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Introduction

This paper is inspired by Kisin’s article [Ki1], in which he studies deformations of Galois
representations of a local p-adic field which are defined by finite flat group schemes. The
result of Kisin most relevant to our paper is his construction of a kind of resolution of the
formal deformation space of the given Galois representation, by constructing a scheme which
classifies all finite flat group schemes giving rise to the deformed Galois representation. Our
purpose here is to globalize Kisin’s construction.

Let K be a finite extension of Qp, with residue field k. Let K0 be the maximal unramified
extension of Qp contained in K. Then K0 is the fraction field of the ring of Witt vectors
W = W (k). Let π be a uniformizer of K and E(u) ∈ W [u] the Eisenstein polynomial
that π satisfies. Let GK = Gal(K/K) be the absolute Galois group of K. Set S for the
ring of formal power series W [[u]]. Let φ : S → S be such that φ|W is the Frobenius
automorphism and with φ(u) = up.

Kisin’s construction is based on the existence of a fully faithful exact functor from a
suitable category of S-modules M equipped with a φ-linear endomorphism Φ to the category
of finite flat (commutative) group schemes of p-power rank over Spec (OK). This in turn
was inspired by work of Breuil [Br] who gave a similar but more complicated description
of such group schemes. A variant of this functor also works with coefficients: if R is a Zp-
algebra with finitely many elements, then there is a similar functor from a suitable category
of S ⊗Zp R-modules M with φ-linear endomorphism Φ to the category of finite flat group
schemes of p-power rank with R-action over SpecOK .

Let K∞/K be the extension obtained by adjoining a compatible system of pn-power
roots of π, and let GK∞ = Gal(K/K∞) be its absolute Galois group. Let OE be the p-adic
completion of S[1/u], a complete discrete valuation ring, with uniformizer p and residue field
k((u)) = k[[u]][1/u]. Then there exists an equivalence of categories between the category
of finitely generated OE -modules M equipped with an isomorphism Φ : φ∗(M) → M and
the category of continuous representations of GK∞ in Zp-modules, and this is compatible
with the previous functor via the restriction functor from GK-representations to GK∞-
representations. Again there is also a variant for representations with values in a finite
coefficient Zp-algebra R.
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Our basic idea in this paper is to formally forget about Galois representations and finite
flat group schemes and simply consider the modules themselves, without any finiteness
conditions on R. More precisely, for any Zp-algebra R set RW = W ⊗Zp R and extend the
endomorphism φ of W ((u)) = W [[u]][1/u] to RW ((u)) = W ((u))⊗̂ZpR by the identity on
the second factor. We define the fpqc-stack Cd,K by giving its values on Zp-algebras R as
the groupoid of pairs (M,Φ), where M is a finitely generated RW [[u]]-module which is free
of rank d locally fpqc on SpecR and where

Φ : φ∗M[1/u] ∼−→M[1/u]

is an isomorphism of RW ((u))-modules such that E(u)M ⊂ Φ(φ∗M) ⊂M.
We also introduce the fpqc-stack Rd with values in a Zp-algebra R the groupoid of pairs

(M,Φ), where M is a finitely generated RW ((u))-module which is locally fpqc on SpecR
free of rank d as RW ((u))-module, and where Φ : φ∗(M) ∼−→M .

There is an obvious morphism

θ : Cd,K → Rd

sending (M,Φ) to (M[1/u],Φ).
Our main results concern the algebraicity of the previous construction. Let Ĉd,K be the

p-adic completion of the stack Cd,K , i.e. its restriction to p-nilpotent Zp-algebras. Then

Ĉd,K = lim−→a
Cd,K ×Spec Zp Spec Z/paZ .

Our main result shows that this presents Ĉd,K as an inductive 2-limit of Artin stacks of
finite type over Spec Z/paZ. Furthermore, the singularities of Ĉd,K are modeled by local
models.

Theorem 0.1. (i) For each a, the stack Cd,K ×Spec Zp Spec Z/paZ on Z/paZ-algebras is
representable by an Artin stack Cad,K of finite type over Spec Z/paZ. The inductive limit
lim−→a

Cad,K is the formal p-adic completion Ĉd,K of Cd,K .

(ii) There is a “local model” diagram

˜̂Cd,K
π

~~||
||

||
|| ϕ

""EEEEEEEE

Ĉd,K M̂d,K ,

in which π is a principal homogeneous space under the positive loop group L+G of G =
ResW/Zp

(GLd) completed along its special fiber, and in which ϕ is formally smooth. Here
Md,K is the projective Zp-scheme parametrizing all OK⊗ZpOS-submodules of (OK⊗ZpOS)d

which are locally direct summands as OS-modules, and M̂d,K denotes its completion along
the special fiber.
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(iii) For each a, set Rad = Rd ×Spec Zp Spec Z/paZ. The morphism θa : Cad,K → Rad given by
reducing θ modulo paZ is representable and proper; hence θ̂ : Ĉd,K → R̂d is an inductive
limit of representable and proper morphisms.

The fibers of θ over a finite field F are interesting projective subvarieties of the affine
Grassmannian of the group G = ResW/Zp

(GLd), which we call Kisin varieties. More pre-
cisely, we define variants of Cd,K and Md,K depending on a co-character µ of G and define
Kisin varieties associated to (G,A, µ), where A ∈ G(F((u))) defines the given F-valued
point in Rd. They are the analogues, for the kind of Frobenius involved here, of the affine
Deligne-Lusztig varieties appearing in the isocrystal context, cf., eg. [GHKR]. The study of
these varieties was begun by Kisin in [Ki1], in the case d = 2 and W = Zp. In a companion
paper to ours, E. Hellmann extends Kisin’s results (again for d = 2 and W = Zp). In
Hellmann’s paper, one of the main tools is the Bruhat-Tits building of GL2. We show here
how the Bruhat-Tits building can be used in general to gain a qualitative overview of Kisin
varieties.

The other extreme to the fiber over F of Ĉd,K is its fiber over Qp. Here we construct a
kind of period map of stacks over the category of adic formal schemes locally of finite type
over Spf(Zp),

Π(X ) : Ĉd,K(X )→ Dd,K(X rig) ,

where Dd,K is the stack over the category of rigid-analytic spaces over Qp parametrizing
filtered Φ-modules (both the filtration and Φ vary!). To determine the image of the period
map seems one of the major challenges in the theory. We conjecture that the image should
be given somewhat analogously to Hartl’s admissible set in [Ha].

As is apparent from the above, the theory developed here bears many similarities to
the theory of period spaces for p-divisible groups in [RZ], but there are also substantial
differences. The stack Ĉd,K is analogous to one of the period spaces of p-divisible groups in
[RZ], but unlike these it is adic over Spec (Zp) (p generates an ideal of definition); the local
model diagram looks formally just like the corresponding one in [RZ]; Kisin varieties are
the analogues of affine Deligne-Lusztig varieties, and the stack Dd,K plays a role similar to
the Grassmannian containing the period space of [RZ]. In [RZ], the base scheme of the p-
divisible groups is variable; here the base scheme Spec (OK) is constant, but the coefficients
are variable.

We now explain the lay-out of the paper. In section 1 we explain by analogy on the
classical theory of unit root crystals the spaces/stacks we encounter. In section 2 we prove
our main technical result, which states that the stack Cd, which associates to Zp-algebras
R the groupoid of locally free RW [[u]]-modules of rank d with Φ-module structure, can be
presented as an inductive limit of Artin stacks of finite type over Zp. In section 3 we fix the
local field as above and prove the main theorem stated above. In section 4 we indicate the
relation to the deformation spaces of Galois representations which is at the origin of Kisin’s
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theory. In section 5 we construct and discuss the period morphism. In the final section 6
we discuss Kisin varieties and their analysis through Bruhat-Tits buildings.

We thank X. Caruso, E. Hellmann, M. Kisin, R. Kottwitz, A. Lytchak, J. Stix and E.
Viehmann for helpful discussions.

1. Motivation: Unit crystals and Galois representations

1.a. Unit root crystals. Let k be a finite field of characteristic p > 0; for simplicity, we
will assume that k = Fp. Let X a variety over k. Denote by φ : X → X the Frobenius
φ(a) = ap for a ∈ OX . Suppose that S is a k-scheme, and let φS = φ×idS : X×S → X×S.
Consider pairs (M, F ) consisting of a locally freeOX×S-coherent sheafM of rank d onX×S
and an isomorphism

F : φ∗SM
∼−→M .

As S varies, these pairs form an fpqc stack FMd,et
X over Spec k. In fact, FMd,et

X is an Artin
stack locally of finite type over k. Indeed, let FibdX/k be the Artin stack locally of finite type
over k, whose values in a k-scheme S is the groupoid of locally free OX×S-modules of rank

d, and let F̃ ib
d

X/k be the GLd-torsor over FibdX/k, consisting of a locally free OX×S-modules
M of rank d and a basis ι :M ∼−→ OdX×S . Then there is an action of GLd on the product

F̃ ib
d

X/k ×GLd via

g : (M, ι, A) 7→ (M, g−1 · ι, g−1 ·A · φ(g)) .

This presents FMd,et
X as a quotient of F̃ ib

d

X/k×GLd by GLd, and hence FMd,et
X is an Artin

stack locally of finite type, as claimed.

Suppose S = Spec (Λ) with |Λ| < ∞. Then by Katz [Ka], 4.1, cf. also [E-K], there
is a bijective correspondence between pairs (M, F ) over Spec (Λ) and étale sheaves of Λ-
modules on X. In the case Λ = Fp, this correspondence is obtained via push-out from the
injection GLd(Fp)→ GLd which induces an equivalence of categories between the category
of GLd(Fp)-torsors on X (for the étale topology) and the category of GLd-torsors P on X

with an isomorphism φ∗(P ) ∼−→ P .

We want to think of FMd,et
X as a “coefficient space” for p-torsion representations of

π1(X, η̄). However, it seems that global questions on these spaces (i.e., when S is not a
local Artin ring) have not been studied much in the literature. For instance, are there
non-constant morphisms of projective k-schemes into FMd,et

X ? What is the dimension of
FMd,et

X ? Etc. The only result we are aware of is Laszlo’s construction [La] of a projective
curve X of genus 2 over the field with 2 elements, a projective curve S over a finite extension
k′ of F2 and a locally free coherent OX×S-moduleM of arbitrary rank with an isomorphism
F : (φ2

S)∗M ∼−→M.
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1.b. Variants. We mention here some variants of the above theory. Let G be a reductive
group over Fp. Then we can consider the fpqc stack FMG,et

X of pairs (P, F ), where P is
a G-torsor on X × S and where F : φ∗S(P ) ∼−→ P . For G = GLd, we recover the stack
considered above.

We may also consider “meromorphic Frobenius structures”, as follows. Assuming X to
be irreducible, with generic point η(X), consider the fpqc stack FMd

X of pairs (M, F ) with
M a locally free OX×S-coherent sheaf of rank d on X × S and

F : φ∗SM−→M

a homomorphism such that F|η(X)×S is an isomorphism.
One may also control the degeneracy of the meromorphic Frobenius structure. For in-

stance, let X be a curve. Then we may consider triples (M, F, x) with (M, F ) in FMd
X and

x : S → X such that Coker(F ) is supported on the graph Γx ⊂ X × S and is annihilated
by the power of the ideal sheaf IeΓx

for some fixed e ≥ 1. Denoting the corresponding stack
by FMd

X,e, there is a morphism (the ”pole morphism”),

p : FMd
X,e → X

Similarly we can obtain a construction that resembles shtuka, but the Frobenius is “on
the other factor”. Namely, assume that X is a curve as before. Consider (M,M′, F, F ′, x, y)
withM,M′ locally free OX×S-coherent sheaves of rank d on X × S and homomorphisms

φ∗SM
F−→M′ F ′←−M

such that Coker(F ), resp. Coker(F ′) is supported on the graph of x : S → X, resp.
y : S → X. Again we can ask that Coker(F ), resp. Coker(F ′) , satisfy some additional
property.

Another variant is obtained by replacing the variety X by the spectrum of the completed
local ring at a closed point, or by its fraction field.

All these “spaces”/stacks seem interesting geometric objects.

2. Spaces of Kisin-Breuil modules

Fix a finite field k of characteristic p and denote by φ(a) = ap the Frobenius automor-
phism of k. We will denote by W = W (k) the ring of Witt vectors of k and by φ : W →W

the unique lifting of Frobenius.
Let R be a commutative Zp-algebra and set RW = W ⊗Z R. We extend φ in a R-linear

way to RW and denote this extension also by φ. We also denote by φ the endomorphism φ

of RW ((u)) = W ((u))⊗̂ZR given by

φ(
∑
i

aiu
i) =

∑
i

φ(ai)upi .
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2.a. We define now various stacks of modules with Frobenius structure.

Let us consider the stack Cd such that Cd(R) is the groupoid of RW [[u]]-Φ-modules (M,Φ):
These are by definition pairs of a RW [[u]]-module M which is locally on R (for the fpqc
topology) RW [[u]]-free of rank d and a RW ((u))-module isomorphism

Φ : φ∗M[1/u] = RW ((u))⊗φ,RW [[u]] M
∼−→M[1/u] = RW ((u))⊗RW [[u]] M .

It is easy to see that Cd is a stack for the fpqc topology.

Next, consider the stack Rd which is such that Rd(R) is the groupoid of pairs (M,Φ) of
RW ((u))-modules M which are fpqc locally on R free of rank d, together with a RW ((u))-
linear isomomorphism

Φ : φ∗M := RW ((u))⊗φ,RW ((u)) M −→M .

Again it is easy to see that Rd gives a stack for the fpqc topology. Write

θ : Cd → Rd ; (M,Φ) 7→ (M[1/u],Φ)

for the forgetful morphism.

Fix an integer m ≥ 0. Let us consider the stack Cm,d such that Cm,d(R) is the groupoid
of RW [[u]]-Φ-modules (M,Φ) as above that satisfy the additional hypothesis

(2.1) umM ⊂ Φ(φ∗M) ⊂ u−mM .

Once again, Cm,d gives a stack for the fpqc topology. The natural morphism Cm,d → Cd is
a representable closed immersion.

If d is fixed we will often write C, R, Cm instead of Cd, Rd and Cm,d.

2.b. For simplicity, we will set G = ResW/Zp
GLd. Set

LG(R) := GLd(RW ((u))) ,

L+G(R) := GLd(RW [[u]]) ,

LG≤m(R) := {A ∈ GLd(RW ((u))) | A,A−1 ∈ u−mMd(RW [[u]]) } .

Hence L+G = LG≤0. Note that the functor

R 7→ LG≤m(R)

is represented by a scheme LG≤m (which is infinite dimensional). Let (M,Φ) ∈ Cm(R)
such that M is a free RW [[u]]-module. By picking a RW [[u]]-basis of M, we can write Φ
as multiplication by A ∈ LG≤m(R). Changing the basis by g ∈ GLd(RW [[u]]) amounts to
changing A to g−1 ·A · φ(g). Therefore, we can write

(2.2) Cm,d = [LG≤m/φ L+G]

where the quotient /φ is via the right action of L+G(R) = GLd(RW [[u]]) by φ-conjugation
by A ? g = g−1 ·A · φ(g).
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Similarly, we can write

(2.3) Cd = [LG/φ L+G] , Rd = [LG/φ LG].

In fact, we can consider the fpqc stack C̃d defined as follows: C̃d(R) is the groupoid of pairs
((M,Φ), α) of RW [[u]]-Φ-modules (M,Φ) together with an RW [[u]]-module isomorphism

α : RW [[u]]d ∼−→M.

The stack C̃d is represented by the ind-scheme LG and the forgetful morphism

π : C̃d → Cd

is a L+G-torsor.

2.b.1. Denote by FG = LG/L+G the affine Grassmannian ofRW [[u]]-“lattices” inRW ((u))d.
(Here by RW [[u]]-lattice we mean a locally on R free RW [[u]]-submodule L of RW ((u))d such
that L ⊗R[[u]] R((u)) = RW ((u))d.) The fpqc quotient FG = LG/L+G is represented by
an ind-scheme which is ind-projective over Zp. For m ≥ 0, let F≤mG be the projective
subscheme of FG parametrizing RW [[u]]-lattices L

umRW [[u]]d ⊂ L ⊂ u−mRW [[u]]d.

(This is a finite union of Schubert varieties in the affine Grassmannian.) Set U0(R) =
L+G(R) = GLd(RW [[u]]) and define for n ≥ 1 the principal congruence subgroup Un of
level n by Un(R) = I + un ·Md(RW [[u]]). The subgroup scheme Un is normal in L+G and
the quotient L+G/Un is represented by the smooth finite type group scheme Gn given by
the Weil restriction of GLd from W [[u]]/(un) to Zp (so that Gn(R) = GLd(RW [[u]]/(un)).
Note that under the action of L+G on F≤mG the subgroup U2m acts trivially, and hence the
action factors through G2m.

Theorem 2.1. a) For m ≥ 1, Cm = [LG≤m/φL+G] is an Artin stack of finite type over
Zp. We can write C as a direct 2-limit

C = lim
→
m

Cm

and so C is an “ind-Artin stack of ind-finite type over Zp”.
b) There is a formally smooth morphism

q : C → [L+G\FG] = [L+G\LG/L+G] .

In fact, q is given as the limit of formally smooth morphisms

qm : Cm → [L+G\F≤mG ] = [L+G\LG≤m/L+G] .

The composition of qm with the natural morphism [L+G\F≤mG ] → [G2m\F≤mG ] is a smooth
morphism of Artin stacks of finite type,

q̄m : Cm → [G2m\F≤mG ] .

The relative dimension of q̄m is equal to 2md2.
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Proof. The group LG(R) is a topological group with topology described by the neighbor-
hoods Un of the identity I = Id. We have

LG(R) =
⋃
m≥0

LG≤m(R) .

Suppose now that A is in LG≤m(R). For any integer n ≥ 0 and for all A′ in the neighborhood
(coset)

{A′ | A′ ·A−1 ∈ Un(R)} = Un(R)A

of A, we have A′ ∈ LG≤m(R) also.

Proposition 2.2. Suppose n > 2m/(p− 1).
1) For each g ∈ Un(R), A ∈ LG≤m(R), we can write g−1 · A · φ(g) = H−1 · A with a

unique H = H(g,A) ∈ Un(R).
2) Conversely, for each A ∈ LG≤m(R) and h ∈ Un(R), there is a unique g ∈ Un(R) such

that A ? g = g−1 ·A · φ(g) = h−1 ·A. 1

Proof. Let us first prove (1). Write g−1 = I + unX with X ∈ Md(RW [[u]]). Then φ(g) =
I + upnY , with Y ∈Md(RW [[u]]). Now

g−1 ·A · φ(g) ·A−1 = (I + unX) ·A · (I + upnY ) ·A−1 =

= (I + unX) · (I + upnAY A−1).

Observe that AY A−1 ∈ u−2mMd(RW [[u]]) and pn− 2m > n. Hence, for

H−1 = (I + unX) · (I + upnAY A−1)

we obtain g ·A ·φ(g)−1 = H−1 ·A. The element H is uniquely determined from g and A by
g ·A · φ(g)−1 = H−1 ·A.

The statement (2) is little trickier. First we show that if such a g exists it is uniquely
determined by h and A. It is enough to assume g · A · φ(g)−1 = A with g ∈ Un(R) and
A ∈ LG≤m(R) and show g = 1. Write g = I + unX, φ(g) = I + upnφ(X). We have

(I + unX) ·A = A · (I + upnφ(X))

which gives

unX ·A = upnA · φ(X) ,

i.e.,

X0 +X1u+X2u
2 + · · · = u(p−1)nA · (X0 +X1u

p +X2u
2p + · · · )A−1

Note that A ·Xi ·A−1 ∈ u−2mMd(R[[u]]). Since (p− 1)n− 2m > 0, we obtain X0 = 0 which
implies g ∈ Un+1(R). An induction finishes the proof of uniqueness.

1The fact that two elements A and A′ in GLd(F̄p((u))) which are u-adically close, are φ-conjugate is also

used by Caruso in [Ca]. The analogous fact for classical Dieudonné modules is also true.
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Now we will show that such a g exists. Let A′ = h−1A. Set A0 = A, h0 = h and define
hi and Ai inductively by

(2.4) Ai = h−1
i−1 ·Ai−1 · φ(hi−1) , A′ = h−1

i ·Ai .

Set κ(i) := pin − 2(1 + p + · · · + pi−1)m with κ(0) = n. Note that under our assumption
n > 2m/(p− 1), the function κ(i) strictly increases with i ≥ 0.

The existence of g will now follow from

Lemma 2.3. 1) We have hi ∈ Uκ(i)(R) and so limi→∞ hi = I.
2) Let gi =

∏i
j=0 hj. Then the limit g = limi→∞ gi exists and belongs to Un(R).

Proof. We will prove (1) by induction. It is true by our hypothesis when i = 0. The
equalities (2.4) imply

hi = A′ · φ(hi−1) ·A′−1.

By the induction hypothesis hi−1 ∈ Uκ(i−1)(R) so

φ(hi−1) = I + φ(uκ(i−1)X) = I + up·κ(i−1)φ(X)

with X ∈Md(RW [[u]]). Since A′ ∈ LG≤m(R), we have

A′ · φ(X) ·A′−1 ∈ u−2mMd(RW [[u]]),

and so
hi = A′ · φ(hi−1) ·A′−1 = I + up·κ(i−1)−2mY

with Y ∈Md(RW [[u]]). Since κ(i) = p · κ(i− 1)− 2m this completes the proof of (1). Part
(2) now follows immediately since from part (1)

gi =
i∏

j=0

hj = (I + uκ(0)X0) · (I + uκ(1)X1) · · · · · (I + uκ(i)Xi)

with Xj ∈Md(RW [[u]]) and i 7→ κ(i) is strictly increasing.

Now h−1
i Ai = g−1

i ·A ·φ(gi−1), hence passing to the limit, we obtain g−1 ·A ·φ(g) = A′ =
h−1 ·A as desired.

Remark 2.4. Let M be a R((u))-module and let R → R′ be a flat extension such that
M ′ = M⊗̂RR′ ' R′((u))d. The module M has a natural topology as a Tate R-module
(see [Dr]). The R-lattices of M (i.e R-modules L which are open and such that L/U is
finitely generated for every open submodule U ⊂ L) give a basis of open neighborhoods of
0. Multiplication by u on M is topologically nilpotent; i.e given any two R-lattices L, L′,
there is N ≥ 0 such that uN · L ⊂ L′.

Then GM := AutR((u))(M) has a natural structure of a topological group. To obtain a
basis of neighborhoods of the identity I we take a lattice L and for n >> 0 we consider

Un(L) = {g ∈ GM | g(L) ⊂ L, g|L ≡ I mod unL}.

We can then show:
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Given two isomorphisms A,A′ : φ∗M ∼−→M , there exists an open neighborhood U of the

identity in the topological group GM such that if A′ · A−1 ∈ U then A, A′ are φ-conjugate

by a uniquely determined element of GM .

The argument is similar as above: Suppose that A : φ∗M ∼−→M is an R((u))-isomorphism
and for h ∈ GM define h0 = h and inductively

hi = A · φ∗(hi−1) ·A−1.

The result follows from the statement: There is an open neighborhood U of I such that
for h ∈ U , we have limi→∞ hi = I and the limit h̃ = limi→∞

∏
0≤j≤i hj exists. Indeed,

the arguments above show that this is true when M is a free R((u))-module. In general,
let R → R′ be a flat homomorphism such that M ′ = M⊗̂RR′ ' R′((u))d. Consider
h′i = hi⊗ 1 ∈ GM ′ and let L be a lattice in M . Then L′ = L⊗̂RR′ is a lattice in M ′. By the
above, there is n such that when h ∈ Un(L) (and hence h′ = h⊗ 1 ∈ Un(L′)) we have

(hi(x)− x)⊗ 1 = h′i(x
′)− x′ ∈ uκ(i)L′

for a strictly increasing sequence κ(i). Since uκ(i)L′ ∩M = uκ(i)L this shows the result.

We now continue with the proof of Theorem 2.1 (a). Recall

Cm = [LG≤m/φ L+G]

Let n > 2m/(p − 1). Recall the normal subgroup Un of L+G and its smooth finite
type quotient Gn. Consider the quotient stack [LG≤m/φ Un]. Proposition 2.2 implies that
[LG≤m/φ Un] coincides with the quotient X≤mn,d := [LG≤m/Un] by the free translation action
of Un on LG≤m. The quotient X≤mn,d is represented by a scheme of finite type over Zp. This
can be seen as follows.

Recall that the quotient X(m)
0,d = [LG≤m/L+G] is represented by the closed subscheme

F≤mG of the affine Grassmannian FG = LG/L+G that parametrizes lattices L such that
umL0 ⊂ L ⊂ u−mL0, where L0 = RW [[u]]d. The natural map

p≤m : X≤mn,d → X≤m0,d = F≤mG

is represented by the Gn-torsor that parametrizes pairs (L,α) where L is a lattice as above
and α : L0/u

nL0
∼−→ L/unL is an RW [[u]]/(un)-isomorphism.

Combining the above, we now see that

(2.5) Cm ' [X≤mn,d /φ Gn] ,

where the quotient is for the action of the smooth group scheme Gn onX≤mn,d which is induced
by φ-conjugation. This (right) action of Gn on X≤mn,d can be explicitly described as follows:
Let γ ∈ Gn(R) which we can lift to g ∈ L+G(R) = GLd(RW [[u]]) and consider the point
x = (L,α) ∈ X≤mn,d (R) given through the matrix A by L = L0 ·A, α = A mod un. (Here the
elements of L0 are viewed as row vectors.) Then x?γ is the point of X≤mn,d that corresponds
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to the matrix g−1 ·A · φ(g) ∈ LG≤m(R). Observe that if n′ > n > 2m/(p− 1), the natural
morphism X≤mn′,d → X≤mn,d induces an isomorphism

(2.6) [X≤mn′,d/φ Gn′ ]
∼−→ [X≤mn,d /φ Gn ] .

It follows from (2.5) and the above that Cm is an algebraic (Artin) stack of finite type over
Zp of dimension equal to the dimension of the scheme F≤mG . It is clear that we can represent
C as the 2-limit of the algebraic stacks Cm and so the rest of (a) follows.

For part (b) observe that the quotient description of Cm implies the existence of

qm : Cm = [LG≤m/φ L+G]→ [L+G\F≤mG ] = [F≤mG /L+G]

(here in the last quotient g ∈ L+G acts by L · g = g−1L). This descends the quotient
morphism

LG≤m → LG≤m/L+G = F≤mG .

Now for n ≥ 2m, Un acts trivially on F≤mG and the action of L+G on F≤mG factors through
the quotient Gn. Hence composing qm with the quotient morphism by Un, we obtain a
morphism q′m : Cm → [F≤mG /Gn]. When n > 2m/(p − 1), the morphism q′m is given by
taking the quotient

[X≤mn,d /φ Gn]→ [F≤mG /Gn]

of the smooth torsor X≤mn,d → F
≤m
G and hence is smooth. It follows that qm itself is formally

smooth. Also the morphism q̄m of the statement of part (b), which is given as a composition
of q′m with [F≤mG /Gn] → [F≤mG /G2m], is also smooth. A straightforward dimension count
now gives that the relative dimension of q̄m is equal to the (relative) dimension of G2m over
Zp; this is equal to 2md2.

2.c. We consider now some properties of R, θm : Cm → R and θ : C → R. Recall that, for
each RW ((u))-module M which is fpqc locally on S = Spec (R) free of rank d, we have the
(twisted) affine Grassmannian GrM → S whose A-points for an R-algebra A are given by
AW [[u]]-lattices M of MA = M⊗̂RA. By [Dr] (Theorem 3.8 and Remark (b) below it), GrM
is represented by an ind-algebraic space which is ind-proper and of ind-finite presentation
over S.

Theorem 2.5. a) For each S = Spec (R)→ R which corresponds to a RW ((u))-Φ-module
(M,Φ), the fiber products

θ ×R S : C ×R S → S , θm ×R S : Cm ×R S → S,

are represented by the (twisted) affine Grassmannian GrM → S, resp. by a proper algebraic
subspace of GrM → S.

b) The diagonal morphism δ : R→ R×Zp R is representable and of finite presentation.

Corollary 2.6. a) θ : C → R is ind-representable and ind-proper.
b) θm : Cm → R is representable, proper and of finite presentation.
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Proof. Part (a). The first part of the statement regarding θ ×R S : C ×R S → S follows
from the definition. Note here that we do not necessarily know that M contains a free
RW [[u]]-lattice. However, there is a flat base change R → R′ such that M ′ = M⊗̂RR′

is R′W ((u))-free. Then there is a (free) R′W [[u]]-lattice M′0 in M ′. We will now show the
second part of the statement. Let δ be the smallest integer for which

(2.7) uδM′0 ⊂ Φ(φ∗M′0) ⊂ u−δM′0.

Set S′ = Spec (R′) with R′ as above. Suppose T = Spec (A) is an S-scheme and set
A′ = A ⊗R R′, T ′ = T ×S S′ = Spec (A′). Let M be an A′W [[u]]-Φ-lattice in M⊗̂RA′ that
corresponds to an object of (Cm ×R S′)(T ′). For simplicity, set M′0,A = M′0⊗̂R′A′. Then

(2.8) umM ⊂ Φ(φ∗M) ⊂ u−mM , uNM′0,A ⊂M ⊂ u−NM′0,A,

for someN ≥ 0 (we can suppose thatN is the smallest integer with this property). Applying
Φ to the second chain of inclusions (2.8) gives

upNΦ(φ∗M′0,A) ⊂ Φ(φ∗M) ⊂ u−pNΦ(φ∗M′0,A)

and pN is the smallest integer with this property. On the other hand, we have

Φ(φ∗M) ⊂ u−mM ⊂ u−m−NM′0,A ⊂ u−m−N−δΦ(φ∗M′0,A), and

um+N+δΦ(φ∗M′0,A) ⊂ um+NM′0,A ⊂ umM ⊂ Φ(φ∗M).

Combining these gives

uN+m+δΦ(φ∗M′0,A) ⊂ Φ(φ∗M) ⊂ u−N−m−δΦ(φ∗M′0,A).

This implies that pN ≤ N +m+ δ, i.e N ≤ (m+ δ)/(p− 1), and so

u
[m+δ

p−1
]
M′0,A ⊂M ⊂ u−[m+δ

p−1
]
M′0,A.

(This is essentially the same argument as in [Ki1] Prop. 2.1.7.) By the above, and the
definition [Dr] of the ind-structure on GrM , this implies that Cm ×R S′ is represented by a
proper S′-scheme; therefore, by descent, Cm ×R S is an S-proper algebraic space.

Part (b). Suppose that M , N are two RW ((u))-Φ–modules of rank d. Consider the
functor on R-algebras

A 7→ IsomR(M,N)(A) := IsomΦ,AW ((u))(MA, NA),

where for simplicity we write MA = M⊗̂RA, NA = N⊗̂RA. We will show that this is
representable by a scheme of finite presentation over R. This implies then the statement
in (b). Using the existence of RW -lattices in both M and N ([Dr], see Remark 2.4), we
can see that the functor that sends R to the RW ((u))-linear isomorphisms M → N is
represented by an ind-scheme. It is not hard to see that IsomR(M,N) is represented by
a ind-closed ind-subscheme of this ind-scheme. To show that this is actually a scheme of
finite presentation we can employ an fpqc base change R→ R′ and assume that M ′ = MR′ ,
N ′ = NR′ are given by A, B ∈ LG(R′). By the definitions, the additional condition on the
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R′W ((u))-linear isomorphism M ′ → N ′ given by g ∈ GLd(R′W ((u))) that guarantees that it
respects Φ is

A = g−1 ·B · φ(g), or equivalently,

(2.9) g = B · φ(g) ·A−1 .

Suppose that A and B are in LG≤m(R′), LG≤n(R′) respectively. Assume that g is in
LG≤s(R′) and s = s(g) is the smallest integer with that property. Then φ(g) belongs to
LG≤ps(R′) and we can see that ps is the smallest integer with this property. The identities
above now imply that φ(g) is in LG≤s+m+n(R′). Therefore ps ≤ s+m+ n which gives

(2.10) s ≤ m+ n

p− 1
.

Let us write out (2.9) explicitly

(2.11)
∑
i≥−s

giu
i = B · (

∑
i≥−s

giu
pi) ·A−1 =

∑
i≥−s

upi · (B · gi ·A−1)

with gi ∈ Md(R′). Now consider the matrix identity obtained by comparing the ua terms
of both sides of (2.11) for a > (m+ n)/(p− 1). We see that this has the form

(2.12) ga =
∑
i,k,l

Bl · gi ·A′k

with pi + k + l = a and i ≥ −s, k ≥ −m, l ≥ −n and A−1 =
∑∞

k=−mA
′
ku

k. Since
a > (m + n)/(p − 1), these inequalities imply that i < a. Therefore, all these matrix
identities for a > (m + n)/(p − 1) amount to determining ga from gi for i < a. The result
now follows.

Corollary 2.7. There is a diagram

C
θ

����
��

��
�� q

%%KKKKKKKKKKK

R [L+G\FG] ,

where the morphism q is formally smooth and the morphism θ is ind-representable and
ind-proper.

2.c.1. Recall that we set G = ResW/Zp
GLd. Let K0 be the fraction field of W and set

f = [K0 : Qp] = [k : Fp]. Then, after ordering the elements of Gal(K0/Qp), we can write

G(K0) =
f∏
i=1

GLd(K0), (FG)W =
f∏
i=1

(FGLd
)W .

Let us set ν = (ν(1), . . . , ν(f)) where for each i = 1, . . . , f , ν(i) = (n1(i), . . . , nd(i)) is a
collection of integers with n1(i) ≥ n2(i) ≥ · · · ≥ nd(i). Let F ⊂ K0 be the fixed field of the
subgroup of Gal(K0/Qp) that fixes ν.
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Denote by uν(i) the diagonal matrix diag(un1(i), . . . , und(i)) in GLd(W ((u))) and set

uν = (uν(1), . . . , uν(f)) ∈ LG(W ).

Suppose that N = max{|nj(i)|}. Let S0
ν , resp. Sν , be the corresponding open, resp.

projective, affine Schubert variety in (F≤NG )W ⊂ (FG)W which is given as the image of
L+G · uν · L+G, resp. the Zariski closure of that image. By descent, we see that this is
defined over the integers W ′ of the reflex field F . We set Cν for the Artin stack over W ′

which is the inverse image of Sν under q; this is a closed substack of (CN )W ′ . If nd(i) ≥ 0
for all i, then for S = Spec (R), the groupoid Cν(S) is given by RW [[u]]-Φ-modules (M,Φ)
of rank d such that Φ(φ∗M) ⊂M and such that the action of u on Coker(Φ) = M/Φ(φ∗M)
has elementary divisors uν

′
with ν ′ which satisfies ν ′(i) ≤ ν(i) in the usual ordering, for all

i; Cν is a closed substack of CN .
The obvious version of Theorem 2.1 holds for the stack Cν ; it is an Artin stack of finite

type over W ′ smoothly equivalent to the Schubert variety Sν in the affine Grassmannian
FG. Furthermore, restricting θ to Cν gives

θν : Cν → RW ′ ,

which is representable, proper and of finite presentation. (Similarly, we can consider the
inverse image C0

ν of S0
ν under q and the restriction θν : C0

ν → RW ′ which is therefore
representable and of finite presentation.) Summarizing, we obtain a diagram

(2.13) Cν
θν

}}{{
{{

{{
{{ q

&&NNNNNNNNNNNN

RW ′ [(L+G)W ′\Sν ] ,

where the morphism q is formally smooth and the morphism θν is representable and proper.

2.d. Let us sketch how to generalize the above theory to reductive groups. Let H be any
reductive algebraic group scheme H over W . Let us set G = ResW/Zp

(H). Instead of
RW [[u]]-Φ-modules of rank d we consider H-torsors T over RW [[u]] together with a H-
isomorphism Φ : φ∗S(T [1/u]) ∼−→ T [1/u] (here S = Spec (R)). The corresponding fpqc stack
CG can be viewed as the quotient [LG/φL+G]. Similarly, we can consider the fpqc stack
RG of H-torsors T over RW ((u)) (which are trivial fpqc locally on R), together with a
H-isomorphism Φ : φ∗S(T ) ∼−→ T . The stack RG can be viewed as the quotient [LG/φ LG].
The obvious generalizations of Theorems 2.1 and Corollary 2.6 hold in this situation. The
proofs are extensions of the above proofs for GLd after using a faithful representation
H ↪→ GLN . For example, the ind-structure is modeled on the ind-scheme structure of
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LG = limm(LG ∩ LResW/ZP
GL≤mN ). In particular, we again obtain a diagram

(2.14) CG
θ

��~~
~~

~~
~~ q

%%LLLLLLLLLLL

R [L+G\FG] ,

where the morphism q is formally smooth and the morphism θ is ind-representable and
ind-proper.

Suppose we are given a dominant coweight ν of G defined over an unramified extension
F of Qp with integers W ′. Denote by uν ∈ LG(F ) = G(F ((u))) the element given as
the image of u ∈ Gm(F ((u))) by the corresponding homomorphism GmF → GF . As in
§2.c.1, we can define S0

ν , resp. Sν , to be the corresponding open, resp. projective, affine
Schubert variety in (FG)W ′ which is given as the image, resp. the closure of the image of
(L+G)W ′ · uν · (L+G)W ′ .

We set CG,ν for the Artin stack over W ′ which can be defined by descent as the inverse
image of Sν under q. The obvious version of Theorem 2.1 holds for the stacks CG,ν ; they are
Artin stacks of finite type over W ′ smoothly equivalent to Schubert varieties in the affine
Grassmannian FG. Once again, we have a diagram

(2.15) (RG)W ′
θν←− CG,ν

qν−−→ [(L+G)W ′\Sν ] ,

where the morphism qν is formally smooth and the morphism θν is representable and proper.

3. p-adic models and local models

In this section, we define the stacks Cd,h,K and prove Theorem 0.1 of the introduction.
Let K a finite extension of Qp with residue field k and ramification index e. Choose a
uniformizer π of K with Eisenstein polynomial E(u) over K0 = Fr(W ). Then we can write
OK ' W [[u]]/(E(u)). Fix h ≥ 1 (the “height”). For a ≥ 1, note that uea vanishes in
Wa[[u]]/(E(u)) where Wa = W/paW . Hence, if R is a Z/paZ-algebra, we have

(3.16) ueahRW [[u]] ⊂ E(u)hRW [[u]].

Now consider the category Nilp of schemes S such that pb · OS = 0 for some b ≥ 1.
Such schemes can be viewed as formal schemes over Zp. We will call set-valued functors on
Nilp which satisfy descent for the fpqc topology “formal spaces”. A formal scheme X over
Spf(Zp) gives a formal space by sending S in Nilp to the set of formal scheme morphisms
S → X over Spf(Zp). Also if S is a fpqc stack over Zp, we can consider the restriction Ŝ
to a groupoid over the category Nilp; we can think of the “formal stack” Ŝ as “the formal
completion of S along its fiber over p”.



16 G. PAPPAS AND M. RAPOPORT

3.a. Consider the functor Md,h,K on schemes over Zp that associates to S = Spec (R) the
set of RW [u]-submodules

(3.17) E ⊂ (RW [u]/(E(u)h))d ,

such that both E and the quotient (RW [u]/(E(u)h))d/E are RW -projective with rank locally
constant on Spec (R). This functor is represented by a projective scheme over Zp (a disjoint
sum of closed subschemes of Grassmannians), which we will also denote by Mh,K . Once
again, here and in what follows we will omit the subscript d from the notation. In fact, if
in addition h = 1, we will also omit h from the notation and simply write MK . The group
scheme

Res(W [u]/(E(u)h))/Zp
GLd

over Zp acts on Mh,K .
Suppose that pa ·R = 0 for a ≥ 1. Then Mh,K(R) is in bijection with the set of RW [[u]]-

modules L with

ueah ·RW [[u]]d ⊂ E(u)hRW [[u]]d ⊂ L ⊂ RW [[u]]d

which are, locally on R, free over RW [[u]]. This gives a functorial injection,

(3.18) Mh,K(R) ↪→ FG(R)

and it implies that we can view the formal completion M̂h,K of Mh,K along its fiber over p
as a subspace of the formal space F̂G defined by the affine Grassmannian FG.

3.b. We now define a groupoid Cd,h,K over Zp-schemes as follows. Let R be a Zp-algebra.
Then Cd,h,K(R) is given by pairs (M,Φ) of an RW [[u]]-module M which is, locally fpqc on
Spec (R), free of rank d and a RW ((u))-module isomorphism

(3.19) Φ : φ∗M[1/u] ∼−→M[1/u],

such that E(u)hM ⊂ Φ(φ∗M) ⊂M. We can see that the groupoid Cd,h,K is an fpqc stack.
In what follows, we will omit d from the notation and write Ch,K .

We can consider the formal p-adic completion Ĉh,K of Ch,K . This is a fpqc stack over Nilp
defined by considering Ch,K(R) as above for Zp-algebras R in which p is nilpotent. We can
write Ĉh,K as a 2-limit

Ĉh,K := lim
→
a

Cah,K

where Cah,K := Ĉh,K ×Zp Z/paZ is the reduction modulo pa. Using (3.16) we can see that
Cah,K is a (closed) substack of Ceah×Zp Z/paZ. Now suppose that X is a formal scheme over
Spf(Zp) such that pOX is an ideal of definition. Then, for each a ≥ 1, X ×Zp Z/paZ is a
scheme over Z/paZ. We set

Ĉh,K(X ) := lim
←
a

Ĉh,K(X ×Zp Z/paZ) .
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This allows us to extend Ĉh,K to a groupoid over the category of adic formal schemes over
Spf(Zp). Suppose that R is a Noetherian p-adic ring (i.e a Noetherian Zp-algebra which is
p-adically complete and separated, R = lim

←a
R/paR), and set X = Spf(R). Set

RW {{u}} = lim
←
a

[(RW /paRW )((u))] =

{
+∞∑
i=−∞

aiu
i | ai ∈ RW , lim

i→−∞
ai = 0

}
.

We can see that the objects of Ĉh,K(Spf(R)) are given by pairs (M,Φ) of an RW [[u]]-module
M which is locally RW [[u]]-free of rank d and a RW {{u}}-module isomorphism

(3.20) Φ : φ∗M⊗RW [[u]] RW {{u}}
∼−→M⊗RW [[u]] RW {{u}},

such that

(3.21) E(u)hM ⊂ Φ(φ∗M) ⊂M .

(Note that E(u) is a unit in W{{u}} and so therefore also in RW {{u}}.)

3.b.1. For Spec (R) in Nilp now set

LGh,K(R) = {A ∈Md(RW [[u]]) | A−1 ∈ E(u)−h ·Md(RW [[u]]) ⊂Md(RW ((u)))}.

This defines a functor on Nilp. As before, we can write

Ĉh,K = [LGh,K/φ L+G].

where (by abusing notation) we also denote by L+G the formal p-adic completion of L+G.
The map

A 7→ A ·RW [[u]]d ⊂ RW ((u))d

gives a morphism of formal stacks,

qh,K : Ĉh,K = [LGh,K/φ L+G]→ [L+G\M̂h,K ].

3.b.2. Using Proposition 2.2 and the above, we see that if n(a) > eah/(p− 1) then

[LGh,K/φUn(a)]Z/paZ ' [LGh,K/Un(a)]Z/paZ.

As in the proof of Theorem 2.1 we can see that the quotient stack [LGh,K/Un(a)]Z/paZ is
represented by a torsor (Xh,K

n(a),d)Z/paZ for the group scheme (L+G/Un(a))Z/paZ = (Gn(a))Z/paZ
over (Mh,K)Z/paZ. Similarly to that proof, we can conclude

Cah,K ' [(Xh,K
n(a),d)Z/paZ/φ (Gn(a))Z/paZ] ,

and that the morphism
qah,K : Cah,K → [L+G\Mh,K ]Z/paZ

is formally smooth. Hence, the morphism between the formal stacks

(3.22) qh,K : Ĉh,K → [L+G\M̂h,K ]

is also formally smooth.
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Recall the definition of the stack R = Rd over Zp-schemes, cf. §2.a, and the notations
Ra = R×Zp Z/paZ, Cah,K = Ch,K ×Zp Z/paZ. By sending an object (M,Φ) to (M[1/u],Φ),

we obtain a morphism of stacks θ : Ch,K → R. Note that the morphism θ̂ : Ĉh,K → R̂ on
formal completions is obtained by passing to the limit on the morphisms θa : Cah,K → Ra

which arise by restricting the morphisms

θeah ×Zp Z/paZ : Ceah ×Zp Z/paZ −→ Ra

to the closed substacks Cah,K . This together with Corollary 2.6 implies that the morphisms
θa are representable and proper.

Our discussion, in the previous two paragraphs gives the proof of Theorem 0.1 of the
introduction when h = 1.

Remark 3.1. Of course, the above actually shows that the obvious generalization of The-
orem 0.1 to Ch,d,K for any h ≥ 1 is also valid.

Remark 3.2. a) The morphism θ : Ch,K → R is ind-representable: Indeed, suppose that
we are given a point ξ : S = Spec (R)→ R corresponding to a module (M,Φ) over RW ((u)).
Then by Theorem 2.5, the fiber C ×R,ξ S → S is ind-represented by an ind-algebraic space.
We can see that the subspace Ch,K ×R,ξ S ↪→ C ×R,ξ S is described by a closed condition
and it is a closed ind-algebraic subspace.

b) In general, Ch,K ×R,ξ S → S is not representable for all S = Spec (R). However,
assume that R ' lim

←a
R/paR is a Noetherian p-adic ring and that

ξ̂ = (ξa) , ξa : Spec (R/paR)→ Ra ,

is a point of the formal completion R̂. Assume also that the RW {{u}}-module M̂ which cor-
responds to ξ̂ is free over RW {{u}}. Fix a basis RW {{u}}d ' M̂ and set M = RW ((u))d ⊂
M̂ . The affine Grassmannian GrM → S is ind-projective and supports a natural line bundle
whose restriction on each closed subscheme is very ample. As above, we can see that for
each a, the fiber of the morphism θa : Cah,K → Ra over ξa is representable by a closed (and
hence) projective subscheme of GrM ×Zp Z/paZ. Varying a, this defines a formal scheme
over Spf(R). As in [Ki3], proof of Prop. 1.3, by using the above ample line bundle on
GrM , we may algebraicize this p-adic formal scheme over Spf(R) to a projective scheme
CK,ξ over Spec (R). The result is that, in this case, the fiber Ĉd,h,K × bR,bξ Ŝ → Ŝ between the

formal completions is representable by the formal scheme over Ŝ = Spf(R) associated to
the projective scheme CK,ξ → Spec (R). If in addition to the hypotheses above, R/pR is of
finite type over Fp, the arguments in the proof of [Ki3] Prop. 1.6.4, show that the morphism
CK,ξ → Spec (R) induces a closed immersion between the generic fibers.

3.c. Choose a cocharacter

µ : Q̄×p → (ResK/Qp
GLd)(Q̄p) =

∏
ψ:K→Q̄p

GLd(Q̄p)
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defined over Q̄p whose conjugacy class is defined over the reflex field E. The projection to
the component corresponding to ψ

µψ = prψ ◦ µ : Q̄×p → GLd(Q̄p)

provides a grading

(3.23) Q̄d
p =

⊕
n∈Z

V ψ
n ,

with V ψ
n = {v ∈ Q̄d

p | µψ(a) = anv}. Let h+, resp. h−, the maximum, resp. minimum value
of n (among all the values for all ψ) for which V ψ

n 6= (0). Set h = h+ − h−.
We will now define the corresponding local model M loc

µ,K over OE ; it is going to be a
projective subscheme of Md,h,K (see 3.a).

First, we define the generic fiber of M loc
µ,K over the reflex field E. Suppose that R is a

Q̄p-algebra, and fix an embedding ψ : K → Q̄p, this induces a homomorphism

RW = W ⊗Zp R→ R ; a⊗ r 7→ ψ(a)r .

Elements of Mh,K(R) correspond bijectively to RW [u]-modules M such that

E(u)h+RW [u]d ⊂M ⊂ E(u)h−RW [u]d

with graded pieces RW -projective and with rank locally constant on Spec (R). Write

NormK0/Qp
(E(u)) =

∏
ψ:K→Q̄p

(u−$ψ) ∈ Q̄p[u]

so that $ψ = ψ(π). Using this, we see that we can write M = ⊕ψMψ with Mψ a R[u]-
submodule with

(u−$ψ)h+R[u]d ⊂Mψ ⊂ (u−$ψ)h−R[u]d.

For each such ψ, consider the R-module

Mψ ∩ (u−$ψ)jR[u]d/Mψ ∩ (u−$ψ)j+1R[u]d

We ask that for each ψ, j ∈ Z, this is a projective R-module of rank dim(V ψ
j ). We can see

that this condition defines a locally closed subvariety of Mh,K⊗Zp Q̄p. This carries an action
of Gal(Q̄p/E) that allows us to descend it to a subvariety Z of Mh,K ⊗Zp E. By definition,
the generic fiber of the local model M loc

µ,K is the Zariski closure Z̄ of Z in Mh,K ⊗Zp E.
Finally, by definition, the local model M loc

µ,K is the flat closure of Z̄ in Mh,K ⊗Zp OE .

Observe that, by the above, for each OE-scheme S = Spec (R) in Nilp we have

(3.24) M loc
µ,K(R) ↪→ (FG ⊗Zp OE)(R).

Remark 3.3. Suppose that, for all ψ, we have n ∈ {0, 1} in (3.23). Then µ is miniscule.
Assume h+ = 1, h− = 0, which is the typical case. Then h = 1, RW [u]/(E(u)h) = OK⊗ZpR,
and Mh,K(R) is given by OK ⊗Zp R-submodules

E ⊂ (OK ⊗Zp R)d
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which are locally on R direct summands as RW -modules. Set rψ = dim(V ψ
0 ). The conditions

above amount to asking that rankR(Eψ) = rψ and so M loc
µ,K agrees with the local model of

[PR1]. If k = Fp, the special fiber M loc
µ,K ⊗OE

F̄p can be identified with the affine Schubert
variety Sν in the affine Grassmannian of GLd, where the coweight ν is the dual partition
to (rψ)ψ, i.e., νi = ]{ψ | rψ ≥ i} , cf. [PR1], Thm. 5.4.

3.d. We continue with the above notations of §3.a. By definition we have a closed immersion

M̂ loc
µ,K ↪→ M̂h,K

which is equivariant for the natural action of (the formal completion of) L+G. Using descent
and (3.22) we obtain a fpqc stack Ĉµ,K over Nilp∩(Sch/OE) together with a formally smooth
morphism

qµ,K : Ĉµ,K → [L+G\M̂ loc
µ,K ].

Indeed, if S = Spec (R) is an Spec (OE)-scheme in Nilp then Ĉµ,K(R) is the groupoid of
pairs (M,Φ) of a RW [[u]]-module M which is RW [[u]]-free of rank d (fpqc) locally on R and
a RW ((u))-module isomorphism

(3.25) Φ : φ∗M[1/u] ∼−→M[1/u] ,

such that, locally, there is an isomorphism α : RW [[u]]d ∼−→M for which the RW [[u]]-lattice
α−1(Φ(φ∗M)) ⊂ RW ((u))d belongs to the subset M̂ loc

µ,K(R) of (FG⊗ZpOE)(R). As in §3.b.2,
we see that there is also a morphism of formal completions

(3.26) θ̂µ : Ĉµ,K → R̂d ⊗Zp OE

which can be obtained as the limit of representable and proper morphisms.

4. Deformations of Galois representations

In this section, we explain an aspect of the connection between the spaces of Φ-modules
and the deformation theory of Galois representations as developed by Kisin [Ki1], [Ki3].
We restrict attention to the flat or Barsotti-Tate case (cf. [Ki1]) This corresponds to the
case h = 1. For simplicity, we also assume p is odd.

4.a. Galois representations. Suppose that R = Λ is a Zp-algebra with finitely many
elements. As in §1 (see also [Fo]), a pair (M,Φ) corresponding to an object of R(Λ) gives
an étale Λ-sheaf over Spec (k((u))) which is free of rank d, i.e an equivalence class of a
representation

ρ(M,Φ) : Gal(k((u))sep/k((u)))→ GLd(Λ).

As a result, an object (M,Φ) of Cd(Λ) also gives a representation ρ(M[1/u],Φ) of the Galois
group Gal(k((u))sep/k((u))).

Now let F be a finite field and suppose that

ρ : Gal(k((u))sep/k((u)))→ GLd(F)
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is a representation which corresponds to a pair (M0,Φ0), and consider the corresponding
object [ρ] : Spec (F)→ R. Denote byR[ρ] the groupoid over finite local Artinian Zp-algebras
Λ with residue field F, with objects

R[ρ](Λ) = {(M,Φ) ∈ R(Λ), α : (M,Φ)⊗Λ F ∼−→ (M0,Φ0)}

and obvious morphisms. By the above, R[ρ] is identified with the groupoid of deformations
Dρ of the Galois representation ρ.

4.b. Finite flat group schemes. Now let K be a finite extension of Qp with residue field
k and ramification index e. Choose a uniformizer π of K with Eisenstein polynomial E(u)
over Fr(W ). Set K∞ = ∪nK(πn), where πn = π1/pn

are compatible choices of roots; then
the theory of norm fields allows us to identify the Galois groups

G∞ := Gal(K̄/K∞) ∼−→ Gal(k((u))sep/k((u))) ,

comp. [Ki1], §1. The following can be derived from [Ki2] Theorem 0.5 by taking into account
the functoriality of the Λ-action and the properties of the Breuil-Kisin module functors (for
example see [Ki1] §1.2).

Theorem 4.1. (Kisin) Assume p > 2 and let Λ be a Zp-algebra with finitely many elements.
There is an equivalence between the groupoid of finite flat commutative group schemes G with
an action of Λ (i.e “Λ-module schemes”) over OK such that G(ŌK) ' Λd, and the groupoid
of pairs (M,Φ) of ΛW [[u]]-Φ-modules with the following properties:

a) Coker(Φ) is annihilated by E(u),
b) M[1/u] is ΛW ((u))-free of rank d,
c) M is a W [[u]]-module of projective dimension 1, i.e., equivalently by [Ki2], Lemma

(2.3.2), M is an iterated extension of free k[[u]]-modules.

Under this equivalence, the restriction of

ρG : Gal(K̄/K)→ AutΛ(G(ŌK))

to G∞ ' Gal(k((u))sep/k((u))) is isomorphic to ρ(M[1/u],Φ)(1) [twist by the cyclotomic
character].

Note that property (c) is automatically satisfied when p · Λ = (0). We will also consider
the groupoid of modules as above with the additional property

d) M is ΛW [[u]]-free.

Lemma 4.2. Let A be a local Noetherian ring with residue field l and suppose that M ⊂
A((u))d is a finitely generated A[[u]]-module such that M [1/u] = A((u))d and M ⊗A l '
l[[u]]d. Then M ' A[[u]]d.
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Proof. By Nakayama’s lemma, there is a surjective A[[u]]-homomorphism φ : A[[u]]d →M .
Then φ[1/u] : A((u))d → M [1/u] = A((u))d is also a surjection which then has to be
bijective. This implies that φ is also injective.

Write Λ⊗Zp W =
∏
j Λj with Λj Artin local. An application of the lemma to Λj shows

that the additional property (d) is satisfied if and only if M⊗Λ F ' (F⊗ k)[[u]]d.

4.c. Suppose that (A,m) is an Artin local Noetherian ring with finite residue field F. A
representation

ρ : Gal(K̄/K)→ GLd(A)

is called flat [Ra] if the corresponding Zp[Gal(K̄/K)]-module is isomorphic to the twist by
(−1) of the module obtained by the Galois action on the Zp-module of OK̄-points of some
commutative finite flat group scheme over OK . This notion extends to the more general
situation that (A,m) is a complete local Noetherian ring with finite residue field F. In this
case, the representation

ρ : Gal(K̄/K)→ GLd(A)

is flat iff, for all n ≥ 1, the representation obtained by reducing ρ modulo mn is flat, cf.
[Ra].

Consider the morphism of formal stacks θK : ĈK := Ĉ1,K → R̂. Suppose that (A,m) is
a complete local Noetherian ring with finite residue field F. Let ξ = (ξn)n≥1 ∈ R̂(A) be
an A-valued object of R̂, where for each n ≥ 1, ξn is in R̂(A/mn). The 2-fiber product
ξn × bR ĈK is representable by a projective scheme CK,ξn → Spec (A/mn). In the limit, we
obtain a formal scheme CK,ξ over Spf(A). The argument in [Ki3], Cor. 1.5.1 (or see Remark
3.2 (b)) shows that this is algebraizable to a projective scheme

CK,ξ → Spec (A).

Denote by AK the quotient of A that corresponds to the scheme theoretic image of this
morphism. We obtain

ξK : Spec (AK)→ Spec (A)→ R̂.

Proposition 4.3. With the above notations, assume in addition that A is Artinian. Then

ρξK : G∞ = Gal(k((u))sep/k((u)))→ GLd(AK)

extends to a representation of Gal(K̄/K) which is flat.

Proof. For simplicity, set B = AK . Then there is B ↪→ B′ with B′ a B-algebra of finite type
such that CK affords a B′-valued point ζ ′ that lifts ξB. Denote by (MB,Φ) the BW ((u))-
module that corresponds to ξB. Since B is Artinian, MB ' BW ((u))d. Giving the point
ζ ′ amounts to giving a B′W [[u]]-projective module M′ of rank d in M ′ = MB⊗̂BB′ which
satisfies

E(u)M′ ⊂ Φ(φ∗M′) ⊂M′.
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Now set M := M′ ∩M ⊂ M ′; this is a BW [[u]]-module which is Φ-stable. The proof of
[Ki1] Prop. 2.1.4 applies to show that M satisfies properties (a), (b) and (c) (with Λ = B).
Therefore, the Zp[G∞]-module given by ρ(1) is given by a finite flat group scheme over
OK as desired. (However, note here that, as pointed out by Kisin, M does not have to be
BW [[u]]-free.)

4.c.1. Assume now that (A,m) is a complete local Noetherian ring with finite residue field
F and that in addition:

1) the A-valued representation ρξ of G∞ which corresponds to ξ extends to a represen-
tation of Gal(K̄/K), and

2) the F-valued representation of Gal(K̄/K) which is obtained by reducing ρξ modulo m

is flat.
By [Ra] there is a quotient A → Afl such that for each A → B with B a local Artinian

A-algebra with residue field F, the representation obtained by composing with GLd(A) −→
GLd(B) is flat if and only if A→ B factors as A→ Afl → B. Using the above proposition
one can see that A→ AK factors as

A→ Afl → AK .

Remark 4.4. In general, it is not clear whether we should expect that Afl → AK is an
isomorphism. The issue is the following: Consider a deformation ρ of ρ0 = ρξ modulo m over
a finite Artin local Zp-algebra Λ with residue field F. It corresponds to a ΛW ((u))-Φ-module
M . By assumption, the (F⊗Zp W )((u))-Φ-module M0 = M ⊗Λ F which corresponds to ρ0

contains a (F⊗Zp W )[[u]]-Φ-submodule M0 with E(u)M0 ⊂ Φ(φ∗M0) ⊂M0. We can easily
see that M0 ' (F⊗Zp W )[[u]]d. Assume now that ρ is also flat; this implies that M contains
a ΛW [[u]]-Φ-module M with M[1/u] = M that satisfies properties (a), (b) and (c). The
problem is that if e > p− 1, we cannot expect that M is a deformation of M0 (so that we
can apply Lemma 4.2). The question is: Is there is some Zp-algebra C that contains Λ and
a CW [[u]]-Φ-module MC with MC [1/u] = M ⊗Λ C which is in addition CW [[u]]-projective
and such that M = M ∩MC? Our discussion implies

Proposition 4.5. In the situation of Remark 4.4, assume that e ≤ p− 1. Then Afl ' AK .

5. Coefficient domains and a period morphism

5.a. Fix d, the local field K and h ≥ 1. We define the stack in groupoids Dd,h,K over
schemes over Qp which is described as follows:

If R is a Qp-algebra, then the objects of Dd,h,K(R) are triples (D,Φ,Fil•) where

• D is a R⊗Qp K0-module which is, locally on R, free of rank d,
• Φ : D → D is an Id⊗Qp φ-linear automorphism,
• Fil• is a exhausting, decreasing filtration of DK := D ⊗K0 K by R ⊗Qp K-modules

which are locally direct summands and satisfy Fil0 = DK , Filh+1 = (0).
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We can see that Dd,h,K is a fpqc stack over Qp. Locally we can choose a basis of D; this
allows us to write the stack as a quotient

(5.27) Dd,h,K = [(ResK0/Qp
GLd ×Qp Grd,h,K)/(φ,·)ResK0/Qp

GLd].

Here Grd,h,K is the Grassmannian of filtrations as above of length h+ 1 on a vector space
of dimension d over K. (Notice here that we are not yet prescribing dimensions for the
graded pieces Fili/Fili+1; in particular, Grd,h,K is not necessarily connected.) The symbol
(φ, ·) is supposed to remind us that the action of the group ResK0/Qp

GLd on the product is
by φ-conjugation on the first factor and by translation on the second. It follows from this
description that Dd,h,K is an Artin stack, smooth of finite type over Qp.

Similarly, suppose that µ : Q̄×p → (ResK/Qp
GLd)(Q̄p) is a coweight as in §3.d before.

Assume that µ is defined over the reflex field E and, for simplicity, assume h− = 0 so that
h = h+. We define the stack in groupoids Dµ,K over schemes over E which is described
as follows: If R is an E-algebra, then the objects of Dµ,K(R) are triples (D,Φ,Fil•) that
correspond to objects of Dd,h,K(R) as above with the additional property

• The filtration Fil• is of type µ in the sense that the base change of the graded piece
Filj/Filj+1 under id⊗ψ : R⊗Qp K → R⊗Qp Q̄p has rank equal to dim(V ψ

j ) for each
ψ and each j (see (3.23)).

Once again Dµ,K is a fpqc stack over E which is an Artin stack, smooth of finite type
over E. We can write

(5.28) Dµ,K = [(ResK0/Qp
GLd)E ×E Grµ,K/(φ,·)(ResK0/Qp

GLd)E ].

Here Grµ,K is the Grassmannian of filtrations as above of type µ on (E ⊗Qp K)d.

Remark 5.1. We can also consider the following “rigid” variants: Dd,h,K = Drig
d,h,K is the

category fibered in groupoids over the category of rigid spaces over Qp which is defined
as follows. If X is a rigid space, then Dd,h,K(X) is the groupoid of pairs (D,Φ,Fil•) with
D a coherent sheaf of OX ⊗Qp K0-modules over X which is locally free of rank d, Φ an
1⊗Qp φ-linear isomorphism of D, and Fil• a filtration of D⊗K0 K (of length h, as above) by
coherent OX ⊗Qp K-sheaves over X with locally free graded pieces. Here we are implicitly
using that descent of coherent modules under fpqc morphisms of rigid spaces is effective,
cf. [BG]. Similarly, we can define Dµ,K etc.

5.a.1. Now suppose that A is a p-adic ring. Set A = A[1/p]. Let (M,Φ) a AW [[u]]-Φ-
module which corresponds to an object of Ĉd,h,K(A). Consider

D = (M/uM)[1/p]

with the 1⊗φ-endomorphism given by Φ mod u; we can easily see that this endomorphism
is bijective and that D is an A⊗Qp K0-module which is projective of rank d.

Similarly to [Ki2], [Ki3], we set

OA := lim
←n

(AW [[u, un/p]][1/p]) ⊂ AW [[u]] = (A⊗Qp K0)[[u]];
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in particular

O = OQp := lim
←n

(W [[u, un/p]][1/p]) ⊂ K0[[u]]

is the ring of rigid analytic functions on the open disk U of radius 1 over K0. (The inverse
limit is under the maps given by un

′
/p 7→ un

′−n · (un/p).)
We have inclusions W [[u]][1/p] ↪→ O, AW [[u]][1/p] ↪→ OA. The endomorphism φ has a

unique continuous extension to O and OA. SetM = M⊗AW [[u]]OA; the Φ-structure on M

induces

Φ : φ∗(M)→M.

This map is injective and we have E(u)hM⊂ Φ(φ∗(M)) ⊂M, and D =M/uM. Set

λ =
∞∏
n=0

φn(E(u)/E(0)) ∈ O.

For each m, let r(m) be the smallest integer such that em < pr(m) and consider

OA,e,m := AW [[u, up
r(m)

/pm]][1/p].

There is a ring homomorphism OA → OA,e,m. Since |π| = p−1/e, we can see that u 7→ π

gives OA,e,m → A⊗Qp K which induces an isomorphism

(5.29) OA,e,m/(E(u)) ∼−→ A⊗Qp K.

Recall M = M ⊗AW [[u]] OA. As in [Ki3] Lemma (2.2) we see that there is a unique
φ-compatible AW -linear map

ξ : D →M

with the following properties:
1) The reduction modulo u of ξ is the identity.
2) The induced map ξ : D ⊗A⊗QpK0 OA →M is injective and has cokernel killed by λh.
3) For any sufficiently large m, the induced map

ξ ⊗OA
OA,e,m : D ⊗A⊗QpK0 OA,e,m →M⊗OA

OA,e,m = M⊗AW [[u]] OA,e,m

is injective and its image is equal to that of the map

φ∗(M)⊗OA
OA,e,m →M⊗OA

OA,e,m

induced by Φ.
Indeed, the construction of ξ : D →M in [Ki3] works verbatim when M is AW [[u]]-free.

(The assumptions that A is complete, local and Noetherian are not needed for our version
of the construction. We can choose M and M/uM to play the roles of the modules denoted
by M◦A and D◦A in loc. cit.) The general case is obtained by gluing, using the uniqueness of
ξ in the free case. To check claims (2) and (3) we can argue as in [Ki3]. (Note that loc. cit.
Lemma (2.2.1) is also valid with essentially the same proof even when A is not Noetherian.)
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As a result of (2) and (3), and by using (5.29) to reduce modulo (E(u)), we obtain an
isomorphism

(5.30) D ⊗K0 K
∼−→ φ∗(M)⊗OA

(A⊗Qp K) ' Φ(φ∗M[1/p])⊗AW [[u]][1/p] (A⊗Qp K).

(In the last tensor product, we use AW [[u]][1/p]→ AW [[u]][1/p]/(E(u)) ∼−→ A⊗Qp K.) We
can see that the isomorphism (5.30) is independent of the choice of m.

5.a.2. Recall that U denotes the rigid open unit disk over K0. If I is a subinterval of
[0, 1), we set U(I) for the admissible open subspace of points with absolute value in I.
Set OI = Γ(U(I),OU(I)) so that O = O[0,1). We denote by φ : U → U the “Frobenius”
morphism which corresponds to φ : O → O as before.

We can consider the category Cd,h,K fibered in groupoids over Qp-rigid spaces which is
defined as follows. Let X be a rigid space over Qp and consider X × U with the partial
Frobenius φ := id × φ : X × U → X × U. Then, by definition, Cd,h,K(X) is the groupoid of
pairs (M,Φ) where M is a coherent sheaf over X× U which is locally on X free of rank d,
and Φ : φ∗M→M an injective homomorphism with cokernel annihilated by E(u)h.

Denote by i : XK0 ↪→ X × U the inclusion i(x) = (x, 0) and by p : X × U → XK0 the
projection. If (M,Φ) is an object of Cd,K(X) we set D = i∗M. This is a coherent sheaf
on XK0 which is locally free of rank d; the morphism Φ : φ∗M → M induces a φ-linear
isomorphism Φ : D → D.

Proposition 5.2. There is a (unique) Φ-compatible morphism of sheaves of OXK0
-modules

ξ : D → p∗(M) such that
1) i∗ξ is the identity,
2) the induced morphism p∗ξ : p∗D →M is injective and has cokernel annihilated by λh,
3) If r ∈ (|π|, |π|1/p), then the image of the restriction p∗ξ[0,r) to X × U[0, r) coincides

with the image of Φ[0,r) : φ∗M[0,r) →M[0,r).

Proof. When X = Sp(Qp) is a point, this is [Ki2] Lemma 1.2.6. Note that there is at most
one Φ-compatible ξ : D → p∗(M) that satisfies property (1). Indeed, if ξ, ξ′ are two such
morphisms we have Im(ξ−ξ′) ⊂ u·p∗(M). The Φ-compatibility gives Φ·(ξ−ξ′) = (ξ−ξ′)·Φ.
Hence, since Φ : D → D is an isomorphism, we obtain inductively Im(ξ − ξ′) ⊂ us · p∗(M)
for all s ≥ 0. This implies that ξ = ξ′. To show the existence of ξ we suppose first that A
is a Tate Qp-algebra and that X = Sp(A) is the corresponding affinoid rigid space. Then
OA is the ring of rigid analytic functions OSp(A)×U on the product Sp(A) × U and M is
given by an OA-module as in the previous paragraph. There is a p-adic ring A which is
topologically of finite presentation (tfp) over Zp and p-torsion free such that A = A[1/p].
The arguments of [Ki2] Lemma 1.2.6, [Ki3] Lemma (2.2) (see also the previous paragraph)
extend to this case to construct ξ that satisfies all the required properties. The result in
the case of a general rigid space X follows by the affinoid case above by gluing using the
uniqueness of ξ.
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Suppose now that r is in (|π|, |π|1/p). Then OX×U[0,r)/(E(u)) ' OX ⊗Qp K. As a result
of (2) and (3), we obtain an isomorphism

(5.31) p∗D[0,r)
∼−−→ Φ(φ∗M)[0,r)

which by reducing modulo (E(u)) gives an isomorphism

(5.32) D ⊗K0 K
∼−−→ Φ(φ∗M)⊗OX×U[0,r)

(OX ⊗Qp K)

of coherent OX ⊗Qp K-sheaves over X.

5.b. In what follows, we will assume that h = 1.
Let A be a p-adic ring and set A = A[1/p]. Suppose that (M,Φ) is an AW [[u]]-Φ-module

which corresponds to an object of Ĉd,K(A). We will define an object D(M,Φ) of Dd,K(A)
by following the construction of [Ki2], [Ki3]. Let D = (M/uM)[1/p] with its Φ-structure
be as in §5.a.1. It remains to define the filtration Fil• on D ⊗K0 K. Since h = 1, we have

E(u)M ⊂ Φ(φ∗M) ⊂M .

The module Φ(φ∗M[1/p]) is filtered

E(u)Φ(φ∗M[1/p]) ⊂ E(u)M[1/p] ⊂ Φ(φ∗M[1/p]) .

Hence, we can filter the A⊗Qp K-module D ⊗K0 K ' Φ(φ∗M[1/p])⊗AW [[u]][1/p] (A⊗Qp K)
via (5.30) by taking the image of this filtration, i.e we set

Fil2 = (0),

Fil1 = E(u)M[1/p]modE(u)Φ(φ∗M[1/p]),

Fil0 = D ⊗K0 K .

Since E(u) is not a zero divisor in AW [[u]][1/p], we can see (cf. [Ki3] 2.6.1 (1)) that
the quotient M[1/p]/Φ(φ∗M[1/p]) is a finitely generated projective A ⊗Qp K-module. We
conclude that Fil1 is a finitely generated projective A⊗QpK-module which is locally a direct
summand of D⊗K0 K. Hence, (D,Φ,Fil•) gives an object of Dd,K(A) which we will denote
by D(M,Φ). This gives a functor of groupoids,

D(A) : Ĉd,K(A)→ Dd,K(A).

5.b.1. Similarly, if (M,Φ) is an object of Cd,K(X) for a rigid space X, we consider D = i∗M
with its φ-linear isomorphism Φ : D → D as above. We also have

E(u)Φ(φ∗M) ⊂ E(u)M⊂ Φ(φ∗M)

(A filtration of coherent sheaves over X × U.) As above, we can use this and (5.32) to
produce a filtration

(0) = Fil2 ⊂ Fil1 ⊂ Fil0 = D ⊗K0 K

of the coherent sheaf D ⊗K0 K over XK0 . We can see that the triple (D,Φ,Fil•) gives
an object of Dd,K(X). Since (M,Φ) 7→ (D,Φ,Fil•) is functorial, this defines a functor of
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groupoids, Cd,K(X) → Dd,K(X). This functor is compatible with descent, hence we obtain
a morphism of stacks over the category of rigid spaces,

(5.33) D : Cd,K → Dd,K .

Similarly, if µ is a miniscule cocharacter with h− = 0, h+ = 1 and with reflex field E

as in Remark 3.3, we can define the category Cµ,K fibered in groupoids over E-rigid spaces
by requiring the cokernels M/Φ(φ∗M) to have a filtration “of type µ”. In this case, the
morphism D sends Cµ,K to Dµ,K .

5.b.2. It follows from [Ki2] Theorem (1.2.15) that the functor D(Sp(L)) gives an equiv-
alence Cd,K(Sp(L)) ∼−→ Dd,K(Sp(L)) for any finite extension L/Qp. To briefly explain the
construction of the inverse functor we need some notation: Denote by σ the isomorphism
O → O given by applying Frobenius (only) to the coefficients of the power series. Denote
by xn the point of U that corresponds to the irreducible polynomial E(up

n
) and let ÔU,xn

the complete local ring of U at xn. Notice that the function σ−n(λ) ∈ O has a simple zero
at xn. Now consider the composite map

O ⊗K0 D
σ−n⊗Φ−n

−−−−−−→ O ⊗K0 D −→ ÔU,xn ⊗K0 D = ÔU,xn ⊗K DK ,

where in the first arrow Φ−n : D → D makes sense since Φ = ΦD is bijective. By the above,
this induces a map

in : O[λ−1]⊗K0 D −→ ÔU,xn [(u− xn)−1]⊗K DK .

Now suppose we are given an object (D,Φ,Fil•) over L. Kisin constructs a Φ-module
(M,Φ) =M(D,Φ,Fil•) over OL = OSp(L)×U by taking

(5.34) M =
⋂
n≥0

i−1
n (Fil1 ⊗K (u− xn)−1ÔU,xn +DK ⊗K ÔU,xn)

and setting Φ : φ∗M→M to be the restriction of

1⊗ ΦD : φ∗(O[λ−1]⊗K0 D)→ O[λ−1]⊗K0 D .

Note that by definition, we have

(5.35) O ⊗K0 D ⊂M ⊂ λ−1O ⊗K0 D .

Observe that by its construction, M is a closed O-submodule of λ−1O ⊗K0 D and so by
[Ki2] Lemma 1.1.4, M is finite free over O.
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5.b.3. This construction extends to the case that L is a complete rank-1 valued field: Let
R◦ be a p-adic valuation ring of rank 1 with L = R◦[1/p]. Then OL = O[0,1) is the ring of
rigid functions on the open unit disk over L ⊗Qp K0. For simplicity, set LK0 = L ⊗Qp K0,
LK = L⊗Qp K. Consider a triple (D,Φ,Fil•) as above. We can construct a Φ-module M
over O[0,1) by (5.34) as above that satisfies

(5.36) O[0,1) ⊗LK0
D ⊂M ⊂ λ−1O[0,1) ⊗LK0

D .

By [Gr], V, Rem. 3◦, p. 87, O[0,1) is a product of Prüfer domains. We can see that when
an integral power of r is in the set |L| the restrictionM|[0,r] ofM to the closed disk [0, r] is
given by a finitely generated torsion free O[0,r]-module which is free (since O[0,r] is a product
of p.i.ds). Using [Gr], V, Thm. 1, p. 83, we can see thatM is a projective finitely generated
O[0,1)-module. As such it is a direct sum of a free module with a projective module L of
rank 1 and L ' det(M). We can see that det(M) = λ−aO[0,1) with a = dimLK

(Fil1);
therefore L and hence M is finite free over O[0,1).

5.b.4. The constructions of the two previous paragraphs are compatible in the following
sense: Suppose that the p-adic ring A is topologically of finite presentation over Zp. Then
A = A[1/p] is a Tate algebra and we can consider the affinoid rigid space Sp(A). Recall
that Sp(A) is the “generic fiber” Spf(A)rig of Spf(A) in the sense of Raynaud. An object
(M,Φ) of Ĉd,K(A) gives an object (M,Φ) of Cd,K(Sp(A)) by taking M to be the coherent
sheaf with global sections M ⊗AW [[u]] OA. This gives a functor Ĉd,K(A) → Cd,K(Sp(A)).
The diagram

Ĉd,K(A)

D(A)

��

// Cd,K(Sp(A))

D(Sp(A))

��
Dd,K(A) // Dd,K(Sp(A)) ,

commutes up to natural equivalence. (Here the lower horizontal arrow is given by sending
the A-module D to the corresponding coherent sheaf over Sp(A).) The diagonal arrow

Π(A) : Ĉd,K(A) −→ Dd,K(Sp(A))

(obtained as the composition of the top followed by the right downward arrow) is by defi-
nition, the period functor for A. It globalizes as follows.

Suppose that X is an adic formal scheme which is locally of finite type over Zp (hence
pOX is an ideal of definition), and denote by X = X rig the corresponding rigid space
given by its generic fiber, comp. [RZ], Prop. 5.3. The construction (M,Φ) 7→ (M,Φ)
above generalizes to give a functor Ĉd,K(X )→ Cd,K(X rig). Its composition with the functor
ω(X rig) : Cd,K(X rig) −→ Dd,K(X rig) above gives the period functor

(5.37) Π(X ) : Ĉd,K(X ) −→ Dd,K(X rig) .
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It is localizing in the following sense. Let X =
⋃
i Ui be an open covering of the formal

scheme X . This induces an admissible open covering of the associated rigid-analytic spaces,

X rig =
⋃

i
U rig
i ,

comp. [RZ], Prop. 5.3. Then the corresponding diagram of 2-cartesian rows, with vertical
arrows the period morphisms, is commutative,

Ĉd,K(X )→
∏

i
Ĉd,K(Ui) ⇒

∏
i,j
Ĉd,K(Ui ∩ Uj)

↓ ↓ ↓

Dd,K(X rig)→
∏

i
Dd,K(U rig

i ) ⇒
∏

i,j
Dd,K(U rig

i ∩ U
rig
j ) .

5.b.5. Let us now assume that R◦ is a complete rank one valuation ring with residue field
equal to F̄p and set L = R◦[1/p] for the corresponding complete rank-1 valued field. Recall
OL = O[0,1) is the ring of rigid functions on the open unit disk over LK0 . Denote by OR

L

the corresponding Robba ring

OR
L := lim

r→1−
O(r,1) .

This can be identified with the set of Laurent power series
∑

n∈Z anu
n with coefficients in

LK0 that converge in some open annulus r < |u| < 1. The ring OR
L is equipped with a

Frobenius endomorphism φ : OR
L → OR

L which restricts to φ : OL → OL. Let Oint
L the

subring of ORL consisting of those Laurent power series
∑

n∈Z anu
n with an ∈ R◦ ⊗Zp W ,

for all n ∈ Z. By [Ke2] Prop. 3.5.5, Oint
L is a henselian local ring with maximal ideal given

by the set of series with |an| < 1, for all n ∈ Z, and residue field F̄p((u)). Notice that E(u)
is a unit in Oint

L and φ preserves Oint
L .

Suppose now that N is a finite free rank d Φ-module over OR
L with Φ : φ∗N ∼−→ N an

isomorphism. We will say that (N ,Φ) is purely of slope zero if there is a finite free rank d
Oint
L -submodule N int ⊂ N such that:
i) N int ⊗Oint

L
OR
L = N , and

ii) Φ|N int induces an isomorphism φ∗N int ∼−→ N int.
When L/Qunr

p is finite, this is equivalent to asking that (N ,Φ) is purely of slope zero in
the sense of Kedlaya [Ke1].

As in the previous paragraph, we have the period functor

Π(R◦) : Ĉd,K(R◦)→ Dd,K(L) ' Dd,K(Sp(L)) .

By 5.b.3 we can associate to an object (D,Φ,Fil•) of Dd,K(L) a Φ-module (M,Φ) =
M(D,Φ,Fil•) over OL.

Conjecture 5.3. (i) The object (D,Φ,Fil•) of Dd,K(Sp(L)) is in the image of the period
functor Π(R◦), i.e is of the form Π(R◦)(M,Φ) for some (M,Φ) ∈ Ĉd,K(R◦), if and only if
M(D,Φ,Fil•)⊗OL

OR
L is purely of slope zero.
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(ii) There exists an Qp-analytic subspace (in the sense of Berkovich)

(ResK0/Qp
GLd ×Qp Grd,K)an ⊂ ResK0/Qp

GLd ×Qp Grd,K

invariant under ResK0/Qp
GLd such that the fiber over L of the stack quotient

[(ResK0/Qp
GLd ×Qp Grd,K)an/(φ,·)ResK0/Qp

GLd]

parametrizes the image points of Π over L.

There is an obvious variant of this conjecture involving a minuscule cocharacter µ with
h− = 0, h+ = 1.

6. Kisin varieties and Bruhat-Tits buildings

6.a. We return to the set-up and notations of §2.c.1. Let F be a finite extension of Fp.

6.a.1. For simplicity, set L = F ⊗ k. Recall G = ResW/Zp
GLd. Suppose now that

A ∈ G(F((u))) = GLd(L((u))) and consider the corresponding L((u))-Φ-module MA =
(L((u))d, A · φ) which gives an object of R(F). Choices A, A′ that are φ-conjugate, i.e
A′ = g−1 ·A · φ(g) with g ∈ GLd(L((u))), give isomorphic modules. By the above, the fiber
product {MA} ×R Cν is represented over F by a projective subscheme of the affine Grass-
mannian FG of L[[u]]-lattices in L((u))d. We denote this subscheme by Cν(A). Similarly,
we can consider the fiber product {MA}×R C0

µ which is a locally closed subscheme of Cν(A);
we denote this subscheme by C0

ν(A). This can be thought of as an inseparable analogue of
an affine Deligne-Lusztig variety. We call C0

ν(A) the Kisin variety associated to (G,A, ν),
and Cν(A) the corresponding closed Kisin variety.

Concretely, for every finite extension F′ of F, the F′-points of the Kisin variety C0
ν(A) are

given by

C0
ν(A)(F′) = {g · (F′ ⊗ k)[[u]]d | g−1 ·A · φ(g) ∈ G(F′[[u]]) · uν ·G(F′[[u]])}.

The points Cν(A)(F′) parametrize finite flat commutative group schemes G with F′-action
over OK which have “Hodge type ≤ ν” and are such that the restriction of the Galois
representation Gal(K̄/K) → AutF′(G(ŌK)) to the Galois group G∞ corresponds to the
Φ-module given by A.

6.a.2. The above construction extends to the set-up of a general reductive group G =
ResW/Zp

H described in §2.d. If ν is a dominant coweight of G and A ∈ LG(F) = G(F((u))),
we can define as above C0

ν,G, Cν,G and the Kisin variety C0
ν,G(A), and closed Kisin variety

Cν,G(A). However, the relation with Galois representations of Gal(K̄/K) or finite group
schemes is not so clear in this general case.

6.b. We now explain how the Bruhat-Tits building can help to get an overview of a Kisin
variety.
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6.b.1. For simplicity, we assume that k = Fp, W = Zp and that H = G is a split Chevalley
group over Zp. In the rest of this section, the symbol W is free again, and will be reserved
for Weyl groups. Let T be a maximal split torus of G. We will identify the cocharacter
groups X∗ = X∗(TQp) = X∗(TFp) = X∗(TFp((u))). Suppose that C is a choice of a positive
closed Weyl chamber in the vector space

V = X∗(T )⊗Z R.

Let B = B(F((u)) be the Bruhat-Tits building of G over F((u)). This is a metric space
with equivariant distance function d : B × B → R. We have the “refined” Weyl distance
function δ : B × B → C which is defined as follows, cf. [KLM], section 5.1: Let x, y ∈ B
and suppose that A is an apartment that contains both x and y. Let δA(x, y) be the unique
representative in C of the vector y−x ∈ V and set δ(x, y) = δA(x, y). (This is independent
of the choice of apartment A.) The function δ is translation G-equivariant and satisfies the
triangle inequality, cf.[KLM], Remark 3.33, (ii),

(6.38) δ(x, z) ≤ δ(x, y) + δ(y, z)

for the order that extends the usual order on dominant coweights. Also,

(6.39) δ(x, y) = δ(y, x)∗ ,

where v 7→ v∗ = w0(−v) is the usual involution of C defined by the longest element w0 of
the finite Weyl group W .

6.b.2. Consider now the homomorphism φ : F((u)) → F((u)), given φ(a) = a if a ∈ F,
φ(u) = up. We will show that it induces a map φ : B → B with the following properties:

(a) the image of any apartment under φ is an apartment,
(b) we have φ(g) · φ(x) = φ(g · x) for any g ∈ G(F((u))), x ∈ B.
(c) For x, y ∈ B, we have

d(φ(x), φ(y)) = p · d(x, y), δ(φ(x), φ(y)) = p · δ(x, y).

(d) The map φ : B → B takes maps geodesics to geodesics; i.e., if [x, y] ⊂ B is the
geodesic in B joining x and y, then the image φ([x, y]) is the geodesic [φ(x), φ(y)]
joining φ(x) and φ(y).

(e) The map φ has a unique fixed point, i.e., there is a unique y0 ∈ B such that φ(y0) =
y0. The point y0 is a special vertex in B.

Indeed, consider the vertex y0 of B which is fixed under the subgroup G(F[[u]]). Let A0

be the apartment in B that corresponds to a constant maximal torus T = T0 ⊗F F((u))
with T0 ⊂ GF; then y0 belongs to A0 and this choice of base point allows us to identify the
affine space A0 with V = X∗(T ) ⊗Z R. Scaling by p on V now gives a well-defined map
φ0 : A0 → A0 such that φ0(y0) = y0 and which satisfies φ0(n · y) = φ(n) · φ0(y) for each
y ∈ A0 and n in the normalizer N(T ) ⊂ G(F((u))). Now recall that the building B can be
described as the quotient of G(F((u)) × A0 via the equivalence relation (g, x) ∼ (x′, g′) if
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there is n ∈ N(T ) such that x′ = n · x, g′ = ngn−1. Using the above we immediately see
that φ(x, g) = (φ0(x), φ(g)) respects the equivalence relation and gives φ : B → B; since
each apartment of B is of the form g ·A0 we see that the image of an apartment by φ is also
an apartment. The desired properties now follow easily by using the above and the fact
that any two points x, y ∈ B are contained in some apartment and that the geodesic [x, y]
is the straight line segment connecting x and y in that apartment. Note that the equality
d(φ(x), φ(y)) = p · d(x, y) implies that there is at most one fixed point which then has to be
the vertex y0 given above.

Note that, by construction, the group L+G(F) = G(F[[u]]) is the stabilizer of y0 in
G(F((u))). The map

(6.40) ι : FG(F) = G(F((u)))/G(F[[u]]) ↪→ B, g ·G(F[[u]]) 7→ g · y0

allows us to identify the F-valued points of the affine Grassmannian with a subset of the
vertices in the building.

6.b.3. Suppose now that A is in G(F((u))) and gives an object in RG(F). Then we have a
map Φ = A · φ : B → B which also satisfies

(6.41) d(ΦA(x),ΦA(y)) = p · d(x, y), δ(ΦA(x),ΦA(y)) = p · δ(x, y).

Then the F-valued points of Cν(A) ⊂ FG(F) correspond to the following subset of vertices
of the building,

Cν(A) = {x vertex in B | x ∈ Im ι, 0 ≤ δ(x,ΦA(x)) ≤ ν }.

If N/F((u)) is a finite separable extension, we have an isometric embedding

B ↪→ B(N).

We will use this to identify B with a subspace of B(N). The map ΦA extends to a map
B(N)→ B(N).

Proposition 6.1. There is a finite separable extension M/F((u)) such that the above map
ΦA : B(M)→ B(M) has a fixed point. This fixed point is unique in ∪N/F((u))B(N).

Proof. The uniqueness follows easily from (6.41). For simplicity, we will write Φ instead of
ΦA. Consider the “Lang isogeny”

GF((u)) → GF((u)) ; g 7→ g−1φ(g).

This is a finite étale surjective morphism; therefore, if A is in G(F((u))), then there is
g ∈ G(M) for some finite Galois extension M/F((u)) such that A = g−1φ(g). Consider
x0 = g−1 · y0 which is a special vertex in B(M). We have

Φ(x0) = A · φ(g−1 · y0) = g−1 · φ(g) · φ(g)−1 · y0 = g−1 · y0 = x0

and so x0 is a fixed point.
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In fact, if σ is an element of Gal(M/F((u))), since σ · φ = φ · σ, we can see that σ(A) =
σ(g−1φ(g)) = σ(g)−1φ(σ(g)) = A = g−1φ(g); therefore σ(g)g−1 ∈ G(F). Since g0 · y0 = y0

for g0 ∈ G(F), the point x0 = g−1 · y0 depends only on A and is Gal(M/F((u)))-fixed.
Therefore, ifM/F((u)) is tamely ramified, which implies B(M)Gal(M/F((u))) = B, we conclude
that x0 belongs to B.

6.b.4. We continue to write Φ = ΦA. If x is in B, we can apply the triangle inequality
above to x, Φ(x) and x0 = Φ(x0), in two different ways. We obtain:

δ(Φ(x), x) ≤ δ(Φ(x), x0) + δ(x0, x) = p · δ(x, x0) + δ(x, x0)∗,

δ(Φ(x), x0) = p · δ(x, x0) ≤ δ(Φ(x), x) + δ(x, x0).

Combining these we get

(6.42) (p− 1) · δ(x, x0) ≤ δ(Φ(x), x) ≤ p · δ(x, x0) + δ(x, x0)∗.

This implies that if h ∈ G(F((u))) is such that

(6.43) p · δ(h · y0, x0) + δ(h · y0, x0)∗ ≤ ν,

then the corresponding point h ·G(F[[u]]) in FG(F) belongs to Cν,G(A), which is then non-
empty and is contained in the ball of radius ν/(p− 1) around x0.

6.b.5. Suppose that A′ = h−1 · A · φ(h) with h ∈ G(F((u))). Then A′ = (gh)−1φ(gh) and
the corresponding ΦA′-fixed vertex is x′0 = (gh)−1 · y0 = h−1 · x0. We conclude that the
orbit G(F((u))) ·x0 only depends on the φ-conjugacy class of A in G(F((u))). By the above,
if M/F((u)) is tamely ramified, x0 belongs to B.

6.c. We continue to assume that k = Fp and now take G = H = GLd. Take T the
standard maximal torus of GLd. Then the finite Weyl group is the symmetric group Sd,
X∗(T )R = X∗(T )⊗Z R, and the standard choice of a positive closed Weyl chamber is

C = {(v1, . . . , vd) ∈ Rd | v1 ≥ v2 ≥ · · · ≥ vd}.

The partial order on C is given by: (v1, . . . , vd) ≤ (v′1, . . . , v
′
d) iff

r∑
i=1

vi ≤
r∑
i=1

v′i, for r = 1, . . . , d− 1, and v1 + · · ·+ vd = v′1 + · · ·+ v′d.

In this case, we will explain the construction of the fixed point in a slightly different way.
Start with MA = (k((u))d, A · φ) and set

U = (k((u))sep ⊗k((u)) MA)φ⊗ΦA=Id ⊂ k((u))sep ⊗k((u)) MA

for the k-vector space of the corresponding Gal(k((u))sep/k((u)))-representation ρ. (Here
φ : k((u))sep → k((u))sep denotes again the Frobenius of the separable closure.) In fact, one
can see from the construction of ρ that there is a finite separable extension L/k((u)) such
that

U = (L⊗k((u)) MA)φ⊗Φ=Id ⊂ L⊗k((u)) MA = Ld
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as Gal(k((u))sep/k((u)))-modules. (Note that Ld also supports a Φ-module structure for
the extension φ|L of φ to L; this is given by A · φ|L ) Now set M0 for the OL-submodule in
Ld generated by the elements in U . Then M0/uLM0 ' U and so M0 is an OL-lattice in
Ld. Since φ⊗ Φ = A · φ|L acts as identity on U , we can see that

(A · φ|L)∗(M0) = M0.

The lattice M0 gives a point x0 of B(L) which is fixed under the map Φ, i.e Φ(x0) = x0.

6.d. In this paragraph, we will explain the picture in the building for F = Fp and G =
H = GL2. Our main objective is the following. Given a dominant coweight ν = (a, b)
with a ≥ b ≥ 0 and a matrix A ∈ GL2(F((u))), describe the set of vertices in the building
B which correspond to F-valued points in Cν(A), i.e, to lattices M ⊂ F((u))2 for which
ΦA(φ∗(M)) ⊂ M and such that M/ΦA(φ∗(M)) = M/〈A · φ(M)〉 has elementary divisors
(a′, b′), a′ ≥ b′ ≥ 0 which are smaller than ν = (a, b), i.e a′ ≤ a, a′ + b′ = a + b. The
corresponding set in the building is the set of vertices x such that 0 ≤ δ(x,ΦA(x)) ≤ ν.
To simplify our discussion, we will consider the projection B → T where T is the tree
of homothety classes of lattices in F((u))2 (i.e the building for PGL2(F((u)))). Note that
the Weyl chamber distance δ on the tree T coincides (up to sign) with the usual distance
d : T × T → R≥0.

We consider the sets Vert(T )ν,A of vertices x in the tree T for which

d(x,ΦA(x)) ≤ r = |a− b|.

Let x0 be the fixed point of Φ = ΦA on T (M) and x̃0 its projection to T . Note that the
inequalities (6.42) imply that

B(x0,
r

p+ 1
) ∩Vert(T ) ⊂ Vert(T )ν,A ⊂ B(x0,

r

p− 1
) ∩Vert(T )

where B(x0, R) is the “ball”

(6.44) d(x, x0) ≤ R

of radius R centered at the point x0.
To refine this, we will consider several possible cases:
A) x̃0 is not a vertex in T . Then x̃0 lies on a segment [η, η′] with η, η′ the closest vertices

to x̃0. Now consider the images Φ(η), Φ(η′). Since the geodesic [x0,Φ(η)] passes through
the projection x̃0, it also has to pass through either η or η′ (but not both). Similarly for
[x0,Φ(η′)]. There are several subcases:

1) η ∈ [x0,Φ(η′)], η′ ∈ [x0,Φ(η)]. Apply Φ to conclude that Φ(η) lies in the geodesic from
x0 to Φ2(η′) and Φ(η′) in the geodesic from x0 to Φ2(η). Note that if Φ(x̃0) 6= x̃0 and is, for
example, between x̃0 and η′, then Φ([x0, η

′]) = [x0,Φ(η′)] would pass first through x̃0, then
through Φ(x̃0), and then through η. This contradicts the fact that this is a geodesic. A
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similar contradiction is obtained if Φ(x̃0) is between x̃0 and η. We conclude that Φ(x̃0) = x̃0

and hence x0 = x̃0.

η’η

x

x
0

0

Φ(η)’Φ(η )

~

Figure 1. The case A1

By similar arguments, we deduce that the limit

lim
n→∞

[Φ2n(η),Φ2n(η′)] = lim
n→∞

[Φ2n+1(η′),Φ2n+1(η)]

gives an apartment which is preserved (but flipped) by Φ. Indeed, Φ takes the half-
apartment lim

n→∞
[x0,Φ2n(η)] to lim

n→∞
[x0,Φ2n+1(η)].

Note that in this case, there are no half-apartments in the tree T that are preserved by
Φ. Indeed, consider a vertex y in such a half-apartment and connect this to x0; the geodesic
has to pass through either η or η′; in either case, since the geodesic from x0 to Φ(y) has to
pass through the opposite point η′, resp. η, we obtain a contradiction. Recall that the set
of half apartments in the tree can be naturally identified with the set of one-dimensional
subspaces of the corresponding vector space F((u))2. Hence, we see that in case (A1) the
Φ-module given by the matrix A is simple.

Now suppose x is a vertex in T . The geodesic [x0, x] has to pass through either η or η′.
Suppose that η′ ∈ [x0, x] (the other case is similar) and consider Φ([x0, x]) = [Φ(x0),Φ(x)] =
[x0,Φ(x)]. This contains Φ(η′) and therefore has to pass through η (since η ∈ [x0,Φ(η′)]).
Therefore, the geodesic [x,Φ(x)] passes through both η and η′ (and also x0) and we have

d(x,Φ(x)) = d(x, x0) + d(x0,Φ(x))

= (p+ 1)d(x, x0).

Hence, in this case, d(x,ΦA(x)) ≤ r amounts to d(x, x0) ≤ r/(p+ 1) and we have

Vert(T )ν,A = B(x0,
r

p+ 1
) ∩Vert(T ).

2) η ∈ [x0,Φ(η)], η′ ∈ [x0,Φ(η′)]. Then, we can see that the limits lim→n[x0,Φn(η)],
lim→n[x0,Φn(η′)] give two half-apartments that are both preserved by Φ. As above, this
implies that the Φ-module given by A contains two 1-dimensional Φ-submodules; we can
easily see that these are distinct. Hence the Φ-module given by A is decomposable.
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η’η

x

x
0

0

~

’Φ(η) Φ(η )

Figure 2. The case A2

Now suppose x is a vertex in T . The geodesic [x0, x] has to pass through either η or
η′. Suppose that η ∈ [x0, x] and in fact suppose that a ≥ 0 is the largest integer for which
Φa(η) is contained in [x0, x]. Consider Φ([x0, x]) = [x0,Φ(x)] which has to contain Φa+1(η).
Therefore, the geodesic [x,Φ(x)] has to pass through Φa+1(η). We obtain

d(x,Φ(x)) = d(x,Φa+1(η)) + d(Φa+1(η),Φ(x))

= d(x,Φa+1(η)) + p · d(Φa(η), x).

If x′ is the projection of x to the half-apartment lim→n[x0,Φn(η)], then we can rewrite this
distance as

d(x,Φ(x)) = d(Φ(x),Φ(x′)) + d(Φ(x′),Φa+1(η)) +

+d(Φa+1(η),Φa(η))− d(x′,Φa(η)) + d(x, x′)

= (p+ 1)d(x, x′) + (p− 1)d(x′,Φa(η)) + pad(Φ(η), η).

There is a similar expression if η′ is in [x0, x]. Hence, d(x,ΦA(x)) ≤ r can be described as
the union of two “thinning tubes” around the two half-apartments that are preserved by Φ.
Note that, in the above, when d(x,Φ(x)) is bounded, the possible values of a are bounded
too.

3) η ∈ [x0,Φ(η)], η ∈ [x0,Φ(η′)] (the case η′ ∈ [x0,Φ(η′)], η′ ∈ [x0,Φ(η)] is symmetric).
Then lim→n[x0,Φn(η)] gives a half-apartment which is preserved by Φ. As above, this
implies that the Φ-module given by A contains a 1-dimensional Φ-submodule and, therefore,
it is not simple. In this case, we can see that this is the unique half-apartment preserved by
Φ. Indeed, consider a vertex y in such a half-apartment A′ and connect this with a geodesic
to x0; the geodesic has to pass through either η or η′ and we can easily rule out η′. Now
the geodesic [x0,Φ(y)] has to pass through Φ(η). Since Φ(y) is also in A′, we can conclude
that A′ also contain Φ(η). Inductively, A′ contains Φn(η) for all n. We conclude that the
Φ-module given by A is not simple and not decomposable.

Now suppose x is a vertex in T . The geodesic [x0, x] has to pass through either η or η′.
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η’η
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x
0

0

~

Φ(η)

’Φ(η )

Figure 3. The case A3

• Suppose first that the geodesic [x0, x] passes through η. In fact, suppose that a ≥ 0 is
the largest integer for which Φa(η) is contained in [x0, x]. Then as before, we obtain

d(x,Φ(x)) = d(x,Φa+1(η)) + pd(Φa(η), x)

= (p+ 1)d(x, x′) + (p− 1)d(x′,Φa(η)) + pad(Φ(η), η)

with x′ the projection of x to the apartment lim→n[x0,Φn(η)]. Hence again the set d(x,ΦA(x)) ≤
r can be described for these vertices as a union of thinning tubes.
• Now suppose that the geodesic [x0, x] passes through η′. Then an argument as in case

(A1) gives

d(x,Φ(x)) = (p+ 1)d(x, x0)− 2d(x̃0, x0).

Hence for this kind of vertices this set d(x,ΦA(x)) ≤ r is a ball around x0.

B) Suppose now that x̃0 = η is a vertex of T . There are two subcases:
1) x̃0 = η is not fixed by Φ. Then, lim→n[x0,Φn(η)] gives again a half-apartment that is

preserved by Φ. We can, in fact, see as before, that this is the unique such half-apartment.
Hence, in this case, the Φ-module given by A is not simple and not decomposable. Note
that after replacing F by a finite extension, x0 becomes of type B2 below.

If x is a vertex of T then η ∈ [x0, x]. If a ≥ 0 is the largest integer for which Φa(η) is
contained in [x0, x] we obtain for d(x,Φ(x)) the same formula as in cases A2 or A3a. Hence
in this case d(x,ΦA(x)) ≤ r is a union of thinning tubes.

2) x̃0 = η is fixed by Φ, in other words the fixed point x0 is a vertex of T . This corresponds
to the homothety class of a lattice M0; we have Φ(φ∗M0) = usM0 for some s. Denote by
{ηi}i=0,...,p its neighborhood vertices. The link of η is identified with the projective space
of lines in M0/uM0 and the action of Φ on the link then corresponds to the action on
the projective space given the linear action of u−s · Φ on M0/uM0. Now observe that the
geodesic [x0,Φ(ηi)] passes through ηi if and only if the action of Φ on the link leaves the
point of the link that is given by ηi fixed. Depending on whether the number of fixed points
in the link is ≥ 2, resp. 1, resp. 0, the Φ-module is decomposable, resp. not simple and
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Figure 4. The case B1

not decomposable, resp. simple. Note that in the last case it is not absolutely simple, it
disappears if F is replaced by a finite extension.

Now let x be a vertex of T and consider the geodesic [x0, x] which has to pass through
one of the vertices ηj . We distinguish cases according as ηj gives a fixed point of the link,
or not.

η=x
~

0
= x
0

Figure 5. The case B2

• Suppose first that [x0, x] passes through a vertex ηj with the corresponding point of the
link fixed by Φ. Then the argument of case A2 applies to obtain d(x,Φ(x)). (It involves the
largest integer a ≥ 0 such that Φa(ηj) is in [x0, x].) For this kind of vertices d(x,ΦA(x)) ≤ r
is a union of thinning tubes.
• Now suppose that [x0, x] passes through a vertex ηj with the corresponding point of

the link not fixed by Φ. Then the argument of case A1 applies to give

d(x,Φ(x)) = (p+ 1)d(x, x0).

For this kind of vertices d(x,ΦA(x)) ≤ r is a ball around x0.
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