The Langlands lemma and the Betti numbers of stacks of G-bundles on a curve

G. Laumon and M. Rapoport

Atiyah and Bott [AB] and Harder and Narasimhan [HN] have established a formula for the Poincaré series (the generating series formed using the Betti numbers) of the stack $\mathcal{M}\left(G, \nu_{G}^{\prime}\right)$ of G-bundles with slope ν_{G}^{\prime} on a Riemann surface, which expresses it in terms of the Poincaré series of the open substack of semi-stable G-bundles and the similar Poincaré series for all standard Levi subgroups of G. This relation is a consequence of the Harder-Narasimhan stratification of $\mathcal{M}\left(G, \nu_{G}^{\prime}\right)$. A similar relation arises in the context of period domains over a finite or p-adic field, where the Euler-Poincaré characteristic of a generalized flag variety of a reductive group is expressed in terms of the Euler-Poincaré characteristics of the period domains associated with the various standard Levi subgroups of G (cf. [Rap]). These relations can be considered as recursion relations expressing the Poincaré series (resp. Euler-Poincaré characteristic) of the semi-stable sublocus in terms of the corresponding quantities for the ambiant spaces for G and its Levi subgroups.

In this paper we show that the Langlands lemma from the theory of Eisenstein series, which has become a standard tool in the development of the Arthur-Selberg trace formula, can be used to invert the recursion relation for the Poincaré series of the open substack of semi-stable G-bundles. This note is therefore of a purely combinatorial nature.

This application of the Langlands lemma has been noticed by Kottwitz (in the context of p-adic period domains). Our only contribution has been to formalize this suggestion in a different context. In the case of vector bundles on a curve the inversion of the recursion formula had been obtained earlier by Zagier [Za] using different techniques.

The paper is organized as follows. In Section 1 we fix our notations and recall the Langlands lemma. In section 2 we use the lemma to prove a general inversion formula. In section 3 we explain how to apply this inversion formula to the theory of G-bundles on a curve. The special case of vector bundles is discussed in section 4.

We wish to thank R. Kottwitz for many helpful discussions. We also thank the Deutsche Forschungsgemeinschaft for its support.

1. The Langlands lemma.

Let G be a reductive algebraic group over a perfect field k. We fix a minimal parabolic subgroup P_{0} of G and a Levi subgroup M_{0}. We denote by \mathcal{P} the set of standard parabolic subgroups of G, i.e. parabolic subgroups of G containing P_{0}.

If $P \in \mathcal{P}$, we denote by N_{P} its unipotent radical and by M_{P} the unique Levi subgroup of P containing M_{0}. Moreover, we denote by

$$
A_{P}=\operatorname{Hom}_{k-\mathrm{gr}}\left(\mathbb{G}_{\mathrm{m}, k}, Z_{P}\right) \otimes \mathbb{G}_{\mathrm{m}, k}
$$

the maximal split torus in the center Z_{P} of M_{P} and by

$$
A_{P}^{\prime}=\operatorname{Hom}\left(\operatorname{Hom}_{k-\mathrm{gr}}\left(M_{P, \mathrm{ab}}, \mathbb{G}_{\mathrm{m}, k}\right), \mathbb{G}_{\mathrm{m}, k}\right)
$$

the maximal quotient split torus of $M_{P, \mathrm{ab}}$. The composite map

$$
A_{P} \hookrightarrow Z_{P} \hookrightarrow M_{P} \rightarrow M_{P, \mathrm{ab}} \rightarrow A_{P}^{\prime}
$$

is an isogeny. In particular, we have an injective map of free abelian groups of the same finite rank

$$
X_{*}\left(A_{P}\right)=\operatorname{Hom}_{k-\mathrm{gr}}\left(\mathbb{G}_{\mathrm{m}, k}, Z_{P}\right) \hookrightarrow \operatorname{Hom}\left(\operatorname{Hom}_{k-\mathrm{gr}}\left(M_{P, \mathrm{ab}}, \mathbb{G}_{\mathrm{m}, k}\right), \mathbb{Z}\right)=X_{*}\left(A_{P}^{\prime}\right)
$$

Following Arthur [Ar1], for each $P \in \mathcal{P}$, we set

$$
\mathfrak{a}_{P}=\mathbb{R} \otimes X_{*}\left(A_{P}\right)=\mathbb{R} \otimes X_{*}\left(A_{P}^{\prime}\right)
$$

If $P \subset Q$ are two standard parabolic subgroups of G, we have canonical maps

$$
A_{Q} \hookrightarrow A_{P} \hookrightarrow A_{P}^{\prime} \rightarrow A_{Q}^{\prime} .
$$

The canonical maps $A_{Q} \hookrightarrow A_{P}$ and $A_{P}^{\prime} \rightarrow A_{Q}^{\prime}$ induce a canonical embedding $\mathfrak{a}_{Q} \hookrightarrow \mathfrak{a}_{P}$ and a canonical retraction $\mathfrak{a}_{P} \rightarrow \mathfrak{a}_{Q}$. Hence, we have a canonical splitting

$$
\mathfrak{a}_{P}=\mathfrak{a}_{P}^{Q} \oplus \mathfrak{a}_{Q}
$$

where \mathfrak{a}_{P}^{Q} is the kernel of the retraction. Taking the dual real vector spaces, we get a splitting

$$
\mathfrak{a}_{P}^{*}=\mathfrak{a}_{P}^{Q *} \oplus \mathfrak{a}_{Q}^{*} .
$$

More generally, if $P \subset Q \subset R$ are three standard parabolic subgroups of G, we have canonical splittings

$$
\mathfrak{a}_{P}=\mathfrak{a}_{P}^{Q} \oplus \mathfrak{a}_{Q}^{R} \oplus \mathfrak{a}_{R}
$$

and

$$
\mathfrak{a}_{P}^{*}=\mathfrak{a}_{P}^{Q *} \oplus \mathfrak{a}_{Q}^{R *} \oplus \mathfrak{a}_{R}^{*} .
$$

We shall denote by $[\cdot]^{Q},[\cdot]_{Q}^{R}$ and $[\cdot]_{R}$ the canonical projections of \mathfrak{a}_{P} onto $\mathfrak{a}_{P}^{Q}, \mathfrak{a}_{Q}^{R}$ and \mathfrak{a}_{R} respectively.

For each $P \in \mathcal{P}$, let $\Phi_{P} \subset \mathfrak{a}_{P}^{G *} \subset \mathfrak{a}_{P}^{*}$ be the set of the non trivial characters of A_{P} which occur in the Lie algebra \mathfrak{g} of G and let $\Phi_{P}^{+} \subset \Phi_{P}$ be the set of the non trivial
characters of A_{P} which occur in the Lie algebra \mathfrak{n}_{P} of the unipotent radical of P. It is well known that $\Phi_{0}=\Phi_{P_{0}}$ is a root system and that $\Phi_{0}^{+}=\Phi_{P_{0}}^{+}$is an order on Φ_{0}. Let $\Delta_{0}=\Delta_{P_{0}} \subset \Phi_{0}^{+}$be the set of simple roots; Δ_{0} is a basis of the real vector space $\mathfrak{a}_{P_{0}}^{G *}$. For each $\alpha \in \Phi_{0}$, there is a corresponding coroot α^{\vee} and $\left(\alpha^{\vee}\right)_{\alpha \in \Delta_{0}}$ is a basis of the real vector space $\mathfrak{a}_{0}^{G}=\mathfrak{a}_{P_{0}}^{G} \subset \mathfrak{a}_{P_{0}}=\mathfrak{a}_{0}$. For the other P 's in \mathcal{P}, Φ_{P} is not a root system in general. Nevertheless, following Arthur, we define $\Delta_{P} \subset \Phi_{P}^{+}$as the set of non trivial restrictions to A_{P} (or \mathfrak{a}_{P}) of the simple roots in Δ_{0}. Then, Δ_{P} is a basis of the real vector space $\mathfrak{a}_{P}^{G *}$ and, for each $\alpha \in \Delta_{P}$, there is a corresponding "coroot" $\alpha^{\vee} \in \mathfrak{a}_{P}^{G}$ with the property that $\left(\alpha^{\vee}\right)_{\alpha \in \Delta_{P}}$ is a basis of the real vector space $\mathfrak{a}_{P}^{G}: \alpha$ is the restriction to A_{P} of a unique $\beta \in \Delta_{0}$ and α^{\vee} is the projection of β^{\vee} onto \mathfrak{a}_{P}^{G}.

If $P \subset Q$ are two standard parabolic subgroups of G, let $\Phi_{P}^{Q}=\Phi_{P \cap M_{Q}}$ (resp. $\Phi_{P}^{Q+}=\Phi_{P \cap M_{Q}}^{+}$, resp. $\Delta_{P}^{Q}=\Delta_{P \cap M_{Q}}$) be the set of α in $\Phi_{P}\left(\right.$ resp. Φ_{P}^{+}, resp. $\left.\Delta_{P}\right)$ which occur in the Lie algebra \mathfrak{m}_{Q} of M_{Q}. Then, on the one hand, Δ_{P}^{Q} is contained in $\mathfrak{a}_{P}^{Q *} \subset \mathfrak{a}_{P}^{G *}$ and is a basis of the real vector space $\mathfrak{a}_{P}^{Q *}$. On the other hand, the projection of $\left(\alpha^{\vee}\right)_{\alpha \in \Delta_{P}^{Q}}$ onto \mathfrak{a}_{P}^{Q} is a basis of the real vector space \mathfrak{a}_{P}^{Q} and we may consider its dual basis $\left(\varpi_{\alpha}^{Q}\right)_{\alpha \in \Delta_{P}^{Q}} \subset \mathfrak{a}_{P}^{Q *}$.

If $P \subset Q \subset R$ are three standard parabolic subgroups of G and if $H \in \mathfrak{a}_{P}^{R}$, we have

$$
\left\langle\alpha,[H]^{Q}\right\rangle=\langle\alpha, H\rangle, \quad \forall \alpha \in \Delta_{P}^{Q} \subset \Delta_{P}^{R}
$$

and

$$
\left\langle\varpi_{\alpha}^{R},[H]_{Q}\right\rangle=\left\langle\varpi_{\beta}^{R}, H\right\rangle, \quad \forall \alpha \in \Delta_{Q}^{R},
$$

where β is the unique element in Δ_{P}^{R} such that $\alpha=\beta \mid A_{Q}$.
Lemma 1.1. - Let $P \subset R$ be two standard parabolic subgroups of G and let $H \in \mathfrak{a}_{P}^{R}$.
(i) Let us assume that $\langle\alpha, H\rangle>0$ or $\left\langle\varpi_{\alpha}, H\right\rangle>0$ for each $\alpha \in \Delta_{P}^{R}$. Then, we have $\left\langle\varpi_{\alpha}, H\right\rangle>0$ for all $\alpha \in \Delta_{P}^{R}$.
(ii) Let us assume that $\langle\alpha, H\rangle \leq 0$ or $\left\langle\varpi_{\alpha}, H\right\rangle \leq 0$ for each $\alpha \in \Delta_{P}^{R}$. Then, we have $\left\langle\varpi_{\alpha}, H\right\rangle \leq 0$ for all $\alpha \in \Delta_{P}^{R}$.

Proof: See [La] 3.1.

If $P \subset Q$ are two standard parabolic subgroups of G, Arthur has introduced two characteristic functions on the real vector space \mathfrak{a}_{P}^{Q} : the characteristic function τ_{P}^{Q} of the acute Weyl chamber

$$
\mathfrak{a}_{P}^{Q+}=\left\{H \in \mathfrak{a}_{P}^{Q} \mid\langle\alpha, H\rangle>0, \forall \alpha \in \Delta_{P}^{Q}\right\}
$$

and the characteristic function $\widehat{\tau}_{P}^{Q}$ of the obtuse Weyl chamber

$$
{ }^{+} \mathfrak{a}_{P}^{Q}=\left\{H \in \mathfrak{a}_{P}^{Q} \mid\left\langle\varpi_{\alpha}^{Q}, H\right\rangle>0, \forall \alpha \in \Delta_{P}^{Q}\right\}
$$

It follows from lemma 1.1 (i) that $\mathfrak{a}_{P}^{Q+} \subset+\mathfrak{a}_{P}^{Q}$.

Lemma 1.2 (Langlands). - For any standard parabolic subgroups $P \subset R$ of G and any $H \in \mathfrak{a}_{P}^{R}$, we have

$$
\sum_{P \subset Q \subset R}(-1)^{\operatorname{dim}\left(\mathfrak{a}_{Q}^{R}\right)} \tau_{P}^{Q}\left([H]^{Q}\right) \widehat{\tau}_{Q}^{R}\left([H]_{Q}\right)=\delta_{P}^{R}
$$

and

$$
\sum_{P \subset Q \subset R}(-1)^{\operatorname{dim}\left(\mathfrak{a}_{P}^{Q}\right)} \widehat{\tau}_{P}^{Q}\left([H]^{Q}\right) \tau_{Q}^{R}\left([H]_{Q}\right)=\delta_{P}^{R}
$$

Proof : See [Ar1] §6 or [La] 3.2.

Following Arthur (see [Ar2] §2), we set

$$
\Gamma_{P}^{R}(H, T)=\sum_{P \subset Q \subset R}(-1)^{\operatorname{dim}\left(\mathfrak{a}_{Q}^{R}\right)} \tau_{P}^{Q}\left([H]^{Q}\right) \widehat{\tau}_{Q}^{R}\left([H-T]_{Q}\right)
$$

and

$$
\widehat{\Gamma}_{P}^{R}(H, T)=\sum_{P \subset Q \subset R}(-1)^{\operatorname{dim}\left(\mathfrak{a}_{P}^{Q}\right)} \tau_{P}^{Q}\left([H-T]^{Q}\right) \widehat{\tau}_{Q}^{R}\left([H]_{Q}\right)=(-1)^{\operatorname{dim}\left(\mathfrak{a}_{P}^{R}\right)} \Gamma_{P}^{R}(H-T,-T),
$$

for any standard parabolic subgroups $P \subset R$ of G and for any $H, T \in \mathfrak{a}_{P}^{R}$. As an immediate consequence of the Langlands lemma, we obtain

$$
\sum_{P \subset Q \subset R}(-1)^{\operatorname{dim}\left(\mathfrak{a}_{Q}^{R}\right)} \Gamma_{P}^{Q}(H, T) \widehat{\Gamma}_{Q}^{R}(H, T)=\delta_{P}^{R}
$$

and

$$
\sum_{P \subset Q \subset R}(-1)^{\operatorname{dim}\left(\mathfrak{a}_{P}^{Q}\right)} \widehat{\Gamma}_{P}^{Q}(H, T) \Gamma_{Q}^{R}(H, T)=\delta_{P}^{R} .
$$

Lemma 1.3 (Arthur). - If $T \in \mathfrak{a}_{P}^{R+} \subset{ }^{+} \mathfrak{a}_{P}^{R}$, the function $H \mapsto \Gamma_{P}^{R}(H, T)$ (resp. $\left.H \mapsto \widehat{\Gamma}_{P}^{R}(H, T)\right)$ is the characteristic function of the bounded subset

$$
\left\{H \in \mathfrak{a}_{P}^{R} \mid\langle\alpha, H\rangle>0,\left\langle\varpi_{\alpha}, H\right\rangle \leq\left\langle\varpi_{\alpha}, T\right\rangle, \forall \alpha \in \Delta_{P}^{R}\right\} \subset \mathfrak{a}_{P}^{R+}
$$

(resp.

$$
\left.\left\{H \in \mathfrak{a}_{P}^{R} \mid\left\langle\varpi_{\alpha}^{R}, H\right\rangle>0,\langle\alpha, H\rangle \leq\langle\alpha, T\rangle, \forall \alpha \in \Delta_{P}^{R}\right\} \subset^{+} \mathfrak{a}_{P}^{R}\right)
$$

of \mathfrak{a}_{P}^{R}.
In particular, when T goes to infinity, the supports of the functions $H \mapsto \Gamma_{P}^{R}(H, T)$ (resp. $\left.H \mapsto \widehat{\Gamma}_{P}^{R}(H, T)\right)$ cover \mathfrak{a}_{P}^{R+} (resp. ${ }^{+} \mathfrak{a}_{P}^{R}$) (by definition, $T \in \mathfrak{a}_{P}^{R+}$ goes to infinity if $\langle\alpha, T\rangle>0$ goes to infinity, for each $\left.\alpha \in \Delta_{P}^{R}\right)$.

Proof: Let us prove the statement about $\Gamma_{P}^{R}(H, T)$. Let us fix H and let us set

$$
I=\left\{\alpha \in \Delta_{P}^{R} \mid\left\langle\varpi_{\alpha}^{R}, H-T\right\rangle \leq 0\right\}
$$

and

$$
J=\left\{\alpha \in \Delta_{P}^{R} \mid\langle\alpha, H\rangle>0\right\}
$$

We clearly have

$$
\Gamma_{P}^{R}(H, T)=(-1)^{\left|\Delta_{P}^{R}-I\right|} \sum_{\substack{P \subset Q \subset R \\ I \subset \Delta_{P}^{Q} \subset J}}(-1)^{\left|\Delta_{P}^{Q}-I\right|}=(-1)^{\left|\Delta_{P}^{R}-I\right|} \delta_{I}^{J} .
$$

Therefore, $\Gamma_{P}^{R}(H, T) \neq 0$ if and only if $I=J$. Now, if $I=J$, we have

$$
\langle\alpha, H-T\rangle \leq-\langle\alpha, T\rangle<0, \quad \forall \alpha \in \Delta_{P}^{R}-I
$$

and

$$
\left\langle\varpi_{\alpha}^{R}, H-T\right\rangle \leq 0, \quad \forall \alpha \in I
$$

so that

$$
\left\langle\varpi_{\alpha}^{R}, H-T\right\rangle \leq 0, \quad \forall \alpha \in \Delta_{P}^{R}
$$

by the lemma 1.1 (ii). Therefore, if $I=J$, we have $I=J=\Delta_{P}^{R}$ and H satifies the relations

$$
\langle\alpha, H\rangle>0
$$

and

$$
\left\langle\varpi_{\alpha}, H\right\rangle \leq\left\langle\varpi_{\alpha}, T\right\rangle
$$

for all $\alpha \in \Delta_{P}^{R}$. Conversely, if H satisfies these relations, it is obvious that $I=J=\Delta_{P}^{R}$.
The proof of the statement about $\widehat{\Gamma}_{P}^{R}(H, T)$ is similar.

2. A general inversion formula.

We denote by \mathfrak{P} the set of pairs $\left(P, \nu_{P}^{\prime}\right)$, where $P \in \mathcal{P}$ and $\nu_{P}^{\prime} \in X_{*}\left(A_{P}^{\prime}\right)$. We fix a topological abelian group A. A function

$$
a: \mathfrak{P} \rightarrow A
$$

is said to be $\widehat{\Gamma}$-converging if it has the following property :
For each standard parabolic subgroup $P \subset Q$ of G and each $\nu_{Q}^{\prime} \in X_{*}\left(A_{Q}^{\prime}\right)$, the finite sum

$$
\sum_{\substack{\nu_{P}^{\prime} \in X_{*}\left(A_{P}^{\prime}\right) \\\left[\nu_{P}^{\prime}\right]_{Q}=\nu_{Q}^{\prime}}} \widehat{\Gamma}_{P}^{Q}\left(\left[\nu_{P}^{\prime}\right]^{Q}, T\right) a\left(P, \nu_{P}^{\prime}\right)
$$

admits a limit as $T \in \mathfrak{a}_{P}^{Q+}$ goes to infinity.
If this is the case, we shall denote this limit by

$$
\sum_{\substack{\nu_{P}^{\prime} \in X_{*}\left(A_{P}^{\prime}\right) \\\left[\nu_{P}^{\prime}\right]_{Q}=\nu_{Q}^{\prime}}} \widehat{\tau}_{P}^{Q}\left(\left[\nu_{P}^{\prime}\right]^{Q}\right) a\left(P, \nu_{P}^{\prime}\right) .
$$

A function

$$
b: \mathfrak{P} \rightarrow A
$$

is said to be Γ-converging if it has the following property :
For each standard parabolic subgroup $P \subset Q$ of G and each $\nu_{Q}^{\prime} \in X_{*}\left(A_{Q}^{\prime}\right)$, the finite sum

$$
\sum_{\substack{\nu_{P}^{\prime} \in X_{*}\left(A_{P}^{\prime}\right) \\\left[\nu_{P}^{\prime}\right]_{Q}=\nu_{Q}^{\prime}}} \Gamma_{P}^{Q}\left(\left[\nu_{P}^{\prime}\right]^{Q}, T\right) b\left(P, \nu_{P}^{\prime}\right)
$$

admits a limit as $T \in \mathfrak{a}_{P}^{Q+}$ goes to infinity.
If this is the case, we shall denote this limit by

$$
\sum_{\substack{\nu_{P}^{\prime} \in X_{*}\left(A_{P}^{\prime}\right) \\\left[\nu_{P}^{\prime}\right]_{Q}=\nu_{Q}^{\prime}}} \tau_{P}^{Q}\left(\left[\nu_{P}^{\prime}\right]^{Q}\right) b\left(P, \nu_{P}^{\prime}\right)
$$

Theorem 2.1. - For each $\widehat{\Gamma}$-converging function $a: \mathfrak{P} \rightarrow A$, there exists a unique Γ-converging function $b: \mathfrak{P} \rightarrow A$ such that, for each $\left(Q, \nu_{Q}^{\prime}\right) \in \mathfrak{P}$, we have

$$
a\left(Q, \nu_{Q}^{\prime}\right)=\sum_{\substack{P \in \mathcal{P} \\ P \subset Q}} \sum_{\substack{\nu_{P}^{\prime} \in X_{*}\left(A_{P}^{\prime}\right) \\\left[\nu_{P}^{\prime}\right]_{Q}=\nu_{Q}^{P}}} \tau_{P}^{Q}\left(\left[\nu_{P}^{\prime}\right]^{Q}\right) b\left(P, \nu_{P}^{\prime}\right)
$$

The function b is given by the following formula: for each $\left(Q, \nu_{Q}^{\prime}\right) \in \mathfrak{P}$, we have

$$
b\left(Q, \nu_{Q}^{\prime}\right)=\sum_{\substack{P \in \mathcal{P} \\ P \subset Q}}(-1)^{\operatorname{dim}\left(\mathfrak{a}_{P}^{Q}\right)} \sum_{\substack{\nu_{P}^{\prime} \in X_{*}\left(A_{P}^{\prime}\right) \\\left[\nu_{P}^{\prime}\right]_{Q}=\nu_{Q}^{P}}} \widehat{\tau}_{P}^{Q}\left(\left[\nu_{P}^{\prime}\right]^{Q}\right) a\left(P, \nu_{P}^{\prime}\right) .
$$

Proof: This is an easy consequence of lemmas 1.2 and 1.3.

Let us now consider a particular case of this theorem which is relevant for the computation of the Poincaré series of the stack of semi-stable G-bundles on a curve.

For any standard parabolic subgroup P of G, we fix $n_{P} \in \mathbb{Z}_{\geq 0}$ and $\delta_{0}^{P} \in \mathfrak{a}_{0}^{P *} \subset \mathfrak{a}_{0}^{*}$. We assume that, for any standard parabolic subgroups $P \subset Q$ of G, we have

$$
\begin{gathered}
n_{P} \geq n_{Q} \\
\left(\delta_{0}^{Q}-\delta_{0}^{P}\right) \mid \mathfrak{a}_{0}^{P}=0
\end{gathered}
$$

and

$$
\left\langle\delta_{P}^{Q}, \alpha^{\vee}\right\rangle \in \mathbb{Z}_{>0} \quad\left(\forall \alpha \in \Delta_{P}^{Q}\right)
$$

where we have set

$$
\delta_{P}^{Q}=\left(\delta_{0}^{Q}-\delta_{0}^{P}\right) \mid \mathfrak{a}_{P}^{Q}
$$

We have

$$
\left\langle\delta_{P}^{Q},[H]^{Q}\right\rangle=\left\langle\delta_{P}^{G}, H\right\rangle-\left\langle\delta_{Q}^{G},[H]_{Q}\right\rangle
$$

for every $H \in \mathfrak{a}_{P}$.
We set

$$
m\left(P, \nu_{P}^{\prime}\right)=n_{P}+\left\langle\delta_{P}^{G}, \nu_{P}^{\prime}\right\rangle
$$

for each $\left(P, \nu_{P}^{\prime}\right) \in \mathfrak{P}$.
Lemma 2.2. - Let $\left(Q, \nu_{Q}^{\prime}\right) \in \mathfrak{P}$.
(i) For each $\left(P, \nu_{P}^{\prime}\right) \in \mathfrak{P}$ such that $P \subset Q,\left[\nu_{P}^{\prime}\right]_{Q}=\nu_{Q}^{\prime}$ and $\widehat{\tau}_{P}^{Q}\left(\left[\nu_{P}^{\prime}\right]^{Q}\right) \neq 0$, we have

$$
m\left(P, \nu_{P}^{\prime}\right) \geq m\left(Q, \nu_{Q}^{\prime}\right)
$$

(ii) For each positive integer m, there are only finitely many $\left(P, \nu_{P}^{\prime}\right) \in \mathfrak{P}$ such that $P \subset Q,\left[\nu_{P}^{\prime}\right]_{Q}=\nu_{Q}^{\prime}, \widehat{\tau}_{P}^{Q}\left(\left[\nu_{P}^{\prime}\right]^{Q}\right) \neq 0$ and $m\left(P, \nu_{P}^{\prime}\right) \leq m$.

We take A to be a $\mathbb{Z}[[t]]$-module equipped with the t-adic topology and we assume that A is complete for this topology. We consider an arbitrary function

$$
a_{0}: \mathcal{P} \rightarrow A
$$

and set

$$
a\left(P, \nu_{P}^{\prime}\right)=a_{0}(P) t^{m\left(P, \nu_{P}^{\prime}\right)} \in A
$$

for any $\left(P, \nu_{P}^{\prime}\right) \in \mathfrak{P}$. It follows from part (ii) of lemma 2.2 that the function a is $\widehat{\Gamma}-$ converging. Therefore, by theorem 2.1, there exists a unique Γ-converging function

$$
b: \mathfrak{P} \rightarrow A
$$

such that

$$
a\left(Q, \nu_{Q}^{\prime}\right)=\sum_{\substack{P \in \mathcal{P} \\ P \subset Q}} \sum_{\substack{\nu_{P}^{\prime} \in X_{*}\left(A_{P}^{\prime}\right) \\\left[\nu_{P}^{\prime}\right]_{Q}=\nu_{Q}^{\prime}}} \tau_{P}^{Q}\left(\left[\nu_{P}^{\prime}\right]^{Q}\right) b\left(P, \nu_{P}^{\prime}\right) .
$$

Moreover, the function b is given by

$$
b\left(Q, \nu_{Q}^{\prime}\right)=b_{0}\left(Q, \nu_{Q}^{\prime}\right) t^{m\left(Q, \nu_{Q}^{\prime}\right)} \quad\left(\forall\left(Q, \nu_{Q}^{\prime}\right) \in \mathfrak{P}\right)
$$

where

$$
b_{0}\left(Q, \nu_{Q}^{\prime}\right)=\sum_{\substack{P \in \mathcal{P} \\ P \subset Q}}(-1)^{\operatorname{dim}\left(\mathfrak{a}_{P}^{Q}\right)} a_{0}(P) \sum_{\substack{\nu_{P}^{\prime} \in X_{*}\left(A_{P}^{\prime}\right) \\\left[\nu_{P}^{\prime}\right]_{Q}=\nu_{Q}^{\prime}}} \widehat{\tau}_{P}^{Q}\left(\left[\nu_{P}^{\prime}\right]^{Q}\right) t^{m\left(P, \nu_{P}^{\prime}\right)-m\left(Q, \nu_{Q}^{\prime}\right)} \in A
$$

for any $\left(Q, \nu_{Q}^{\prime}\right) \in \mathfrak{P}($ cf. Lemma 2.2 (i)).
Let us consider the lattices

$$
\sum_{\alpha \in \Delta_{P}^{Q}} \mathbb{Z} \alpha^{\vee} \subset X_{*}\left(A_{P}^{\prime}\right)
$$

and let us set

$$
\Lambda_{P}^{Q}=X_{*}\left(A_{P}^{\prime}\right) / \sum_{\alpha \in \Delta_{P}^{Q}} \mathbb{Z} \alpha^{\vee}
$$

Clearly, the projection $[\cdot]_{Q}: X_{*}\left(A_{P}^{\prime}\right) \rightarrow \mathfrak{a}_{Q}$ factors through Λ_{P}^{Q} and, for each $\alpha \in \Delta_{P}^{Q}$, $\varpi_{\alpha}^{Q}: X_{*}\left(A_{P}^{\prime}\right) \rightarrow \mathbb{R}$ induces a homomorphism from Λ_{P}^{Q} to \mathbb{R} / \mathbb{Z}.

Lemma 2.3. - For each $\left(Q, \nu_{Q}^{\prime}\right) \in \mathfrak{P}$ and each standard parabolic subgroup $P \subset Q$ of G, we have

$$
\begin{aligned}
& \sum_{\substack{\nu_{P}^{\prime} \in X_{*}\left(A_{P}^{\prime}\right) \\
\left[\nu_{P}^{\prime}\right]_{Q}=\nu_{Q}^{\prime}}} \widehat{\tau}_{P}^{Q}\left(\left[\nu_{P}^{\prime}\right]^{Q}\right) t^{\left\langle\delta_{P}^{Q},\left[\nu_{P}^{\prime}\right]^{Q}\right\rangle} \\
&=\left(\prod_{\alpha \in \Delta_{P}^{Q}} \frac{1}{1-t^{\left\langle\delta_{P}^{Q}, \alpha^{\vee}\right\rangle}}\right) \sum_{\substack{\lambda \in \Lambda_{P}^{Q} \\
[\lambda]_{Q}=\nu_{Q}^{\prime}}} t^{\sum_{\alpha \in \Delta_{P}^{Q}\left\langle\delta_{P}^{Q}, \alpha^{\vee}\right\rangle\left\langle\varpi_{\alpha}^{Q}(\lambda)\right\rangle}},
\end{aligned}
$$

where, for each $\mu \in \mathbb{R} / \mathbb{Z},\langle\mu\rangle \in \mathbb{R}$ is the unique representative of the class μ such that $0<\langle\mu\rangle \leq 1$.

As $\delta_{P}^{Q}=\sum_{\alpha \in \Delta_{P}^{Q}}\left\langle\delta_{P}^{Q}, \alpha^{\vee}\right\rangle \varpi_{\alpha}^{Q}$, we have

$$
\sum_{\alpha \in \Delta_{P}^{Q}}\left\langle\delta_{P}^{Q}, \alpha^{\vee}\right\rangle\left\langle\varpi_{\alpha}^{Q}\left(\left[\nu_{P}^{\prime}\right]^{Q}+\mathbb{Z}\right)\right\rangle \equiv\left\langle\delta_{P}^{Q},\left[\nu_{P}^{\prime}\right]^{Q}\right\rangle \equiv 0 \quad(\bmod \mathbb{Z})
$$

for any $\nu_{P}^{\prime} \in X_{*}\left(A_{P}^{\prime}\right)$.

Proof: We have

$$
\sum_{\substack{\nu_{P}^{\prime} \in X_{*}\left(A_{P}^{\prime}\right) \\\left[\nu_{P}^{\prime}\right]_{Q}=\nu_{Q}^{\prime}}} \widehat{\tau}_{P}^{Q}\left(\left[\nu_{P}^{\prime}\right]^{Q}\right) t^{\left\langle\delta_{P}^{Q},\left[\nu_{P}^{\prime}\right]^{Q}\right\rangle}=\sum_{\substack{\lambda \in \Lambda_{P}^{Q} \\[\lambda]_{Q}=\nu_{Q}^{\prime}}} t^{\left\langle\delta_{P}^{Q}, \dot{\lambda}\right\rangle} \prod_{\alpha \in \Delta_{P}^{Q}} \sum_{\substack{m_{\alpha} \in \mathbb{Z} \\ m_{\alpha}+\omega_{\alpha}(\lambda)>0}} t^{\left\langle\delta_{P}^{Q}, \alpha^{\vee}\right\rangle m_{\alpha}}
$$

where $\dot{\lambda} \in X_{*}\left(A_{P}^{\prime}\right)$ is a representative of the class λ. But, for each $p \in \mathbb{Z}_{>0}$ and each $x \in \mathbb{R}$, we have

$$
\sum_{\substack{m \in \mathbb{Z} \\ m+x>0}} t^{p m}=\frac{t^{p(\langle x+\mathbb{Z}\rangle-x)}}{1-t^{p}}
$$

Hence, we have

$$
\sum_{\substack{\nu_{P}^{\prime} \in X_{*}\left(A_{P}^{\prime}\right) \\\left[\nu_{P}^{\prime}\right]_{Q}=\nu_{Q}^{\prime}}} \widehat{\tau}_{P}^{Q}\left(\left[\nu_{P}^{\prime}\right]^{Q}\right) t^{\left\langle\delta_{P}^{Q},\left[\nu_{P}^{\prime}\right]^{Q}\right\rangle}=\sum_{\substack{\lambda \in \Lambda_{P}^{Q} \\[\lambda]_{Q}=\nu_{Q}^{\prime}}} \prod_{\alpha \in \Delta_{P}^{Q}} \frac{t^{\left\langle\delta_{P}^{Q}, \alpha^{\vee}\right\rangle\left\langle\varpi_{\alpha}^{Q}(\lambda)\right\rangle}}{1-t^{\left\langle\delta_{P}^{Q}, \alpha^{\vee}\right\rangle}} .
$$

To sum up, we can state :
Theorem 2.4.- There exists a unique function $b_{0}: \mathfrak{P} \rightarrow A$ which satisfies the relation

$$
a_{0}(Q)=\sum_{\substack{P \in \mathcal{P} \\ P \subset Q}} \sum_{\substack{\nu_{P}^{\prime} \in X_{*}\left(A_{P}^{\prime}\right) \\\left[\nu_{P}^{\prime}\right]_{Q}=\nu_{Q}^{\prime}}} \tau_{P}^{Q}\left(\left[\nu_{P}^{\prime}\right]^{Q}\right) b_{0}\left(P, \nu_{P}^{\prime}\right) t^{m\left(P, \nu_{P}^{\prime}\right)-m\left(Q, \nu_{Q}^{\prime}\right)}
$$

for each $\left(Q, \nu_{Q}^{\prime}\right) \in \mathfrak{P}$. This function is given by

$$
\begin{aligned}
b_{0}\left(Q, \nu_{Q}^{\prime}\right)=\sum_{\substack{P \in \mathcal{P} \\
P \subset Q}}(-1)^{\operatorname{dim}\left(\mathfrak{a}_{P}^{Q}\right)} a_{0}(P) t^{n_{P}-n_{Q}}(& \left.\prod_{\alpha \in \Delta_{P}^{Q}} \frac{1}{1-t^{\left\langle\delta_{P}^{Q}, \alpha^{\vee}\right\rangle}}\right) \\
& \cdot \sum_{\substack{\lambda \in \Lambda_{P}^{Q} \\
[\lambda]_{Q}=\nu_{Q}^{\prime}}} t^{\sum_{\alpha \in \Delta_{P}^{Q}}\left\langle\delta_{P}^{Q}, \alpha^{\vee}\right\rangle\left\langle\varpi_{\alpha}^{Q}(\lambda)\right\rangle} \in A
\end{aligned}
$$

for each $\left(Q, \nu_{Q}^{\prime}\right) \in \mathfrak{P}$.
Remark 2.5. - It follows from the definition of the function b_{0} that $b_{0}\left(P, \nu_{P}^{\prime}\right)$ only depends on the class $\bar{\nu}_{P}^{\prime}$ of ν_{P}^{\prime} in $X_{*}\left(A_{P}^{\prime}\right) / X_{*}\left(A_{P}\right)$.

3. Application to G-bundles.

From now on, let us assume that k is algebraically closed, so that P_{0} is a Borel subgroup of G, and let us fix a smooth, projective and connected curve X of genus $g \geq 2$ over k.

Let us recall that, for any $P \in \mathcal{P}$ and any P-bundle \mathcal{T}_{P} on X, the slope of \mathcal{T}_{P} is the element $\mu\left(\mathcal{T}_{P}\right) \in X_{*}\left(A_{P}^{\prime}\right)$ defined by the condition

$$
\left\langle\xi, \mu\left(\mathcal{T}_{P}\right)\right\rangle=c_{1}\left(\mathcal{T}_{P, \xi}\right) \in \mathbb{Z}, \quad \forall \xi \in X^{*}\left(A_{P}^{\prime}\right)
$$

where $\mathcal{T}_{P, \xi}$ is the line bundle on X deduced from \mathcal{T}_{P} by push-out via $P \rightarrow A_{P}^{\prime} \xrightarrow{\xi} G L_{1}$. Let us also recall that a P-bundle \mathcal{T}_{P} on X is said to be semi-stable (see [Ra]) if, for each standard parabolic subgroup $Q \subset P$ such that $\left|\Delta_{Q}^{P}\right|=1$ and for each Q-bundle \mathcal{T}_{Q} on X such that

$$
\mathcal{T}_{P} \cong \mathcal{T}_{Q} \times{ }^{Q} P
$$

the slope $\mu\left(\mathcal{T}_{Q}\right) \in X_{*}\left(A_{Q}^{\prime}\right) \subset \mathfrak{a}_{Q}$ satisfies

$$
\left\langle\alpha_{Q}, \mu\left(\mathcal{T}_{Q}\right)\right\rangle \leq 0,
$$

where α_{Q} is the unique element of Δ_{Q}^{P}.
Lemma 3.1. - For each G-bundle \mathcal{T} of slope ν_{G}^{\prime}, there exist $\left(P, \nu_{P}^{\prime}\right) \in \mathfrak{P}$ with $\left[\nu_{P}^{\prime}\right]_{G}=\nu_{G}^{\prime}$ and $\left[\nu_{P}^{\prime}\right]^{G} \in \mathfrak{a}_{P}^{G+}$, a semi-stable P-bundle \mathcal{T}_{P} of slope ν_{P}^{\prime} and an isomorphism

$$
\iota: \mathcal{T}_{P} \times{ }^{P} G \xrightarrow{\sim} \mathcal{T} .
$$

Moreover, the pair $\left(P, \nu_{P}^{\prime}\right)$ and the isomorphism class of the pair $\left(\mathcal{T}_{P}, \iota\right)$ are uniquely determined by \mathcal{T}.

The pair $\left(P, \nu_{P}^{\prime}\right)$ is called the Harder-Narasimhan type of \mathcal{T} and the pair $\left(\mathcal{T}_{P}, \iota\right)$ is called the Harder-Narasimhan reduction of \mathcal{T}.

Proof: See [HN] in the case of $G=G L_{n}$ and $[\mathrm{AB}]$ in general.

For each $\nu_{G}^{\prime} \in X_{*}\left(A_{G}^{\prime}\right)$, we wish to consider the Poincaré series

$$
P_{t}^{\mathrm{ss}}\left(G, \nu_{G}^{\prime}\right) \in \mathbb{Z}[[t]]
$$

of the stack $\mathcal{M}^{\text {ss }}\left(G, \nu_{G}^{\prime}\right)$ of semi-stable G-bundles on X of slope ν_{G}^{\prime}. There are at least three ways to make sense of this series. Harder and Narasimhan ([HN]) count (in a weighted way) in the case $k=\overline{\mathbb{F}}_{p}$ the number of semi-stable bundles which are defined over a finite subfield of k and obtain this series as a consequence of Deligne's purity theorem. Atiyah and Bott ([AB]) consider in the case $k=\mathbb{C}$ the action of a gauge group on the space of complex structures on a \mathcal{C}^{∞}-bundle on the Riemann surface $X(\mathbb{C})$ and define $P_{t}^{\mathrm{ss}}\left(G, \nu_{G}^{\prime}\right)$ as the Poincaré series for the equivariant cohomology of the semi-stable
open subset. Bifet, Ghione and Letizia ([BGL]) consider an ind-variety of semi-stable matrix divisors and obtain $P_{t}^{\mathrm{ss}}\left(G, \nu_{G}^{\prime}\right)$ in terms of its ℓ-adic cohomology. Most probably, $P_{t}^{\mathrm{ss}}\left(G, \nu_{G}^{\prime}\right)$ is also the Poincaré series of the smooth algebraic stack of semi-stable $G-$ bundles on X of slope ν_{G}^{\prime} for the ℓ-adic cohomology.

We point out that this Poincaré series is not the Poincaré polynomial of the coarse moduli scheme of semi-stable G-bundles on X of slope ν_{G}^{\prime} (for a relation in a special case, see section 4). In fact, it is not even a polynomial in general.

There is a recursion formula for $P_{t}^{\mathrm{ss}}\left(G, \nu_{G}^{\prime}\right)$, as follows. For each $\nu_{G}^{\prime} \in X_{*}\left(A_{G}^{\prime}\right)$, we have the stack $\mathcal{M}\left(G, \nu_{G}^{\prime}\right)$ of G-bundles on X of slope ν_{G}^{\prime}. For each $\left(P, \nu_{P}^{\prime}\right) \in \mathfrak{P}$ such that $\left[\nu_{P}^{\prime}\right]_{G}=\nu_{G}^{\prime}$ and $\left[\nu_{P}^{\prime}\right]^{G} \in \mathfrak{a}_{P}^{G+}$, we also have the substack $\mathcal{M}\left(G, P, \nu_{P}^{\prime}\right) \subset \mathcal{M}\left(G, \nu_{G}^{\prime}\right)$ of G-bundles on X of slope ν_{G}^{\prime} which admit $\left(P, \nu_{P}^{\prime}\right)$ as Harder-Narasimhan type. The family of $\mathcal{M}\left(G, P, \nu_{P}^{\prime}\right)$ is a stratification of $\mathcal{M}\left(G, \nu_{G}^{\prime}\right)$, with $\mathcal{M}^{\mathrm{ss}}\left(G, \nu_{G}^{\prime}\right)=\mathcal{M}\left(G, G, \nu_{G}^{\prime}\right)$ as the open stratum. The codimension of the stratum $\mathcal{M}\left(G, P, \nu_{P}^{\prime}\right)$ is equal to

$$
\operatorname{dim}\left(N_{P}\right)(g-1)+2\left\langle\rho_{P}^{G}, \nu_{P}^{\prime}\right\rangle
$$

where

$$
\rho_{P}^{G}=\frac{1}{2} \sum_{\alpha \in \Phi_{P}^{G+}} \alpha \in \mathfrak{a}_{P}^{G *} \subset \mathfrak{a}_{P}^{*} .
$$

We set

$$
m\left(P, \nu_{P}^{\prime}\right)=2 \operatorname{dim}\left(N_{P}\right)(g-1)+4\left\langle\rho_{P}^{G}, \nu_{P}^{\prime}\right\rangle .
$$

We have the Poincaré series $P_{t}\left(G, \nu_{G}^{\prime}\right)$ of $\mathcal{M}\left(G, \nu_{G}^{\prime}\right)$ and also the Poincaré series $P_{t}\left(G, P, \nu_{P}^{\prime}\right)$ of $\mathcal{M}\left(G, P, \nu_{P}^{\prime}\right)$ for any Harder-Narasimhan type (P, ν_{P}^{\prime}).

In all the above definitions we may replace G by the Levi component M_{P} of any standard parabolic subgroup P of G. For each Harder-Narasimhan type (P, ν_{P}^{\prime}) we have a fibration

$$
\mathcal{M}\left(G, P, \nu_{P}^{\prime}\right) \rightarrow \mathcal{M}^{\mathrm{ss}}\left(M_{P}, \nu_{P}^{\prime}\right)
$$

given by $\mathcal{T} \mapsto \mathcal{T}_{P} / N_{P}$, where $\left(\mathcal{T}_{P}, \iota\right)$ is the Harder-Narasimhan reduction of \mathcal{T}.
Theorem 3.2 (Harder-Narasimhan ; Atiyah-Bott). - The stratification of $\mathcal{M}\left(G, \nu_{G}^{\prime}\right)$ by the $\mathcal{M}\left(G, P, \nu_{P}^{\prime}\right)$ is perfect modulo torsion, so that for the Poincaré series we have

$$
P_{t}\left(G, \nu_{G}^{\prime}\right)=\sum_{P \in \mathcal{P}} \sum_{\substack{\nu_{P}^{\prime} \in X_{*}\left(A_{P}^{\prime}\right) \\\left[\nu_{P}^{\prime}\right]_{G}=\nu_{G}^{P}}} \tau_{P}^{G}\left(\left[\nu_{P}^{\prime}\right]^{G}\right) t^{m\left(P, \nu_{P}^{\prime}\right)} P_{t}\left(G, P, \nu_{P}^{\prime}\right)
$$

Moreover, for each Harder-Narasimhan type $\left(P, \nu_{P}^{\prime}\right)$, the above fibration is acyclic and we have

$$
P_{t}\left(G, P, \nu_{P}^{\prime}\right)=P_{t}^{\mathrm{ss}}\left(M_{P}, \nu_{P}^{\prime}\right)
$$

Again, in this theorem, we may replace G by the Levi component of any standard parabolic subgroup of G.

Proof: See [HN] and [AB] Theorem 10.10.

The Weyl group W_{0}^{G} of A_{0} in G acts on the real vector space \mathfrak{a}_{0}^{G} and, therefore, on the graded algebra $\operatorname{Sym}\left(\mathfrak{a}_{0}^{G *}\right)$ of polynomials on \mathfrak{a}_{0}^{G}. It is well-known that the algebra of invariants

$$
\operatorname{Sym}\left(\mathfrak{a}_{0}^{G *}\right)^{W_{0}^{G}}
$$

(with its grading) is isomorphic to an algebra of polynomials

$$
\mathbb{R}\left[I_{1}, \ldots, I_{\operatorname{dim}\left(\mathfrak{a}_{0}^{G}\right)}\right],
$$

where $I_{1}, \ldots, I_{\operatorname{dim}\left(\mathfrak{a}_{0}^{G}\right)}$ are algebraically independent homogeneous polynomials on \mathfrak{a}_{0}^{G} of degree ≥ 2. Let us denote by $d_{1}(G), \ldots, d_{\operatorname{dim}\left(\mathfrak{a}_{0}^{G}\right)}(G)$ the degrees of these homogeneous polynomials. Up to a permutation, the sequence $\left(d_{1}(G), \ldots, d_{\operatorname{dim}\left(\mathfrak{a}_{0}^{G}\right)}(G)\right)$ is canonically defined. If we set

$$
\mathcal{W}_{G}(t)=\sum_{w \in W_{0}^{G}} t^{\ell(w)}=\prod_{\alpha \in \Phi_{0}^{G+}} \frac{t^{\left\langle\rho_{0}, \alpha^{\vee}\right\rangle+1}-1}{t^{\left\langle\rho_{0}, \alpha^{\vee}\right\rangle}-1}
$$

($\ell: W_{0}^{G} \rightarrow \mathbb{Z}_{\geq 0}$ is the length function), we have

$$
\mathcal{W}_{G}(t)=\prod_{i=1}^{\operatorname{dim}\left(\mathfrak{a}_{0}^{G}\right)} \frac{t^{d_{i}(G)}-1}{t-1}
$$

Theorem 3.3. - For any $\nu_{G}^{\prime} \in X_{*}\left(A_{G}^{\prime}\right)$, we have

$$
P_{t}\left(G, \nu_{G}^{\prime}\right)=\left(\frac{(1+t)^{2 g}}{1-t^{2}}\right) \prod_{i=1}^{\operatorname{dim}\left(\mathfrak{a}_{G}\right)} \prod_{\left(1-t^{2 d_{i}(G)-2}\right)\left(1-t^{2 d_{i}(G)}\right)}^{\operatorname{dim}\left(\mathfrak{a}_{0}^{G}\right)} .
$$

In particular, $P_{t}\left(G, \nu_{G}^{\prime}\right)$ does not depend on ν_{G}^{\prime}.
Again, in this theorem, we may replace G by the Levi component of any standard parabolic subgroup of G.

Proof : See [AB] Theorem 2.15 for the case $G=G L_{n}$.

Theorem 3.4. - For any $\nu_{G}^{\prime} \in X_{*}\left(A_{G}^{\prime}\right)$, the Poincaré series $P_{t}^{\mathrm{ss}}\left(G, \nu_{G}^{\prime}\right) \in \mathbb{Z}[[t]]$ is equal to the expansion of the rational function

$$
\begin{aligned}
& \sum_{P \in \mathcal{P}}(-1)^{\operatorname{dim}\left(\mathfrak{a}_{P}^{G}\right)}\left(\frac{(1+t)^{2 g}}{1-t^{2}}\right)^{\operatorname{dim}\left(\mathfrak{a}_{P}\right)}\left(\prod_{i=1}^{\operatorname{dim}\left(\mathfrak{a}_{0}^{P}\right)} \frac{\left(1+t^{2 d_{i}\left(M_{P}\right)-1}\right)^{2 g}}{\left(1-t^{2 d_{i}\left(M_{P}\right)-2}\right)\left(1-t^{2 d_{i}\left(M_{P}\right)}\right)}\right) \\
& \cdot t^{2 \operatorname{dim}\left(N_{P}\right)(g-1)}\left(\prod_{\alpha \in \Delta_{P}} \frac{1}{1-t^{4\left\langle\rho_{P}, \alpha^{\vee}\right\rangle}}\right) \sum_{\substack{\lambda \in \Lambda_{P}^{G} \\
[\lambda]_{G}=\nu_{G}^{\prime}}} t^{4 \sum_{\alpha \in \Delta_{P}}\left\langle\rho_{P}, \alpha^{\vee}\right\rangle\left\langle\varpi_{\alpha}^{G}(\lambda)\right\rangle}
\end{aligned}
$$

in $\mathbb{Q}(t)$.

Proof: Let

$$
a_{0}: \mathcal{P} \rightarrow \mathbb{Q}[[t]]
$$

be the function defined by

$$
a_{0}(P)=\left(\frac{(1+t)^{2 g}}{1-t^{2}}\right) \prod_{i=1}^{\operatorname{dim}\left(\mathfrak{a}_{P}\right)} \prod^{\operatorname{dim}\left(\mathfrak{a}_{0}^{P}\right)} \frac{\left(1+t^{2 d_{i}\left(M_{P}\right)-1}\right)^{2 g}}{\left(1-t^{2 d_{i}\left(M_{P}\right)-2}\right)\left(1-t^{2 d_{i}\left(M_{P}\right)}\right)} .
$$

Our function $m\left(P, \nu_{P}^{\prime}\right)$ is of the form $n_{P}+\left\langle\delta_{P}^{G}, \nu_{P}^{\prime}\right\rangle$ with $n_{P}=2 \operatorname{dim}\left(N_{P}\right)(g-1)$ and $\delta_{P}^{G}=4 \rho_{P}^{G}$ satisfying the hypotheses imposed in section 2 . We may therefore apply theorem 2.4. Let b_{0} be the unique function from \mathfrak{P} to $\mathbb{Z}[[t]]$ which satisfies the relation

$$
a_{0}(Q)=\sum_{\substack{P \in \mathcal{P} \\ P \subset Q}} \sum_{\substack{\nu_{P}^{\prime} \in X_{*}\left(A_{P}^{\prime}\right) \\\left[\nu_{P}^{\prime}\right]_{Q}=\nu_{Q}^{P}}} \tau_{P}^{Q}\left(\left[\nu_{P}^{\prime}\right]^{Q}\right) b_{0}\left(P, \nu_{P}^{\prime}\right) t^{m\left(P, \nu_{P}^{\prime}\right)-m\left(Q, \nu_{Q}^{\prime}\right)}
$$

for each $\left(Q, \nu_{Q}^{\prime}\right) \in \mathfrak{P}$. It follows from theorems 3.2 and 3.3 that

$$
b_{0}\left(G, \nu_{G}^{\prime}\right)=P_{t}^{\mathrm{ss}}\left(G, \nu_{G}^{\prime}\right)
$$

and the theorem is proved.

Remark 3.5. - It follows from this theorem and remark 2.5 that $P_{t}^{\mathrm{ss}}\left(G, \nu_{G}^{\prime}\right)$ only depends on the class $\bar{\nu}_{G}^{\prime}$ of ν_{G}^{\prime} in $X_{*}\left(A_{G}^{\prime}\right) / X_{*}\left(A_{G}\right)$. This can be viewed directly as follows. Let us arbitrarily choose a line bundle \mathcal{L} of degree 1 on X. For any $\nu_{G} \in X_{*}\left(A_{G}\right), \nu_{G *} \mathcal{L}$ is an A_{G}-bundle on X and the map

$$
\mathcal{M}^{\mathrm{ss}}\left(G, \nu_{G}^{\prime}\right) \rightarrow \mathcal{M}^{\mathrm{ss}}\left(G, \nu_{G}^{\prime}+\nu_{G}\right), \mathcal{T} \mapsto \mathcal{T} \times{ }^{A_{G}} \nu_{G *} \mathcal{L}
$$

is an isomorphism of algebraic stacks.

4. The case of vector bundles.

Let us consider the particular case $G=G L_{n}$. Let us take for P_{0} the Borel subgroup of upper triangular matrices, so that $A_{P_{0}}=A_{P_{0}}^{\prime}=\left(G L_{1}\right)^{n}, \mathfrak{a}_{0}=\mathbb{R}^{n}$ with standard coordinates $\left(H_{1}, \ldots, H_{n}\right), \Phi_{0}=\left\{H_{i}-H_{j} \mid i \neq j\right\}, \Phi_{0}^{+}=\left\{H_{i}-H_{j} \mid i<j\right\}$ and $\Delta_{0}=\left\{H_{i}-H_{i+1} \mid i=1, \ldots, n-1\right\}$. Then, the standard parabolic subgroups of G are in one to one correspondence with the partitions of n.

Let P be a standard parabolic of G which corresponds to the partition $\left(n_{1}, \ldots, n_{s}\right)$. Then we have

$$
\mathfrak{a}_{P}=\left\{H \in \mathbb{R}^{n} \mid H_{1}=\cdots=H_{n_{1}}, \ldots, H_{n_{1}+\cdots+n_{s-1}+1}=\cdots=H_{n}\right\}
$$

$$
\Delta_{P}=\left\{\left(H_{n_{1}+\cdots+n_{j}}-H_{n_{1}+\cdots+n_{j}+1}\right)\left|\mathfrak{a}_{P}\right| j=1, \ldots, s-1\right\},
$$

and, for any $\alpha=\left(H_{n_{1}+\cdots+n_{j}}-H_{n_{1}+\cdots+n_{j}+1}\right) \mid \mathfrak{a}_{P} \in \Delta_{P}$,

$$
\begin{gathered}
\alpha^{\vee}=\left(0, \ldots, 0, \frac{1}{n_{j}}, \ldots, \frac{1}{n_{j}},-\frac{1}{n_{j+1}}, \ldots,-\frac{1}{n_{j+1}}, 0, \ldots, 0\right), \\
\left.\varpi_{\alpha}^{G}=\left(H_{1}+\cdots+H_{n_{1}+\cdots+n_{j}}-\frac{n_{1}+\cdots+n_{j}}{n}\left(H_{1}+\cdots+H_{n}\right)\right) \right\rvert\, \mathfrak{a}_{P}
\end{gathered}
$$

and

$$
\left\langle\rho_{P}, \alpha^{\vee}\right\rangle=\frac{n_{j}+n_{j+1}}{2} .
$$

The isomorphism

$$
\mathfrak{a}_{P} \xrightarrow{\sim} \mathbb{R}^{s},\left(H_{1}, \ldots, H_{n}\right) \mapsto\left(h_{1}, \ldots, h_{s}\right)
$$

with $h_{j}=H_{n_{1}+\cdots+n_{j-1}+1}=\cdots=H_{n_{1}+\cdots+n_{j}}$ identifies

$$
X_{*}\left(A_{P}\right) \subset X_{*}\left(A_{P}^{\prime}\right) \subset \mathfrak{a}_{P}
$$

with

$$
\mathbb{Z}^{s} \subset \bigoplus_{j=1}^{s} \frac{1}{n_{j}} \mathbb{Z} \subset \mathbb{R}^{s}
$$

and $\alpha=\left(H_{n_{1}+\cdots+n_{j}}-H_{n_{1}+\cdots+n_{j}+1}\right) \mid \mathfrak{a}_{P} \in \Delta_{P}$ with

$$
h_{j}-h_{j+1},
$$

α^{\vee} with

$$
\left(0, \ldots, 0, \frac{1}{n_{j}},-\frac{1}{n_{j+1}}, 0, \ldots, 0\right)
$$

and ϖ_{α}^{G} with

$$
n_{1} h_{1}+\cdots n_{j} h_{j}-\frac{n_{1}+\cdots+n_{j}}{n}\left(n_{1} h_{1}+\cdots+n_{s} h_{s}\right) .
$$

Moreover, the composite map

$$
\frac{1}{n_{s}} \mathbb{Z} \hookrightarrow \bigoplus_{j=1}^{s} \frac{1}{n_{j}} \mathbb{Z} \cong X_{*}\left(A_{P}^{\prime}\right) \rightarrow \Lambda_{P}^{G}
$$

is an isomorphism and, for any $\lambda=\frac{m}{n_{s}} \in \frac{1}{n_{s}} \mathbb{Z} \cong \Lambda_{P}^{G}$, we have

$$
[\lambda]_{G}=\frac{m}{n} \in \frac{1}{n} \mathbb{Z} \cong X_{*}\left(A_{G}^{\prime}\right)
$$

and

$$
\varpi_{\alpha}^{G}(\lambda)=-\frac{n_{1}+\cdots+n_{j}}{n} m \in \mathbb{R} / \mathbb{Z}, \forall \alpha=h_{j}-h_{j+1} \in \Delta_{P}
$$

Therefore, we have

$$
\prod_{\alpha \in \Delta_{P}} \frac{1}{1-t^{4\left\langle\rho_{P}, \alpha^{\vee}\right\rangle}}=\prod_{j=1}^{s-1} \frac{1}{1-t^{2\left(n_{j}+n_{j+1}\right)}}
$$

and, if $\nu_{G}^{\prime}=\frac{d}{n} \in \frac{1}{n} \mathbb{Z} \cong X_{*}\left(A_{G}^{\prime}\right)$, we have

$$
\left.\sum_{\substack{\lambda \in \Lambda_{P}^{G} \\[\lambda]_{G}=\nu_{G}^{\prime}}} t^{4} \sum_{\alpha \in \Delta_{P}}\left\langle\rho_{P}, \alpha^{\vee}\right\rangle\left\langle\varpi_{\alpha}^{G}(\lambda)\right\rangle\right)=t^{2 \sum_{j=1}^{s-1}\left(n_{j}+n_{j+1}\right)\left\langle-\frac{n_{1}+\cdots+n_{j}}{n} d\right\rangle}
$$

(it is easy to check directly that $\sum_{j=1}^{s-1}\left(n_{j}+n_{j+1}\right)\left\langle-\frac{n_{1}+\cdots+n_{j}}{n} d\right\rangle \in \mathbb{Z}$).
The degrees of the invariant polynomials for $W_{0}^{G} \cong \mathfrak{S}_{n}$ acting on $\mathfrak{a}_{0}^{G} \cong \mathbb{R}^{n-1}$ are

$$
2,3, \ldots, n
$$

Therefore, for any $\nu_{G}^{\prime} \in X_{*}\left(A_{G}^{\prime}\right)$, we have

$$
P_{t}\left(G, \nu_{G}^{\prime}\right)=\frac{(1+t)^{2 g}}{1-t^{2}} \prod_{i=1}^{n} \frac{\left(1+t^{2 i+1}\right)^{2 g}}{\left(1-t^{2 i}\right)\left(1-t^{2 i+2}\right)}
$$

From theorem 3.4, we conclude that the Poincaré series $P_{t}^{\mathrm{ss}}\left(G L_{n}, d / n\right)$ of the algebraic stack of semi-stable vector bundles of rank n and degree d on the curve X of genus $g \geq 2$ is equal to

$$
\begin{aligned}
& \sum_{s=1}^{n}(-1)^{s-1}\left(\frac{(1+t)^{2 g}}{1-t^{2}}\right)^{s} \sum_{\substack{n_{1}, \ldots, n_{s} \geq 1 \\
n_{1}+\ldots+n_{s}=n}}\left(\prod_{j=1}^{s} \prod_{i=1}^{n_{j}-1} \frac{\left(1+t^{2 i+1}\right)^{2 g}}{\left(1-t^{2 i}\right)\left(1-t^{2 i+2}\right)}\right) \\
& \cdot t^{2} \sum_{1 \leq i<j \leq s} n_{i} n_{j}(g-1)\left(\prod_{j=1}^{s-1} \frac{1}{1-t^{2\left(n_{j}+n_{j+1}\right)}}\right) t^{2 \sum_{j=1}^{s-1}\left(n_{j}+n_{j+1}\right)\left\langle-\frac{n_{1}+\cdots+n_{j}}{n} d\right\rangle} .
\end{aligned}
$$

We may also consider the stack $\mathcal{M}^{\mathrm{s}}\left(G L_{n}, d / n\right)$ of stable vector bundles of rank n and degree d on the curve X (of genus $g \geq 2$). It is an open substack of $\mathcal{M}^{\text {ss }}\left(G L_{n}, d / n\right.$), which is almost a smooth quasi-projective variety over k. More precisely, there exists a smooth quasi-projective variety $M^{\mathrm{s}}\left(G L_{n}, d / n\right)$ of dimension $\left(n^{2}-1\right)(g-1)$ over k and a morphism of stacks $\mathcal{M}^{\mathrm{s}}\left(G L_{n}, d / n\right) \rightarrow M^{\mathrm{s}}\left(G L_{n}, d / n\right)$ which is a gerb with fibers all isomorphic to $B G L_{1}$.

If d is prime to n, we have $\mathcal{M}^{\mathrm{s}}\left(G L_{n}, d / n\right)=\mathcal{M}^{\mathrm{ss}}\left(G L_{n}, d / n\right)$ and $M^{\mathrm{s}}\left(G L_{n}, d / n\right)$ is projective over k. Let us denote by $Q_{t}^{\mathrm{s}}\left(G L_{n}, d / n\right)$ the Poincaré polynomial of $M^{\mathrm{s}}\left(G L_{n}, d / n\right)$ in this case. We have

$$
Q_{t}^{\mathrm{s}}\left(G L_{n}, d / n\right)=\left(1-t^{2}\right) P_{t}^{\mathrm{ss}}\left(G L_{n}, d / n\right)
$$

Therefore, we have proved :

Theorem 4.1. - For each integer d prime to n, the Poincaré polynomial $Q_{t}^{\mathrm{s}}\left(G L_{n}, d / n\right)$ of the moduli space $M^{\mathrm{s}}\left(G L_{n}, d / n\right)$ of stable vector bundles of rank n and degree d on the curve X (of genus $g \geq 2$) is equal to

$$
\begin{aligned}
& \sum_{s=1}^{n}(-1)^{s-1} \frac{(1+t)^{2 g s}}{\left(1-t^{2}\right)^{s-1}} \sum_{\substack{n_{1}, \ldots, n_{s} \geq 1 \\
n_{1}+\cdots+n_{s}=n}}\left(\prod_{j=1}^{s} \prod_{i=1}^{n_{j}-1} \frac{\left(1+t^{2 i+1}\right)^{2 g}}{\left(1-t^{2 i}\right)\left(1-t^{2 i+2}\right)}\right) \\
& \quad \cdot t^{2} \sum_{1 \leq i<j \leq s} n_{i} n_{j}(g-1) \\
& s-1 \\
& \left.\prod_{j=1}^{s-1} \frac{1}{1-t^{2\left(n_{j}+n_{j+1}\right)}}\right) t^{2 \sum_{j=1}^{s-1}\left(n_{j}+n_{j+1}\right)\left\langle-\frac{n_{1}+\cdots+n_{j}}{n} d\right\rangle} .
\end{aligned}
$$

This last formula is equivalent to the following expression for the Poincaré polynomial of the moduli space of stable vector bundles of rank n having as determinant a fixed line bundle of degree d, prime to n, on the curve X (of genus $g \geq 2$)

$$
\begin{aligned}
& \sum_{s=1}^{n}(-1)^{s-1}\left(\frac{(1+t)^{2 g}}{1-t^{2}}\right)^{s-1} \sum_{\substack{n_{1}, \ldots, n_{s} \geq 1 \\
n_{1}+\cdots+n_{s}=n}}\left(\prod_{j=1}^{s} \prod_{i=1}^{n_{j}-1} \frac{\left(1+t^{2 i+1}\right)^{2 g}}{\left(1-t^{2 i}\right)\left(1-t^{2 i+2}\right)}\right) \\
& \cdot t^{2} \sum_{1 \leq i<j \leq s} n_{i} n_{j}(g-1) \\
&\left(\prod_{j=1}^{s-1} \frac{1}{1-t^{2\left(n_{j}+n_{j+1}\right)}}\right) t^{2 \sum_{j=1}^{s-1}\left(n_{j}+n_{j+1}\right)\left\langle-\frac{n_{1}+\cdots+n_{j}}{n} d\right\rangle} .
\end{aligned}
$$

This was proved earlier by Zagier using different arguments (see [Za]). As he has remarked in loc. cit., it is not at all clear that the right hand sides of the last two formulas are polynomials.

Let us also point out that, if $n \geq 2$, the right hand side of the last formula vanishes at $t=-1$ (the order of vanishing at $t=-1$ of each summand of the double sum is

$$
\left.(2 g-1)(s-1)+\sum_{j=1}^{s} \sum_{i=1}^{n_{j}-1}(2 g-2)+\sum_{i=1}^{s-1}(-1)=(n-1)(2 g-2)\right)
$$

This gives a new proof of the following result of Narasimhan and Ramanan (see [NR]) :
Corollary 4.2 (Narasimhan and Ramanan). - The Euler-Poincaré characteristic of the moduli space of stable vector bundles of rank $n \geq 2$ having as determinant a fixed line bundle of degree d prime to n on the curve X (of genus $g \geq 2$) is equal to 0 .
[Ar1] J. Arthur. - A trace formula for reductive groups I: Terms associated to classes in $G(\mathbb{Q})$, Duke Math. J. 45, (1978), 911-953.
[Ar2] J. Arthur. - The trace formula in invariant form, Ann. of math. 114, (1981), 1-74.
[AB] M.F. Atiyah and R. Bott. - The Yang-Mills equations over Riemann surfaces, Phil. Trans. Roy. Soc. London A 308, (1982), 523-615.
[BGL] E. Bifet, F. Ghione and M. Letizia. - On the Abel-Jacobi map for divisors of higher rank on a curve, Math. Ann. 299, (1994), 641-672.
[HN] G. Harder and M.S. Narasimhan. - On the cohomology groups of moduli spaces of vector bundles on curves, Math. Ann. 212, (1975), 215-248.
[La] J.-P. Labesse. - La formule des traces d'Arthur-Selberg, Séminaire Bourbaki, 1984-85, Astérisque 133-134, (1986), 73-88.
[NR] M.S. Narasimhan and S. Ramanan. - Generalized Prym varieties as fixed points, J. of the Indian Math. Soc. 39, (1975), 1-19.
[Ra] A. Ramanathan. - Stable principal bundles on a compact Riemann surface, Math. Ann. 213, (1975), 129-152.
[Rap] M. Rapoport. - Non-archimedean period domains, Proceedings ICM 1994, Zürich, to appear.
[Za] D. Zagier. - Elementary aspects of the Verlinde formula and of the Harder-Narasimhan-Atiyah-Bott formula, Israel Mathematical Conference Proceedings , (1995), to appear.

Gérard LAUMON
URA D752 du CNRS
Université de Paris-Sud
Mathématiques, bât. 425
91405 ORSAY Cédex (France)

Michael RAPOPORT
FB Mathematik
Bergische Universität
Gaussstrasse 20
42097 WUPPERTAL (Germany)

