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Abstract. We show that the Deligne formal model of the Drinfeld p-adic halfplane relative to a
local field F represents a moduli problem of polarized OF -modules with an action of the ring of
integers in a quadratic extension E of F . The proof proceeds by establishing a comparison isomor-
phism with the Drinfeld moduli problem. This isomorphism reflects the accidental isomorphism of
SL2(F ) and SU(C)(F ) for a two-dimensional split hermitian space C for E/F .

1. Introduction

Let F be a finite extension of Qp, with ring of integers OF , uniformizer π, and residue field k of
characteristic p with q elements. The Drinfeld half-plane ΩF associated to F is the rigid-analytic
variety over F ,

ΩF = P1
F r P1(F ) .

We denote by Ω̂F Deligne’s formal model of ΩF , cf. Drinfeld [2]. This is a formal scheme over
Spf OF with generic fiber ΩF . The formal scheme Ω̂F has semi-stable reduction and has a special
fiber which is a union of projective lines over k. There is a projective line for each homothety class
of OF -lattices Λ in F 2, and any two lines, corresponding to the homothety classes of lattices Λ and
Λ′, meet if and only if the vertices of the Bruhat-Tits tree B(PGL2, F ) associated to Λ and Λ′ are
joined by an edge, i.e., the dual graph of the special fiber of Ω̂F can be identified with B(PGL2, F ).

Let Ω̆F = Ω̂F×Spf OF
Spf ŎF be the base change of Ω̂F to the ring of integers ŎF in the completion

of the maximal unramified extension F̆ of F . Drinfeld [2] proved that Ω̆F represents the following
functorM on the category NilpŎF

of ŎF -schemes S such that πOS is a locally nilpotent ideal. The
functor M associates to S the set of isomorphism classes of triples (X, ιB, %). Here X is a formal
OF -module of dimension 2 and F -height 4 over S, and ιB : OB −→ End(X) is an action of the
ring of integers in the quaternion division algebra B over F satisfying the special condition, cf. [1].
Over the algebraic closure k̄ of k, there is, up to OB-linear isogeny, precisely one such object which
we denote by X, or (X, ιX). The final entry % in a triple (X, ιB, %) is a OB-linear quasi-isogeny

(1.1) % : X ×S S̄ −→ X×Spec k̄ S̄

of height zero. Here S̄ = S ×Spec ŎF
Spec k̄. We refer to ρ as a framing for our fixed framing object

(X, ιX). Note that no polarization data is included in a triple (X, ιB, %). However, the following
result of Drinfeld provides the automatic existence of polarizations on special formal OB-modules,
[1], p.138.

Proposition 1.1. (Drinfeld ): Let Π ∈ OB be a uniformizer such that Π2 = π is a uniformizer
of F , and consider the involution b 7−→ b∗ = Π b′Π−1 of B, where b 7−→ b′ denotes the main
involution.
a) On X there exists a principal polarization λ0

X : X ∼−→ X∨ with associated Rosati involution
b 7−→ b∗. Furthermore, λ0

X is unique up to a factor in O×F .

Date: April 13, 2013.

1



2 S. KUDLA AND M. RAPOPORT

b) Fix λ0
X as in a). Let1 (X, ι, %) ∈M(S), where S ∈ NilpŎF

. On X there exists a unique principal
polarization λ0

X : X ∼−→ X∨ making the following diagram commutative,

X ×S S̄
%

��

λ0
X // X∨ ×S S̄

X×Spec k̄ S̄
λ0

X // X∨ ×Spec k̄ S̄ .

%∨

OO

In this paper we show that, at least when the residue characteristic p 6= 2, the formal scheme
M' Ω̆F is also the solution of certain other moduli problems on NilpŎF

, whose definition we now
describe.

Let E/F be a quadratic extension with ring of integers OE and nontrivial Galois automorphism
α 7→ ᾱ. Fix an F -embedding E → B.

(a) When E/F is unramified, we find δ ∈ OE such that δ2 ∈ O×F \ O
×,2
F , and we choose a

uniformizer Π of OB such that ΠαΠ−1 = ᾱ , ∀α ∈ OE , and with Π2 = π a uniformizer of
OF . We denote by k′ = OE/ΠOE the residue field of E.

(b) When E/F is ramified, there exists a unit ζ ∈ O×B which generates OB as an OE-algebra
and which normalizes E, i.e., such that α 7−→ ζαζ−1 is the non-trivial element in Gal(E/F ).
We choose2 a uniformizer Π of OE with Π2 = π ∈ OF , which also serves as a uniformizer
of OB.

From now on, we assume that p 6= 2 in the ramified case.
Let NE be the functor on NilpŎF

that associates to S the set of isomorphism classes NE(S)
of quadruples (X, ι, λ, %), where X is a formal OF -module of dimension 2 over S and ι : OE −→
End(X) is an action of the ring of integers of E satisfying the Kottwitz condition

(1.2) charOS
(T, ι(α) | LieX) = (T − α) · (T − ᾱ) , ∀α ∈ OE .

The polynomial T 2 − (α + ᾱ)T + αᾱ ∈ OF [T ] on the right side is considered as a polynomial in
OS [T ] via the structure map OF ⊂ ŎF → OS . The third entry λ is a polarization

λ : X −→ X∨

such that the corresponding Rosati involution ∗ satisfies ι(α)∗ = ι(ᾱ) for all α ∈ OE . In addition,
we impose the following condition:

(λ.a) If E/F is unramified, we ask that Kerλ be an OE/πOE-group scheme over S of order
|OE/πOE |. In other words, Kerλ is a k′-group scheme of height one, in the sense of
Raynaud [11].

(λ.b) If E/F is ramified, we ask that λ be a principal polarization.
Finally, % is again a framing, (1.1), as in the Drinfeld moduli problem. This requires the choice of
a suitable framing object (X, ι, λX) over k̄ defined as follows. Let (X, ιX) be the framing object for
Drinfeld’s functor, and let ι be the restriction of ιX : OB −→ End(X) to OE . We equip X with a
principal polarization λ0

X as in Drinfeld’s Proposition 1.1, relative to our choice of uniformizer Π.
Then we let

λX =

{
λ0

X ◦ ιX(Πδ) when E/F is unramified,

λ0
X when E/F is ramified.

1Here and elsewhere we will sometimes abuse notation and write M(S) for the category of objects (X, ι, %) over
S rather than the set of their isomorphism classes.

2When p = 2, this restricts the possibilities for E/F .
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We take (X, ι, λX) as a framing object for NE .
For a quadruple (X, ι, λ, %), where % is a quasi-isogeny of height zero, (1.1), we require that,

locally on S̄, %∗(λX) and λ×S S̄ differ by a scalar in O×F , a condition which we write as

(1.3) λ×S S̄ ∼ %∗(λX).

Finally, two quadruples (X, ι, λ, %) and (X ′, ι′, λ′, %′) are isomorphic if there exists an OE-linear
isomorphism α : X ∼−→ X ′ with %′ ◦ (α×S S̄) = % and such that α∗(λ′) differs locally on S from λ

by a scalar in O×F .
By [10], the functor NE is representable by a formal scheme, formally locally of finite type over

Spf ŎF , which we also denote by NE .
Now suppose that (X, ιB, %) ∈ M(S). Let ι be the restriction of ιB to OE . By Proposition 1.1,

X is equipped with a unique principal polarization λ0
X , satisfying the conditions of that proposition

relative to our choice of Π. When E/F is unramified, the Rosati involution of λ0
X induces the trivial

automorphism on OE , and the element Πδ is Rosati invariant. When E/F is ramified, the Rosati
involution of λ0

X induces the nontrivial Galois automorphism on OE . We let

λX =

{
λ0
X ◦ ιB(Πδ) when E/F is unramified,

λ0
X when E/F is ramified.

Then it is easy to see that (X, ι, λX , %) is an object of NE(S).
Our main result is the following

Theorem 1.2. Assume that p 6= 2 when E/F is ramified. The morphism of functors on NilpŎF

given by (X, ιB, %) 7→ (X, ι, λX , %) induces an isomorphism of formal schemes

η :M ∼−→ NE .

There is an action of

G = {g ∈ End0
OB

(X) | det(g) = 1} ' SL2(F )

on M, via g : (X, ιB, %) 7→ (X, ιB, g ◦ %). Similarly, there is an action of a special unitary group
SU(C)(F ) on NE , where C is a hermitian space of dimension 2 over E. In the unramified case, C is
defined before (2.2), and the action of SU(C)(F ) in (2.9). In the ramified case, C is defined before
Lemma 3.2, and the action is defined in an analogous way. The isomorphism η in Theorem 1.2 is
compatible with these actions; more precisely, Proposition 1.1 implies that any g ∈ G preserves λX
and can therefore be considered as an element of SU(C)(F ), and the isomorphism η is compatible
with this identification.

Drinfeld’s theorem now implies the following characterization of Ω̆F . First we point out that the
moduli problem NE can be defined without reference to the Drinfeld moduli problem, cf. section
5. Again we assume that p 6= 2 when E/F is ramified.

Corollary 1.3. The formal scheme Ω̆F represents the functor NE on NilpŎF
. In particular, the

formal scheme NE is adic over Spf ŎF , i.e., a uniformizer of ŎF generates an ideal of definition.

Since the unramified and ramified cases are structurally rather different, we will treat them
separately. It should be noted however that, in both cases, the proof eventually boils down to an
analogue of the beautiful trick of Drinfeld that is the basis for the proof of Proposition 1.1.

Theorem 1.2 is obviously a manifestation of the exceptional isomorphism PU2(E/F ) ' PGL2

of algebraic groups over F . In particular, it does not generalize to Drinfeld half-spaces of higher
dimension. It would be interesting to find other exceptional isomorphisms between RZ-spaces of
PEL-type.
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In a companion paper [5] we introduce and study, for E/F unramified and any integers r, n with
0 < r < n, moduli spaces N [r]

E (1, n − 1) of formal OE-modules of signature (1, n − 1) and mild
level structure analogous to that occurring in this paper. The present case corresponds to n = 2
and r = 1. We expect these spaces to provide a useful tool in the study of the special cycles in
the moduli spaces N (1, n − 1) considered in [4] and [14], and, in particular, in the computation
of arithmetic intersection numbers, cf. [12] for the case n = 3. For E/F ramified and any integer
n ≥ 2, moduli spaces analogous to NE are studied in [15], with results analogous to [13, 14].

We excluded the case p = 2 when E/F is ramified to keep this paper as simple as possible. We
are, however, convinced that a suitable formulation of Theorem 1.2 holds even in this case.

In [6], we use the results of this paper to establish new cases of p-adic uniformization for certain
Shimura varieties attached to groups of unitary similitudes for binary hermitian forms over totally
real fields.

We thank U. Terstiege for useful remarks.
The results of this paper were obtained during research visits by the second author to Toronto

in the winter of 2011, by both authors to Oberwolfach for the meeting “Automorphic Forms: New
Directions” in March of 2011, and by the first author to Bonn in the summer of 2011. We would
like to thank these institutions for providing stimulating working conditions.

Notation. For a finite extension F of Qp, with ring of integers OF , fixed uniformizer π, and
residue field k. We write WOF

(R) for the ring of relative Witt vectors of an OF -algebra R, cf. [2],
§1. If F = Qp, then WOF

(R) = W (R) is the usual Witt ring. If R is a k-algebra with structure
map α : k → R, then W (R) is an algebra over W (k) = OF t , where F t is the maximal unramified
extension of Qp in F . In this case, the natural homomorphism OF ⊗OFt ,αW (R) −→WOF

(R) is an
isomorphism if R is a perfect ring. For example, ŎF = WOF

(k̄).
Formal OF -modules of F -height n over k̄ are described by their relative Dieudonné modules,

which are free ŎF -modules of rank n equipped with a σ−1-linear operator V and a σ-linear operator
F with V F = FV = π. Here σ denotes the relative Frobenius automorphism in Aut(F̆ /F ).

The relation between the (absolute) Dieudonné module (M̃, Ṽ ) of the underlying p-divisible
group of a formal OF -module and its relative Dieudonné module (M,V ) is described as follows, cf.
[RZ], Prop. 3.56. On M̃ , there is an action of

OF ⊗Zp W (k̄) =
∏

α:k→k̄

OF ⊗OFt ,αW (k̄),

where the index set is the set of Fp-embeddings α : k −→ k̄, and a resulting decomposition

M̃ =
⊕

α:k→k̄
M̃α.

Then the relative Dieudonné module is(
M = M̃α0 , V = Ṽ f

)
,

where M̃α0 denotes the summand corresponding to the fixed embedding of k into k̄ and where
f = |F t : Qp| = |k : Fp|.

2. The case when E/F is unramified.

We will prove the following proposition.

Proposition 2.1. Let (X, ι, λX , %X) ∈ NE(S). There exists a unique principal polarization λ0
X on

X with Rosati involution inducing the trivial automorphism on OE and such that

(2.1) λX ×S S̄ = (λ0
X ×S S̄) ◦ %∗X(ιX(Π)).
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Once this is shown, the endomorphism βX = (λ0
X)−1 ◦ λX of X satisfies the identity

βX ×S S̄ = %∗X(ιX(Π)) ,

on X×S S̄ and thus defines the action of Π on X in a functorial way. Since OB = OE [Π], we obtain
an extension of the action of OE to OB. The resulting OB-module structure on X is special, since
this can be tested after restricting the action to the ring of integers in an unramified quadratic
subfield of B, cf. [1], Ch. II, §2. Hence this construction defines a morphism of functors in the
opposite direction, NE −→M, and it is easy to see that this is the desired inverse to the morphism
in Theorem 1.2.

It remains to prove Proposition 2.1. To this end, we first have to establish some properties of
the formal scheme NE . We fix an embedding of E into F̆ and hence, equivalently, an embedding
of the residue field k′ = OE/πOE into k̄ = ŎF /πŎF , the residue field of F̆ .

Let
N = M(X)⊗ŎF

F̆

be the rational relative Dieudonné module [1], Ch. II, §1. Then N is a 4-dimensional F̆ -vector
space equipped with operators V and F , where the first one is σ−1-linear, and the second σ-linear,
σ denoting the relative Frobenius automorphism in Aut(F̆ /F ). Moreover, V F = FV = π. Since
E has been identified with a subfield of F̆ , the action ι of OE determines a Z/2-grading

N = N0 ⊕N1,

such that deg V = degF = 1. The polarization λX determines a non-degenerate F̆ -bilinear alter-
nating pairing

〈 , 〉 : N ×N −→ F̆ ,

such that N0 and N1 are maximal isotropic subspaces. The slopes of the σ2-linear operator τ =
πV −2|N0 are all zero and hence, setting C = N τ

0 , we have

N0 = C ⊗E F̆ .
Furthermore, the restriction of the form

(2.2) h(x, y) = π−1δ−1〈x, Fy〉
defines a E/F -hermitian form h on C. Using the fact that the polarization λX has the form (2.12),
it follows easily that C has isotropic vectors, i.e., is split.

Let (X, ι, λX , %X) ∈ NE(k̄). The quasi-isogeny %X can be used to identify the rational relative
Dieudonné module of X with N . Then the relative Dieudonné module of X can be viewed as an
ŎF -lattice M in N such that

(a) M = M0 ⊕M1, where Mi = M ∩Ni, i = 0, 1,
(b) πM0 ⊂ VM1 ⊂M0, and πM1 ⊂ VM0 ⊂M1,
(c) M0 ⊂ (M1)∨ ⊂ π−1M0, and M1 ⊂ (M0)∨ ⊂ π−1M1,

where all inclusions in (b) and (c) are strict, and where we have set

M∨i = {x ∈ Ni+1 | 〈x,Mi〉 ⊂ ŎF }.
For an ŎF -lattice L in N0, set

L] = {x ∈ N0 | h(x, L) ⊂ ŎF } ,
and note that L]] = τ(L). We use the same notation for OE-lattices in C. Recall from (the
analogous situation in) [13] that an OE-lattice Λ in C is a vertex lattice of type t if

πΛ ⊂ Λ]
t
⊂ Λ.



6 S. KUDLA AND M. RAPOPORT

In our present case, as follows from the next lemma, there are vertex lattices of type 0, with Λ] = Λ,
and of type 2, with Λ] = πΛ.

We associate to (X, ι, λX , %X) ∈ NE(k̄) the two ŎF -lattices in N0,

(2.3) A = V (M1)] , B = M0 .

Lemma 2.2. The above construction gives a bijection between NE(k̄) and the set of pairs of ŎF -
lattices (A,B) in N0 such that there is a square of inclusions with all quotients of dimension 1 over
k̄,

B ⊂ A

∪ ∪

A] ⊂ B] .

Here the lower line is the dual of the upper line. �

Corollary 2.3. Either B = B] or A] = πA (or both). In the first case B = τ(B) is of the form
B = Λ0 ⊗OE

ŎF , with Λ0 a vertex lattice of type 0 in C. In the second case A = τ(A) is of the
form A = Λ1 ⊗OE

ŎF , with Λ1 a vertex lattice of type 2 in C.

Proof. The case when B = B] is clear. If B 6= B], then πA ⊂ B ∩B] and thus these lattices must
coincide due to the equality of their indices in A. Similarly, B ∩B] = A]. Thus, A] = πA, so that
Aτ = A]] = π−1 ·A] = π−1πA = A. �

If B = B], with associated self-dual vertex lattice Λ0, then we obtain an injective map

(2.4) P(π−1Λ0/Λ0)(k̄) −→ NE(k̄)

by associating to any line ` ⊂ (π−1Λ0/Λ0)⊗k′ k̄ the pair (A,B), where B = Λ0 ⊗OE
ŎF and where

A is the inverse image of ` in π−1B. Note that this construction induces a bijection between the
set of those special pairs (A,B) with B = Λ0 ⊗OE

ŎF and A] = πA and

(2.5) { ` ∈ P(π−1Λ0/Λ0)(k′) | ` isotropic with respect to hΛ0 } .
Here hΛ0 is the induced k′/k-hermitian form on π−1Λ0/Λ0, obtained by reducing h(x, y) modulo
π. Note that the set (2.5) has q + 1 elements.

If A] = πA, with associated vertex lattice Λ1 of type 2, we obtain an injective map

(2.6) P(Λ1/πΛ1)(k̄) −→ NE(k̄)

by associating to any line ` ⊂ (Λ1/πΛ1) ⊗k′ k̄ the pair (A,B) with A = Λ1 ⊗OE
ŎF and B the

inverse image of ` in A. In this case, the construction induces a bijection between the set of those
special pairs (A,B) with A = Λ1 ⊗OE

ŎF and with B = B], and

(2.7) { ` ∈ P(Λ1/πΛ1)(k′) | ` isotropic with respect to hΛ1 } .
Here hΛ1 is the k′/k-hermitian form on Λ1/πΛ1 obtained by reducing πh(x, y) modulo π. Again,
this set has q + 1 elements. The proof of the following result will be given in section 4.

Proposition 2.4. The maps (2.4) and (2.6) are induced by morphisms of schemes3 over Spec k̄,

(2.8) P(Λ0/πΛ0) −→ (NE)red , resp. P(Λ1/πΛ1) −→ (NE)red .

These morphisms present (NE)red as a union of projective lines, each corresponding to a vertex
lattice in C. In this way the dual graph of (NE)red is identified with the Bruhat-Tits tree B(PU(C)),
compatible with the actions of SU(C)(F ).

3Here, as elsewhere in the paper, (NE)red denotes the underlying reduced scheme of the formal scheme NE .
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Here the special unitary group

G = {g ∈ End0
OE

(X) | g∗(λX) = λX, det(g) = 1} = SU(C)(F ),

acts on the formal scheme NE by

(2.9) g : (X, ι, λX , %X) 7→ (X, ι, λX , g ◦ %X).

Proof of Proposition 2.1. To construct the principal polarization λ0
X , we imitate Drinfeld’s proof

of Lemma 4.2 in [1]. Starting with an object (X, ι, λX , %X) ∈ NE(S), there is a unique polarization
λX∨ of X∨ such that λX∨ ◦ λX = [π]X (multiplication by π). The Rosati involution corresponding
to λX∨ induces the non-trivial F -automorphism on OE , and λX∨ has degree q2 with kernel killed
by π. Hence (X∨, ι∨, λX∨) satisfies the conditions imposed on the objects of NE(S). To obtain an
object of NE(S), we still have to define the quasi-isogeny %X∨ . For this we take the quasi-isogeny
of height 0 defined by

(2.10) %X∨ = ιX(Π) ◦ %X ◦ (λX ×S S̄)−1,

which is OE-linear as required. Next we check condition (1.3). To do this, writing [Π] = ιX(Π) and
noting that

(2.11) λ−1
X ◦ [Π]∨ ◦ λX = [Π],

we compute

%∗X∨(λX) ◦ (λX ×S S̄) = (λX ×S S̄)−1 ◦ %∨X ◦ [Π]∨ ◦ λX ◦ [Π] ◦ %X

= [π] ◦ (λX ×S S̄)−1 ◦ %∗X(λX)

∼ [π]

which implies that
%∗X∨(λX) ∼ λX∨ ×S S̄,

as required.
We therefore have associated to an object (X, ι, λX , %X) ofNE(S) a new object (X∨, ι∨, λX∨ , %X∨)

in a functorial way. Note that, if we apply the same construction to (X∨, ι∨, λX∨ , %X∨), and write
%′X for the resulting framing for (X∨)∨ = X, we have

%′X = [Π] ◦ ([Π] ◦ %X ◦ (λX ×S S̄)−1) ◦ (λX∨ ×S S̄)−1 = %X .

Thus, we obtain an involutive automorphism j of the formal ŎF -scheme NE .

Lemma 2.5. The involution j commutes with the action of G = SU(C)(F ).

Proof. We use the coordinates introduced on pp. 136-7 of [1], so that X and X∨ are identified
with the product E × E for a formal OF -module E over k̄ of dimension 1 and F -height 2. Then
End0(X) = M2(B) and, for b ∈ B,

ιX(b) =
(
b

ΠbΠ−1

)
.

Then, for β ∈ End0(X), β∨ = tβ′, and our polarizations are given by

(2.12) λ0
X =

(
1

1

)
, and λX =

(
−Πδ

Πδ

)
.

An easy calculation shows that

(2.13) SL2(F ) ∼−→ G,

(
a b
c d

)
7→
(

a bΠ
Π−1c d

)
,



8 S. KUDLA AND M. RAPOPORT

and from this it is immediate that G commutes with ιX(Π). Our claim is now clear from (2.10). �

Now, by Proposition 2.4, the reduced locus of NE is a union of projective lines whose intersection
behavior is described by the Bruhat-Tits tree of PGL2(F ). Hence the proof of Lemma 4.5 of [1]
shows that any automorphism of the formal ŎF -scheme NE which commutes with the action of G
is necessarily the identity. Let us recall the argument.

As a first step, one observes that any automorphism of the Bruhat-Tits tree of PGL2(F ) which
commutes with the action of SL2(F ) is the identity. Hence the automorphism of NE stabilizes
each irreducible component of (NE)red and fixes all intersection points of irreducible components;
it follows that the induced automorphism of (NE)red is the identity. Next one observes that the
restriction of the automorphism to the first infinitesimal neighbourhood of (NE)red corresponds
to a vector field on (NE)red which vanishes at all intersection points of irreducible components; it
follows that this restriction has to be trivial. Now an induction shows that the restriction of the
automorphism to all higher infinitesimal neighbourhoods of (NE)red is trivial, and hence that the
automorphism is trivial.

We conclude that j = id, and thus there is an isomorphism (X, ι, λX , %X) ∼−→ (X∨, ι∨, λX∨ , %X∨).
In particular, we obtain an isomorphism α : X ∼−→ X∨ such that

%X = %X∨ ◦ (α×S S̄) = [Π] ◦ %X ◦ (λX ×S S̄)−1 ◦ (α×S S̄).

Hence
α×S S̄ = (λX ×S S̄) ◦ %−1

X ◦ [Π]−1 ◦ %X ,
and this characterizes α uniquely. Now, locally on S̄, there is an element ν ∈ O×F such that

(λX ×S S̄) = [ν] ◦ %∨X ◦ λX ◦ %X ,

and so
α×S S̄ = [ν] ◦ %∨X ◦ λX ◦ [Π]−1 ◦ %X .

This implies that

α∨ ×S S̄ = %∨X ◦ ([Π]−1)∨ ◦ λX ◦ %X ◦ [ν]∨

= [ν] ◦ %∨X ◦ λX ◦ [Π]−1 ◦ %X
= α×S S̄,

where we have used (2.11) and the OF -linearity of %X and λX. Then, by rigidity, α∨ = α, so that
λ0
X = α is a polarization of X satisfying (2.1). �

3. The case when E/F is ramified.

In this case, recall that we have fixed an element ζ ∈ O×B such that α 7→ ζαζ−1 is the non-trivial
Galois automorphism of E/F and that we have also fixed a uniformizer Π of OE with Π2 = π,
which we use as the uniformizer of OB. Recall that the Rosati involution of λX = λ0

X is b 7→ b∗ and
note that

ζ∗ = −ΠζΠ−1 = ζ · (−Π′Π−1) = ζ.

Finally, note that the inverse different of E/F is

∂−1
E/F = (2Π)−1OE = Π−1OE ,

since in this section we assume that p 6= 2.
The proof of Theorem 1.2 in the ramified case is based on the following analogue of Proposition

2.1.
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Proposition 3.1. Let (X, ιX , λX , %X) ∈ NE(S). There exists a unique principal polarization λ0
X

on X with Rosati involution inducing the trivial automorphism on OE and such that

(3.1) λX ×S S̄ = (λ0
X ×S S̄) ◦ %∗X(ιX(ζ)).

To prove this proposition, we again need to establish some properties of the formal scheme NE .
Let

N = M(X)⊗ŎF
F̆

be the rational relative Dieudonné module of X. Then N is a 4-dimensional F̆ -vector space equipped
with operators V and F with V F = FV = π, and an endomorphism Π commuting with V and F

and such that Π2 = π · idN . The polarization λX determines a non-degenerate alternating pairing

〈 , 〉 : N ×N −→ F̆

such that Π = −Π∗ for the adjoint Π∗ of Π with respect to 〈 , 〉. Hence we may consider N as a
2-dimensional vector space over Ĕ = E ⊗F F̆ . Choose an element δ ∈ ŎF with δ2 ∈ O×F r O×,2F ,
and define an Ĕ/F̆ -hermitian form h on N by

h(x, y) = δ(〈Πx, y〉+ Π · 〈x, y〉) .

The reason for the twist by δ will be clear in a moment. Note that

〈x, y〉 = TrĔ/F̆ ((2Πδ)−1 · h(x, y)) .

This implies that, for a ŎE-lattice M in N , we have M∨ = M ], where

M∨ = {x ∈ N | 〈x,M〉 ⊂ ŎF } ,

and
M ] = {x ∈ N | h (x,M) ⊂ ŎE} .

The slopes of the σ-linear operator τ = ΠV −1 are all zero, and hence, setting C = N τ , we have

N = C ⊗E Ĕ ,

where C is a 2-dimensional vector space over E. Since 〈Fx, y〉 = 〈x, V y〉σ and δσ = −δ,

h(Fx, y) = −h(x, V y)σ .

Therefore,

h(τx, τy) = −h(Πx, F−1V −1Πy)σ
−1

= h(x, y)σ
−1
,

and hence h induces an E/F -hermitian form on C. This explains the twist by δ in the definition
of h. Transposing from [13], a vertex lattice of type t in C is a lattice Λ with

ΠΛ ⊂ Λ]
t
⊂ Λ.

As in the unramified case, the form (2.12) of the polarization λX implies that C is isotropic, and
hence split. In our present case, note that there are vertex lattices of type 0, with Λ] = Λ, and of
type 2, with Λ] = ΠΛ.

Let (X, ι, λX , %X) ∈ NE(k̄). Then the relative Dieudonné module of X can be viewed as an
ŎE-lattice M in N such that

(a) Π2M ⊂ VM ⊂M , with successive quotients of length 2 over ŎE ,

(b) M ] = M .
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Lemma 3.2. (i) The lattice M + τ(M) is always τ -stable.
(ii) If M is τ -stable, then M is of the form M = Λ0 ⊗OE

ŎE for a vertex lattice Λ0 in C with
Λ]0 = Λ0.
(iii) If M is not τ -stable, then

M + τ(M) = Λ1 ⊗OE
ŎE ,

for a vertex lattice Λ1 in C with Λ]1 = ΠΛ1.

Proof. Note that, for any lattice L, τ(L)] = τ(L]). Then, when τ(M) = M , our claim (ii) is
immediate. Next suppose that M is not τ -stable, and note that

VM
1
⊂ VM + ΠM

1
⊂ M,

since Π induces a nilpotent operator on M/VM . Thus, M
1
⊂M + τ(M), and we obtain a diagram

of inclusions of index 1,

M
1
⊂ M + τ(M)

∪ ∪

M ∩ τ(M)
1
⊂ τ(M)

The remaining indices must also be 1, since M and τ(M) have the same index in any ŎE-lattice
containing them. Now

(3.2) (M + τ(M))] = M ] ∩ τ(M ]) = M ∩ τ(M) .

Suppose thatM+τ(M) is τ -stable. Then so is its dualM∩τ(M). The inclusion Πτ(M) ⊂M∩τ(M)
follows from the condition Π2M ⊂ VM . On the other hand, applying τ−1 and using the τ -invariance
of M ∩ τ(M), we obtain ΠM ⊂M ∩ τ(M). Hence Π(M + τ(M)) ⊂M ∩ τ(M) and this inclusion is
an equality (compare indices in M + τ(M)), i.e. (M + τ(M))] = Π(M + τ(M)). This proves (iii).

Finally, to show that M + τ(M) is always τ -invariant, we choose a vector e0 ∈ N that is τ -
invariant and isotropic. After scaling by a suitable power of Π if necessary, we may assume that
e0 ∈ M is primitive. Since M ] = M , there is a vector e1 ∈ M such that h(e0, e1) = 1. Note
that h(e1, e1) = a ∈ ŎF and the ŎE-lattice [e0, e1] spanned by e0 and e1 is unimodular and hence
coincides with M . Now, since h(e0, τ(e1)) = h(τ(e0), τ(e1)) = 1, we have τ(e1) = αe0 + e1, where
α ∈ Ĕ. But now M + τ(M) = [e0, e1, αe0] and

τ(M) + τ2(M) = [e0, τ(e1), σ(α)e0] = [e0, e1, αe0] = M + τ(M),

as claimed. �

Lemma 3.3. (i) For Λ1 a vertex lattice in C with Λ]1 = ΠΛ1, there is an injective map

(3.3) iΛ1 : P(Λ1/ΠΛ1)(k̄) −→ NE(k̄)

defined by associating to any line ` ⊂ (Λ1/ΠΛ1) ⊗ k̄ the lattice M which is the inverse image of `
in Λ1 ⊗OE

ŎE.
(ii) The lattices M coming from points in P(Λ1/ΠΛ1)(k) are precisely the τ -invariant points in the
image of iΛ1. There are q + 1 such points.
(iii) For each vertex lattice Λ0 = Λ]0 of type 0, the corresponding τ -invariant point of NE lies in
the image of precisely two such iΛ1’s.

Proof. For M the inverse image of `, condition (a) is easily checked. To check condition (b), i.e.,
that M = M ], let e ∈ Λ1 be a preimage of a basis vector for the line `. Then

h(e,M) = h(e, ŎEe+ ΠΛ1) ⊂ ŎEh(e, e) + ŎE ⊂ ŎE ,
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since
h(e, e) ∈ Π−1ŎE ∩ F̆ = ŎF .

Thus M ⊂M ], and they must coincide as they both have index 1 in Λ1⊗OE
ŎE . Now the assertion

(ii) is immediate from the construction.
Finally, suppose that Λ0 is a type 0 vertex lattice. Then the hermitian form h induces a non-

degenerate symmetric bilinear form4 on Λ0/ΠΛ0 with values in k = OE/ΠOE . This form is isotropic
and there are precisely 2 isotropic lines `1 and `′1 in Λ0/ΠΛ0. Let Λ1 (resp. Λ′1) be the OE-lattice
in C such that ΠΛ1 is the inverse image of `1 (resp. `′1) in Λ0. Then ΠΛ1 = Λ]1, ΠΛ′1 = (Λ′1)], and
Λ1 and Λ′1 are the only type 2 vertex lattices Λ such that the point in NE(k̄) corresponding to Λ0

lies in the image of iΛ. �

The following result will be proved in section 4.

Proposition 3.4. The map (3.3) is induced by a morphism of schemes over Spec k̄,

(3.4) iΛ1 : P(Λ1/ΠΛ1) −→ (NE)red .

These morphisms present (NE)red as a union of projective lines, each corresponding to a vertex
lattice in C of type 2. The points of intersection of these projective lines are in bijection with the
vertex lattices in C of type 0, and two projective lines, corresponding to Λ1, resp. Λ′1, intersect if
and only if there is a vertex lattice Λ0 of type 0 such that Λ0 ⊂ Λ1 and Λ0 ⊂ Λ′1.

In this way the dual graph of (NE)red is identified with the Bruhat-Tits tree B(PU(C)), compatible
with the actions of SU(C)(F ).

Here it should be pointed out that the vertices in the Bruhat-Tits tree B(PU(C)) correspond
to the vertex lattices of type 2 (the maximal parahoric subgroups of SU(C)(F ) are exactly the
stabilizers of vertex lattices of type 2); the edges in the Bruhat-Tits tree correspond to the vertex
lattices of type 0 (the Iwahori subgroups are exactly the stabilizers in SU(C)(F ) of vertex lattices
of type 0), cf. [9], Remark 2.35.

Remark 3.5. This is in analogy to the unramified case studied in [13], [14] and [4], but different. In
that case the maximal parahorics are exactly the stabilizers of vertex lattices. The strata correspond
to the maximal parahoric subgroups and the simplicial structure of the building accounts for the
incidence combinatorics of the strata. The strata of maximal dimension correspond to the maximal
parahorics to vertex lattices of maximum type.

Proof of Proposition 3.1. The argument is analogous to the proof of Proposition 2.1. Starting with
an object (X, ι, λX , %X) ∈ NE(S), define a principal polarization λX∨ of X∨ by

λX∨ ◦ λX = [ζ2],

so that the Rosati involution corresponding to λX∨ induces the non-trivial F -automorphism on
OE . Again, to obtain an object of NE , we have to define the quasi-isogeny %X∨ . For this we take
the quasi-isogeny of height 0 defined by

(3.5) %X∨ = ιX(ζ) ◦ %X ◦ (λX ×S S̄)−1,

which is OE-linear as required.
Thus, we obtain an involutive automorphism j of the formal ŎF -scheme NE . An analogous

calculation to that in the unramified case shows that j commutes with G = SU(C)(F ) and hence
j = 1. Thus, there is an OE-linear isomorphism α : X → X∨ such that

%X ◦ ((α−1 ◦ λX)×S S̄) = ιX(ζ) ◦ %X .
4Recall that p 6= 2.
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The same argument as before shows that α∨ = α, so that λ0
X = α is the desired polarization �

Proof. Now we may finish the proof of Theorem 1.2 in the ramified case. Let (X, ι, λX , %X) ∈
NE(S), and consider the automorphism

βX = (λ0
X)−1 ◦ λX ,

so that βX induces the automorphism %∗X(ιX(ζ)) on X×S S̄. Hence βX extends the action of OE to
OB = OE [ζ], so that X is an OB-module in a functorial way. We claim that X is a special formal
OB-module. It suffices to prove this in each geometric fiber of X. But then it follows from the
flatness of NE , cf. Lemma 3.6. �

Lemma 3.6. NE is flat over Spf ŎF .

Proof. This follows from the theory of local models. In the case at hand, NE is modeled on the
ŎF -scheme M1,1 of [7], Definition 3.7 (i.e. has complete local rings isomorphic to complete local
rings appearing in M1,1). However, the scheme M1,1 has semi-stable reduction, cf. [7], Thm. 4.5.,
b).

Note that the naive local model M1,1 coincides with the local model associated to the triple

(U2(E/F ), µ(1,1),KΛ0) ,

where U2(E/F ) denotes the (quasi-split) unitary group of size 2 for E/F , and µ(1,1) the co-character
of signature (1, 1), and KΛ0 the parahoric subgroup stabilizing the standard selfdual lattice (this is
in fact the Iwahori subgroup, cf. [9], Remark 2.35). �

4. Proofs of Propositions 2.4 and 3.4

In this section, we use the method introduced in [14] to establish the existence of morphisms
(2.8) and (3.4) inducing the maps (2.4), (2.6) and (3.3) on points. Since most of the arguments
of loc. cit. go over without much change, we just sketch the main steps, focusing on the variations
needed, for example, in the treatment of the polarizations.

4.1. The unramified case. We need to define subschemes NE,Λ of NE associated to vertices of
type 0 and 2.

For a vertex lattice5 Λ of type 0, i.e., Λ = Λ], or of type 2, i.e., Λ] = πΛ, we define a pair of
Dieudonné lattices M±Λ in the isocrystal N as follows. Let

(4.1) M−Λ = M−Λ,0 ⊕M
−
Λ,1 =

{
Λ⊕ V Λ, for Λ of type 0,

πΛ⊕ V Λ, for Λ of type 2,

and let

(4.2) M+
Λ = (M−Λ )∨ = {x ∈ N | 〈x,M−Λ 〉 ⊂ ŎF }

be its dual. A short calculation shows that

(4.3) M+
Λ = π−1M−Λ .

Note that V (M−Λ,1) = V 2Λ = πΛ, since Λ is stable under τ = πV −2 = FV −1. Thus M±Λ is stable
under both F and V and has signature (2, 0) for Λ of type 0 (i.e., (M±Λ /VM

±
Λ )1 = (0)) and signature

5Here Λ = Λ0 ⊗OF ŎF where Λ0 is a vertex lattice of type 0 or 2 in C.
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(0, 2) for Λ of type 2 (i.e., (M±Λ /VM
±
Λ )0 = (0)). Let X±Λ be the formal OE-module over k̄ with

relative Dieudonné module M±Λ , and let

%±Λ : X±Λ −→ X

be the quasi-isogeny determined by the inclusion of M±Λ into N = N(X). Let natΛ : X−Λ −→ X+
Λ be

the isogeny induced by the inclusion of M−Λ into M+
Λ . Of course, by (4.3), we have an isomorphism

X+
Λ
∼−→ X−Λ so that natΛ is just [π], but, to avoid confusion, we will not make this identification.

By (4.2), there is an isomorphism iΛ : (X−Λ )∨ ∼−→ X+
Λ such that the diagram

(4.4)
X−Λ

nat−→ X+
Λ

i−1
Λ∼−→ (X−Λ )∨

%−Λ ↓ %+
Λ ↓ ↑ (%−Λ )∨

X == X −→
λX

X∨

commutes. Here note that, under the identification N(X) ∼−→ N(X∨) induced by λX and the
identification of N(X∨) with N((X−Λ )∨) induced by (%−Λ)∨, the lattice M((X−Λ )∨) in N((X−Λ )∨) is
identified with the dual lattice (M−Λ )∨ = M+

Λ in N(X). We let

%+∗
Λ = iΛ ◦ (%−Λ)∨ : X∨ −→ X+

Λ .

In analogy with [14], we define a subfunctor NE,Λ of NE ×ŎF
k̄ as follows. For a scheme S over

k̄ and a collection (X, ιX , λX , %X) giving a point of NE(S), define quasi-isogenies

%−Λ,X = %−1
X ◦ (%−Λ)S : (X−Λ )S −→ X

%+∗
Λ,X = (%+∗

Λ )S ◦ ((%X)∨)−1 : X∨ −→ (X+
Λ )S .

Since M+
Λ /M

−
Λ is a k̄-vector space of dimension 4 and since %X has height 0, it follows from (4.4)

that %−Λ,X and %+∗
Λ,X have F -height 1.

Definition 4.1. For a scheme S over k̄, let NE,Λ(S) be the subset of NE(S) corresponding to
collections (X, ιX , λX , %X) for which %−Λ,X is an isogeny.

Lemma 4.2. %−Λ,X is an isogeny if and only if %+∗
Λ,X is an isogeny.

Proof. Note that %−Λ,X is an isogeny if and only if (%−Λ,X)∨ is. But

(%−Λ,X)∨ = (%−Λ)∨S ◦ (%∨X)−1 = (i−1
Λ )S ◦ (iΛ ◦ (%−Λ)∨)S ◦ (%∨X)−1 = (i−1

Λ )S ◦ %+∗
Λ,X .

�

As in [14], Lemmas 4.2 and 4.3, we have the following two results.

Lemma 4.3. (i) NE,Λ is representable by a projective scheme over k̄.
(ii) The inclusion of functors NE,Λ ↪→ NE is a closed immersion.

Proof. The proof is the same as that of Lemma 4.2 of [14]. �

For an algebraically closed extension k of k̄, and an ŎF -lattice L, let Lk = L⊗ŎF
WOF

(k). Here
we view ŎF = WOF

(k̄) so that WOF
(k) is canonically an ŎF -algebra.

Lemma 4.4. For x ∈ NE(k), let M ⊂ Nk be the corresponding relative Dieudonné module, and
let (A : B) be the associated square of lattices in (Nk)0. Let Λ be a vertex lattice. The following
are equivalent:
(i) x ∈ NE,Λ(k).
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(ii) (M−Λ )k ⊂M .
(iii) M∨ ⊂ (M+

Λ )k.
(iv) If Λ is of type 0, then B = B] = Λk and x is in the image of the map

(4.5) P(π−1Λ/Λ)(k) −→ NE(k).

(v) If Λ is of type 2, then A = Λk and x is in the image of the map

(4.6) P(Λ/πΛ)(k) −→ NE(k).

Proof. Let (X, ιX , λX , %X) be a collection over k with isomorphism class x and note that the
relative Dieudonné module M = M(X) is identified with a submodule of Nk via %X . Then %−Λ,X
is an isogeny if and only if (M−Λ )k ⊂ M and this is equivalent to M∨ ⊂ (M−Λ )∨k = (M+

Λ )k. This
proves the equivalence of (i), (ii), and (iii).

To prove the equivalence of (iv), first suppose that Λ is of type 0 and that a point x ∈ NE,Λ(k) is
given with associated square (A : B). Note that condition (ii) implies that Λk ⊂ B = M0. Taking
duals with respect to h, we have

B] ⊂ Λ]k = Λk ⊂ B,
and this implies that B] = B = Λk. It follows that x is in the image of the map (2.4). Conversely,
if x ∈ NE(k) corresponds to a square (A : B) with B = B] = Λk, then Λk = ((M−Λ )0)k = B = M0

and
((M−Λ )1)k ⊂M1 ⇐⇒ τV (((M−Λ )1)k) ⊂ τV (M1).

But, since A = V (M1)], we have τV (M1) = A], whereas τV ((M−Λ )1) = τV 2(Λ) = πΛ = πB ⊂ A].
This gives the inclusion (ii).

Next, to prove the equivalence of (v), suppose that Λ is of type 2 and that a point x ∈ NE,Λ(k) is
given with associated square (A : B). Then, applying τV to the inclusion (M−Λ )1 ⊂M1, we obtain
(Λ])k = πΛk ⊂ A] and hence, in turn, Λk = τ(Λk) = τ(A). Thus A = Λk and πΛk ⊂ B ⊂ Λk, so
that x is in the image of the map (2.6). Conversely, if x is in the image of this map and A = Λk,
then ((M−Λ )0)k = πΛk ⊂ B = M0 and

τV (((M−Λ )1)k) = πΛk = A] = τV (M1),

so that condition (ii) holds. �

Next, we follow the method of [14] sections 4.6 and 4.7 to define a morphism

(4.7) NE,Λ −→ P(Λ/πΛ).

If S is a scheme over k̄, let X 7→ D(X) be the functor from p-divisible groups over S to locally
free OS-modules assigning to a p-divisible group X over S the Lie algebra D(X) of its universal
vector extension. This functor is compatible with base change. If an action of OE on X is given,
then D(X) and Lie(X) are OE⊗ZpOS-modules. Note that for (X, ιX , λX , ρX) defining an S-valued
point of N , the ranks of the locally free OS-modules D(X), resp. Lie(X), are 4[F : Qp], resp. 2.

Recall that the isogeny natΛ : X−Λ → X+
Λ induced by the inclusion M−Λ ⊂ M+

Λ of relative
Dieudonné modules has ker(natΛ) = X−Λ [π] and this finite flat group scheme over k̄ comes equipped
with an action of OE/πOE . The corresponding unitary Dieudonné space, [14], is

BΛ := kerD(natΛ) ' M̃(X+
Λ )/M̃(X−Λ ),

where M̃(X+
Λ ) and M̃(X−Λ ) denote the ordinary Dieudonné modules of the p-divisible groups X+

Λ

and X−Λ . Then BΛ is a k̄-vector space of dimension 4[k : Fp]. The action of k = OF /πOF on BΛ

induces a direct sum decomposition into 4-dimensional k̄-subspaces

(4.8) BΛ =
⊕

α
BαΛ,
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where the index set is the set of Fp-embeddings α : k −→ k̄.
The relation between the ordinary Dieudonné module and the relative Dieudonné module of a

formal OF -module is described in [10], Prop. 3.56, comp. also the notation section. From this
description it follows that

(4.9) Bα0
Λ 'M

+
Λ /M

−
Λ = π−1M−Λ /M

−
Λ ,

where α0 : k −→ k̄ denotes the distinguished embedding.

Lemma 4.5. Let R be a k̄-algebra and let (X, ιX , λX , %X) correspond to a point of NE,Λ(R). Let

%Λ,R = %+∗
Λ,X ◦ λX ◦ %

−
Λ,X : (X−Λ )R −→ (X+

Λ )R.

Then, Zariski locally on SpecR, %Λ,R is the base change to R of the morphism nat : X−Λ → X+
Λ , up

to a scalar in O×F .

Proof. This follows from (1.3), diagram (4.4), and the definitions. �

We have the following special case of Corollary 4.7 in [14].

Proposition 4.6. For a scheme S over k̄ and p-divisible groups X, Y1 and Y2 over S, let φi : X →
Yi be isogenies such that ker(φ1) ⊂ ker(φ2) ⊂ X[π]. Then ker(D(φ1)) is locally a direct summand
of ker(D(φ2)), and the formation of ker(D(φi)) commutes with base change. �

Let (X, ιX , λX , %X) ∈ NΛ(SpecR), and consider

E(X) := ker(D(%−Λ,X)).

Since %−Λ,X is OF -linear, E(X) is equipped with an action of k⊗Fp R, and hence can be decomposed
compatibly with the decomposition (4.8),

(4.10) E(X) =
⊕

α
E(X)α.

By Proposition 4.6, E(X) is a locally direct summand of

ker(D((natΛ)R) = ker(D(natΛ))⊗k̄ R = BΛ ⊗k̄ R,

and hence E(X)α0 is a direct summand of Bα0
Λ ⊗k̄ R. Since %−Λ,X is OE-linear, E(X)α0 is stable

under the action of OE/πOE and there is a further decomposition

E(X)α0 = E(X)α0
0 ⊕ E(X)α0

1 ,

compatibly with the analogous decomposition into free R-modules of rank 2,

Bα0
Λ ⊗k̄ R =

(
(Bα0

Λ )0 ⊗k̄ R
)
⊕
(
(Bα0

Λ )1 ⊗k̄ R
)
.

First suppose that Λ is of type 0. By (4.9) we have (Bα0
Λ )0 = π−1Λ/Λ, while we have an

isomorphism
τV : (Bα0

Λ )1
∼−→ Λ/πΛ.

In the case where R = k is an algebraically closed field containing k̄, and X corresponds to a square
(A : B), we have M0 = B = Λk, as above, and τV (M1) = A]. Then,

E(X)α0 = ker(D(%−Λ,X))α0 '
(
(M−Λ )k ∩ πM(X)

)
/π(M−Λ )k,

so that E(X)α0
0 = 0 and

τV : E(X)α0
1

∼−→ A]/πΛk

corresponds to a line in Λk/πΛk. Thus, for general R, the component E(X)α0
1 in

(Bα0
Λ )1 ⊗k̄ R = Λ/πΛ⊗k̄ R
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is a locally direct summand of rank 1 and hence defines a point of P(Λ/πΛ)(R).
Next suppose that Λ is of type 2. Then (Bα0

Λ )0 = Λ/πΛ and

τV : (Bα0
Λ )1

∼−→ Λ/πΛ.

Again in the case where R = k is an algebraically closed field containing k̄ and X corresponds to
a square (A : B), we have M0 = B and

τV (M1) = A] = Λ]k = πΛk = τV (((M−Λ )k)1).

Then,
E(X)α0 = ker(D(%−Λ,X))α0 =

(
(M−Λ )k ∩ πM(X))/(πM−Λ )k,

so that E(X)α0
1 = 0 and

E(X)α0
0

∼−→ B/πΛk

corresponds to a line in Λk/πΛk. Then, for general R, we associate to X the locally direct summand
E(X)α0

0 of rank 1 in Λ/πΛ⊗k̄ R.
Thus, for Λ of either type, we have constructed a map

NE,Λ(R) −→ P(Λ/πΛ)(R).

This construction is functorial and commutes with base change and hence defines the morphism
(4.7). The argument of the proof of Theorem 4.8 in [14] implies that this morphism is an isomor-
phism, and that its inverse induces the map (2.4) when Λ is of type 0, and the map (2.6) when Λ
is of type 2.

4.2. The ramified case. Let Λ be a vertex lattice of type 2 in N , so that Λ] = ΠΛ, and we
define relative Dieudonné lattices M±Λ by M+

Λ = Λ and M−Λ = ΠΛ = Λ]. Recall that, in this case,
τ = ΠV −1 so that V Λ = ΠΛ. Again M+

Λ = (M−Λ )∨ and we have associated p-divisible groups
X±Λ and quasi-isogenies %±Λ : X±Λ −→ X. There is again an isomorphism iΛ : (X−Λ )∨ ∼−→ X+

Λ

and an isogeny natΛ : X−Λ −→ X+
Λ as in the diagram (4.4). In the present case, there is an

isomorphism X−Λ
∼−→ X+

Λ such that natΛ coincides with [Π]. In particular, ker(natΛ) = X−Λ [Π],
and the corresponding Dieudonné space is

BΛ := kerD(natΛ) = M̃(X+
Λ )/M̃(X−Λ ),

a k̄-vector space of dimension 2[k : Fp].
As before, define

%+∗
Λ = iΛ ◦ (%−Λ)∨ : X∨ −→ X+

Λ .

For a point (X, ιX , λX , %X) in NE(S), let

%−Λ,X = %−1
X ◦ (%−Λ)S and %+∗

Λ,X = (%+∗
Λ )S ◦ (%∨X)−1.

Then the definition of NE,Λ and Lemmas 4.2 and 4.3 are the same as in the unramified case.
Next suppose that k is an algebraically closed field containing k and that a point x ∈ NE(k) is

given with corresponding relative Dieudonné lattice M = M ] in Nk. The equivalence of conditions
(i), (ii), and (iii) in Lemma 4.4 are again immediate and amount to the inclusions

(4.11) ΠΛk
1
⊂M

1
⊂ Λk.

It is clear that (4.11) is, in turn, equivalent to x being in the image of the map (3.2) from
P(Λ/ΠΛ)(k). This gives the analogue of Lemma 4.4.

Next suppose that x ∈ NE,Λ(R) for a k̄-algebra R. Then

%+∗
Λ,X ◦ λX ◦ %

−
Λ,X : (X−Λ )∨R −→ (X+

Λ )R
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satisfies
%+∗

Λ,X ◦ λX ◦ %
−
Λ,X ∼ (natΛ)R.

As in the unramified case,
E(X) := kerD(%−Λ,X)

is locally a direct summand of

kerD(natΛ,R) = kerD(natΛ)⊗k̄ R = BΛ ⊗k̄ R.

The decomposition into free R-modules of rank 2 under the action of k ⊗Fp R,

BΛ ⊗k̄ R =
(⊕

α
BαΛ
)
⊗k̄ R,

induces a corresponding decomposition

E(X) =
⊕

α
E(X)α,

where E(X)α0 is of rank 1. Since Bα0
Λ ' Λ/ΠΛ, the direct summand E(X)α0 corresponds to a

point in P(Λ/ΠΛ)(R). Thus, we have defined a map

NE,Λ(R) −→ P(Λ/ΠΛ)(R)

functorial in R and compatible with base change. Again the arguments of [14] show that the
morphism NE,Λ −→ P(Λ/ΠΛ) is an isomorphism, whose inverse induces the map (3.3) on k̄-valued
points.

5. Concluding remarks

When formulating the moduli problem NE , we must choose a framing object (X, ι, λX). In the
body of the paper, this framing object arose from the framing object (X, ιX) of the Drinfeld moduli
problem, together with the chosen embedding of OE into OB. Recall that the framing object of
the Drinfeld moduli problem is unique up to a OB-linear isogeny, and in fact X is supersingular, in
the sense that the slopes of the F -isocrystal defined by X are 1/2, with multiplicity 4, cf. [1].

If we allow ourselves to choose the framing object (X, ι, λ) without reference to the Drinfeld
moduli problem, then other moduli problems arise for a 2-dimensional E/F -hermitian space and a
parahoric polarization type. There are four possibilities:
a) E/F unramified, λ a principal polarization.
b) E/F unramified, Kerλ a OE/πOE-group scheme of height 1.
c) E/F ramified, λ a principal polarization.
d) E/F ramified, Kerλ = X[Π], where Π ∈ OE denotes a uniformizer.

In cases a), b) and d), the framing object is unique up to an OE-linear isogeny that preserves
the polarization up to a scalar in O×F .

Case by case we have the following facts:
a) This case leads to a formally smooth formal moduli scheme (of relative dimension 1 over OE)
with reduced locus a single point; the corresponding hermitian space C of dimension 2 is non-split,
comp. [13, 4].
b) This case is discussed above. It leads to a flat non-smooth formal moduli scheme; the corre-
sponding hermitian space C is split.
c) In this case, one choice of framing object arises from the Drinfeld framing object, and the
resulting moduli problem is the one discussed above. It leads to a flat non-smooth formal moduli
scheme; the corresponding hermitian space C is split.
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A second choice of framing object arises by again taking X = E × E , as in the proof of Lemma
2.5, with ι(a) = diag(a, a). The polarization λ is now given as diag(u0, u1), for u0, u1 ∈ O×F with
−u0u1 /∈ NmE×. This choice ensures that the corresponding hermitian space C is anisotropic.
The moduli scheme is flat non-smooth with reduced locus a single point. Indeed, the theory of
local models can be used to show that we have semi-stable reduction at this unique point, cf. [9],
Remark 2.35 (the Iwahori case).

When F = Qp, these two choices of framing objects can be distinguished by their crystalline
discriminants, cf. [6], given by −1 (resp. +1) for the first (resp., second) choice.
d) Now the framing object is X = E × E with ι(a) = diag(a, ā), and the polarization is given by
λ0

X ◦ ιX(Πζ). In this case one can show, again using the theory of local models, that the formal
moduli scheme is formally smooth of relative dimension 1 over OE . The corresponding hermitian
space is non-split6.
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