ERRATA

page 7: The proof of (iii) of Lemma 1.1.8 is valid only when char k = 0. In the sequel, we use only the special case of Lemma 1.1.8 (iii), singled out by Remark 1.1.9, which has a very simple proof. The general statement of Lemma 1.1.8 (iii) is true, and follows from the displayed formula (1.3) on page 127.

page 74: The sentence right after Definition 3.2.4 is incorrect. It is not true that v_P^G only depends on the associate class of P, even though i_P^G does. However, the elements v_P^G , for P ranging over a system S of representatives of the associate classes of psgps, form a \mathbb{Z} -basis of $K_0(i_B^G)$, and this is all that is used in the sequel. To prove the claim, we have to see, for any psgp Q, that i_Q^G lies in the subgroup generated by $\{v_P^G \mid P \in S\}$. We argue by decreasing induction on the semi-simple rank of the Levi component of Q(i.e., the number of entries in the corresponding decomposition of n). By Theorem 3.2.5, $v_Q^G - i_Q^G$ is a \mathbb{Z} -linear combination of $i_{Q'}^G$, for Q' ranging over the psgps properly containing Q. Let $P \in S$ be the unique element associated to Q. Then $i_Q^G = i_P^G$. Hence the claim follows from the induction hypothesis.

page 80: In the last statement of Corollary 3.2.14, P should range over a system of representatives of the associate classes in \mathcal{P} , see Correction for page 74 above.

page 169, line 3: The same mistake as the one on page 74 occurs, and is taken care of by the Correction above. More precisely, the elements v_P^G , for P ranging over a system S of representatives of the associate classes of psgps, form a \mathbb{Z} -basis of $L_0(i_B^G)$.

page 170: In the last statement of Corollary 7.1.12, P should range over a system of representatives of the associate classes in \mathcal{P} , see Correction for page 74 above.

page 305: In Remark 10.1.2, the comments on the generalized Steinberg representations in the finite field case should be eliminated, see the Correction for page 74 above.