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The Langlands lemma and the Betti numbers
of stacks of G–bundles on a curve

G. Laumon and M. Rapoport

Atiyah and Bott [AB] and Harder and Narasimhan [HN] have established a formula
for the Poincaré series (the generating series formed using the Betti numbers) of the
stackM(G, ν ′G) of G–bundles with slope ν ′G on a Riemann surface, which expresses it in
terms of the Poincaré series of the open substack of semi–stableG–bundles and the similar
Poincaré series for all standard Levi subgroups of G. This relation is a consequence of the
Harder–Narasimhan stratification of M(G, ν ′G). A similar relation arises in the context
of period domains over a finite or p–adic field, where the Euler–Poincaré characteristic of
a generalized flag variety of a reductive group is expressed in terms of the Euler–Poincaré
characteristics of the period domains associated with the various standard Levi subgroups
of G (cf. [Rap]). These relations can be considered as recursion relations expressing the
Poincaré series (resp. Euler–Poincaré characteristic) of the semi–stable sublocus in terms
of the corresponding quantities for the ambiant spaces for G and its Levi subgroups.

In this paper we show that the Langlands lemma from the theory of Eisenstein
series, which has become a standard tool in the development of the Arthur–Selberg
trace formula, can be used to invert the recursion relation for the Poincaré series of the
open substack of semi–stable G–bundles. This note is therefore of a purely combinatorial
nature.

This application of the Langlands lemma has been noticed by Kottwitz (in the context
of p–adic period domains). Our only contribution has been to formalize this suggestion in
a different context. In the case of vector bundles on a curve the inversion of the recursion
formula had been obtained earlier by Zagier [Za] using different techniques.

The paper is organized as follows. In Section 1 we fix our notations and recall the
Langlands lemma. In section 2 we use the lemma to prove a general inversion formula.
In section 3 we explain how to apply this inversion formula to the theory of G–bundles
on a curve. The special case of vector bundles is discussed in section 4.

We wish to thank R. Kottwitz for many helpful discussions. We also thank the
Deutsche Forschungsgemeinschaft for its support.

1. The Langlands lemma.

Let G be a reductive algebraic group over a perfect field k. We fix a minimal parabolic
subgroup P0 of G and a Levi subgroup M0. We denote by P the set of standard parabolic
subgroups of G, i.e. parabolic subgroups of G containing P0.
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If P ∈ P , we denote by NP its unipotent radical and by MP the unique Levi subgroup
of P containing M0. Moreover, we denote by

AP = Homk−gr(Gm,k, ZP )⊗Gm,k

the maximal split torus in the center ZP of MP and by

A′P = Hom(Homk−gr(MP,ab,Gm,k),Gm,k)

the maximal quotient split torus of MP,ab. The composite map

AP ↪→ ZP ↪→MP →→MP,ab →→ A′P

is an isogeny. In particular, we have an injective map of free abelian groups of the same
finite rank

X∗(AP ) = Homk−gr(Gm,k, ZP ) ↪→ Hom(Homk−gr(MP,ab,Gm,k),Z) = X∗(A
′
P ) .

Following Arthur [Ar1], for each P ∈ P , we set

aP = R⊗X∗(AP ) = R⊗X∗(A′P ) .

If P ⊂ Q are two standard parabolic subgroups of G, we have canonical maps

AQ ↪→ AP ↪→ A′P →→ A′Q .

The canonical maps AQ ↪→ AP and A′P →→ A′Q induce a canonical embedding aQ ↪→ aP
and a canonical retraction aP →→ aQ. Hence, we have a canonical splitting

aP = aQP ⊕ aQ ,

where aQP is the kernel of the retraction. Taking the dual real vector spaces, we get a
splitting

a∗P = aQ∗P ⊕ a∗Q .

More generally, if P ⊂ Q ⊂ R are three standard parabolic subgroups of G, we have
canonical splittings

aP = aQP ⊕ aRQ ⊕ aR

and
a∗P = aQ∗P ⊕ aR∗Q ⊕ a∗R .

We shall denote by [·]Q, [·]RQ and [·]R the canonical projections of aP onto aQP , aRQ and aR
respectively.

For each P ∈ P , let ΦP ⊂ aG∗P ⊂ a∗P be the set of the non trivial characters of AP
which occur in the Lie algebra g of G and let Φ+

P ⊂ ΦP be the set of the non trivial
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characters of AP which occur in the Lie algebra nP of the unipotent radical of P . It is
well known that Φ0 = ΦP0 is a root system and that Φ+

0 = Φ+
P0

is an order on Φ0. Let

∆0 = ∆P0 ⊂ Φ+
0 be the set of simple roots ; ∆0 is a basis of the real vector space aG∗P0

.
For each α ∈ Φ0, there is a corresponding coroot α∨ and (α∨)α∈∆0 is a basis of the real
vector space aG0 = aGP0

⊂ aP0 = a0. For the other P ’s in P , ΦP is not a root system

in general. Nevertheless, following Arthur, we define ∆P ⊂ Φ+
P as the set of non trivial

restrictions to AP (or aP ) of the simple roots in ∆0. Then, ∆P is a basis of the real
vector space aG∗P and, for each α ∈ ∆P , there is a corresponding “coroot” α∨ ∈ aGP with
the property that (α∨)α∈∆P is a basis of the real vector space aGP : α is the restriction
to AP of a unique β ∈ ∆0 and α∨ is the projection of β∨ onto aGP .

If P ⊂ Q are two standard parabolic subgroups of G, let ΦQ
P = ΦP∩MQ (resp.

ΦQ+
P = Φ+

P∩MQ
, resp. ∆Q

P = ∆P∩MQ) be the set of α in ΦP (resp. Φ+
P , resp. ∆P )

which occur in the Lie algebra mQ of MQ. Then, on the one hand, ∆Q
P is contained in

aQ∗P ⊂ aG∗P and is a basis of the real vector space aQ∗P . On the other hand, the projection

of (α∨)α∈∆Q
P

onto aQP is a basis of the real vector space aQP and we may consider its dual

basis ($Q
α )α∈∆Q

P
⊂ aQ∗P .

If P ⊂ Q ⊂ R are three standard parabolic subgroups of G and if H ∈ aRP , we have

〈α, [H]Q〉 = 〈α,H〉 , ∀α ∈ ∆Q
P ⊂ ∆R

P

and
〈$R

α , [H]Q〉 = 〈$R
β ,H〉 , ∀α ∈ ∆R

Q ,

where β is the unique element in ∆R
P such that α = β|AQ.

LEMMA 1.1. — Let P ⊂ R be two standard parabolic subgroups of G and let H ∈ aRP .

(i) Let us assume that 〈α,H〉 > 0 or 〈$α,H〉 > 0 for each α ∈ ∆R
P . Then, we

have 〈$α,H〉 > 0 for all α ∈ ∆R
P .

(ii) Let us assume that 〈α,H〉 ≤ 0 or 〈$α,H〉 ≤ 0 for each α ∈ ∆R
P . Then, we

have 〈$α,H〉 ≤ 0 for all α ∈ ∆R
P .

Proof : See [La] 3.1.

If P ⊂ Q are two standard parabolic subgroups of G, Arthur has introduced two
characteristic functions on the real vector space aQP : the characteristic function τQP of
the acute Weyl chamber

aQ+
P = {H ∈ aQP | 〈α,H〉 > 0 , ∀α ∈ ∆Q

P }

and the characteristic function τ̂QP of the obtuse Weyl chamber

+aQP = {H ∈ aQP | 〈$Q
α ,H〉 > 0 , ∀α ∈ ∆Q

P } .

It follows from lemma 1.1 (i) that aQ+
P ⊂ +aQP .
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LEMMA 1.2 (Langlands). — For any standard parabolic subgroups P ⊂ R of G and
any H ∈ aRP , we have

∑

P⊂Q⊂R
(−1)dim(aRQ)τQP ([H]Q)τ̂RQ ([H]Q) = δRP .

and ∑

P⊂Q⊂R
(−1)dim(aQ

P
)τ̂QP ([H]Q)τRQ ([H]Q) = δRP .

Proof : See [Ar1] §6 or [La] 3.2.

Following Arthur (see [Ar2] §2), we set

ΓRP (H,T ) =
∑

P⊂Q⊂R
(−1)dim(aRQ)τQP ([H]Q)τ̂RQ ([H − T ]Q)

and

Γ̂RP (H,T ) =
∑

P⊂Q⊂R
(−1)dim(aQ

P
)τQP ([H − T ]Q)τ̂RQ ([H]Q) = (−1)dim(aRP )ΓRP (H − T,−T ) ,

for any standard parabolic subgroups P ⊂ R of G and for any H,T ∈ aRP . As an
immediate consequence of the Langlands lemma, we obtain

∑

P⊂Q⊂R
(−1)dim(aRQ)ΓQP (H,T )Γ̂RQ(H,T ) = δRP

and ∑

P⊂Q⊂R
(−1)dim(aQ

P
)Γ̂QP (H,T )ΓRQ(H,T ) = δRP .

LEMMA 1.3 (Arthur). — If T ∈ aR+
P ⊂ +aRP , the function H 7→ ΓRP (H,T ) (resp.

H 7→ Γ̂RP (H,T )) is the characteristic function of the bounded subset

{H ∈ aRP | 〈α,H〉 > 0 , 〈$α,H〉 ≤ 〈$α, T 〉 , ∀α ∈ ∆R
P} ⊂ aR+

P

(resp.
{H ∈ aRP | 〈$R

α ,H〉 > 0 , 〈α,H〉 ≤ 〈α, T 〉 , ∀α ∈ ∆R
P } ⊂ +aRP )

of aRP .

In particular, when T goes to infinity, the supports of the functions H 7→ ΓRP (H,T )

(resp. H 7→ Γ̂RP (H,T )) cover aR+
P (resp. +aRP ) (by definition, T ∈ aR+

P goes to infinity if
〈α, T 〉 > 0 goes to infinity, for each α ∈ ∆R

P ).
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Proof : Let us prove the statement about ΓRP (H,T ). Let us fix H and let us set

I = {α ∈ ∆R
P | 〈$R

α ,H − T 〉 ≤ 0}

and
J = {α ∈ ∆R

P | 〈α,H〉 > 0} .
We clearly have

ΓRP (H,T ) = (−1)|∆
R
P−I|

∑

P⊂Q⊂R
I⊂∆Q

P
⊂J

(−1)|∆
Q
P
−I| = (−1)|∆

R
P−I|δJI .

Therefore, ΓRP (H,T ) 6= 0 if and only if I = J . Now, if I = J , we have

〈α,H − T 〉 ≤ −〈α, T 〉 < 0 , ∀α ∈ ∆R
P − I

and
〈$R

α ,H − T 〉 ≤ 0 , ∀α ∈ I ,
so that

〈$R
α ,H − T 〉 ≤ 0 , ∀α ∈ ∆R

P

by the lemma 1.1 (ii). Therefore, if I = J , we have I = J = ∆R
P and H satifies the

relations
〈α,H〉 > 0

and
〈$α,H〉 ≤ 〈$α, T 〉

for all α ∈ ∆R
P . Conversely, if H satisfies these relations, it is obvious that I = J = ∆R

P .

The proof of the statement about Γ̂RP (H,T ) is similar.

2. A general inversion formula.

We denote by P the set of pairs (P, ν ′P ), where P ∈ P and ν ′P ∈ X∗(A′P ). We fix a
topological abelian group A. A function

a : P→ A

is said to be Γ̂–converging if it has the following property :
For each standard parabolic subgroup P ⊂ Q of G and each ν ′Q ∈ X∗(A′Q), the finite

sum ∑

ν′P∈X∗(A′P )

[ν′P ]Q=ν′Q

Γ̂QP ([ν ′P ]Q, T )a(P, ν ′P )
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admits a limit as T ∈ aQ+
P goes to infinity.

If this is the case, we shall denote this limit by

∑

ν′P∈X∗(A′P )

[ν′P ]Q=ν′Q

τ̂QP ([ν ′P ]Q)a(P, ν ′P ) .

A function

b : P→ A

is said to be Γ–converging if it has the following property :
For each standard parabolic subgroup P ⊂ Q of G and each ν ′Q ∈ X∗(A′Q), the finite

sum ∑

ν′P∈X∗(A′P )

[ν′P ]Q=ν′Q

ΓQP ([ν ′P ]Q, T )b(P, ν ′P )

admits a limit as T ∈ aQ+
P goes to infinity.

If this is the case, we shall denote this limit by

∑

ν′P∈X∗(A′P )

[ν′P ]Q=ν′Q

τQP ([ν ′P ]Q)b(P, ν ′P ) .

THEOREM 2.1. — For each Γ̂–converging function a : P → A, there exists a unique
Γ–converging function b : P→ A such that, for each (Q, ν ′Q) ∈ P, we have

a(Q, ν ′Q) =
∑

P∈P
P⊂Q

∑

ν′P∈X∗(A′P )

[ν′P ]Q=ν′Q

τQP ([ν ′P ]Q)b(P, ν ′P ) .

The function b is given by the following formula : for each (Q, ν ′Q) ∈ P, we have

b(Q, ν ′Q) =
∑

P∈P
P⊂Q

(−1)dim(aQ
P

)
∑

ν′P∈X∗(A′P )

[ν′P ]Q=ν′Q

τ̂QP ([ν ′P ]Q)a(P, ν ′P ) .

Proof : This is an easy consequence of lemmas 1.2 and 1.3.
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Let us now consider a particular case of this theorem which is relevant for the
computation of the Poincaré series of the stack of semi–stable G–bundles on a curve.

For any standard parabolic subgroup P of G, we fix nP ∈ Z≥0 and δP0 ∈ aP∗0 ⊂ a∗0.
We assume that, for any standard parabolic subgroups P ⊂ Q of G, we have

nP ≥ nQ ,

(δQ0 − δP0 )|aP0 = 0

and

〈δQP , α∨〉 ∈ Z>0 (∀α ∈ ∆Q
P )

where we have set

δQP = (δQ0 − δP0 )|aQP .

We have

〈δQP , [H]Q〉 = 〈δGP ,H〉 − 〈δGQ , [H]Q〉
for every H ∈ aP .

We set

m(P, ν ′P ) = nP + 〈δGP , ν ′P 〉
for each (P, ν ′P ) ∈ P.

LEMMA 2.2. — Let (Q, ν ′Q) ∈ P.

(i) For each (P, ν ′P ) ∈ P such that P ⊂ Q, [ν ′P ]Q = ν ′Q and τ̂QP ([ν ′P ]Q) 6= 0, we
have

m(P, ν ′P ) ≥ m(Q, ν ′Q) .

(ii) For each positive integer m, there are only finitely many (P, ν ′P ) ∈ P such that

P ⊂ Q, [ν ′P ]Q = ν ′Q, τ̂QP ([ν ′P ]Q) 6= 0 and m(P, ν ′P ) ≤ m.

We take A to be a Z[[t]]–module equipped with the t–adic topology and we assume
that A is complete for this topology. We consider an arbitrary function

a0 : P → A

and set

a(P, ν ′P ) = a0(P )tm(P,ν′P ) ∈ A
for any (P, ν ′P ) ∈ P. It follows from part (ii) of lemma 2.2 that the function a is Γ̂–
converging. Therefore, by theorem 2.1, there exists a unique Γ–converging function

b : P→ A
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such that
a(Q, ν ′Q) =

∑

P∈P
P⊂Q

∑

ν′P∈X∗(A′P )

[ν′P ]Q=ν′Q

τQP ([ν ′P ]Q)b(P, ν ′P ) .

Moreover, the function b is given by

b(Q, ν ′Q) = b0(Q, ν ′Q)tm(Q,ν′Q) (∀(Q, ν ′Q) ∈ P) ,

where

b0(Q, ν ′Q) =
∑

P∈P
P⊂Q

(−1)dim(aQ
P

)a0(P )
∑

ν′P∈X∗(A′P )

[ν′P ]Q=ν′Q

τ̂QP ([ν ′P ]Q)tm(P,ν′P )−m(Q,ν′Q) ∈ A

for any (Q, ν ′Q) ∈ P (cf. Lemma 2.2 (i)).
Let us consider the lattices

∑

α∈∆Q
P

Zα∨ ⊂ X∗(A′P )

and let us set
ΛQP = X∗(A

′
P )
/ ∑

α∈∆Q
P

Zα∨ .

Clearly, the projection [·]Q : X∗(A′P ) → aQ factors through ΛQP and, for each α ∈ ∆Q
P ,

$Q
α : X∗(A′P )→ R induces a homomorphism from ΛQP to R/Z.

LEMMA 2.3. — For each (Q, ν ′Q) ∈ P and each standard parabolic subgroup P ⊂ Q of
G, we have

∑

ν′P∈X∗(A′P )

[ν′P ]Q=ν′Q

τ̂QP ([ν ′P ]Q)t〈δ
Q
P
,[ν′P ]Q〉

=
( ∏

α∈∆Q
P

1

1− t〈δQP ,α∨〉
) ∑

λ∈ΛQ
P

[λ]Q=ν′Q

t

∑
α∈∆

Q
P

〈δQ
P
,α∨〉〈$Qα (λ)〉

,

where, for each µ ∈ R/Z, 〈µ〉 ∈ R is the unique representative of the class µ such that
0 < 〈µ〉 ≤ 1.

As δQP =
∑

α∈∆Q
P
〈δQP , α∨〉$Q

α , we have

∑

α∈∆Q
P

〈δQP , α∨〉〈$Q
α ([ν ′P ]Q + Z)〉 ≡ 〈δQP , [ν ′P ]Q〉 ≡ 0 (mod Z)

for any ν ′P ∈ X∗(A′P ).
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Proof : We have

∑

ν′P∈X∗(A′P )

[ν′P ]Q=ν′Q

τ̂QP ([ν ′P ]Q)t〈δ
Q
P
,[ν′P ]Q〉 =

∑

λ∈ΛQ
P

[λ]Q=ν′Q

t〈δ
Q
P
,λ̇〉 ∏

α∈∆Q
P

∑

mα∈Z
mα+$α(λ̇)>0

t〈δ
Q
P
,α∨〉mα

where λ̇ ∈ X∗(A′P ) is a representative of the class λ. But, for each p ∈ Z>0 and each
x ∈ R, we have

∑

m∈Z
m+x>0

tpm =
tp(〈x+Z〉−x)

1− tp .

Hence, we have

∑

ν′P∈X∗(A′P )

[ν′P ]Q=ν′Q

τ̂QP ([ν ′P ]Q)t〈δ
Q
P
,[ν′P ]Q〉 =

∑

λ∈ΛQ
P

[λ]Q=ν′Q

∏

α∈∆Q
P

t〈δ
Q
P
,α∨〉〈$Qα (λ)〉

1− t〈δQP ,α∨〉
.

To sum up, we can state :

THEOREM 2.4. — There exists a unique function b0 : P→ A which satisfies the relation

a0(Q) =
∑

P∈P
P⊂Q

∑

ν′P∈X∗(A′P )

[ν′P ]Q=ν′Q

τQP ([ν ′P ]Q)b0(P, ν ′P )tm(P,ν′P )−m(Q,ν′Q) ,

for each (Q, ν ′Q) ∈ P. This function is given by

b0(Q, ν ′Q) =
∑

P∈P
P⊂Q

(−1)dim(aQ
P

)a0(P )tnP−nQ
( ∏

α∈∆Q
P

1

1− t〈δQP ,α∨〉
)
·

·
∑

λ∈ΛQ
P

[λ]Q=ν′Q

t

∑
α∈∆

Q
P

〈δQ
P
,α∨〉〈$Qα (λ)〉

∈ A,

for each (Q, ν ′Q) ∈ P.

REMARK 2.5. — It follows from the definition of the function b0 that b0(P, ν ′P ) only
depends on the class ν ′P of ν ′P in X∗(A′P )/X∗(AP ).
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3. Application to G-bundles.

From now on, let us assume that k is algebraically closed, so that P0 is a Borel subgroup
of G, and let us fix a smooth, projective and connected curve X of genus g ≥ 2 over k.

Let us recall that, for any P ∈ P and any P–bundle TP on X, the slope of TP is the
element µ(TP ) ∈ X∗(A′P ) defined by the condition

〈ξ, µ(TP )〉 = c1(TP,ξ) ∈ Z , ∀ξ ∈ X∗(A′P ) ,

where TP,ξ is the line bundle on X deduced from TP by push–out via P →→ A′P
ξ→ GL1.

Let us also recall that a P–bundle TP on X is said to be semi–stable (see [Ra]) if, for
each standard parabolic subgroup Q ⊂ P such that |∆P

Q| = 1 and for each Q–bundle TQ
on X such that

TP ∼= TQ ×Q P ,
the slope µ(TQ) ∈ X∗(A′Q) ⊂ aQ satisfies

〈αQ, µ(TQ)〉 ≤ 0 ,

where αQ is the unique element of ∆P
Q.

LEMMA 3.1. — For each G–bundle T of slope ν ′G, there exist (P, ν ′P ) ∈ P with
[ν ′P ]G = ν ′G and [ν ′P ]G ∈ aG+

P , a semi–stable P–bundle TP of slope ν ′P and an isomorphism

ι : TP ×P G ∼→ T .

Moreover, the pair (P, ν ′P ) and the isomorphism class of the pair (TP , ι) are uniquely
determined by T .

The pair (P, ν ′P ) is called the Harder–Narasimhan type of T and the pair (TP , ι) is
called the Harder–Narasimhan reduction of T .

Proof : See [HN] in the case of G = GLn and [AB] in general.

For each ν ′G ∈ X∗(A′G), we wish to consider the Poincaré series

P ss
t (G, ν ′G) ∈ Z[[t]]

of the stack Mss(G, ν ′G) of semi–stable G–bundles on X of slope ν ′G. There are at least
three ways to make sense of this series. Harder and Narasimhan ([HN]) count (in a
weighted way) in the case k = Fp the number of semi–stable bundles which are defined
over a finite subfield of k and obtain this series as a consequence of Deligne’s purity
theorem. Atiyah and Bott ([AB]) consider in the case k = C the action of a gauge group
on the space of complex structures on a C∞–bundle on the Riemann surface X(C) and
define P ss

t (G, ν ′G) as the Poincaré series for the equivariant cohomology of the semi–stable
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open subset. Bifet, Ghione and Letizia ([BGL]) consider an ind-variety of semi–stable
matrix divisors and obtain P ss

t (G, ν ′G) in terms of its `–adic cohomology. Most probably,
P ss
t (G, ν ′G) is also the Poincaré series of the smooth algebraic stack of semi–stable G–

bundles on X of slope ν ′G for the `–adic cohomology.
We point out that this Poincaré series is not the Poincaré polynomial of the coarse

moduli scheme of semi–stable G–bundles on X of slope ν ′G (for a relation in a special
case, see section 4). In fact, it is not even a polynomial in general.

There is a recursion formula for P ss
t (G, ν ′G), as follows. For each ν ′G ∈ X∗(A′G), we

have the stack M(G, ν ′G) of G–bundles on X of slope ν ′G. For each (P, ν ′P ) ∈ P such
that [ν ′P ]G = ν ′G and [ν ′P ]G ∈ aG+

P , we also have the substack M(G,P, ν ′P ) ⊂ M(G, ν ′G)
of G–bundles on X of slope ν ′G which admit (P, ν ′P ) as Harder–Narasimhan type. The
family of M(G,P, ν ′P ) is a stratification of M(G, ν ′G), with Mss(G, ν ′G) = M(G,G, ν ′G)
as the open stratum. The codimension of the stratum M(G,P, ν ′P ) is equal to

dim(NP )(g − 1) + 2〈ρGP , ν ′P 〉 ,

where

ρGP =
1

2

∑

α∈ΦG+
P

α ∈ aG∗P ⊂ a∗P .

We set
m(P, ν ′P ) = 2dim(NP )(g − 1) + 4〈ρGP , ν ′P 〉 .

We have the Poincaré series Pt(G, ν
′
G) of M(G, ν ′G) and also the Poincaré series

Pt(G,P, ν
′
P ) of M(G,P, ν ′P ) for any Harder–Narasimhan type (P, ν ′P ).

In all the above definitions we may replace G by the Levi component MP of any
standard parabolic subgroup P of G. For each Harder–Narasimhan type (P, ν ′P ) we have
a fibration

M(G,P, ν ′P )→Mss(MP , ν
′
P )

given by T 7→ TP /NP , where (TP , ι) is the Harder–Narasimhan reduction of T .

THEOREM 3.2 (Harder–Narasimhan ; Atiyah–Bott). — The stratification of M(G, ν ′G)
by the M(G,P, ν ′P ) is perfect modulo torsion, so that for the Poincaré series we have

Pt(G, ν
′
G) =

∑

P∈P

∑

ν′P∈X∗(A′P )

[ν′P ]G=ν′G

τGP ([ν ′P ]G)tm(P,ν′P )Pt(G,P, ν
′
P ) .

Moreover, for each Harder–Narasimhan type (P, ν ′P ), the above fibration is acyclic and
we have

Pt(G,P, ν
′
P ) = P ss

t (MP , ν
′
P ) .

Again, in this theorem, we may replace G by the Levi component of any standard
parabolic subgroup of G.
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Proof : See [HN] and [AB] Theorem 10.10.

The Weyl group WG
0 of A0 in G acts on the real vector space aG0 and, therefore, on

the graded algebra Sym(aG∗0 ) of polynomials on aG0 . It is well–known that the algebra of
invariants

Sym(aG∗0 )W
G
0

(with its grading) is isomorphic to an algebra of polynomials

R[I1, . . . , Idim(aG0 )] ,

where I1, ..., Idim(aG0 ) are algebraically independent homogeneous polynomials on aG0 of

degree ≥ 2. Let us denote by d1(G), . . . , ddim(aG0 )(G) the degrees of these homogeneous

polynomials. Up to a permutation, the sequence (d1(G), . . . , ddim(aG0 )(G)) is canonically
defined. If we set

WG(t) =
∑

w∈WG
0

t`(w) =
∏

α∈ΦG+
0

t〈ρ0,α
∨〉+1 − 1

t〈ρ0,α∨〉 − 1

(` : WG
0 → Z≥0 is the length function), we have

WG(t) =

dim(aG0 )∏

i=1

tdi(G) − 1

t− 1
.

THEOREM 3.3. — For any ν ′G ∈ X∗(A′G), we have

Pt(G, ν
′
G) =

( (1 + t)2g

1− t2
)dim(aG)

dim(aG0 )∏

i=1

(1 + t2di(G)−1)2g

(1− t2di(G)−2)(1− t2di(G))
.

In particular, Pt(G, ν
′
G) does not depend on ν ′G.

Again, in this theorem, we may replace G by the Levi component of any standard
parabolic subgroup of G.

Proof : See [AB] Theorem 2.15 for the case G = GLn.

THEOREM 3.4. — For any ν ′G ∈ X∗(A′G), the Poincaré series P ss
t (G, ν ′G) ∈ Z[[t]] is

equal to the expansion of the rational function

∑

P∈P
(−1)dim(aGP )

( (1 + t)2g

1− t2
)dim(aP )(dim(aP0 )∏

i=1

(1 + t2di(MP )−1)2g

(1− t2di(MP )−2)(1 − t2di(MP ))

)
·

·t2dim(NP )(g−1)
( ∏

α∈∆P

1

1− t4〈ρP ,α∨〉
) ∑

λ∈ΛGP
[λ]G=ν′G

t
4
∑

α∈∆P
〈ρP ,α∨〉〈$Gα (λ)〉

in Q(t).
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Proof : Let
a0 : P → Q[[t]]

be the function defined by

a0(P ) =
( (1 + t)2g

1− t2
)dim(aP )

dim(aP0 )∏

i=1

(1 + t2di(MP )−1)2g

(1− t2di(MP )−2)(1 − t2di(MP ))
.

Our function m(P, ν ′P ) is of the form nP + 〈δGP , ν ′P 〉 with nP = 2dim(NP )(g − 1) and
δGP = 4ρGP satisfying the hypotheses imposed in section 2. We may therefore apply theorem
2.4. Let b0 be the unique function from P to Z[[t]] which satisfies the relation

a0(Q) =
∑

P∈P
P⊂Q

∑

ν′P∈X∗(A′P )

[ν′P ]Q=ν′Q

τQP ([ν ′P ]Q)b0(P, ν ′P )tm(P,ν′P )−m(Q,ν′Q) ,

for each (Q, ν ′Q) ∈ P. It follows from theorems 3.2 and 3.3 that

b0(G, ν ′G) = P ss
t (G, ν ′G)

and the theorem is proved.

REMARK 3.5. — It follows from this theorem and remark 2.5 that P ss
t (G, ν ′G) only

depends on the class ν ′G of ν ′G in X∗(A′G)/X∗(AG). This can be viewed directly as follows.
Let us arbitrarily choose a line bundle L of degree 1 on X. For any νG ∈ X∗(AG), νG∗L
is an AG–bundle on X and the map

Mss(G, ν ′G)→Mss(G, ν ′G + νG) , T 7→ T ×AG νG∗L

is an isomorphism of algebraic stacks.

4. The case of vector bundles.

Let us consider the particular case G = GLn. Let us take for P0 the Borel subgroup
of upper triangular matrices, so that AP0 = A′P0

= (GL1)n, a0 = Rn with standard

coordinates (H1 , . . . ,Hn), Φ0 = {Hi − Hj | i 6= j}, Φ+
0 = {Hi − Hj | i < j} and

∆0 = {Hi −Hi+1 | i = 1, . . . , n − 1}. Then, the standard parabolic subgroups of G are
in one to one correspondence with the partitions of n.

Let P be a standard parabolic of G which corresponds to the partition (n1, . . . , ns).
Then we have

aP = {H ∈ Rn | H1 = · · · = Hn1 , . . . ,Hn1+···+ns−1+1 = · · · = Hn} ,



14

∆P = {(Hn1+···+nj −Hn1+···+nj+1)|aP | j = 1, . . . , s − 1} ,
and, for any α = (Hn1+···+nj −Hn1+···+nj+1)|aP ∈ ∆P ,

α∨ = (0, . . . , 0,
1

nj
, . . . ,

1

nj
,− 1

nj+1
, . . . ,− 1

nj+1
, 0, . . . , 0) ,

$G
α =

(
H1 + · · ·+Hn1+···+nj −

n1 + · · ·+ nj
n

(H1 + · · ·+Hn)
)
|aP

and

〈ρP , α∨〉 =
nj + nj+1

2
.

The isomorphism
aP

∼→ Rs , (H1 , . . . ,Hn) 7→ (h1, . . . , hs)

with hj = Hn1+···+nj−1+1 = · · · = Hn1+···+nj identifies

X∗(AP ) ⊂ X∗(A′P ) ⊂ aP

with

Zs ⊂
s⊕

j=1

1

nj
Z ⊂ Rs ,

and α = (Hn1+···+nj −Hn1+···+nj+1)|aP ∈ ∆P with

hj − hj+1 ,

α∨ with

(0, . . . , 0,
1

nj
,− 1

nj+1
, 0, . . . , 0)

and $G
α with

n1h1 + · · · njhj −
n1 + · · ·+ nj

n
(n1h1 + · · ·+ nshs) .

Moreover, the composite map

1

ns
Z ↪→

s⊕

j=1

1

nj
Z ∼= X∗(A

′
P )→→ ΛGP

is an isomorphism and, for any λ = m
ns
∈ 1

ns
Z ∼= ΛGP , we have

[λ]G =
m

n
∈ 1

n
Z ∼= X∗(A

′
G)

and

$G
α (λ) = −n1 + · · ·+ nj

n
m ∈ R/Z , ∀α = hj − hj+1 ∈ ∆P .
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Therefore, we have
∏

α∈∆P

1

1− t4〈ρP ,α∨〉 =

s−1∏

j=1

1

1− t2(nj+nj+1)

and, if ν ′G = d
n ∈ 1

nZ ∼= X∗(A′G), we have

∑

λ∈ΛGP
[λ]G=ν′G

t
4
∑

α∈∆P
〈ρP ,α∨〉〈$Gα (λ)〉

= t
2
∑

s−1

j=1
(nj+nj+1)〈−n1+···+nj

n d〉

(it is easy to check directly that
∑s−1

j=1(nj + nj+1)〈−n1+···+nj
n

d〉 ∈ Z).

The degrees of the invariant polynomials for WG
0
∼= Sn acting on aG0

∼= Rn−1 are

2, 3, . . . , n .

Therefore, for any ν ′G ∈ X∗(A′G), we have

Pt(G, ν
′
G) =

(1 + t)2g

1− t2
n∏

i=1

(1 + t2i+1)2g

(1 − t2i)(1 − t2i+2)
.

From theorem 3.4, we conclude that the Poincaré series P ss
t (GLn, d/n) of the algebraic

stack of semi–stable vector bundles of rank n and degree d on the curve X of genus g ≥ 2
is equal to

n∑

s=1

(−1)s−1
( (1 + t)2g

1− t2
)s ∑

n1,...,ns≥1
n1+···+ns=n

( s∏

j=1

nj−1∏

i=1

(1 + t2i+1)2g

(1− t2i)(1 − t2i+2)

)
·

·t2
∑

1≤i<j≤s ninj(g−1)
(s−1∏

j=1

1

1− t2(nj+nj+1)

)
t
2
∑s−1

j=1
(nj+nj+1)〈−n1+···+nj

n d〉
.

We may also consider the stackMs(GLn, d/n) of stable vector bundles of rank n and
degree d on the curve X (of genus g ≥ 2). It is an open substack of Mss(GLn, d/n),
which is almost a smooth quasi–projective variety over k. More precisely, there exists a
smooth quasi–projective variety M s(GLn, d/n) of dimension (n2 − 1)(g − 1) over k and
a morphism of stacks Ms(GLn, d/n) → M s(GLn, d/n) which is a gerb with fibers all
isomorphic to BGL1.

If d is prime to n, we haveMs(GLn, d/n) =Mss(GLn, d/n) and M s(GLn, d/n) is pro-
jective over k. Let us denote by Qs

t(GLn, d/n) the Poincaré polynomial of M s(GLn, d/n)
in this case. We have

Qs
t(GLn, d/n) = (1 − t2)P ss

t (GLn, d/n) .

Therefore, we have proved :
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THEOREM 4.1. — For each integer d prime to n, the Poincaré polynomial Qs
t(GLn, d/n)

of the moduli space M s(GLn, d/n) of stable vector bundles of rank n and degree d on the
curve X (of genus g ≥ 2) is equal to

n∑

s=1

(−1)s−1 (1 + t)2gs

(1− t2)s−1

∑

n1,...,ns≥1
n1+···+ns=n

( s∏

j=1

nj−1∏

i=1

(1 + t2i+1)2g

(1− t2i)(1 − t2i+2)

)
·

·t2
∑

1≤i<j≤s ninj(g−1)
(s−1∏

j=1

1

1− t2(nj+nj+1)

)
t
2
∑

s−1

j=1
(nj+nj+1)〈−n1+···+nj

n d〉
.

This last formula is equivalent to the following expression for the Poincaré polynomial
of the moduli space of stable vector bundles of rank n having as determinant a fixed line
bundle of degree d, prime to n, on the curve X (of genus g ≥ 2)

n∑

s=1

(−1)s−1
( (1 + t)2g

1− t2
)s−1 ∑

n1,...,ns≥1
n1+···+ns=n

( s∏

j=1

nj−1∏

i=1

(1 + t2i+1)2g

(1− t2i)(1 − t2i+2)

)
·

·t2
∑

1≤i<j≤s ninj(g−1)
(s−1∏

j=1

1

1− t2(nj+nj+1)

)
t
2
∑s−1

j=1
(nj+nj+1)〈−n1+···+nj

n d〉
.

This was proved earlier by Zagier using different arguments (see [Za]). As he has
remarked in loc. cit., it is not at all clear that the right hand sides of the last two
formulas are polynomials.

Let us also point out that, if n ≥ 2, the right hand side of the last formula vanishes
at t = −1 (the order of vanishing at t = −1 of each summand of the double sum is

(2g − 1)(s − 1) +
s∑

j=1

nj−1∑

i=1

(2g − 2) +
s−1∑

i=1

(−1) = (n− 1)(2g − 2) ) .

This gives a new proof of the following result of Narasimhan and Ramanan (see [NR]) :

COROLLARY 4.2 (Narasimhan and Ramanan). — The Euler–Poincaré characteristic
of the moduli space of stable vector bundles of rank n ≥ 2 having as determinant a fixed
line bundle of degree d prime to n on the curve X (of genus g ≥ 2) is equal to 0.
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Mathématiques, bât. 425
91405 ORSAY Cédex (France)
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