0 = 0, we see that

µ(a) = χ(a)ψ+(a2 − 1
2

)
= ±1.

Settinga = 1 = c0 andb = −1, we have

ψ+(−1)ψ−(1) = µ(−1)γ(−1, ψ).

Squaring both sides, we find that

ψ+(−2)ψ−(2) = (−1,−1) = −1.

On the other hand, settinga = 1 and−c0 ≡ b ≡ 2 mod 8, we have

ψ+(2)ψ−(−2) = µ(3)γ(3, ψ) = ±i,

contradicting the previous equation. Sofn−(2) does not exist.

Proposition 8.4.15 implies that, ifI(µ)(J
′,ξ) 6= 0 for someξ, thenµ =

µt = χ2α| |t, so we assume from now on thatµ has this form. The induced
representationI(µ) is irreducible unlesst = ±1

2 . Whent = 1
2 , it has a

unique irreducible subrepresentation, the special representationσ̃(χα| |
1
2 ),

which is the kernel of the intertwining operatorM(t) : I(µ) → I(µ−1) at
the pointt = 1

2 . Whent = −1
2 , then the unique irreducible subrepresenta-

tion of I(µ) is an even Weil representation. Recall that, for Re(t) > 1, the
intertwining operator is defined by

(8.4.28) M(t)f(g) =
∫

Q2

f([w−1, 1]L[n(b), 1]Lg) db,

wheredb is the self-dual measure with respect toψ. Note thatM(t) car-
ries the spaceI(µt)(J

′,ξ) to I(µ−1
t )(J

′,ξ). As usual, functions inI(µ) are
determined by their restrictions toK ′, and the resulting space of functions
onK ′ is independent oft. Thus the space ofξ-eigenfunctions forJ′ is also
independent oft. For simplicity, we assume from now on thatψ± = 1, i.e.,
thatξ = χα is a character ofZ×2 with α ∈ Z×2 .

Proposition 8.4.16.Let µ = χ2α| |t, and letξ = χα be a character ofJ′

with α ∈ Z×2 . Then the matrix ofM(t) with respect to the basisf1, fw of
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I(µ)(J
′,χα) is 

g8(α)
22t(1− 2−2t)

χα(−1)

1
4

g8(α)
1− 2−2t

 ,
where

g8(α) =
∫

Z×2
χ2α(u)ψ(

u

8
) du =

1
2
√

2 δα
.

Here

δα =

{
1 if α ≡ 1 mod 4,

i if α ≡ −1 mod 4.

In particular, whent = 1
2 , the matrix directly above is

1
2
√

2 δα

 1
2
√

2
δα

δα√
2

2

 ,
and its eigenfunctions are

fsp = f1 −
δα

2
√

2
fw ∈ σ̃(χα| |

1
2 )

and

fev = f1 +
δα√
2
fw

with eigenvalues0 and 3
2
√

2 δα
, respectively.

Proof. It suffices to compute the values ofM(t)f1 andM(t)fw at the points
1 andw. It is easy to check that

w−1n(b) =
(

−1
1 b

)
=

−wn(b) if ord(b) ≥ 0,

n(−b−1)m(b−1)n−(b−1) if ord(b) < 0,

and thus, forb 6∈ Z2,

w−1n(b) = n(−b−1)m(b−1)[n−(b−1), 1]L.
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Here, for convenience, we writew−1 = [w−1, 1]L, n(b) = [n(b), 1]L, and
m(a) = [m(a), 1]L. Then

f1(w−1n(b)) =

{
0 if b ∈ 1

2Z2,

γ(ψ2b)µ(b)−1|b|−1 if b /∈ 1
2Z2,

and

fw(w−1n(b)) =

{
χα(−1) if b ∈ Z2,

0 if b /∈ Z2.

Therefore

M(t)f1(1) =
∫

ord(b)≤−2
f1(w−1n(b)) db

=
∞∑
r=2

∫
ord(b)=−r

χ2α(b−1) |b−1|t+1 γ(ψ2b) db

=
∞∑
r=2

2−rt χ2α(2r)
∫

Z×2
χ2α(u) γ(ψ2r−1u) du.

Recall that, by [19], Proposition A.12,

(8.4.29) γ(ψ2r−1b) =

ψ( b8) if r is even,

ψ( b8)χ2(b) if r is odd,

so that the integral becomes∫
Z×2
χ2α(u) γ(ψ2r−1u) du

=


∫
Z×2
χ2α(u)ψ(u8 ) du if r is even,∫

Z×2
χα(u)ψ(u8 ) du if r is odd,

=

g8(α) if r is even,

0 if r is odd.

So we have

M(t)f1(1) =
∞∑
n=1

2−2ntg8(α) =
2−2t

1− 2−2t
· g8(α),

and

M(t)fw(1) =
∫

Q2

fw(w−1n(b)) db = χα(−1).
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Next, we note that

w−1n(b)w =

{
[n−(−b), γ(ψ2b)]L if b ∈ 2Z2,

n(−b−1)m(b−1)wn(−b−1) if b /∈ 2Z2,

so that

f1(w−1n(b)w) =

{
1 if b ∈ 4Z2,

0 if b /∈ 4Z2,

and

fw(w−1n(b)w) =

{
0 if b ∈ 2Z2,

µ(b−1)|b|−1γ(ψ2b) if b /∈ 2Z2.

This gives

M(t)f1(w) =
∫

ord(b)≥2
db =

1
4
.

Finally, the same calculation as in the beginning gives

M(t)fw(w) =
∞∑
r=0

∫
ord(b)=−r

χ2α(b−1) |b−1|t+1 γ(ψ2b) db

=
∞∑
r=0

2−rtχα(2)r
∫

Z×2
χ2α(b)γ(ψ2r−1b) db

=
∑

r≥0, even
2−rtχα(2)rg8(α)

=
g8(α)

1− 2−2t
.

The values ofg8(α) are easy to calculate.

It will be useful to record some information about the Whittaker functions
of f1 andfw. With the same notation as in Proposition 8.4.16, recall that,
for m ∈ Q2 and Re(t) > 1, the Whittaker function attached tof ∈ I(µ) is
given by

(8.4.30) Wm(f)(g) =
∫

Q2

f([w−1, 1]L[n(b), 1]Lg)ψ(−mb) db.

Notice that

Wm(f)(m(a)g) = µ(a)−1|a|Wa2m(f)(g).

We will only need the following values:
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Proposition 8.4.17.With the same notation as in Proposition 8.4.16, sup-
pose thatm ∈ Z2 − 4Z2. Then
(i) Wm(f1)(w) = χα(−1),Wm(fw)(1) = 1

4 , and

Wm(fw)(w) = Wm(f1)(1) +
1

2
√

2δα
.

(ii)

Wm(f1)(1) =

−
1

2
√

2δα
µ(2)2 if m ≡ 2,−α mod 4,

1
2
√

2δα
µ(2)2 + 1

2µ(2)3ψ(1−m
8 ) if m ≡ α mod 4.

(iii) Let

f+ = f1 +
√

2µ(2)2

δα
fw.

Then

Wm(f+)(1) = 0 if m ≡ 2,−α mod 4.

We omit the slightly more complicated values in general; these can be
computed by the same methods. We remark that part (iii) of the proposition
means thatf+ is in Kohnen’s plus space locally. Additional discussion of
this point is given in Section 9.3. Notice that

Wm(f+)(w) 6= 0 if m ≡ 2,−α mod 4,

so that the Fourier coefficients at other cusps will not vanish.

Proof. The same calculation as in the proof of Proposition 8.4.16 gives

Wm(f1)(1) =
∑
n≥2

µ(2)nIm(n, χ2α, ψ),

Wm(f1)(w) = χα(−1)char(Z2)(m),(8.4.31)

Wm(fw)(1) =
1
4

char(4Z2)(m),

and

Wm(fw)(w) =
∑
n≥0

µ(2)nIm(n, χ2α, ψ),

where

(8.4.32) Im(n, χ2α, ψ) =
∫

Z×2
γ(ψ21−nb)χ2α(b)ψ(−2nmb) db.

These formulas give a complete description for theψ-Whittaker functions
of f1 andfw if one knows how to computeIm(n, χ2α, ψ).
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Lemma 8.4.18.Let the notation be as above. Then

Im(n, χ2α, ψ) =


χ2α(1− 23−nm) 1

2
√

2δα
2 | n, 23−nm ∈ 2Z2,

1
2ψ(1−23−nm

8 ) 2 - n, 23−nm ≡ α mod 4,

0 otherwise.

Proof. First we assume thatn is even. By (8.4.29), we have

Im(n, χ2α, ψ) =
∫

Z×2
χ2α(b)ψ(

b

8
(1− 23−nm)) db

= χα(1− 23−nm)
1

2
√

2δα
char(Z×2 )(1− 23−nm)

as claimed. Now we assume thatn is odd. Then (8.4.29) implies

Im(n, χ2α, ψ)

=
∫

Z×2
χα(b)ψ(

b

8
(1− 23−nm)) db

=


1
2char(4Z2)(1− 23−nm)ψ(1−23−nm

8 ) if α ≡ 1 mod 4,
1
2char(2Z×2 )(1− 23−nm)ψ(1−23−nm

8 ) if α ≡ −1 mod 4,

=


1
2ψ(1−23−nm

8 ) if 23−nm ≡ α mod 4,

0 otherwise.

Now we can complete the proof of Proposition 8.4.17. The first two
claims in (i) are parts of (8.4.31). The same formula also gives, together
with Lemma 8.4.18,

Wm(fw)(w) = Wm(f1)(1) + Im(0, χ2α, ψ) + µ(2)Im(1, χ2α, ψ)

= Wm(f1)(1) +
1

2
√

2δα
.

Whenm ≡ 2,−α mod 4, one has

ord2(23−nm)

{
≥ 1 if n ≤ 2,

≤ 0 if n ≥ 4,
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and23−nm 6≡ α mod 4. So Lemma 8.4.18 implies

Wm(f1)(1) = µ(2)2Im(2, χ2α, ψ)

=
µ(2)2χ2α(1− 2m)

2
√

2δα

= − µ(2)2

2
√

2δα

as claimed.
Whenm ≡ α mod 4, one has23−nm ≡ α mod 4 iff n = 3. So

Lemma 8.4.18 implies that

Wm(f1)(1) = µ(2)2Im(2, χ2α, ψ) + µ(2)3Im(3, χ2α, ψ)

=
µ(2)2χ2α(1− 2m)

2
√

2δα
+

1
2
µ(2)3ψ(

1−m

8
)

=
µ(2)2

2
√

2δα
+

1
2
µ(2)3ψ(

1−m

8
).

This proves (ii). Claim (iii) follows from (i) and (ii) directly.

We now return to the local zeta integrals. Forκ ∈ Z×2 , we define lattices
L0, L1, andLra as in (8.4.12). By Proposition 8.5.14, whenL = L0, L1, or
Lra, the standard sectionΦL(s) ∈ I(s, χV ) determined by

ΦL(0) = λV (ϕL ⊗ ϕL)

is an eigenfunction ofi(J′ × J′) with characterχκ. Thus,Z(s,ΦL, ·) maps
I(µ) into I(µ)(J

′,χκ). Since the latter space is nonzero only whenµ =
χ2α| |t, for someα with α ≡ κ mod 4, we assume this condition from
now on and are led to compute the zeta integrals, as in (8.4.10),

(8.4.33) Z(s,ΦL, fwj )(wi)

= γ(V )
∫

Q×2
χV µ(a)|a|r+

1
2B(r, a;ωV (wi)ϕ

(r)
L , I(fwj , ϕL)) d×a,

for L = L0, L1, Lra, andi, j = 0, 1, wherew0 = 1 andw1 = w.

Lemma 8.4.19.(i)

ωV (wi)ϕL =

ϕL if i = 0,

γ(V )[L# : L]−
1
2 · ϕL# if i = 1.
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(ii)

I(f1, ϕL) = vol(J′)ϕL.

(iii)

I(fw, ϕL)(x) = γ(V )−1 [L# : L]−
1
2 vol(J′) · 4 charZ2(Q(x)) · ϕL#(x)

Proof. Only (iii) needs proof. Since

K ′ ∩ P ′wJ ′ =
⋃

c∈Z/4
n(c)wJ ′,

we have

I(fw, ϕL) =
∫
K′
fw(k′)ωV (k′)ϕL(x) dk

=
∑
c∈Z/4

∫
J′
χκ(k′)ωV (wk′)ϕL(x)ψ(cQ(x)) dk′

= γ(V )−1 vol(J′) [L# : L]−
1
2 · ϕL#(x)

∑
c∈Z/4

ψ(−cQ(x))

= γ(V )−1 vol(J′) [L# : L]−
1
2 · ϕL#(x) · 4 charZ2(Q(x)).

Note that

charZ2 ◦Q · ϕL# =
∑

y∈L]/L
Q(y)∈Z2

ϕy+L.

Lemma 8.4.20.For y ∈ L# − L withQ(y) /∈ Z2, and any latticeL′,

B(r, a;ϕL′ , ϕy+L) = 0.

Proof. Indeed,

B(r, a;ϕL′ , ϕy+L) =
∫

Q2

∫
Vr
ϕ

(r)
L′ (x)ϕ

(r)
y+L(−ax)ψ(−bQ(x)) dx db

=
∫
L′r

ϕ
(r)
y+L(−ax) lim

n→∞

∫
2−nZ2

ψ(−bQ(x)) db dx.

Now for ax ∈ y + Lr, one hasx ∈ a−1y + a−1Lr, and thus, sinceQ(y) /∈
Z2,

ord(Q(x)) = −2 ord(a) + ord(Q(y)) < −2 ord(a).



PUP.master.W.rev January 13, 2006

310 CHAPTER 8

Thus, ∫
2−nZ2

ψ(−bQ(x)) db = 0

whenn > −2 ord(a), and henceB(r, a;ϕL′ , ϕy+L) = 0.

Corollary 8.4.21. (i) For L = L0 or Lra,(
B(r, a;ωV (wi)ϕL, I(fwj , ϕL))

)
i,j=0,1

= vol(J′)B(r, a;ϕL, ϕL) ·

 1 4γ(V )−1√
[L#:L]

γ(V )√
[L#:L]

4
[L#:L]

 .
(ii) For L = L1, andL′ = L or L#,

B(r, a;ϕL′ , I(fw, ϕL)) = vol(J′)·B(r, a;ϕL′ , ϕL#)·4 γ(V )−1 [L# : L]−
1
2 .

Proof. Claim (ii) follows immediately from the previous two lemmas. To
prove (i), by the same argument as above, it suffices to prove

B(r, a;ϕL1 , ϕL2) = B(r, a;ϕL, ϕL),

for Li = L or L#, i = 1, 2. It is easy to check that fory ∈ L#, L = L0,
orLra,Q(y) ∈ Z2 if and only if y ∈ L. So one has, by the previous lemma
and Lemma 8.4.4,

B(r, a;ϕL1 , ϕL2) =
∑

y∈L2/L

B(r, a;ϕL1 , ϕy+L)

= B(r, a;ϕL1 , ϕL)

= |a|−2r−1B(r, a−1;ϕL, ϕL1)

= |a|−2r−1B(r, a−1;ϕL, ϕL)
= B(r, a;ϕL, ϕL).

Lemma 8.4.22.

γ(V ±) = ±δκ,

where

δκ = ψ(
κ− 1

8
)χ2(κ) =

{
1 if κ ≡ 1 mod 4,

i if κ ≡ −1 mod 4.
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Proof. By Lemma 8.5.6,

γ(V ) = χV (−1)γ(ψ1/2)
(
γ(detV, ψ1/2)γ(ψ1/2)

3ε(V )
)−1

.

Recall thatdetV = −2κ, and that the matrix ofV ± is 2κ diag(1, 1,−1)
and−2κdiag(1, 1, 1) respectively. Thus

ε(V ) =

{
(2κ,−1) if V = V +,

(−2κ,−1) if V = V −,

= χ2κ(−1) inv(B),

where inv(B) = ±1 is the invariant of the quaternionB associated toV .
Then, by a short calculation, inv(B) γ(V ) = δκ.

Proposition 8.4.23.(i) For L = L0,(
Z(s,ΦL, fwj )(wi)

)
i,j=0,1

= γ(V )
vol(J′)√

2
L(1

2 + s, χV µ)L(1
2 + s, χV µ

−1)
ζ(2s+ 2)

(
1 2

√
2

δκ
δκ√

2
2

)
.

In particular, the eigenfunctions ofZ(s,ΦL0 , ·) in I(µ)(J
′,χκ) are

fev = f1 +
δκ√
2
fw and fsp = f1 −

δκ

2
√

2
fw

with eigenvalues

γ(V )
3 vol(J′)√

2
L(1

2 + s, χV µ)L(1
2 + s, χV µ

−1)
ζ(2s+ 2)

and0, respectively.
(ii) WhenL = Lra,(

Z(s,ΦL, fwj )(wi)
)
i,j=0,1

=
1
4
γ(V )

vol(J′)√
2

L(1
2 + s, χV µ)L(1

2 + s, χV µ
−1)

ζ(2s)

(
2 −2

√
2

δκ
− δκ√

2
1

)
.

In particular, its eigenfunctions inI(µ)(J
′,χκ) are fev andfsp with eigen-

values0 and

1
4
γ(V )

3 vol(J′)√
2

L(1
2 + s, χV µ)L(1

2 + s, χV µ
−1)

ζ(2s)
,

respectively.
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Proof. By the previous corollary and (8.4.10), it suffices to prove that

∫
Q×2

χV µ(a)|a|
1
2
+rB(r, a;ϕL, ϕL) d×a

=


L(1

2 + r, χV µ)L(1
2 + r, χV µ

−1)√
2 ζ(2r + 2)

if L = L0,

L(1
2 + r, χV µ)L(1

2 + r, χV µ
−1)

2
√

2 ζ(2r)
if L = Lra.

By Lemma 8.4.4, the integral is equal to

L(1
2 + r, χV µ)L(1

2 + r, χV µ
−1)

ζ(2r + 1)
·W0(r, L).

On the other hand, [14] Proposition 13.4 gives (taking into account the dif-
ferent Haar measures used there)

W0(r, L) =


1√
2
ζ(2r + 1)
ζ(2r + 2)

if L = L0,

1
2
√

2
ζ(2r + 1)
ζ(2r)

if L = Lra.

Next, we consider the caseL = L1.

Lemma 8.4.24.

W0(r, L1) =
1

2
√

2
ζ(2r + 1)

and

W0(r, L1,#) =
1

2
√

2
(2 + ζ(2r + 1)).

Proof. Recall that here the Haar measure onV is the self-dual Haar measure
so that vol(L1, dx) = [L1,# : L1]−1/2 = 1

2
√

2
. The same calculation as in
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[30], Section 4 gives

W0(r, L1,#)

=
∫

Q2

∫
L1,#
r

ψ(−bQ(x)) dx db

=
1

2
√

2

∫
Q2

∫
1
2

Z2

ψ(−κbx2
1) dx1

×
∫
( 1
2

Z2)2
ψ(−2κbx2x3) dx2 dx3

(∫
Z2

2

ψ(−κby1y2) dy1 dy2

)r
db

= 2
√

2
∫

Q2

min(1, |b−1|) ·min(1, |2
b
|) ·
∫

Z2

ψ(−κb
4
x2) dx db

= 2
√

2

∫
4Z2

db+ 2−
3
2

∑
n≥0

2−n(r+ 1
2
)
∫

Z×2
ψ(
b

8
)χ2(b)−n+1 db


= 2

√
2

1
4

+
1
8

∑
n≥0, even

2−n(r+ 1
2
)


=

1
2
√

2

(
2 +

1
1− 2−2r−1

)
,

as claimed. The caseW0(r, L1) is a special case of [30], Section 8.

Proposition 8.4.25.LetL = L1 andX = 2−s. Then(
Z(s,ΦL1 , fwj )(wi)

)
i,j=0,1

= γ(V )
vol(J′)
4
√

2
L(s+

1
2
, χV µ)L(s+

1
2
, χV µ

−1)

×
(

2 2
√

2
δκ

(1 +
√

2χV µ−1(2)X −X2)
δκ√

2
(1 +

√
2χV µ(2)X −X2) 3−X2

)
.

Proof. For convenience, letχ = χV µ. By (8.4.10) and the previous lem-
mas, the zeta integral matrix, fors = r, is equal to

γ(V ) vol(J′)

(
I(r, χ;ϕL, ϕL)

√
2

δκ
I(r, χ;ϕL, ϕL#)

δκ
2
√

2
I(r, χ;ϕL# , ϕL) 1

2I(r, χ;ϕL# , ϕL#)

)
,

where

I(r, χ;ϕL1 , ϕL2) =
∫

Q×2
χ(a)|a|r+

1
2B(r, a;ϕL1 , ϕL2) d

×a.
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Now Lemma 8.4.4 gives

I(r, χ;ϕL, ϕL) =
L(r + 1

2 , χ)L(r + 1
2 , χ

−1)
ζ(2r + 1)

·W0(r, L)

=
1

2
√

2
L(r +

1
2
, χ)L(r +

1
2
, χ−1),

and

I(r, χ;ϕL# , ϕL#) =
L(r + 1

2 , χ)L(r + 1
2 , χ

−1)
ζ(2r + 1)

·W0(r, L#)

=
1

2
√

2
L(r +

1
2
, χ)L(r +

1
2
, χ−1) · (3−X2).

Lemma 8.4.4 also gives

I(r, χ;ϕL, ϕL#)

= L(r +
1
2
, χ) ·W0(r, L)

+ χ−1(2) 2−r−
1
2L(r +

1
2
, χ−1) · ( 1√

2
+W0(r, L))

=
1

2
√

2
L(r +

1
2
, χ)L(r +

1
2
, χ−1) + χ−1(2) 2−1XL(r +

1
2
, χ−1)

=
1

2
√

2
L(r +

1
2
, χ)L(r +

1
2
, χ−1) · (1 +

√
2χ(2)−1X −X2).

Switching the roles ofL andL#, and ofχ andχ−1, by Lemma 8.4.4, one
sees that

I(r, χ;ϕL# , ϕL) =
1

2
√

2
L(r+

1
2
, χ)L(r+

1
2
, χ−1) ·(1+

√
2χ(2)X−X2).

Note that the matrix forZ(s,Φ1, ·) is not diagonal with respect to the
basisfev andfsp of I(µ)(J

′,χκ).

Now we consider the caseµ = χ2α| |
1
2 with α ≡ κ mod 4, where the

special representation occurs as the unique irreducible submodule ofI(µ).
In this case,χV µ = χακ| |

1
2 is unramified. Then matrix in the right hand

side of the previous proposition is(
2 2

√
2

δκ
(1 + 2χακ(2)X −X2)

δκ√
2
(1 + χακ(2)X −X2) 3−X2

)
,
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and the function

fsp = f1 −
δκ

2
√

2
fw

is an eigenfunction with eigenvalue(1− χακ(2)X)2. Thus

Z(s,Φ1,fsp)

= γ(V )
vol(J′)
4
√

2
L(s+

1
2
, χV µ)L(s+

1
2
, χV µ

−1)·(1−χακ(2) 2−s)2 ·fsp.

As in Section 8.4.4 above, forσ = σ̃(µχ2) = σ̃(χα| |
1
2 ), we have

L(s+
1
2
, χV µ) = L(s+ 1, χακ) = L(s+

1
2
,Wald(σ, ψκ)).

On the other hand,

L(s+
1
2
, χV µ

−1) = (1− χακ(2) 2
1
2 2−s−

1
2 )−1 = (1− χακ(2) 2−s)−1,

andδ(σ, ψκ) = −χ2ακ(2). Also note that, for vol(Sp1(Z2)) = 1, we have
vol(J′) = 1

6 . Thus

Z(s,Φ1,fsp) = δκ
1

24
√

2
L(s+

1
2
,Wald(σ, ψκ)) · (1 + δ(σ, ψκ) 2−s) · fsp.

In summary, we have obtained the following results.

Theorem 8.4.26.(i) For an irreducible principal series representationσ =
I(µ) = π̃(µχ2) with µ = χ2α| |t, t 6= ±1

2 andα ≡ κ mod 4,

Z(s,Φ0,fev) = δκ
1

2
√

2
L(s+ 1

2 ,Wald(σ, ψκ))
ζ(2s+ 2)

· fev,

andZ(s,Φ0,fsp) = 0.

(ii) For a special representationσ = σ̃(µχ2) = σ̃(χα| |
1
2 ) with µ = χ2α| |

1
2

andα ≡ κ mod 4,

fsp = f1 −
δα

2
√

2
fw ∈ σ.

Then,Z(s,Φ0,fsp) = 0,

Z(s,Φ1,fsp)

= δκ
1

2
√

2
· 2−2 1

3
(1 + δ(σ, ψκ) 2−s) · L(s+

1
2
,Wald(σ, ψκ)) · fsp,
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and

Z(s,Φra,fsp)

= −δκ
1

2
√

2
· 2−2 (1− δ(σ, ψκ) 2−s) · L(s+

1
2
,Wald(σ, ψκ)) · fsp.

Note that, except for the factorδκ 1
2
√

2
, these formulas are the same as

those given in Corollary 8.4.6 and Corollary 8.4.8 forp odd. As in Corol-
lary 8.4.9, we have

Corollary 8.4.27. For fsp as in (ii) of Theorem 8.4.26, and̃Φ as in(8.4.14),

Z(s, Φ̃,fsp)

= −δκ
1

2
√

2
2−2

[
(1− δ(σ, ψκ) 2−s)− 1

3
(1 + δ(σ, ψκ) 2−s)B(s)

]
× L(s+

1
2
,Wald(σ, ψκ)) · fsp.

Finally, we consider the zeta integral for the Kohnen plus space section

(8.4.34) f+ = (1 + 4χκ(−1)µ(2)2) fev + (2− 4χκ(−1)µ(2)2) fsp,

whereα ≡ κ mod 4. By Theorem 8.4.26 (i) forµ = χ2α| |t with t 6= 1
2 ,

andα ≡ κ mod 4,
(8.4.35)

Z(s,Φ0,f+) =
δκ

2
√

2
(1 + 4χκ(−1)µ(2)2)

L(s+ 1
2 ,Wald(σ, ψκ))
ζ(2s+ 2)

· fev.

8.4.6 The archimedean local integrals

In this section, we deal with the caseF = R. We only consider the discrete
series representationsσ = π̃+

` of G′ = G′R, where` ∈ 1
2 + Z>0. Recall

from Table 2 in Section 8.2 that Wald(σ, ψ) = DS2`−1, the discrete series
representation of PGL2(R) of weight 2` − 1. Since DS2`−1 ⊗ (sgn) '
DS2`−1, we see that Wald(σ, ψ−1) = DS2`−1 as well. We fix the additive
characterψ(x) = e(x) = e2πix.

Let (V,Q) be a positive definite quadratic space overR of dimension2`,
and note thatχV = ((−1)`−

1
2 , )R = (sgn)`−

1
2 . The groupG′ acts onS(V )

via the Weil representationωV = ωV,ψ, and the Gaussianϕ0 = e−2πQ(x) ∈
S(V ) of V is a eigenfunction of weight̀ for the action ofK ′, the inverse
image of SO(2) ⊂ SL2(R) = Sp1(R), i.e.,

ωV (k′)ϕ0 = ξ`(k′)ϕ0.
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Thenf∞ := λV (ϕ0) ∈ I(` − 1, χV ) is the lowest weight vector in the
unique irreducible submodule ofI(`−1, χV ), and this submodule is isomor-
phic to the discrete series representationπ̃+

` . In what follows, we identify
σ = π̃+

` with this submodule. Note thatf∞(1) = 1.
Let I(s, χV ) be the degenerate principal series representation ofG = GR

and letΦ`
∞(s) ∈ I(s, χV ) be the unique standard section12 of weight `,

normalized so thatΦ`
∞(1, s) = 1. Note that, fork′1 andk′2 ∈ K ′,

r(i(k′1, k
′
2))Φ

`
∞(s) = ξ`(k′1) ξ`(k′2) · Φ

`
∞(s).

Thus, as explained in section 8.4.1, the local doubling integral defines a map

Z(s,Φ`
∞, ·) : σ(K′,ξ`) −→ σ(K′,ξ`),

which is given by multiplication by the scalar

h∞(s, `) = Z(s,Φ`
∞, f∞)(1) =

∫
Sp1(R)

Φ`
∞(δi(1, g′), s) f∞(g′) dg,

which we now compute using the same ‘interpolation’ method as in the
nonarchimedean case.

Let Vr = V + Vr,r be the direct sum ofV and r copies of standard
hyperbolic plane. Note thatVr has signature(2` + r, r). DecomposeVr
orthogonally asVr = V +

r ⊕ V −r with V +
r ⊃ V positive definite andV −r

negative definite. Then the functionϕ(r)
0 ∈ S(Vr) defined by

ϕ
(r)
0 (x) = e−2πQ(x+

r )+2πQ(x−r ),

wherex = x+
r + x−r , with x±r ∈ V ±r , is a Gaussian forVr , and

(8.4.36) Φ`
∞(s0 + r) = λVr(ϕ

(r)
0 ⊗ ϕ

(r)
0 ),

wheres0 = `− 3
2 .

By Lemma 8.4.3, writingg′ = n(b)m(a)k′, we have

Φ`
∞(δi(1, g′), s0 + r)

= γ(V )
∫
Vr
ϕ

(r)
0 (x)ωVr(g′)ϕ

(r)
0 (−x) dx

= γ(V ) ξ`(k′)χV (a) |a|r+`
∫
Vr
ϕ

(r)
0 (x)ϕ(r)

0 (−ax)ψ(−bQ(x)) dx

= γ(V ) ξl(k′)χV (a) |a|r+`
∫
Vr
ϕ

(r)
0 (
√
a2 + 1x)ψ(−bQ(x)) dx.

12As usual, we letK be the full inverse image inG of the standard maximal compact
subgroupU(2) of Sp2(R). By weight` we mean transforming by the characterdet` under

the right action ofK. Also note thatχV = χ2κ whereκ = (−1)`−
1
2 .
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Therefore

h∞(s0 + r, `)

= γ(V ) vol(SO(2))
∫ ∞

0
|a|r+2`−2

×
∫ ∞

−∞

∫
Vr
ϕ

(r)
0 (
√
a2 + 1x)ψ(−bQ(x)) dx db d×a

= vol(SO(2))
∫ ∞

0
ar+2`−2(a2 + 1)1−r−`d×a

× γ(V )
∫ ∞

−∞

∫
Vr
ϕ

(r)
0 (x)ψ(−bQ(x)) dx db.

It is well known that∫ ∞

0
ar+2`−2(a2 + 1)1−r−`d×a =

Γ(`+ r
2 − 1) Γ( r2)

2 Γ(`+ r − 1)
.

On the other hand,13 by [14], Proposition 14.1(iii),

γ(V )
∫ ∞

−∞

∫
Vr
ϕ

(r)
0 (x)ψ(−bQ(x)) dx db

= 2π e(− 1
4

(`− 1
2
)) · 21−`−r Γ(`+ r − 1)

Γ(`+ r
2) Γ( r2)

.

Thus,

h∞(s0 + r, `) = vol(SO(2)) · 2π e(− 1
4

(`− 1
2
)) · 21−`−r

(r + 2`− 2)
.

In summary,

Proposition 8.4.28.Let the notation be as above. Then

Z(s,Φ`
∞, f∞) = h∞(s, `) · f∞,

with

h∞(s, `) = vol(SO(2)) · 2π e(− 1
4

(`− 1
2
)) · 1

2s+
1
2 (s+ `− 1

2)
.

13Here we must be careful since we are working with[w, 1]L rather than[w, 1]R, which
was used in [14]. This means that we must multiply the value in [14] bye( 1

8
).
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Recall that Wald(π̃+
` , ψ) = Wald(π̃+

` , ψ−) is the discrete series represen-
tation DS2`−1 of PGL2(R) of weight2`− 1, so that

L(s+
1
2
,Wald(π̃+

` , ψ∞)) = ΓC(s+ `− 1
2
) = 2 (2π)

1
2
−`−s Γ(s+ `− 1

2
).

Since

ζ∞(2s+ 2) = π−1−s Γ(s+ 1),

we have

(8.4.37) h∞(s, `) = vol(SO(2)) · 2`−1 π`−
1
2 e(− 1

4
(`− 1

2
))

×
L(s+ 1

2 ,Wald(σ, ψ∞))
ζ∞(2s+ 2)

·
`− 1

2∏
j=1

(s+ j)−1.

Since we are using Tamagawa measure on Sp1(A) = SL2(A), we have
vol(SL2(Q)\SL2(A)) = 1. In the nonarchimedean calculations, we have
normalized the measures on SL2(Qp) by the condition vol(SL2(Zp), dgp) =
1, for all p. The measure on SL2(R) is then determined.

Lemma 8.4.29.vol(SO(2)) = 12
π .

Proof. Recall that we have used, forg = n(b)m(a) k, with a > 0,

dg = a−3 da db dk.

By the remark above, we have

1 = vol(SL2(Z)\SL2(R))

= vol(SL2(Z)\H, 1
2
y−2 dx dy)

1
2

vol(SO(2))

=
π

12
· vol(SO(2)),

since

vol(SL2(Z)\H, 1
2π

y−2 dx dy) =
1
6
.

For the casè = 3
2 , this gives:

Corollary 8.4.30. If σ = π̃+
3
2

andf∞ is the lowest weight vector inσ, then,

with the notation above,

Z(s,Φ
3
2∞, f∞) = −12

√
2 i

s+ 1
·
L(s+ 1

2 ,Wald(σ, ψ−1))
ζ∞(2s+ 2)

· f∞

= −12
√

2 i · 1
2s(s+ 1)

· f∞.
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8.5 APPENDIX: COORDINATES ON METAPLECTIC GROUPS

In this appendix, we collect some information about the metaplectic exten-
sion, cocycles, coordinates, Weil representations, etc., which is used in this
and other chapters of this book. References for this material include [19],
[8], and [9]. However, none of these sources contains all of the facts we
need, so we have provided some proofs.

8.5.1 Cocycles and coordinates

Let F be a nonarchimedean local field of characteristic zero with ring of
integersO and uniformizer$, and letψ be an unramified additive character
of F .14 We change notation slightly and writeG = Spn(F ) = Sp(W ),
whereW = F 2n with standard basise1, . . . , en, f1, . . . , fn and with sym-
plectic form given by< ei, ej >=< fi, fj >= 0 and< ei, fj >= δij .
LetW = X + Y be the complete polarization ofW whereX (resp.Y ) is
the span of the first (resp. last)n standard basis vectors. LetP = PY be
the stabilizer ofY in G, and letK = Spn(O) = Spn(F ) ∩ GL2n(O). For
0 ≤ j ≤ n, let

(8.5.1) wj =


1n−j

0 1j
1n−j

−1j 0

 ∈ K,

and letw = wn.
Let G̃ be the metaplectic extension

1 −→ C1 −→ G̃ −→ G −→ 1,

defined byG̃ = (G̃(2) × C1)/{±1}, whereG̃(2) is the unique nontrivial
twofold topological cover of Sp(W ).

For eachg =
(
a b
c d

)
∈ G, there is an operatorr(g) on the Schwartz

spaceS(Fn) defined by15

(8.5.2)

r(g)ϕ(x) =
∫

Fn/ker(c)

ψ
( 1

2
(xa, xb)+(xb, yc)+

1
2
(yc, yd)

)
ϕ(xa+yc) dg(y),

14This means thatψ is trivial onO and nontrivial on$−1O.
15In the corresponding formula in [9], the notation< , > denotes the symplectic form on

W andx ∈ X andy ∈ Y . If we identify these elements with row vectorsx = [x0, 0] and
y = [0, y0] with x0 andy0 ∈ Fn and writeg ∈ Sp(W ) as a matrix, as above, then, the term
< xb, yc >=< [0, x0b], [y0c, 0] >= −(x0b, y0c). This accounts for the change in sign in
the formula here.
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where, forx, y ∈ Fn (row vectors),(x, y) = xty, and the measuredg(y)
onFn/ker(c) is normalized to make this operator unitary [19], [29]. These
operators defined a projective representation ofG onS(Fn) and

(8.5.3) r(g1)r(g2) = cL(g1, g2) r(g1g2),

wherecL is the Leray cocycle, given by [19] and [18]:

(8.5.4) cL(g1, g2) = γ(ψ ◦ q(g1, g2)).

Here

(8.5.5) q(g1, g2) = Leray(Y g1, Y, Y g−1
2 )

is the Leray invariant of the triple of isotropic subspaces(Y g1, Y, Y g−1
2 )

andγ(ψ ◦ q) is the Weil index of the character of second degreeψ ◦ q. We
then obtain an isomorphism

G× C1 ∼−→ G̃, (g, z) 7→ [g, z]L,

with product

[g1, z1]L · [g2, z2]L = [g1g2, z1z2 cL(g1, g2)]L.

The cocyclecL is trivial onG× P andP ×G but isnot trivial onK ×K.
Thus it must be modified for use in a global situation.

Note that

r(m(a))ϕ(x) = |det(a)|
1
2ϕ(xa),(8.5.6)

r(n(b))ϕ(x) = ψ(
1
2
(x, xb))ϕ(x),(8.5.7)

and

r(w)ϕ(x) =
∫
Fn
ψ((x, y))ϕ(y) dy.(8.5.8)

Similarly, r(wj) is given by the partial Fourier transform with respect to the
lastj coordinates.

Example 8.5.1 In the case ofn = 1, if gi =
(
ai bi
ci di

)
∈ Sp1(F ) with

g1g2 = g3, then

cL(g1, g2) = γ(ψ ◦ 1
2
c1c2c3).

In particular, if c1c2c3 = 0, thencL(g1, g2) = 1.
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Remark 8.5.2. The dependence of the Leray coordinates onψ is given
explicitly as follows:

[g, z]L,ψα = [g, z ξ(g, α, ψ)]L,ψ,

where

ξ(g, α, ψ) = χα(x(g))χα(2)j(g) γF (α, ψ)j(g),

for χα(x) = (x, α)F . This can be checked easily using Proposition 4.3 in
[9].

Suppose that the residue characteristic ofF is odd and letϕ0 ∈ S(Fn) be
the characteristic function ofOn ⊂ Fn. Then the formulas (8.5.6), (8.5.7)
and (8.5.8) imply immediately that

r(k)ϕ0 = ϕ0 if k = m(a), n(b) orwj .

Since these elements generateK, it follows thatϕ0 is an eigenfunction of
r(k) for all k ∈ K, and we define a functionλ onK by

(8.5.9) r(k)ϕ0 = λ(k)−1ϕ0.

Note thatλ(m(a)) = λ(n(b)) = λ(wj) = 1 and that

cL(k1, k2)λ(k1)λ(k2)λ(k1k2)−1 = 1.

Thus, forp = n(b)m(a) ∈ P ∩K, we have

λ(p) = λ(n(b))λ(m(a)) cL(n(b),m(a)) = 1.

In fact,λ is bi-invariant underP ∩K. For example,

λ(pk) = λ(p)λ(k) cL(p, k) = λ(k).

Thus, for anyg ∈ G, writing g = pk with p ∈ P andk ∈ K, we may define

(8.5.10) λ(g) = λ(pk) := λ(k).

This allows us to renormalize coordinates and define an isomorphism

(8.5.11) G× C1 ∼−→ G̃, (g, z) 7→ [g, z] := [g, z λ(g)]L,

with cocycle

c(g1, g2) = cL(g1, g2)λ(g1)λ(g2)λ(g1g2)−1.

By construction, this cocycle is trivial onK ×K, P × P , andP ×K, via

c(p, k) = cL(p, k)λ(p)λ(k)λ(pk)−1 = λ(k)λ(k)−1 = 1.
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We will refer to the coordinates given by (8.5.11) asnormalized coordinates.
Note that, forp ∈ P , [p, 1] = [p, 1]L and[wj , 1] = [wj , 1]L, for example.
We writeK for the image ofK = Spn(O) in G̃ under the splitting homo-
morphism

K −→ G̃, k 7→ k = [k, 1] = [k, λ(k)]L.

Remark 8.5.3. We have, forn−(c) ∈ K, i.e., forc ∈ Symn(O),

(8.5.12) λ(n−(c)) = cL(n−(c), w)−1.

In fact, sincen−(c)w = wn(−c), we haveλ(n−(c)w) = λ(wn(−c)) =
λ(w) = 1, whereas

λ(n−(c)w) = λ(n−(c))λ(w) cL(n−(c), w).

In the casen = 1, this gives the useful formulas

(8.5.13) λ(n−(c)) = γ(ψ− 1
2
c),

and

(8.5.14) λ(
(
a b
c d

)
) =

γ(ψ−2cd) if c 6= 0 and ord(c) > 0,

1 otherwise.

8.5.2 The lifts of some homomorphisms

We now establish several facts used in the doubling calculation. We con-
tinue to work in greater generality than will be needed in this chapter and
will use the notationG′ = Spn(F ) andG = Sp2n(F ) for the linear groups
andG̃′ andG̃ for their metaplectic extensions. This differs slightly from the
conventions of the rest of the chapter. There is no restriction on the residue
characteristic ofF .

First, recall the embeddingi0 : G′ × G′ → G given by the formula
(8.1.1). Since the Leray cocycle is compatible with this embedding — this
follows from the fact thatY = Y ∩W1 + Y ∩W2 for the decomposition
W = W1 +W2 used to definei0 — there is a lifti0 of i0 to G̃′ × G̃′ → G̃,
given in Leray coordinates by

i0 : [g1, z1]L × [g2, z2]L 7→ [i0(g1, g2), z1z2]L.

The operatorsr(g) are also compatible withi0, i.e.,

r(i0(g1, g2)) = r(g1)⊗ r(g2)
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on S(F 2n) ' S(Fn) ⊗ S(Fn). In the case of odd residue characteristic,
sinceϕ0

2n = ϕ0
n ⊗ ϕ0

n, this implies that

λ(i0(k1, k2)) = λ(k1)λ(k2),

and hence

λ(i0(g1, g2)) = λ(g1)λ(g2).

Thus, in normalized coordinates,

i0 : [g1, z1]× [g2, z2] 7→ [i0(g1, g2), z1z2],

so thati0 is compatible with the splittings homomorphisms ofK ′ ×K ′ and
K.

Next, we recall the homomorphism

∨ : G′ −→ G′, g∨ = Ad
(

1
−1

)
g

and the twisted embedding

i(g1, g2) = i0 (g1 , g
∨
2 ).

Lemma 8.5.4. The homomorphism∨ : G′ → G′ has a lift to a homomor-
phism∨ : G̃′ → G̃′, given in Leray coordinates by

∨ : [g, z]L 7−→ [g∨, z−1]L.

Proof. We note that

r(g∨)ϕ̄(x)

(8.5.15)

=
∫
Fn/ker(−c)

ψ
(
− 1

2
(xa, xb) + (xb, yc)− 1

2
(yc, yd)

)
ϕ̄(xa− yc) dg(y)

=
∫
Fn/ker(c)

ψ
(
− 1

2
(xa, xb)− (xb, yc)− 1

2
(yc, yd)

)
ϕ̄(xa+ yc) dg(y)

= r(g)ϕ(x).

This implies that

cL(g∨1 , g
∨
2 ) = cL(g1, g2)−1.
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Thus, the homomorphism

i : G̃′ × G̃′ −→ G̃, i(g1, g2) = i0 (g1, g∨2 )

lifts i.
In the case of odd residue characteristic, takingϕ = ϕ0 in (8.5.15), we

haver(k∨)ϕ0 = λ(k)ϕ0, so that

λ(k∨) = λ(k)−1 and λ(g∨) = λ(g)−1,

and we obtain

∨ : G̃′ −→ G̃′, [g, z] 7−→ [g∨, z−1],

in normalized coordinates as well. In particular,∨ andi are compatible with
the splitting homomorphisms onK ′ andK ′ ×K ′ respectively.

We next prove (i) of Lemma 8.4.1. Recall that

(8.5.16) δ i(g, g) = p(g) δ.

Lemma 8.5.5.

[δ, 1]L[i(g, g), 1]L = [p(g), 1]L[δ, 1]L.

Proof. On the right side,

[p(g), 1]L[δ, 1]L = [p(g)δ, 1]L,

since the cocyclecL is trivial onP ×G, whereas on the left side,

[δ, 1]L[i(g, g), 1]L = [δ i(g, g), cL(δ, i(g, g))]L.

Thus, we must show that the cocyclecL(δ, i(g, g)) is trivial. Note that, by
(8.5.16),

Leray(Y δ, Y, Y i(g, g)−1) = Leray(Y δ, Y i(g, g), Y ),

so that, as a function ofg the cocyclecL(δ, i(g, g)) is bi-invariant underP ′.
Thus it suffices to compute it forg = wj . To compute the Leray invariant,
note that the isotropic2n-planesY δ, Y andY i(g, g)−1 are spanned by the
2n rows of (

−1n 1n 0 0
0 0 1n 1n

)
,

(
0 1n

0 1n

)
,
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and (
−tc ta

tc ta

)
,

for

a =
(

1n−j
0

)
, c =

(
0

−1j

)
,

respectively. ThusY δ ∩ Y is spanned by the rows of(
0 0 1n 1n

)
,

Y δ ∩ Y i(g, g)−1 is spanned by the rows of(
−tc tc ta ta

)
,

andY ∩ Y i(g, g)−1 is spanned by the rows of(
0 0 ta 0
0 0 0 ta

)
.

Thus

R = Y δ ∩ Y + Y ∩ Y i(g, g)−1 + Y δ ∩ Y i(g, g)−1

has rank2n andq(δ, i(g, g)) = 0, as required.

Since any choice ofδ in the metaplectic extension of Sp2n(F ) has the
form δ = [δ, z]L = [δ, 1]L · [1, z]L and since the element[1, z]L is central,
statement (i) of Lemma 8.4.1 is clear.

8.5.3 The Weil representation

We now return to the notation in Section 8.5.1, so thatG̃ is the metaplectic
extension of Spn(F ), for example. We consider the Weil representation
(ωV , S(V n)) of G̃ associated to a quadratic space(V,Q). Here, as before,
ψ has been fixed andη = ψ 1

2
. In [9], Proposition 4.3, this representation is

described in theRao coordinateswhich are defined as follows:

G× C1 ∼−→ G̃, (g, z) 7→ [g, z]R,

where

[g, z]R = [g, zβ(g)]L,
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for

(8.5.17) β(g) = γ(x(g), η)−1 γ(η)−j(g).

Here the notation is as in [19] and [8]. Multiplication is then

[g1, z1]R · [g2, z2]R = [g1g2, z1z2 cR(g1, g2)]R.

Note that, since the Rao cocyclecR is valued in{±1}, there is a character

(8.5.18) ζ : G̃ −→ C1, [g, z]R 7→ z2.

In Leray coordinates, this character becomes

(8.5.19) ζ([g, z]L) = z2β(g)−2.

A short calculation using Proposition 4.3 of [9] yields the following formula
for the Weil representation in Leray coordinates.

Lemma 8.5.6. Letm = dimF (V ). Then

ωV ([g, z]L)ϕ(x) = χV (x(g)) ( z γ(η)j(g) )• γ(η ◦ V )−j(g) · rV (g)ϕ(x),

where

• =

{
1 if m is odd,

0 if m is even,

and

rV (g)ϕ(x)

=
∫
V n/ker(c)

ψ(tr
( 1

2
(xa, xb)+(xb, yc)+

1
2
(yc, yd)

)
)ϕ(xa+yc) dg(y).

Here, forx, y ∈ V n, (x, y) = ((xi, yj)), and the measuredg(y) on the
quotientV n/ker(c) is normalized to make the operatorrV (g) unitary. Also,

χV (x) = (x, (−1)
m(m−1)

2 det(V ))F ,

anddet(V ) is the determinant of the matrix of the bilinear form onV . In
particular

(8.5.20) ωV ([w, 1]L)ϕ(x) = γ(V )n
∫
V n

ψ(tr(x, y))ϕ(y) dy,

where

(8.5.21) γ(V ) = χV (−1) γ(η) γ(η ◦ V )−1,
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and

γ(η ◦ V ) = γ(detV, η) γ(η)m ε(V ).

Remark 8.5.7. In the formulas of Lemma 8.5.6, we should writeωV,ψ,
[g, z]L,ψ andrV,ψ to indicate the dependence on the additive characterψ.
The following useful relation is easy to check:

(8.5.22) ωVα,ψα−1 ([g, z]L,ψ) = ωV,ψ([g, z]L,ψ).

Since, in general, we will work with a fixed additive characterψ, we will
suppress it from the notation and write simplyωV .

If dim(V ) is odd, we have

ωV ([n(b)m(a), z]L)ϕ(0) = z χV (det a) |det a|
m
2 ϕ(0),

so that we obtain ãG-intertwining map

λV : S(V n) −→ I(s0, χV ), ϕ 7→ (g 7→ ω(g)ϕ(0),

wheres0 = m
2 −

n+1
2 . We note several facts needed in this chapter.

Lemma 8.5.8.

ωV ([ g∨, z−1 ]L)ϕ(x) = ωV ([ g, z ]L)ϕ(x).

Proof. Note thatx(g∨) = (−1)j(g)x(g) and that

rV (g∨)ϕ(x) = rV (g)ϕ(x),

by the same argument as forr; see (8.5.15). The claimed formula then
follows from the easily checked identity

χV (−1) γ(η)2 γ(η ◦ V )−2 = 1.

Recall that the discriminant ofV is given by

(8.5.23) discr(V ) = (−1)
m(m−1)

2 det(V ) ∈ F×/F×,2,

wheredet(V ) = det((vi, vj)), for any basis{vi} of V . Suppose thatV =
V1+V2 is an orthogonal direct sum of quadratic spacesVi with dimF (Vi) =
mi. Then

rV (g) = rV1(g)⊗ rV2(g),

γ(ψ ◦ V ) = γ(ψ ◦ V1) · γ(ψ ◦ V2),

discr(V ) = discr(V1) · discr(V2) · (−1)m1m2 ,

and
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χV (x) = χV1(x) · χV2(x) · (x,−1)m1m2
F .

It follows that

Lemma 8.5.9. The Weil representationωV of G̃ on S(V n) ' S(V n
1 ) ⊗

S(V n
2 ) is given by

ωV (g) = ωV1(g)⊗ ωV2(g) ·

ζ(g)
−1 if m1m2 is odd,

1 otherwise.

The extra factorζ(g)−1 in the case where bothV1 andV2 are odd-dimensional
is due to the fact that, in our definition ofωV , [9], we have ‘twisted’ the
naturally defined Weil representation by a power ofζ in order to obtain
trivial central character in the even-dimensional case and central character
[1, z]L 7→ z in the odd-dimensional case. Here we have used the identity

(x(g),−1)F z2 γ(η)2j(g) = ζ([g, z]L).

We finish with two examples.
First, suppose thatV = V0 = F with quadratic formQ(x) = 1

2x
2. Then

the operatorrV (g) reduces to the operatorr(g) on S(Fn). On the other
hand,det(V ) = discr(V ) = 1 andγ(η ◦ V ) = γ(η), so that, in the odd
residue characteristic case and in normalized coordinates,

ωV ([g, z]) = z λ(g) γ(η)j(g)γ(η ◦ V )−j(g) rV (g)

= z λ(g) r(g).

It follows that the functionϕ0 ∈ S(Fn) is invariant underK, and so

g 7→ ωV (g)ϕ0(0)

is theK-fixed vector in the induced representationI(−n
2 , χ1), whereχ1 is

the trivial character.
Next, suppose thatV = Vr,r, where the matrix for the bilinear form is(

1r
1r

)
.

Then discr(V ) = 1, χV = χ0 = 1, andγ(η ◦ V ) = 1. Thus

ωV ([g, z]L) = rV (g),

so the operatorsrV (g) give a representation of Spn(F ). If ϕ0
r is the charac-

teristic function ofM2r,n(O) ⊂ V n, then, forψ unramified,ϕ0
r is invariant

under the generators ofK and hence under all ofK. Thus, we again have

(8.5.24) Φ0(g, r − n+ 1
2

) = ωV (g)ϕ0
r(0),
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whereΦ0(g, s) is theK-fixed vector inI(s, χ0), the induced representation
of Spn(F ). Note that even residue characteristic is allowed here.

TakingVr = V + Vr,r and using Lemma 8.5.9, we have

(8.5.25) ωVr(g)
(
ϕ⊗ ϕ0

r)(0) = Φ(g, s0 + r),

whereΦ(s) is the extension to a standard section of the imageλV (ϕ) of
ϕ ∈ S(V n) in I(s0, χV ), with s0 = m

2 −
n+1

2 . ForV = V0, ϕ = ϕ0, and
odd residue characteristic,Φ(s) = Φ0(s) is the uniqueK-fixed vector in
I(r − n

2 , χ0) with Φ0(1, s) = 1. The following useful fact is easy to check.
We refer to Lemma 8.5.14 for the case of even residue characteristic.

Lemma 8.5.10. Assume that the residue characteristic ofF is odd. Let
L ⊂ V be a lattice such that$rL] ⊂ L ⊂ L], where

L] = { x ∈ V | (x, y) ∈ O, ∀y ∈ L }

is the dual lattice andr > 0. Let

Jr = {
(
a b
c d

)
∈ K | c ≡ 0 mod $rO },

and letJr ⊂ K be the corresponding subgroup. Then the characteristic
functionϕL ∈ S(V n) ofLn ⊂ V n is an eigenfunction ofJr with

ωV (k)ϕL = χV (det(a))ϕL, for all k ∈ Jr.

Finally, for a quaternion algebraB over Qp, we takeV = { x ∈ B |
tr(x) = 0 } with Q(x) = ν(x) = −x2. Let ψp be the local component
of the global unramified characterψ of A/Q with ψ∞(x) = e(x). Then
χV (a) = (a,−2)p,

γp(η ◦ V ) = invp(B) ·


e(1

8) if p = 2,

e(−1
8) if p = ∞,

1 otherwise,

and

γp(V ) = invp(B) ·


i if p = 2,

−i if p = ∞,

1 otherwise.

Note thatγp(η) = 1 for p 6= 2, ∞, γ2(η) = e(−1
8), andγ∞(η) = e(1

8).
Recall thatγ(η ◦ V )−1 is computed in Lemma 13.3 of [14].
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8.5.4 The casep = 2

Almost everything in the previous sections is valid for any residue charac-
teristic, except for the results involving the splitting homomorphism over
K wherep was required to be odd. In this section, we discuss the changes
needed whenp = 2. Let F be a2-adic local field with ring of integersO
and a uniformizer$. Letψ be a unramified additive character ofF .

LetG = Spn(F ), K = Spn(O), andJ = {γ ∈ K | c ≡ 0 mod (4)}.
We can define a splittingJ → G̃ as follows. LetV = F with Q(x) = x2,
so that(x, y) = 2xy. Thendet(V ) = 2, χV (a) = (a, 2)F = χ2(a), and

γ(η ◦ V ) = γ(2, η)γ(η).

For L = O, the dual lattice isL] = 1
2 L, and|L] : L| = |O/2O|. Then

the functionϕL = char(L)n ∈ S(Fn) is an eigenvector for the operators
ωV ([m(a), 1]L), ωV ([n(b), 1]L), andωV ([n−(c), 1]L), for c ≡ 0 mod (4).
Explicitly,

Lemma 8.5.11.For an integer0 ≤ r ≤ n, letwr be as in (8.5.1). Then

ωV ([m(a), 1]L)ϕL = χ2(det a)ϕL,

ωV ([n(b), 1]L)ϕL = ϕL,

ωV ([wr, 1]L)ϕL = |2|
r
2 γ(2, η)−r · ϕLr ,

ωV ([wr, 1]L)ϕLr = |2|−
r
2 γ(2, η)−r · ϕL,

and

ωV ([n−(c), 1]L)ϕL = cL(n−(c), w) · ϕL.

Proof. Notice thatw = wn andϕL] = ϕLn .
We prove the last formula. Note thatn−(c)w = wn(−c). Setting

∗ = |2|
n
2 γ(2, η)n,

we have

ωV ([n−(c), 1]L)ϕL = (∗) · ωV ([n−(c), 1]L)ωV ([w, 1]L)ϕLn
= (∗) cL(n−(c), w) · ωV ([n−(c)w, 1]L)ϕLn
= (∗) cL(n−(c), w) · ωV ([w, 1]L)ωV ([n(−c), 1]L)ϕLn
= cL(n−(c), w) · ϕL.

Here, in the last step, we have used the fact that, forx ∈ L], Q(x) ∈ 1
4 O,

so thatωV ([n(−c), 1]L)ϕL] = ϕL] , sincec ≡ 0 mod (4).
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Every element ofJ can be written uniquely in the form

(8.5.26) k = n(b)m(a)n−(c),

for a ∈ GLn(O), b ∈ Symn(O), c ∈ 4 Symn(O), and

ωV ([k, 1]L)ϕL = λ2(k)−1 ϕL,

with

(8.5.27) λ2(k) = χ2(det a) cL(n−(c), w)−1.

Thus, we obtain a splitting homomorphism

(8.5.28) J → G̃, k 7→ k = [k, λ2(k)]L,

wherek ∈ J . Let J ⊂ G̃ be the image ofJ under this homomorphism. By
construction,ϕL is invariant underJ.

Remark 8.5.12. In the casen = 1,

λ2(
(
a b
c d

)
) = χ2(a) γ(ψ−2cd).

In Section 4.5.2, we will need some additional cocycle information. For
example, note that

wn(b)m(a)n−(c)w−1 = n−(−b)m(a−1)n(−c) ∈ P̃ ⇐⇒ b = 0,

and that[w, 1]L[m(a), χ2(a)]L = [m(a), χ2(a)]L[w, 1]L.

Lemma 8.5.13.(i)

[w, 1]L[n−(c), λ2(n−(c))]L = [n(−c), 1]L[w, 1]L.

(ii) For k = n(b)m(a)n−(c) ∈ J with a2 = (1 + 2b)(1− 2c0),

[n−(2), 1]L[n(b)m(a)n−(c), λ2(k)]L

= [n(b(1 + 2b)−1)m(a−1(1− 2c0)), ∗]L[n−(2), 1]L,

where

∗ = cL(n−(2), k) · λ2(k) = γ(1− 2c0, ψ).
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Proof. First consider (i). Since the Leray cocycle satisfiescL(P,G) = 1 =
cL(G,P ), we have

[w, 1]L[n−(c), λ2(n−(c))]L = [wn−(c), cL(w, n−(c))λ2(n−(c))]L

= [n(−c)w, cL(w, n−(c))λ2(n−(c))]L

= [n(−c), cL(w, n−(c))λ2(n−(c))]L[w, 1]L

= [n(−c), 1]L[w, 1]L,

sincecL(w, n−(c))λ2(n−(c)) = 1 by definition ofλ2

For (ii), we takek = n(b)m(a)n−(c) ∈ J with

(8.5.29) a2 = (1 + 2b)(1− 2c0).

Then

[n−(2), 1]L[n(b)m(a)n−(c), λ2(k)]L

= [n(b(1 + 2b)−1)m(a−1(1− 2c0)), ∗]L[n−(2), 1]L,

where∗ = cL(n−(2), k) · λ2(k). When equation (8.5.29) holds, then

2a+ a−1(1 + 2b)c = 2a−1(1 + 2b),

so that

2 · a−1c · 2a−1(1 + 2b) = 4a−2c(1 + 2b)

and

cL(n−(2), n(b)m(a)n−(c)) = γ(ψ2c(1+2b)),

where we use the fact thatγ(ψα2β) = γ(ψβ). Now

∗ = γ(ψ2c(1+2b)) · γ(ψ−2c)

= γ(ψ−2c)γ(2c(1 + 2b), ψ)γ(ψ)

= γ(ψ−2c)γ(2c, ψ)γ(ψ)(2c, 1 + 2b)γ(1 + 2b, ψ)

= (2c0, 1− 2c0)γ(1 + 2b, ψ)

= γ(1− 2c0, ψ),

where (8.5.29) was used in the last two steps.

Finally, we consider the Weil representation and record the analogue of
Lemma 8.5.10 in thep = 2 case.
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Proposition 8.5.14.Supppose that(V,Q) is a quadratic space overF and
thatL ⊂ V is aO-lattice such that, for somer ≥ 0,

2$r L] ⊂ L ⊂ L],

whereL] is the dual lattice. Let

Jr = { k ∈ K = Spn(O) | c ≡ 0 mod (4$r) },

and letJr be the corresponding subgroup ofJ. Let ϕL ∈ S(V n) be the
characteristic function ofLn ⊂ V n. ThenϕL is an eigenfunction forJr
with eigencharacterχV χ2, i.e.,

ωV (k)ϕL = χV χ2(det a) · ϕL, k = [k, λ2(k)], k =
(
a b
c d

)
∈ Jr.

Proof. It is enough to check on the generators, (8.5.26), ofJr. We have

ωV ([m(a), χ2(det a)]L]ϕL = χV χ2(det a)ϕL,

and

ωV ([n(b), 1]L)ϕL = ϕL.

Since, forx ∈ L],

4$rQ(x) = (2$rx, x) ∈ O,

we have

ωV ([n(−c), 1]L)ϕL] = ϕL]

for c ≡ 0 mod (4$r). The same argument as before then yields

ωV ([n−(c), λ(n−(c))]L)ϕL = λ(n−(c)) cL(n−(c), w)ϕL = ϕL.

8.5.5 The global metaplectic group

We now turn to the cocycle for the global metaplectic group. Recall thatψ is
our fixed unramified character ofA/Q with ψ∞(x) = e(x). Let G̃A be the
metaplectic cover ofG(A) = Spn(A). For p odd, we have the normalized
coordinate system for̃Gp, given by (8.5.11),

(8.5.30) Gp × C1 → G̃p, (g, z) 7→ [g, z]p = [g, zλp(g)]L,

and the associated cocyclec0p(·, ·) is trivial onKp×Kp. Forg1, g2 ∈ G(A),
the global cocycle

(8.5.31) c(g1, g2) = cL(g1,∞, g2,∞) cL(g1,2, g2,2)
∏

p6=2,∞
c0p(g1,p, g2,p)
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is then well defined and gives a normalized coordinate system forG̃A,16

(8.5.32)
G(A)× C1 → G̃A, (g, z) 7→ [g, z] = [g∞, z]L,∞[g2, 1]L,2

∏
p6=2,∞

[gp, 1]p.

Let

K0(4) = {g =
(
a b
c d

)
∈ Spn(Ẑ) | c ≡ 0 mod 4} = K0(4)2 ×

∏
p6=2

Kp.

Then there is a splitting

(8.5.33) K0(4) → G̃A, k 7→ [k, λ2(k)],

whereλ2(k) is given by (8.5.27). LetK0(4) be the image ofK0(4) in G̃A.
On the other hand, there is a unique splitting homomorphism ofG(Q) into
G̃A, whose image we denote byGQ. In terms of the normalized coordinates,
this splitting has the following description.

Lemma 8.5.15.(i) For g ∈ G(Q), λp(g) = 1 for almost allp. In particular,

λ(g) :=
∏

p6=2,∞
λp(g)

is well defined. Moreover,

c0p(g1, g2) = cL,p(g1, g2) = 1

for almost allp.
(ii) For g1, g2 ∈ G(Q), there is a product formula∏

p≤∞
cL,p(g1, g2) = 1.

(iii) The splitting homomorphisms : G(Q) → G̃A is given by

s(g) = [g, λ(g)−1].

Proof. To prove (i), we writeg = p1wrp2 with p1, p2 ∈ PQ, the Siegel
parabolic subgroup ofGQ. We havep1, p2 ∈ Kp ∩ PQ, for almost all
primesp. Sinceλp is bi-invariant underKp ∩ Pp, we then have

λp(g) = λp(p1wrp2) = λp(wr) = 1.

If λp(g1) = λp(g2) = 1, thenc0p(g1, g2) = cL,p(g1, g2). On the other hand,
c0p(g1, g2) = 1 wheneverg1 andg2 are both inKp andp 6= 2. This give the

16Here, in the last expression, we are using the fact thatG̃p maps toG̃A for everyp ≤ ∞.
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second statement in (i). To prove (ii), note that the product is well defined
by the second statement in (i). Now, forg1, g2 ∈ GQ, there is a global
quadratic form

Q = Leray(Y g1, Y, Y g−1
2 ),

and the product formula ∏
p≤∞

γp(ψ ◦Q) = 1

for the Weil indices implies (ii).
To prove (iii), it suffices to check

c(g1, g2) = λ(g1)λ(g2)λ(g1g2)−1.

By (i), (ii), and the definitions, we have

c(g1, g2) =
∏

p=2,∞
cL,p(g1, g2)

∏
p6=2,∞

cL,p(g1, g2)λp(g1)λp(g2)λp(g1g2)−1

= λ(g1)λ(g2)λ(g1g2)−1
∏
p

cL,p(gp, gp)

= λ(g1)λ(g2)λ(g1g2)−1.

8.5.6 The multiplier system for Siegel modular forms of half integral weight

In this subsection, we describe the transformation laws of Siegel modular
forms of half integral weight in terms of the metaplectic cocycle.

LetK∞ ∼= U(n) be the standard maximal compact subgroup ofG(R) =
Spn(R) and letK̃∞ ∼= Ũ(n) be its preimage iñGR. Then for each half
integer` ∈ 1

2 + Z, there is a unique genuine characterξ` of K̃∞ such that,

for g =
(

A B
−B A

)
∈ K∞ with A+ iB ∈ U(n),

(8.5.34) ξ`([1, z]R) = z, ξ2` ([k, z]R) = z2 det(A+ iB)2`.

Here [g, z]R are Rao coordinates. Equivalently, in Leray coordinates, we
have

(8.5.35) ξ2` ([k, z]L) = z2β(k)−2 det(A+ iB)2`,

whereβ is given by (8.5.17).
Next we define the automorphy factor. Forτ = u+ iv ∈ Hn, let

gτ = n(u)m(v
1
2 ) and g′τ = [gτ , 1]L.
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Then, forγ =
(
a b
c d

)
∈ G(R), write

γ · gτ = gγ(τ) · k(γ, τ)−1,

with

k(γ, τ) =
(

A B
−B A

)
∈ K∞, det(A+ iB) =

cτ + d

|cτ + d|
.

This implies that

γ′ · g′τ = g′γ(τ) · k
′(γ, τ)−1,

whereg′ = [g, 1]L ∈ G̃R.

Definition 8.5.16. Forγ ∈ Γ0(4) = G(Q) ∩K0(4), and for` ∈ 1
2 + Z, let

j`(γ, τ) := λ(γ)λ2(γ) · ξ`(k′(γ, τ)) · |det(cτ + d)|`,

whereλ(γ) andλ2(γ) are defined in the previous section.

The first part of the next lemma is immediate from the fact thatλ(γ),
λ2(γ), andβ(k) are all8-th roots of unity. The second part is a standard
classical result.

Lemma 8.5.17.(i) For γ ∈ Γ0(4)

j`(γ, τ)8 = det(cτ + d)8`.

In particular, η`(γ) = j`(γ, τ)j 1
2
(γ, τ)−2` is independent ofτ and is a

character ofΓ0(4) of order dividing8.
(ii) Whenn = 1,

j`(γ, τ) = ε−1
d

(
c

d

)
· (cτ + d)`,

and

η`(γ) =
(−1
d

)`− 1
2

.

Hereεd = 1 or i depending on whetherd ≡ 1 or −1 mod 4, and

z
1
2 =

√
reiθ/2, if z = reiθ, −π < θ ≤ π.
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Remark 8.5.18. In the case of classical modular forms of half-integral
weight, Shimura [21] uses the automorphy factor

( j 1
2
(γ, τ) )` =

(−1
d

)`− 1
2

· j`(γ, τ).

This is more natural when taking products of such forms.

Lemma 8.5.19.For γ =
(
a b
0 d

)
∈ Γ0(4),

j`(γ, τ) = sgn(det d)`−
1
2 .

Proof. Since, forγ =
(
a b
0 d

)
∈ Γ0(4), d ∈ GLn(Z) anddet a = det d =

±1, (8.5.27) givesλ2(γ) = χ2(det d) = 1 and (8.5.9) givesλp(γ) = 1 for

p 6= 2. To computeξl(k′(γ, τ)), let εl = (sgn)l−
1
2 , and letΦl

∞ be the eigen-
function ofK̃∞ in the induced representationI∞(εl) with eigencharacterξl.
By evaluatingΦ`

∞ on the element

γ′g′τ = gγ(τ)k
′(γ, τ)−1,

we find that

ξl(k′(γ, τ)) = εl(det a),

as claimed.

Let N be a positive integer and letχ be a character ofΓ0(4N). We say
that a functionf onHn is of weightl, level4N , and characterχ if

(8.5.36) f(γτ) = jl(γ, τ)χ(γ)f(τ)

for everyγ ∈ Γ0(4N). We say that a functionφ onGQ\G̃A is of weightl,
level4N , and characterχ, whereχ is a character ofK0(4N), if

φ(gk) = χ(k−1) · φ(g) for k ∈ K0(4N),(8.5.37)

and

φ(gk∞) = ξl(k∞) · φ for k∞ ∈ K̃∞.(8.5.38)

Proposition 8.5.20. If the functionφ onGQ\G̃A is of weightl, level4N ,
and characterχ, then the function

f(τ) := (det v)−
l
2 · φ(g′τ ), τ = u+ iv ∈ Hn,

is of weightl, level4N , and characterχ, whereχ is the pullback ofχ to
Γ0(4N).
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Proof. The argument is just an adelic version of that given by Shintani [22].
We have

f(γ(τ)) =
(
det v(γ(τ))

)− 1
2
` · φ(gγ(τ))

= (det v)−
1
2
` · det |cτ + d|` · φ(γ′g′τk

′(γ, τ))(8.5.39)

= (det v)−
1
2
` · det |cτ + d|` · ξ`(k′(γ, τ)) · φ(γ′g′τ ).

We write

γ′ = [γ, 1]L,∞

= s(γ) · [1, λ(γ)] · [γ, 1]−1
L,2

∏
p6=2,∞

[γ, 1]−1
p(8.5.40)

= s(γ) · [1, λ(γ)λ2(γ)] · [γ, λ2(γ)]−1
L,2

∏
p6=2,∞

[γ, 1]−1
p

= s(γ) · [1, λ(γ)λ2(γ)] · γ−1,

whereγ ∈ K0(4N) is the image ofγ under the splitting homomorphism.
Then, in the last line of (8.5.39),

φ(γ′g′τ ) = λ(γ)λ2(γ) χ(γ) · φ(g′τ ),

as required.

This proposition yields the transformation law of the genus two Eisen-
stein seriesE2(τ, s;B) studied in Chapter 5.

Proposition 8.5.21.

E2(γ(τ), s;B) = sgn(det d) · j 3
2
(γ, τ) · E2(τ, s;B),

for all γ =
(
a b
c d

)
∈ Γ0(4D(B)o), whereD(B)o is the odd part ofD(B).

Note that sgn(det d) = (−1,det d)2. If c = 0, we havej 3
2
(γ, τ) =

sgn(det d), so that

(8.5.41) E2(γ(τ), s;B) = E2(τ, s;B),

in this case.
Proposition 8.5.21 follows from the eigenproperties of the sections used

to defineE2(τ, s;B).
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Proposition 8.5.22.Letχ = χ2κ, with κ = ±1, and letΦ•(s) ∈ In(s, χ),
with • = 0, 1, or ra, be the standard sections defined in (8.4.13) and Sec-
tion 5.1. Let

Jr = {
(
a b
c d

)
∈ Kp | c ≡ 0 mod 4pr},

and letJr ⊂ K0(4) be the image ofJr ⊂ K0(4) in G̃p under the splitting
homomorphism.
(i) For p 6= 2,

r(k)Φ•(s) = Φ•(s), for all k ∈ Jr, wherer =

0 if • = 0,

1 if • = 1, ra.

(ii) For p = 2,

r(k)Φ•(s) = χκ(det d) · Φ•(s), for all k ∈ J0,

wherek = (k, λ2(k)) with k =
(
a b
c d

)
.

Proof. The mapλV : S(V n) → In(s0, χV ) is G̃p intertwining, and the
passage from an element ofIn(s0, χV ) to the associated standard section is
compatible with the action of̃Kp. Thus, by (8.4.13), it suffices to observe
the following facts, which are a special case of Lemma 8.5.10 and Proposi-
tion 8.5.14.

Lemma 8.5.23.LetV = V ±, and letL0, L1 in V + andLra in V − be the
lattices defined in (8.4.12).
(i) For p 6= 2,

ωV,ψp(k) char(L•) = char(L•), for all k ∈ Jr,

wherer = 0 if • = 0 andr = 1 if • = 1 or ra.
(ii) For p = 2,

ωV,ψp(k) char(L•) = χκ(det d) · char(L•), for all k ∈ J0.

This finishes the proof of Proposition 8.5.22.

8.5.7 The level of the vertical component of̂φ1(τ)

In this section, we determine the level of the theta functions associated to the
vertical component of the genus one generating functionφ̂1(τ) considered
in Section 4.3; see Remark 4.3.5. This will complete the proof of Theorem
A. We fix a primep | D(B), and we determine the compact open subgroup
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of the metaplectic groupG′ = G′p which fixes the Schwartz functionµ[Λ]

defined in Lemma 4.3.3. We slightly simplify the notation of that section by
letting

V = V ′(Qp) = { x ∈M2(Qp) | tr(x) = 0 },

andΛ = Z2
p ⊂ Q2

p. Then

ϕ[Λ] = ϕ0 := char(L), L = V ∩M2(Zp),

and we have

ϕ(x) := µ[Λ](x) = ϕ0(x)− pϕ0(p−1x)− ϕ∼(x),

where the functionϕ∼ is defined as follows. Ifp 6= 2,

ϕ∼(x) = χ(−det(x)) · char(V ∩GL2(Zp))(x),

whereχ(ε) = (ε, p)p. If p = 2,

ϕ∼(x) = p · char(V ∩ (1 + pM2(Zp)))(x).

Note that supp(ϕ) ⊂ L and thatϕ is constant onpL cosets. In addition,ϕ
is invariant under conjugation by GL2(Zp) and under scaling by elements
of Z×p .

Let

Kr = { k =
(
a b
c d

)
∈ SL2(Zp) | ord(c) ≥ r }.

There is a splitting homomorphism

Kr
∼−→Kr ⊂ G′, k 7→ k = [k, λ(k)]L,

wherer = 0, if p 6= 2, andr = 2, if p = 2.

Proposition 8.5.24. (i) For p 6= 2, the functionϕ is invariant under the
subgroupK1.
(ii) For p = 2, the functionϕ is an eigenfunction for the subgroupK2 with
character

χ−1 :
(
a b
c d

)
7→ χ−1(a) = (a,−1)2.

Proof. If r ≥ 1, any elementk ∈ Kr can be written uniquely in the form
k = n−(c)m(a)n(b), where, as usual,

n−(c) =
(

1
c 1

)
, m(a) =

(
a

a−1

)
, n(b) =

(
1 b

1

)
.
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We writen−(c), m(a), andn(b) for the images of these elements under the
splitting homomorphism, where, ifp = 2, we suppose thatr ≥ 2.

Note thatχV = χ−2. Then, fora ∈ Z×p , we have

ω(m(a))ϕ(x) = χV χ2(a)ϕ(ax) = χ−1(a)ϕ(x),

sinceϕ is invariant under scaling by units, and

ω(n(b))ϕ(x) = ψ(bQ(x))ϕ(x) = ϕ(x),

since supp(ϕ) ⊂ L,Q is Zp-valued onL andψ is unramified.
Next note that we have the relation

n−(c) = [w, 1]−1
L n(−c) [w, 1]L,

by Lemma 8.5.13, whenp = 2 and from the fact that[w, 1]L = w ∈ K0, in
the casep 6= 2. By (8.5.20), we have

ωV ([w, 1]L)ϕ(x) = γ(V )
∫
V
ψ(tr(x, y))ϕ(y) dy = γ(V ) · ϕ̂(x).

Thus, it suffices to prove the following result about the support of the Fourier
transformϕ̂.

Lemma 8.5.25. If ϕ̂(x) 6= 0, then

ord(Q(x)) ≥

−1 if p 6= 2,

−2 if p = 2.

Proof. Note that supp(ϕ̂) ⊂ p−1 L] and thatϕ̂ is constant onL] cosets.
Thus, we may viewϕ̂ as a function on the vector spacep−1L]/L] of di-
mension3 overFp. In addition, this function is invariant under scaling by
F×p and under the action of GL2(Fp) induced by the conjugation action of
GL2(Zp) onL].

First consider the casep 6= 2, so thatL] = L and we can identify
p−1L/L ' L/pL with the setV (Fp) of trace zero2 × 2 matrices over
Fp. The conjugation action of GL2(Fp) gives the action of SO(V (Fp)) and
there are three orbits of GL2(Fp)× F×p with orbit representatives

0,
(

1
0

)
,

(
1

−1

)
,

(
1

β

)
,

whereχ(β) = −1. We must show that the function determined byϕ̂ van-
ishes on the last two representatives. Of course, setting

ϕ′(x) = ϕ0(p−1x) = char(pL)(x)
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and

ϕ′′(x) = ϕ0(px) = char(p−1L)(x),

we have

ϕ̂0 − p ϕ̂′ = ϕ0 − p−2 ϕ′′,

so that it remains to calculate the values of̂ϕ∼ on the last two representa-
tives. For the first of these, we have

ϕ̂∼(p−1
(

1
−1

)
) =

∫
V ∩GL2(Zp)

ψ(−p−12y0)χ(y2
0 + y1y2) dy

= p−3
∑

y∈V (Fp)
det y 6=0

ψ(−p−12y0)χ(y2
0 + y1y2).

Now the contribution of the set ofy wherey0 = 0 vanishes, since the char-
acterχ of F×p is nontrivial. This leaves the quantity

p−3
∑
y0∈F×p

∑
y1,y2∈Fp
y20+y1y2 6=0

ψ(−p−12y0)χ(y2
0 + y1y2)

= p−3
∑
y0∈F×p

∑
y1,y2∈Fp
y1y2 6=−1

ψ(−p−12y0)χ(1 + y1y2)

= −p−3
∑

y1,y2∈Fp
y1y2 6=−1

χ(1 + y1y2)

= −p−3
∑
u∈F×p

χ(u)
∑

y1,y2∈Fp
y1y2=u−1

1

= −p−3(p− 1)
∑
u∈F×p

χ(u)− p−2 = −p−2.

Here, in the last two steps, we note that the number of solutions ofy1y2 =
u− 1 is p− 1, if u 6= 1, and2p− 1, if u = 1. It follows that

ϕ̂(p−1
(

1
−1

)
) = 0,
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as claimed. Next we calculate

ϕ̂∼(p−1
(

1
β

)
) =

∫
V ∩GL2(Zp)

ψ(−p−1(y2 + βy1))χ(y2
0 + y1y2) dy

= p−3
∑

y∈V (Fp)
det y 6=0

ψ(−p−1(y2 + βy1))χ(y2
0 + y1y2).

The terms wherey0 = 0 give

p−3 χ(β)
∑
y1,y2

ψ(p−1(y1 + y2))χ(y1y2)

= p−3 χ(β)
∑
y1,y2

ψ(p−1y1(1 + y2))χ(y2) = −p−2 χ(−1),

where, in the last step, we note that the sum ony1 gives−χ(y2), if y2 6= −1,
and(p− 1)χ(y2), if y2 = −1. Next, the terms withy0 6= 0 give

p−3
∑
y1,y2

y1y2 6=−1

χ(1 + y1y2)
∑
y0 6=0

ψ(−p−1y0(y2 + βy1))

= p−3
∑
u∈F×p

χ(u)
∑

y1y2=u−1

∑
y0 6=0

ψ(−p−1y0(y2 + βy1)).

The inner sum is−1, if y2 + βy1 6= 0, andp − 1, if y2 + βy1 = 0. When
u = 1, the sum ony1 andy2 then gives

−2(p− 1) + p− 1 = −(p− 1).

If u 6= 1, theny2 = (u− 1)y−1
1 , and we note that the equation

(u− 1)y−1
1 + βy1 = 0

has two solutions ifχ(1 − u) = −1 and no solutions ifχ(1 − u) = 1.
It follows that, for a fixedu, the sum ony1 andy2 is equal−(p − 1), if
χ(1− u) = 1, andp+ 1, if χ(1− u) = −1. This may be written as

1− pχ(1− u),

so that the whole expression becomes

(8.5.42) p−3
∑
u 6=1

χ(u)− p−2
∑
u 6=1

χ(u)χ(1− u)− p−3(p− 1).

It is easy to check that

p−2
∑
u 6=1

χ(u)χ(1− u) = −χ(−1) p−2,
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so that (8.5.42) becomes

p−2(χ(−1)− 1).

Thus,

ϕ̂∼(p−1
(

1
β

)
) = −p−2,

and

ϕ̂(p−1
(

1
β

)
) = 0,

as claimed.

Remark 8.5.26. Forp 6= 2, similar calculations yield the values

ϕ̂∼(0) = p−2(p− 1) and ϕ̂∼(p−1
(

1
0

)
) = 0,

and hence

ϕ̂(0) = p−1(p− 1) and ϕ̂(p−1
(

1
0

)
) = p−2(p− 1).

Next suppose thatp = 2. In this case, we can take the following elements
as orbit representatives for the action of GL2(F2) on theF2-vector space
L]/2L]:

0,
(

1
0

)
,

(
1
2

−1
2

)
,

(
1
2 1
1 −1

2

)
.

Once again, we need to show that the function onL]/2L] determined by
ϕ̂ vanishes on the last two elements. Note that the self-dual measure onV
gives vol(L) = 1/

√
2. Settingϕ′ = char(2L), we have

ϕ̂0 − 2 ϕ̂′ =
1√
2

char(L])− 1
4
√

2
char(

1
2
L]).

Thus, we must determine

ϕ̂∼(x) = 2
∫
V ∩(12+2M2(Z2))

ψ((x, y)) dy.

If we write

y =
(
y0 2y1

2y2 −y0

)
,
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with y0 ∈ Z×2 , we havedy = 1
4
√

2
dy0 dy1 dy2, and

(x, y) =


−1

2 y0 for x =
(

1
4

− 1
4

)
,

−1
2(y0 + 2y1 + 2y2) for x =

(
1
4

1
2

1
2
− 1

4

)
.

In either case, we get

ϕ̂∼(x) =
1

2
√

2

∫
Z×2

∫
(Z2)2

ψ(−1
2
y0) dy0 dy1 dy2

=
1

4
√

2
ψ(−1

2
) = − 1

4
√

2
.

Thus,

ϕ̂(x) = 0,

as claimed in the lemma.

This finishes the proof of Proposition 8.5.24.

Remark 8.5.27. Again, we record the other values

ϕ̂∼(0) = ϕ̂∼(
( 1

2
0

)
) =

1
4
√

2
,

so that

ϕ̂(0) = ϕ̂(
( 1

2
0

)
) =

1
2
√

2
.
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Chapter Nine

Central derivatives of L-functions

In this chapter, we first use the Borcherds generating function,φBor(τ, ϕ),
to define an arithmetic analogue of the classical Shimura-Waldspurger lift
described in Section 8.2. We show that this lift, whose target is the Mordell-
Weil group of a Shimura curve overQ, is compatible with the local theta cor-
respondence, and hence there are local obstructions to nonvanishing, just as
in the classical case. We then formulate a conjectural analogue of the result
of Waldspurger, Theorem 8.2.5, and characterize the nonvanishing of the
arithmetic theta lift in terms of theta dichotomy (local obstructions) and the
nonvanishing of the central derivativeL′(1

2 ,Wald(σ, ψ)). In Section 9.2, we
prove this conjecture in certain cases by means of an arithmetic version of
Rallis’s inner product formula, obtained by combining the arithmetic inner
product formula of Chapter 7, the identity of Chapter 6 relating the genus
two generating function and the central derivativeE ′2(τ, 0, B), and the ex-
plicit doubling formula of Chapter 8. In Section 9.3, we explain how the
input for our arithmetic theta lift can be described in the classical language
of normalized newforms of weight2.

9.1 THE ARITHMETIC THETA LIFT

We begin by defining the arithmetic theta lift.
For an indefinite quaternion algebraB overQ and for any compact open

subgroupK ⊂ HB(Af ), whereHB = B× ' GSpin(V B), let

(9.1.1) MW(MB
K ) = Jac(MB

K )(Q)⊗Z C

be the Mordell-Weil space of the associated Shimura curveMB
K over Q.

There is an exact sequence

(9.1.2) 0 −→ MW(MB
K ) −→ CH1(MB

K ) −→ H2(MB
K ) −→ 0,

whereH2(MB
K ) is the Betti cohomology with complex coefficients. We can

pass to the limit overK and let

(9.1.3) MW(MB) = lim
→
K

MW(MB
K ).
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The spaces CH1(MB) andH2(MB) are defined analogously and there is
an exact sequence

(9.1.4) 0 −→ MW(MB) −→ CH1(MB) −→ H2(MB) −→ 0.

of admissibleHB(Af )-modules, where, for example,

(9.1.5) MW(MB)K = MW(MB
K ).

For anyϕ ∈ S(V B(Af )), the associated arithmetic theta functionφ̃Bor(·, ϕ),
defined in Section 4.7, is a ‘holomorphic’ ‘weight3

2 ’ automorphic form on
G′A, valued in CH1(MB). Recall that this is the lift toG′A of the generating
function

φBor(τ, ϕ) =
∑
t≥0

Z(t, ϕ) qt

for weighted0-cycles. Ifϕ ∈ S(V B(Af ))K for some compact open sub-
groupK of HB(Af ), thenφ̃Bor(·, ϕ) takes values in the finite dimensional
space CH1(MB

K ). Also recall, from Section 4.7, that ifg′0 ∈ G′Af , then

(9.1.6) φ̃Bor(g′g′0, ϕ) = φ̃Bor(g′, ω(g′0)ϕ),

just as for the classical theta function.
For any cusp formf ∈ A00(G′), the arithmetic theta lift off is the class

(9.1.7) θar(f, ϕ) :=
∫

Sp1(Q)\Sp1(A)
f(g′) φ̃Bor(g′, ϕ) dg,

in CH1(MB). In fact, sincef is orthogonal to all Eisenstein series and unary
theta series, (4.4.29) and Proposition 4.4.7 imply thatθar(f, ϕ) maps to zero
in H2(MB) in the sequence (9.1.4) and henceθar(f, ϕ) ∈ MW(MB).

Suppose thatσ ' σ∞ ⊗ σ0 is a genuine cuspidal automorphic represen-
tation ofG′A with

(9.1.8) σ∞ ' π̃+
3
2

= HDS3
2
,

the holomorphic discrete series representation ofG′R of weight 3
2 . We write

V(σ) ⊂ A00(G′) for the space ofσ, and we writeV(σ) 3
2
,hol ⊂ A00(G′) 3

2
,hol

for the subspace of lowest weight vectors of weight3
2 for K ′

∞, the full in-
verse image of SO(2) in G′R. Note thatV(σ) 3

2
,hol ' σ0. The arithmetic

theta lift ofσ,

(9.1.9) θar(σ,MB) ⊂ MW(MB),
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is the subspace spanned by the elementsθar(f, ϕ) as f ∈ σ and ϕ ∈
S(V B(Af )) vary. Note thatθar(σ,MB) is anHB(Af )-invariant subspace.

In analogy with (8.2.33), the theory of the local theta correspondence, in
Howe’s formulation [5], yields the following information about the space
θar(σ,MB). Write σ0 ' ⊗pσp and recall that, for eachp, the maximal
σp-isotypic quotientS(σp, V B

p ) of S(V B
p ) is either zero or

S(σp, V B
p ) ' σp ⊗Θ(σp, V B

p ),

whereΘ(σp, V B
p ) is a smooth representation ofHB

p which has a unique
irreducible quotientθψ(σp, V B

p ); see [10]. Note that, to be consistent with
the notation of Chapter 8, we have writtenθψ(σp, V B

p ) = θ(σp, V B
p ), even

though the additive characterψ is fixed throughout this chapter.

Proposition 9.1.1. As a representation ofHB(Af ),

θar(σ,MB) '

⊗p<∞θψ(σp, V B
p )

0.

Proof. The nondegenerateG′Af -invariant inner product

(9.1.10) 〈 f1, f2 〉Pet =
∫
G′Q\G

′
A

f1(g′) f2(g′) dg′

onA0(G′) 3
2
,hol allows us to identifyV(σ) 3

2
,hol with its C-antilinear admis-

sible dual via the map

(9.1.11) f 7−→ 〈 f, · 〉Pet.

Thus, we obtain aC-linear map

(9.1.12) θar
σ : S(V B(Af )) −→ V(σ) 3

2
,hol ⊗MW(MB), ϕ 7→ θar

σ (ϕ),

where, for allf ∈ V(σ) 3
2
,hol,

(9.1.13) θar(f, ϕ) = 〈 f, θar
σ (ϕ) 〉Pet.

Note thatθar
σ (ϕ) is just theσ-isotypic part ofφ̃Bor(g′, ϕ).

The mapθar
σ is equivariant for the action ofG′Af ×HB(Af ), by (9.1.6),

and independent of the choice of the invariant measuredg′. In particular,θar
σ

factors through the maximalσ0-isotypic quotientS(σ0, V
B) of S(V B(Af )).
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This quotient can be described in terms of the local theta correspondence.1

As a representation ofG′Af ×HB(Af ), S(σ0, V
B) is either zero or

(9.1.14) S(σ0, V
B) ' σ0 ⊗Θ(σ0, V

B),

for a uniquely determined representationΘ(σ0, V
B) ofHB(Af ). If σ0 does

not occur as a quotient ofS(V B(Af )) we setΘ(σ0, V
B) = 0. By the

compatibility of the local and global theta correspondences and the results
recalled above,

Θ(σ0, V
B) ' ⊗pΘ(σp, V B)

is either zero or has finite length and has a unique irreducible quotient

θ(σ0, V
B) ' ⊗pθ(σp, V B).

Since MW(MB) is completely reducible as a representation ofHB(Af ),2

the mapθar
σ factors through the unique irreducible quotientσ0 ⊗ θ(σ0, V

B)
of S(σ0, V

B), and so we obtain
(9.1.15)

θar
σ : S(V B(Af ))

prBσ−→ σ0 ⊗ θ(σ0, V
B)

1⊗jBσ−→ V(σ) 3
2
,hol ⊗MW(MB),

for a unique determinedHB(Af )-equivariant map

(9.1.16) jBσ : θ(σ0, V
B) −→ θar(σ,MB) ⊂ MW(MB)

with imageθar(σ,MB). Thus,

(9.1.17) θar(σ,MB) '

⊗p<∞θψ(σp, V B
p )

0,

as claimed.

By the previous proposition, we have

(9.1.18) θar(σ,MB) 6= 0 =⇒ invp(B) = δp(σp, ψ−p ), ∀p <∞,

1Here we are following the original formalism introduced by Howe [5]. The particu-
lar dual pair(G′, O(V B)) was studied in detail by Waldspurger [12], [15] from a slightly
different point of view. In our application to the arithmetic theta correspondence, which is
modeled on [6], we need Howe’s abstract formulation. The additional facts we need, some
of which are special to this particular dual pair, can be found in [10].

2This follows from invariance underHB(Af ) of the hermitian form on MW(MB) de-
termined by the Ńeron-Tate pairing.
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whereδp(σp, ψ−p ) is the local dichotomy sign defined in (8.2.8). Note that
the occurrence here of the additiveψ−p , whereψ−p (x) = ψp(−x), is ex-
plained in Corollary 8.2.6. SinceB is indefinite, this implies that

(9.1.19)
∏
p<∞

δ(σp, ψ−p ) = 1,

and hence, by (8.2.29), that

(9.1.20) ε(
1
2
,Wald(σ, ψ−1)) = δ(σ∞, ψ−∞).

The archimedean dichotomy invariantδ(σ∞, ψ−∞) is given by Table 2 in
Chapter 8.

Lemma 9.1.2. Letσ∞ = HDS3
2

andψ∞(x) = e(x). Then

(i) Wald(σ∞, ψ−∞) = DS2, the weight2 discrete series representation of
PGL2(R).
(ii) θ(σ∞, V −∞) = 11 6= 0 andθ(σ∞, V +

∞) = 0. In particular,

δ∞(HDS3
2
, ψ−∞) = −1.

Combining these facts, we obtain the following results concerning the
vanishing of the arithmetic theta lift.

Proposition 9.1.3. If ε(1
2 ,Wald(σ, ψ−)) = +1, thenθar(σ,MB) = 0 for

all indefinite quaternion algebrasB overQ.

This is the complement to the result of Waldspurger which says that all
classical theta liftsθ(σ, V B) vanish whenε(1

2 ,Wald(σ, ψ−)) = −1. Of
course, in the arithmetic case, we only considerσ’s with σ∞ = HDS3

2
.

Corollary 9.1.4. If θar(σ,MB) 6= 0, thenL(1
2 ,Wald(σ, ψ−)) = 0.

It is interesting to note that this assertion, in which the nonvanishing of a
class in the Mordell-Weil group implies the vanishing of an L-function, is
an immediate consequence of local Howe duality and theta dichotomy once
the arithmetic theta lift has been constructed.3

Finally, in analogy with Waldspurger’s result, part (ii) of Theorem 8.2.5,
we have the following conjecture concerning the nonvanishing of the arith-
metic theta liftθar(σ,MB).

3Of course, we are only using the fact thatΘ(σo, V
B) has a unique irreducible quotient.
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Conjecture 9.1.5. If ε(1
2 ,Wald(σ, ψ−1)) = −1, letB be the unique indefi-

nite quaternion algebra overQ with invp(B) = δp(σp, ψ−p ) for all p < ∞.
Then

θar(σ,MB) 6= 0 ⇐⇒ L′(
1
2
,Wald(σ, ψ−1)) 6= 0.

Remark 9.1.6. (i) In both Corollary 9.1.4 and Conjecture 9.1.5, we ex-
clude, for the moment, the case of the modular curveMB associated to
B = M2(Q), where we have not defined the spaceθar(σ,MB).
(ii) In [2], Gross formulated an arithmetic analogue of another result of
Waldspurger [14]. In that case, the group involved is GU(2), and many
cases of Gross’s conjecture follow from the original results of Gross and
Zagier [4] and from work of Shou-Wu Zhang [17]. A brief discussion of
this work is given at the end of [9].

9.2 THE ARITHMETIC INNER PRODUCT FORMULA

In this section, we will prove certain cases of Conjecture 9.1.5 by using an
arithmetic analogue of the Rallis inner product formula. The key step in
doing this is to relate the arithmetic theta lift defined in section 1 using the
Borcherds generating functionφBBor(τ, ϕ) valued in MW(MB) to another

arithmetic theta lift defined using thêCH
1
(MB)-valued generating func-

tion φ̂1(τ) = φ̂B1 (τ). The lift defined in section 1 has the advantage that it
depends only on the Shimura curveMB overQ and hence can be defined
for all levels, since it does not involve integral models. In contrast, the gen-
erating functionφ̂B1 (τ) has only been constructed for the stackMB over
SpecZ, and so there is no level and no dependence on a variable Schwartz
functionϕ ∈ S(V B(Af )). On the other hand, the main results of Chap-
ters 6 and 7 give a precise relation betweenφ̂1(τ) and the Eisenstein series
E2(τ, s;B), so that the doubling formula provides the crucial link to the
central derivative of the L-function.

We first define a variant of the arithmetic theta lift of the previous section.
For an indefinite quaternion algebraB over Q, recall that the generating
function

φ̂B1 (τ) =
∑
t∈Z

Ẑ(t, v) qt

is a (nonholomorphic) modular form of weight3
2 for Γ0(4D(B)o) valued in
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the arithmetic Chow group̂CH
1
(MB), where

D(B)o =

D(B) if D(B) is odd,

D(B)/2 if D(B) is even.

Slightly abusing notation, we also writêφB1 for the leftG′Q-invariant func-

tion onG′A determined bŷφB1 as in Proposition 8.5.20. For anyf ∈ A00(G′),
we let

θ̂B(f) = 〈 f, φ̂1 〉Pet =
∫

Sp1(Q)\Sp1(A)
f(g′) φ̂B1 (g′) dg

(9.2.1)

=
∫

Sp1(Q)\Sp1(A)
f(g′) φ̂B1 ((g′)∨) dg ∈ ĈH

1
(M),

wheredg is Tamagawa measure and

(g′)∨ =
(

1
−1

)
g′
(

1
−1

)−1

.

Of course, this integral vanishes unlessf ∈ A00(G′) 3
2
,hol. The analysis

of the components of the function̂φ1(τ) given in Chapter 4 implies the
following:

Proposition 9.2.1. For anyf ∈ A00(G′),
(i)

degQ(θ̂B(f)) = 2 〈 θ̂B(f), 11 〉 = 0,

(ii)

〈 θ̂B(f), ω̂ 〉 = 0, and,

(iii) for all φ ∈ A0(MR)0,

〈 θ̂B(f), a(φ) 〉 = 0.

Proof. For example,

〈 θ̂B(f), 11 〉 = 〈 f, 〈 φ̂B1 , 11 〉 〉Pet(9.2.2)

= 〈 f, 1
2
E1(

1
2
, B) 〉Pet = 0,

and
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〈 θ̂B(f), ω̂ 〉 = 〈 f, 〈 φ̂B1 , ω̂ 〉 〉Pet(9.2.3)

= 〈 f, E ′1(
1
2
, B) 〉Pet = 0,

sincef is cuspidal. Here we have used relations (4.1.14), (4.2.12) and
(4.2.13).

It follows that θ̂B(f) lies in M̃W(MB) ⊕ Vert0 where Vert0 consists of
the classes in Vert which are orthogonal toω̂.

Next we apply Proposition 4.5.2 to obtain the key link between the arith-
metic theta lift just defined and that introduced in Section 9.1.

Proposition 9.2.2. Let resQ : ĈH
1
(MB) → CH1(MB

Q) be the restriction

map. Letϕ0 ∈ S(V B(Af )) be the characteristic function of the setÔB ∩
V B(Af ), whereOB is a maximal order inB. Then

resQ(θ̂B(f)) = θar(f, ϕ0).

For a genuine cuspidal automorphic representationσ with σ∞ ' HDS3
2
,

as in the previous section, let

θ̂(σ,MB) ⊂ ĈH
1
(MB)

be the subspace generated by theθ̂B(f)’s asf varies inV(σ).
Using Proposition 9.2.2 together with Proposition 9.1.3 and the results of

Section 4.3 about the vertical components ofφ̂B1 (τ), we obtain the following
result.

Corollary 9.2.3. (i) If ε(1
2 ,Wald(σ, ψ−)) = +1, then

resQ(θ̂(σ,MB)) = 0,

so thatθ̂(σ,MB) ⊂ Vert0.
(ii) If ε(1

2 ,Wald(σ, ψ−)) = −1, then

〈 θ̂(σ,MB),Vert〉 = 0,

so thatθ̂(σ,MB) ⊂ M̃W(MB).

From now on, we consider onlyσ’s such thatε(1
2 ,Wald(σ, ψ−)) = −1,

so that the spacêθ(σ,MB) is isomorphic, via resQ, to the subspace of
MW(MB

Q) spanned by theθar(f, ϕ0)’s for f ∈ σ. Since the function

φ̃Bor(g′, ϕ0) is an eigenfunction under right multiplication byK0(4D(B)o)
with characterχκ, whereκ = −1, it follows thatθ̂(σ,MB) is zero unless

(9.2.4) σK0(4D(B)o),χκ 6= 0,
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and

(9.2.5) δp(σp, ψ−p ) = invp(B)

for all finite p. For such a representationσ, we must have

(9.2.6)
for p - D(B), σp ' π̃(χα| |t), with t 6= 1

2
andα ∈ Z×p ,

for p | D(B), σp ' σ̃(χκ| |
1
2 ).

Combining the main results of Chapters 6, 7 and 8, we obtain an arith-
metic analogue of the Rallis inner product formula.

Theorem 9.2.4.For σ as above, let

f ' f 3
2
⊗ (⊗pfp)

be the good newvector inσ of weight 3
2 , as in Section 8.3, and letπ =

Wald(σ, ψ−). Then

〈 φ̂1(τ1), θ̂(f) 〉 = C · L′(1
2
, π) · f(τ1),

where

C =
3

2π2
·
∏

p|D(B)

2
p+ 1

andf is the classical newform attached tof .

Proof. We compute:4

〈 φ̂1(τ1), θ̂(f) 〉 = 〈f , 〈 φ̂1(τ1), φ̂1 〉 〉Pet

= 〈f , φ̂2(
(
τ1

·

)
) 〉Pet

= 〈f , E ′2(
(
τ1

·

)
, 0;B) 〉Pet(9.2.7)

=
∂

∂s

{
〈f , E2(

(
τ1

·

)
, s;B) 〉Pet

}∣∣∣∣
s=0

4In the intermediate steps here, we should really write integrals off(τ) against functions

〈 φ̂1(τ1), φ̂1(−τ̄) 〉, etc. rather than using the complex conjugate as in the definition of

〈 , 〉Pet. Also note that, since the classeŝZ(t, v) are real,̂φ1(τ) = φ̂1(−τ̄).
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=
∂

∂s

{
C(s) · L(s+

1
2
,Wald(σ, ψ−1))

}∣∣∣∣
s=0

· f(τ1)

= C(0) · L′(1
2
,Wald(σ, ψ−1)) · f(τ1).

Here the functionC(s) is as in Theorem 8.3.3.

Corollary 9.2.5. With the same notation as in Theorem 9.2.4,

〈 θ̂(f), θ̂(f) 〉 = C · L′(1
2
, π) · 〈f ,f 〉.

In particular,

θ̂(f) 6= 0 ⇐⇒ L′(
1
2
, π) 6= 0.

In the next section we will prove the following result, related to that of
Kohnen [7], [1].

Proposition 9.2.6.LetSnew
2 (D(B))(−) be the set of normalized newforms of

weight2 and forΓ0(D(B)) for which all of the Atkin-Lehner eigenvalues for
p | D(B) are−1. Then there is a bijection betweenSnew

2 (D(B))(−) and the
set of genuine cuspidal automorphic representationsσ with σ∞ = HDS3

2

and with local componentsσp satisfying (9.2.6). This bijection is given by

σ 7→ Wald(σ, ψ−1) = π(F ),

where, forF ∈ Snew
2 (D(B))(−), π(F ) is the corresponding cuspidal auto-

morphic representation ofPGL2.

We will sometimes writeσ(F ) for the representation ofG′A determined
by F .

We thus obtain the following ‘explicit’ formula for the restriction of our
generating function̂φB1 (τ) to the generic fiber, and, in particular, for its
Mordell-Weil component.

Corollary 9.2.7. For eachF ∈ Snew
2 (D(B))(−), let f ∈ σ(F ) be the good

newvector and letf be the corresponding holomorphic form of weight3
2

and level4D(B)o. Then

resQ
(
φ̂B1 (τ)

)
= φBBor(τ, ϕ

0)

= E1(τ,
1
2
;B) · ωQ

degωQ
+

∑
F∈Snew

2 (D(B))(−)

f(τ) · θ̂(f)
〈f ,f 〉

,

whereωQ is the restriction of the Hodge bundle toMQ. The clasŝθ(f) is
nonzero if and only ifL′(1, F ) 6= 0.
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Here we have identified̂θ(f) with its image under resQ.

If t ∈ Z≥0, let Z(t) = Z(t, ϕ0) ∈ CH1(MB) be the class defined in
Section 4.5, and recall that

φBor(τ, ϕ0) =
∑
t≥0

Z(t) qt.

For F ∈ Snew
2 (D(B))(−), let πB = πB(F ) be the automorphic represen-

tation ofHB(A) = B×(A), with trivial central character, determined by
π = π(F ) via the Jacquet-Langlands correspondence. By Waldspurger’s
results,πB0 ' θψ(σ0, V

B), whereπB0 is the finite component ofπB. Let

CH1(MB)(πB) = MW(MB)(πB)

be theπB0 -isotypic component of MW(MB), and letZ(t)(πB) be the image
of Z(t) in MW(MB)(πB). Then passing toπB0 -isotypic components on
both sides of the identity in Corollary 9.2.7, we have

(9.2.8) Z(t)(πB) =
at(f) · θ̂(f)
〈f ,f 〉

,

where

(9.2.9) f(τ) =
∑
t>0

at(f) qt.

By Corollary 9.2.5, we obtain a formula for the height pairing of the classes
Z(t)(πB).

Corollary 9.2.8. For t1 andt2 ∈ Z>0,

〈Z(t1)(πB), Z(t2)(πB) 〉 = C · L′(1, F ) ·
at1(f) · at2(f)

〈f ,f 〉
.

Remark 9.2.9. (i) Note that, in this identity, the quantity on the right side
is invariant under scaling off , as it should be, sincef is only well defined
up to a scalar. Similarly, the constantC depends on the normalization of the
Petersson inner product in the denominator. Note that, iff is the classical
modular form of weight32 associated tof , then

〈f ,f 〉Pet = C ·
∫
Γ0(4D(B)o)\H

f(τ) f(τ) v
3
2 · v−2 du dv(9.2.10)

= C · 〈f ,f 〉Pet,
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where〈f ,f 〉Pet is the classical Petersson inner product. Here

C =
1
2π

∏
p|D(B)o

(p+ 1)−1;

see Lemma 8.4.29. Thus, if〈f ,f 〉Pet is used in the denominator in Corol-
lary 9.2.8, then the constant of proportionality becomes

C
C

=
3
π
· 2o(D(B)) ·


1
3 if 2 | D(B),

1 if 2 - D(B),

whereo(D(B)) is the number of prime factors ofD(B).
(ii) The results of Corollaries 9.2.5, 9.2.7, and 9.2.8 are closely related to
those of Gross-Kohnen-Zagier [3] and Zagier [16] for the Heegner points
on the modular curve. Here we have derived them as consequences of the
modularity ofφBor(τ, ϕ0), the relation between this function and the gener-
ating functionφ̂B1 (τ), and the arithmetic inner product formula. In [3], the
analogue of Corollary 9.2.8 is proved first and modularity of the generating
series is a consequence; see the discussion on pp. 502–503 of [3].
(iii) Examples of newformsF with ε(1

2 , π(F )) = −1 and with all Atkin-
Lehner signs equal to−1 can be found in Stein’s tables, [11]. A few such
examples are listed in Table 3 at the end of this section.

Finally, we would like to relate the nonvanishing criterion given in Corol-
lary 9.2.5 to Conjecture 9.1.5 above.

Theorem 9.2.10.Suppose thatσ is a genuine cuspidal automorphic repre-
sentation satisfying the conditions of (9.2.6) and withσ∞ ' HDS3

2
. Sup-

pose that, forπ = Wald(σ, ψ−1), ε(1
2 , π) = −1. LetB be the indefinite

quaternion algebra overQ with invp(B) = δp(σp, ψ−p ) for all p. Assume
thatD(B) > 1. Then

θar(σ,MB) 6= 0 ⇐⇒ L′(
1
2
, π) 6= 0.

Remark 9.2.11. (i) Note that, whenL′(1
2 , π) 6= 0,

πB0 ' θar(σ,MB) ⊂ MW(MB),

whereπB0 is the finite component of the representationπB ' πB∞ ⊗ πB0 of
HB(A) corresponding toπ = Wald(σ, ψ−1) under the Jacquet-Langlands
correspondence.
(ii) In effect, we suppose thatσ has square free level and thatδp(σp, ψ−p ) =
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−1 for all primes dividing the level. In order to remove these conditions on
the level ofσ and on theδp(σp, ψ−p )’s and to allowD(B) = 1, we would
have to extend some of our geometric results about generating functions for
arithmetic cycles onM to the case nontrivial level and to the modular curve.
Of course, for the application to the central derivative of the L-function,
it is possible to work ‘modulo oldforms’, as is done in [4] and [17], so
that complete geometric information would not be needed. Some additional
remarks are made at the end of Section 9.3.

Proof. Let f ∈ σ be the good newvector. By Corollary 9.2.5, we have

L′(
1
2
,Wald(σ, ψ−1)) 6= 0 ⇐⇒ θ̂(f) 6= 0

(9.2.11)

⇐⇒ θar(f , ϕ0) 6= 0 =⇒ θar(σ,MB) 6= 0.

Thus, it remains to prove thatf andϕ0 are ‘good test vectors’ in the follow-
ing sense:

Proposition 9.2.12.

θar(f , ϕ0) 6= 0 ⇐⇒ θar(σ,MB) 6= 0.

Proof. Assume thatθar(σ,MB) 6= 0, so that the mapjBσ of (9.1.16) is an
isomorphism. It will then suffice to show that the vector prB

σ (ϕ0) ∈ σ0 ⊗
θ(σ0, V

B) has nonzero pairing withf0, the finite component off . Here prBσ
is the natural projection in (9.1.15). This is then a local question. It suffices
to show that, for eachp, the image ofϕ0

p in the quotientS(σp, V B
p ) '

σp ⊗Θ(σp, V B
p ) has nonzero pairing with the good newvectorfp.

First suppose thatp 6= 2. Then, ifp - D(B), σp is an unramified prin-
cipal series andfp is theK′-invariant vector. The vectorϕ0

p ∈ S(Vp) is
alsoK′-invariant and, as is shown in [10], has nonzero image prB

σ (ϕ0
p) in

S(σp, V B
p ) ' σp ⊗ θ(σp, V B

p ). Thus the pairing of prBσ (ϕ0
p) and fp is

nonzero, as required. Ifp | D(B), thenσp is an unramified special represen-
tation with δp(σp, ψ−p ) = −1 andfp is theJ′-invariant vector. Moreover,

the conditionδp(σp, ψ−p ) = −1 implies thatσp ' σ̃(χ−1| |
1
2 ).5 The map

prBσ : S(V B
p ) −→ σp ⊗ θ(σp, V B

p ) ' σ̃(χ−1| |
1
2 )⊗ 11

is given byλVp : ϕ 7→ (g 7→ ω(g)ϕ(0)). The vectorϕ0
p ∈ S(V B

p ) is J′-
invariant and hence its image prB

σ (ϕ0
p), which is nonzero by [10], is also

J′-invariant and has a nonzero pairing withfp, as required.

5Here we use theψ-parametrization in Table 2 in Chapter 8.
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Next suppose thatp = 2. If p | D(B), thenσp = σ̃(χ−1| |
1
2 ). By

Proposition 8.4.16, the space ofχ−1-eigenvectors forJ′ in σp has dimension
1 andfp = f sp is a basis. On the other hand, by Proposition 8.5.14, the
vectorϕ0

p is also aχ−1-eigenvector forJ′ and the same argument as for odd
p gives the required nonvanishing.

Finally suppose thatp = 2 with p - D(B), so thatσp = π̃(χ2α| |t) with
α ∈ Z×2 andt 6= ±1

2 . Note that the condition on the global central character,
discussed in Section 8.3, implies thatα ≡ κ mod 4. Hereκ = −1. In any
case, the characterµ−1χ2κ is unramified. By Proposition 8.4.15, the space
I(µ)(J

′,χα) of χα-eigenvectors forJ′ has dimension2 and is spanned by
the functionsf1 andfw with support inPJ′ andPwJ′ respectively, with
f1(1) = 1 andfw([w, 1]L) = 1. The good newvector inσp is fp = fev =
f1 + i√

2
fw. The pairing betweenI(µ−1) = I(µ)∨ andI(µ) is given by

(f, f ′) =
∫
K′
f(k′) · f ′(k′) · ζ(k′)−2 dk,

wherek′ ∈ G′ is any element which projects tok ∈ K ′ = SL2(Zp), and
the factorζ(k′)−2 makes the integrand independent of the choice ofk′; see
Lemma 8.5.9. Note thatI(µ) andI(µ−1) can be identified with the same
space of functions onK ′. Using this identification, the restriction of the
pairing to the space ofχα-eigenvectors forJ′ is given by(f1, f1) = vol(J ′),
(f1, fw) = 0 and

(fw, fw) = 4 vol(J ′) · ζ([w, 1]L)−2 = −4.

Here we use the fact that

ζ([w, 1]L) = (−1,−1)2 γ(ψ 1
2
)2 = i,

by (8.5.19) and (8.4.29). It follows that

(fp,fp) = vol(J ′) · 3 =
1
2
.

Using the explicit formula given in [10] for the projection fromS(V B
p ) to

the maximalσp-isotypic quotient, it is easily checked that, whenµ−1χV is
unramified, as it is in our case,

prBσ (ϕ0) = C · fev

for a nonzero constantC. It follows that the pairing of this vector with
fp = fev is nonzero.

This completes the proof of Theorem 9.2.10.
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Table 3. Example of NewformsF from Stein’s Tables

D(B) genus ofMQ F dim of factor

7 ∗ 13 7 91B 1

3 ∗ 41 13 123B 1

7 ∗ 19 9 133C 2

5 ∗ 29 13 145B 2

5 ∗ 31 11 155C 1

5 ∗ 37 13 185C 1

11 ∗ 17 13 187D 2

7 ∗ 37 19 259E 3

2 ∗ 173 14 346B 1

13 ∗ 29 29 377A 1

377D 5

11 ∗ 37 31 407B 4

31 ∗ 43 105 1333A 23

31 ∗ 113 281 3503A 56

43 ∗ 83 287 3569F 61

43 ∗ 89 309 3827A 1

3827B 65

3 ∗ 5 ∗ 7 ∗ 11 41 1155N 1

9.3 THE RELATION WITH CLASSICAL NEWFORMS

In this section, we prove a slight generalization of Proposition 9.2.6.
Let l ∈ 3

2 + Z≥0 be a half integer and letκ = (−1)l−
1
2 . Let N be a

square free integer and letSnew
2l−1(N) be the set of normalized newforms of

weight2l − 1 and levelN . Associated to eachF ∈ Snew
2l−1(N), there is a

cuspidal automorphic representationπ = π(F ) ' ⊗p≤∞πp of PGL2(A).
The following result is essentially that of Kohnen [7], [1], although we allow
N to be even.
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Proposition 9.3.1. (i) For eachF ∈ Snew
2l−1(N), there is a unique genuine

cuspidal automorphic representationσ(F ) = σ ' ⊗p≤∞σp of G′A with
Wald(σ, ψκ) = π such thatσ∞ = HDSl is a holomorphic discrete series
and such that, for allp | N , σp is a special representation. Moreover, the
dichotomy signs for the local components ofσ are given by

δ(σp, ψκp ) =


εp(F ) if p | N ,

(−1)l−
1
2 if p = ∞,

1 otherwise,

where, forp | N , εp(F ) is the eigenvalue ofF for the Atkin-Lehner involu-
tion,

F |Wp = εp(F )F.

The classical modularf corresponding to the good test vectorf in σ, as
defined in Chapter 8, has weightl and level4No, whereNo = N/2 if N is
even andNo = N if N is odd.
(ii) Conversely, suppose thatσ ' ⊗p≤∞σp is a genuine cuspidal automor-
phic representation ofG′A with σ∞ = HDSl and with finite componentsσp
satisfying the conditions

for p - N , σp ' π̃(χα| |t), with t = tp 6=
1
2

andα = αp ∈ Z×p ,

for p | N , σp ' σ̃(χα| |
1
2 ), with α = αp ∈ Z×p ,

for some square free integerN , and withα2 ≡ 1 mod 4. Then the nor-
malized newformF determined byπ = Wald(σ, ψκ) lies inSnew

2l−1(N), and
σ(F ) = σ.

Proof. The representationπ = π(F ) ' ⊗p≤∞πp has local components
π∞ = DS2l−1 andπp, for p - N , determined by the Hecke eigenvalue
ap(F ), whereF |Tp = ap(F )F . For p | N , the local componentπp is

an unramified special representationπp = σ(χα| |
1
2 , χα| |−

1
2 ), whereα =

αp ∈ Z×p andα ≡ 1 mod 4 if p = 2. The quadratic characterχαp is
determined by the Atkin-Lehner signεp(F ) according to the rule

(9.3.1) χαp(p) = −εp(F ).

By a basic result of Waldspurger, the set of genuine cuspidal automorphic
representationsσ in A00(G′A) with Wald(σ, ψκ) = π is nonempty and has
cardinality1 if N = 1 and2o(N) if the number of prime factorso(N) ofN is
positive. The possibilities forσ can be described by using the parametriza-
tion of local components given in Table 2 in Chapter 8. If Wald(σ, ψκ) = π,
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thenσ∞ = π̃±l , and the local componentsσp for p - N are irreducible
principal series which are uniquely determined by the corresponding local
componentsπp = Wald(σp, ψκp ) of π. Forp | N there are two possibilities,

σp ∈ { σ̃p(χαpκ| |
1
2 ), θ(sgn, Uαpκ) },

related by the Waldspurger involution; see Proposition 8.2.4. Moreover, any
choice ofσp’s is allowed, subject to the condition (8.2.28) on the product of
the central signs. One possible choice ofσp’s is given by the following.

Lemma 9.3.2. The representationσ ' ⊗p≤∞σp with local components

σ∞ = π̃+
l and σp = σ̃p(χακ| |

1
2 ) for all p | N is a genuine cuspidal

automorphic representation ofG′A with Wald(σ, ψκ) = π.

Proof. By the last row of Table 2 in Chapter 8, the central sign of the
archimedean componentσ∞ is z(π̃+

l , ψκ) = 1. Note that the fact that

κ = (−1)l−
1
2 is used here. Then, by the last column of the table, we have

the product formula for central signs∏
p≤∞

z(σp, ψκ) =
∏
p|N

χαp(−1) = 1,

since all of theχαp ’s are unramified.

The dichotomy signs for the local components ofσ are then given in the
fourth column of Table 2. By the local results of Chapter 8, the good test
vectorf ∈ σ is unique up to a scalar factor. This vector has weightl for
K ′
∞, the inverse image of SO(2) ⊂ SL2(R) inG′R, and is an eigenvector for

the groupK0(4No) ⊂ G′Af with characterχκ. The corresponding classical
modular formf has weightl and level4No; see Proposition 8.5.20.

Corollary 9.3.3. (i) The mapF 7→ σ(F ) determines a bijection between the
setSnew

2l−1(N) and the set of genuine cuspidal automorphic representations
σ(F ) = σ ' ⊗p≤∞σp ofG′A with σ∞ = HDSl and with finite components
σp satisfying the conditions of (ii) of Proposition 9.3.1.
(ii) The representations in the set{σ | Wald(σ, ψκ) = π(F ), σ∞ = HDSl}
have the formσ = σΣ where, for a setΣ of primes dividingN , with |Σ|
even,

σΣ
p =

θ(sgn, Uαpκ) if p ∈ Σ,

σ(F )p otherwise.
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Of course, the second part here is just a restatement of Waldspurger’s
result, Proposition 8.2.4.

Remark 9.3.4. If we take the classical modular formf associated to the
good test vectorf in eachσ = σ(F ), we obtain a bijectionF 7→ f between
Snew

2l−1(N) and a set of modular forms of weightl for Γ0(4No). WhenN is
square free and odd, such a bijection was defined by Kohnen [7] where the
image is his plus-space, characterized by the support of the Fourier expan-
sion at the cusp at infinity. These two bijections do not agree. The point is
that whenN is odd, the local componentσ(F )2 of the representationσ(F )
is an irreducible principal series representation with a2-dimensional space
π̃(χα| |t)K0(4N),χκ of newvectors. Our local component

f2 = fev = f1 +
δκ√
2
fw

is an eigenfunction for a local zeta operator analyzed in Chapter 8. On
the other hand, according to Baruch and Mao [1] or the computation of
Whittaker functions given in Proposition 8.4.17, the local component of a
function in the Kohnen plus space is, in our notation,

f+ = f1 +
√

2µ(2)2

δα
fw

= (1 + 4χκ(−1)µ(2)2) fev + (2− 4χκ(−1)µ(2)2) fsp;

see (8.4.34). Of course, the underlying bijectionπ(F ) 7→ σ(F ) on repre-
sentations is the same, while the choice of local component atp = 2 can be
made according to the particular application at hand.

Now takel = 3
2 , and letF ∈ Snew

2 (N) be a newform of weight2 with
ε(1

2 , π(F )) = −1. Since

(9.3.2) −
∏
p|N

εp(F ) = ε(
1
2
, π(F )),

there is a unique indefinite quaternion algebraB overQ such that invp(B) =
εp(F ) for all p | N and invp(B) = 1 otherwise. WhenD(B) = N , i.e.,
when all of the Atkin-Lehner signs ofF are−1, we takeσ = σ(F ), and the
results of the previous section describe the nonvanishing of the arithmetic
theta liftθar(α,MB) and ofθ̂(f), wheref ∈ σ(F ) is the good newvector.

In the case in which some Atkin-Lehner signs ofF are+1, we can again
takeσ = σ(F ) and consider the arithmetic theta liftθar(σ,MB), as in Sec-
tion 9.1. To extend the results of Section 9.2 to this case, we should define
a generating function̂φB,N0

1 (τ) for the arithmetic surfaceMB
0 (N0), where
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N = D(B)N0, associated to an Eichler order of levelN0 in B. This will
involve a definition of the special cyclesZ(t) with level structure and an
extension of the results of this book to the generating functionφ̂B,N0

1 (τ).
More generally, letB′ be an indefinite quaternion algebra ramified at a

set of primes dividingN , and let

Σ = { p | εp(F ) = −invp(B′) }.

Takeσ = σΣ(F ). Then, the arithmetic theta liftθar(σ,MB′) should be
nonzero if and only ifL′(1, F ) 6= 0. The local component ofσΣ at p ∈ Σ
is the odd Weil representationθ(sgn, Uαpκ) whereχαp is unramified and

χαp(p) = −εp(F ). In order to define the analogue ofφ̂B1 in this case, we
need to define cyclesZ(t) which are anti-invariant under the Atkin-Lehner
involution at the primesp ∈ Σ. This can be done by using a weighted
average of the oriented cycles mentioned in the introduction and described
in Chapter 3. Again, it should be possible to extend the main results of this
book to the generating functions constructed from such cycles.

Bibliography

[1] M. Baruch and Z.Y. Mao,Central value of automorphic L-functions,
preprint, 2003.

[2] B. H. Gross,,Heegner points and representation theory, in Heegner
Points and Rankin L-series, Math. Sci. Res. Inst. Publ.,49, 37–65,
Cambridge Univ. Press, Cambridge, 2004.

[3] B. H. Gross, W. Kohnen, and D. Zagier,Heegner points and deriva-
tives of L-functions. II, Math. Annalen,278(1987), 497–562.

[4] B. H. Gross, and D. Zagier,Heegner points and the derivatives of
L-series, Invent. math.,84 (1986), 225–320.

[5] R. Howe,θ–series and invariant theory, Proc. Symp. Pure Math.,33
(1979), 275–285.

[6] R. Howe and I. I. Piatetski-Shapiro,Some examples of automorphic
forms on Sp4, Duke Math. J.,50 (1983), 55–106.

[7] W. Kohnen,Newforms of half-integral weight, J. reine angew. Math.,
333(1982) 32–72.

[8] S. Kudla,Special cycles and derivatives of Eisenstein series, in Heeg-
ner points and Rankin L-series, Math. Sci. Res. Inst. Publ.,49, 243–
270, Cambridge Univ. Press, Cambridge, 2004.



PUP.master.W.rev January 13, 2006

370 CHAPTER 9

[9] , Modular forms and arithmetic geometry, in Current De-
velopments in Mathematics, 2002, 135–179, International Press,
Somerville, MA, 2003.

[10] , Notes on the local theta correspondence for (S̃L2,O(3)),
preprint, 2005.

[11] W. Stein, The Modular Form Database, http://modular.ucsd.edu

[12] J.-L. Waldspurger,Correspondance de Shimura, J. Math. Pures Appl.,
59 (1980), 1–132.

[13] , Sur les coefficients de Fourier des formes modulaires de
poids demi-entier, J. Math. Pures Appl.,60 (1981), 375–484.

[14] , Sur les valeurs de certaines fonctions L automorphes en
leur centre de symétrie, Compositio Math.,54 (1985), 173–242.

[15] , Correspondances de Shimura et quaternions, Forum Math.,
3 (1991), 219–307.

[16] D. Zagier, Modular points, modular curves, modular surfaces and
modular forms, in Lecture Notes in Math.1111, 225–248, Springer-
Verlag, Berlin, 1985.

[17] Shou-Wu Zhang,Gross–Zagier formula for GL2, Asian J. of Math.,
5 (2001), 183–290.



PUP.master.W.rev January 13, 2006

Index

Arakelov Chow group, 8
Arakelov volume form, 40
ARGOS seminar, 20, 60
arithmetic adjunction formula, 14, 42, 225

metric in, 217
not homogeneous, 227

arithmetic Chow group, 6, 71
with real coefficients, 71

arithmetic degree map, 7, 167
arithmetic index theorem, 75
arithmetic inner product formula, 13
arithmetic intersection pairing, 7, 72
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exponential integral, Ei, 56
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local Howe duality, 271, 353
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Maass forms, 87
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cocycles for, 320

in Waldspurger, 287
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global, 334
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Rao, 326
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moment map, 122
Mordell-Weil space, 74, 94, 351

Néron-Tate height, 75
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‘number theorist’s nightmare’, 12
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367
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quasi-canonical lifting, 206, 240

Rallis inner product formula, 359
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section
factorizable, 265
modified global, 110, 155
modified local, 110
standard, 110

Serre’sδ-invariant,δp(t), 246
Shimura-Waldspurger correspondence, 15
Shimura-Waldspurger lift, 265
Siegel Eisenstein series, genus two, 105
Siegel-Weil formula, 86, 108, 121
special cycles

and Atkin-Lehner involutions, 55
Cohen-Macauleyfication of, 55
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Ẑ(T, v) for T singular, 178
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Table 1, the local theta correspondence,
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for Siegel modular forms, 336
for the genus two Eisenstein series, 339
for the vertical component of̂φ1(τ),

340
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uniformization
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complex, 47, 76
p-adic, 48, 80, 173

of special cycles, 54, 80

value of〈 ω̂, ω̂ 〉, 262
Vert, 72
‘vertical at infinity’, 207
vertical components, 72

Ws(ψ), quasi-canonical divisor of level
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Wald(σ, ψ), 272
Waldspurger involution, 274, 367
weighted cycles, 18

Weil representation in Leray coordinates,
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local, 112
p = 2, 305

Whittaker integrals, 112, 126, 140
wrong degree, 178


