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A geometric approach to the fundamental lemma
for unitary groups

G. Laumon and M. Rapoport

0. Introduction

Let n1, n2 be two positive integers, let G = U(n1 + n2) be “the” unramified unitary
group in n1 + n2 variables over a non archimedean local field F and let H be the elliptic
endoscopic group U(n1)×U(n2) for G. Let K be a hyperspecial compact open subgroup
of G(F ) and let KH be a hyperspecial compact open subgroup of H(F ). Then, for any
regular semisimple element γ ∈ G(F ) which comes from an elliptic semisimple element
δ in H(F ) Langlands and Shelstad ([La-Sh]) have defined the κ-orbital integral Oκγ (1K),

the stable orbital integral SOHδ (1KH ) and the transfer factor ∆(γ, δ) and they have
conjectured that

(∗) SOHδ (1KH ) = ∆(δ, γ)Oκγ (1K).

This relation is called the fundamental lemma for the pair (G,H). It has been proved by
Labesse and Langlands in the particular case n1 = n2 = 1 ([La-La]) and by Kottwitz in
the particular case n1 = 1 and n2 = 2 ([Ko]).

In this paper we restrict ourselves to the case where F is of equal characteristic p > 0
and we consider the relation (∗) from a geometric point of view. The restriction to the
equal characteristic case is more or less equivalent to considering the unequal charac-
teristic case under the hypothesis that the residual characteristic is “large enough with
respect to the element δ”. In the equal characteristic case the geometric interpretation of
the orbital integrals is straightforward and does not involve Witt vector schemes. More-
over we restrict ourselves to the “totally ramified case” : we fix totally ramified separable
extensions E1 and E2 of F of degree n1 and n2 respectively, we embed the corresponding
elliptic torus T = E ′11 × E′12 as a maximal torus in both G and in H and we take as
elements γ and δ the images by these embeddings of some element (γ1, γ2) ∈ T . Here E′i
is the unramified quadratic extension of Ei and E′1i ⊂ E′×i is the subgroup of elements
of norm 1 with respect to Ei.

We use the standard computation of the orbital integrals as numbers of selfdual lattices
which are fixed by unitary automorphisms in certain hermitian vector spaces (see [Ko]).
In this computation the κ-orbital integral appears as the difference between the number
of selfdual lattices for two different hermitian forms Φ+ and Φ− on E′1 ⊕ E′2 which are
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fixed by the multiplication by (γ1, γ2). The stable orbital integral is equal to the product
of the number of selfdual lattices in E ′1 and in E′2 which are fixed by the multiplication
by γ1 and γ2 respectively.

The transfer factor ∆(δ, γ) has been computed by Waldspurger for classical groups.
In our case we simply have

∆(δ, γ) = (−1)rq−r

where q is the number of elements in the residue field k and r denotes the valuation of
the resultant of the minimal polynomials of γ1 and γ2.

We now explain the contents of this paper. In a first step (Part I) we construct schemes
X+, X− and Y1, Y2 over the residue field k whose k-rational points are in bijection with
the sets of lattices in question. We thus have

Oκγ (1K) = |X+(k)| − |X−(k)|

and

SOHδ (1KH ) = |Y1(k)| · |Y2(k)|.
It turns out that Y1 and Y2 are projective schemes (closed subschemes of Grassmannians),
whereas X+ and X− are only locally of finite type. However X+ and X− carry natural
actions of Z such that the quotients X+/Z and X−/Z are representable by projective
schemes over k. Of course, this construction may be viewed as a special case of the
construction of Kazhdan and Lusztig [Ka-Lu].

The closed subschemes X+ and X− contain canonical closed subschemes which are
projective schemes and contain all k-rational points. In order to take into account the
sign (−1)r of the transfer factor it is convenient to denote these subschemes X ⊂ X+

and X ′ ⊂ X− if r is even, and X ′ ⊂ X+ and X ⊂ X− if r is odd. The geometric version
of the conjecture of Langlands and Shelstad establishes a close relation between the
number of points of the schemes introduced above for any finite extension of k. Namely,
we conjecture that for any extension kf of finite degree f of k,

(∗∗) |X (kf )| − |X ′(kf )| = qfr · |Y1(kf )| · |Y2(kf )|.

By the above remarks, the relation (∗) is the particular case f = 1 of (∗∗).
The main result of this paper (Part II) is the proof of this conjecture for extensions of

even degree of k, i.e. extensions of the quadratic extension k′ of k. For this we construct a
partition (in fact, two such partitions, interchanged by the Frobenius morphism over k) of
X±⊗kk′ into locally closed subsets which are vector bundles of rank r over (Y1×Y2)⊗kk′.
This last assertion is proved by interpreting our lattices as coherent modules on germs
of singular curves contained in Spec(k′[[T1, T2]]) and using the interpretation of r as
the intersection multiplicity of these curves. At this point we make use of a fundamental
result of Deligne on intersection multiplicities “with weights”. We then construct a closed
embedding (in fact, two such embeddings interchanged by the Frobenius morphism over
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k) of X ′⊗k k′ into X ⊗k k′ such that the complement is one piece of the above partition
of X± ⊗k k′. Our main result follows now by a simple counting argument.

In the final part (Part III) we explain a possible approach to the descent from k ′

to k. Whereas the theory over k′ is essentially elementary, we envisage the use of `-
adic cohomology for this descent problem. Briefly put, even though the vector bundle
structure on the strata of X± ⊗k k′ and the closed embeddings of X ′ ⊗k k′ into X ⊗k k′
definitely do not descend to k, the structure in `-adic cohomology that these data induce
should descend. We cannot prove this, but we show that this approach works at least in
the simple case of U(1, 1).

In conclusion we wish to thank J.-L. Waldspurger who communicated to us his
computation of the sign of the Langlands-Shelstad transfer factor which allowed us to
make the comparison with the sign factor which arises from our geometric approach.
This comparison had been requested by R.P. Langlands at the Princeton conference in
his honour in October 1996 when a preliminary version of this paper was presented.

The results of this paper were obtained during the visits of the first author at the
Universities of Wuppertal and of Köln and the visits of the second author at Orsay and
at the Institut Emile Borel. The second author especially wishes to thank the members of
the département de mathématique de l’Université de Paris-Sud for inviting him and for
making his stay a great pleasure. We both thank the Deutsche Forschungsgemeinschaft for
its support, as well as the European Network (TMR) “Arithmetic Algebraic Geometry”.
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PART I

1. Hermitian forms

Let F be a non archimedean local field of equal characteristic p > 2 and let F ′ be an
unramified quadratic extension of F . We denote by OF and OF ′ the rings of integers of
F and F ′ and we fix a uniformizing parameter $F of F and therefore of F ′. We denote
by σ the non trivial element of the Galois group Gal(F ′/F ) ∼= Gal(k′/k) where k and k′

are the residue fields of F and F ′.
We have the isomorphism

Z/2Z ∼−→ F×/NF ′/FF
′×, ε 7→ $ε

FNF ′/FF
′×

where NF ′/F : F ′× → F× is the norm map. Therefore, for each finite dimensional F ′-
vector space V and each ε = 0, 1 there exists a non degenerate hermitian form on V with
discriminant $ε

FNF ′/FF
′×. Any two such forms are equivalent.

Let E be a totally ramified separable finite extension of F . The tensor product
E′ = E ⊗F F ′ is an unramified field extension of E. We denote by OE and OE′ the
rings of integers of E and E ′ and we denote again by σ the automorphism 1 ⊗ σ of E ′.
We denote by δE/F the exponent of the discriminant ideal dOE/OF ⊂ OF of OE over OF .

For each α ∈ E× we define a non degenerate hermitian form Φ(α) on the F ′-vector
space E′ by

Φ(α)(e
′
1, e
′
2) = trE′/F ′ (αe

′σ
1 e
′
2).

Its discriminant is equal to NE/F (α)$
δE/F
F NF ′/FF

′× and the dual of the OF ′ -lattice OE′
with respect to that hermitian form

(OE′)⊥(α)
dfn
== {e′ ∈ E′ | Φ(α)(e

′, e′′) ∈ OF ′ , ∀e′′ ∈ OE′},

is equal to α−1$
−δE/F
E OE′ where $E is a uniformizing parameter of E (cf. [Se] Ch. III,

§3). As the norm map NE/F : E× → F× induces an isomorphism from E×/O×E onto

F×/O×F , for any α+ ∈ $−δE/FE O×E′ (resp. α− ∈ $1−δE/F
E O×E′) the hermitian form Φ(α+)

(resp. Φ(α−)) has discriminant 1 (resp. $F ) modulo NF ′/FF
′× and the dual of the OF ′ -

lattice OE′ with respect to that hermitian form is equal to OE′ (resp. $−1
E OE′). We fix

once for all such an element α+ (resp. α−) and we set

Φ±E′
dfn
== Φ(α±).
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2. Statement of the Langlands-Shelstad conjecture

We closely follow [Ko] (in this paper Kottwitz has proved Conjecture 2.2 below in the
particular case n1 = 1 and n2 = 2 but for an arbitrary local field F ).

We fix two totally ramified separable finite extensions E1 and E2 of F of degrees n1

and n2.
We denote by E ′1 and E′2 the unramified quadratic field extensions E1F

′ and E2F
′ of

E1 and E2. We denote by OE1 , OE2 , OE′1 and OE′2 the rings of integers of E1, E2, E′1
and E′2. We fix uniformizing parameters $E1 and $E2 of E1 and E2 and therefore of E ′1
and E′2.

We set E′ = E′1⊕E′2. It is a F ′-vector space of dimension n1 +n2. We endow E′ with
the non degenerate hermitian forms

Φ+ = Φ+
E′1
⊕ Φ+

E′2

and
Φ− = Φ−E′1

⊕ Φ−E′2
.

These two forms are equivalent as their discriminants are 1 and $2
F modulo NF ′/FF

′×.
Therefore we can find g ∈ GLF ′ (E′) such that

Φ−(e′, e′′) = Φ+(ge′, ge′′) (∀e′, e′′ ∈ E′).

We fix γ1 ∈ E′×1 and γ2 ∈ E′×2 such that γ1γ
σ
1 = γ2γ

σ
2 = 1, so that γi is a unit in the

ring OE′
i
. We assume that E ′i = F ′[γi], i.e. the minimal polynomial Pi(T ) ∈ F ′[T ] of γi

has degree ni. We assume moreover that the polynomials P1(T ) and P2(T ) are separable
and prime with respect to each other. Then the diagonal element (γ1, γ2) ∈ GLF ′ (E′)
may be simultaneously viewed as an elliptic regular semisimple element γ+ in the unitary
group

G(F )
dfn
== U(E′,Φ+) = gU(E′,Φ−)g−1 ⊂ GLF ′ (E′),

as an elliptic regular semisimple element γ− in the unitary group

U(E′,Φ−) ⊂ GLF ′ (E′)

and as an elliptic (G,H)-regular semisimple element δ in the endoscopic group

H(F ) = U(E′1,Ψ1) × U(E′2,Ψ2) ⊂ GLF ′ (E′)

of G(F ) where we have set
Ψi = Φ+

E′i
.

The elements γ+ and gγ−g−1 of G(F ) are conjugate in GLF ′ (E
′) but are not conjugate

in G(F ). The conjugacy class of δ in H(F ) is equal to its stable conjugacy class (an
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element of U(E ′i,Ψi) ⊂ GLF ′ (E′i) is stably conjugate to γi if and only if it has the same
minimal polynomial as γi).

Let K be the hyperspecial maximal compact open subgroup of G(F ) which fixes the
OF ′ -lattice OE′1 ⊕ OE′2 of E′ (this lattice is selfdual for the hermitian form Φ+) and let

KH be the hyperspecial maximal compact open subgroup of H(F ) which fixes the same
lattice. The κ-orbital integral Oκγ (1K) is equal to the difference ([Ko])

Oκγ (1K) = |{L′ ⊂ E′ | L′⊥+

= L′ and (γ1, γ2)L′ = L′}|
−|{L′ ⊂ E′ | L′⊥− = L′ and (γ1, γ2)L′ = L′}|

where the L′’s are OF ′ -lattices and where (·)⊥± denotes the duality for such lattices with
respect to the hermitian form Φ±. Similarly the (stable) orbital integral SOHδ (1KH ) is
equal to the product

SOHδ (1KH ) = |{M′1 ⊂ E′1 | M′⊥1
1 =M′1 and γ1M′1 =M′1}|
×|{M′2 ⊂ E′2 | M′⊥2

2 =M′2 and γ2M′2 =M′2}|.

where the M′i’s are OF ′ -lattices and where (·)⊥i denotes the duality for such lattices
with respect to the hermitian form Ψi.

As the polynomials P1(T ), P2(T ) ∈ F ′[T ] are prime with respect to each other and
have coefficients in OF ′ their resultant Res(P1, P2) is a non zero element in OF ′ . Let us
denote by

(2.1) r = r(γ1 , γ2) ≥ 0

its order. Let us recall that, up to a sign, we have

Res(P1, P2) =

n1−1∏

k1=0

n2−1∏

k2=0

(γ
(k1)
1 − γ(k2)

2 )

where γi = γ
(0)
i , . . . , γ

(ni−1)
i are the roots of Pi(T ) in some algebraic closure of F ′

containing E ′1 and E′2.

CONJECTURE 2.2 (Langlands-Shelstad). — Under the above hypotheses we have

Oκγ (1K) = ε(γ1, γ2)qrSOHδ (1KH )

where ε(γ1, γ2) is some sign and q is the number of elements in the residue field k.
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Remark : Waldspurger has computed the sign of the Langlands-Shelstad transfer factor
at any regular semisimple element γ ∈ G(F ) which is close enough to the identity. In
particular he has proved that

ε(γ1, γ2) = (−1)r

(private communication). This is exactly the sign which arises from our geometric
approach (cf. Theorem 4.2 and §8).

3. Orbital integrals as numbers of rational points of k-schemes

Our first goal is to introduce k-schemes X+, X− and Yi (i = 1, 2) such that

Oκγ (1K) = |X+(k)| − |X−(k)|

and

SOHδ (1KH ) = |Y1(k)| · |Y2(k)|.

DEFINITION 3.1. — Let R be a commutative k′-algebra. A (R⊗k′OF ′)-lattice in a finite
dimensional F ′-vector space V is a (R⊗k′ OF ′)-submodule L of R⊗k′ V such that there
exist OF ′-lattices L0 ⊂ L1 in V having the following properties :

(i) R⊗k′ L0 ⊂ L ⊂ R⊗k′ L1,

(ii) the R-module L/(R ⊗k′ L0) is locally a direct factor of the free R-module
(R⊗k′ L1)/(R ⊗k′ L0).

If R is a commutative k-algebra, a (R ⊗k OF ′)-lattice L in a finite dimensional F ′-
vector space V is by definition a ((R ⊗k k′)⊗k′ OF ′)-lattice in V .

If R is a k′-algebra and if L1 and L2 are two (R⊗k′OF ′)-lattices in a finite dimensional
F ′-vector space V we set

[L1 : L2] = rkR(L1/(R⊗k′ L3)) − rkR(L1/(R⊗k′ L3))

where L3 is any OF ′ -lattice in V such that R⊗k′ L3 is contained in both lattices L1 and
L2. It is a locally constant function on Spec(R) with integral values. If R is a k-algebra
and if L1 and L2 are two (R ⊗k OF ′ )-lattices we define [L1 : L2] by simply replacing R
by R⊗k k′ in the above definition.

If V is a finite dimensional F ′-vector space which is equipped with a non degenerate
hermitian form Φ and if R is a commutative k-algebra, we define the dual (R ⊗k OF ′)-
lattice L⊥ of a (R ⊗k OF ′ )-lattice L in the obvious way. In particular, if we have
R⊗k L0 ⊂ L ⊂ R⊗k L1 as in Definition 3.1 we have

R ⊗k L⊥1 ⊂ L⊥ ⊂ R⊗k L⊥0
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and, if we identify (R ⊗k L⊥0 )/(R ⊗k L⊥1 ) with the dual of the free (R ⊗k k′)-module
(R⊗k L1)/(R ⊗k L0),

L⊥/(R⊗k L⊥1 ) ⊂ (R ⊗k L⊥0 )/(R ⊗k L⊥1 )

is the orthogonal of the L/(R ⊗k L0) ⊂ (R ⊗k L1)/(R ⊗k L0).

If R is a commutative k′-algebra and if L (resp. Mi) is a (R ⊗k′ OF ′ )-lattice in E′

(resp. E′i) we define the index of L (resp. Mi) as the locally constant function

ind(L) = [L : R⊗k′ (OE′1 ⊕OE′2)] : Spec(R)→ Z

(resp.
ind(Mi) = [Mi : R⊗k′ OE′

i
] : Spec(R)→ Z ).

If R is a commutative k-algebra and if L (resp. Mi) is a (R ⊗k OF ′)-lattice in E′ (resp.
E′i) we define the index of L (resp.Mi) by replacingR by R⊗kk′ in the above definitions.
We then have

ind(L⊥+

) = −ind(L)

and
ind(L⊥− ) = −ind(L) + 2

where ⊥± is the duality for lattices with respect to the hermitian form Φ± (resp.

ind(M⊥ii ) = −ind(Mi)

where ⊥i is the duality for lattices with respect to the hermitian form Ψi).

For each commutative k-algebra R we now set

(3.2.1) X±(R) = {L± | (L±)⊥
±

= L± and (1⊗ (γ1, γ2))L± = L±}

and

(3.2.2) Yi(R) = {Mi | M⊥ii =Mi and (1⊗ γi)Mi =Mi}

where L± andMi are (R⊗kOF ′)-lattices in E ′ and E′i. If ϕ : S → R is a homomorphism
of commutative k-algebras we have obvious base change maps X±(R) → X±(S) and
Yi(R)→ Yi(S).

PROPOSITION 3.3. — (i) The functor X± is representable by a k-scheme which is locally
of finite type.

(ii) The functor Yi is representable by a projective k-scheme.

Let us recall that to give a quasi-projective k-scheme S is the same as to give the
quasi-projective k′-scheme k′ ⊗k S together with the endomorphism k′ ⊗k FrobS where
FrobS is the Frobenius endomorphism of S with respect to k (cf. [SGA 1](VIII, 7.6)).
Therefore Proposition 3.3 is an immediate consequence of the following proposition :
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PROPOSITION 3.4. — (i) The functor k′ ⊗k X± (i.e. the restriction of the functor
X± to k′-algebras) is representable by a k′-scheme which is an increasing union of
(k′ ⊗k FrobX±)-stable quasi-projective open subsets.

(ii) The functor k′ ⊗k Yi (i.e. the restriction of the functor Yi to k′-algebras) is
representable by a projective k′-scheme.

Remark : This proposition is a particular case of a result of D. Kazhdan and G. Lusztig
(cf. [Ka-Lu] §2).

Before proving Proposition 3.4 let us give a description of the functors k ′ ⊗k X± and
k′ ⊗k Yi which does not involve the hermitian forms Φ± and Ψi.

For every finite dimensionalF ′-vector space V which is equipped with a non degenerate
hermitian form Φ we may split the (k′ ⊗k F )-vector space k′ ⊗k V into

Ṽ ⊕ ˜̃V

where
Ṽ = {x ∈ k′ ⊗k V | (1⊗ α′)x = (α′ ⊗ 1)x, ∀α′ ∈ k′}

and
˜̃
V = {x ∈ k′ ⊗k V | (1⊗ α′)x = (α′σ ⊗ 1)x, ∀α′ ∈ k′}.

The (k′ ⊗k F )-bilinear form k′ ⊗k Φ is then given by

(k′ ⊗k Φ)(x̃1 ⊕ ˜̃x1, x̃2 ⊕ ˜̃x2) = Φ̃(˜̃x1, x̃2) +
(
Φ̃(˜̃x2, x̃1)

)1⊗σ

for some non degenerate (k′ ⊗k F )-bilinear form

Φ̃ :
˜̃
V × Ṽ → {x ∈ k′ ⊗k F ′ | (1 ⊗ α′)x = (α′ ⊗ 1)x, ∀α′ ∈ k′}.

The map σ ⊗k IdV : k′ ⊗k V → k′ ⊗k V induces (σ ⊗k IdF ′ )-linear bijections F : Ṽ → ˜̃
V

and G :
˜̃
V → Ṽ . The maps G ◦ F and F ◦ G are the Frobenius endomorphisms with

respect to F ′, i.e. the identities of the F ′-vector spaces Ṽ and
˜̃
V . One easily checks that

Φ̃(F (x̃), G(˜̃x)) =
(
Φ̃(˜̃x, x̃)

)σ⊗σ

for every x̃ ∈ Ṽ and ˜̃x ∈ ˜̃V .
We may identify k′⊗k F and {x ∈ k′⊗k F ′ | (1⊗α′)x = (α′ ⊗ 1)x, ∀α′ ∈ k′} with F ′

by

α′ ⊗ 1 7→ α′ and
∑

i

α′i ⊗ b′i 7→
∑

i

α′ib
′
i.
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Similarly we will identify Ṽ and
˜̃
V with the F ′-vector spaces V and k′ ⊗σ,k′ V by

∑

i

α′i ⊗ vi 7→
∑

i

α′ivi and
∑

i

α′i ⊗ vi 7→
∑

i

α′σi vi.

Then Φ : (k′⊗σ,k′ V )×V → F ′ is a non degenerate F ′-bilinear form and we may identify
k′⊗σ,k′ V with the F ′-linear dual V ∗ of V . We have σ-linear bijections F : V → V ∗ and
G : V ∗ → V . The maps G ◦F and F ◦G are the identities of the F ′-vector spaces V and
V ∗. We have

〈F (x), G(x∗)〉 = σ
(
〈x∗, x〉

)

for every x ∈ V and x∗ ∈ V ∗.
LEMMA 3.5. — Let us denote by ⊥ the duality (for lattices) with respect to Φ and let

us assume moreover that V admits a selfdual OF ′ -lattice L0.
Then, for every commutative k′-algebra R there is a natural bijection between the set

of (R⊗k OF ′)-lattices L in V such that L⊥ = L and the set of (R⊗k′ OF ′)-lattices L in
V such that [L : R⊗k′ L0] = 0.

Proof : The relation between L and L is

L = L⊕ L⊥ ⊂ (R ⊗k′ V )⊕ (R ⊗k′ V ∗) = R ⊗k V

where L⊥ is the dual (R ⊗k′ F ′)-lattice of L in R ⊗k′ V ∗. �

If u is a unitary automorphism of (V,Φ) the (k′ ⊗k F ′)-linear automorphism 1 ⊗ u
of k′ ⊗k V is the direct sum u⊕ (tu)−1 where tu is the transposed endomorphism of u.
Moreover we have the relations

tu ◦ F ◦ u = F, u ◦G ◦ tu = G.

In particular, we can take (V,Φ) = (E ′i,Φ
±
E′i

), (V,Φ) = (E′,Φ±) or (V,Φ) = (E ′i,Ψi)

and we get the σ-linear bijections F±i : E′i → E′∗i , G±i : E′∗i → E′i, F
± = F±1 ⊕ F±2 :

E′ → E′∗, G± = G±1 ⊕G±2 : E′∗ → E′, Fi = F+
i : E′i → E′∗i and Gi = G+

i : E′∗i → E′i.

Now, for any commutative k′-algebra R we set

(3.6.1) X±(R) = {L± | ind(L±) ≡ δ± and (1⊗ (γ1, γ2))L± = L±}

where δ+ = 0 and δ− = 1 and where the L±’s are (R⊗k′ OF ′)-lattices in E ′, and we set

(3.6.2) Yi(R) = {Mi | ind(Mi) ≡ 0 and (1 ⊗ γi)Mi = Mi}

where the Mi’s are (R ⊗k′ OF ′)-lattices in E ′i. If ϕ : S → R is a homomorphism
of commutative k-algebras we have obvious base change maps X±(R) → X±(S) and
Yi(R)→ Yi(S). We denote by

(3.6.3) FX± : X± → X±
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and

(3.6.4) FYi : Yi → Yi

the functor endomorphisms which are given on the R-valued points by

L± 7→
(
F±R (L±)

)⊥±
= G±R

(
(L±)⊥

±)

and
Mi 7→

(
Fi,R(Mi)

)⊥i
= Gi,R

(
(Mi)

⊥i) )

where F±R : R ⊗k′ E′ → (R ⊗k′ E′)∗, G±R : (R ⊗k′ E′)∗ → R ⊗k′ E′, Fi,R : R ⊗k′ E′i →
(R ⊗k′ E′i)∗ and Gi,R : (R ⊗k′ E′i)∗ → R ⊗k′ E′i) are the natural σ-linear extensions of
F±, G±, Fi and Gi.

Then it follows from the above discussion that

LEMMA 3.7. — We have natural identifications

(k′ ⊗k X±, k′ ⊗k FrobX±) = (X±, FX±)

and
(k′ ⊗k Yi, k′ ⊗k FrobYi) = (Yi, FYi).

�
Let

(3.8) mi = m(γi) ≥ 0

be the conductor of OF ′ [γi] in OE′
i
, i.e. the smallest non negative integer m such that

$m
Ei
OE′i ⊂ OF ′ [γi] ⊂ OE′i .

The proof of Proposition 3.4 is based on the next two lemmas :

LEMMA 3.9. — Let R be a commutative k′-algebra and let Li be a (R ⊗k′ OF ′)-lattice
in E′i such that γiLi ⊂ Li with constant index. Then there exists an integer ` such that

ind(Li) ≤ ` ≤ ind(Li) +mi

and
$mi−`
Ei

(R ⊗k′ OE′
i
) ⊂ Li ⊂ $−`Ei (R⊗k′ OE′i).

In particular we automatically have

$
mi−ind(Li)
Ei

(R ⊗k′ OE′
i
) ⊂ Li ⊂ $−mi−ind(Li)

Ei
(R⊗k′ OE′

i
).
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Proof : We have
$mi
Ei
OE′iLi ⊂ OF ′ [γi]Li ⊂ Li ⊂ OE′iLi

and we only need to check that OE′
i
Li is equal to $−`Ei (R ⊗k′ OE′i) for some integer `.

But, as Li is a (R ⊗k′ OF ′ )-lattice there exist OF ′ -lattices L0 ⊂ L1 in E′i such that
R⊗k′ L0 ⊂ Li ⊂ R⊗k′ L1 and we have

R ⊗k′ (OE′
i
L0) ⊂ OE′

i
Li ⊂ R⊗k′ (OE′

i
L1)

with OE′iL0 = $−`0Ei
OE′i and OE′iL1 = $−`1Ei

OE′i for some integers `0 ≤ `1. Now the
multiplication by $Ei on the free R-module

$−`1Ei
(R ⊗k′ OE′i)/$

−`0
Ei

(R ⊗k′ OE′i)
is a regular nilpotent endomorphism and the R-submodule

OE′iLi/$
−`0
Ei

(R ⊗k′ OE′i) ⊂ $
−`1
Ei

(R ⊗k′ OE′i)/$
−`0
Ei

(R ⊗k′ OE′i)
is locally a direct factor. Therefore this R-submodule is equal to the R-submodule

$−`Ei (R ⊗k′ OE′i)/$
−`0
Ei

(R ⊗k′ OE′
i
)

for some integer ` with `0 ≤ ` ≤ `1 and the proof of the lemma is complete. �

For each point L± in X± with value in some field extension K of k′ let us denote by
B±i the intersection of L± with K ⊗k′ E′i ⊂ K ⊗k′ E′ and by C±i the projection of L±

on K ⊗k′ E′i. Then

(3.10.1) B±i ⊂ C±i ⊂ K ⊗k′ E′i
are (K ⊗k′ OF ′)-lattices in E ′i and L± is the graph of an isomorphism of (K ⊗k′ OF ′)-
modules of finite dimension over K

(3.10.2) ι± : C±1 /B
±
1
∼−→ C±2 /B

±
2 .

Moreover, if we set

(3.10.3) b±i = b±i (L+) := ind(B±i ) ≤ c±i = c±i (L+) := ind(C±i )

we have

(3.10.4) b±1 + c±2 = b±2 + c±1 = ind(L±) = δ±

with δ+ = 0 and δ− = 1.
If L± is now a point in X± with value in some commutative k′-algebra R we define

as above integers

b±i (p) = b±i (Frac(R/p) ⊗R L±) ≤ c±i (p) = c±i (Frac(R/p) ⊗R L±)

for each prime ideal p in R. We thus have functions b±i , c
±
i : Spec(R) → Z which are

easily seen to be semicontinuous : for each integer λi the set of points in Spec(R) such
that b±i ≤ λi (or equivalently such that c±j ≥ δ± − λi if {i, j} = {1, 2}) is open for the
Zariski topology.
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LEMMA 3.11. — Let L± be a point in X± with value in some commutative k′-algebra
R. Then the functions b±i , c

±
i : Spec(R)→ Z satisfy the inequalities

b±i ≤ c±i ≤ b±i + r.

Proof : We may assume that R is a field extension of k′ and therefore we may introduce
the lattices B±i , C

±
i and the isomorphism ι±. As ι± exchanges the multiplications by γ1

and γ2 and as P1(γ1) = 0 and P2(γ2) = 0 we have

P2(γ1)C±1 ⊂ B±1

and
P1(γ2)C±2 ⊂ B±2 .

But P2(γ1) and P1(γ1) are of order r = r(γ1, γ2) in E′1 and E′2, so that

b±i ≤ c±i ≤ b±i + r

as required. �

Proof of Proposition 3.4 : Let us begin with Part (ii). It follows from Lemma 3.9 that,
for any commutative k′-algebra R, Yi(R) may be identified with the set of (R ⊗k′ OF ′)-
lattices Mi in E′i such that

$mi
Ei

(R ⊗k′ OF ′ ) ⊂Mi ⊂ $−miEi
(R ⊗k′ OF ′),

rkR(Mi/$
mi
Ei

(R ⊗k′ OF ′)) = mi

and
(1⊗ γi)Mi ⊂Mi.

Therefore, Yi is representable by a closed k′-subscheme of the Grassmann variety of
mi-planes in the 2mi-dimensional k′-vector space

$−miEi
OF ′/$mi

Ei
OF ′

and Part (ii) is proved.
The proof of Part (i) is similar to the proof of Part (ii). For each pair of integers

(λ1, λ2) let us consider the open subfunctor

(3.12.1) X±(λ1, λ2) = {L± ∈ X± | b±1 ≤ λ1 and b±2 ≤ λ2}.

We only need to prove that this open subfunctor is representable by a quasi-projective
k′-scheme.
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It follows from Lemma 3.11 that X±(λ1, λ2) is contained in the closed subfunctor

X±[δ± − λ2 − r, δ± − λ1 − r] = {L± ∈ X± | b±1 ≥ δ± − λ2 − r and b±2 ≥ δ± − λ1 − r}
of X±. Therefore it is sufficient to prove that, for any pair of integers (µ1, µ2) the closed
subfunctor

(3.12.2) X±[µ1, µ2] = {L± ∈ X± | b±1 ≥ µ1 and b±2 ≥ µ2}
is representable by a projective k′-scheme. But it follows from Lemma 3.9 that the functor
X±[µ1, µ2] is a closed subfunctor of the functor which associates to any commutative k ′-
algebra R the set of (R ⊗k′ OF ′)-lattices L± in E′ such that

$m1−µ1

E1
(R ⊗k′ OE′1) ⊕$m2−µ2

E2
(R ⊗k′ OE′2)

⊂ L± ⊂ $µ2−m1−δ±
E1

(R⊗k′ OE′1)⊕$µ1−m2−δ±
E2

(R ⊗k′ OE′2),

rkR
(
L±/($m1−µ1

E1
(R ⊗k′ OE′1)⊕$m2−µ2

E2
(R⊗k′ OE′2))

)
= m1 +m2 − µ1 − µ2 + δ±

and
(1⊗ (γ1, γ2))L± ⊂ L±.

Therefore, if we set N = m1 +m2−µ1−µ2 + δ± the functor X±[µ1, µ2] is representable
by a closed k′-subscheme of the Grassmann variety of N -planes in the 2N -dimensional
k′-vector space

($m1−µ1

E1
OE′1 ⊕$

m2−µ2

E2
OE′2)/($µ2−m1−δ±

E1
OE′1 ⊕$

µ1−m2−δ±
E2

OE′2)

and Part (ii) is proved. �

Remark 3.13 : In fact the two k′-schemes X+ and X− are isomorphic. More precisely,
there are two k′-scheme isomorphisms

α1, α2 : X−
∼−→ X+

given by
α1(L−) = ($E1 ⊕ 1)L−

and
α2(L−) = (1⊕$E2)L−.

Moreover the squares of k′-scheme morphisms

X−
FX−−−−−→ X−

α1

y
yα2

X+ −−−−→
FX+

X+

and

X−
FX−−−−−→ X−

α2

y
yα1

X+ −−−−→
FX+

X+

commute.
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Remark 3.14 : Let Gi be the Grassmann variety of mi-planes in the 2mi-dimensional
k′-vector space

Wi = $−miEi
OE′

i
/$mi

Ei
OE′

i

and let Ni be the regular nilpotent endomorphism of Wi which is induced by the
multiplication by $Ei . In the course of the proof of Proposition 3.4 we have identified Yi
with a closed subscheme of Gi.

Let Zi be the closed subscheme of Gi of mi-planes Di ⊂Wi such that

Nmi+j
i (Di) ⊂ Di

for every non negative integer j. Then, as $mi
Ei
OE′i ⊂ OF ′ [γi] by definition of the

conductor mi, we have
Yi ⊂ Zi.

The structure of Zi is much simpler than that of Yi. In fact, it follows from Lemma
3.15 below that either mi = 0 and Zi = Gi = Spec(k′), or mi > 0 and

Zi =

mi−1⋃

j=1

Zi,j

where

Zi,j = {Di ⊂ Wi | dim(Di) = mi and Ker(N j
i ) ⊂ Di ⊂ Ker(Nmi+j

i )}.

Moreover, if mi > 0 the irreducible components of Zi are exactly the Zi,j for j =
1, . . . ,mi − 1 and the intersection of any two of these irreducible components is again a
Grassmann variety.

LEMMA 3.15. — Let E be a finite dimensional k′-vector space which is equipped with a
regular nilpotent endomorphism N . We denote by e the dimension of E. Let m be a non
negative integer and let F be a k′-vector subspace of E which is Nm+j-stable for every
j ≥ 0. Let ` be a positive integer.

If F is not contained in Im
(
N`
)

it automatically contains Im
(
Nm+`−1

)
and therefore

its dimension is at least e − m − ` + 1 (and even at least e − m − ` + 2 if m ≥ 1 as
Im
(
Nm+`−1

)
⊂ Im

(
N`
)

in this case).

If F does not contain Ker
(
N`
)

it is automatically contained in Ker
(
Nm+`−1

)
and

therefore its dimension is at most m + ` − 1 (and even at most m + ` − 2 if m ≥ 1 as
Ker

(
Nm+`−1

)
⊃ Ker

(
N`
)

in this case).

Proof : If F 6⊂ Im
(
N`
)

= Ker
(
Ne−`) there exists x ∈ F such that Ne−`(x) 6= 0. Let

j be the unique non negative integer such that N e−`+j(x) 6= 0 and Ne−`+j+1(x) = 0.
Then we may consider the vector subspace of E generated by Nm+j(x), Nm+j+1(x), . . . ,
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Ne−`+j(x). It is contained in F by hypothesis and it is easily seen to be equal to
Ker

(
Ne−m−`+1

)
. The first assertion of the lemma follows.

The second assertion of the lemma is another formulation of the first one. �

4. Statement of the main theorem

On the k′-scheme X± we have a translation automorphism τ± : X± → X± which is
given by

τ±(L±) = ($E1 ⊕$−1
E2

)L±

and which satisfies the anticommutation relation

τ± ◦ FX± = FX± ◦ (τ±)−1.

In fact, with the notation of Remark 3.13 we have

τ+ = α1 ◦ α−1
2

and
τ− = α−1

2 ◦ α1.

In particular τ− and τ+ are exchanged by the isomorphisms α1 and α2.

Remark : The action of Z on X± generated by the translation automorphism τ± has
been introduced by D. Kazhdan and G. Lusztig in [Ka-Lu] §2.

Let us first assume that r = 2r′ is even. Then the projective closed subscheme (cf.
(3.12.2))

X+[−r′,−r′] ={L+ ∈ X+ | b+1 ≥ −r′ and b+2 ≥ −r′}
={L+ ∈ X+ | −r′ ≤ b+i ≤ c+i ≤ r′}

may be viewed as a “fundamental domain” for the translation τ+ on the k′-scheme X+ :
for each integer n we have

(τ+)nX+[−r′,−r′] =X+[−r′ − n,−r′ + n]

={L+ ∈ X+ | −r′ − n ≤ b+1 ≤ c+1 ≤ r′ − n}
={L+ ∈ X+ | −r′ + n ≤ b+2 ≤ c+2 ≤ r′ + n},

so that
X+ =

⋃

n∈Z
(τ+)nX+[−r′,−r′]

and the intersection

X+[−r′,−r′] ∩ (τ+)nX+[−r′,−r′] = X+[−inf(r′ , r′ + n),−inf(r′, r′ − n)]
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is empty if |n| > r. Moreover, as

b+i (FX+L+) = −c+i (L+)

all the fixed points by FX+ in X+ are contained in X+[−r′,−r′] and we have

(4.1.1) |X+(k)| =
∣∣(X+[−r′,−r′])FX+

∣∣.
Similarly, as

b−i (FX−L
−) = 1− c−i (L−)

all the fixed points by FX− in X− are contained in

X−[1− r′, 1− r′] = {L− ∈ X− | 1− r′ ≤ b−i ≤ c−i ≤ r′}
and we have

(4.1.2) |X−(k)| =
∣∣(X−[1− r′, 1 − r′])FX−

∣∣.
Let us now assume that r = 2r′ + 1 is odd. Then the projective closed subscheme (cf.

(3.12.2))
X−[−r′,−r′] ={L− ∈ X− | b−1 ≥ −r′ and b−2 ≥ −r′}

={L− ∈ X− | −r′ ≤ b−i ≤ c−i ≤ 1 + r′}
may be viewed as a “fundamental domain” for the translation τ− on the k′-scheme X− :
for each integer n we have

(τ−)nX−[−r′,−r′] =X−[−r′ − n,−r′ + n]

={L− ∈ X− | −r′ − n ≤ b−1 ≤ c−1 ≤ 1 + r′ − n}
={L− ∈ X− | −r′ + n ≤ b−2 ≤ c−2 ≤ 1 + r′ + n},

so that
X− =

⋃

n∈Z
(τ−)nX−[−r′,−r′]

and the intersection

X−[−r′,−r′] ∩ (τ−)nX−[−r′,−r′] = X−[−inf(r′ , r′ + n),−inf(r′, r′ − n)]

is empty if |n| > r. Moreover, as

b−i (FX−L
−) = 1− c−i (L−)

all the fixed points by FX− in X− are contained in X−[−r′,−r′] and we have

(4.1.3) |X−(k)| =
∣∣(X−[−r′,−r′])FX−

∣∣.
Similarly, as

b+i (FX+L+) = −c+i (L+)

all the fixed points by FX+ in X+ are contained in

X+[−r′,−r′] = {L+ ∈ X+ | −r′ ≤ b+i ≤ c+i ≤ r′}
and we have

(4.1.4) |X+(k)| =
∣∣(X+[−r′,−r′])FX+

∣∣.
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THEOREM 4.2. — Let us set

(X,FX ) =
(
X+[−r′,−r′], FX+

∣∣X+[−r′,−r′]
)

(X ′, FX ′) =
(
X−[1− r′, 1− r′], FX−

∣∣X−[1− r′, 1− r′]
)

if r = 2r′ is even and

(X,FX ) =
(
X−[−r′,−r′], FX−

∣∣X−[−r′,−r′]
)

(X ′, FX ′) =
(
X+[−r′,−r′], FX+

∣∣X+[−r′,−r′]
)

if r = 2r′+1 is odd, so that X and X ′ are projective k′-schemes and that FX and FX ′ are
the Frobenius endomorphisms for some k-rational structures on X and X ′ respectively.

Then, for every even positive integer f we have

∣∣XFf
X

∣∣−
∣∣X ′F

f

X′
∣∣ = qfr ·

∣∣Y F
f
Y1

1

∣∣ ·
∣∣Y F

f
Y1

2

∣∣.

The proof of Theorem 4.2 will be given in §7.

Remark : Taking into account the relations

XFX = X±(k) and X ′FX′ = X∓(k)

where we have put ± = + if r is even and ± = − if r is odd (cf. (4.1.1) to (4.1.4)),
the Langlands-Shelstad conjecture is equivalent to the analogous statement of Theorem
4.2 for f = 1. An obvious extrapolation of the Langlands-Shelstad conjecture is that the
equalities in the statement of Theorem 4.2 should hold for every positive odd integer f .
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PART II

5. Stratifications of the k′-scheme X±

With the notation of (3.10.1) to (3.10.4) a point L± in X± with values in some field
extension K of k′ may be given as a triple

(B±1 ⊂ C±1 , B±2 ⊂ C±2 , ι±)

where B±i and C±i are (K ⊗k′ OF ′)-lattices in E ′i such that

b±1 + c±2 = b±2 + c±1 = δ±

with δ+ = 0 and δ− = 1, and where

ι± : C±1 /B
±
1
∼−→ C±2 /B

±
2

is an isomorphism of (K ⊗k′ OF ′ )-modules (of finite dimension over K) which exchanges
the automorphisms induced by the multiplications by γ1 and γ2. It may also be given as
a triple

(B±1 , C
±
2 , f

±
1 )

(resp.

(C±1 , B
±
2 , f

±
2 ) )

where B±1 and C±2 (resp. C±1 and B±2 ) are as before and where

f±1 : C±2 → (K ⊗k′ E′1)/B±1

(resp.

f±2 : C±1 → (K ⊗k′ E′2)/B±2 )

is a morphism of (K ⊗k′ OF ′)-modules which exchanges the automorphisms induced by
the multiplications by γ1 and γ2.

For i = 1, 2 and each integer j let us denote by

U±i,j

the locally closed subset of the k′-scheme X± which is defined by the condition

b±i (L±) = j.
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For i = 1, 2 the family (U±i,j)j∈Z of locally closed subsets is a partition of X±. For each
integer j we have k′-scheme morphisms

π±1,j : U±1,j → Y1 ×k′ Y2

and
π±2,j : U±2,j → Y1 ×k′ Y2

which are defined by

π±1,j(L
±) = ($j

E1
B±1 ,$

δ±−j
E2

C±2 )

and
π±2,j(L

±) = ($δ±−j
E1

C±1 ,$
j
E2
B±2 ).

Remark : The above k′-scheme morphisms are nothing else than the restriction of the
map qN introduced by Kazhdan and Lusztig in [Ka-Lu] §5.

It is obvious that
(τ±)k(U±i,j) = U±i,j−k

where τ± is the translation automorphism introduced in Section 4 and that

π±i,j = π±i,j−k ◦ (τ±)k.

It is also obvious that
U+
i,j = αi(U

−
i,j+1)

where αi : X−
∼−→ X+ is the isomorphism introduced in Remark 3.13 and that

π+
i,j ◦ αi = π−i,j+1.

Moreover we have

FX±(U±1,j) = U±2,j and FX±(U±2,j) = U±1,j

and if we simply denote by FU the k′-morphisms U±1,j → U±2,j and U±2,j → U±1,j which are
induced by FX± , the squares of k′-scheme morphisms

U±1,j
FU−−−−−−−−→ U±2,j

π+
1,j

y
yπ+

2,j

Y1 ×k′ Y2 −−−−−→
FY1×FY2

Y1 ×k′ Y2

and

U±2,j
FU−−−−−−−−→ U±1,j

π+
2,j

y
yπ+

1,j

Y1 ×k′ Y2 −−−−−→
FY1×FY2

Y1 ×k′ Y2

commute.
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6. The vector bundle structure

THEOREM 6.1. — For i = 1, 2 and each j ∈ Z the morphism

π±i,j : U±i,j → Y1 ×k′ Y2

is a rank r vector bundle.

Proof : First of all it is not difficult to see that π±i,j has a natural structure of generalized
vector bundle structure in the sense of Grothendieck, the fiber of which through a K-
rational point L± ∈ X± is the vector space

HomOF ′ ,γ(C±2 , (K ⊗k′ E′1)/B±1 )

of OF ′ -linear maps f±1 : C±2 → (K ⊗k′ E′1)/B±1 which exchange the automorphisms
induced by the multiplications by γ2 and γ1 if i = 1, and the vector space

HomOF ′ ,γ(C±1 , (K ⊗k′ E′2)/B±2 )

of OF ′ -linear maps f±2 : C±1 → (K ⊗k′ E′2)/B±2 which exchange the automorphisms
induced by the multiplications by γ1 and γ2 if i = 2.

Therefore it suffices to show that the rank of this generalized vector bundle is constant
of value r. But this is a direct consequence of the following proposition. �

PROPOSITION 6.2. — For i = 1, 2 let Mi be a (K ⊗k′ OF ′)-lattice in E ′i where K is
some field extension of k′.

We consider OF ′ [γ1] and OF ′ [γ2] as quotients of the 2-dimensional regular local ring
OF ′ [[T ]] by sending T onto γ1 and γ2 respectively.

Then the dimension of the K-vector space

HomK⊗k′OF ′ [[T ]](M2, (K ⊗k′ E′1)/M1)

is equal to r.

Proof : For simplicity we will only consider the case K = k′, the proof for K arbitrary
being the same. In order to prove the proposition it is sufficient to prove that the complex

RHomOF ′ [[T ]](M2, E
′
1/M1)

is concentrated in degree 0 and that its Euler-Poincaré characteristic is equal to r.
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(a) We have a distinguished triangle

RHomOF ′ [[T ]](M2,M1)→ RHomOF ′ [[T ]](M2, E
′
1)→ RHomOF ′ [[T ]](M2, E

′
1/M1)→

in the derived category of k′-vector spaces. Moreover RHomOF ′ [[T ]](M2, E
′
1) is zero in

this derived category as the endomorphism

RHomOF ′ [[T ]](P2(γ2), E′1) = RHomOF ′ [[T ]](M2, P2(γ1))

of this complex is at the same time zero and an isomorphism. We thus have an
isomorphism

RHomOF ′ [[T ]](M2, E
′
1/M1)

∼−→ RHomOF ′ [[T ]](M2,M1)[1]

in the derived category.
The complex

RHomOF ′ [[T ]](M2,M1)

is concentrated in degrees 1 and 2 as HomOF ′ [[T ]](M2,M1) is obviously zero and as
OF ′ [[T ]] is a regular local ring of dimension 2. To prove the proposition it is thus sufficient
to prove that

Ext2
OF ′ [[T ]](M2,M1) = (0)

and that the Euler-Poincaré characteristic of RHomOF ′ [[T ]](M2,M1) is equal to −r.
(b) Let us take a more geometric point of view. Let S be the germ of surface

Spec(OF ′ [[T ]]) and, for α = 1, 2 let

ια : Cα = Spec(OF ′ [γα]) ↪→ S

be the germ of curve with equation Pα(T ) = 0. By hypothesis these two curves are
integral and the support of their intersection is the origin s = ($F = 0, T = 0) of S. For
α = 1, 2 the OF ′ [γα]-module Mα defines a torsion free coherent OCα-module of generic
rank 1 that we will also denote by Mα. Clearly we have

RHomOF ′ [[T ]](M2,M1) = RHomOS(ι2,∗M2, ι1,∗M1)

and the support of RHomOS(ι2,∗M2, ι1,∗M1) is {s}.
(c) Let us now show that

Ext2
OS(ι2,∗M2, ι1,∗M1) = (0).

Let M̃2 be the saturated module

M̃2 = OE′2M2 ⊂ OE′2
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From the geometric point of view M̃2 is nothing else than the free O
C̃2

-module of rank

one π∗2M2 where π2 : C̃2 → C2 is the normalization of the curve C2. We have an injective
map of OS-modules

ι2,∗M2 ↪→ ι2,∗π2,∗M̃2

and then a surjective map of k′-vector spaces

Ext2
OS(ι2,∗π2,∗M̃2, ι1,∗M1)� Ext2

OS(ι2,∗M2, ι1,∗M1)

(all the Ext3
OS ’s are zero as S is a regular surface). It is thus sufficient to prove that

Ext2
OS(ι2,∗π2,∗M̃2, ι1,∗M1) = (0).

But, by Grothendieck duality (cf. [Ha]) this last Ext group is isomorphic to

Ext2
O
C̃2

(M̃2, L(ι2 ◦ π2)!ι1,∗M1)

and as M̃2 is a free Õ
C̃2

-module of rank 1 it is isomorphic to

H2L(ι2 ◦ π2)!ι1,∗M1.

As S is a regular surface and C2 is a Cartier divisor on S, the dualizing complexes KS

and K
C̃1

are of the form ωS[2] and ω
C̃2

[1] where ωS and ω
C̃2

are invertible modules and

L(ι2 ◦π2)!ι1,∗M1 is isomorphic to L(ι2 ◦π2)∗ι1,∗M1[−1]. As this last complex is obviously
concentrated in degrees ≤ 1 the assertion follows.

(d) Finally, thanks to a result of Deligne (see Proposition 6.3 and its corollary
below) it follows that the Euler-Poincaré characteristic of RHomOS(ι2,∗M2, ι1,∗M1) is
equal to

(−1)dim(C1)mult(C2, C1)

where mult(C2, C1) is the intersection multiplicity of C2 and C1 on S. By definition this
intersection multiplicity is equal to r. This concludes the proof of Proposition 6.2. �

PROPOSITION 6.3 (Deligne). — Let (X,x) be a germ of smooth variety over a field k.
For simplicity we assume that x is rational over k. Let ι1 : Y1 ↪→ X and ι2 : Y2 ↪→ X
be two integral closed subschemes of X such that dim(Y1) + dim(Y2) = dim(X) and that
(Y1 ∩ Y2)red = {x}. Let K1 and K2 be two bounded complexes of flat quasi-coherent
OX-modules. We assume that all the cohomology sheaves of K1 (resp. K2) are coherent
OX-modules with support in Y1 (resp. Y2).

Then Γ(X,K1⊗OXK2) is a bounded complex of k-vector spaces with finite dimensional
cohomology and its Euler-Poincaré characteristic

∑

n

(−1)ndimkΓ(X,Hn(K1 ⊗OX K2))
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is equal to
m(Y1, Y2)rkη1(K1)rkη2(K2)

where m(Y1, Y2) is the intersection multiplicity of Y1 and Y2, i.e.

m(Y1, Y2) =
∑

n

(−1)ndimkTorOX,xn (OY1,x,OY2,x),

and where, for α = 1, 2

rkηα(Kα) =
∑

n

(−1)ndimκ(ηα)Hn(Kα)ηα

is the rank of Kα at the generic point ηα of Yα.

Proof : See [SGA4 1
2
] [Cycle] Thm. 2.3.8 (iii). Deligne’s argument can be easily modified

to avoid the use of `-adic cohomology. �

COROLLARY 6.4. — Let us assume moreover that Y2 is a complete intersection in X.
Let M1 and M2 be two coherent modules on Y1 and Y2 respectively with generic rank r1

and r2. Then the complex of k-vector spaces

RHomOX (ι2,∗M2, ι1,∗M1)

has bounded and finite dimensional cohomology and its Euler-Poincaré characteristic is
equal to

(−1)dim(Y1)m(Y2, Y1)r1r2.

Proof : For α = 1, 2 let
Kα → ια,∗Mα → 0

be a finite resolution of the OX -module ια,∗Mα by free OX -modules of finite rank.
Obviously the complexes K1 and K2 satisfy the hypotheses of the above proposition and
rkηα(Kα) = rα.

In the derived category of k-vector spaces the complex

RHomOX (ι2,∗M2, ι1,∗M1)

is isomorphic to
HomOX (K2,K1) = Γ(X,K∨2 ⊗OX K1)

where K∨2 = HomOX (K2,OX) is also a bounded complex of free OX-modules of finite
rank. As X is local and smooth over k, OX [dim(X)] is a dualizing complex for X and as
Y2 is a complete intersection in X, OY2 [dim(Y2)] is a dualizing complex for Y2. Therefore,
by Grothendieck duality we have

RHomOX (ι2,∗M2,OX [dim(X)]) = ι2,∗RHomOY2
(M2,OY2 [dim(Y2)])

and thus K∨2 is isomorphic to ι2,∗RHomOY2
(M2,OY2)[−dim(Y1)] in the derived category

of OX -modules. In particular

rkη2(K2) = (−1)−dim(Y1)r2.

Now the corollary is an immediate consequence of the proposition.
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7. Proof of the main theorem

Let us define two closed embeddings

(7.1) i1, i2 : X ′ ↪−−→X

by
i1(L−) = α2(L−) = (1⊕$E2)L−

and
i2(L−) = α1(L−) = ($E1 ⊕ 1)L−

if r is even and by
i1(L+) = α−1

1 (L+) = ($−1
E1
⊕ 1)L+

and
i2(L+) = α−1

2 (L+) = (1 ⊕$−1
E2

)L+

if r is odd.
By definition we have

U1 := X − i1(X ′) = U+
1,−r′ ⊂ X ⊂ X+

and
U2 := X − i2(X ′) = U+

2,−r′ ⊂ X ⊂ X+

if r is even and
U1 := X − i1(X ′) = U−1,−r′ ⊂ X ⊂ X−

and
U2 := X − i2(X ′) = U−2,−r′ ⊂ X ⊂ X−

if r is odd. Therefore we have projections

(7.2) π1 : U1 → Y1 ×k′ Y2 and π2 : U2 → Y1 ×k′ Y2

which are both rank r vector bundles by Theorem 6.1 (πi = π+
i,−r′ if r is even and

πi = π−i,−r′ if r is odd).
Theorem 4.2 follows. �
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Part III

8. Descent from k′ to k

Up to this point our approach to the fundamental lemma was essentially elementary in
that it was based on counting points of algebraic varieties. However to treat the extensions
of odd degree of k and thus the original statement of Langlands and Shelstad we envisage
the use of `-adic cohomology and the Grothendieck fixed point formula (cf. [Gr]). Indeed
whereas all the structures considered so far are only defined over k′ we predict that their
`-adic cohomology descends to k. Even though we cannot prove this assertion we will
now explain more precisely its meaning.

In §3 we have introduce the projective k′-schemes Y1 and Y2 together with the
Frobenius endomorphisms FY1 and FY2 relative to k. We set

(Y, FY ) = (Y1, FY1) ×k′ (Y2, FY2 ).

In the statement of Theorem 4.2 we have introduced the projective k′-schemes X
and X ′ together with the Frobenius endomorphisms FX and FX ′ relative to k. In
the course of the proof of Theorem 4.2 we have introduced the closed embeddings
i1 : X ′ ↪−−→X and i2 : X ′ ↪−−→X and the projections π1 : U1 := X − i1(X ′) ↪−−→Y and
π2 : U2 := X − i2(X ′) ↪−−→Y . We have shown that π1 and π2 have a natural structure of
rank r vector bundle. Let us denote by

j1 : U1 ↪−−→X and j2 : U2 ↪−−→X

the obvious open embeddings.
Then the diagrams

(8.1)

X ′
i1

↪−−−−→ X
j1←−−−−↩ U1yπ1

Y

X ′
i2

↪−−−−→ X
j2←−−−−↩ U2yπ2

Y
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are exchanged by the Frobenius endomorphisms FX ′ , FX and FY : there are unique
k′-scheme morphisms FU : U1 −→ U2 and FU : U2 −→ U1 such that the diagrams

(8.2)

X ′
i1

↪−−−−→ X
j1←−−−−↩ U1

π1−−−−→→ Y

FX′

y
yFX

yFU
yFY

X ′
i2

↪−−−−→ X
j2←−−−−↩ U2

π2−−−−→→ Y

X ′
i2

↪−−−−→ X
j2←−−−−↩ U2

π2−−−−→→ Y

FX′

y
yFX

yFU
yFY

X ′
i1

↪−−−−→ X
j1←−−−−↩ U1

π1−−−−→→ Y

are commutative.
Let us fix a prime number ` which is not equal to the characteristic of k. For any

quasi-projective (resp. projective) variety Z over k′ we set

RΓc(Z) = RΓc(k ⊗k′ Z,Q`)

(resp.
RΓ(Z) = RΓ(k ⊗k′ Z,Q`) ).

We consider the following morphisms of distinguished triangles in the derived category
Db

c (Spec(k′),Q`)

RΓc(U2)
j2,!−−−−→ RΓ(X)

i∗2−−−−→ RΓ(X ′)
∂2−−−−→ RΓc(U2)[1]

F∗U

y F∗X

y
yF∗X′

yF∗U [1]

RΓc(U1)
j1,!−−−−→ RΓ(X)

i∗1−−−−→ RΓ(X ′)
∂1−−−−→ RΓc(U1)[1]

and

RΓc(U1)
j1,!−−−−→ RΓ(X)

i∗1−−−−→ RΓ(X ′)
∂1−−−−→ RΓc(U1)[1]

F∗U

y F∗X

y
yF∗X′

yF∗U [1]

RΓc(U2)
j2,!−−−−→ RΓ(X)

i∗2−−−−→ RΓ(X ′)
∂2−−−−→ RΓc(U2)[1]

(cf. [SGA4] Exp. XVII, 5.1.16).
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We also consider the morphisms

π!
1 : RΓ(Y )[−2r](−r) −→ RΓc(U1)

and
π!

2 : RΓ(Y )[−2r](−r) −→ RΓc(U2)

in that derived category which are induced by the trace morphisms

tr1 : Rπ1,!Q` −→ Q`[−2r](−r) and tr2 : Rπ2,!Q` −→ Q`[−2r](−r)

(cf. [SGA 4] Exp. XVIII, Thm. 2.9).

PROPOSITION 8.3. — The morphisms π!
1 and π!

2 are both isomorphisms and the squares
in Db

c (Spec(k′),Q`) which are induced by the right squares of the diagrams (8.2),

RΓ(Y )[−2r](−r) π!
2−−−−→ RΓc(U2)

F∗Y [−2r](−r)
y

yF∗U
RΓ(Y )[−2r](−r) −−−−→

π!
1

RΓc(U1)

and

RΓ(Y )[−2r](−r) π!
1−−−−→ RΓc(U1)

F∗Y [−2r](−r)
y

yF∗U
RΓ(Y )[−2r](−r) −−−−→

π!
2

RΓc(U2)

are commutative.

Proof : As π1 and π2 are both rank r vector bundles (cf. Theorem 6.1) the trace
morphisms tr1 and tr2, and therefore the induced morphisms π!

1 and π!
2, are all

isomorphisms (cf. [SGA 4] Exp. XVIII, Thm. 2.9).
The commutative right squares of the diagrams (8.2) induce isomorphisms

f1 : F ∗Y Rπ2,!Q`
∼−→ Rπ1,!Q`

and
f2 : F ∗Y Rπ1,!Q`

∼−→ Rπ2,!Q`
in Db

c (Y,Q`). The composed isomorphisms f1 ◦ F ∗Y (f2) and f2 ◦ F ∗Y (f1) are the natural
lifts of the Frobenius endomorphisms of Y with respect to k′. But, as the trace
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morphisms tr1 : Rπ1,!Q` −→ Q`[−2r](−r) and tr2 : Rπ2,!Q` −→ Q`[−2r](−r) are both
isomorphisms, we may view f1 and f2 as automorphisms of Q`[−2r](−r). It follows that
f1 and f2 are induced by the multiplication on the constant sheaf Q` by locally constant
functions ϕ1 : Y → Q` and ϕ2 : Y → Q` such that the products ϕ1F

∗
Y (ϕ2) and ϕ2F

∗
Y (ϕ1)

are both the constant function with value q2r.
To conclude the proof of the proposition it is sufficient to check that the functions ϕ1

and ϕ2 are both constant with value qr. But this a direct consequence of the base change
theorem in etale cohomology ([SGA 4] Exp. XVII, Thm. 5.2.6) and the next lemma. �

LEMMA 8.4. — Let E1 and E2 be two vector spaces of the same finite dimension e over
the finite field k′. Let F : E1 → E2 be a σ-linear bijective map. Let us view E1 and E2

as affine k′-schemes and F as a finite k′-scheme morphism. Then we have

tr1 ◦ F ∗ = qetr2

where tri : H2e
c (k ⊗k′ Ei,Q`) ∼−→ Q`(−e) is the trace morphism and

F ∗ : H2e
c (k ⊗k′ E2,Q`)→ H2e

c (k ⊗k′ E1,Q`)

is induced by F .

Proof : The degree of the k′-scheme morphism F : E1 → E2 is qe. �

It is now clear that the Langlands-Shelstad conjecture, and more generally the equality

∣∣XFf
X

∣∣−
∣∣X ′F

f

X′
∣∣ = qfr ·

∣∣Y F
f
Y1

1

∣∣ ·
∣∣Y F

f
Y1

2

∣∣

for every positive odd integer f , would be an immediate consequence of the Grothendieck
fixed point formula (cf. [Gr]) and the following conjecture :

CONJECTURE 8.5. — The two distinguished triangles

RΓ(Y )[−2r](−r) (π!
1)−1◦j1,!−−−−−−−−→RΓ(X)

i∗1−−−−→RΓ(X ′)
∂1−−−−→RΓ(Y )[1− 2r](−r)

and

RΓ(Y )[−2r](−r) (π!
2)−1◦j2,!−−−−−−−−→RΓ(X)

i∗2−−−−→RΓ(X ′)
∂2−−−−→RΓ(Y )[1− 2r](−r)

are identical.

To conclude this section we will discuss a possible homotopy argument for proving the
equality of the restriction maps i∗1 and i∗2.

The k′-schemes X, X ′ and Yi are naturally embedded into Grassmann varieties G, G ′
and Hi.
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More precisely, let G be the Grassmann variety of (m1 + m2 + r)-planes in the
2(m1 +m2 + r)-dimensional k′-vector space V1 ⊕ V2 where we have set

Vi =

{
$−mi−r

′

Ei
OE′

i
/$mi+r

′

Ei
OE′

i
if r = 2r′ is even,

$−mi−r
′−1

Ei
OE′

i
/$mi+r

′

Ei
OE′

i
if r = 2r′ + 1 is odd,

let G ′ be the Grassmann variety of (m1 +m2 + r− 1)-planes in the 2(m1 +m2 + r− 1)-
dimensional k′-vector space V ′1 ⊕ V ′2 where we have set

V ′i =

{
$−mi−r

′

Ei
OE′

i
/$mi+r

′−1
Ei

OE′
i

if r = 2r′ is even,

$−mi−r
′

Ei
OE′

i
/$mi+r

′

Ei
OE′

i
if r = 2r′ + 1 is odd,

and let Hi be the Grassmann variety of mi-planes in the 2mi-dimensional k′-vector space

Wi = $−miEi
OE′

i
/$mi

Ei
OE′

i
.

The multiplications by $F and γi induce an endomorphism νi and an automorphism ui
of Vi (resp. V ′i , resp. Wi). Then, if we set

ν = ν1 ⊕ ν2 and u = u1 ⊕ u2

we have the obvious identifications :

X = {L ∈ G | ν(L) ⊂ L, u(L) = L and b1 ≥ m1, b2 ≥ m2}

where b1 = dim(L ∩ (V1 ⊕ (0))) and b2 = dim(L ∩ ((0) ⊕ V2)),

X ′ = {L′ ∈ G′ | ν(L′) ⊂ L′, u(L′) = L′ and b′1 ≥ m1, b
′
2 ≥ m2}

where b′1 = dim(L′ ∩ (V ′1 ⊕ (0))) and b′2 = dim(L′ ∩ ((0) ⊕ V ′2)), and

Yi = {Mi ∈ Hi | νi(Mi) ⊂Mi and ui(Mi) = Mi}.

CONJECTURE 8.6. — The restriction maps

RΓ(G)→ RΓ(X),

RΓ(G ′)→ RΓ(X ′)

and
RΓ(Hi)→ RΓ(Yi)

induce epimorphisms on the cohomology.
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Remark 8.7 : It follows from Conjecture 8.6 that the cohomology complexes RΓ(X),
RΓ(X) and RΓ(X ′) should have all their odd cohomology groups equal to (0) and that,
for every even integer n all the eigenvalues of Frobenius acting on the n-th cohomology
group should be equal to q

n
2 .

In particular the two boundary maps ∂1, ∂2 : RΓ(X ′)→ RΓ(Y )[1− 2r](−r) should be
zero and thus equal.

For each flag

F = ((0) ⊂ F 2 ⊂ F 1 ⊂ V1 ⊕ V2)

of vector subspaces of V1 ⊕ V2 with F 1 of codimension 1 and F 2 of dimension 1 and for
each isomorphism ι from the vector space V ′1 ⊕V ′2 onto the vector space F 1/F 2, we have
an obvious closed embedding

iF,ι : G′ ↪→ G.
As the k′-scheme of pairs (F, ι) is connected, the restriction maps

i∗F,ι : RΓ(G)→ RΓ(G ′)

are all equal. We will simply denote by i∗ the common value of these restriction maps.
Let us denote by Ni the regular nilpotent endomorphism of Vi which is induced by

the multiplication by $Ei . By definition we have

V ′i =

{
Coker(Ni)←←−−Vi if r is even

Im(Ni) ↪−−→Vi if r is odd

Moreover the endomorphism Ni of Vi induces an isomorphism of Coker(Ni) onto Im(Ni)
and we may identify these two subquotients of Vi. If

F = ((0) ⊂ Ker(N1) ⊕ (0) ⊂ V1 ⊕ Im(N2) ⊂ V1 ⊕ V2)

and if ι is the isomorphism

V ′1 ⊕ V ′2
∼−→ (V1 ⊕ Im(N2))/(Ker(N1) ⊕ (0))

which is induced by the above identifications, the closed embedding iF,ι maps X ′ into X
and extends the closed embedding i1 : X ′ ↪→ X. Similarly, if

F = ((0) ⊂ (0) ⊕Ker(N2) ⊂ Im(N1)⊕ V2 ⊂ V1 ⊕ V2)

and ι is the isomorphism

V ′1 ⊕ V ′2
∼−→ (Im(N1)⊕ V2)/((0) ⊕Ker(N2))
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which is induced by the above identifications, the closed embedding iF,ι maps X ′ into
X and extends the closed embedding i2 : X ′ ↪→ X. In particular, for i = 1, 2, we have a
commutative diagram

RΓ(G)
i∗−→ RΓ(G ′)y

y
RΓ(X) −→

i∗
i

RΓ(X ′)

and the equality i∗1 = i∗2 follows from Conjecture 8.6.

9. U(1, 1)

In this section we assume that n1 = n2 = 1. Replacing (γ1, γ2) by (1, γ−1
1 γ2) we may

also assume that γ1 = 1. Then γ2 − 1 is of valuation r in F ′.
Let K be a field extension of k′. If L± is a (K ⊗k′ OF ′)-lattice in F ′ ⊕F ′ of index δ±

(δ+ = 0 and δ− = 1) we necessarily have

B±i = $
−b±

i
F (K ⊗k′ OF ′) ⊂ C±i = $

−c±
i

F (K ⊗k′ OF ′) ⊂ K ⊗k′ F ′

for some integers b±i ≤ c±i such that

b±1 + c±2 = b±2 + c±1 = δ±.

Therefore the conditions
(1 ⊗ (γ1 ⊕ γ2))L± = L±

and
c±1 − b±1 = c±2 − b±2 ≤ r

are equivalent.
If r = 2r′ is even it follows that

X = X+[−r′,−r′]

is simply the k′-scheme of OF ′ -lattices L+ in F ′ ⊕ F ′ satisfying the conditions

{
$r′
FOF ′ ⊕$r′

FOF ′ ⊂ L+ ⊂ $−r′F OF ′ ⊕$−r
′

F ′F ′
ind(L+) = 0,

and that
X ′ = X−[1− r′, 1 − r′]
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is simply the k′-scheme of OF ′ -lattices L− in F ′ ⊕ F ′ satisfying the conditions

{
$r′−1
F OF ′ ⊕$r′−1

F OF ′ ⊂ L− ⊂ $−r
′

F OF ′ ⊕$−r
′

F ′F ′
ind(L−) = 1.

Similarly, if r = 2r′ + 1 is odd it follows that

X = X−[−r′,−r′]

is simply the k′-scheme of OF ′ -lattices L− in F ′ ⊕ F ′ satisfying the conditions

{
$r′
FOF ′ ⊕$r′

FOF ′ ⊂ L+ ⊂ $−r′−1
F OF ′ ⊕$−r

′−1
F ′F ′

ind(L−) = 1,

and that
X ′ = X+[−r′,−r′]

is simply the k′-scheme of OF ′ -lattices L+ in F ′ ⊕ F ′ satisfying the conditions

{
$r′
FOF ′ ⊕$r′

FOF ′ ⊂ L+ ⊂ $−r′F OF ′ ⊕$−r
′

F ′F ′
ind(L+) = 0.

If r = 2r′ is even (resp. r = 2r′ + 1 is odd) let us denote by V the r-dimensional
k′-vector space

$−r
′

F OF ′/$r′
F OF ′

(resp.

$−r
′−1

F OF ′/$r′
FOF ′ )

and by N the nilpotent endomorphism of V which is induced by the multiplication by
$F . Then X may be identified with the k′-scheme of k′-vector subspaces

A ⊂ V ⊕ V

satisfying the conditions {
(N ⊕N)(A) ⊂ A
dim(A) = r.

Similarly, if r = 2r′ is even (resp. r = 2r′ + 1 is odd) let us denote by V ′ the (r − 1)-
dimensional k′-vector space

$−r
′

F OF ′/$r′−1
F OF ′

(resp.

$−r
′

F OF ′/$r′
FOF ′ )
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and by N ′ the nilpotent endomorphism of V ′ which is induced by the multiplication by
$F . Then X ′ may be identified with the k′-scheme of k′-vector subspaces

A′ ⊂ V ′ ⊕ V ′

satisfying the conditions {
(N ′ ⊕N ′)(A′) ⊂ A′

dim(A) = r − 1.

Moreover under these identifications the closed embeddings i1 and i2 defined in (7.1)
may be described in the following way. Let us consider the diagram

V ⊕ V

V ⊕ V ′ V ′ ⊕ V

V ′ ⊕ V ′

1⊕e
�
�� e⊕1

@
@I

p⊕1
@
@R 1⊕p�

�	

where e : V ′ ↪−−→V is the embedding

$−r
′

F OF ′/$r′−1
F OF ′ ↪−−→$−r

′

F OF ′/$r′
FOF ′

which is induced by the multiplication by $F (resp. the canonical embedding

$−r
′

F OF ′/$r′
FOF ′ ↪−−→$−r

′−1
F OF ′/$r′

FOF ′ )
and where p : V −−→→V ′ is the canonical projection

$−r
′

F OF ′/$r′
FOF ′ −−→→$−r

′

F OF ′/$r′−1
F OF ′

(resp. the projection

$−r
′

F OF ′/$r′
FOF ′ −−→→$−r

′

F OF ′/$r′−1
F OF ′

which is induced by the multiplication by $F ). Let us remark that e identifies V ′ with
Im(N) and N ′ with the restriction of N to its image, and that p identifies V ′ with
Coker(N) and N ′ with the regular nilpotent endomorphism induced by N on its cokernel.
Then

i1(A′) = (1⊕ e)((p ⊕ 1)−1(A′))

and
i2(A′) = (e⊕ 1)((1 ⊕ p)−1(A′)).
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THEOREM 9.1. — The two restriction maps

i∗1 , i
∗
2 : RΓ(X)→ RΓ(X ′)

are equal.

Proof : As we have explained at the end of Section 8 it is sufficient to prove that the
restriction maps

RΓ(G)→ RΓ(X)

where G is the Grassmann variety of r-planes in V ⊕ V , and

RΓ(G ′)→ RΓ(X ′)

where G ′ is the Grassmann variety of (r− 1)-planes in V ′ ⊕ V ′, induce epimorphisms on
the cohomology. But this has been proved by Hotta and Shimomura as a consequence of
a result of Spaltenstein (cf. [Ho-Sh] Lemma 8.1 and its proof). �

COROLLARY 9.2. — Conjecture 8.5 holds in the case n1 = n2 = 1. In particular, for
any finite extension kf of degree f of k we have the identity

|X+(kf )| − |X−(kf )| = (−1)rqrf · |Y(kf )|

with |Y(kf )| = 1.

Proof : We know already that the two restriction maps i∗1 and i∗2 are equal.
As Y is clearly equal to Spec(k′) (m1 = m2 = 0) it follows from Section 7 that

Ui = X − ii(X ′) is a standard affine space of dimension r over k′. But X ′ is isomorphic
to the variety X after having replaced r by r − 1. Therefore an obvious induction on r
shows that X is a disjoint union of standard affine spaces, one for each dimension between
0 and r. Consequently either the source or the target of ∂i is zero and we get

∂1 = ∂2 = 0.

Finally let us consider the two Gysin maps j1,! and j2,!. The only degree where these
two maps can be non zero is the top degree 2r. In this degree the `-adic cohomology groups
with compact supports of U1, U2 and X can be all canonically identified with Q`(−r).
Under these identifications (π!

1) ◦ j1,! and (π!
2) ◦ j2,! become the identity of Q`(−r) and

are thus equal. �

In the U(1, 1) case the closed embeddings i1, i2 : X ′ ↪−−→X are homotopic. We will
conclude this section by constructing such an homotopy and giving another proof of

Theorem 9.1. We introduce the projective k′-scheme
˜̃
X of partial flags

L ⊂ A ⊂ H ⊂ V ⊕ V
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of vector subspaces such that L, A and H are of dimensions 1, r and 2r− 1 respectively,

and are stable by N ⊕N . Obviously, for each point L ⊂ A ⊂ H in
˜̃
X we have

L ⊂ Ker(N) ⊕Ker(N)

and

H ⊃ Im(N) ⊕ Im(N).

By forgetting either A or (L,H) we get two k′-scheme morphisms

(9.3)

˜̃
X

g̃−−−−→ X

f̃

y
S × S ′

where S is the projective line of lines L in the two dimensional k′-vector space Ker(N)⊕
Ker(N) and S ′ is the projective line of hyperplanes H in V ⊕ V which contain the
codimension 2 subspace Im(N) ⊕ Im(N). We have a closed embedding

S ↪→ S × S ′, L 7→ (L, (N ⊕N)−(r−1)(L)).

Let us denote by

(9.4)

X̃
g−−−−→ X

f

y
S

the inverse image of the diagram (9.3) by that closed embedding.
In S we have two k′-rational points s1 and s2 given by the lines Ker(N) ⊕ (0) and

(0) ⊕ Ker(N) in Ker(N) ⊕ Ker(N). The restriction of g to the fiber of f over si is an

isomorphism onto ii(X
′). We will denote by ĩi : X ′ ↪→ X̃ the obvious lifting of ii to X̃

with image that fiber. More generally, for any point s in S, corresponding to a line L in
Ker(N)⊕Ker(N), the restriction of g to the fiber of f over s is an isomorphism onto the
closed subset

{A ∈ X | L ⊂ A ⊂ (N ⊕N)−(r−1)(L)}
of X.
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PROPOSITION 9.5. — (i) The projective morphism g is birational. More precisely it is
an isomorphism over the complementary subset in X of the closed subset

i1(X ′) ∩ i2(X ′) = {A ∈ X | Ker(N) ⊕Ker(N) ⊂ A ⊂ Im(N) ⊕ Im(N)}

and its restriction to this closed subset is a trivial fibration in projective lines.

(ii) The projective morphism f is a locally trivial fibration for the Zariski topology,
with all its fibers isomorphic to X ′. More precisely, if {i, j} = {1, 2} the restriction of
f to the Zariski open subset S − {si} ⊂ S is isomorphic to the canonical projection
(S − {si}) ×X ′ → S − {si} by an isomorphism which exchanges the closed embeddings

ĩj : X ′ ↪→ f−1(S − {si})

and
X ′ ∼= {sj} ×X ′ ⊂ (S − {si})×X ′.

Moreover the gluing datum between the above trivializations of f over the open subsets
S − {s1} and S − {s2} is given by a morphism

S − {s1, s2} → Aut(X ′)

which factors through the canonical morphism from the centralizer of N ′ ⊕ N ′ in
GL(V ′ ⊕ V ′) to the automorphism group of X ′.

Proof : Part (i) is obvious.
Let us prove Part (ii). The open subset S−{s1} ⊂ S may be identified with the affine

line of linear maps ϕ : Ker(N) → Ker(N). For example s2 corresponds to ϕ = 0. The
fiber of f over a point ϕ is the closed subvariety

X(ϕ) = {A ∈ X | L(ϕ) ⊂ A ⊂ H(ϕ)}

of X where
L(ϕ) = {(ϕ(x2), x2) | x2 ∈ Ker(N)}

and
H(ϕ) = {(x1, x2) ∈ V ⊕ V | Nr−1(x1) = ϕ ◦Nr−1(x2)}.

Let us fix a cyclic vector v ∈ V for N . Then N r−1(v) is a basis of Ker(N) and any
linear map ϕ as above maps Nr−1(v) onto λ(ϕ)Nr−1(v) for a unique scalar λ(ϕ). Let us
denote by ϕ̃ the unique endomorphism of V such that

ϕ̃(v) = λ(ϕ)v

and
N ◦ ϕ̃ = ϕ̃ ◦N.
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Obviously ϕ̃ extends ϕ and we may identify H(ϕ)/L(ϕ) with Im(N)⊕ Im(N) = V ′⊕ V ′
by sending (x1, x2) ∈ H(ϕ) onto

(x1 − ϕ̃(x2), N(x2)).

As this identification exchanges the endomorphisms which are induced by N ⊕ N it
induces an isomorphism from X(ϕ) onto X ′. Letting ϕ vary we get an isomorphism from
the restriction of f to S−{s1} onto the canonical projection (S−{s1})×X ′ → S−{s1}.
Clearly this isomorphism exchanges the closed embeddings ĩ2 : X ′ ↪→ f−1(S−{s1}) and
X ′ ∼= {s2} ×X ′ ⊂ (S − {s1}) ×X ′.

Similarly we identify S−{s2} with the affine line of linear maps ψ : Ker(N)→ Ker(N)
and we construct an isomorphism from the restriction of f to S−{s2} onto the canonical
projection (S − {s2}) × X ′ → S − {s2}. With obvious notations it is given by sending
(x1, x2) ∈ H(ψ) onto

(N(x1), x2 − ψ̃(x1)).

Over S − {s1, s2} the gluing datum between the two trivializations of f is given by
the morphism

S − {s1, s2} → Aut(X ′)

which sends ϕ = ψ−1 onto the automorphism of X ′ which is induced by the automor-
phism

(x1, x2) 7→ (−ϕ̃(x2), ϕ̃−1(x1) +N ′(x2))

of V ⊕ V . �

Another proof of Theorem 9.1 : It is sufficient to check that the two restriction maps

ĩ∗1 , ĩ
∗
2 : RΓ(X̃)→ RΓ(X ′)

are equal (we have i∗i = ĩ∗i ◦ g∗). By the Leray spectral sequence we have

RΓ(X̃) = RΓ(k ⊗k′ S,Rf∗Q`).

But the proposition implies that

(i) the complex Rf∗Q` is constant with value RΓ(X ′) on the open subsets S−{s1}
and S − {s2} of S and we can choose the trivializations in such way that ĩ∗1 and ĩ∗2 are
both induced by the identity of RΓ(X ′),

(ii) the gluing datum for Rf∗Q` on S−{s1, s2} is induced by the identity of RΓ(X ′)
as the centralizer of N ′ ⊕N ′ in GL(V ′ ⊕ V ′) is connected.

The theorem follows. �
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10. Remarks and examples

(10.1) In general the conductors m1, m2 and the order of the resultant r are difficult
to compute. Nevertheless there are some interesting particular cases where they admit
simple formulae.

In general we have

mi = vE′i(P
′
i (γi))− δ(E′i/F ′)

and

r = vE′
i
(Pj(γi)).

Here vE′i : E′i → Z ∪ {+∞} is the discrete valuation of E ′i, P
′
i (T ) is the derivative of

the minimal polynomial Pi(T ) of γi over F ′, δ(E′i/F
′) is the order of the different of the

totally ramified extension E ′i/F
′ and {i, j} = {1, 2} (cf. [Se] Ch. III, §6, Corollaire 1).

Moreover, if ni is prime to the characteristic of k we have

δ(E′i/F
′) = ni − 1

(cf. [Se] Ch. III, §6, Proposition 13).
Therefore, if we denote by ai the constant term of the expansion of γi as power series

in $Ei with coefficients in k′ and we put

vi = vE′
i
(γi − ai)

we have :

(i) mi = 0 and r = vE′j (γj − γi) if ni = 1,

(ii) mi = (ni − 1)(vi − 1) if ni > 1 is prime to the characteristic of k and vi is
prime to ni,

(ii) r ≥ Inf(n1v2, n2v1) with equality if n1v2 6= n2v1.

(10.2) The case r = 0. In this case the k′-schemes X+ and X− are not connected :
they are disjoint sums

X+ =
∐

n∈Z
X+[−n, n] and X− =

∐

n∈Z
X−[1− n, n]

where each component X+[−n, n] or X−[1 − n, n] is isomorphic to Y = Y1 ×k′ Y2. We
have X = X+[0, 0] = Y with FX = FY and X ′ = X−[1, 1] = ∅, and Conjecture 8.5 and
the Langlands-Shelstad conjecture are obvious.

(10.3) The case n1 = 1 < n2 and r > 0. In this case, we have m1 = 0 and
Y1 = Spec(k′), we may assume that γ1 = 1 and thus γ2 − 1 is of order r in E ′2.
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On Y = Y2 we have the rank r vector bundles

π1 : U1 → Y

and
π2 : U2 → Y

defined by
π−1

2 (M2) = (M2/(γ2 − 1)M2)∨

where (M2/(γ2 − 1)M2)∨ is the dual of the r-dimensional vector space M2/(γ2 − 1)M2

and
π−1

2 (M2) = (γ2 − 1)−1M2/M2

respectively. For i = 1, 2 and for every integer j the rank r-vector bundle π±i,j : U±i,j → Y
which has been defined in Section 5 is isomorphic to πi : Ui → Y , the isomorphism being
given by

(B±1 , C
±
2 , f

±
1 ) 7→ (M2 = $

c±2
E2
C±2 , x

∨
1 )

where x∨1 is induced by the image of the k′-linear form

F ′/B±1 → k′, α 7→ Res(α$
b±1 −1

F d$F )

by the transpose of the morphism

f±1 ◦$
−c±2
E2

: M2
∼−→ C±2 −−→F ′/B±1 ,

and

(B±2 , C
±
1 , f

±
2 ) 7→ (M2 = $

b±2
E2
B±2 , x2)

where x2 is the image of the vector

f±2 ($
−c±1
F ) ∈ E′2/B±2

by the isomorphism $
b±2
E2

: E′2/B
±
2
∼−→ E′2/M2.

In the next examples we assume that n1 and n2 are prime to the characteristic of k.
We choose the uniformizers $F and $Ei in such way that

$F = αi$
ni
Ei

in E′i for some αi ∈ k′.

(10.4) The case n1 = 1, γ1 = 1, n2 = 3, r = 2 and Char(k) > 3. In this case γ2 − 1
is of order 2 in E ′2 and m2 = 2. The k′-scheme Y2 = Z2 is a projective line (cf. Remark
3.14).
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Then the stratification of X = X+[−1,−1] by the values of b+1 and b+2 can be
symbolically represented by the following diagram

• •

• b+1 =1

b+2 =−1

b+1 =0

b+2 =−1

b+1 =−1

b+2 =−1

b+1 =0

b+2 =0

b+1 =−1

b+2 =0

b+1 =−1

b+2 =1

�
�

�
��	

�
�
�
���

� -

and the stratification of X ′ = X−[0, 0] by the values of b−1 and b−2 can be symbolically
represented by the following diagram

b−1 =1

b−2 =0

b−1 =0

b−2 =0

b−1 =0

b−2 =1

• •� -

In these representations the closed embeddings i1 (resp. i2) are given by

(b−1 , b
−
2 ) 7→ (b+1 , b

+
2 ) = (b−1 , b

−
2 − 1)

(resp.
(b−1 , b

−
2 ) 7→ (b+1 , b

+
2 ) = (b−1 − 1, b−2 ) ).

Let V2 be the 6-dimensional k′-vector space

V2 = $−3
E2
OE′i/$

3
E2
OE′i

and let N2 and ν2 be the nilpotent endomorphisms of V2 which are induced by the
multiplication by $E2 and $F , and let u2 be the automorphism of V2 which is induced
by the multiplication by γ2.

The stratum (b+1 = −1, b+2 = −1) is isomorphic to the k′-scheme of triples

(B2 ⊂ C2, x2)
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where B2 and C2 are vector subspaces of V2 of dimension 2 and 4 respectively such that

Ker(N2) ⊂ B2 ⊂ Ker(N3
2 ) ⊂ C2 ⊂ Ker(N5

2 )

and
(γ2 − 1)(C2) = B2,

and where x2 is a vector in C2/B2 such that

ν2(x2) 6= 0.

Obviously the k′-scheme of pairs (B2 ⊂ C2) as above is a projective line over k′ with
some marked point ∞ := (Ker(N2

2 ) ⊂ Ker(N4
2 )). For a given pair (B2 ⊂ C2) there exist

vectors x2 ∈ C2/B2 such that ν2(x2) 6= 0 if and only if (B2 ⊂ C2) is not equal to ∞.
Moreover, if this holds, the scheme of x2 ∈ C2/B2 such that ν2(x2) 6= 0 is isomorphic to
A1 ×Gm.

The stratum (b+1 = 0, b+2 = −1) is isomorphic to the k′-scheme of triples

(B2 ⊂ C2, x2)

where B2 and C2 are vector subspaces of V2 of dimension 2 and 3 respectively, such that

Ker(N2) ⊂ B2 ⊂ Ker(N3
2 )

and
Ker(N2

2 ) ⊂ C2 ⊂ Ker(N4
2 )

(the condition
(γ2 − 1)(C2) ⊂ B2

is automatic), and where x2 is a non zero vector in C2/B2. If B2 6= Ker(N2
2 ) we necessarily

have
C2 = B2 + Ker(N2

2 ) = Ker(N3
2 )

and if B2 = Ker(N2
2 ), C2 may vary freely in the projective line

Ker(N2
2 ) ⊂ C2 ⊂ Ker(N4

2 ).

Similarly, if C2 6= Ker(N3
2 ) we necessarily have

B2 = C2 ∩Ker(N3
2 ) = Ker(N2

2 ).

and if C2 = Ker(N3
2 ), B2 may vary freely in the projective line

Ker(N2) ⊂ B2 ⊂ Ker(N3
2 ).
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Therefore the k′-scheme of pairs (B2 ⊂ C2) as above may be obtained by gluing the two
projective lines over k′

Ker(N2) ⊂ B2 ⊂ Ker(N3
2 )

and
Ker(N2

2 ) ⊂ C2 ⊂ Ker(N4
2 )

along their marked points B2 = Ker(N2
2 ) and C2 = Ker(N3

2 ) respectively, and the
stratum (b+1 = 0, b+2 = −1) is a Gm-torsor on this k′-scheme.

The stratum (b+1 = −1, b+2 = 0) is isomorphic to the stratum (b+1 = 0, b+2 = −1).
The stratum (b+1 = 0, b+2 = 0) is equal to the k′-scheme of vector subspaces B2 = C2

of dimension 3 of V2 such that

Ker(N2
2 ) ⊂ B2 = C2 ⊂ Ker(N4

2 )

and is thus a projective line.
Similarly the stratum (b+1 = 1, b+2 = −1) and (b+1 = −1, b+2 = 1) are projective lines

over k′.

We may summarize this discussion by saying that the set X(k′) has

q′(q′−1)q′+(q′−1)(2q′+1)+(q′−1)(2q′+1)+(q′+1)+(q′+1)+(q′+1) = q′3+3q′2+q′+1

elements and that the set X ′(k′) has

(q′ − 1)(2q′ + 1) + (q′ + 1) + (q′ + 1) = 2q′2 + q′ + 1

elements, so that
|X(k′)| − |X ′(k′)| = q′2(q′ + 1).
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