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Height pairings on Shimura curves and p -adic uniformization

by
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and

Michael Rapoport

Introduction.

In a recent paper [15] of one of us it was shown that there is a close connection

between the value of the height pairing of certain arithmetic 0-cycles on Shimura

curves and the values at the center of their symmetry of the derivatives of certain

metaplectic Eisenstein series of genus 2. On the one hand, the height pairing can be

written as a sum of local height pairings. For example, if the 0-cycles have disjoint

support on the generic fiber, then their height pairing is a sum of an archimedean

contribution and a contribution from each of the (finitely many) finite primes p

for which the cycles meet in the fiber at p . On the other hand, it turns out

that the non-singular part of the Fourier expansion of the central derivative of the

metaplectic Eisenstein series also has a decomposition into a sum of contributions

indexed by the places of Q . Then, one would like to compare the height pairing and

the Fourier coefficients by proving an identity of local contributions place by place.

In loc. cit. the identity for the archimedean place was proved, and it was shown

that the identity at a non-archimedean place of good reduction is a consequence of

results of Gross and Keating, [9], (for the algebraic-geometric side) and of Kitaoka,

[11], (for the analytic side). It then remains to consider the finite primes p where

the Shimura curve has bad reduction. These are of two sorts: (i) the primes p at

which the quaternion algebra defining the Shimura curve is split, but which divide

the level, and (ii) the primes p at which the quaternion algebra remains division.

In the present paper we consider the case of a non-archimedean place p of bad

reduction of the second type, and hence where p -adic uniformization in the sense

of Cherednik-Drinfeld holds. It turns out that the identity to be proved in this

case can be reduced to a purely local statement concerning the Drinfeld p -adic

upper half plane Ω̂ (the formal scheme version). Therefore the bulk of this paper

(sections 1-7) is concerned with the local situation, and in this introduction we will

concentrate on the local aspects of the problem.

1Partially supported by NSF Grant DMS-9622987

1



2

Let W = W (Fp) be the ring of Witt vectors of Fp . Also let B be the division

quaternion algebra over Qp and let OB be its maximal order.

Recall that Ω̂ ×Spf Zp Spf W parametrizes pairs (X, %) , where X is a special

formal (s.f.) OB -module (of dimension 1 and height 2) over a W -scheme S on

which p is locally nilpotent and

(0.1) % : X×SpecFp S −→ X ×S S

is an OB -linear quasi-isogeny of height 0. Here X is a fixed s.f. OB -module over

SpecFp , and S = S ×SpecFp SpecFp is the special fibre of S . We note that

End0
OB (X) 'M2(Qp) .

We define cycles in Ω̂×Spf Zp Spf W by imposing additional endomorphisms as

follows. Let

(0.2) V = {j ∈ End0
OB (X); tr0(j) = 0},

equipped with the quadratic form q = −det , also given by j2 = q(j) · id . We call

the elements of V special endomorphisms. For any j ∈ V with q(j) ∈ Zp \{0} we

define a special cycle Z(j) which is a closed formal subscheme of Ω̂×Spf Zp Spf W .

It is the locus of pairs (X, %) such that % ◦ j ◦ %−1 extends to an isogeny of X .

We assume, from now on, that p 6= 2 .

Our first task is to investigate the structure of a single special cycle. For this

we use two methods. The first is completely elementary and uses the Bruhat-Tits

building of PGL2(Qp) . This method is sufficient to give a fairly accurate picture of

the point set of the special fibre of Z(j) . More precisely, let B be the Bruhat-Tits

building of PGL2(Qp) , and recall that the irreducible components of the special

fiber of Ω̂ ×Spf Zp Spf W are projective lines indexed by the vertices of B , i.e.,

by homothety classes [Λ] of Zp -lattices Λ in Q2
p . If P[Λ] is the component

corresponding to [Λ] , then Z(j) ∩ P[Λ] 6= ∅ if and only if j(Λ) ⊂ Λ . It follows

that the support of Z(j) is contained in the union of the P[Λ] ’s for [Λ] ’s lying

in the tube T (j) of radius 1
2ord q(j) around the fixed point set Bj of j in B .

The second method is due to Genestier, [7]. His crucial observation is that Z(j)

may be identified with the fixed point locus on Ω̂ ×Spf Zp Spf W of the action

of j if ordp(q(j)) = 0 (resp. of id + j if ordp(q(j)) > 0 ). This observation

allows one to write explicit local equations for the cycle Z(j) and thus yields a

good understanding of its local structure. The combination of the two methods
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determines Z(j) completely and shows that, apart from degenerate cases, Z(j)

is purely one-dimensional. Moreover, Z(j) can contain (multiples of) irreducible

components of the special fibre and can even have embedded components! These

latter phenomena are in contrast to the case of good reduction. At the end of the

introduction there is a schematic picture of the various possibilities of Z(j) .

We next turn to the calculation of the intersection product (Z(j), Z(j ′)) of

two special cycles, assuming that j and j ′ span a 2-dimensional non-degenerate

quadratic Zp -submodule j of V . In contrast with the case of good reduction, we

have to deal here with cases of excess intersection. We proceed in two steps. We

first prove that (Z(j), Z(j ′)) only depends on the Zp -span j of j and j ′ . This is

achieved by showing that the Genestier equations globalize to give a resolution of

the structure sheaves of Z(j) and Z(j ′) . This part of our paper is in the spirit of

the venerable theory of Möbius transformations. In the case of good reduction the

analogue of this independence statement is trivial, whereas at an archimedean place

it was one of the main and most difficult steps in the proof of the local identity,

[15]. Since p 6= 2 , we may then assume that j, j ′ diagonalize the quadratic form

on j , i.e. that jj ′ = −j ′j . In this case, the calculation of the intersection number

becomes a piece of recreational mathematics, involving the various facts about the

structure of special cycles mentioned above and combinatorial arguments involving

the tubes T (j) in the building B . The end result then is:

Theorem A. Let j and j ′ be special endomorphisms with q(j), q(j ′) ∈ Zp \ {0}
such that their Zp -span j = Zpj +Zpj ′ is of rank 2 and is nondegenerate for the

quadratic form. Let

T =

(
q(j) 1

2(j, j ′)
1
2
(j ′, j) q(j ′)

)
,

and suppose that T is GL2(Zp) -equivalent to diag(ε1p
α, ε2p

β) , where ε1, ε2 ∈
Z×p , and α and β are integers with 0 ≤ α ≤ β . Then (Z(j), Z(j ′)) = ep(T )

depends only on the GL2(Zp) -equivalence class of T , and is given explicitly by:

ep(T ) = α+ β + 1−





pα/2 + 2 pα/2−1
p−1

if α is even and χ(ε1) = −1,

(β − α + 1)pα/2 + 2 pα/2−1
p−1 if α is even and χ(ε1) = 1,

2 p(α+1)/2−1
p−1 if α is odd.

The entity ep(T ) appearing in this theorem may be related to local representa-

tion densities of quadratic forms and their derivatives. For simplicity, we continue to
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assume that p 6= 2 . Recall that for nonsingular symmetric matrices S ∈ Symm(Zp)

and T ∈ Symn(Zp) , the classical representation density is defined by

(0.3)

αp(S, T ) = lim
t→∞

p−tn(2m−n−1)/2 |{x ∈Mm,n(Z/ptZ) ; S[x]− T ∈ ptSymm(Zp) }|.

Let

(0.4) S = −




1
1
−1




be the matrix for the determinant quadratic form on the space V (Zp) of special

endomorphisms, i.e. on the lattice {x ∈M2(Zp) ; tr(x) = 0} , and let

(0.5) S ′ = −



η

p
−ηp


 ,

be the matrix for the reduced norm quadratic form on the space

(0.6) V ′(Zp) = {x ∈ OB ; tr(x) = 0}.

Here η ∈ Z×p with χ(η) := (η, p)p = −1 , and (a, b)p is the quadratic Hilbert

symbol for Qp . Also let

(0.7) S ′′ = −




1
p
−p


 .

Then for a pair of special endomorphisms j and j ′ with associated matrix T , as

in Theorem A above, we have αp(S
′, T ) = 0 . In this situation, it is possible, as in

[15], to define the derivative α′p(S
′, T ) of the representation density (see (7.4)). For

the unimodular quadratic form S and for any binary form T , the representation

densities and their derivatives can be calculated using the results of Kitaoka, [11],

[15], and Proposition 7.1 below. For S ′ and S ′′ , the analogous information is

provided by the work of B. Myers, [18], and T. Yang, [20].

These representation densities are then related to the intersection number ep(T )

as follows:
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Theorem B. For a pair of special endomorphisms j and j ′ with associated matrix

T , as in Theorem A,

ep(T ) = − 1

p+ 1
α′p(S

′,−T ) +
2p2

p+ 1
αp(S,−T ) +

1

2(p − 1)
αp(S

′′,−T ).

This result illustrates again the rather remarkable connection between arithmetic

intersection numbers on certain moduli spaces on the one hand, and the arithmetic

theory of quadratic forms on the other. For additional examples, see (at least) [9],

[15], [16], and [17].

It is instructive to compare the statements of Theorems A and B with the fol-

lowing reformulation of the result of Gross and Keating, [9]. Changing notation

slightly, we fix a formal p-divisible group X of dimension 1 and height 2 over

SpecFp , and let M be the moduli scheme where M(S) is the set of pairs (X, ρ)

for ρ a quasi-isogeny of height 0 as in (0.1). Then, there is a (non-canonical)

analogue of the Drinfeld isomorphism:

M' Spf W [[t]].

Fix an isomorphism End0(X) = B , and let

V ′ = {j ∈ B ; tr0(j) = 0},

with (anisotropic) quadratic form defined by j2 = q(j) id . To a special endomor-

phism j ∈ V ′ with q(j) 6= 0 , define a cycle Z(j) ⊂M , as before.

Theorem. (Gross-Keating) (i) If q(j) /∈ Zp , then Z(j) = ∅ . Otherwise, Z(j) is

a divisor on M , and is flat over Spf W .

(ii) Let j and j ′ ∈ V ′ be special endomorphisms such that j and j ′ span a 2-

dimensional non-degenerate subspace of V ′ . Let T = q(j, j ′) be the matrix of the

quadratic form with respect to the basis j , j ′ , as in Theorem A. Then Z(j)∩Z(j ′)

has support at the origin in M and the intersection multiplicity is

(Z(j), Z(j ′)) =

{ ∑(α−2)/2
i=0 (α+ β − 4i)pi + 1

2 (β − α+ 1)pα/2 if α is even,

∑(α−1)/2
i=0 (α+ β − 4i)pi if α is odd.

In particular, this multiplicity depends only on the GL2(Zp) -equivalence class of

T .
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By Kitaoka’s formula, Corollary 8.5 of [15], we then have the (simpler) analogue

of Theorem B in this case:

(Z(j), Z(j ′)) = − p2

p2 − 1
α′p(S, T ) .

Two features of the theory developed here are worth pointing out. Recall that

the proofs of Gross and Keating in the case of good reduction make heavy use of

the theory of (formal) complex multiplication which connects this case, via Gross’s

theory of quasi-canonical liftings, [8], with Kronecker’s Jugendtraum. The first

remark is that in our case this connection does not appear (explicitly! - it is of course

hidden to some degree in Drinfeld’s representability theorem). The second remark is

that it is the global nature of the Cherednik-Drinfeld uniformization which allowed

us here to prove the independence statement on the intersection numbers. In other,

higher-dimensional cases [16], [17] when the analogous independence property is

problematical, global uniformization of the special fiber is not available. In these

cases these problems remain a challenge.

In the last two sections, we draw the global consequences of the local results of

sections 1–7 just described and obtain an extension of the results of [15].

For an indefinite quaternion algebra B over Q , let H = B× , and let V = {x ∈
B ; tr0(x) = 0} . Fix a prime p ( p 6= 2 ) which ramifies in B and let K = KpK

p

be a compact open subgroup of H(Af ) such that Kp = O×Bp , where OBp denotes

the maximal order in Bp . Associated to this data is a model AK over Z(p) of

the Shimura curve AK over Q attached to B and K . It is the moduli space

of certain abelian surfaces with OB -action and Kp -level structure, For each pair

(t, ω) with t ∈ Z(p) , t < 0 and ω ⊂ V (Apf ) a Kp -invariant compact open subset,

there is a special cycle

(0.8) C(t, ω) −→ AK

defined, as in [15], by imposing an additional special endomorphism. The generic

fiber of C(t, ω) is a Q -rational 0 -cycle on the Shimura curve AK . Given a pair

of special cycles C1 = C(t1, ω1) and C1 = C(t2, ω2) , we form their intersection

(0.9) C = C1 ×AK C2.

This scheme has a decomposition

(0.10) C =
∐

T

CT ,
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where each CT is a union of connected components of C , and where T ∈ Sym2(Z(p))

runs over negative semi-definite matrices with diagonal entries t1 and t2 . For

det(T ) 6= 0 , the image of CT lies in the special fiber of AK . Utilizing the p-adic

uniformization of AK , and the results on intersections of special cycles in Drinfeld

space, we obtain the following statement.

Theorem C. Assume that t1t2 is not a square in Q× . Then the special cy-

cles C(t1, ω1) and C(t2, ω2) do not meet in the generic fiber and their intersection

number is given by

(C(t1 , ω1), C(t2, ω2)) = 2
∑

T

ep(T ) vol(Kp)−1 IT (ϕp1 ⊗ ϕp2),

where ep(T ) is as in Theorem A and IT (ϕp1 ⊗ ϕp2) is a certain orbital integral

associated to the data ω1 , ω2 , and T . The summation runs over the same range

as in (0.10).

Finally, this result, combined with Theorem B above yields the connection be-

tween the p part of the height pairing of the cycles C1 and C2 and certain Fourier

coefficients of the derivative of a metaplectic Eisenstein series (Theorem 9.1). This

is analogous to Theorem 14.11 of [15] and Theorem 9.2 of [16]. We content our-

selves here with pointing out one essential difference with the case of good reduction

treated in [15]. In that case, the choice of the local component Φp of the func-

tion occurring in the Eisenstein series is canonical and it is in fact standard in

the sense that its restriction to the maximal compact subgroup of Mp2,Qp is in-

dependent of the complex parameter s . In our case, the choice of Φp , given in

Corollary 7.4, is no longer canonical; rather, we are able to single out a whole class

of functions for which the main identity holds, and these functions are definitely

not standard. It seems quite likely that among those functions there are preferred

choices, namely those that match up the Eisenstein series with L -functions via the

doubling method, but this will not concern us here.

Let us give a brief description of the contents of the various sections. Section

1 contains recollections about the Drinfeld moduli space and introduces our ter-

minology (esp. ordinary special and superspecial points). In section 2 we use the

building to determine the point set of the special fibre of a special cycle (resp. the

intersection of two of them). In section 3 we use the Genestier equations to de-

termine the local structure of a special cycle (multiplicities of vertical components,

occurrence of embedded components, etc.). In section 4 we explain the kind of
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intersection theory we are using. In section 5 we construct a global resolution of

the structure sheaves of the special cycles and prove the above-mentioned invari-

ance property of the intersection numbers. Section 6 contains the calculation of

the intersection number in the diagonalized case. In section 7 we review the results

of Myers, [18], and Yang, [20], and establish the connection with representation

densities. In section 8 we pose the global intersection problem for cycles on models

of Shimura curves over Zp and relate it to the local theory. The final section 9

gives the relation, extending that of [15], between the intersection numbers and

special values of the derivatives of Fourier coefficients of Eisenstein series.

In conclusion we wish to point out again that one of the main ingredients of this

paper is due to Genestier [7]; regrettably, he did not pursue the further implications

of his idea. We also thank T. Yang for communicating to us his results on repre-

sentation densities at an early stage of this project. This work was begun at the

University of Cologne in August 1997 and continued at the University of Maryland

in March 1998. We thank both institutions for their hospitality and the NSF and

the DFG for their support.
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7. Intersection numbers and representation densities

8. Intersection numbers on Shimura curves

9. Intersection numbers and Fourier coefficients
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α /2

α /2

α /2

α /2

α /2

χ(ε) = 1

p αε

-1α

1

1
-3α

2

α -1

2

2

Pictures when dim Z(j)=1, for q(j)=

α/2

- 1

1

1

- 2

- 2

- 1

- 1

χ (ε) = −1α > 0 even,

α > 2 even,

/2α

α > 0 odd

Explanation: On the left the irreducible components of the special cycles are depicted; on the

right the dual graph is given. The “central” vertical irreducible components (1 in the first case,

∞ in the second case, 2 in the third case) are in bold face. They occur with multiplicity
[
α
2

]

in Z(j) . The other vertical components have multiplicity
[
α
2

]
− i , where i is the “distance”

from a central component. Also the horizontal components are given; they are indicated by a box

on the right (2 in the first case, none in the second case, 1 in the third case). The little barbs

indicate embedded components.
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Notation.

The following notation will be used in the local part of this paper (sections 1-7):

k algebraically closed field of characteristic p > 2

W = W (k) the ring of Witt vectors of k with its Frobenius automorphism σ.

WQ the fraction field of W .

Zp2 = W (Fp2 ) where Fp2 = {x ∈ k; xp
2

= 1} .

B a quaternion division algebra over Qp.

OB the ring of integers which we identify with

OB = Zp2 [Π]/Π2 − p, Πa = aσΠ (a ∈ Zp2).

B the Bruhat-Tits building of PGL2(Qp).

χ the quadratic residue character on Z×p resp. F×p .

§1. The Drinfeld moduli space and the p -adic upper half plane.

In this section we recall some facts from Drinfeld’s paper [5], cf. also [2], [6], [19]. A

special formal (s.f.) OB -module over a W -scheme S is a p -divisible formal group

X of height 4, with an OB -action ι : OB → EndS(X) such that the induced

Zp2 ⊗ OS -module LieX is, locally on S , free of rank 1. Let us fix once and for

all a s.f. OB -module X over Spec k . It is unique up to OB -linear isogeny, and

End0
OB (X) ' M2(Qp) . Let us consider the following functor M on the category

Nilp of W -schemes S such that p is locally nilpotent in OS . The S -valued

points of M are the isomorphism classes of pairs (X, %) consisting of a s.f. OB -

module X over S and a quasi-isogeny of height zero,

% : X×Speck S → X ×S S .

Here S = S ×SpecW Spec k . We consider

(1.1) G(Qp)0 = {g ∈ GL2(Qp); ord det g = 0} .

Then, after choosing an identification End0
OB (X) = M2(Qp) , the group G(Qp)0

acts to the left on M , via

g : (X, %) 7→ (X, % ◦ g−1) .

According to Drinfeld, this functor M is representable by Ω̂×Spf Zp SpfW . Here

Ω̂ = Ω̂2
Qp is the formal model of the p -adic upper half plane associated to the local

field Qp that was introduced by Deligne (comp. [2], chap. 1). The isomorphism

(1.2) M→ Ω̂×Spf Zp SpfW



11

is equivariant for the action of G(Qp)0 , for a suitable identification End0
OB

(X) =

M2(Qp) . The group G(Qp)0 acts on the RHS via the natural action of PGL2(Qp)
on Ω̂ .

We need to describe some features of Ω̂ , comp. [2], chap. 1. We denote by

B = B(PGL2(Qp)) the Bruhat-Tits building of PGL2(Qp) . The formal scheme

Ω̂ is obtained by glueing open formal subschemes Ω̂∆ where ∆ runs over the

simplices of B , and

(1.3) Ω̂∆ ∩ Ω̂∆′ =

{
Ω̂∆∩∆′ if ∆ ∩∆′ is a simplex

∅ if ∆ ∩∆′ = ∅.

For the action of PGL2(Qp) on Ω̂ we have

(1.4) gΩ̂∆ = Ω̂g∆ .

We now describe the open charts in detail. Because of (1.4) it will suffice to do

this for ∆ = the standard vertex and for ∆ = the standard edge.

Let ∆ = [Λ0] be the homothety class of the standard lattice

(1.5) Λ0 = [e1, e2] .

Here [e1, e2] denotes the Zp -span of the standard basis of Q2
p . Then

(1.6) Ω̂[Λ0] = (P(Λ0)− P(Λ0)(Fp))∧ .

Here P(Λ0) ' P1
Zp denotes the relative projective line over Zp associated to Λ0

and the “hat” indicates the completion along the special fibre. If we use e1, e2 to

identify P(Λ0) with P1
Zp , we have

(1.7) Ω̂[Λ0] = Spf Zp[T, (T p − T )−1]∧ ,

where T = X0/X1 in terms of the canonical coordinates on P1
Zp . The subgroup

GL2(Zp) preserves Λ0 and hence acts on Ω̂[Λ0] . The action of g on P(Λ0) is

induced by the automorphism g : Λ0 → Λ0 . For the left action f 7→ g−1
∗ (f) of

GL2(Zp) on the ring of holomorphic functions on Ω̂[Λ0] we therefore have

g−1
∗ : (X0,X1) 7→ (det(g)−1(dX0 − cX1), det(g)−1(−bX0 + aX1)), g =

(
a b
c d

)
.
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In terms of the coordinate T the action g−1
∗ is therefore given by

(1.8) g−1
∗ : T 7→ dT − c

−bT + a
, g =

(
a b
c d

)

(homography associated to tg−1 ).

Next, let ∆0 = ([Λ0], [Λ1]) be the edge corresponding to

(1.9) Λ0 = [e1, e2] , Λ1 = [pe1, e2] .

In this case we have an identification

(1.10) Ω̂∆0 = Spf Zp[T0, T1, (1 − T p−1
0 )−1, (1 − T p−1

1 )−1]∧/(T0T1 − p) .

The action of the Iwahori subgroup

(1.11)

(
Z×p pZp
Zp Z×p

)

is given by

(1.12) g−1
∗ : T0 7→

dT0 − pc
−b0T0 + a

, T1 7→
aT1 − pb0
−cT1 + d

,

for

(1.13) g =

(
a b
c d

)
=

(
a pb0
c d

)
.

The open immersion Ω̂[Λ0] → Ω̂∆0 is induced by the open immersion

(1.14) Spf Zp[T, T−1]∧ → Spf(Zp[T0, T1]/T0T1 − p)∧

induced by

(1.15) T1 7→ T−1 , T0 7→ p · T .

It is easy to check that this morphism is indeed equivariant for the action of the

Iwahori subgroup (1.11).

The special fibre of Ω̂ is a union of projective lines parametrized by the vertices

in B . More precisely, B can be identified with the dual graph of the special fibre,
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compatibly with the action of PGL2(Qp) . Let [Λ] be a vertex with corresponding

projective line P[Λ] . Then P[Λ] may be identified with

(1.16) P[Λ] = P(Λ/pΛ) ,

where Λ is any lattice in the homothety class [Λ] , and

(1.17) Ω̂[Λ] ×Spf Zp SpecFp = P[Λ] − P[Λ](Fp) .

If ∆ = ([Λ], [Λ′]) is an edge, we denote the corresponding point in the special fibre

by pt∆ ,

(1.18) pt([Λ],[Λ′]) = P[Λ] ∩ P[Λ′ ] = Ω̂∆(Fp) .

We shall also need to know how the Drinfeld isomorphism (1.2) looks on the set

of closed points. Let (X, %) ∈M(k) and let (M,F, V ) be the covariant Dieudonné

module of X . It is a free W -module of rank 4. From the action of Zp2 on X we

obtain a Z/2 -grading,

(1.19) M = M0 ⊕M1 ,

and F, V and ι(Π) are all homogeneous of degree 1. Since LieX = M/VM

and by the condition on X to be special, we have inclusions with index 1 of free

W -modules of rank 2,

(1.20) pM0⊂
6=
VM1⊂

6=
M0 , pM1⊂

6=
V M0⊂

6=
M1 .

An index i ∈ Z/2 is called critical, if

(1.21) VMi = ΠMi .

Since Lie(ι(Π))2 = 0 and dimkM0/VM1 = dimkM1/VM0 = 1 , there always

exists i with ΠMi ⊂ VMi . Since both modules have index 1 in Mi+1 , it follows

that i is critical. Hence there always exists a critical index.

If i is a critical index, V −1Π is a σ -linear automorphism of Mi . If we set

ηi = MV −1Π
i , then ηi is a Zp -module with

Mi = ηi ⊗Zp W .

Recall our fixed s.f. OB -module X . We may choose X in its isogeny class so that

0 and 1 are critical. Let

M0 = M0
0 ⊕M0

1 , η0
i = M0V

−1Π

i



14

be the Dieudonné module of X and let us fix an isomorphism

(1.22) U := η0
0 ⊗Zp Qp ' Q2

p .

We can now describe the Drinfeld isomorphism on M(k) . Let (X, %) ∈M(k) and

let M be the Dieudonné module of X . If 0 is critical we have the Zp -module η0

and % defines an isomorphism

(1.23) η0 ⊗Qp → U = Q2
p .

Let Λ0 be the image of η0 under (1.23). Then Λ0 is a lattice in Q2
p which (since

the height of % is zero) is of the same volume as Z2
p . The point (X, %) is then

mapped to the point of P[Λ0](k) corresponding to the line

(1.24) ` = VM1/pM0 ⊂M0/pM0 = Λ0 ⊗Zp k .

If 1 is critical, % defines an isomorphism

(1.25) η1 ⊗Qp → η0
1 ⊗Qp .

The action of Π identifies η0
1 ⊗ Qp with U . Hence we obtain a lattice Λ1 in

Q2
p , of the same volume as pZp ⊕Zp . The point (X, %) is mapped to the point of

P[Λ1](k) corresponding to the line

(1.26) ` = VM0/pM1 ⊂M1/pM1 = Λ1 ⊗Zp k .

If both 0 and 1 are critical, both procedures above are applicable and the lattices

Λ1 ⊂ Λ0 define an edge ∆ = ([Λ0], [Λ1]) in B . In this case the line VM1/pM0 in

P[Λ0] and VM0/pM1 in P[Λ1 ] define the same point of Ω̂(k) , namely pt∆ . We

thus see that the set of irreducible components of Ω̂ ⊗ k can be partitioned into

two subsets: on the irreducible components corresponding to even lattice classes the

index 0 is critical and on the irreducible components corresponding to odd lattice

classes the index 1 is critical.

We shall use the following terminology.

Definition 1.1. A point (X, %) ∈M(k) is called

superspecial if both indices 0,1 are critical

ordinary if only one index is critical

special if V 2M = pM .

Obviously, a superspecial point is special since in this case VM = ΠM . Assume

that (X, %) is ordinary and let e.g. 0 be the unique critical index,

(1.27) V M0 = ΠM0 .
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Since V 2M0 = pM0 , we see that (X, %) is special if and only if

(1.28) V 2M1 = pM1, i.e. (V −1Π)2VM1 = VM1 .

Recalling that VM1/pM0 ⊂ M0/pM0 is the line in P[Λ0] associated to M , we

obtain the following characterization.

Proposition 1.2. Let P[Λ] ⊂ Ω̂⊗Zp k be the irreducible component corresponding

to the vertex [Λ] in B . Then a point x ∈ P[Λ](k) is

superspecial iff x ∈ P[Λ](Fp)

special iff x ∈ P[Λ](Fp2) .

Remark 1.3. Let (X, %) ∈M(k) be special. Then we may find a W -basis of its

Dieudonné module with

(1.29) e3 = V e1 , e4 = V e2 , pe1 = V e3 , pe2 = V e4 .

Hence X is isomorphic to the product of the p -divisible group of a supersingular

elliptic curve with itself. The converse also holds.

§2. Special cycles and their support in the special fibre.

Recall our fixed s.f. OB -module X over k . We introduce

(2.1) V = {j ∈ End0
OB

(X); tr0(j) = 0} .

We will always identify j ∈ End0
OB (X) with its image under the identifications (cf.

(1.22)),

(2.2) End0
OB (X) = End(U) = M2(Qp) .

Then V is equipped with a quadratic form given by squaring,

(2.3) j2 = q(j) · id, q(j) ∈ Qp .

We note that

(2.4) q(j) = −det(j) .

The elements of V will be called special endomorphisms.
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Definition 2.1. Let j ∈ V be a special endomorphism with q(j) 6= 0 . The special

cycle Z(j) associated to j is the closed formal subscheme of M consisting of all

points (X, %) such that % ◦ j ◦ %−1 lifts to an endomorphism of X .

Let (X, %) ∈M(S) . Then λ = %◦ j ◦%−1 is a quasi-isogeny of X ×S S . By the

rigidity property of quasi-isogenies ([5]) we may also consider λ as a quasi-isogeny

of X . The locus in S where λ is an isogeny is a closed subscheme S ′ of S ([19],

prop. 2.9). The closed formal subscheme Z(j) of M is characterized by

(2.5) S ′ = Z(j)×M S .

In this section we will study the point set Z(j)(k) of special cycles and their

intersection properties.

Proposition 2.1. Let [Λ] be a vertex in B and let Λ ⊂ U = Q2
p be a lattice in

its homothety class. Then

P[Λ] ∩ Z(j) 6= ∅ iff j(Λ) ⊂ Λ .

In particular, if Z(j) 6= ∅ then q(j) ∈ Zp .

We will see in Corollary 2.5 that conversely, if q(j) ∈ Zp , then Z(j) 6= ∅ .

Proof. Suppose e.g. that [Λ] is even and let x ∈ P[Λ](k) . Then x corresponds

under the Drinfeld isomorphism to (X, %) where 0 is a critical index and with

Dieudonné module M = M0 ⊕M1 , where

(2.6) M0 = Λ⊗Zp W , V M1/pM0 = `x ⊂ Λ⊗ k .

Then x lies in Z(j) iff j ⊗Qp idWQ preserves the W -lattices M0 and V M1

in U ⊗Qp WQ . This proves one implication. Assume now that j(Λ) ⊂ Λ , i.e.

j(M0) ⊂M0 . Since k is algebraically closed there exists a line ` ⊂ Λ⊗Zp k stable

under the endomorphism induced by j . The corresponding point x ∈ P[Λ](k) is

associated to (X, %) with M = M0 ⊕M1 where

(2.7) j(VM1/pM0) ⊂ VM1/pM0, i.e., j(VM1) ⊂ VM1 .

Hence x ∈ Z(j) .

The last assertion follows by taking a Zp -basis of a lattice Λ with P[Λ] ∩Z(j) 6= ∅
and using it to calculate det(j) = −q(j) . �
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From now on we will always assume that q(j) ∈ Zp − {0} . We next do a local

analysis of Z(j) along a line P[Λ] which intersects Z(j) . Let us fix a lattice Λ ⊂ U
with j(Λ) ⊂ Λ . We use the notation

(2.8) redΛ(j) ∈ End(Λ/pΛ)

for the induced endomorphism.

Proposition 2.2. With the notation introduced above, there are the following pos-

sibilities.

(i) rk(redΛ(j)) = 2 . Then q(j) = ε ∈ Z×p and red(j) preserves precisely two lines

in P[Λ](k) . The corresponding points are both superspecial, if χ(ε) = 1 and both

ordinary special, if χ(ε) = −1 .

(ii) rk(redΛ(j)) = 1 . Then ord q(j) ≥ 1 and redΛ(j) is a nilpotent endomor-

phism. The line

` = Ker redΛ(j) = Im redΛ(j)

is the unique line stable under redΛ(j) . The corresponding point of PΛ is super-

special.

(iii) redΛ(j) = 0 . Then ord q(j) ≥ 2 and all lines ` ∈ P[Λ](k) are stable under

redΛ(j) , i.e. P[Λ] ⊂ Z(j) .

Proof. Let us prove (i). Since redΛ(j) is a traceless automorphism it has two

distinct eigen lines. The characteristic polynomial of redΛ(j) has the form

X2 − q(j) modp ,

since q(j) = −det(j) , and the determinant may be calculated using a basis of Λ .

The assertion follows. The other assertions are proved in a similar way. �

Corollary 2.3. Z(j)(k) consists only of isolated points if and only if ord q(j) ≤ 1 .

Proof. If P[Λ] ⊂ Z(j) then redΛ(j) = 0 and ord q(j) ≥ 2 . Conversely, let

ord q(j) ≥ 2 . By Corollary 2.5 below there exists Λ with P[Λ] ∩ Z(j) 6= ∅ .

Then redΛ(j) cannot have full rank because otherwise ord q(j) = 0 . Therefore, if

P[Λ] 6⊂ Z(j) we are in case (ii) of the previous proposition. Let Λ′ be the lattice

neighbour of Λ corresponding to the intersection point of P[Λ] with Z(j) , i.e. to

the line Im redΛ(j) in Λ/pΛ . Then

(2.9) Λ′ = j(Λ) + pΛ .
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But then

j(Λ′) = j2(Λ) + pj(Λ)

= pαΛ + pj(Λ), α ≥ 2

= p(j(Λ) + pα−1Λ)

⊂ pΛ′ .

Hence redΛ′ (j) = 0 and P[Λ′ ] ⊂ Z(j) . �

We next will get a global overview of the lattices Λ which satisfy the criterion

of Proposition 2.1, i.e., of the set

(2.10) T (j) = {[Λ] ∈ B; P[Λ] ∩ Z(j) 6= ∅} .

Lemma 2.4. Let j ∈ GL2(Qp) . Let Λ ⊂ Q2
p be a lattice. The following conditions

are equivalent:

(i) j(Λ) ⊂ Λ

(ii) Let [Λ] ∈ B be the vertex corresponding to Λ . Then

d([Λ], [j(Λ)]) ≤ ord det j .

Here d denotes the distance in the building.

If tr(j) = 0 , these conditions are also equivalent to

(iii) d([Λ],Bj) ≤ 1
2 · ord det j .

Here Bj denotes the fixed point set of j in B .

Proof. Put α = ord det j . Let (e, f) ∈ Z2 , e ≥ f , be the elementary divisors for

the lattice pair Λ, j(Λ) . Then e+ f = α and d([Λ], [j(Λ)]) = e− f . On the other

hand

(2.11) j(Λ) ⊂ Λ⇐⇒ f ≥ 0⇐⇒ e − f ≤ α .

This shows the equivalence of (i) and (ii). For (iii) we note that if tr(j) = 0 , then

j induces an involution of B . The unique geodesic from [Λ] to [j(Λ)] consists

of the geodesic from [Λ] to Bj and its image under j which is the geodesic from

[j(Λ)] to Bj . �

Remark: This observation appears already in [14] where it is attributed to Tate.
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Corollary 2.5. Let j ∈ V with q(j) = ε · pα , where ε ∈ Z×p , α ≥ 0 . The set

T (j) (cf. (2.10)) is as follows:

(i) If α is even and χ(ε) = −1 , then T (j) is a ball of radius α/2 around the

unique vertex [Λ0] fixed by j .

(ii) If α is even and χ(ε) = 1 , then T (j) is a tube of width α/2 around the

apartment fixed by j .

(iii) If α is odd and χ(ε) arbitrary, then T (j) is a ball of radius α/2 around the

unique fixed point of j , which is the midpoint of an edge.

In particular, in all cases T (j) 6= ∅ .

Proof. By the preceding lemma we only have to determine Bj . In cases (i) and

(ii) and after replacing j by a scalar multiple we may assume that j2 = ε · id . In

case (i) we may find a basis e1, e2 of Q2
p such that j has the matrix

j =

(
0 ε
1 0

)
.

In this case [Λ] with Λ = [e1, e2] is the unique vertex fixed by j ( redΛ(j) fixes

no Fp -rational line in Λ/pΛ ). In case (ii) we may assume that j2 = id and can

find a basis e1, e2 of Q2
p such that j has the matrix

(2.12) j =

(
1 0
0 −1

)
.

In this case the fixed point set is given by the apartment with vertices [Λi] ,

(2.13) Λi = [pie1, e2] , i ∈ Z .

The case (iii) is also easy and is left to the reader. �

Corollary 2.6. In the cases when Z(j)(k) is a set of isolated points (cf. Corollary

2.3), this point set is of the following form.

(i) q(j) = ε ∈ Z×p , χ(ε) = −1 . In this case let [Λ0] be the unique fixed vertex of

j . Then Z(j)(k) consists of two ordinary special points on P[Λ0] (namely the two

eigen lines of red[Λ0](j) ).

(ii) q(j) = ε ∈ Z×p , χ(ε) = 1 . In this case let (2.13) be the apartment fixed by j .

Then

Z(j)(k) = {pt([Λi,Λi−1]); i ∈ Z} .

(iii) q(j) = ε·p , χ(ε) arbitrary. Let ∆ be the edge containing the unique midpoint

fixed by j . Then

Z(j)(k) = {pt∆} .
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Proof. This is simply a combination of the previous corollary with the local analysis

of Proposition 2.2. �

For the next corollary we need the following slight strengthening of Lemma 2.4.

The proof is identical.

Lemma 2.7. Let j ∈ GL2(Qp) with tr(j) = 0 , and let q(j) = ε · pα , ε ∈ Z×p .

Let Λ ⊂ Q2
p be a lattice. Let

(2.14) m[Λ](j) := max{r; j(Λ) ⊂ prΛ} .

Then

(2.15) m[Λ](j) = α/2− d([Λ],Bj) .

Corollary 2.8. Let j ∈ V with q(j) = ε · pα , α ≥ 1 . For all [Λ] ∈ T (j) not on

the boundary of T (j) we have P[Λ] ⊂ Z(j) . If [Λ] is on the boundary of T (j) , i.e.

d([Λ],Bj) = α/2 , then P[Λ] ∩ Z(j) consists of a single superspecial point, namely

the one corresponding to the unique neighbouring vertex of [Λ] in T (j) .

We next turn to the intersection of two special cycles. Obviously the intersection

Z(j, j ′) = Z(j)∩Z(j ′) will only depend on the Zp -span j of j and j ′ , which we

will assume to be of rank 2. Let

(2.16) ( , ) : V × V → Qp

be the bilinear form corresponding to the quadratic form q ,

(2.17) (x, y) = q(x+ y)− q(x) − q(y) .

Since p 6= 2 , the restriction of ( , ) to j may be diagonalized. We will always

assume that j is non-degenerate. Then we may choose a Zp -basis j, j ′ of j such

that the restriction of ( , ) to j has matrix

(2.18) T :=

(
q(j) 1

2 (j, j ′)
1
2 (j, j ′) q(j ′)

)
= diag(ε1p

α, ε2p
β)

with ε1, ε2 ∈ Z×p , and α ≥ 0 , β ≥ 0 . In particular j and j ′ anticommute,

(2.19) jj ′ = −j ′j .
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We wish to determine the k -rational points of

(2.20) Z(j) = Z(j) ∩ Z(j ′) .

We introduce

(2.21) T (j) = {[Λ] ∈ B; P[Λ] ∩ Z(j) 6= ∅} .

As in the case of a special single endomorphism, we start with a local analysis. Let

Λ be a lattice such that the corresponding vertex [Λ] lies in T (j) . Let

(2.22) m = redΛ(j) ⊂ End(Λ/pΛ) .

Then m lies in the subspace of traceless matrices in End(Λ/pΛ) 'M2(Fp) . Let

( , ) : m ×m→ Fp

be the bilinear form associated to the quadratic form j 7→ −det(j) . Note that the

matrix of this form with respect to the basis redΛ(j), redΛ(j ′) is just the reduction

modulo p of the matrix T with respect to j, j ′ . Let rk m be the rank of this

reduction.

Proposition 2.9. With the previous notation, we have rk m ≤ 1 . Furthermore,

(i) If rk m = 1 and m represents 1, there are two possibilities

a) dimm = 2 . In this case P[Λ]∩Z(j) consists of a single superspecial point, which

is an isolated point of Z(j) ×SpfW Spec k.

b) dim m = 1 . In this case P[Λ] ∩ Z(j) consists of two superspecial points, which

are isolated points of Z(j)×Spf W Spec k.

(ii) If rk m = 1 and m does not represent 1, then dimm = 1 and P[Λ] ∩ Z(j)

consists of two ordinary special points, which are isolated points of Z(j) ×Spf W

Spec k .

(iii) If rk m = 0 , then dimm ≤ 1 and there are two possibilities.

a) dimm = 1 . Then P[Λ] ∩Z(j) consists of a single superspecial point. This is an

isolated point of Z(j) ×Spf W Spec k iff p2 6 | T .

b) m = 0 . Then P[Λ] ⊂ Z(j) .

Proof. Suppose by contradiction that rk m = 2 . Then redΛ(j) and redΛ(j ′) would

be traceless invertible linear transformations which anticommute. But then each
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has to interchange the two eigenspaces of the other. But these eigen lines correspond

precisely to

P[Λ] ∩ Z(j) resp. P[Λ] ∩ Z(j ′) .

It would follow that P[Λ] ∩ Z(j) = ∅ , contrary to our assumption.

Let us prove (i). If m represents 1, we may choose the basis j, j ′ of j such that

(2.23) redΛ(j)2 = id , redΛ(j ′)2 = 0 .

If dimm = 2 , then

Im redΛ(j ′) = Ker redΛ(j ′)

is a one-dimensional subspace of Λ/pΛ preserved by redΛ(j) since jj ′ = −j ′j .

The superspecial point corresponding to this Fp -rational point of P[Λ] is the unique

point of P[Λ] ∩Z(j) . If dimm = 1 , then redΛ(j ′) = 0 and P[Λ] ∩Z(j) consists of

the two superspecial points given by the two Fp -rational eigenlines of redΛ(j) . By

corollary 2.3 in both cases we are dealing with isolated points of Z(j)×SpfWSpec k .

Let us now prove (ii). If rk m = 1 and m does not represent 1 we may assume

that

redΛ(j)2 ∈ F×p − F×,2p .

Then redΛ(j) has two non-rational eigen lines. Since redΛ (j ′) anticommutes with

redΛ(j) it has to take any one of these lines into the other one. Since redΛ(j ′) is

not invertible, its restriction to at least one of the eigen lines has to be zero. But

then redΛ(j ′) has to kill both eigenlines since they are not Fp -rational. Hence

dimm = 1 and P[Λ] ∩ Z(j) = P[Λ] ∩ Z(j) consists of the two ordinary special

points corresponding to the two eigen lines. These again are isolated points of

Z(j)×SpfW Spec k .

Finally, let us prove (iii). If rk m = 0 , then dimm ≤ 1 . If dimm = 1 we may

assume that

redΛ(j) 6= 0 , redΛ(j)2 = 0 , redΛ(j ′) = 0 .

In this case P[Λ] ∩ Z(j) = P[Λ] ∩ Z(j) consists of a single superspecial point corre-

sponding to the Fp -rational line

Im redΛ(j) = Ker redΛ(j) ⊂ Λ/pΛ .

If p2 6 | T then ord q(j) ≤ 1 and Z(j) ×SpfW Spec k consists of isolated points

only. If p2 | T , then ord q(j) ≥ 2 and we put Λ′ = j(Λ) + pΛ , cf. (2.9). Then our

superspecial point lies on P[Λ] ∩ P[Λ′] . But

(2.24) j ′(Λ) ⊂ pΛ and j(Λ′) ⊂ pΛ′ ,
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cf. (2.9). Hence

j ′(Λ′) = j ′(j(Λ) + pΛ) ⊂ p(j(Λ) + pΛ) = pΛ′ .

It follows that P[Λ′ ] ⊂ Z(j) and hence our intersection point is not isolated in

Z(j) ×Spf W Spec k .

Finally, if m = (0) , then obviously all lines in P[Λ] are preserved by redΛ(j) ,

∀j ∈ j , i.e. P[Λ] ⊂ Z(j) . �

We next turn to a global analysis of T (j) . We obviously have an inclusion

(2.25) T (j) ⊂ T (j) ∩ T (j ′) ,

for any set j, j ′ of generators of the Zp -module j . We therefore start by deter-

mining T (j) ∩ T (j ′) in the case when j, j ′ diagonalize the bilinear form on j , cf.

(2.18). We shall do this according to the following table.

(2.26)

j \ j ′ β even β even β odd

χ(ε2) = −1 χ(ε2) = 1
α even

χ(ε1) = −1 ∅
α even
χ(ε1) = 1

α odd ∅

Remark 2.10. We note that the existence of a basis j, j ′ of the type (2.18) imposes

restrictions on the matrix T . Indeed, j and j ′ generate a non-commutative Qp -

subalgebra of M2(Qp) which therefore has to be all of M2(Qp) . On the other

hand, the subalgebra generated by j and j ′ is just the quaternion algebra over

Qp with invariant

(ε1p
α, ε2p

β)p ∈ Z/2 .

We conclude that

(2.27) (ε1p
α, ε2p

β)p = χ(−1)αβ · χ(ε1)β · χ(ε2)α = 1 .

This excludes the following cases.

α odd and β even and χ(ε2) = −1, resp.(2.28)

β odd and α even and χ(ε1) = −1.
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(2.29) α and β odd and χ(−ε1ε2) = −1 .

Before stating the result, we point out that, since j and j ′ anticommute, each one

of the induced automorphisms of B will preserve the fixed point set of the other.

(This remark incidentally gives another reason why the cases (2.28) are excluded:

in these cases one fixed point set is a vertex and the other a midpoint.)

Proposition 2.11. Let j, j ′ be a basis of j such that the matrix of the bilinear

form is given by (2.18). The set T (j) ∩ T (j ′) is of the following form.

(i) α and β even, χ(ε1) = χ(ε2) = −1 . In this case T (j)∩T (j ′) is the ball with

radius min(α/2, β/2) around the unique common fixed vertex of j and j ′ .

(ii) α and β even, χ(ε1) 6= χ(ε2) . Suppose e.g. that χ(ε1) = −1 . Then the

unique vertex [Λ0] fixed by j lies on the apartment fixed by j ′ . In this case

T (j) ∩ T (j ′) is the intersection of the ball with radius α/2 around [Λ0] with the

tube of width β/2 around the fixed apartment. The case when χ(ε2) = −1 is

analogous with the roles of j and j ′ interchanged.

(iii) α and β even, χ(ε1) = χ(ε2) = 1 . In this case the fixed apartment of j and

the fixed apartment of j ′ have a unique vertex in common. The set T (j) ∩ T (j ′)

is the intersection of the tube of width α/2 around the fixed apartment of j and

the tube of width β/2 around the fixed apartment of j ′ .

(iv) α odd, β even and χ(ε2) = 1 (resp. β odd, α even and χ(ε1) = 1 ). In this

case the midpoint fixed by j lies on the fixed apartment of j ′ . The set T (j)∩T (j ′)

is the intersection of the ball of radius α/2 around the midpoint fixed by j with

the tube of width β/2 around the apartment fixed by j ′ .

(v) α and β odd. In this case j and j ′ fix the same midpoint and T (j) ∩ T (j ′)

is the ball with radius min(α/2, β/2) around it.

Proof. Let us prove the first statement in (iii). After correcting j and j ′ by scalars

we may assume that j2 = j
′2 = id . We may choose a basis e1, e2 of Q2

p such

that j(e1) = e1, j(e2) = −e2 , cf. (2.12). Since j and j ′ anticommute, j ′ has to

permute the two eigenlines of j , hence j ′(e1) = ±e2 , j(e2) = ±e1 . If Λ = [e1, e2]

we see that j ′ interchanges the two neighbouring vertices [p±1e1, e2] of [Λ] in the

fixed apartment of j , cf. (2.13). Since the common fixed point set of j and j ′ is
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convex, it consists of [Λ] only.

The other assertions are equally easy. �

Combining this now with our analysis of the special fibres of Z(j) and Z(j ′)

we obtain the following corollary.

Corollary 2.12. Let j, j ′ be a basis of j such that the matrix of the bilinear

form is given by (2.18). We have an equality T (j) = T (j) ∩ T (j ′) except when

α = β = 0 . The latter condition is equivalent to Z(j) = ∅ .

Proof. If [Λ] does not lie on the boundary of either T (j) or T (j ′) we have by

Corollary 2.8 that P[Λ] ⊂ Z(j) or P[Λ] ⊂ Z(j ′) and hence [Λ] ∈ T (j) iff [Λ] ∈
T (j) ∩ T (j ′) . Therefore the only problematical vertices are those which lie on the

boundary of both T (j) and T (j ′) . Now one goes through all combinations as to

whether T (j) resp. T (j ′) is a ball (around a vertex or a midpoint of an edge)

resp. a tube, using the second assertion of corollary 2.8. In the analysis one uses

the fact (comp. [17], Lemma 6.8) that if

d([Λ],Bj) ≤ d([Λ],Bj′) ,

then the unique geodesic from [Λ] to Bj′ first runs along the geodesic from [Λ]

to Bj and then stays inside Bj . The analysis of the extreme cases in which both

Z(j)×Spf W Spec k and Z(j ′)×Spf W Spec k are sets of isolated points is left to the

reader (use Proposition 2.9). �

Corollary 2.13. Assume that j is non-degenerate of rank 2. Then Z(j) ×Spf W

Spec k is a projective scheme over Spec k . Furthermore, it is either empty, or a

finite set of points, or a connected finite union of projective lines.

Proof. The first statement is equivalent to the assertion that Z(j) ×Spf W Spec k

is quasi-compact, i.e. to the assertion that T (j) is finite. The finiteness of T (j)

follows from Proposition 2.11.

The proposition also implies that, except in extreme cases, Z(j)×Spf W Spec k is a

connected union of projective lines. The extreme cases are, case by case:

(i) α = β = 0 . Then Z(j) = ∅ , cf. Corollary 2.12.
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(ii) α = 0 , β > 0 (or β = 0 , α > 0 ). In this case Z(j) ×SpfW Spec k consists of

two ordinary special points if χ(ε1) = −1 , or of a finite set of superspecial points

if χ(ε1) = 1 . The case where β = 0 and α > 0 is symmetric.

§3. Local equations for the special cycles.

In this section we will write down equations which describe a special cycle Z(j) in a

neighbourhood of a point x in the special fibre. As mentioned in the introduction,

the basic idea of how to do this is due to Genestier [7]. In the beginning of this

section we fix a special endomorphism j with q(j) = ε · qα ∈ Zp − {0} .

Theorem 3.1. (Genestier) The Drinfeld isomorphism (1.2) induces isomorphisms

Z(j) ' Ω̂j ×Spf Zp Spf W if α = 0(3.1)

Z(j) ' Ω̂id+j ×Spf Zp Spf W if α > 0(3.2)

(fixed point formal schemes for the action of elements of GL2(Qp) on Ω̂ ).

Proof. Suppose first that j is an arbitrary element of G(Qp)0 (cf. (1.1)) and define

a closed formal subscheme Z(j) in the same way as for a special endomorphism, cf.

Definition 2.1. If (X, %) ∈ Z(j)(S) , then the unique isogeny jX lifting % ◦ j ◦ %−1

is of height 0, and hence an automorphism of X . It follows that (X, %) is a fixed

point for the action of j−1 on M . Conversely, a fixed point defines an element

of Z(j)(S) . Therefore Z(j) = Ω̂j ×Spf Zp SpfW , since the Drinfeld isomorphism

is equivariant for the action of G(Qp)0 , cf. (1.2).

Suppose now that j is a special endomorphism with ord det j > 0 . But then

det(id + j) = 1 + det(j) , hence id + j ∈ G(Qp)0 . The result therefore follows from

the previous case since Z(id + j) = Z(j) . �

Our next task will be to write down equations describing the fixed point schemes.

Put j̃ = j if α = 0 and j̃ = id + j if α > 0 . Let x ∈ Ω̂j̃(k) . We distinguish two

cases.

Case x ordinary: After replacing x by gx and j by gjg−1 we may assume that

x lies in Ω̂[Λ0] , where Λ0 = [e1, e2] denotes the standard lattice. Furthermore,

ord det j̃ = 0 . But then, since j̃ fixes x and hence [Λ0] , it follows that j ∈M2(Zp)

and j̃ ∈ GL2(Zp) . We write

(3.3) j =
(
a b
c d

)
.
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Then, using the description (1.8) of the action of GL2(Zp) on Ω̂[Λ0] we obtain the

following equation for Ω̂j̃[Λ0] ,

(3.4) −b̃T 2 + (ã − d̃) · T + c̃ = 0 ,

where ã, b̃ = b, c̃ = c, d̃ are the coefficients of j̃ . The equation for Z(j) therefore

is, regardless of whether ord det j = 0 or > 0 ,

(3.5) bT 2 − 2aT − c = 0 .

Case x superspecial: In this case, after replacing x by gx and j̃ by gj̃g−1

we may assume that x = pt∆0 , where ∆0 = ([Λ0], [Λ1]) is the standard edge (1.9).

In this case, j̃ will lie in the Iwahori subgroup (1.11). We write

(3.6) j =
(
a b
c d

)
=
(
a pb0
c d

)
.

In this case we obtain from (1.12) the following pair of equations describing Ω̂j̃∆0
,

T0(b̃0T0 − (ã − d̃) − c̃T1) = 0(3.7)

T1(b̃0T0 − (ã − d̃) − c̃T1) = 0,

where ã, pb̃0 = pb0, c̃ = c, d̃ are the coefficients of j̃ . We have used the fact that

T0T1 = p . The equations for Z(j) are, regardless of whether ord det j = 0 or

> 0 ,

T0(b0T0 − 2a − cT1) = 0(3.8)

T1(b0T0 − 2a − cT1) = 0.

The reader may reassure himself that the locus defined by the equations (3.8)

induces on the open formal subscheme Ω̂[Λ0] of Ω̂∆0 , cf. (1.14), the locus defined

by the equation (3.5).

In the following statement we denote by an upper index ord the intersection

with the ordinary locus of M resp. Ω̂ , i.e. the open formal subscheme formed by

the complement of the superspecial points. Define

(3.9) mult[Λ](j) = max(m[Λ](j), 0) ,

with m[Λ](j) as defined in Lemma 2.7.
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Proposition 3.2. The closed formal subscheme Z(j)ord of (Ω̂ ×Spf Zp Spf W )ord

is a divisor. We have the following equality of divisors,

(3.10) Z(j)ord =
∑

[Λ]∈T (j)

mult[Λ](j) · Pord
[Λ] ,

unless q(j) = ε · pα where ε ∈ Z×p and with α even and χ(ε) = −1 , in which

case

(3.11) Z(j)ord = Z(j)ord,h +
∑

[Λ]∈T (j)

mult[Λ](j) · Pord
[Λ] ,

where Z(j)ord,h (the “horizontal divisor”) is isomorphic to the disjoint union of

two copies of Spf W and meets the special fibre in two ordinary special points of

P[Λ(j)] . Here [Λ(j)] denotes the unique vertex fixed by j .

Proof. We wish to determine Z(j)∩(Ω̂[Λ]×Spf ZpSpf W ) for a vertex [Λ] where this

intersection is non-empty. Note that this implies that m[Λ](j) ≥ 0 , cf. Proposition

2.1. Replacing [Λ] by [gΛ] and j by gjg−1 we may assume that [Λ] = [Λ0] is

the standard lattice. Let us write

(3.12) j =

(
a b
c −a

)
= pm ·

(
ā b̄
c̄ −ā

)
= pm · j̄ , m = m[Λ0](j) ,

where ā, b̄, c̄ ∈ Zp are not simultaneously divisible by p . The equation (3.5) for

Z(j) ∩ (Ω̂[Λ0] ×Spf Zp SpfW ) may be written as

(3.13) pm · (b̄T 2 − 2āT − c̄) = 0 .

It follows already that Z(j) ∩ (Ω̂[Λ] ×Spf Zp SpfW ) is a divisor. The second factor

in the LHS of (3.13) is not divisible by p , i.e. is a unit after localizing at the

ideal (p) . Since Pord
[Λ0] is defined by p = 0 in Ω̂[Λ0] , the multiplicity of P[Λ0 ] in

the divisor is equal to m , as asserted. We still have to determine the zero set

Z(j)ord,h ∩ (Ω̂[Λ0] ×Spf Zp SpfW ) of the second factor of (3.13). Now

(3.14) Z(j)ord,h ∩ (Ω̂[Λ0 ] ×Spf Zp Spf W ) = Z(j̄) ∩ (Ω̂[Λ0] ×Spf Zp Spf W ) .

Furthermore, Pord
[Λ0 ]∩Z(j̄) is precisely the set of lines in Pord

[Λ0] preserved by redΛ0(j̄) .

Since redΛ0(j̄) 6= 0 , Proposition 2.2 implies that this last intersection is empty, un-

less redΛ(j̄) is an invertible transformation of Λ/pΛ and this intersection consists

of two ordinary special points. In the latter case we have j(Λ0) = pmΛ0 , hence [Λ0]

is a fixed vertex under j . It follows that α is even and χ(ε) = −1 , cf. Corollary

2.5, hence [Λ0] is the unique vertex fixed by j . Furthermore, the extension

(3.15) Zp[T ]/b̄T 2 − 2āT − c̄
is unramified, which finishes the proof. �

We next turn to the local equations of Z(j) at a superspecial point.
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Proposition 3.3. Let q(j) = ε · pα , ε ∈ Z×p , α ≥ 0

(i) If α = 0 and χ(ε) = −1 , then Z(j) contains no superspecial points, cf.

Corollary 2.6, (i)

(ii) If α = 0 and χ(ε) = 1 , then Z(j) is equal to the disjoint union of the

reduced superspecial points corresponding to the edges in the fixed apartment Bj ,

cf. Corollary 2.6, (ii).

(iii) If α ≥ 1 , then Z(j) is purely one-dimensional and contains superspecial

points. Let x = pt∆ be one of them, where ∆ is an edge contained in T (j) .

Then, locally around pt∆ , Z(j) is the union of a divisor with support in the

special fibre and an embedded component at pt∆ , except in the case where α is

odd and ∆ = ∆(j) is the edge containing the midpoint fixed by j . In the latter

case, if α = 1 , then Z(j) is the union of Z(j)h and an embedded component at

pt∆(j) , where Z(j)h is a divisor isomorphic to Spf W ′ where W ′ is the ring of

integers in the ramified quadratic extension of WQ . Finally, in the latter case, if

α > 1 , then Z(j) is locally at pt∆(j) the union of a divisor Z(j)h = Spf W ′ , an

embedded component at pt∆ and a divisor with support in the special fibre.

Proof. As before we may assume that ∆0 = ([Λ0], [Λ1]) is the standard simplex.

Let us first assume that [Λ0] is strictly closer than [Λ1] to the fixed point set Bj .

We therefore have

(3.16) m := m[Λ0](j) , m[Λ1](j) = m− 1 ≥ 0 .

In terms of the canonical basis e1, e2 of Λ0 we may write

(3.17) j =

(
a b
c −a

)
= pm ·

(
ā b̄
c̄ −ā

)

where ā, b̄, c̄ are not simultaneously divisible by p . On the other hand, b = p · b0 ,

cf. (3.6), and in terms of the canonical basis pe1, e2 of Λ1 the matrix of j is
(
a b0
pc −a

)
= pm−1

(
pā b̄0
p2c̄ −pā

)
,

with b0 = pm−1 · b̄0 . Since m[Λ1](j) = m − 1 we conclude that b̄0 is a unit.

Therefore the system of equations (3.8) for Z(j)∩ (Ω̂∆0 ×Spf Zp SpfW ) is given by

pm−1 · T0 · (b̄0 · T0 − 2pā − pc̄ · T1) = Tm+1
0 · Tm−1

1 · u = 0

(3.18)

pm−1 · T1(b̄0T0 − 2pā− pc̄ · T1) = Tm0 · Tm1 · u = 0 ,
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where

u = b̄0 − 2ā · T1 − c̄ · T 2
1

is a unit in the local ring of pt∆0 . The above system of equations describes the

same locus as

(3.19) T 2
0 · (T0T1)m−1 = (T0T1) · (T0T1)m−1 = 0 .

In this case we therefore see that Z(j) is the union of a divisor with support in

the special fibre, and an embedded component at pt∆0 .

Now consider the case when [Λ0] and [Λ1] have the same distance to the fixed

point set. There are two alternatives.

First case: Bj is the midpoint of ∆0 (hence α is odd). In this case j(Λ0) is a

scalar multiple of Λ1 and j(Λ1) a scalar multiple of Λ0 ,

j(Λ0) = pm · Λ1(3.20)

j(Λ1) = pm+1Λ0 .

In this case we conclude in terms of the equation (3.17) that

(3.21) p | ā , p | b̄ , ord det

(
ā b̄
c̄ −ā

)
= 1 .

Therefore b̄ = p · b̄0 , and b̄0 and c̄ are both units. Hence the system of equations

(3.8) is given by

pm · T0(b̄0T0 − 2ā− c̄T1) = 0(3.22)

pm · T1(b̄0T0 − 2ā− c̄T1) = 0 .

Up to a unit in the local ring at pt∆ the second factor is equal to b̄0T0 − c̄T1 ,

hence Z(j) is in a neighbourhood of pt∆ defined by the equations

(3.23) Tm+1
0 · Tm1 (b̄0T0 − c̄T1) = Tm0 Tm+1

1 (b̄0T0 − c̄T1) = 0 .

We therefore see that Z(j) locally at pt∆ is the union of the divisor Z(j)h , with

(3.24) Z(j)h = Spf W [T0, T1]∧/(b̄0T0 − c̄T1, T0T1 − p) ' Spf W [X]/(X2 − p)

(p 6= 2) , an embedded component at pt∆ , and a divisor with support in the special

fibre provided that m > 0 , i.e., α > 1 . If α = 1 , then m = 0 and there is no

divisor with support in the special fibre present.
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Second case: ∆0 lies in the fixed apartment Bj (hence α is even and χ(ε) = 1 ).

In this case

j(Λ0) = pmΛ0(3.25)

j(Λ1) = pmΛ1 .

In this case we conclude in terms of the equation (3.17) that

(3.26) p | b̄ , det

(
ā b̄
c̄ −ā

)
∈ Z×p

We conclude that ā is a unit. The system of equations (3.8) may be written as

pm · T0(b̄0T0 − 2ā− c̄T1) = 0(3.27)

pm · T1(b̄0T0 − 2ā− c̄T1) = 0 ,

where p · b̄0 = b̄ . The second factor is a unit in the local ring at pt∆0 and therefore

Z(j) is locally around pt∆0 described by

(3.28) Tm+1
0 · Tm1 = Tm0 · Tm+1

1 = 0 .

If m ≥ 1 , i.e. α ≥ 2 , then Z(j) is the union of a divisor with support in the

special fibre and an embedded component. If m = α = 0 , then Z(j) consists of

the reduced origin only ( T0 = T1 = 0 ). �

Corollary 3.4. Suppose that q(j) = ε · pα with α even and χ(ε) = 1 . Then the

support of Z(j) is contained in the special fibre. �

Remark 3.5. Consider the special case α = 0 , χ(ε) = 1 of the previous corollary,

i.e. (ii) of Proposition 3.3. After correcting j by a unit scalar, we may assume that

j2 = id . Let (X, ι) ∈ Z(j)(k) . Then j induces a OB -stable decomposition into

its ±1 -eigenspaces

(X, ι) = (Y1, ι1)× (Y2, ι2) .

But then (Yi, ιi) (i = 1, 2) are both isomorphic to the p -divisible group of a

supersingular elliptic curve with its OB -action. It is well-known that (Yi, ιi) has

no non-trivial deformations, hence neither has (X, ι) . This argument gives an

alternative proof of assertion (ii) of Proposition 3.3.

Later, when we make the connection with the global situation, we will see a more

convincing reason for the assertion of Corollary 3.4.

We next turn to the intersection of two special cycles Z(j) and Z(j ′) . We use

the notation of (2.16), in particular the Zp -module j is supposed to be nondegen-

erate of rank 2. We again write Z(j) = Z(j)∩ Z(j ′) .
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Proposition 3.6. Z(j) has support in the special fibre.

Proof. We momentarily change notations and as in section 2 denote by j, j ′ gen-

erators of j which diagonalize the bilinear form, with matrix (2.18). We assume

Z(j) 6= ∅ . We go through the table (2.26), leaving aside the ∅ -entries. Thanks to

Corollary 3.4 there are only two non-trivial possibilities.

Case 1: α and β even, χ(ε1) = χ(ε2) = −1 . In this case the only part of

Z(j) resp. Z(j ′) with support not in the special fibre is the horizontal divisor

Z(j)ord,h resp. Z(j ′)ord,h which meets the special fibre in two ordinary special

points x1, x2 ∈ P[Λ] resp. x′1, x
′
2 ∈ P[Λ] , cf. Propositions 3.2 and 3.3. Here [Λ] =

[Λ(j)] = [Λ(j ′)] is the unique vertex fixed by j and j ′ . We may write

(3.29) j = pα/2 · j̄ , j ′ = pβ/2 · j̄ ′ ,

where redΛ(j̄) and redΛ(j̄ ′) are invertible traceless endomorphisms of Λ/pΛ and

whose eigen lines are x1 and x2 resp. x′1 and x′2 , cf. proof of Proposition 3.2.

Since these two endomorphisms anticommute, each one interchanges the eigen lines

of the other (comp. proof of Proposition 2.9, (ii)), hence they have no common

eigen line. We conclude that in this case

(3.30) Z(j)h ∩ Z(j ′)h = ∅ .

Case 2: α and β odd. In this case j and j ′ both fix the midpoint of an edge ∆

and the only part of Z(j) resp. Z(j) with support not in the special fibre is the

horizontal divisor Z(j)h resp. Z(j ′)h passing through pt∆ , cf. Proposition 3.3.

We write, as in (3.12)

(3.31) j = p
α−1

2 · j̄, resp. j ′ = p
β−1

2 · j̄ ′

where

j̄ =

(
ā b̄
c̄ −ā

)
, resp. j̄ ′ =

(
ā′ b̄′

c̄′ −ā′
)

,

with p dividing ā, ā′, b̄, b̄′ and where, if b̄ = p · b0 resp. b̄′ = p · b̄′0 , the elements

b̄0, b̄
′
0, c̄, c̄

′ are all units, cf. (3.21). Then Z(j)h resp. Z(j ′)h is defined inside

Spf W [T0, T1]∧/T0T1 − p by the linear equation

(3.32) b̄0T0 − c̄T1 = 0 resp. b̄′0T0 − c̄′T1 = 0 ,
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cf. (3.24). We claim that these equations describe distinct subschemes which will

establish the proposition. Suppose to the contrary that

(3.33) b̄0c̄
′ = b̄′0c̄ .

However, j and j ′ anticommute, i.e.

(3.34) āā′ + p · b̄0c̄′ = −(āā′ + p · b̄′0c̄) .

Taking these identities together we therefore obtain

āā′ + pb̄0c̄
′ = 0 .

But the first summand is divisible by p2 , whereas the second summand is only

divisible by p which is the desired contradiction.

We note the following consequence of the proof.

Corollary 3.7. Let j and j ′ be generators of j which diagonalize the bilinear

form, with matrix (2.18). For the horizontal divisors Z(j)h and Z(j ′)h we have

Z(j)h ∩ Z(j ′)h = ∅ unless α and β are both odd. In the latter case Z(j)h and

Z(j ′)h intersect transversally at a unique superspecial point.

Here, as in the rest of the paper, we formally set Z(j)h = ∅ if q(j) = ε ·pα with

α even and χ(ε) = 1 .

§4. Intersection calculus of special cycles.

Our next aim will be to determine the intersection numbers of special cycles. Before

doing this we will have to explain briefly the kind of intersection theory we will want

to use. The definitions and facts we need are essentially all well-known but we could

not find a reference for them. The exposition in the literature closest to our needs

is Deligne’s [3].

Let (S, η, s) be the spectrum of a discrete valuation ring and let X be an S -

scheme f : X → S which is regular and locally of finite type and flat over S with

all fibres of pure dimension 1. Let Y = f−1(s) . For any coherent OX - module F
with support proper over S and contained in Y we may define its Euler-Poincaré

characteristic

(4.1) χ(F) = lg f∗F − lgR1f∗F .
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Then χ is additive in short exact sequences, and if F is a skyscraper sheaf con-

centrated in y ∈ Y , then

(4.2) χ(F) = lgOy(Fy) · [k(y) : k(s)] .

If K is a complex of OX -modules with finitely many cohomology sheaves which

are coherent and of the above type we set

(4.3) χ(K) =
∑

(−1)iχ(Hi(K)) .

Lemma 4.1. Let F be a skyscraper sheaf concentrated at y ∈ Y and let G be

any coherent OX -module with suppG a proper closed subscheme of X locally at

y . Then

(4.4) χ(F ⊗L G) = χ(F ⊗ G)− χ(T or1(F ,G)) = 0 .

[Here F ⊗L G denotes the derived tensor product of F and G , a complex of

quasicoherent OX -modules well defined in the derived category, with cohomology

sheaves in degree −i equal to T orOXi (F ,G) . Since X is supposed to be regular

of dimension 2, the Tor-terms for i ≥ 2 vanish.]

Proof. The sheaves T ori(F ,G) are skyscraper sheaves concentrated in y , hence

χ(F ⊗L G) =
∑

(−1)ilg Tor
Oy
i (Fy ,Gy) .

Now Gy has a resolution of length 2 by free Oy -modules of finite rank,

(4.5) 0→On1
y →On2

y → Gy → 0 .

The hypothesis on G implies that n1 = n2 . Tensoring (4.5) with Fy we obtain

χ(Fy ⊗LOy Gy) = n1 · lgFy − n2lgFy = 0. �

Let now Z and Z ′ be closed subschemes of X such that (Z∩Z ′)red is contained

in Y and is proper over S . We then define their intersection number by

(Z,Z ′) = χ(OZ ⊗L OZ′)(4.6)

= χ(OZ ⊗OZ′)− χ(T or1(OZ ,OZ′ )) .
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If Z and Z ′ are divisors which meet in a finite number of points contained in Y

then

(4.7) (Z,Z ′) =
∑

y∈Z∩Z′
lg(OZ ⊗OZ′)y

is the intersection number in the most naive sense. In [3] Deligne defines the

intersection number of two divisors by formula (4.6), if one of the two divisors is

concentrated in Y (he also assumes f to be proper). We will see now that the

general case essentially reduces to the case of divisors.

Let Z be a closed subscheme of X and define Zpure to be the closed subscheme

of Z defined by the ideal sheaf of local sections with finite support. In particular,

if Z is zero-dimensional, then Zpure = ∅ .

Lemma 4.2. Zpure is Cohen-Macauley, i.e. has no embedded components. If

dimZ = 1 , then Zpure is a divisor on X (i.e. defined locally by one non–zero

element).

Proof. The cases when dimZ = 2 or dimZ = 0 are trivial. Now let dimZ = 1 .

Then the first assertion implies the second (EGA IV, 21.7.2, 21.6.9, 21.11.1). The

first assertion is local around a point y ∈ Y . If Zpure had an embedded prime

ideal at y , it would have to be the maximal ideal my of Oy . But then there would

exist a ∈ Oy such that

my = rad(I : a)

([1], th. 4.5). Here I ⊂ Oy is the ideal of Zpure . But then

mn
y · a ⊂ I , some n ,

hence a would define a local section of OZpure with support in y . By the definition

of Zpure this implies a ∈ I , a contradiction. �

The next statement is analogous to Theorem 2.3.8, (iii) of Deligne [3].

Lemma 4.3. Let Z and Z ′ be proper closed subschemes of X such that their

intersection number (4.6) is defined. Then

(4.8) (Z,Z ′) = (Zpure, Z
′pure) .
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Proof. There are exact sequences

0→ J → OZ →OZpure → 0

0→ J ′ → OZ′ → OZ′pure → 0 ,

where J and J ′ have finite support contained in Y . Using Lemma 4.1 and the

bilinearity of the tensor product and the additivity of χ , the result follows. �

One last fact we need is the following (Deligne [3]): Assume that the morphism

f is proper and let Z be a closed subscheme with support in Y . Then

(4.9) (Z, f−1(s)) = 0 .

Remark 4.4. The preceding theory applies equally well to the case when X is

a formal scheme which is regular and where f : X → S is an adic morphism

into the formal spectrum of a complete discrete valuation ring which is flat and

locally of finite type and with one-dimensional fibre over s ∈ S . In this case we

have defined the intersection number of closed formal subschemes Z and Z ′ such

that the sum of their defining ideals is open in OX , with the same properties as

before. Furthermore, there is an obvious compatibility between these notions: if

the adic morphism and the closed formal subschemes are formal completions along

the special fibre of a morphism of schemes and of closed subschemes then both

intersection numbers coincide.

We now return to the case of interest, namely to the formal scheme M '
Ω̂×Spf ZpSpfW over Spf W . By Lemma 4.3 we need to know the divisors Z(j)pure .

The following proposition is an immediate consequence of Propositions 3.2 and 3.3.

Proposition 4.5. Let q(j) = ε · pα , ε ∈ Z×p , α ≥ 0 .

(i) If α is even and χ(ε) = 1 , then

(4.10) Z(j)pure =
∑

[Λ]

mult[Λ](j) · P[Λ]

(equality of divisors on M ).

(ii) If α is even and χ(ε) = −1 , then

(4.11) Z(j)pure = Z(j)h +
∑

[Λ]

mult[Λ](j) · P[Λ] ,
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where Z(j)h (the horizontal part of Z(j) ) is the disjoint sum of two divisors each

projecting isomorphically to Spf W and meeting the special fibre in an ordinary

special point of P[Λ(j)] . Here [Λ(j)] denotes the unique vertex fixed by j .

(iii) If α is odd, then

(4.12) Z(j)pure = Z(j)h +
∑

[Λ]

mult[Λ](j)P[Λ]

where the divisor Z(j)h is the formal spectrum of the ring of integers in a ramified

quadratic extension of WQ which meets the special fibre in pt∆(j) , where ∆(j) is

the edge containing the unique fixed point of j .

In particular, in all cases the divisor Z(j)pure is the sum with multiplicities of

regular one-dimensional formal schemes (or empty).

Remark 4.6. Genestier [7] has formulated a moduli problem (over M ) whose

solution is Z(j)pure . The reason that we stick with the “uglier” subscheme Z(j)

is that its definition can be transposed easily to other cases, [16], [17]. Due to

Lemma 4.3 the difference between Z(j) and Z(j)pure has no consequences for the

intersection numbers.

Next we will have to determine the intersection numbers between all the various

summands of Z(j)pure resp. Z(j ′)pure .

Lemma 4.7. For any pair of vertices [Λ] , [Λ′] we have

(P[Λ] ,P[Λ′]) =





1 if ([Λ], [Λ′]) is an edge

−(p+ 1) if [Λ] = [Λ′]

0 in all other cases.

Proof. The first and the last entry on the RHS are obvious. Let Γ ⊂ PGL2(Qp)
be a cocompact discrete subgroup. Then Ω̂/Γ is a formal scheme which is proper

and flat over Spf Zp . If Γ is sufficiently small the projection

Ω̂→ Ω̂/Γ

is locally around P[Λ] an isomorphism. The special fibre Y of Ω̂/Γ is reduced

and is of the form

Y =
∑

[Λ] mod Γ

P[Λ] .
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Using now (4.9) we obtain

0 = (P[Λ], Y ) = (P[Λ], (
∑

[Λ′ ]

P[Λ′]))

= (P[Λ],P[Λ]) +
∑

[Λ′]

[Λ′]6=[Λ]

(P[Λ],P[Λ′ ]) .

But P[Λ] meets precisely p+ 1 other irreducible components and with multiplicity

one. The result follows. �

Lemma 4.8. Let j be a non-degenerate Zp -submodule of rank 2 and let j, j ′ be

generators of j which diagonalize the bilinear form, with matrix (2.18). For the

horizontal part of the associated divisors Z(j)pure resp. Z(j ′)pure we have

(Z(j)h, Z(j ′)h) =

{
1 if α and β odd

0 otherwise .

Proof. This follows from Corollary 3.7. �

Lemma 4.9. Let q(j) = ε · pα and let [Λ] be a vertex. Then

(Z(j)h,P[Λ]) =





2 if α is even and χ(ε) = −1 and Bj = {[Λ]}
1 if α is odd and d([Λ],Bj) = 1

2

0 in all other cases.

Proof. This follows immediately from Propositions 3.2 and 3.3 and the local equa-

tions for Z(j)h appearing in their proofs ((3.15) resp. (3.24)). �

§5. An invariance property of intersection numbers.

The aim of this section is to establish the following invariance property of the

intersection numbers of special cycles.

Theorem 5.1. Let (j1, j2) resp. (j ′1, j
′
2) be two Zp -bases of the same non-degenerate

submodule j of V with q(ji) ∈ Zp \ {0} and q(j ′i) ∈ Zp \ {0} , i = 1, 2 . Then

OZ(j1) ⊗L OZ(j2) ' OZ(j′1) ⊗L OZ(j′2)
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and hence

(Z(j1), Z(j2)) = (Z(j ′1), Z(j ′2)) .

In the statement of the theorem it is obvious that the zero’th cohomology sheaves

of these complexes are isomorphic since both of them are equal to the structure sheaf

of Z(j) . The statement is also obvious locally around an isolated ordinary point of

Z(j) since here the special cycles are divisors and hence there are no higher Tor-

terms if the intersection is zero-dimensional. But the full statement is non-trivial.

One basic ingredient of its proof will be to show that the Genestier equations (3.5)

and (3.8) globalize to give a resolution of the structure sheaf of a special cycle.

We therefore start with a single special cycle Z(j) . Let us suppose that the

matrix of j in terms of the standard basis e1, e2 is

j =

(
a b
c −a

)
.

If pt∆0 ∈ Z(j) , then p|b and writing b = pb0 we have the global section of O on

Ω̂∆0 ,

(5.1) f = b0T0 − 2a− cT1 .

Recall from (3.8) that the Genestier equations for the intersection Ω̂∆0 ∩Z(j) are

given as

f · T0 = f · T1 = 0 .

This leads us to consider the complex of free O -modules on Ω̂∆0 concentrated in

degrees −2,−1, 0 ,

(5.2) K(1, j) : O

(
−T1

T0

)

−→ O ⊕O (f ·T0,f ·T1)−→ O .

We specify here that we consider an element in degree −1 as a column vector.

By what we said above K(1, j) is a free resolution of the structure sheaf of

Ω̂∆0 ∩ Z(j) . In order to calculate with this complex, we write

(5.3) f = f(j) = tr(j · τ · diag(−p−1, 1))

with

(5.4) τ =

(
p −T1

−T0 1

)
=

(
T0T1 −T1

−T0 1

)
.
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From now on we have no further use of the matrix representation of j and the

symbols a, b, c will denote the entries of other matrices appearing in the proofs

below.

More generally, let g ∈ G(Qp)0 such that g · pt∆0 ∈ Z(j) . We have the homo-

morphism of sheaves (covering the automorphism g )

g∗ : OΩ̂ −→ OΩ̂ .

The global sections g∗(T0) , g∗(T1) of OΩ̂g∆0
are just the global sections con-

structed like T0, T1 but starting from the basis [ge1, ge2] instead of [e1, e2] . We

then obtain a complex K(g, j) of O -modules on Ω̂g∆0 by using in (5.2) instead

of T0, T1 the global coordinates on Ω̂g∆0 obtained from T0, T1 by transport via

g∗ and in (5.1) the coefficients of the matrix of j in terms of the basis ge1, ge2 .

We have an obvious isomorphism (the identity)

g∗(K(g, gjg−1)) −→ K(1, j) ,

which we prefer to view as a g∗ -linear homomorphism (between sheaves on different

spaces

(5.5) g∗ : K(1, j) −→ K(g, gjg−1) ,

i.e. g∗(xs) = g∗(x) · g∗(s) for a section x of O and a section s of K(1, j) .

Lemma 5.2. Assume pt∆0 ∈ Z(j) . For every element g in the Iwahori subgroup

(1.11) associated to ∆0 there is a g−1
∗ -linear isomorphism of complexes of O -

modules on Ω̂∆0

λ0
g : K(1, j) −→ K(1, g−1jg) .

These isomorphisms satisfy the transitivity condition

λ0
g1g2 = λ0

g2 ◦ λ0
g1 .

Proof. The isomorphism will be given in the following form

(5.6)

K(1, j) : O

(
−T1

T0

)

−→ O ⊕O (fT0,fT1)−→ O

λ0
g

y α·
y β·

y 1·
y

K(1, g−1jg) : O

(
−T1

T0

)

−→ O ⊕O (f ′T0,f
′T1)−→ O ,
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where

(5.7) α ∈ O× , β = diag(β0, β1) ∈ GL2(O) .

Of course, we are using here the usual convention for describing a semi-linear map

by a matrix, e.g. in degree −2 a section x of O is mapped to α · g−1
∗ (x) . Also

we have abbreviated f(g−1jg) into f ′ .

Let us calculate f ′ . We have

f ′ = tr(g−1jg · τ · diag(−p−1, 1))(5.8)

= tr(j · τ ′ · diag(−p−1, 1)) ,

with

(5.9) τ ′ = g · τ · diag(−p−1, 1) · g−1 · diag(−p−1, 1)−1 .

Now

τ =

(
T1

−1

)
· (T0,−1) .

Let

g =
(
a b
c d

)
=
(
a pb0
c d

)
.

Then

(5.10) g ·
(
T1

−1

)
=

(
aT1 −b
cT1 −d

)
= (−cT1 + d) ·

(
g−1
∗ (T1)
−1

)
,

where we used the expression (1.12) for g−1
∗ (T1) . We note that

(5.11) v = v(g, T1) = −cT1 + d

is an automorphy factor for the action of the Iwahori subgroup on O× , i.e.

(5.12) v(gg′, T1) = v(g, g′∗
−1

(T1)) · v(g′, T1) .

Similarly we have

(T0,−1)·diag(−p−1, 1) · g−1 · diag(−p−1, 1)−1

= (T0,−1) · det(g)−1 ·
(
d b0
pc a

)

= det(g)−1 · (dT0 − pc, b0T0 − a)

= det(g)−1 · (−b0T0 + a) · (g−1
∗ (T0),−1) .
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Again

(5.13) u = u(g, T0) = −b0T0 + a

is an automorphy factor valued in O× . Plugging in these expressions into (5.8) we

therefore obtain

(5.14) τ ′ = det(g)−1uv · g−1
∗ (τ ) ,

and

(5.15) f ′ = det(g)−1uv · g−1
∗ (f) .

We also note that

(5.16)
g−1
∗ (T0)

T0
=
−cT1 + d

−b0T0 + a
=
v

u
=

(
g−1
∗ (T1)

T1

)−1

.

We now fill in the diagram (5.6) by setting

(5.17) α = det(g) · u−1v−1 , β0 = det(g) · u−2 , β1 = det(g) · v−2 .

We claim that the diagram commutes.

Left square: Via the NE passage the element 1 is mapped to

1 7−→
(
−T1

T0

)
7−→

(
−β0 · g−1

∗ (T1)
β1 · g−1

∗ (T0)

)

Via the SW passage the element 1 is mapped to

1 7−→ α 7−→ α ·
(
−T1

T0

)
.

The claim follows from the definitions (5.17) and the identity (5.16).

Right square: The element
(

1
0

)
is mapped via the NE passage to

(
1
0

)
7−→ f · T0 7−→ g−1

∗ (f) · g−1
∗ (T0)

and via the SW passage to

(
1
0

)
7−→ β0 ·

(
1
0

)
7−→ β0 · f ′ · T0 .
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The last element is equal to by (5.15)

β0 · det(g)−1uv · g−1
∗ (f) · T0 =

v

u
· T0 · g−1

∗ (f) .

Again the relation (5.16) gives the claim. The element
(

0
1

)
is treated in a similar

way. We therefore have constructed the homomorphism λ0
g and it is immediate to

check that λ0
g is in fact an isomorphism. The transitivity assertion is an immediate

consequence of the fact that u and v are automorphy factors. �

We now use the system of isomorphisms constructed above to construct a well-

defined complex on each open chart Ω̂∆ of Ω̂ . If pt∆ 6∈ Z(j) this complex is zero

by definition. Next suppose that pt∆ ∈ Z(j) and let g1, g2 ∈ G(Qp)0 such that

g1∆0 = g2∆0 = ∆ . Then g2 = g1 · h where h lies in the Iwahori subgroup for

∆0 . We define a (linear) isomorphism of complexes on Ω̂∆

(5.18) λg2,g1 : K(g1, j) −→ K(g2, j)

by putting

(5.19) λg2,g1 = g2∗ ◦ λ0
h ◦ g−1

1∗ .

The transitivity assertion of Lemma (5.2) yields

(5.20) λg3,g2 ◦ λg2,g1 = λg3,g1

for any g3 with g3∆0 = ∆ . This is the precise meaning of the well-definedness of

the complex on Ω̂∆ .

Our next aim is to glue the complexes just constructed on common overlaps of

local charts.

Lemma 5.3. Assume pt∆0 ∈ Z(j) . For any g ∈ GL2(Zp) there is a g−1
∗ -linear

isomorphism of complexes of O -modules on Ω̂[Λ0] ,

µ0
g : K(1, j)|Ω̂[Λ0]

∼−→ K(1, g−1jg)|Ω̂[Λ0]
.

These isomorphisms satisfy the transitivity condition

µ0
g1g2 = µ0

g2 ◦ µ0
g1 .
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Furthermore, if g lies in the Iwahori subgroup corresponding to ∆0 , then µ0
g =

λ0
g|Ω̂[Λ0]

.

Proof. Taking into account the definition (1.15) of the open immersion, the com-

plexes in question have the following form in terms of the natural coordinate T on

Ω̂[Λ0] .

(5.21)

K(1, j)|Ω̂[Λ0]
: O

(
−T−1

pT

)

−→ O ⊕O (f ·pT,f ·T−1)−→ O

µ0
g

y α·
y β·

y 1·
y

K(1, g−1jg)|Ω̂[Λ0]
: O

(
−T−1

pT

)

−→ O ⊕O (f ′·pT,f ′·T−1)−→ O

Here f and f ′ are the restrictions of the functions appearing in (5.6) and our aim

is to define α ∈ O× and β = diag(β0, β1) ∈ GL2(O) to produce a commutative

diagram. Let us calculate f and f ′ . We have

f = tr(j ·
(

p −T−1

−pT 1

)
· diag(−p−1, 1)) , i.e.,

(5.22) f = tr
(
j ·
(−1 −T−1

T 1

))
.

Hence

f ′ = tr(j · g ·
(−1 −T−1

T 1

)
g−1) .

We write (−1 −T−1

T 1

)
=
(−1
T

)
(1, T−1) .

Let

g =
(
a b
c d

)
∈ GL2(Zp) .

Then

g ·
(−1
T

)
=

(
bT −a
dT −c

)
= (−bT + a)

(
−1

g−1
∗ (T )

)
,

where we use (1.8). We again note that

(5.23) u = −bT + a
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is an automorphy factor for the action of GL2(Zp) on O× . Similarly we have

(1, T−1) · g−1 = det(g)−1 · (d− cT−1, b + aT−1)

= det(g)−1 · (d− cT−1) · (1, g−1
∗ (T )−1) .

Again

(5.24) v = d− cT−1

is an automorphy factor valued in O× . We thus obtain

(5.25) f ′ = det(g)−1 · uv · g−1
∗ (f) .

We also note that

(5.26)
g−1
∗ (T )

T
=
v

u
.

We now fill in diagram (5.21) by setting

(5.27) α = det(g) · u−1v−1 , β0 = det(g) · u−2 , β1 = det(g) · v−2 .

The commutativity of the diagram is checked as before. The transitivity property

again follows from the fact that u and v are automorphy factors. Finally, if g lies

in the Iwahori subgroup the matrix entries α, β0, β1 of µ0
g are just the restrictions

of the corresponding entries of λ0
g since

u(g, T0)|Ω̂[Λ0]
= (−b0T0 + a)|Ω̂[Λ0]

= −bT + a = u

v(g, T1)|Ω̂[Λ0]
= (−cT1 + d)|Ω̂[Λ0]

= d− cT−1 = v . �

Lemma 5.4. Assume pt∆0 ∈ Z(j) . Let

w =
(

0 p
1 0

)
,

so that wGL2(Zp)w−1 is the stabilizer of the lattice Λ1 = [pe1, e2] . For any

g ∈ wGL2(Zp)w−1 there is a g−1
∗ -linear isomorphism of complexes of O -modules

on Ω̂[Λ1] ,

µ0
g : K(1, j)|Ω̂[Λ1]

∼−→ K(1, g−1jg)|Ω̂[Λ1]
.
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These isomorphisms satisfy the transitivity condition and if g lies in the Iwahori

subgroup corresponding to ∆0 we have µ0
g = λ0

g|Ω̂[Λ1]
.

Proof. The element w lies in the normalizer of the Iwahori subgroup and hence

acts on Ω̂∆0 . The action is given formally by the same formula as in (1.12), hence

interchanges T0 and T1 . Furthermore the action takes the open immersion of

Ω̂[Λ1] in Ω̂∆0 into the open immersion of Ω̂[Λ0] in Ω̂∆0 . Hence after identifying

Ω̂[Λ1] with Ω̂[Λ0] via w , this open immersion is given by

(5.28) T0 7−→ T−1 , T1 7−→ pT .

For the restriction of f we therefore obtain

(5.29) f = tr(j ·
(

p −pT
−T−1 1

)
· diag(−p−1, 1)) .

We write

(
p −pT

−T−1 1

)
· diag(−p−1, 1) =

(
−1

p−1T−1

)
· (1, pT ) .

For the restriction of f ′ we obtain

f ′ = tr(j · g ·
(
−1

p−1T−1

)
· (1, pT ) · g−1) .

Let g =
(
a b
c d

)
∈ wGL2(Zp)w−1 . Then

(5.30) g ·
(
−1

p−1T−1

)
=

(
−a+ p−1bT−1

−c+ p−1dT−1

)
= (a− p−1bT−1) ·

( −1
−c+p−1dT−1

a−p−1bT−1

)
.

The second component of the last vector is equal to

(5.31) p−1 ·
(
aT − p−1b

−pcT + d

)−1

= p−1g′∗
−1

(T )−1 .

Here

(5.32) g′ = wgw−1 =

(
d pc

p−1b a

)
∈ GL2(Zp) .

Similarly,

(5.33) (1, pT ) · g−1 = det(g)−1 · (d− pcT ) · (1, p · g′∗
−1

(T )) .
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Putting

(5.34) u = a− p−1b · T−1 , v = d− pcT
we therefore obtain

(5.35) f ′ = det(g)−1uv · g′∗
−1

(f) .

Of course, after reversing the identification of Ω̂[Λ0] with Ω̂[Λ1] , the isomorphism

g′∗
−1

becomes g−1
∗ . We define

(5.36) α = det(g)−1 · u−1v−1, β0 = det(g) · u−2, β1 = det(g) · v−2

and the proof proceeds as before. �

We now use the previous lemmas to glue the complexes on the open charts Ω̂∆

with pt∆ ∈ Z(j) . Let g1, g2 ∈ G(Qp)0 such that gi · pt∆0 ∈ Z(j) for i = 1, 2 and

with g1∆0 ∩ g2∆0 = {[Λ]} . We define an isomorphism of complexes on Ω̂[Λ]

(5.37) µg2,g1 : K(g1, j)|Ω̂[Λ]
−→ K(g2, j)|Ω̂[Λ]

by putting

(5.38) µg2,g1 = g2∗ ◦ µ0
h ◦ g−1

1∗ .

Here g2 = g1 · h where h ∈ GL2(Zp) if [Λ] is in the G(Qp)0 -orbit of [Λ0] and

h ∈ wGL2(Zp)w−1 if [Λ] is in the G(Qp)0 -orbit of [Λ1] . The isomorphism µ0
h

has been defined in Lemma (5.3) resp. in Lemma (5.4). Again there is a transitivity

condition. If g3 is a third element with g3 · pt∆0 ∈ Z(j) and with g3∆0 ∩ gi∆0 =

{[Λ]} , i = 1, 2 , then

(5.39) µg3,g1 = µg3,g2 ◦ µg2,g1 .

Having constructed a global resolution of OZ(j) on the complement of the iso-

lated ordinary points of Z(j) we now consider tensor products of two of them. We

let Z(j1), Z(j2) and Z(j ′1), Z(j ′2) be two pairs of special cycles. We assume that

(5.40) (j1, j2) · γ = (j ′1, j
′
2)

for

(5.41) γ =
(
a b
c d

)
∈M2(Zp) .

Let us first assume that pt∆0 ∈ Z(j1) ∩ Z(j2) and pt∆0 ∈ Z(j ′1) ∩ Z(j ′2) . We will

denote by K(1, j) the tensor product K(1, j1)⊗OK(1, j2) with its bigrading, and

similarly for K(1, j ′) . We denote the differentials in degree −1 of K(1, ji) by ∂i

and those of K(1, j ′i) by ∂′i . All differentials in degree −2 are identical and will

be denoted by ∂ .
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Lemma 5.5. There is a homomorphism of complexes

ϕ : K(1, j′) −→ K(1, j)

which is given degree by degree as follows.

in degree 0 :

ϕ0 = idO : O −→ O

in degree −1 = (−1, 0) + (0,−1) :

ϕ−1 : (O ⊕O)⊕ (O ⊕O) −→ (O ⊕O) ⊕ (O ⊕O)
(x, y) 7−→ (x, y) · tγ

(here, as before, x and y are considered as column vectors).

in bi-degree (−2, 0) + (0,−2) :

ϕ−2 : O ⊕O −→ O ⊕O
(x, y) 7−→ (x, y) · tγ

in bi-degree (−1,−1) :

ϕ−2 : (O ⊕O) ⊗ (O ⊕O) −→ O ⊕ (O ⊕O) ⊗ (O ⊕O)⊕O
(x⊗ y) 7−→ (abψ1(x, y), ad(x ⊗ y)− bc(y ⊗ x), cdψ2(x, y))

Here ψ1(x, y) ∈ O is the unique element of bidegree (−2, 0) whose image under

the differential ∂ of K(1, j1) is

(5.42) ∂ψ1(x, y) = ∂1(x)y − ∂1(y)x .

The element ψ2(x, y) of bidegree (0,−2) is similarly defined.

in degree −3 = (−2,−1) + (−1,−2) :

ϕ−3 : (O ⊕O)⊕ (O ⊕O) −→ (O ⊕O)⊕ (O ⊕O) .
(x, y) 7−→ (adx+ bcy, ady + bcx)

in degree −4 = (−2,−2) :

ϕ−4 = (ad + bc)id : O −→ O .
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Proof. We have to check that ϕ is indeed a homomorphism of complexes. We

picture the complexes written horizontally and the homomorphism ϕ vertically

from the north to the south.

in degree −1 : Via the NE-passage we have

(x, y) 7−→ ∂′1(x) + ∂′2(y) 7−→ ∂′1(x) + ∂′2(y) .

However, and this is the crucial observation for the proof, the differential in degree

−1 of K(1, j) depends linearly on j . Hence

(5.43) ∂′1 = a∂1 + c∂2 , ∂′2 = b∂1 + d∂2 .

Therefore the last expression is equal to

∂1(ax+ by) + ∂2(cx+ dy) = ∂−1(ϕ−1(x, y)) ,

where ∂−1 is the differential in degree −1 of K(1, j) .

in degree −2 : The argument in degree (−2, 0) + (0,−2) is identical. Let us

consider an element x ⊗ y of bi-degree (−1,−1) . It is mapped via the NE route

to

x⊗ y 7→ ∂′1(x)y − ∂′2(y)x 7→ (−a∂′2(y)x + b∂′1(x)y,−c∂′2(y)x + d∂′1(x)y) .

Inserting the expression (5.43) for ∂′1 and ∂′2 and collecting terms, this last element

is equal to

(ab∂(ψ1(x, y)) + bc∂2(x)y − ad∂2(y)x, cd∂(ψ2(x, y)) + ad∂1(x)y − bc∂1(y)x) .

Via the SW route the element goes to

x⊗ y 7→ (abψ1(x, y), ad(x ⊗ y) − bc(y ⊗ x), cdψ2(x, y)) 7→
7→ (ab∂(ψ1(x, y)) − ad∂2(y)x + bc∂2(x)y,

cdψ2(x, y) + ad∂1(x)y − bc∂1(y)x),

which proves the claim in this case.

in degree −3 = (−2,−1) + (−1,−2) : Let (x, 0) be of bi-degree (−2,−1) . Then

via the NE route this element goes to

(x, 0) 7→ (∂′2(x), ∂(1) ⊗ x, 0) 7→
7→ (a∂′2(x) + abψ1(∂(1), x), ad(∂(1) ⊗ x) − bc(x⊗ ∂(1)), c∂ ′2(x) + cdψ2(∂(1), x)) .
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The entry of bi-degree (−2, 0) is equal to

ab(∂1(x) + ψ1(∂(1), x)) + ad∂2(x) = ad∂2(x) .

Here we used that the first summand vanishes since

(5.44) ∂(∂1(x) + ψ1(∂(1), x)) = ∂1(x) · ∂(1) + ∂2(1)x− ∂(1)∂1(x) = 0 .

The same reasoning shows that the entry of bi-degree (0,−2) is equal to bc∂1(x) .

On the other hand, the image of (x, 0) via the SW route is equal to

(x, 0) 7→ (adx, bdx) 7→ (ad∂2(x), ad(∂(1) ⊗ x) − bc(x⊗ ∂(1)), bc∂1(x)),

which shows the claim for elements of bi-degree (−2,−1) . The case of elements of

bi-degree (−1,−2) is analogous.

in degree −4 : Here the generator 1 ∈ O is sent via the NE route to

1 7→ (∂(1), ∂(1)) 7→ (ad∂(1) + bc∂(1), ad∂(1) + bc∂(1)) .

Via the SW passage the same element is sent to

1 7→ (ad + bc) · 1 7→ (ad + bc)(∂(1), ∂(1)) ,

which proves the claim in this case. �

We note that the formulas for ϕ do not involve the special endomorphisms

j1, j2, j
′
1, j
′
2 and neither do the formulas for the glueing maps λ0

g, µ
0
g . This obser-

vation is crucial for the proof of the next lemma.

Lemma 5.6. a) Let g be an element of the Iwahori subgroup corresponding to

∆0 . The following diagram is commutative.

K(1, j ′)
ϕ−→ K(1, j)

λ
′0
g ⊗λ

′0
g

y yλ0
g⊗λ0

g

K(1, g−1j ′g)
ϕ−→ K(1, g−1jg)

b) Let g ∈ GL2(Zp) . The following diagram of complexes on Ω̂[Λ0] is commutative.

K(1, j ′)|Ω̂[Λ0]

ϕ−→ K(1, j)|Ω̂[Λ0]

µ
′0
g ⊗µ

′0
g

y yµ0
g⊗µ0

g

K(1, g−1j′g)|Ω̂[Λ0]

ϕ−→ K(1, g−1jg)|Ω̂[Λ0]
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The analogous statement holds for g ∈ wGL2(Zp)w−1 and for the restrictions to

Ω̂[Λ1] .

Proof. a) We again check this degree by degree. In degree 0 all homomorphisms

are the identity, hence the assertion is obvious.

degree −1 = (−1, 0) + (0,−1) : Via the NE passage an element (x, y) is sent to

(x, y) 7→ (x, y) · tγ 7→ β · (x′, y′) · tγ .

Here for brevity we have set x′ = g−1
∗ (x) . The result via the SW passage is

obviously the same.

degree (−2, 0) + (0,−2) : Same argument as before.

bi-degree (−1,−1) : Via the NE passage an element x⊗ y is sent to

x⊗ y 7→ (abψ1(x, y)), ad(x ⊗ y) − bc(y ⊗ x), cdψ2(x, y))

7→ (α · abψ1(x, y)′ , ad(β ⊗ β)(x′ ⊗ y′) − bc(β ⊗ β)(y′ ⊗ x′), α · cdψ2(x, y)′).

Via the SW passage the element is sent to

x⊗y 7→ (βx′, βy′) 7→ (abψ1(βx′, βy′), ad(βx′⊗βy′)−bc(βy′⊗βx′), cdψ2(βx′, βy′)).

Obviously the terms of degree (−1,−1) coincide. Let us consider the terms of

degree (−2, 0) , leaving aside the common factor ab . But

∂(α · ψ1(x, y)′) = β · ∂(ψ1(x, y))′

= β · (∂′1(x)y − ∂′2(y)x)′

= ∂′1(x)′ · βy′ − ∂′2(y)′βx′

= ∂1(βx′)βy′ − ∂2(βy′)βx

= ∂(ψ1(βx′, βy′)),

where we used twice that λ0
g is a homomorphism of complexes. It follows that the

terms of degree (−2, 0) are identical. The same argument applies to the compo-

nents of degree (0,−2) .

degree (−2,−1) + (−1,−2) : Via the NE passage the element (x, 0) of degree

(−2,−1) goes to

(x, 0) 7→ (adx, bc x) 7→ (adα · βx′, bcα · βx) .
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Via the SW route this element is sent to

(x, 0) 7→ (α · βx′, 0) 7→ (adα · βx′, bcα · βx′) ,

which proves the claim in this case. Elements (0, y) of degree (−1,−2) are anal-

ogous.

degree (−2,−2) : The element 1 is sent via the NE passage to

1 7→ (ad + bc) · 1 7→ (ad + bc) · α

and via the SW passage to

1 7→ α 7→ (ad+ bc)α .

This concludes the proof of a). The proof of b) is formally identical. �

We now drop the assumption that pt∆0 ∈ Z(j)∩Z(j ′) . Let ∆ be an edge with

pt∆ ∈ Z(j) ∩ Z(j ′) . Let g ∈ G(Qp)0 with ∆ = g∆0 . Then, just as we used the

isomorphisms λ0
h (for h lying in the Iwahori subgroup) to construct well-defined

complexes on the open chart Ω̂∆ , we use part a) of the previous lemma to define

homomorphisms of complexes on Ω̂∆ ,

(5.45) ϕg : K(g, j′) −→ K(g, j)

by putting

(5.46) ϕg = g∗ ◦ ϕ ◦ g−1
∗ .

If g1∆0 = g2∆0 = ∆ , then by part a) of the lemma we have

(5.47) ϕg2 ◦ λ′g2,g1 = λg2,g1 ◦ ϕg1 : K(g, j ′) −→ K(g2, j) ,

which means that the homomorphisms on the local chart Ω̂∆ are well-defined. By

part b) of the previous lemma the homomorphisms just constructed glue on the

overlaps of the open charts in question.

Lemma 5.7. Suppose with the above notations that γ ∈ GL2(Zp) and that ad+bc

is a unit, i.e., equivalently, that (ad)2 − (bc)2 ∈ Z×p . Then the homomorphism of

complexes constructed above is an isomorphism.

Proof. It suffices to check this for ϕ : K(1, j ′) → K(1, j) , i.e., to show that the

determinant of ϕ is a unit in each degree.
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in degree 0 : det(ϕ0) = 1

in degree −1 : det(ϕ−1) = det(γ)

in degree −2 : det(ϕ2) = det(γ)2 · ((ad)2 − (bc)2)

in degree −3 : det(ϕ−3) = det(γ)2 · (ad+ bc)2

in degree −4 : det(ϕ−4) = ad+ bc . �

Proof of Theorem 5.1. By hypothesis we have the relation (5.40), where γ ∈
GL2(Zp) . If ad+ bc ∈ Z×p the result follows from the previous lemma. Otherwise

we write γ = γ1 . . . γr as a product of elements which satisfy the hypothesis of this

lemma and obtain the desired isomorphism as the composition of the isomorphisms

of the previous lemma

K(1, j ′) = K(1, j · γ)
ϕr−→ K(1, j · γ1 . . . γr−1) −→ . . .

ϕ1−→ K(1, j) �

Example 5.8. We give an example to illustrate that in the situation of Theorem

5.1 the relative positions of the cycles Z(j1) and Z(j2) resp. of Z(j ′1) and Z(j ′2)

can differ radically. Assume that j1, j2 is a diagonal basis with

(5.48) q(j1) = ε1 (thus α = 0), and q(j2) = ε2 · pβ ,

with β > 0 even and χ(ε1) = −1 . Then Z(j1) is simply a horizontal divisor

isomorphic to the disjoint sum of two copies of Spf W meeting the special fibre in

two ordinary special points x1, x2 of P1
[Λ] , where [Λ] is the unique vertex fixed by

j1 . This vertex is also fixed by j2 and the component P1
[Λ] occurs with multiplicity

β/2 in Z(j2) . In particular (Z(j))red = {x1, x2} and

(5.49) (Z(j1), Z(j2)) = β .

As a new basis of j let us take

j1, and j ′2 = j2 + λj1 , λ ∈ Z×p .

Then

q(j ′2) = λ2ε1 + ε2 · pβ = λ2ε1(1 + λ−2ε−1
1 ε2 · pβ) ∈ Z×p − Z×,2p .
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Hence q(j ′2) = ε′2 with χ(ε′2) = −1 and thus Z(j ′2) is, just as Z(j1) , a horizontal

divisor isomorphic to the disjoint sum of two copies of Spf W and meeting the

special fibre in x1 and x2 .

Let us calculate the intersection number (Z(j1), Z(j ′2)) by using the local equa-

tions. Since Z(j1) and Z(j ′2) are coprime divisors, we only have to determine the

lengths of the local rings at x1 and x2 . Let us choose a basis for Λ such that

j1 =

(
0 1
ε1 0

)
, j2 =

(
a b
−ε1b −a

)
.

Then j ′2 =

(
a b + λ

ε1(λ − b) −a

)
and the local equations for Z(j1) and Z(j ′2) are

respectively

T 2 − ε1 = 0 , (b + λ)T 2 − 2aT − ε1(λ − b) = 0 .

The affine ring of Z(j1) ∩ Z(j ′2) is therefore

W [T, (T p − T )−1]∧/(2aT − 2ε1b, T
2 − ε1)

which is isomorphic to

W/(a − ηb)⊕W/(a + ηb)

where η is a square root of ε1 in W . Therefore

(Z(j1), Z(j ′2)) = ordp(a− ηb) + ordp(a + ηb)

= ordp(a2 − ε1b
2) = ordpq(j2) = β ,

in accordance with (5.49). Of course, in this case the assertion of Theorem 5.1 is

trivial since

OZ(j1) ⊗L OZ(j2) = OZ(j) = OZ(j1) ⊗L OZ(j′2)

is concentrated in degree zero.

§6. Computation of intersection numbers.

In this section, we combine the information obtained so far and give an explicit

expression for the intersection number (Z(j), Z(j ′)) .



55

Theorem 6.1. Let j and j ′ be special endomorphisms such that their Zp -span

j = Zpj + Zpj ′ is of rank 2 and nondegenerate for the quadratic form. Let

T =

(
q(j) 1

2(j, j ′)
1
2 (j ′, j) q(j ′)

)
,

and suppose that T is GL2(Zp) -equivalent to diag(ε1p
α, ε2p

β) , where 0 ≤ α ≤ β .

Then

(Z(j), Z(j ′)) = ep(T ) =

= α+ β + 1−





pα/2 + 2 pα/2−1
p−1 if α is even and χ(ε1) = −1,

(β − α+ 1)pα/2 + 2 pα/2−1
p−1

if α is even and χ(ε1) = 1,

2 p(α+1)/2−1
p−1 if α is odd.

By Theorem 5.1, we may assume that the elements j and j ′ diagonalize the

quadratic form, i.e., that

T =

(
ε1p

α

ε2p
β

)
,

with 0 ≤ α ≤ β .

Recall that

(Z(j), Z(j ′)) = (Z(j)pure, Z(j ′)pure)

= (Z(j)h, Z(j ′)h) + (Z(j)h, Z(j ′)v) + (Z(j)v, Z(j ′)h) + (Z(j)v, Z(j ′)v),

where

Z(j)v =
∑

[Λ]

mult[Λ](j) · P[Λ],

as in Proposition 4.5. Here we assume that q(j) = ε1p
α , q(j ′) = ε2p

β and that

jj ′ = −j ′j . Recall that

mult[Λ](j) = max{ α/2− d([Λ],Bj), 0}.

We organize the calculation according to the cases in table (2.26), assuming from

now on that α ≤ β .

First consider the quantity (Z(j)h, Z(j ′)h) + (Z(j)h, Z(j ′)v) + (Z(j)v, Z(j ′)h) .

Recall, for example, that in the case α is even and χ(ε1) = −1 , Z(j)h consists
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of two copies of Spf(W ) meeting P[Λ(j)] , while, if α is odd, then Z(j)h consists

of one copy of Spf(W ′) meeting pt∆(j) , where ∆(j) is the edge containing the

fixed point of j . Otherwise Z(j)h is empty. Taking into account the multiplicites

of the vertical components and Lemmas 4.8 and 4.9, we obtain the following table

of values of (Z(j)h, Z(j ′)h) + (Z(j)h, Z(j ′)v) + (Z(j)v, Z(j ′)h) :

(6.1)

j \ j ′ β even β even β odd

χ(ε2) = −1 χ(ε2) = 1
α even

χ(ε1) = −1 α + β β ∅
α even
χ(ε1) = 1 α 0 α

α odd ∅ β α+ β − 1

It then remains to calculate (Z(j)v, Z(j ′)v) , using Lemma 4.7. The first step is

the following simple observation.

Lemma 6.2. For any vertex [Λ] ∈ B , let r = d([Λ],Bj′) be the distance to the

fixed point set of j ′ . Note that [Λ] lies on the boundary of T (j ′) precisely when

r = β/2 . Then

(P[Λ], Z(j ′)v) =





1− p when 1 ≤ r ≤ β/2− 1,

χ(ε2)− p when r = 0 and β is even,

−p when r = 1/2 and β is odd,

1 when r = β/2,

0 otherwise.

Proof. First suppose that 1 ≤ r ≤ β/2− 1 , so that there is a unique edge leading

from [Λ] along the geodesic from [Λ] to Bj′ , and there are p edges at [Λ] leading

away from Bj′ . The intersection of P[Λ] with Z(j ′)v is thus

(β/2− r + 1)− (p+ 1)(β/2− r) + p(β/2− r − 1) = 1− p,

in this case. The other cases are similar. For example, if r = 1/2 and β is odd,

then [Λ] is one endpoint of the edge containing the unique fixed point of j ′ . The

multiplicity in Z(j ′)v of the component corresponding to each these two endpoints

is (β − 1)/2 . Thus, the intersection of P[Λ] with Z(j ′)v is

(β − 1)/2− (p+ 1)(β − 1)/2 + p(β − 3)/2 = −p.
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Finally, note that if r = β/2 , then the multiplicity of P[Λ] in Z(j ′) is zero, while

the multiplicity of the component corresponding to the unique neighboring vertex

closer to Bj′ is 1 . �

Proof of Theorem 6.1. In all calculations, we will count, with multiplicity in Z(j) ,

the number of vertices [Λ] in T (j) whose associated component has a fixed inter-

section number with Z(j ′) . Recall that we always assume that α ≤ β .

We begin with simplest case: α and β even with χ(ε1) = χ(ε2) = −1 . In this

case, T (j) ∩ T (j ′) = T (j) is just the α/2 ball around the vertex [Λ(j)] = [Λ(j ′)]

fixed by both j and j ′ . We have

(Z(j)v, Z(j ′)v) = −(p+ 1)α/2 + (1− p)
α/2−1∑

r=1

(α/2− r)(p + 1)pr−1

(6.2)

= −(p+ 1)
pα/2 − 1

p− 1
.

In the case α and β even with χ(ε1) = −1 and χ(ε2) = 1 , T (j)∩T (j ′) = T (j)

is again just the α/2 ball around the vertex [Λ(j)] . Thus,

(Z(j)v, Z(j ′)v) = −(p− 1)α/2 + (1− p)
α/2−1∑

r=1

(α/2− r)(p + 1)pr−1

(6.3)

= α− (p+ 1)
pα/2 − 1

p− 1
,

where the change from χ(ε2) = −1 to χ(ε2) = 1 causes the change in the first

term.

The case α and β even with χ(ε1) = 1 and χ(ε2) = −1 is more complicated.

Here, the geodesic joining the fixed vertex [Λ(j ′)] to any given vertex [Λ] runs a

distance ` along the fixed apartment Bj and then a distance r away from the

apartment. The vertices [Λ] in T (j) with ` = 0 are all joined to [Λ(j ′)] by a

geodesic emanating along an edge outside of Bj . The contribution of such vertices

is:

(6.4) −(p+ 1)α/2 + (1− p)
α/2−1∑

r=1

(α/2− r)(p − 1)pr−1 = 1− α− pα/2.
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If 1 ≤ ` ≤ (β − α)/2 , then vertices [Λ] with r = α/2 lie in T (j ′) . Hence the

contribution of vertices with 1 ≤ ` ≤ (β − α)/2 is

(6.5) 2(1− p)
(β−α)/2∑

`=1

(
α/2 +

α/2−1∑

r=1

(α/2− r)(p − 1)pr−1

)
= (α− β)(pα/2 − 1).

Next, if (β − α)/2 < ` < β/2 , then the vertices [Λ] with r < β/2 lie strictly

inside T (j ′) , and contribute

(6.6) 2(1−p)
β/2−1∑

`=(β−α)/2+1

(
α/2+

β/2−`−1∑

r=1

(α/2−r)(p−1)pr−1

)
= 2α−4

pα/2 − 1

p − 1
.

Finally, the vertices on the boundary of T (j ′) contribute

(6.7) α+ 2

β/2−1∑

`=(β−α)/2+1

(α/2− (β/2− `))(p − 1)pβ/2−`−1 = 2
pα/2 − 1

p− 1
.

Here the initial α is the contribution from the two points of intersection of the

apartment Bj with the boundary of T (j ′) , i.e., the two points with ` = β/2 .

The set T (j) ∩ T (j ′) in the case α and β even with χ(ε1) = χ(ε2) = 1 is

identical with the corresponding set in the previous case! The only change in the

formulas occurs in the first term (6.4), which is now

(6.8) −(p− 1)α/2 + (1− p)
α/2−1∑

r=1

(α/2− r)(p − 1)pr−1 = 1− pα/2 ,

due to the change in the contribution of the central vertex. In effect, the total in

this case is α plus that of the previous case.

In the case α is even, χ(ε1) = 1 and β is odd, Bj′ is the midpoint of an edge

in the apartment Bj . Each vertex [Λ] is joined to this fixed midpoint by a unique

geodesic, which runs along the apartment Bj a distance `+ 1
2 and then a distance

r outside the apartment. The contribution of the vertices with ` = 0 is

(6.9) −pα+ 2(1− p)
α/2−1∑

r=1

(α/2− r)(p − 1)pr−1 = −α− 2(pα/2 − 1),

where the initial −pα is the contribution of the two endpoints of the edge con-

taining the fixed vertex. When 1 ≤ ` ≤ (β − α − 1)/2 , we may travel a distance

r = α/2− 1 and remain strictly inside T (j ′) . Thus such vertices contribute

(6.10) 2(1−p)
(β−α−1)/2∑

`=1

(
α/2+

α/2−1∑

r=1

(α/2−r)(p−1)pr−1

)
= (α−β+1)(pα/2−1).
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Similarly, the vertices strictly inside T (j ′) but with ` > (β − α− 1)/2 contribute

(6.11)

2(1− p)
(β−3)/2∑

`=(β−α+1)/2

(
α/2 +

(β−3)/2−`∑

r=1

(α/2− r)(p − 1)pr−1

)
= 2α− 4

pα/2 − 1

p− 1
.

Finally, the vertices on the boundary of T (j ′) contribute

(6.12) α+ 2

(β−3)/2∑

`=(β−α+1)/2

(α/2 − ((β − 1)/2− `))(p − 1)p(β−1)/2−`−1 = 2
pα/2 − 1

p− 1
.

Note that here the value r = (β − 1)/2− ` puts [Λ] on the boundary.

The next case is α odd and β even with χ(ε2) = 1 . Here the whole ball T (j)

lies entirely inside the tube T (j ′) around the fixed apartment Bj′ . The total

contribution is

(6.13) 2(1− p)
(α−1)/2∑

r=0

((α − 1)/2− r)pr = α + 1− 2
p(α+1)/2 − 1

p− 1
,

where d([Λ],Bj′) = r + 1
2 .

The last case is α and β odd. Here j and j ′ fix the same midpoint, and we

get

(6.14) −p(α − 1) + 2(1− p)
(α−1)/2∑

r=1

((α − 1)/2− r)pr = 2− 2
p(α+1)/2 − 1

p− 1
.

Here the term −p(α − 1) comes from the pair of vertices of the edge containing

the fixed vertex. Note that they have multiplicity (α− 1)/2 in Z(j) .

In each case, we sum the various contributions to obtain the following table of

values of (Z(j)v, Z(j ′)v) :

(6.15)

j \ j ′ β even β even β odd

χ(ε2) = −1 χ(ε2) = 1
α even

χ(ε1) = −1 (i) (ii) ∅
α even
χ(ε1) = 1 (iii) (iv) (v)

α odd ∅ (vi) (vii)
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Here are the values:

(i) = (6.2) = −(p+ 1)
pα/2 − 1

p− 1

(ii) = (6.3) = α− (p+ 1)
pα/2 − 1

p− 1

(iii) = (6.4) + (6.5) + (6.6) + (6.7) = β + 1− (β − α+ 1)pα/2 − 2
pα/2 − 1

p − 1

(iv) = (iii) + α = α+ β + 1− (β − α+ 1)pα/2 − 2
pα/2 − 1

p− 1

(v) = (6.9) + (6.10) + (6.11) + (6.12) = β + 1− (β − α+ 1)pα/2 − 2
pα/2 − 1

p− 1

(vi) = (6.13) = α+ 1− 2
p(α+1)/2 − 1

p− 1

(vii) = (6.14) = 2− 2
p(α+1)/2 − 1

p− 1

Adding these to the expressions in (6.1), we obtain the result claimed in the The-

orem. �

§7. Intersection numbers and representation densities.

In this section, we will express the intersection number (Z(j), Z(j ′)) = ep(T )

given in Theorem 6.1 in terms of representation densities and their derivatives. The

analogous result in the case of a prime of good reduction is contained in sections 8

and 14 (Proposition 14.6) of [15]. The result in the present case is somewhat more

complicated, and this reflects, perhaps, the effect of bad reduction.

We begin by reviewing some facts about the representation densities of quadratic

forms, based on section 8 of [15] and [20]. For simplicity, we assume that p 6= 2 .

Recall that, for S ∈ Symm(Zp) and T ∈ Symn(Zp) with det(S) 6= 0 and

det(T ) 6= 0 , the classical representation density is

(7.1)

αp(S, T ) = lim
t→∞

p−tn(2m−n−1)/2 |{x ∈Mm,n(Z/ptZ) ; S[x]− T ∈ ptSymm(Zp) }|.

Let

(7.2) Sr =

(
S

1r
−1r

)
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be the orthogonal sum of S and a split space of dimension 2r . Then there is a

rational function AS,T (X) of X such that

(7.3) αp(Sr, T ) = AS,T (p−r).

The derivative of the representation density is then

α′p(S, T ) =
∂

∂X

(
AS,T (X)

)∣∣∣∣
X=1

(7.4)

=
∂

∂X

(
αp(Sr, T )

)∣∣∣∣
r=0

.

We will be concerned with the case m = 3 and n = 2 . Let

(7.5) S = −
(

1
1
−1

)
,

and

(7.6) S ′ = −



η

p
−ηp


 ,

where η ∈ Z×p with χ(η) = (η, p)p = −1 . Here (a, b)p is the quadratic Hilbert

symbol for Qp . Note that the form S (resp. S ′ ) is the matrix, with respect to

a suitable basis, of the restriction of the norm form of M2(Qp) (resp. the division

quaternion algebra B ) to the integral trace zero elements V (Zp) (resp. V ′(Zp) ).

In particular,

(7.7) 1 = det(S) = det(S ′) ∈ Q×p /Q×,2p ,

and S and S ′ have opposite Hasse invariants

(7.8) εp(S) = −εp(S ′) = 1.

Note that this corresponds to the choice κ = −1 in section 8 of [15].

Remark: In earlier sections we have taken the quadratic form on V (Qp) given

by x2 = q(x) · 12 , so that q(x) = −ν(x) , wher ν is the restriction of the reduced

norm to V . In [15], the quadratic form Q(x) = ν(x) was used. Thus, to make

a consistent link with results of [15] we use in this section and in section 9 below
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Q(x) rather than q(x) . This change in convention introduces slightly awkward

signs at several points.

Also let

(7.9) S ′′ = −




1
p
−p


 ,

so that S ′′ is the matrix for the restriction of the norm form to the trace 0 elements

in the lattice

(7.10) {
(
a b
c d

)
∈M2(Zp); c ≡ 0(p)}.

The following Proposition summarizes results of Kitaoka, [11], [15], Corollary

8.4 and 8.5, in the case of S and results of Myers, [18] and T. Yang, [20] in the

case of S ′ and S ′′.

Proposition 7.1. Let T ∈ Sym2(Zp) and suppose that T is GL2(Zp) -equivalent

to the matrix diag(ε1p
α, ε2p

β) with α ≤ β . Let

µp(T ) =





χ(−ε1ε2) if α and β are odd

χ(−ε2) if α is odd and β is even

χ(−ε1) if α is even and β is odd

1 if α and β are both even.

Then

(i) αp(S, T ) 6= 0 ⇐⇒ µp(T ) = 1,

and

αp(S
′, T ) 6= 0 ⇐⇒ µp(T ) = −1.

(ii) (Kitaoka) If µp(T ) = 1 , then

αp(S, T ) = (1 − p−2) ·





pα/2 + 2p
α/2−1
p−1

if α and β are even

and χ(−ε1) = −1

(β − α+ 1)pα/2 + 2p
α/2−1
p−1 if α is even

and χ(−ε1) = 1,

2p
(α+1)/2−1
p−1

if α is odd.
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(iii) If µp(T ) = −1 , then

α′p(S, T ) = −(1−p−2)·





∑(α−1)/2
j=0 (α+ β − 4j)pj if α is odd.

∑α/2−1
j=0 (α + β − 4j)pj + 1

2 (β −α+ 1)pα/2

if α is even and β is odd.

(iv) (Myers) If µp(T ) = −1 , then

αp(S
′, T ) = 2(p + 1).

(iv) (Myers, Yang) If µp(T ) = 1 , then

α′p(S
′, T ) = −(p+ 1)(α + β + 2)

+ 2p ·





pα/2 + 2p
α/2−1
p−1 if α and β are even

and χ(−ε1) = −1

(β − α+ 1)pα/2 + 2p
α/2−1
p−1 if α is even

and χ(−ε1) = 1,

2p
(α+1)/2−1
p−1 if α is odd.

(v) (Yang) If µp(T ) = 1 , then

1 =
p2

p2 − 1
αp(S, T )− 1

2(p− 1)
αp(S

′′, T ).

The last relation follows immediately from Corollary 8.4 in [20]. For an expla-

nation of the dichotomy of (i), see Proposition 1.3 of [15].

The following striking relation is then evident, [20], Theorem 8.1:

Corollary 7.2. If µp(T ) = 1 , then

α′p(S
′, T ) = −(p+ 1)(α + β + 2) +

2p3

p2 − 1
αp(S, T ).

Remark: Kitaoka gave an explicit formula for the representation density αp(S, T )

when T is any binary form, n = 2 , and S is unimodular, m is arbitrary [11]. He

also handled the case where n = 3 and m = 4 [12]. In his thesis, [18], B. Myers
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gave a formula for αp(S, T ) in the case of a binary form T where, when diagonal-

ized, the entries of S have ordp ≤ 1 . This formula made it possible to compute

the derivative α′p(S
′, T ) above. The relation of Corollary 7.2 was first observed in

the thesis of B. Myers, where the term −(p+ 1)(α+ β + 2) was erroneously given

as −(p+ 1)(α+ 3β+ 2) in certain cases. Using a new method, Tonghai Yang, [20],

found an explicit formula for the representation density αp(S, T ) for T a binary

form and for S an arbitrary form. His result (which includes the case p = 2 )

thus allow the computation of any α′p(S, T ) for a binary T . Recently, Katsurada,

[10], gave an explicit (very complicated) formula for αp(S, T ) when T is arbitrary

and S is a sum of hyperbolic planes. This should allow the computation of the

derivatives α′p(S, T ) in cases m = 2` and n = 2` − 1 in the interesting case in

which αp(S, T ) = 0 , cf. Proposition 1.3 and Theorem 6.1 of [15].

Comparing the expressions of Proposition 7.1 and Corollary 7.2 with the formula

for the intersection number given in Theorem 6.1, we obtain the following result.

Theorem 7.3. As in Theorem 6.1, suppose that j and j ′ are special endomor-

phisms with matrix of inner products T , defined using the quadratic form Q .2

Then, µp(T ) = 1 , and

(Z(j), Z(j ′)) = ep(−T ) = − 1

p+ 1
α′p(S

′, T ) +
2p2

p+ 1
αp(S, T ) +

1

2(p− 1)
αp(S

′′, T ).

Note that this identity holds for all T and that the coefficients are independent

of T , so that there is not as much flexibility as it might at first appear. Also, the

occurrence of ep(−T ) is due to our change in the sign of the quadratic form in this

section.

As explained in [15], section 8 and Appendix, the representation densities and

their derivatives are closely related to certain generalized Whittaker functions for

the metaplectic cover of Sp2(Qp) . In our present case, let ϕp be the characteristic

function of V (Zp) , let ϕ′p be the characteristic function of V ′(Zp) , and let ϕ′′p
be the characteristic function of the sublattice of V (Zp) where c is divisible by

p . Also let Φp(s) , Φ′p(s) , and Φ′′p(s) be the standard sections of the induced

representation I2,p(s) whose values at s = 0 are λp(ϕp) , λ′p(ϕ
′
p) , and λp(ϕ

′′
p)

respectively. Then, as in Proposition A.6 of [15], the values of the associated

2 Thus T in this Theorem is the negative of the matrix attached to j and j′ in previous

sections, e.g., in Theorem 6.1.
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generalized Whittaker functions at integers r ≥ 0 are

WT,p(e, r,Φp) = γp(Vp) · αp(Sr, T ),(7.11)

WT,p(e, r,Φ
′
p) = p−2γp(V

′
p) · αp(S ′r, T ),

and

WT,p(e, r,Φ
′′
p) = p−2γp(Vp) · αp(S ′′r , T ).(7.12)

Note that, by Proposition A.4 of [15],

(7.13) γp(Vp) = γp(V
′
p) = γp(−1, ψp)3 = 1,

for our standard ψp and p 6= 2 . In our case, since µp(T ) = 1 , the quantities of

interest to us are then

W ′T,p(e, 0,Φ
′
p) = −p−2 log(p)α′p(S ′, T ),(7.14)

WT,p(e, 0,Φp) = αp(S, T ),

and

WT,p(e, 0,Φ
′′
p) = p−2αp(S

′′, T ).(7.15)

The relation of Theorem 7.3 can be expressed in terms of the derivative of a Whit-

taker function.

Corollary 7.4. Let A(s) and B(s) be rational functions of p−s satisfying

A(0) = B(0) = 0,

and

A′(0) = 2 log(p), and B′(0) =
1

2

p+ 1

p− 1
log(p).

Define a nonstandard section of I2,p(s) by

Φ̃p(s) = Φ′p(s) +A(s) Φp(s) +B(s) Φ′′p (s).

Then
p+ 1

p2
log(p) ep(−T ) = W ′T,p(e, 0, Φ̃p).

Note that, since the standard sections Φp(s) , Φ′p(s) and Φ′′p(s) are linearly

independent at s = 0 , the conditions on A(s) and B(s) uniquely determine the

first two terms of the Laurent expansion of Φ̃p(s) at s = 0 .

For example, one possibility is

(7.16) A(s) = 1− p−2s and B(s) =
1

4

1 + p−1−s

1− p−1−s (1− p−2s).
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§8. Intersection numbers on Shimura curves.

In this section we use the results about intersections of cycles in Drinfeld space

obtained above to compute the contribution to the height pairing of certain 0-

cycles on Shimura curves of the intersections occuring in the fiber at p for a prime

p which ramifies in the quaternion algebra. Our result extends that of [15] where

the case of good reduction was considered. The notation will be slightly different

from that of the earlier sections.

We begin by briefly reviewing the global moduli problem and the definition of

cycles from section 14 of [15].

Let B be an indefinite quaternion algebra over Q and let D(B) be the product

of the primes which ramify in B . Fix a maximal order OB in B . Let

(8.1) V = {x ∈ B; tr0(x) = 0},

with quadratic form defined by x2 = q(x)1B , i.e., q(x) = −ν(x) where ν is

the reduced norm. Note that we are using the negative of the form used in [15]

and so the signature of this quadratic form is (2, 1) . The action of H = B×

on V by conjugation, x 7→ hxh−1 , induces isomorphisms H ' GSpin(V ) and

H/Z ' SO(V ) , where Z is the center of H .

Fix a prime p with p | D(B) , and a compact open subgroup K ⊂ H(Af ) of

the form K = KpK
p with Kp ⊂ H(Apf ) and Kp ⊂ H(Qp) . We assume that the

image Kp/Zp of Kp in SO(V )(Apf ) is torsion free and that Kp = (OB ⊗ Zp)× .

Let AK be the functor on SchZ(p)
which assigns to a scheme S over Z(p) the

set of isomorphism classes of triples (A, ι, η̄) where

(i) A is an abelian scheme over S , up to prime to p isogeny,

(ii) ι : OB −→ EndS(A) is an embedding satisfying the special condition [21],

p. 17, and

(iii) η̄ is an equivalence class, modulo right multiplication by Kp , of OB -

equivariant isomorphisms η : V̂ p(A)
∼−→ B(Apf ) , where

V̂ p(A) =
∏

` 6=p
T`(A) ⊗Q,

is the rational Tate module of A .

We refer to [13] for the precise meaning of this last condition; in particular, if

S = Spec k is the spectrum of a field, then the equivalence class η̄ is stable under

Gal(k̄/k) .
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As is well known, this functor is represented by a projective scheme over Z(p)

which we also denote by AK . The generic fiber AK = AK ×SpecZ(p)
SpecQ is the

canonical model of the Shimura curve determined by B and K .

Next, we recall the definition of special cycles. For t ∈ Q , let

(8.2) Vt = {x ∈ V ; q(x) = t}

be the corresponding hyperboloid. For a fixed negative integer t ∈ Z(p) and

a Kp -stable compact open subset ω ⊂ V (Apf ) , we consider the functor C(t, ω)

which assigns to any Z(p) -scheme S the set of isomorphism classes of collections

(A, ι, η̄, x) , where (A, ι, η̄) is as before, and where

(iv) x ∈ EndS(A, ι) is an endomorphism with tr0(x) = 0 and such that, for any

η ∈ η̄ , the endomorphism η∗(x) of B(Apf ) is given by right multiplication

by an element of ω .

This functor is representable. There is a natural morphism C(t, ω)→ AK given

by omitting the endomorphism x . This morphism is finite and unramified. On the

generic fiber, this defines a 0-cycle

(8.3) C(t, ω) := C(t, ω) ×SpecZ(p)
SpecQ −→ AK ,

described in more detail in section 10 of [15].

Let ÂK be the formal completion of AK along its special fiber, and let

(8.4) Â =
(
ÂK
)
W

= ÂK ×SpfZp SpfW

be the base change of ÂK to W = W (F̄p) . The Drinfeld-Cherednik p-adic uni-

formization of Â is given as follows. Fix a base point ξ0 = (A0, ι0, η̄0) ∈ Â(F̄p) ,

and let B′ = End0(A0, ι0) . Then B′ is a definite quaternion algebra over Q
whose invariants agree with those of B at all primes ` 6= p , ∞ . Let H ′ = B′,× .

Fix η0 ∈ η̄0 . This choice induces an identification

(8.5) B′(Apf ) = B(Apf )op

determined by the condition η0(b′v) = η0(v)b , and hence also an identification

H ′(Apf ) = H(Apf ) , with order of multiplication reversed. Let X = A0(p) be the

p-divisible group of A0 . Then ι0 induces an action of OB⊗Zp on X and, by the

condition (ii) above, X is a s.f. OB ⊗Zp module over k = F̄p . As in section 1, we

may also assume that 0 and 1 are critical indices of X and fix an identification

End0(X, ι0) = M2(Qp) . This gives an identification H ′(Qp) = GL2(Qp) .
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Recall from section 1 the category Nilp of W -schemes S such that p is locally

nilpotent in OS and the notation S̄ = S ×SpecW Spec F̄p for S ∈ Nilp . Let Â∼
be the functor on Nilp which associates to S the isomorphism classes of collections

(A, ι, η̄, ψ) where (A, ι, η̄) is as before, and where

(8.6) ψ : A0 ×Spec F̄p S̄ −→ A×S S̄

is an OB -equivariant p -primary quasi-isogeny.

Let M• be the functor on Nilp which associates to S ∈ Nilp the set of iso-

morphism classes of pairs (X, ρ) where X is a p -divisible group over S and

(8.7) ρ : X×Spec F̄p S̄ −→ X ×S S̄

is a quasi-isogeny. Then M• is representable by a formal scheme and breaks up

as a disjoint sum

(8.8) M• =
∐

i∈Z
Mi,

where Mi is the locus where the height of ρ is equal to pi . We fix an element

Π ∈ B′(Qp)× such that tr0(Π) = 0 , and ordp(Π
2) = 1 . Using Π , we may identify

Mi with M =M0 (the Drinfeld space considered in section 1) via

(8.9) M ∼−→ Mi, (X, ρ) 7→ (X, ρ ◦Πi).

There is a natural morphism

(8.10) Â∼ −→M• ×H(Apf )/Kp.

This morphism is defined as follows. Given (A, ι, η̄, ψ) ∈ Â∼(S) , then passing

to the corresponding p -divisible groups, we obtain a quasi-isogeny of p -divisible

groups

(8.11) ρ(ψ) : X×Spec F̄p S̄ −→ A(p) ×S S̄,

and (A(p), ρ(ψ)) is a point of M•(S) . Also, for a choice of η ∈ η̄ there is a

unique element g ∈ H(Apf ) for which the diagram

(8.12)

V̂ p(A0)
ψ∗−→ V̂ p(A)

η0 ↓ η ↓
B(Apf )

Rg−→ B(Apf )
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commutes, and the coset gKp is uniquely determined by η̄ . Note, in (8.12), that

V̂ p(A) = V̂ p(A×S S̄) . An element γ ∈ H ′(Q) acts on Â∼ by changing the quasi-

isogeny ψ to ψ ◦ γ−1 . Since, for this change in ψ , the pair ((A(p), ρ(ψ)), gKp)

changes to ((A(p), ρ(ψ) ◦ γ−1, γ−1gKp) , the map (8.10) is H ′(Q) -equivariant.

The theorem of Drinfeld-Cherednik asserts that passage to the quotient induces

an isomorphism of formal schemes over W , [5],[19],[2]:

(8.13)

Â∼ −→ M• ×H(Apf )/Kp

↓ ↓

Â ∼−→ H ′(Q)\
(
M• ×H(Apf )/Kp

)
.

Now let

(8.14) V ′ = {x ∈ B′; tr0(x) = 0},

with its quadratic form q , which we regard as the space of special endomorphisms

of A0 in B′ = End0(A0, ι0) . Associating to any x ∈ V ′(Q) the corresponding

endomorphism of X = A0(p) , we obtain a special endomorphism j = j(x) of

X , and in fact this induces an identification of V ′(Qp) with the space of special

endomorphisms of X . Note that the notation has shifted; V ′(Qp) was denoted by

V in the earlier sections. For t ∈ Q , let

(8.15) V ′t = {x ∈ V ′; q(x) = t}.

We may now relate the formal cycle Ĉ := Ĉ(t, ω) ×SpfZp SpfW to the cycles in

M considered earlier. Let Ĉ∼ = Ĉ ×Â Â∼ , so that a point of Ĉ∼ is a collection

(A, ι, η̄, x, ψ) . From this data, we obtain an element ψ∗(x) ∈ V ′t (Q) . By (8.10),

we obtain a map

(8.16)

Ĉ∼ −→ V ′t (Q) ×M• ×H(Apf )/Kp

↓ ↓
Â∼ −→ M• ×H(Apf )/Kp,

and, upon passage to the quotient, an injection

(8.17)

Ĉ ↪→ H ′(Q)\
(
V ′t (Q) ×M• ×H(Apf )/Kp

)

↓ ↓

Â ∼−→ H ′(Q)\
(
M• ×H(Apf )/Kp

)
.
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The image of this map is determined by the following incidence relations: the point

(x, (X, ρ), gKp) lies in the image if and only if:

(i) g−1xg ∈ ω, and

(ii) for j = j(x) , (X, ρ) ∈ Z•(j) .

Here Z•(j) is the formal subscheme of M• defined by the obvious analogue of

Definition 2.1.

Remark 8.1. Let Z i(j) = Z•(j) ∩Mi . Then, under the identification (8.9),

we have

(8.18) Z(ΠijΠ−i) = Z0(ΠijΠ−i)
∼−→ Zi(j).

In particular, since Π2 is central, we have

(8.19) Z(j) ' Z2i(j) and Z(j∨) ' Z2i+1(j),

where j∨ = ΠjΠ−1 .

Using the fact that H ′(Q) acts transitively on V ′t (Q) when t 6= 0 , we obtain

an isomorphism

(8.20) Ĉ ∼−→ H ′(Q)x\
(
Z•(j)× I(x, ω)

)
,

where x is a fixed element of V ′t (Q) , j = j(x) , and

(8.21) I(x, ω) = {gKp ∈ H(Apf )/Kp; g−1xg ∈ ω}.

Relation (8.20) can be viewed as giving a p-adic uniformization of the special cycle,

analogous to the uniformization (8.13) of the whole space.

Remark 8.2. Assume that the generic fiber C(t, ω) = C(t, ω) ×SpecZ(p)
SpecQ

is nonempty. Then t is represented by V (Q) . This follows from the fact that for

any C -valued point (A, ι, η̄) of AK we have an injection

End0(A, ι) ↪→ B.

Since t is represented by V (Q) , it is a fortiori represented by V (Qp) . For the

corresponding special endomorphism j in (8.20), this implies, since B(Qp) is a

quaternion division algebra, that Qp(j) is a field, i.e., does not split. This is the

global reason, referred to in Remark 3.5, for the observation in Corollary 3.4, that

Z(j)h = ∅ if q(j) = εpα with α even and χ(ε) = 1 .
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Next, we consider the intersection of a pair of cycles C1 = C(t1, ω1) and C2 =

C(t2, ω2) , following the procedure of section 3 of [16]. We change notation and

now denote by C the fiber product

(8.22) C = C(t1, ω1) ×AK C(t2, ω2).

Let S be a connected scheme. For a point ξ = (Aξ , ι, η̄) ∈ AK(S) , let Vξ ⊂
End0

S(Aξ , ι) be the Q -vector space of special endomorphisms (endomorphisms of

trace 0 ). This space has a Q -valued quadratic form defined by x2 = qξ(x) · idA .

For a point ξ = (Aξ, ι, η̄, x1, x2) of C(S) the pair x1 , x2 of elements of Vξ

determine a symmetric matrix (the fundamental matrix associated to ξ )

(8.23) Tξ =
1

2

(
(x1, x1) (x1, x2)
(x2, x1) (x2, x2)

)
=

(
t1

1
2 (x1, x2)

1
2 (x2, x1) t2

)
∈ Sym2(Q),

where (x, y) = qξ(x+y)− qξ(x)− qξ(y) is the bilinear form associated to qξ . Note

that det(Tξ) = t1t2− 1
4 (x1 , x2)2 . A basic fact is that Tξ is negative semi-definite.

As observed in [16], the function ξ 7→ Tξ is constant on each connected component

of C and there is a decomposition

(8.24) C =
∐

T

CT ,

where, for T ∈ Sym2(Q) , CT is the union of the components of C where Tξ = T .

Note that the only T ’s which actually contribute lie in Sym2(Z(p)) , are negative

semi-definite, and have diagonal terms t1 and t2 as on the right side of (8.23).

Since the signature of V (Q) is (2, 1) , and using an argument similar to that in

Remark 8.2, we obtain:

Lemma 8.3. Suppose that det(T ) 6= 0 and hence that T < 0 . Then the image

in A of the underlying point set of CT lies in the special fiber. Moreover, CT is

proper over SpecZ(p) .

The last statement follows from Corollary 2.13.

If t1t2 /∈ Q×,2 , so that det(T ) 6= 0 for all T appearing in the decomposition

(8.24), then the discussion of section 4 provides a well defined intersection number

(C1, C2) , cf. Remark 4.4. As a matter of fact, in that section, we only considered

intersection numbers (Z,Z ′) for closed subschemes of a regular two dimensional
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scheme X . The extension to the case of finite unramified morphisms Z → X and

Z ′ → X is immediate. In our case, we obtain

(C1, C2) = χ(C,OC1 ⊗L OC2)(8.25)

=
∑

T

χ(CT ,OC1 ⊗L OC2).

If t1t2 is a square, then singular T ’s can occur in (8.24), and we define

(8.26) (C1, C2)ns :=
∑

T,det(T ) 6=0

χ(CT ,OC1 ⊗L OC2).

Our next goal is to compute the quantity χ(CT ,OC1 ⊗L OC2) for a given non-

singular T ∈ Sym2(Q) . First we pass to the formal schemes Ĉ1 , Ĉ2 and

(8.27) Ĉ = Ĉ1 ×Â Ĉ2,

over W . Here

(8.28) Ĉ =
∐

T

ĈT ,

where Ĉ (resp. ĈT ) is the base change to W of the formal completion of C (resp.

CT ) along its special fiber. Passing to formal completions and making a formally

étale base change leaves the intersection number unchanged, cf. Remark 4.4. Hence

we obtain the following statement.

Lemma 8.4. Assume that det(T ) 6= 0 . Then

χ(CT ,OC1 ⊗L OC2) = χ(ĈT ,OĈ1 ⊗
L OĈ2).

Let Ĉ∼T = ĈT×ÂÂ∼ , so that a point ξ ∈ Ĉ∼T (S) is a collection (Aξ, ι, η̄, x1, x2, ψ) ,

where ψ is a quasi-isogeny, as in (8.6). The special endomorphisms x1 and x2 of

Aξ determine an ordered pair x = [ψ∗(x1), ψ∗(x2)] of special endomorphisms of

A0 , and these, in turn, determine an ordered pair j = [j1, j2] of special endomor-

phisms of X and their Zp span j = Zpj1 + Zpj2 . Let

(8.29) V ′,2T = {x ∈ V ′,2;
1

2
(x, x) = T}.
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Then x lies in V ′(Q)2
T . Thus, we obtain an inclusion

(8.30) Ĉ∼T ↪→ V ′(Q)2
T ×M• ×H(Apf )/Kp,

analogous to (8.16). Again, the point (x, (X, ρ), gKp) lies in the image of this map

if and only if:

(i) g−1xg ∈ ω1 × ω2, and

(ii) (X, ρ) ∈ Z•(j) , where Z•(j) = Z•(j1) ∩ Z•(j2) .

Since det(T ) 6= 0 , the group H ′(Q) acts transitively on V ′(Q)2
T , and the

stabilizer of a fixed x is the center Z ′(Q) , which acts trivially on V ′ . Letting

(8.31) I(x, ω1 × ω2) = {gKp ∈ H(Apf ); g−1xg ∈ ω1 × ω2}
and passing to the quotient, we obtain an isomorphism

(8.32) ĈT ∼−→ Z ′(Q)\
(
Z•(j) × I(x, ω1 × ω2)

)
.

Again, this can be viewed as a p-adic uniformization of the component ĈT of the

intersection.

We then have isomorphic fiber product diagrams of formal schemes over W :

(8.33)

ĈT pr1−→ Ĉ1
pr2 ↓ ↓
Ĉ2 −→ Â

and

(8.34)

Z ′(Q)\
(
Z•(j)× I(x, ω1 × ω2)

)
pr1−→ H ′(Q)x1\

(
Z•(j1)× I(x1, ω1)

)

pr2 ↓ ↓

H ′(Q)x2\
(
Z•(j2)× I(x2, ω2)

)
−→ H ′(Q)\

(
M• ×H(Apf )/Kp

)
.

Observe that the projection maps pri factor as:

(8.35)

Z ′(Q)\
(
Z•(j) × I(x, ω1 × ω2)

)
p̃ri−→ Z ′(Q)\

(
Z•(ji)× I(xi, ωi)

)

pri ↘ ↓

H ′(Q)xi\
(
Z•(ji)× I(xi, ωi)

)
.
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We may assume that the element Π chosen above lies in B′(Q)× = H ′(Q) . Let

Z ′(Q)0 be the set of elements z ∈ Z ′(Q) such that ordp(det(z)) = 0 , and note

that Z ′(Q)0 acts trivially on M• . Then Z ′(Q) =< Π2 > ×Z ′(Q)0 , and, using

the isomorphisms (8.20), we obtain an identification:

(8.36)

Z ′(Q)\
(
Z•(ji)×I(xi, ωi)

)
'
(
Z(ji)×Z ′(Q)0\I(xi, ωi)

)∐(
Z(j∨i )×Z ′(Q)0\I(x∨i , ωi)

)
.

There is an analogous decomposition

(8.37) Z ′(Q)\
(
Z•(j) × I(x, ω1 × ω2)

)

'
(
Z(j)× Z ′(Q)0\I(x, ω1 × ω2)

)∐(
Z(j∨) × Z ′(Q)0\I(x∨, ω1 × ω2)

)

for the right side of (8.32) and the decompositions (8.36) and (8.37) are compatible

with the projections p̃ri .

Therefore the restriction of pr∗iOĈi to the first (resp. second) component in the

decomposition (8.37) is

(8.38) p̃r∗iOZ(ji)×Z′(Q)0\I(xi,ωi).

(resp.

(8.39) p̃r∗iOZ(j∨i )×Z′(Q)0\I(x∨i ,ωi)
).

Thus we have

χ(ĈT ,OĈ1 ⊗
L OĈ2) = χ(Z(j),OZ(j1) ⊗L OZ(j2)) · |Z ′(Q)0\I(x, ω1 × ω2)|

(8.40)

+ χ(Z(j∨),OZ(j∨1 ) ⊗L OZ(j∨2 )) · |Z ′(Q)0\I(x∨, ω1 × ω2)|.

Note that I(x∨, ω) = Π · I(x, ω) and that passing from x to x∨ leaves the

matrix of inner products of the components unchanged. Since the intersection

number

(Z(j1), Z(j2)) = χ(Z(j),OZ(j1) ⊗L OZ(j2))

depends only on the matrix T of inner products, we have proved the following:
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Theorem 8.5. Assume that det(T ) 6= 0 . Then

χ(ĈT ,OĈ1 ⊗
L OĈ2) = 2 · χ

(
Z(j),OZ(j1) ⊗L OZ(j2)

)
·
∣∣Z ′(Q)0\I(x, ω1 × ω2)

∣∣.

This result is analogous to Theorem 14.11 of [15] and Theorem 7.2 of [16] in that

it expresses the intersection number as a product of a multiplicity and a counting

function. The analysis in our present case is much more elaborate, however, since

the “multiplicity” is the intersection number χ
(
Z(j),OZ(j1) ⊗L OZ(j2)

)
, which is

global on the Drinfeld space!

To obtain the final formula for the intersection number, we express the counting

function as an orbital integral. Let ϕpi ∈ S(V (Apf )) be the characteristic function

of ωi , so that ϕp1 ⊗ ϕp2 ∈ S(V (Apf )2) . Then, for x ∈ V (Apf )2
T , the cardinality

|Z ′(Q)0\I(x, ω1 × ω2)| is given by the orbital integral

(8.41) |Z ′(Q)0\I(x, ω1 × ω2)| = vol(Kp)−1 OT (ϕp1 ⊗ ϕp2)

= vol(Kp)−1

∫

Z(Ap
f

)\H(Ap
f
)

ϕp1(g−1x1g)ϕp2(g−1x2g)dg.

Combining this fact with the explicit formula for ep(T ) = (Z(j1), Z(j2)) of The-

orem 6.1, which, we recall, depends only on the GL2(Zp) -equivalence class of T ,

we obtain the following explicit expression for the intersection number.

Theorem 8.6. If t1t2 is not a square in Q× , then the cycles C(t1, ω1) and

C(t2, ω2) meet only in the special fiber of AK , and their intersection number is

given by

(C(t1, ω1), C(t2 , ω2)) = 2 ·
∑

T

ep(T ) · vol(Kp)−1 OT (ϕp1 ⊗ ϕp2),

Here the sum runs over

T =

(
t1 n
n t2

)
∈ Sym2(Z(p)),

OT (ϕp1 ⊗ ϕp2) is the orbital integral (8.41), and, if T is GL2(Zp) -equivalent to

diag(ε1p
α, ε2p

β) , with 0 ≤ α ≤ β , then

ep(T ) = α+ β + 1−





pα/2 + 2p
α/2−1
p−1 if α is even and χ(ε1) = −1,

(β − α+ 1)pα/2 + 2p
α/2−1
p−1 if α is even and χ(ε1) = 1,

2p
(α+1)/2−1
p−1 if α is odd,
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as in Theorem 6.1.

If t1t2 is a square, then the quantity (C(t1, ω1), C(t2 , ω2))ns is defined by (8.26),

and

(C(t1 , ω1), C(t2, ω2))ns = 2 ·
∑

T, det(T ) 6=0

ep(T ) · vol(Kp)−1 OT (ϕp1 ⊗ ϕp2).

§9. Intersection numbers and Fourier coefficients.

In this section, we combine the results of sections 7 and 8 to prove a relation

between the intersection numbers of special cycles and the Fourier coefficients of the

derivative of a certain Siegel Eisenstein series. This relation extends Theorem 14.11

of [15] to the primes of bad reduction p | D(B) of the Shimura curve AK . We

refer to section 7 of [15] for more details concerning the definition of the incoherent

Siegel Eisenstein series and its derivative.

We continue to use the notation of section 8, with one exception. To make our

results consistent with those of [15], we will change the sign of the quadratic form

on V , i.e., we now take the quadratic form Q(x) = ν(x) . Thus, a special cycle

will be associated to data (t, ω) where t ∈ Q×>0 with ordp(t) ≥ 0 and where ω

is a Kp -stable compact open subset of V (Apf ) . We also assume that ω is locally

centrally symmetric.

For a pair of cycles C1 = C(t1, ω1) and C2 = C(t2, ω2) , with t1t2 not a square

in Q× , let

(9.1) < C1, C2 >p:= vol(K) log(p)
(
C1, C2

)

be the p part of their height pairing. Here K = KpK
p is the compact open

subgroup of section 8, and the intersection number
(
C1, C2

)
is as in (8.25). If t1t2

is a square, let

(9.2) < C1, C2 >ns
p := vol(K) log(p)

(
C1, C2

)ns

be the ‘nonsingular part’ of the height pairing, defined using (8.26). Of course,

(9.2) simply reduces to (9.1) when t1t2 is not a square. Note that the intersection

number (C1, C2) is taken on the quotient AK and hence depends on the choice

of K . On the other hand, due to the factor vol(K) , the quantity < C1, C2 >p is

independent of K , but depends on the choice of Haar measure on H(Af ) used

to calculate vol(K) . Here we fix the Tamagawa measure dh on H(A) and a
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factorization of this measure as dh = d∞h · dfh as in [15], p. 573. The Haar

measure dfh on H(Af ) is used to compute vol(K) . In addition, measures d`h

are fixed for all ` .

Next we introduce the relevant Eisenstein series. Let ϕp1 and ϕp2 ∈ S(V (Apf ))K
p

be the characteristic functions of the sets ω1 and ω2 . Let Φpf(s) be the standard

section of the induced representation I2,Ap
f
(s) with Φpf (0) = λpf (ϕp1 ⊗ ϕp2) . Let

Φ̃p(s) be the nonstandard section of I2,p(s) defined in Corollary 7.4, and let Φ
3
2∞(s)

be the standard section of weight 3
2 as in (7.14) of [15]. Then

(9.3) Φ(s) = Φ
3
2∞(s) ⊗ Φ̃p(s) ⊗ Φpf(s)

is an incoherent section of the global induced representation of the metaplectic

group G′′A of genus 2 . Let E(g′′, s,Φ) be the associated incoherent Eisenstein

series.

Let G′A be the metaplectic cover of Sp1(A) and recall that there is a homomor-

phism ι : G′A × G′A → G′′A . Restricting this to the real points, let g′′ = ι(g′1, g
′
2) ,

where g′1 and g′2 ∈ G′R . For g′ ∈ G′R , let W
3
2
t (g′) be the holomorphic Whittaker

function of Proposition 7.3 of [15].

Theorem 9.1. For g′1 and g′2 ∈ G′R , and with the notation just introduced,

2π2 W
3
2
t1

(g′1)W
3
2
t2

(g′2) < C1, C2 >ns
p =

∑

T

E′T (ι(g′1, g
′
2), 0,Φ),

where the sum is on positive definite T ∈ Sym2(Z(p)) with

T =

(
t1 ∗
∗ t2

)

and with µp(T ) = 1 . Here the invariant µp(T ) is defined in Proposition 7.1.

Remark. The condition µp(T ) = 1 implies that T is not represented by the qua-

dratic form Q on V (Zp) .

Note that this result is consistent with Theorem 14.11, for p - D(B) , and The-

orem 12.6, for p =∞ , of [15]. Thus the result of section 15 of that paper can be

extended correspondingly.
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Proof. For T ∈ Sym2(Q) , with det(T ) 6= 0 , and for Re(s) sufficiently large,

the T -th Fourier coefficient of the incoherent Eisenstein series E(g ′′, s,Φ) has a

product formula

(9.4) ET (g′′, s,Φ) = WT,∞(g′′, s,Φ
3
2∞) ·WT,p(e, s, Φ̃p) ·

∏

` 6=p
WT,`(e, s,Φ`).

We will write

(9.5) WT (s,Φpf ) =
∏

` 6=p
WT,`(e, s,Φ`),

and we recall that this function, initially defined for Re(s) sufficiently large, has

an entire analytic continuation, [15], p. 562. We will only be interested in those T

for which WT,p(e, 0, Φ̃p) = 0 , so that for the derivative

(9.6) E′T (g′′, 0,Φ) = WT,∞(g′′, 0,Φ
3
2∞) ·W ′T,p(e, 0, Φ̃p) ·WT (0,Φpf ).

We would like to prove the identity

E′T (ι(g′1, g
′
2), 0,Φ)

(9.7)

= C ·W
3
2
t1 (g′1)W

3
2
t2 (g′2) vol(K) log(p) (C1 , C2)−T

= C ·W
3
2
t1 (g′1)W

3
2
t2 (g′2) vol(K) log(p) 2ep(−T ) · vol(Kp)−1OT (ϕp1 ⊗ ϕp2),

with constant C = 2π2 . By (7.35) of [15], we have

(9.8) WT,∞(g′′, 0,Φ
3
2∞) = W

3
2
t1 (g′1)W

3
2
t2 (g′2),

while, by Corollary 7.4 above,

(9.9) W ′T,p(e, 0, Φ̃p) =
p+ 1

p2
log(p) ep(−T ).

Thus, substituting these in (9.7), we find that the desired identity is:

(9.10)
p+ 1

p2
·WT (0,Φpf ) = 2C · vol(Kp) ·OT (ϕpf) ,

where ϕpf = ϕp1 ⊗ ϕp2 .
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An easy calculation shows that vol(Kp) = (p + 1)/p2 , so that it remains to show

that

(9.11) WT (0,Φpf ) = 2C ·OT (ϕpf ).

This last identity can be derived from the Siegel-Weil formula as follows.

Let B′ be the definite quaternion algebra defined in section 8 above and let V ′

be the space of trace 0 elements in B′ with quadratic form Q(x) = ν(x) given by

the restriction of the reduced norm. The identification (8.5) gives an identification

(9.12) V ′(Apf ) = V (Apf ).

Let ϕ′ = ⊗vϕ′v ∈ S(V ′(A)2) be the factorizable, locally even, global Schwartz

function defined by

(9.13) ϕ′v(x) =





e−πtr(Q(x)) if v =∞,

ϕ1,` ⊗ ϕ2,`(x) if v = ` 6= p,

ϕ′p(x) if v = p,

for some (for the moment arbitrary) ϕ′p ∈ S(V ′(Qp)2) . If T ∈ Sym2(Q) with

det(T ) 6= 0 is represented by V ′ , then, by (7.28) of [15], the T -th Fourier coeffi-

cient of the theta integral of ϕ′ is given by

IT (g′′, ϕ′) =
1

2

∫

Z′(A)H ′(Q)\H ′(A)

∑

x∈V ′(Q)2
Q(x)=T

ωψ(g′′)ϕ′(h−1x)dh

=
1

2

∫

Z′(A)\H ′(A)

ωψ(g′′)ϕ′(h−1x0)dh(9.14)

=
1

2
·OT (ωψ(g′′)ϕ′∞) ·OT (ϕ′p) ·OT (ϕpf).

Here x0 ∈ V (Q)2 is an arbitrary base point, and the orbital integrals are formed

as in (8.41). We take ϕ′p even so that ϕ′ is locally even.

Note that the individual factors here depend on the choice of the Haar measures,

which are fixed as above. By the Siegel-Weil formula for the coherent Eisenstein

series associated to λ′(ϕ′) ,

(9.15) ET (g′′, 0,Φ′) = 2 · IT (g′′, ϕ′),
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i.e.,

(9.16)

WT,∞(g′′, 0,Φ
3
2∞) ·WT,p(e, 0,Φ

′
p) ·WT (0,Φpf ) = OT (ωψ(g′′)ϕ′∞) ·OT (ϕ′p) ·OT (ϕpf).

By (7.33)–(7.35) of [15]:

(9.17) OT (ωψ(g′′)ϕ′∞) = (2π)2 Wt1(g′1)Wt2(g′2),

so that (9.16) becomes

(9.18) WT,p(e, 0,Φ
′
p) ·WT (0,Φpf ) = (2π)2 ·OT (ϕ′p) ·OT (ϕpf ).

We now choose ϕ′p so that WT,p(e, 0,Φ
′
p) 6= 0 , and we compute the ratio.

Lemma 9.2.
OT (ϕ′p)

WT,p(e, 0,Φ′p)
= 1.

Proof. We only sketch the argument which consists of two steps. In the first step

one proves that the ratio on the left hand side of Lemma 9.2 is independent of

T ∈ Sym2(Qp) (with det (T ) 6= 0 ) and of ϕ′p ∈ S(V ′(Qp)2) . In the second

step one calculates the ratio by making a special choice of T and ϕ′p . Namely, if

T0 = −12 and ϕ0 = charV ′(Zp)2 , then

(9.19) OT0(ϕ0) = vol(K ′p) .

With the measures as described on p. 573 of [15] the naive volume of K ′p , i.e.,

without the convergence factor λp = (1− p−1) is

p−4(p2 − 1)(p2 − p) ,

so that, dividing by the convergence factor the right hand side of (9.19) is 1− p2 .

On the other hand, by Kitaoka’s formula (cf. Proposition 8.3 of [15] and noting

that γ(V ′(Qp)) = 1 )

WT0(e, 0,Φ0) = αp(S, T0) = 1− p−2 . �

In particular,

WT (0,Φpf ) = (2π)2 ·OT (ϕpf ),

and the proof of Theorem 9.1 is complete.
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de Shimura, Astérisque 196–197, 1991, pp. 45–158.

[3] P. Deligne, Intersections sur les surfaces régulières, exposé X, in P. Deligne
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SLN 340, Springer 1973, 1-38.

[4] P. Deligne, La classe de cohomologie associée à un cycle par A. Grothendieck,
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