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Abstract. We define various formal moduli spaces of p-divisible groups which are regu-

lar, and morphisms between them. We formulate arithmetic transfer conjectures, which are

variants of the arithmetic fundamental lemma conjecture of [37] in the presence of ramifi-
cation. These conjectures include the AT conjecture of [21]. We prove these conjectures in

low-dimensional cases.
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1. Introduction

In [37] the third-named author proposed a relative trace formula approach to the arithmetic
Gan–Gross–Prasad conjecture. In this context, he formulated the arithmetic fundamental lemma
(AFL) conjecture, cf. [37, 24]. The AFL conjecturally relates the special value of the derivative
an orbital integral to an arithmetic intersection number on a Rapoport–Zink formal moduli space
of p-divisible groups (RZ space) attached to a unitary group. It is essential here that one is
dealing with a situation that is unramified in every possible sense (the quadratic extension F/F0

defining the unitary group is unramified, and the hermitian space is split; the function appearing
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in the derivative of the orbital integral is the characteristic function of a hyperspecial maximal
compact subgroup, etc.). The AFL is proved for low ranks of the unitary group (n = 2 and 3)
in [37], and for arbitrary rank n and minuscule group elements in [24]. A simplified proof for
n = 3 is given by Mihatsch in [14]. At present, the general case of the AFL seems out of reach,
even though Yun has obtained interesting results concerning the function field analog [36].

The present series of papers is devoted to investigating how the statement of the AFL has
to be modified when the various unramifiedness hypotheses are dropped. In the context of the
fundamental lemma (FL) conjecture of Jacquet–Rallis, this question leads naturally to their
smooth transfer (ST) conjecture, cf. [8]. In the arithmetic context, this question naturally leads
to the problem of formulating arithmetic transfer (AT) conjectures. One goal of the present
paper is to formulate such AT conjectures in as many cases as possible and to prove these
conjectures in low dimension.

The search for such AT conjectures motivates the problem of defining RZ spaces with good
properties and to construct morphisms between them beyond the unramified case. The con-
struction of such spaces and morphisms is the second goal of this paper. The ground work for
the construction of such RZ spaces has been laid in earlier papers on local models. To be more
specific, let us consider the case when the quadratic extension F/F0 is ramified. In our previous
paper [21], we considered the problem of defining RZ spaces attached to a unitary group of sig-
nature (1, n− 1). When n is even, based on work on local models of Pappas and the first author
[17], we constructed such RZ spaces which are formally smooth. We termed this phenomenon
exotic smoothness, since smoothness is unexpected in the presence of ramification. In the present
paper, we complete the picture by again constructing such RZ spaces which are formally smooth
when n is odd, this time based on work on local models of the second author [29] (in our previous
paper [21], we only constructed an open subspace of these RZ spaces when n is odd).

We stress that for applications to AT conjectures, it seems essential to have a functor de-
scription of the relevant RZ spaces. Correspondingly, it is essential to have a functor description
of the relevant local models; the Pappas–Zhu definition through a closure operation in a mixed
characteristic Beilinson–Gaitsgory degeneration of an affine Grassmannian [19] (even though
much more general) is not useful in this context. In fact, to define the morphisms between RZ
spaces required for the AT conjecture in the case that F/F0 is ramified and n is even, we have
to dig even deeper into the theory of local models, and this constitutes the most difficult part of
the present paper. The case when F/F0 is unramified is much easier and is based on the work
of Drinfeld [3] and Görtz [4] on local models for GLn.

Let us now describe the contents of the paper in more detail.

Let p be an odd prime number, and let F0 be a finite extension of Qp, with residue field k. Let
F/F0 be a quadratic field extension. We denote by a 7→ a the non-trivial automorphism of F/F0,
and by η = ηF/F0

the corresponding quadratic character on F×0 . Let e := (0, . . . , 0, 1) ∈ Fn0 , and
let GLn−1 ↪→ GLn be the natural embedding that identifies GLn−1 with the subgroup fixing e
under left multiplication, and fixing the transposed vector et under right multiplication. Let

Sn := { s ∈ ResF/F0
GLn | ss = 1 },

which is acted on by GLn−1 by conjugation. On the other hand, let W0 and W1 be the respective
split and non-split F/F0-hermitian spaces of dimension n. For i ∈ {0, 1}, fix anisotropic vectors
ui ∈ Wi of the same length, and denote by W [

i ⊂ Wi the orthogonal complement of the line
spanned by ui. The unitary group U(W [

i ) acts by conjugation on U(Wi).
Let us recall the matching relation between regular semi-simple elements of Sn(F0) and of

U(W0)(F0) and U(W1)(F0). Here an element of Sn(F0), resp. of U(Wi)(F0), is called regular
semi-simple (rs) if its orbit under GLn−1, resp. U(W [

i ), is Zariski-closed of maximal dimension.
We denote by Sn(F0)rs and U(Wi)(F0)rs the subsets of regular semi-simple elements. For each
i, choose a basis of Wi by first choosing a basis of W [

i and then appending ui to it. This
identifies U(W [

i )(F0) with a subgroup of GLn−1(F ) and U(Wi)(F0) with a subgroup of GLn(F ).
An element γ ∈ Sn(F0)rs is then said to match an element g ∈ U(Wi)(F0)rs if these elements
are conjugate under GLn−1(F ) when considered as elements in GLn(F ). The matching relation
induces a bijection [

Sn(F0)rs

]
'
[
U(W0)(F0)rs

]
q
[
U(W1)(F0)rs

]
,
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cf. [37, §2], where the brackets indicate the sets of orbits under GLn−1(F0), U(W [
0)(F0), and

U(W [
1)(F0), respectively.

Dual to the matching of elements is the transfer of functions, which is defined through orbital
integrals. For a function f ′ ∈ C∞c (Sn(F0)), an element γ ∈ Sn(F0)rs, and a complex parameter
s ∈ C, we define the weighted orbital integral

Orb(γ, f ′, s) :=

∫
GLn−1(F0)

f ′(h−1γh)|deth|sη(deth) dh,

as well as its special value

Orb(γ, f ′) := Orb(γ, f ′, 0).

For later use in the arithmetic situation, we also introduce the special value of its derivative,

∂Orb(γ, f ′) :=
d

ds

∣∣∣
s=0

Orb(γ, f ′, s).

Here the Haar measure on GLn−1(F0) is normalized so that vol(GLn−1(OF0
)) = 1. For a function

fi ∈ C∞c (U(Wi)(F0)) and an element g ∈ U(Wi)(F0)rs, we define the orbital integral

Orb(g, fi) :=

∫
U(W [

i )(F0)

fi(h
−1gh) dh.

Then the function f ′ ∈ C∞c (Sn(F0)) is said to transfer to the pair of functions (f0, f1) in
C∞c (U(W0)(F0))× C∞c (U(W1)(F0)) if, whenever γ ∈ Sn(F0)rs matches g ∈ U(Wi)(F0)rs,

ω(γ) Orb(γ, f ′) = Orb(g, fi).

Here

ω : Sn(F0)rs −→ C×

is a fixed transfer factor [39, p. 988], and the Haar measures on U(W [
i )(F0) are fixed. For the

particular transfer factor we will take in this paper, see §2.4.
The FL conjecture asserts a specific transfer relation in a completely unramified situation.

Namely, assume that F/F0 is unramified and that the special vectors ui have norm one, and nor-
malize the Haar measure on U(W [

0)(F0) by giving a hyperspecial maximal compact subgroup vol-
ume one. Then the FL conjecture asserts that, with respect to the “natural” transfer factor (see
(3.1) below), the characteristic function 1Sn(OF0

) transfers to (1K0
, 0), where K0 ⊂ U(W0)(F0)

denotes a hyperspecial maximal open subgroup.
By contrast, when F/F0 is ramified, such natural choices do not exist. The ST conjecture

asserts that for any f ′, a transfer (f0, f1) exists (non-uniquely), and that any pair (f0, f1) arises
as a transfer from some (non-unique) f ′. It is known to hold by [39].

The arithmetic situation is analogous. For the AFL conjecture we assume, just as in the FL
conjecture, that F/F0 is unramified and that the special vectors ui have norm one. We take the
same Haar measure on U(W [

0)(F0), and the same transfer factor ω. Then the AFL conjecture
asserts that

ω(γ) ∂Orb
(
γ,1Sn(OF0

)

)
= − Int(g) · log q (1.1)

whenever γ ∈ Sn(F0)rs matches g ∈ U(W1)(F0)rs (note that the FL conjecture asserts that
Orb(γ,1Sn(OF0

)) = 0 for such γ). Here q denotes the number of elements in the residue field of
F0.

The term Int(g) that appears in (1.1) is an intersection number on an unramified RZ space.
Let us recall its definition, cf. [21]. For each Spf OF̆ -scheme S, we consider triples (X, ι, λ) over
S, where X is a formal p-divisible OF0-module of relative height 2n and dimension n, where
ι : OF → End(X) is an action of OF extending the OF0-action and satisfying the Kottwitz
condition of signature (1, n − 1) on Lie(X) (cf. [9, §2]), and where λ is a principal polarization
on X whose Rosati involution induces the automorphism a 7→ a on OF via ι. Over S = Spec k,
there is a unique such triple (Xn, ιXn , λXn) up to OF -linear quasi-isogeny compatible with the
polarizations. We then denote by Nn = NF/F0,n the formal scheme over Spf OF̆ which represents
the functor that associates to each S the set of isomorphism classes of tuples (X, ι, λ, ρ), where
the first three entries are as just given, and where ρ : X ×S S → Xn×Spec k S is a framing of the

restriction of X to the special fiber S of S, compatible with ι and λ in a certain sense, cf. [24, §2].
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Then Nn is formally smooth of relative formal dimension n−1 over Spf OF̆ . The automorphism
group (in a certain sense) of the framing object Xn can be identified with U(W1)(F0); it acts on
Nn by changing the framing. Let E be the canonical lifting of the formal OF -module of relative
height one and dimension one over Spf OF̆ , with its canonical OF -action ιE and its natural
polarization λE . There is a natural closed embedding of Nn−1 into Nn,

δN : Nn−1
// Nn

(Y, ι, λ) � // (Y × E , ι× ιE , λ× λE).

Here ιE denotes the precomposition of ιE with the nontrivial Galois automorphism on OF . Let

∆ ⊂ Nn−1 ×Spf OF̆
Nn

denote the graph of δN . Then Int(g) is defined as the intersection number of ∆ with its translate
under the automorphism 1× g of Nn−1 ×Spf OF̆

Nn,

Int(g) = χ
(
O∆ ⊗L O(1×g)∆

)
.

We also define homogeneous and Lie algebra versions of this intersection number, cf. (4.4) and
(4.6).

It should be true in the situation of the AFL that for any f ′ ∈ C∞c (Sn(F0)) with transfer
(1K0

, 0), there exists a function f ′corr ∈ C∞c (Sn(F0)) such that

ω(γ) ∂Orb(γ, f ′) = − Int(g) · log q + ω(γ) Orb(γ, f ′corr)

whenever γ ∈ Sn(F0)rs matches g ∈ U(W1)(F0)rs. This would follow from the AFL and a con-
jectural density principle on weighted orbital integrals, cf. [21, Conj. 5.15, Lem. 5.17]. This
remark shows how to formulate AT conjectures.

The problem of formulating an AT conjecture arises when one drops the unramifiedness
assumptions made in the AFL conjecture. We want to replaceNn by variants where the quadratic
extension F/F0 is allowed to be ramified, and where separately the polarization is allowed to be
non-principal. However, the scope of the conjecture is limited by the fact that we want to keep
the definition of Int(g) as an Euler–Poincaré characteristic of a derived tensor product. This
forces on us the condition that the analog of the product Nn−1 ×Spf OF̆

Nn is regular. We do
not know a systematic way of singling out such cases; in the present paper, we discuss those
we have found. The principle underlying our examples is that when F/F0 is unramified, we
take the polarization to be principal or almost principal (or equivalently, $-modular or almost
$-modular, cf. Remarks 4.7 and 5.5). When F/F0 is ramified, we take the polarization to be
π-modular or almost π-modular.

Let us now review case by case the variants of the AFL conjecture that we propose in this
paper.

We start with the case when F/F0 is unramified. Let $ denote a uniformizer of F0. To define
a variant of Nn, we impose that the polarization λ is almost principal, i.e. that

kerλ ⊂ X[ι($)] is of rank q2.

The corresponding formal scheme Ñn has semi-stable reduction over Spf OF̆ of relative formal
dimension n− 1 (cf. Theorem 5.1). For n = 2, there is an isomorphism [10]

Ñ2 ' Ω̂2
F0
×Spf OF0

Spf OF̆ ,

where Ω̂2
F0

denotes the formal scheme version of the Drinfeld halfspace corresponding to the
local field F0. Note that, in contrast to Nn, the automorphism group of the framing object for

Ñn identifies with U(W0)(F0), which therefore acts on Ñn.
We define a closed embedding of formal schemes

δ̃N : Nn−1
// Ñn

(X, ι, λ) � //
(
X × E , ι× ιE , λ×$λE

)
.

We therefore obtain, as in the case of the AFL, a closed embedding

∆̃N : Nn−1

(idNn−1
,δ̃N )

−−−−−−−−→ Ñn−1,n := Nn−1 ×Spf OF̆
Ñn,
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whose image we denote by

∆̃ := ∆̃N (Nn−1).

Here we point out that Ñn−1,n is regular of formal dimension 2(n−1). Hence for g ∈ U(W0)(F0)rs

we may set

Int(g) :=
〈
∆̃, (1× g)∆̃

〉
Ñn−1,n

.

In this case, we take the special vectors ui ∈ Wi to have norm $. It follows that W [
1 is

split, and therefore admits self-dual lattices. We normalize the Haar measure on U(W [
1)(F0) by

giving the stabilizer of such a self-dual lattice volume one. Consider the characteristic function
1K′ ∈ C∞0 (Sn), where

K ′ := Sn(OF0
) ∩K0($),

where, in turn, K0($) denotes the subgroup of matrices in GLn(OF ) which are congruent modulo
$ to a lower triangular block matrix with respect to the decomposition OnF = On−1

F ⊕OF e. We
conjecture that (−1)n−11K′ transfers to (0,1K1

), where the open compact subgroup K1 of
U(W1)(F0) is the stabilizer of an almost self-dual lattice in W1, cf. Conjecture 10.3. We prove
that this conjecture holds, provided that q ≥ n and that the Lie algebra version of the FL
conjecture holds (cf. Theorem 14.1). Hence this transfer relation holds for p� n by [6, 35], and
for any odd p when n = 2 or n = 3 by [37]. The AT conjecture in the present situation is now
as follows.

Conjecture 1.1. Let F/F0 be unramified.

(a) For any f ′ ∈ C∞c (Sn(F0)) with transfer (0,1K1
), there exists a function f ′corr ∈ C∞c (Sn(F0))

such that

ωS(γ) ∂Orb(γ, f ′) = − Int(g) · log q + ωS(γ) Orb(γ, f ′corr)

for any γ ∈ Sn(F0)rs matching an element g ∈ U(W0)(F0)rs.

(b) Suppose that γ ∈ S(F0)rs matches g ∈ U(W0)(F0)rs. Then

ωS(γ) ∂Orb
(
γ, (−1)n−11K′

)
= − Int(g) · log q. (1.2)

We also give a homogeneous version of this conjecture, as well as a Lie algebra version, cf.
Conjecture 10.4. Our main result on this conjecture is the following result (cf. §14.2).

Theorem 1.2. Conjecture 1.1(b) holds true in the non-degenerate case if the AFL conjecture
in its Lie algebra version (cf. Conjecture 4.1(c)) holds, provided that q ≥ n. Furthermore,
Conjecture 1.1 holds true for n = 2 and n = 3.

Now assume that F/F0 is ramified. In this case we modify the definition of the formal moduli
space NF/F0,n = Nn by imposing on the polarization λ the condition

ker(λ) ⊂ X[ι(π)] is of rank q2bn/2c.

Here π denotes a uniformizer of F . In order to obtain formal schemes with reasonable properties,
we impose additional conditions on the action of OF induced by ι on the Lie algebra of the p-
divisible groups involved (the Pappas wedge condition and (variants of) the spin condition).
When n is odd, there is no longer a unique framing object over k; however, the two possible
choices lead to isomorphic moduli spaces, and we will therefore ignore this issue. In both the
even and the odd case, Nn is formally smooth of relative formal dimension n − 1 over Spf OF̆
and essentially proper (exotic smoothness). In the case n = 2, the formal scheme N2 can be
identified with the base change from Spf OF̆0

to Spf OF̆ of the disjoint sum of two copies of the
Lubin–Tate deformation space M, cf. Example 6.5.

In the case when n is odd, the morphism δN : Nn−1 → Nn can be defined exactly as in the
AFL case, since then 2bn−1

2 c = 2bn2 c. As in the AFL, the group U(W1)(F0) acts on Nn, and we
define Int(g) as before for g ∈ U(W1)(F0)rs. We take the special vectors to have norm one. We
recall from [21] our AT conjecture in this case (cf. §11).

Conjecture 1.3. Let F/F0 be ramified, and let n ≥ 3 be odd.
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(a) For any f ′ ∈ C∞c (Sn(F0)) with transfer (1K0
, 0), there exists a function f ′corr ∈ C∞c (Sn(F0))

such that

2ω(γ) ∂Orb(γ, f ′) = − Int(g) · log q + ω(γ) Orb(γ, f ′corr)

for any γ ∈ Sn(F0)rs matching an element g ∈ U(W1)(F0)rs.

(b) There exists a function f ′ ∈ C∞c (Sn(F0)) with transfer (1K0
, 0) such that

2ω(γ) ∂Orb(γ, f ′) = − Int(g) · log q (1.3)

for any γ ∈ Sn(F0)rs matching an element g ∈ U(W1)(F0)rs.

Here K0 denotes the maximal compact subgroup stabilizing an almost π-modular lattice Λ0

in W0. The Haar measure on U(W [
0)(F0) is defined by volK[

0 = 1 for a special maximal compact
subgroup K[

0 of U(W [
0)(F0).

In [21], we also formulate homogeneous and Lie algebra versions of this conjecture, comp. §11;
and we prove this conjecture when n = 3.

In the case when n is even, it is much less obvious how to define the morphism δN : Nn−1 →
Nn. Indeed, the definition of δN in the AFL and odd ramified setting, transposed to the present
case, produces p-divisible groups with the wrong polarization type to give points on Nn. More
precisely, consider the moduli problem of triples (X, ι, λ) as in the definition of Nn, except where
the polarization λ satisfies

ker(λ) ⊂ X[ι(π)] is of rank qn−2.

As in the case of Nn when n is odd, up to isogeny there are two such triples over k, only one
of which is isogenous (OF -linearly and compatibly with the polarizations) to the framing object
for Nn. Taking this as the framing object, we obtain a formal moduli space Pn as before. The
formula defining δN in the AFL and odd ramified settings then defines a morphism

δ̃N : Nn−1 −→ Pn.
We obtain a morphism from Pn to Nn (in fact, two of them) as follows. Let P ′n denote the
moduli space over Spf OF̆ of tuples (X, ι, λ, ρ,X ′, ι′, λ′, ρ′, φ), where first four entries are a point
on Nn, the second four entries are a point on Pn, and φ : X → X ′ is an isogeny of degree q lifting
a fixed isogeny between the framing objects of Nn and Pn. Then P ′n is again an RZ space, and
there are evident projections

P ′n −→ Nn and P ′n −→ Pn.
We show in Proposition 6.4 that Nn naturally decomposes into a disjoint union N+

n q N−n of
open and closed formal subschemes (this generalizes the case n = 2 mentioned above). Pulling
back along the projection P ′n → Nn, we obtain a decomposition P ′n = (P ′n)+ q (P ′n)−. The key
geometric result is now that this presents P ′n as a trivial double cover of Pn, which in turn gives
rise to two embeddings of Nn−1 into Nn, cf. Theorem 9.3 and Proposition 12.1.

Theorem 1.4. The projection P ′n → Pn maps each of the summands (P ′n)± isomorphically to

Pn. Denoting the inverse by ψ± : Pn
∼−→ (P ′n)±, the composite

δ±N : Nn−1
δ̃N−−→ Pn

ψ±−−→ (P ′n)± −→ N±n
is a closed embedding.

In other words, the first assertion in the theorem says that, loosely speaking, given any point
(X ′, ι′, λ′, ρ′) on Pn over a connected base, there are exactly two ways to extend it to an isogeny

chain X
φ−→ X ′ such that the composite X

φ−→ X ′
λ′−→ (X ′)∨

φ∨−−→ X∨ is a π-modular polarization λ
on X. This can be viewed as an analog of the linear algebra fact that in a split, even-dimensional
F/F0-hermitian space, every OF -lattice Λ′ such that Λ′ ⊂ (Λ′)∨ ⊂2 π−1Λ′ contains exactly two
π-modular lattices Λ (and, furthermore, this remark essentially is the proof that P ′n → Pn is a
double cover on k-points, via the interpretation of both sides in terms of Dieudonné modules).
The fact that the “simple” way of defining δN from before does not work in the even ramified
case can also be understood in terms of the group theory of lattice stabilizers; see Remark 12.3.

Using Theorem 1.4, we define ∆ to be the union of the graph subschemes of δ+
N and δ−N inside

Nn−1,n = Nn−1 ×Spf OF̆
Nn. As in the case of odd n, the group U(W1)(F0) acts on Nn, and we
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then define Int(g) as before, for g ∈ U(W1)(F0)rs. We take the special vectors ui of norm −1. We
normalize the Haar measure on U(W [

0)(F0) by giving the stabilizer K[
0 of an almost π-modular

lattice Λ[0 volume one. Consider the two π-modular lattices Λ±0 contained in Λ[0 ⊕ OFu0, and

denote by K±0 their stabilizers in U(W0)(F0). We consider K[
0 as a subgroup of U(W0)(F0).

Conjecture 1.5. Let F/F0 be ramified, and let n ≥ 2 be even.

(a) For any f ′ ∈ C∞c (Sn(F0)) with transfer (1K[
0K

+
0

+ 1K[
0K
−
0
, 0), there exists a function f ′corr ∈

C∞c (Sn(F0)) such that

2ω(γ) ∂Orb(γ, f ′) = − Int(g) · log q + ω(γ) Orb(γ, f ′corr)

for any γ ∈ Sn(F0)rs matching an element g ∈ U(W1)(F0)rs.

(b) There exists a function f ′ ∈ C∞c (Sn(F0)) with transfer (1K[
0K

+
0

+ 1K[
0K
−
0
, 0) such that

2ω(γ) ∂Orb(γ, f ′) = − Int(g) · log q (1.4)

for any γ ∈ Sn(F0)rs matching an element g ∈ U(W1)(F0)rs.

We also formulate homogeneous and Lie algebra versions of this conjecture (cf. Conjecture
12.4), and we prove them all in the case of minimal rank (cf. §15).

Theorem 1.6. Conjecture 1.5 holds true for n = 2.

Note that there is a discrepancy of a factor of 2 in the statements of the AFL conjecture (1.1)
and the AT conjecture (1.2) on the one hand, and of the AT conjectures (1.3) and (1.4) on the
other. This is a genuine difference between the unramified and ramified cases, which finds its
justification in the global comparison between the height pairing and the derivative of a relative
trace formula, cf. [22].

There are two further cases of AT statements, which we formulate in §13. In both of these,
F/F0 is ramified and n = 2; and, in fact, we prove them in §16. In these cases we impose that
the polarization λ in the moduli problem is principal. Then there are two possibilities for the

framing objects, and the corresponding formal schemes Ñ (0)
2 and Ñ (1)

2 (which are defined over
Spf OF̆0

) are genuinely different. In fact, there are natural identifications

Ñ (0)
2 ' Ω̂2

F0
×Spf OF0

Spf OF̆0
and Ñ (1)

2 'MΓ0($).

Here Ω̂2
F0

again denotes the formal scheme version of the Drinfeld halfspace corresponding to the
local field F0, andMΓ0($) denotes the formal deformation space of a $-isogeny between Lubin–
Tate formal groups (after base change to Spf OF̆ , the latter case recovers the formal scheme P2

from above). We refer to the body of the text for the precise AT statements in these cases (they
fall formally somewhat outside the framework of the general conjectures we make in Conjectures
1.1, 1.3, and 1.5).

We now comment on the proofs of our results.
In the situation of Theorem 1.2, the field extension F/F0 is unramified, while the polarization

in the moduli problem for Ñn is taken to be almost principal, reflecting the fact the compact
open subgroup K1 is the stabilizer of an almost self-dual lattice in W1. The key observation of

our proof is that, although the automorphism groups of the framing objects for Nn and Ñn are
not directly related, their Lie algebras are. Therefore we first use the Cayley transform to reduce
the group version of the AT conjecture to the corresponding Lie algebra version, and then to
the Lie algebra version of the AFL conjecture.

In the situation of Conjecture 1.5 when n = 2, the field extension F/F0 is ramified, and the
moduli space N2 can be identified with the base change from Spf OF̆0

to Spf OF̆ of the disjoint
union of two copies of the Lubin–Tate deformation space M. On the geometric side, Gross’s
theory of the canonical lifting allows us to compute explicitly the intersection number Int(g). On
the analytic side, we develop a germ expansion of the derivative of the orbital integrals around
every semi-simple (but irregular) point. The irregular orbital integrals of the test function on
the unitary side completely determine the derivative of the orbital integrals, up to an orbital
integral function.

The proofs of the two sporadic cases of AT theorems stated in §13 are parallel to those of
Conjecture 1.5 for n = 2.
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Let us also comment on the proof of Theorem 1.4, which holds for any even n. The proof
of the first assertion consists of two steps, the first of which is to show, via a straightforward
Dieudonné module argument, that the morphism in question induces a bijection on the underly-
ing point sets of the formal schemes. The remaining step, which is more difficult, is to show the
the corresponding morphism on local models is an isomorphism, and hence the two sides have
the same deformation theories. Here the “refined” spin condition introduced in [29] plays an
important role, insofar as it is necessary for flatness of the local models, cf. Remarks 9.10 and
9.14. We also remark that this isomorphism between local models can be viewed as a reflection
of the group-theoretic fact that, for an OF -lattice Λ′ in a split, even-dimensional F/F0-hermitian
space such that Λ′ ⊂ (Λ′)∨ ⊂2 π−1Λ′, and for Λ one of the two π-modular lattices contained in
Λ′, the connected stabilizer of Λ′ in the unitary group is the same as the common stabilizer group
of Λ and Λ′. We prove the second assertion in Theorem 1.4 in a similar way, via a Dieudonné
module step followed by a local model step.

We finally give an overview of the contents of this paper, which consists of four parts.
In Part 1, we give the group-theoretic setup (in its homogeneous, its inhomogeneous, and its

Lie algebra versions), and we review the statements of the FL conjecture and the AFL conjecture.
In Part 2, we introduce the RZ spaces that will appear in the various AT conjectures. Here

the auxiliary spaces in §9 are introduced because they are needed to construct the morphisms
δ±N mentioned above.

In Part 3, we formulate case by case the AT conjectures mentioned above.
In Part 4, we prove the AT conjectures in some instances. Besides the general result of

Theorem 1.2, and after the result of [21] concerning the case when F/F0 is ramified and n = 3,
these instances all occur for n = 2.
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We also acknowledge the hospitality of the ESI (Vienna) and the MFO (Oberwolfach), where
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supported by an NSF grant DMS #1301848 and a Sloan research fellowship.

Notation. We fix an odd prime number p. We let F0 be a finite extension of Qp, and we denote
by OF0

its ring of integers, by $ a uniformizer, and by k its residue field. We set q := #k (a
power of p), and we fix an algebraic closure k of k. We write v for the normalized (i.e. $-adic)
valuation on F0. We let F be a quadratic extension of F0, with ring of integers OF and residue
field kF . When F/F0 is unramified, we take π := $ as a uniformizer for F ; and when F/F0 is
ramified, since p 6= 2, we may and will choose a uniformizer π for F such that (after possibly
changing $) π2 = $. We denote by a 7→ a the nontrivial automorphism of F/F0, and by
η = ηF/F0

the corresponding quadratic character on F×0 . We denote the group of norm one

elements in F× by

F 1 := { a ∈ F | aa = 1 }.
We denote by F̆0 the completion of a maximal unramified extension of F0, and by F̆ the analogous
object for F ; thus F̆ /F̆0 is an extension of degree 1 or 2 according as F/F0 is unramified or
ramified. Given a scheme S over SpecOF̆ (or more commonly for us, over Spf OF̆ ), we denote
its special fiber by

S := S ×SpecOF̆
Spec k.

As stated above, when working in an algebro-geometric context where formal schemes are
present, we always understand that q = p and F0 = Qp.

A polarization on a p-divisible group X is an anti-symmetric isogeny X → X∨, where X∨

denotes the dual. For any polarization λ on X, we denote the Rosati involution on End◦(X) by

Rosλ : f 7−→ λ−1 ◦ f∨ ◦ λ;

here and elsewhere the superscript ◦ denotes the operation − ⊗Z Q. For any quasi-isogeny
ρ : X → Y and polarization λ on Y , we define the pullback quasi-polarization

ρ∗(λ) := ρ∨ ◦ λ ◦ ρ
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on X.
We denote by E “the” formal OF0

-module of relative height 2 and dimension 1 over Spec k.
We set

OD := EndOF0
(E) and D := OD ⊗OF0

F0.

Thus D is “the” quaternion division algebra over F0, and OD is its maximal order. We make E
into a formal OF -module of relative height 1 by fixing any F0-embedding

ιE : F −→ D.

When F/F0 is unramified, the requirement that OF acts on LieE via the structure map dictates

an embedding of kF into k, and hence an embedding F → F̆0, via which we take F̆ = F̆0.
We denote the main involution on D by c 7→ c, and the reduced norm by N. We also write N
for the norm map F× → F×0 ; of course, all of this notation is compatible with the embedding
ιE : F → D. When F/F0 is ramified, we write D− for the −1-eigenspace in D of the conjugation
action of ιE(π), so that D = F ⊕D−. We fix an OF0-linear principal polarization (any two of
which differ by an O×F0

-multiple)

λE : E ∼−→ E∨.
The Rosati involution RosλE induces the main involution on D, and hence the nontrivial Galois
involution on F via ιE.

We denote by E the canonical lift of E over Spf OF̆ with respect to ιE, equipped with its

OF -action ιE , OF -linear framing isomorphism ρE : Ek
∼−→ E, and principal polarization λE lifting

ρ∗E(λE). We denote by E the same object as E, except where the OF -action ιE is equal to the

precomposition of ιE by the nontrivial automorphism of F/F0; and ditto for E and ιE in relation
to E and ιE . On the level of OF0

-modules, we set

λE := λE, λE := λE , and ρE := ρE .

Note that E is not a formal OF0 -module when F/F0 is unramified, provided we keep the same
map OF → k dictated above; and E is never a formal OF0-module.

Given a p-divisible group X over Spec k equipped with an OF -action ι, we define

V(X) := Hom◦OF

(
E, X

)
. (1.5)

When X is equipped with a polarization λ such that Rosλ induces the nontrivial Galois involution
on OF (via ι), V(X) carries a natural F/F0-hermitian form, cf. e.g. [9, Def. 3.1]: for x, y ∈ V(X),
the composition

E x−→ X
λ−→ X∨

y∨−→ E∨
λ−1

E−−→ E

lies in End◦OF
(E), and hence identifies via ιE with an element in F , which we define to be the

pairing of x and y.
Given modules M and N over a ring R, we write M ⊂r N to indicate that M is an R-

submodule of N of finite colength r. Typically R will be OF or OF̆ , and the quotient N/M
will be a vector space over the residue field of dimension r. When Λ is an OF -lattice in an
F/F0-hermitian space, we denote the dual lattice with respect to the hermitian form by Λ∨, and
we call Λ a vertex lattice of type r if Λ ⊂r Λ∨ ⊂ π−1Λ. Note that this terminology differs slightly
from e.g. [9, 23]. Of course, a vertex lattice is a vertex lattice of type r for some r. Let us single
out the following special cases. A self-dual lattice is, of course, a vertex lattice of type 0. An
almost self-dual lattice is a vertex lattice of type 1. At the other extreme, a vertex lattice Λ is
π-modular if Λ∨ = π−1Λ, and almost π-modular if Λ ⊂ Λ∨ ⊂1 π−1Λ.

Given a variety V over SpecF0, we denote by C∞c (V ) the set of locally constant, compactly
supported functions on the space V (F0) relative to the $-adic topology.

We write 1n for the n× n identity matrix. We use a subscript S to denote base change to a
scheme (or other object) S, and when S = SpecA, we often use a subscript A instead.

Part 1. Setup and background

In this first part of the paper we describe the group-theoretic setup involved in our various
AT conjectures, and we review the AFL conjecture of the third author [37].
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2. Group-theoretic setup and definitions

We begin by recalling the setup of [21], except we make no assumption on the ramification of
F/F0. Let n ≥ 2 be an integer.

2.1. Homogeneous group setting. Let

e := (0, . . . , 0, 1) ∈ Fn,
and consider the embedding of algebraic groups over F ,

GLn−1
// GLn

γ0
� // diag(γ0, 1)

; (2.1)

this identifies GLn−1 with the subgroup of points γ in GLn such that γe = γt e = e. Next define
the algebraic groups over F0,

G′ := ResF/F0
(GLn−1 ×GLn),

H ′1 := ResF/F0
GLn−1,

H ′2 := GLn−1 ×GLn.

We embed H ′1 in G′ by taking the graph of the map (2.1), and we embed H ′2 in G′ via the
evident natural map. Let

H ′1,2 := H ′1 ×H ′2.
We consider the natural right action of H ′1,2 on G′,

γ · (h1, h2) = h−1
1 γh2.

We say that an element γ ∈ G′(F0) is regular semi-simple if it is regular semi-simple for this
action, i.e. its orbit under H ′1,2 is Zariski-closed in G′, and its stabilizer in H ′1,2 is of minimal
dimension. In the situation at hand, it is equivalent that γ have closed orbit and trivial stabilizer,
which follows from [20, Th. 6.1]. We denote by G′(F0)rs the set of regular semi-simple elements
in G′(F0).

Next let W be an F/F0-hermitian space of dimension n. Up to isometry there are two
possibilities for W , the split and non-split cases, and we write χ(W ) = 1 or χ(W ) = −1
accordingly. These satisfy the formula

χ(W ) = η
(
(−1)n(n−1)/2 detW

)
, (2.2)

where we recall that η = ηF/F0
is the quadratic character on F×0 attached to F/F0, and we set

detW := det J mod NF× for any hermitian matrix J representing the form on W . We fix an
anisotropic vector

u ∈W,
which we call the special vector. Let

W [ := u⊥ ⊂W.
Then there is an orthogonal decomposition W = W [ ⊕ Fu. Setting ε := (u, u), it follows from
(2.2) that

χ(W ) = χ(W [)η
(
(−1)n−1ε

)
. (2.3)

We define the algebraic groups over F0,

G := U(W ),

H := U(W [),

GW := H ×G,
HW := H ×H.

(2.4)

We embed H in G in the natural way as the stabilizer of the special vector u, and we embed
H in GW as the graph of this embedding. We then consider the natural right action of HW on
GW ,

g · (h1, h2) = h−1
1 gh2.
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We say that an element g ∈ GW (F0) is regular semi-simple if it is regular semi-simple for this
action, and we denote the set of such elements by GW (F0)rs.

Now choose an F -basis for W [, and complete it to a basis for W by appending u (and thus
identifying u with e ∈ Fn). This determines closed embeddings

H ↪→ H ′1, G ↪→ ResF/F0
GLn, and GW ↪→ G′,

where the third embedding is the product of the first two. We call the maps obtained in this
way special embeddings.

Definition 2.1. An element γ ∈ G′(F0)rs and an element g ∈ GW (F0)rs match if they are in
the same H ′1,2(F0)-orbit when g is regarded as an element in G′(F0) via any special embedding.

The notion of matching is independent of the choice of special embedding. Now let W0 and
W1 respectively denote the split and non-split hermitian spaces of dimension n, and take the
special vectors in each to have the same norm (which is always possible since n ≥ 2). Then
the basic group-theoretic fact of concern to us is that the matching relation induces a bijection
on regular semi-simple orbits (which follows from the analogous bijection (2.10) below in the
inhomogeneous setting),

G′(F0)rs/H
′
1,2(F0) '

(
GW0

(F0)rs/HW0
(F0)

)
q
(
GW1

(F0)rs/HW1
(F0)

)
. (2.5)

The matching bijection (2.5) gives rise to the notion of transfer of smooth functions with
respect to the following orbital integrals. For γ ∈ G′(F0)rs, a function f ′ ∈ C∞c (G′), and a
complex parameter s ∈ C, we define the weighted orbital integral

Orb(γ, f ′, s) :=

∫
H′1,2(F0)

f ′(h−1
1 γh2)|deth1|sη(h2) dh1 dh2,

where | | denotes the normalized absolute value on F , where we set

η(h2) := η(deth′2)nη(deth′′2)n−1 for h2 = (h′2, h
′′
2) ∈ H ′2(F0) = GLn−1(F0)×GLn(F0),

and where we use fixed Haar measures on H ′1(F0) and H ′2(F0) and the product Haar measure
on H ′1,2(F0) = H ′1(F0)×H ′2(F0). We further define the special values

Orb(γ, f ′) := Orb(γ, f ′, 0) and ∂Orb(γ, f ′) :=
d

ds

∣∣∣
s=0

Orb(γ, f ′, s).

The integral defining Orb(γ, f ′, s) is absolutely convergent, and Orb(γ, f ′) has the transformation
property

Orb(h−1
1 γh2, f

′) = η(h2) Orb(γ, f ′) for (h1, h2) ∈ H ′1,2(F0) = H ′1(F0)×H ′2(F0).

For W an n-dimensional hermitian space as above, an element g ∈ GW (F0)rs, and a function
f ∈ C∞c (GW ), we similarly define the orbital integral

Orb(g, f) :=

∫
HW (F0)

f(h−1
1 gh2) dh1 dh2.

Here the Haar measure on HW (F0) = H(F0) ×H(F0) is a product of identical Haar measures
on H(F0).

Finally, recall that a transfer factor for G′ is a function ω : G′(F0)rs → C× such that

ω(h−1
1 γh2) = η(h2)ω(γ) for all (h1, h2) ∈ H ′1(F0)×H ′2(F0).

We will specify different transfer factors depending on the context later in the paper. We can
now state the definition of smooth transfer in the present context; we again denote by W0 and
W1 the respective split and non-split hermitian spaces of dimension n.

Definition 2.2. A function f ′ ∈ C∞c (G′) and a pair of functions (f0, f1) ∈ C∞c (GW0)×C∞c (GW1)
are transfers of each other (for the fixed choices of Haar measures, a fixed choice of transfer factor,
and fixed choices of special vectors ui ∈Wi) if for each i ∈ {0, 1} and each g ∈ GWi

(F0)rs,

Orb(g, fi) = ω(γ) Orb(γ, f ′)

whenever γ ∈ G′(F0)rs matches g.
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2.2. Inhomogeneous group setting. In this subsection we give an “inhomogeneous” analog
of the previous subsection, whose notation we retain. The role of G′ in the inhomogeneous
setting is played by the symmetric space

S := Sn :=
{
γ ∈ ResF/F0

GLn
∣∣ γγ = 1n

}
. (2.6)

Note that in some later parts of the paper (especially in Part 2 in the context of RZ spaces) we
will also use the symbol S to denote an arbitrary test scheme; context should always make the
meaning clear. The role of H ′1,2 in the inhomogeneous setting is played by the group over F0

H ′ := GLn−1,

which acts naturally on the right on S by conjugation (via the map (2.1)). The homogeneous
and inhomogeneous settings are related via the maps

G′ // ResF/F0
GLn

(γ1, γ2)
� // γ−1

1 γ2

(2.7)

(defined again using (2.1)) and

r : ResF/F0
GLn // S

γ � // γγ−1
. (2.8)

These maps induce respective isomorphisms of varieties

H ′1\G′
∼−→ ResF/F0

GLn and (ResF/F0
GLn)/GLn

∼−→ S,

and a bijection on F0-rational points

G′(F0)/H ′1,2(F0)
∼−→ S(F0)/H ′(F0).

On the unitary side, let W be an n-dimensional F/F0-hermitian space, and choose a special
vector u ∈ W , as in the previous subsection. Then the role of GW is played by G, and the role
of HW is played by H, cf. (2.4). The natural map

GW // G

(g1, g2) � // g−1
1 g2

(2.9)

induces an isomorphism of varieties

H\GW
∼−→ G,

where H acts on GW via its diagonal embedding; and a bijection on F0-rational points

GW (F0)/HW (F0)
∼−→ G(F0)/H(F0),

where H acts on G by conjugation.
Now let us say that an element γ ∈ Mn(F ) is regular semi-simple if it is regular semi-simple

for the conjugation action of GLn−1,F on Mn,F with respect to the embedding (2.1). It is
equivalent that γ have Zariski-closed orbit and trivial stabilizer; or that the sets of vectors
{γie}n−1

i=0 and { γt ie}n−1
i=0 are linearly independent over F [20, Th. 6.1]. We say that an element

γ ∈ S(F0) is regular semi-simple if it is regular semi-simple for the conjugation action of H ′

on S. It is equivalent that γ be regular semi-simple as an element in Mn(F ) in the sense just
given. The notions of regular semi-simplicity in the homogeneous and inhomogeneous settings
are compatible in the sense that an element γ ∈ G′(F0) is regular semi-simple if and only if
its image in S(F0) under the composite of the maps (2.7) and (2.8) is. Similarly, an element
g ∈ G(F0) is regular semi-simple if it is regular semi-simple for the conjugation action of H on
G; or equivalently if it is regular semi-simple as an element in Mn(F ) under one, hence any,
special embedding G ↪→ ResF/F0

GLn. An element g ∈ GW (F0) is regular semi-simple if and
only if its image in G(F0) under the map (2.9) is. We denote by S(F0)rs and G(F0)rs the sets
of regular semi-simple elements in S(F0) and G(F0), respectively. In the inhomogeneous setting
the notion of matching takes the following form.

Definition 2.3. An element γ ∈ S(F0)rs and an element g ∈ G(F0)rs match if they are in the
same GLn−1(F )-orbit when g is regarded as an element in GLn(F ) via any special embedding.
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The matching relation is again independent of the choice of special embedding, and it induces
a bijection on regular semi-simple orbits [37, §2],

S(F0)rs/H
′(F0) '

(
G0(F0)rs/H0(F0)

)
q
(
G1(F0)rs/H1(F0)

)
, (2.10)

where we write

G0 := G and H0 := H

when W = W0 is split, and

G1 := G and H1 := H

when W = W1 is non-split. (Note that the quasi-splitness of H0 and H1 is then governed by the
formula (2.3).) Here as before we take the special vectors in W0 and W1 to have the same norm.

The formalism of orbital integrals and smooth transfer carries over readily from the homo-
geneous setting to the inhomogeneous setting. For γ ∈ S(F0)rs, f

′ ∈ C∞c (S), and s ∈ C, we
define

Orb(γ, f ′, s) :=

∫
H′(F0)

f ′(h−1γh)|deth|sη(h) dh, (2.11)

where | | denotes the normalized absolute value on F0, where we set

η(h) := η(deth),

and where we use a fixed Haar measure on H ′(F0) = GLn−1(F0). We define the special values

Orb(γ, f ′) := Orb(γ, f ′, 0) and ∂Orb(γ, f ′) :=
d

ds

∣∣∣
s=0

Orb(γ, f ′, s).

As in the homogeneous setting, the integral defining Orb(γ, f ′, s) is absolutely convergent, and
it transforms when s = 0 as

Orb(h−1γh, f ′) = η(h) Orb(γ, f ′) for all h ∈ H ′(F0).

On the unitary side, for g ∈ G(F0)rs and f ∈ C∞c (G), we define

Orb(g, f) :=

∫
H(F0)

f(h−1gh) dh,

where we use the same fixed Haar measure on H(F0) as in the previous subsection. Finally, a
transfer factor for S is a function ω : S(F0)rs → C× such that

ω(h−1γh) = η(h)ω(γ) for all h ∈ H ′(F0).

With this we arrive at the inhomogeneous version of smooth transfer.

Definition 2.4. A function f ′ ∈ C∞c (S) and a pair of functions (f0, f1) ∈ C∞c (G0) × C∞c (G1)
are transfers of each other (for the fixed choices of Haar measures, a fixed choice of transfer
factor, and fixed choices of special vectors) if for each i ∈ {0, 1} and each g ∈ Gi(F0)rs,

Orb(g, fi) = ω(γ) Orb(γ, f ′)

whenever γ ∈ S(F0)rs matches g.

2.3. Lie algebra setting. In this subsection we give a “Lie algebra” analog of the inhomoge-
neous group setup. The role of S is played by its tangent space at the identity matrix,

s := sn :=
{
y ∈ ResF/F0

Mn

∣∣ y + y = 0
}
.

The group action we consider is the natural right action of H ′ on s by conjugation. For W an
n-dimensional hermitian space, the role of G is played by its Lie algebra

g := LieG.

Upon choosing a special vector in W , we then consider the right adjoint action of H on g.
We say that an element in y ∈ s(F0) is regular semi-simple if it is regular semi-simple for the

action of H ′, and we denote the set of such elements by s(F0)rs. It is equivalent that y have closed
H ′-orbit and trivial stabilizer; or that y be regular semi-simple as an element in Mn(F ) in the
sense of the previous subsection. We say that an element x ∈ g(F0) is regular semi-simple if it is
regular semi-simple for the action of H, and we denote the set of such elements by g(F0)rs. As
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in §2.1, the choice of a basis for W [, extended by the special vector to a basis for W , determines
a closed embedding

g ↪→ ResF/F0
Mn,

which we again call a special embedding. For x ∈ g(F0) to be regular semi-simple, it is again
equivalent that x have closed H-orbit and trivial stabilizer; or that x be regular semi-simple as
an element in Mn(F ) under one, hence any, special embedding.

Definition 2.5. An element y ∈ s(F0)rs and an element x ∈ g(F0)rs match if they are in the
same GLn−1(F )-orbit when x is regarded as an element in Mn(F ) via any special embedding.

As before, the matching relation is independent of the choice of special embedding, and it
induces a bijection on regular semi-simple orbits [8, §5],

s(F0)rs/H
′(F0) '

(
g0(F0)rs/H0(F0)

)
q
(
g1(F0)rs/H1(F0)

)
,

where as in the inhomogeneous group setting we use the subscripts 0 and 1 on g and H according
as W is split or non-split, and we take the special vectors to have the same norm.

The formalism of orbital integrals and smooth transfer again carries over in a straightforward
way to the present setting. For y ∈ s(F0)rs, φ

′ ∈ C∞C (s), and s ∈ C, we define

Orb(y, φ′, s) :=

∫
H′(F0)

φ′(h−1yh)|deth|sη(h) dh,

as well as the special values

Orb(y, φ′) := Orb(y, φ, 0) and ∂Orb(y, φ′) :=
d

ds

∣∣∣
s=0

Orb(y, φ′, s).

The notation in the integral defining Orb(y, φ′, s) is as in (2.11). This integral is again absolutely
convergent and transforms when s = 0 as

Orb(h−1yh, φ′) = η(h) Orb(y, φ′) for all h ∈ H ′(F0).

On the unitary side, for x ∈ g(F0)rs and φ ∈ C∞c (g), we define

Orb(x, φ) :=

∫
H(F0)

φ(h−1xh) dh,

where we use the same Haar measure on H(F0) as before. A transfer factor for s is a function
ω : s(F0)rs → C× such that

ω(h−1γh) = η(h)ω(γ) for all h ∈ H ′(F0).

Definition 2.6. A function φ′ ∈ C∞c (s) and a pair of functions (φ0, φ1) ∈ C∞c (g0)×C∞c (g1) are
transfers of each other (for the fixed choices of Haar measures, a fixed choice of transfer factor,
and fixed choices of special vectors) if for each i ∈ {0, 1} and each x ∈ gi(F0)rs,

Orb(x, φi) = ω(y) Orb(y, φ′)

whenever y ∈ s(F0)rs matches x.

2.4. Transfer factors. We now fix transfer factors for use throughout the rest of the paper,
which are slight variants of the ones in [39, §2.4]. First fix an extension η̃ of the quadratic
character η from F×0 to F× (not necessarily of order 2). If F is unramified, then we take the

natural extension η̃(x) = (−1)v(x). For S we take the transfer factor

ωS(γ) := η̃
(
det(γ)−bn/2c det(γie)0≤i≤n−1

)
, γ ∈ S(F0)rs.

For G′ we take the transfer factor

ωG′(γ) :=

{
ωS
(
r(γ−1

1 γ2)
)
, n odd;

η̃(γ−1
1 γ2)ωS

(
r(γ−1

1 γ2)
)
, n even,

γ = (γ1, γ2) ∈ G′(F0)rs,

where r is defined in (2.8), and where for any γ0 ∈ GLn(F ) we set

η̃(γ0) := η̃(det γ0).

For s we take the transfer factor

ωs(y) := η̃
(
det(yie)0≤i≤n−1

)
, y ∈ s(F0)rs. (2.12)
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3. Review of the FL conjecture

To set the stage, in this section we review the FL conjecture in its homogeneous, inhomoge-
neous, and Lie algebra versions, cf. [8, 37, 24]. Let F/F0 be unramified and n ≥ 2. As in the
previous section, let W0 and W1 respectively be the split and non-split F/F0-hermitian spaces
of dimension n. Assume furthermore that the special vectors ui ∈Wi have common norm which
is a unit in OF0

. Then by (2.3) the orthogonal complement W [
i of ui in Wi is again split for

i = 0 and non-split for i = 1. As in the previous section, we write Gi = U(Wi), gi = LieGi, and
Hi = U(W [

i ). Fix a self-dual OF -lattice

Λ[0 ⊂W [
0 ,

which exists and is unique up to H0(F0)-conjugacy since W [
0 is split. Let

Λ0 := Λ[0 ⊕OFu0 ⊂W0,

which is again self-dual. We denote by

K[
0 ⊂ H0(F0)

the stabilizer of Λ[0, and by

K0 ⊂ G0(F0) and k0 ⊂ g0(F0)

the respective stabilizers of Λ0. Then K[
0 and K0 are both hyperspecial maximal parahoric

subgroups.
We normalize the Haar measures on the groups

H ′(F0) = GLn−1(F0), GLn(F0), H ′1(F0) = GLn−1(F ), and H0(F0)

by assigning each of the respective subgroups

GLn−1(OF0), GLn(OF0), GLn−1(OF ), and K[
0

measure one. We then take the product measure on the groups H ′2(F0) = GLn−1(F0)×GLn(F0),
H ′1,2(F0) = H ′1(F0)×H ′2(F0), and HW0

(F0) = H0(F0)×H0(F0). The Haar measures on H1(F0)
and HW1

(F0) will not be important for us. The transfer factors are defined in §2.4. They take
the following simple form on S(F0)rs and g(F0)rs,

ωS(γ) = (−1)v(det(γie)0≤i≤n−1),

ωs(y) = (−1)v(det(yie)0≤i≤n−1).
(3.1)

With respect to these normalizations, the FL conjecture is the following statement.

Conjecture 3.1 (Fundamental lemma).

(a) (Homogeneous version) The characteristic function 1G′(OF0
) ∈ C∞c (G′) transfers to the pair

of functions (1K[
0×K0

, 0) ∈ C∞c (GW0
)× C∞c (GW1

).

(b) (Inhomogeneous version) The characteristic function 1S(OF0
) ∈ C∞c (S) transfers to the pair

of functions (1K0
, 0) ∈ C∞c (G0)× C∞c (G1).

(c) (Lie algebra version) The characteristic function 1s(OF0
) ∈ C∞c (s) transfers to the pair of

functions (1k0 , 0) ∈ C∞c (g0)× C∞c (g1).

We note that the equal characteristic analog of the FL conjecture was proved by Z. Yun for
p > n; J. Gordon deduced the p-adic case for p large, but unspecified, cf. [6, 35].

4. Review of the AFL conjecture

We continue with the notation and normalizations introduced in the last section. In particular,
F/F0 is unramified, and the special vectors ui have norm a unit in OF0 . Note that the FL con-
jecture predicts that the orbital integrals Orb(γ,1G′(OF0

)), Orb(γ,1S(OF0
)), and Orb(y,1s(OF0

))

vanish whenever γ, resp. γ, resp. y matches with elements in GW1
(F0)rs, resp. G1(F0)rs, resp.

g1(F0)rs. The AFL conjecture then proposes an identity for the derivatives of these orbital
integrals at such elements, in terms of geometry.

Conjecture 4.1 (Arithmetic fundamental lemma).
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(a) (Homogeneous version) Suppose that γ ∈ G′(F0)rs matches an element g ∈ GW1
(F0)rs. Then

ωG′(γ) ∂Orb
(
γ,1G′(OF0

)

)
= − Int(g) · log q.

(b) (Inhomogeneous version) Suppose that γ ∈ S(F0)rs matches an element g ∈ G1(F0)rs. Then

ωS(γ) ∂Orb
(
γ,1S(OF0

)

)
= − Int(g) · log q.

(c) (Lie algebra version) Suppose that y ∈ s(F0)rs matches an element x ∈ g1(F0)rs, and assume
that the intersection ∆ ∩∆x is an artinian scheme. Then

ωs(y) ∂Orb
(
y,1s(OF0

)

)
= −`-Int(x) · log q.

Let us explain the right-hand side in each part (as well as the expression ∆ ∩ ∆x in (c)).
For any n ≥ 1, let Nn = Nn,F/F0

denote the formal moduli scheme over Spf OF̆ of [9, 32].1 In
other words, we consider triples (X, ι, λ) over Spf OF̆ -schemes S, where X is a p-divisible group
of absolute height 2nd and dimension n over S, equipped with an action ι of OF such that the
induced action of OF0

on LieX is via the structure morphism OF0
→ OS , and with a principal

(OF0 -relative) polarization λ. Here d := [F0 : Qp]. Hence (X, ι|OF0
) is a formal OF0-module of

relative height 2n and dimension n. We require that the Rosati involution Rosλ induces the non-
trivial Galois automorphism in Gal(F/F0) on OF , and that the Kottwitz condition of signature
(1, n− 1) is satisfied, i.e.

char
(
ι(a) | LieX

)
= (T − a)(T − a)n−1 ∈ OS [T ] for all a ∈ OF . (4.1)

An isomorphism (X, ι, λ)
∼−→ (X ′, ι′, λ′) between two such triples is an OF -linear isomorphism

ϕ : X
∼−→ X ′ such that ϕ∗(λ′) = λ.

It is not hard to see that over the residue field k of OF̆ there is a unique such triple
(Xn, ιXn , λXn) such that Xn is supersingular, up to OF -linear quasi-isogeny compatible with
the polarization, cf. [31, Prop. 1.15]. Then Nn represents the functor over Spf OF̆ that asso-
ciates to each S the set of isomorphism classes of quadruples (X, ι, λ, ρ) over S, where the final
entry is an OF -linear quasi-isogeny of height zero defined over the special fiber,

ρ : X ×S S −→ Xn ×Spec k S,

such that ρ∗((λXn)S) = λS (a framing).

Remark 4.2. The definition of Nn given here differs slightly from that in [9, 32]. First of all,
Nn is in fact an open and closed formal subscheme of the space defined in these papers (it is the
locus, denoted by N0 in [32], where the framing ρ has height zero). Furthermore, within this
locus, the moduli problem in these papers imposes the weaker condition that λS differs from

ρ∗((λXn
)S) locally on S by a unit in OF0

, but it also weakens the notion of an isomorphism.
This changes nothing in the outcome: the formal scheme in loc. cit. is identical to the formal
scheme defined here, cf. also [21, Rem. 3.6].

The following theorem summarizes basic facts on the structure of the formal scheme Nn.

Theorem 4.3 (Vollaard–Wedhorn [32]).

(i) For any n, the formal scheme Nn is formally locally of finite type, essentially proper,2 and
formally smooth of relative formal dimension n− 1 over Spf OF̆ . In particular, Nn is regular of
formal dimension n.

(ii) The underlying scheme (Nn)red has a Bruhat–Tits stratification by Deligne–Lusztig varieties
of dimensions 0, 1, . . . , bn−1

2 c attached to unitary groups in an odd number of variables and to
Coxeter elements, with strata parametrized by the vertices of the Bruhat–Tits complex of the
special unitary group for the non-split n-dimensional F/F0-hermitian space. �

Corollary 4.4. For n ≥ 2, the product Nn−1,n := Nn−1 ×Spf OF̆
Nn is a regular formal scheme

of formal dimension 2(n− 1). �

1Recall that, since F/F0 is unramified, we have F̆ = F̆0 as in the Introduction.
2Recall that essentially proper means that each irreducible component of the reduced underlying scheme is

proper over Spec k.
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Returning to our explanation of the statement of Conjecture 4.1, now recall from the Introduc-
tion the formal OF -module E over k and its canonical lift E over OF̆ , as well as the “conjugate”

objects E and E . For n ≥ 2, there is a natural closed embedding of formal schemes

δN : Nn−1
// Nn

(X, ι, λ, ρ) � //
(
X × E , ι× ιE , λ× λE , ρ× ρE

)
,

where we set X1 = E and inductively take

Xn = Xn−1 × E (4.2)

as the framing object for Nn. Let

∆N : Nn−1

(idNn−1
,δN )

−−−−−−−−→ Nn−1 ×Spf OF̆
Nn = Nn−1,n

be the graph morphism of δN . Then

∆ := ∆N (Nn−1)

is a closed formal subscheme of half the formal dimension of Nn−1,n. Note that

Aut◦(Xn, ιXn
, λXn

) ∼= U
(
V(Xn)

)
(F0), (4.3)

where the left-hand side is the group of self-framings of Xn, and where V(Xn) is the hermitian
space (1.5) attached to Xn. The left-hand side acts naturally on Nn by acting on the framing:
g · (X, ι, λ, ρ) = (X, ι, λ, g ◦ ρ). Furthermore V(Xn) contains a natural special vector u given by
the inclusion of E in Xn = Xn−1 × E via the second factor. The norm of u is 1. It is easy to
compute directly that V(X1) = V(E) is non-split, and then by induction and (2.3), V(Xn) is a
non-split hermitian space of dimension n for any n. Applying this to n and n− 1, we can choose
identifications W1 = V(Xn) and W [

1 = V(Xn−1) compatible with the natural inclusions on both
sides. Hence we obtain an action of H1(F0) on Nn−1, of G1(F0) on Nn, and of GW1(F0) on
Nn−1,n; and furthermore the maps δN and ∆N are equivariant with respect to the respective
embeddings H1(F0) ↪→ G1(F0) and H1(F0) ↪→ GW1

(F0) defined in §2.1.
Now we are ready to define the right-hand side of the identities appearing in Conjecture 4.1.

For g ∈ GW1
(F0), we denote by Int(g) the intersection product on Nn−1,n of ∆ with its translate

g∆, defined through the derived tensor product of the structure sheaves,

Int(g) := 〈∆, g∆〉Nn−1,n
:= χ(Nn−1,n,O∆ ⊗L Og∆). (4.4)

We similarly define Int(g) for g ∈ G1(F0),

Int(g) :=
〈
∆, (1× g)∆

〉
Nn−1,n

.

In both cases, when g is regular semi-simple, the right-hand side of this definition is finite, at
least when F0 = Qp, cf. [37, Lem. 2.8]. The proof in loc. cit. uses global methods.

Remark 4.5. In [9], there is associated to u ∈ V(Xn) a special cycle Z(u) in Nn, namely,
the locus where the quasi-homomorphism u : E → Xn lifts to a homomorphism from E to the
universal object over Nn. By [9, Prop. 3.5], Z(u) is a relative divisor. Then δN induces an
obvious closed embedding Nn−1 → Z(u). By [9, Lem. 5.2], this is an isomorphism. Similarly,
for g ∈ U(V(Xn)), there is an identification gδN (Nn−1) = Z(gu).

We make an analogous definition in the Lie algebra case, as in [18, §4.4]. Note that, anal-
ogously to (4.3), we can identify the F0-points of g1 = Lie U(V(Xn)) with a subgroup of the
OF -linear quasi-endomorphisms of Xn (those x for which x + RosλXn

(x) = 0). Now, for any
quasi-endomorphism x of Xn, define ∆x ⊂ Nn−1,n to be the closed formal subscheme (abusing
notation in the obvious way)

∆x :=
{

(Y,X) ∈ Nn−1,n

∣∣ x : Xn → Xn lifts to a homomorphism Y × E → X
}
. (4.5)

For g ∈ G1(F0), ∆g is simply the translate (1× g)∆. For any x, in the case that the intersection
∆ ∩∆x is an artinian scheme, we define

`-Int(x) := length(∆ ∩∆x). (4.6)

This completes the explanation of the statement of the AFL in all cases.
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Remark 4.6. As already pointed out in [21, §4.4], we do not have a Lie algebra version of the
AFL outside the non-degenerate case, i.e. when ∆ ∩∆x is not an artinian scheme.

We note that the left-hand sides of the identities in Conjecture 4.1 are constant on the orbit
of γ under H ′1,2(F0), resp. γ under H ′(F0), resp. y under H ′(F0). Similarly, the right-hand sides
of these identities are constant on the orbit of g under HW1

(F0), resp. g under H1(F0), resp. x
under H1(F0), cf. [18, Rems. 4.3, 4.4, 4.6]. Hence Conjecture 4.1 “makes sense” in the sense
that it does not depend on the choice of matching elements.

Our aim in Parts 2 and 3 of the paper is to formulate variants of Conjecture 4.1 which apply to
cases where the various unramifiedness hypotheses in Conjecture 4.1 are dropped. As explained
in the Introduction, we still want to have identities like in the AFL, but the function on G′(F0)
transferring to (1K[

0×K0
, 0) on GW0

(F0)×GW1
(F0) (and analogously in the inhomogeneous and

Lie algebra settings) will not be explicit anymore. Rather, the statement of the ATC will be that
some choice of function may be found which transfers to (1K[

0×K0
, 0) on GW0(F0) × GW1(F0),

and which also satisfies a suitable analog of the AFL identity (and again analogously in the
inhomogeneous and Lie algebra settings).

Remark 4.7. A first natural variant of the moduli problem defining Nn (still with n ≥ 1
and F/F0 unramified) is to consider quadruples (X, ι, λ, ρ) exactly as above, except where the
polarization λ satisfies kerλ = X[ι($)]. The resulting moduli space yields nothing new, however:
there is an isomorphism from Nn to it defined by (X, ι, λ, ρ) 7→ (X, ι,$λ, ρ).

Part 2. Some regular formal moduli spaces

In this part of the paper we define variants of the formal moduli space Nn that appeared in
the AFL conjecture. In the various AT conjectures which we formulate in Part 3, the right-hand
side will involve an intersection number of cycles in a product of such moduli spaces. Therefore
we are looking for analogs of ∆N where the target is a regular formal scheme. We do not know of
a systematic method of finding such variants. In the following sections we present the examples
we have found.

5. Unramified almost self-dual type

In this section we continue with the notation of §4. In particular, F/F0 is an unramified

extension. For any n ≥ 2, we now define a variant Ñn of the formal scheme Nn over Spf OF̆ =
Spf OF̆0

. This variant parametrizes isomorphism classes of quadruples (X, ι, λ, ρ) as in the case
of Nn, except that instead of requiring the polarization λ to be principal, we impose that

kerλ ⊂ X[ι($)] is of rank q2. (5.1)

Mimicking [31, §1], one sees that as in the case of Nn, up to quasi-isogeny there is a unique
supersingular triple (X̃n, ιX̃n

, λX̃n
) for this moduli problem over k. To fix a particular choice,

first let

E′ := E, ιE′ := ιE, and λE′ := $λE. (5.2)

Then we set

X̃n := Xn−1 × E′, ιX̃n
:= ιXn−1

× ιE′ , and λX̃n
:= λXn−1

× λE′ , (5.3)

where Xn−1 is the framing object for Nn−1 in (4.2). We then take the target of the framing ρ
to be the constant object over the special fiber obtained from (X̃n, ιX̃n

, λX̃n
).

The following theorem is the analog of Theorem 4.3(i) for Ñn.

Theorem 5.1. The formal scheme Ñn is formally locally of finite type, essentially proper, and
of semi-stable reduction over Spf OF̆ , of relative formal dimension n − 1. More precisely, the
corresponding local model has semi-stable reduction such that the special fiber is the union of two
smooth schemes of dimension n− 1 intersecting along a smooth scheme of dimension n− 2. In

particular, Ñn is regular of formal dimension n, and the completed local ring at any closed point

of Ñn is isomorphic to either OF̆ [[X1, . . . , Xn−1]] or to OF̆ [[X0, X1, . . . , Xn−1]]/(X0X1 −$).
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Proof. By the general formalism of RZ spaces (see [25, Prop. 3.33]), it suffices to prove the
claim for the local model. Let us recall the defintion, which is similar to (an instance of)
Definition 9.6 below. Endow Fn with the (non-split) F/F0-hermitian form h given by the
matrix diag($, 1, . . . , 1). Fix an element δ ∈ O×F satisfying δ = −δ, and define the alternating
F0-bilinear form on Fn,

〈x, y〉 =
1

2
trF/F0

(
δh(x, y)

)
, x, y ∈ Fn.

Define the OF -lattices in Fn,

Λ0 := OnF and Λ1 := $−1OF ⊕On−1
F .

Then Λ1 is the dual lattice of Λ0 with respect to both h and 〈 , 〉. The local model Ñn is the
scheme over SpecOF representing the functor that associates to each OF -scheme S the set of all
pairs (F0,F1) such that

• for each i = 0, 1, Fi is an OF ⊗OF0
OS-subsheaf of Λi ⊗OF0

OS which Zariski-locally on S is
an OS-direct summand of rank n;

• the natural maps Λ0 ⊗OF0
OS → Λ1 ⊗OF0

OS and Λ1 ⊗OF0
OS

$⊗id−−−→ Λ0 ⊗OF0
OS carry F0

into F1 and F1 into F0, respectively;

• F⊥0 = F1 with respect to the natural perfect pairing (Λ0 ⊗OF0
OS) × (Λ1 ⊗OF0

OS) → OS
induced by 〈 , 〉; and

• the Kottwitz condition of signature (n− 1, 1)

char(a⊗ 1 | Fi) = (T − a)n−1(T − a) ∈ OS [T ] for all a ∈ OF , i = 0, 1

is satisfied.

Note that for any point (X, ι, λ, ρ) on Ñn, there is a unique isogeny λ′ such that the composite

X
λ−→ X∨

λ′−→ X is ι($). It follows easily from this that the base change (Ñn)Spf OF̆
identifies

with the local model for Ñn as in [25, Ch. 3].
Now, since F/F0 is unramified and S is an OF -scheme, we have

OF ⊗OF0
OS

∼ // OS ×OS
a⊗ b � // (ab, ab).

Correspondingly, for any S-point (F0,F1) on Ñn, there are decompositions

Fi = F ′i ⊕F ′′i ⊂ Λi ⊗OF0
OS = (Λi ⊗OF0

OS)′ ⊕ (Λi ⊗OF0
OS)′′, i = 0, 1,

where OS × OS acts via its first factor on the primed sheaves, and via its second factor on
the double-primed sheaves. By the Kottwitz condition, F ′i ⊂ (Λi ⊗OF0

OS)′ is an OS-locally

direct summand of rank n − 1. By the perpendicularity condition, F ′0 and F ′1 determine F ′′1
and F ′′0 , respectively. It follows that the map (Fi)i=0,1 7→ (F ′i ⊂ (Λi ⊗OF0

OS)′)i=0,1 is an

isomorphism from Ñn to the standard local model over SpecOF in [4] for the group GLn, the
cocharacter µ = (1(n−1), 0), and the periodic lattice chain determined by the (adjacent) lattices
(Λ0 ⊗OF0

OF )′ ⊂ (Λ1 ⊗OF0
OF )′. By §4.4.5 in loc. cit. (in the case κ = 1 and r = n − 1) this

latter scheme has semi-stable reduction of the asserted form. �

Now define
Ñn−1,n := Nn−1 ×Spf OF̆

Ñn.
Since Ñn only occurs here as the “bigger” formal scheme, we won’t need to know an analog of

Theorem 4.3(ii) for the structure of (Ñn)red.

Corollary 5.2. The formal scheme Ñn−1,n is regular of formal dimension 2(n− 1). �

Remark 5.3 (n = 2). For n = 2, the formal scheme Ñn is isomorphic to

Ñ2 ' Ω̂2
F0
×Spf OF0

Spf OF̆ , (5.4)

cf. [10]. Here Ω̂2
F0

denotes the formal scheme version of the Drinfeld halfspace corresponding to
the local field F0.
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Remark 5.4 (n = 1). For n = 1, the definition of Ñ1 still makes sense, but the result is trivial:
this space is just Spf OF̆ itself, with universal object (E , ιE , $λE , ρE).

Remark 5.5. Let us consider the variant of the moduli problem for Ñn where the condition on
the polarization λ is replaced by

kerλ ⊂ X[ι($)] is of rank q2(n−1).

Then, in analogy with Remark 4.7, the resulting moduli space is isomorphic to Ñn. Indeed, given
a point (X, ι, λ, ρ) on Nn, let OF act on X∨ via the rule ι∨ : a 7→ ι(a)∨. Then λ is OF -linear.
Since kerλ ⊂ X[ι($)], there exists a unique (automatically OF -linear) isogeny λ′ : X∨ → X
such that λ′ ◦λ = ι($). Since F/F0 is unramified and λ is a polarization, so is λ′. Furthermore,
since kerλ ⊂ X[ι($)] of rank q2, we have kerλ′ ⊂ X∨[ι∨($)] of rank q2(n−1). In this way we

obtain a morphism (X, ι, λ, ρ) 7→ (X∨, ι∨, λ′, (ρ∨)−1) from Ñn to the variant moduli space we
have just defined, and it is easy to see that this is an isomorphism.

6. Ramified, even, π-modular type

In this and the next three sections we define analogs of Nn (and of Ñn) when the quadratic
extension F/F0 is ramified, beginning in this section with the case that n ≥ 2 is even. Recall
that F/F0 is implicit in the definition of Nn in §4. Therefore we may recycle the notation
Nn = Nn,F/F0

in the present situation. We define Nn to be the formal scheme over Spf OF̆
that parametrizes isomorphism classes of quadruples (X, ι, λ, ρ) as in §4, except that instead of
requiring the polarization λ to be principal, we impose that it is π-modular, i.e.

kerλ = X[ι(π)].

We furthermore require that ι satisfies the wedge condition∧2(
ι(π) + π | LieX

)
= 0 (6.1)

and the spin condition

the endomorphism ι(π) | LieX is nowhere zero, (6.2)

i.e. ι(π) is a nonzero operator on LieX ⊗ κ(s) for all points s of the base scheme S. Since S is a
Spf OF̆ -scheme, π ·κ(s) = 0 for all s. Therefore, in the presence of the wedge condition, the spin
condition says that ι(π) | LieX ⊗ κ(s) has rank 1 for all s. Note that this is a purely pointwise
condition on S, i.e. it holds if and only if it holds after base change to Sred. As before, up to
quasi-isogeny there is a unique supersingular framing object (Xn, ιXn

, λXn
) over k, which follows

in the case of this moduli problem from Prop. 3.1 and its proof in [21]. The last entry ρ in the
quadruple above is a framing to the constant object over S defined by (Xn, ιXn , λXn), as before.

Remark 6.1. It is not necessary to explicitly make the Kottwitz condition (4.1) part of the
definition of Nn. Indeed, let ϕ denote the operator ι(π) + π acting on LieX. Then conditions
(6.1) and (6.2) imply that imϕ is a locally direct summand of LieX of OS-rank 1. Hence kerϕ
is a locally direct summand of rank n− 1. Since ι(π) visibly acts as multiplication by π on imϕ
and by −π on kerϕ, it follows that X satisfies the Kottwitz condition.

For use later in the paper we fix essentially the same explicit choice of framing object as in
[21, §3.3]. When n = 2, we take

X2 := E× E
as a formal OF0

-module, and we define ιX2
by

ιX2
(a+ bπ) :=

[
a b$
b a

]
, a, b ∈ OF0

.

(This identifies X2 with the Serre tensor construction OF ⊗OF0
E.) For the polarization, for

technical convenience later in the paper we take a rescaled version of the one in loc. cit.,

λX2 :=

[
−2λE

2$λE

]
. (6.3)
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We then take

Xn := X2 × En−2
,

ιXn
:= ιX2

× ιn−2

E ,

λXn
:= λX2

× diag

([
0 λE ιE(π)

−λE ιE(π) 0

]
, . . . ,

[
0 λE ιE(π)

−λE ιE(π) 0

]
︸ ︷︷ ︸

(n−2)/2 times

)
.

Remark 6.2. By [21, Lem. 3.5], the associated F/F0-hermitian space V(Xn) defined in (1.5) is
the non-split space of dimension n. (Note that, since the polarization (6.3) is a scalar multiple
of the one considered in loc. cit. when n = 2, the splitness of the hermitian spaces is the same.)

Unfortunately, we know less about the structure of Nn than in the unramified case, but at
least the analog of Theorem 4.3(i) is known.

Theorem 6.3 (Exotic smoothness [21, Prop. 3.8]). Recall that n is even. The formal scheme
Nn is formally locally of finite type, essentially proper, and formally smooth of relative formal
dimension n− 1 over Spf OF̆ . In particular, Nn is regular of formal dimension n. �

The analog of Theorem 4.3(ii) is only known for low values of n. To give the precise formu-
lation, we first need to explain a natural decomposition of Nn that occurs in the even ramified
setting. Let

M and N := M⊗OF̆0
F̆0

denote the covariant relative Dieudonné module and rational Dieudonné module, respectively, of
Xn. The action ιXn

makes M into an OF ⊗OF0
OF̆0

= OF̆ -module. The polarization λXn
induces

a nondegenerate alternating F̆0-bilinear form 〈 , 〉 on N satisfying

〈ax, y〉 = 〈x, ay〉 for all x, y ∈ N, a ∈ F̆ .
The form

h(x, y) := 〈πx, y〉+ 〈x, y〉π, x, y ∈ N,
then makes N into an F̆ /F̆0-hermitian space of dimension n. By Dieudonné theory, for a perfect
field extension K of k, the set of K-points on Nn identifies with a certain subset S of OF̆ ⊗OF̆0

W (K)-lattices M ⊂ N ⊗OF̆0
W (K), all of which are π-modular, i.e. M∨ = π−1M , where M∨

denotes the common dual lattice with respect to h and 〈 , 〉. For a lattice M ∈ S, let us say that
the corresponding K-point on Nn lies in N+

n or N−n according as the OF̆ ⊗OF̆0
W (K)-length of

the module (
M + M⊗OF̆0

W (K)
)/

M⊗OF̆0
W (K) (6.4)

is even or odd. The parity of this length may also be described as follows. Since the π-modular
lattices in a hermitian space are all conjugate under the unitary group, and since M⊗OF̆0

W (K)

is itself π-modular in N ⊗OF̆0
W (K), there exists an element g ∈ U(N)(F̆0 ⊗OF̆0

W (K)) such

that g · (M⊗OF̆0
W (K)) = M . The determinant det g is a norm one element in F̆ ⊗OF̆0

W (K),

and hence lies in OF̆ ⊗OF̆0
W (K) with reduction mod π equal to ±1 ∈ K. Then the length of

(6.4) is even or odd according as this reduction is 1 or −1 (independent of the choice of g) by
[21, Lem. 3.2].

Proposition 6.4. N+
n and N−n define a decomposition

Nn = N+
n qN−n

into open and closed formal subschemes.

Proof. We must show that the parity of the length of (6.4) is a locally constant function on
(perfect points of) the scheme (Nn)red. Let x ∈ (Nn)red, and let

R := lim−→
[
O(Nn)red,x

Frob−−−→ O(Nn)red,x
Frob−−−→ · · ·

]
be the direct perfection of the local ring O(Nn)red,x at x. Since (Nn)red is locally of finite type

over Spec k, it suffices to show that the parity in question is constant on points of SpecR (which
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is homeomorphic to SpecO(Nn)red,x). For this we apply Gabber’s result, reproved by Lau in [12,
Th. 6.4], that the category of p-divisible groups over a perfect ring is equivalent to the category
of Dieudonné modules over the corresponding Witt vector ring. Since R is a perfect local ring,
the rings

W := W (R) and W ′ := OF̆ ⊗F̆0
W (R)

are local and $-torsion-free. Thus to the tautological R-point SpecR → Nn corresponds a
W ′-submodule

M ⊂ N⊗OF̆0
W

which is free of rank n and π-modular in the obvious sense, i.e. the dual module

M∨ :=
{
x ∈ N⊗OF̆0

W
∣∣ h(x,M) ⊂W ′

}
is equal to π−1M inside N⊗OF̆0

W .

To proceed, we claim that the unitary group acts transitively on the π-modular submodules
in N ⊗OF̆0

W . Indeed, this follows by the usual argument for hermitian spaces over complete,

discretely valued fields; let us give a sketch. It suffices to show that any π-modular L admits
a W ′-basis with respect to which the hermitian form is

[ −π
π

]
⊕ · · · ⊕

[ −π
π

]
. Let e ∈ L be

an element in a basis for L. Since L∨ = π−1L, there exists f ∈ L such that h(e, f) = π; and
furthermore h(e, e), h(f, f) ∈ πW ′ ∩W = $W . Say h(e, e) = $a for a ∈W . Then

h

(
e+

πa

2
f, e+

πa

2
f

)
= −$a

2

4
h(f, f) ⊂ $2W.

Continuing by successive approximation, we reduce to the case that e is isotropic. After adding
an appropriate multiple of πe to f , we may then assume that f is isotropic too. Again since L is
π-modular, h(e, L) and h(f, L) are contained in πW ′, and it follows that we can split W ′e+W ′f
off from L as an orthogonal direct summand. The claim now follows by induction.

By the claim, there exists g ∈ U(N)(W [ 1
$ ]) such that g · (M⊗OF̆0

W ) = M . Since det g is a

norm one element in W ′[ 1
π ], we have det g ∈ W ′, and a := det g mod π is a square one element

in R. Since R is a local ring of residue characteristic not 2, it follows that a = ±1 in R. Since
the parity of the length in question at each residue field of R is determined by the image of a in
the residue field, the lemma follows. �

Example 6.5 (n = 2). Proposition 6.4 generalizes [21, Lem. 6.1], which shows that (N2)red is a
disjoint union of two points. In fact, when n = 2, the space N2 is already defined over Spf OF̆0

(the Kottwitz condition char(ι(π) | LieX) = T 2−$ makes sense over OF̆0
, and after base change

to Spf OF̆ this implies the wedge condition (6.1)). Let (N2)Spf OF̆0
denote this descended formal

scheme. Then the decomposition in the lemma is induced by a decomposition

(N2)Spf OF̆0
= (N2)+

Spf OF̆0

q (N2)−Spf OF̆0

,

and the summands on the right-hand side are both isomorphic to the universal deformation
space M of “the” formal OF0

-module of relative height 2 and dimension 1 over k; see [21,
Prop. 6.3] (which remains valid over Spf OF̆0

; here, in keeping with our definition of λX2
as −2

times the polarization of the framing object defined in [21], we also multiply the polarization

in the definition of the isomorphism M ∼−→ (N2)+
Spf OF̆0

by −2). Note that when F0 = Qp, the

formal schemeM can be identified with the completion of the moduli space of elliptic curves at
a supersingular point.

Now let N±n denote either of the formal subschemes N+
n and N−n . The following is the

conjectural analog of Theorem 4.3(ii).

Conjecture 6.6. The reduced underlying scheme (N±n )red has a Bruhat–Tits stratification by
Deligne–Lusztig varieties of dimensions 0, 1, . . . , n2 − 1 attached to non-split orthogonal groups
in an even number of variables and to Coxeter elements, with strata parametrized by the vertices
of the Bruhat–Tits complex of SU(V(Xn)).

As evidence for this conjecture, we note that it holds in the equal characteristic analog studied
by Görtz–He [5].
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Example 6.7 (n = 4). In the case of N±4 , the description in [5] is that every irreducible
component in (N±4 )red is a projective line containing p2 + 1 special points, and every special
point lies in the intersection of p + 1 projective lines. The following figure illustrates the case
p = 3.

7. Ramified, odd, almost π-modular type

In this section we define the formal scheme Nn over Spf OF̆ when F/F0 is ramified and n ≥ 1
is odd. We define Nn to be the moduli space for quadruples (X, ι, λ, ρ) as before, with ρ a
framing into a fixed framing object, except this time we impose that the polarization λ is almost
π-modular, i.e.

kerλ ⊂ X[ι(π)] is of rank qn−1.

We furthermore require that the triple (X, ι, λ) satisfies condition (7.9) below; this condition is a
little complicated to formulate and will require some preparation. (For the relationship of (7.9)
to the Kottwitz, wedge, and spin conditions introduced previously, see Remark 7.3.) Since we
will also need an analog of this condition in §9 for even n, for the moment let n be any positive
integer. Let

m := bn/2c.
Let e1, . . . , en denote the standard basis in Fn, and let h be the standard split F/F0-hermitian
form on Fn with respect to this basis,

h(aei, bej) := abδi,n+1−j (Kronecker delta). (7.1)

Let 〈 , 〉 and ( , ) be the respective alternating and symmetric OF0
-bilinear forms Fn×Fn → F0

defined by

〈x, y〉 :=
1

2
trF/F0

(
π−1h(x, y)

)
and (x, y) :=

1

2
trF/F0

h(x, y). (7.2)

For i = bn+ c with 0 ≤ c < n, define the OF -lattice

Λi :=

c∑
j=1

π−b−1OF ej +

n∑
j=c+1

π−bOF ej ⊂ Fn.

For each i, the form 〈 , 〉 induces a perfect pairing

Λi × Λ−i −→ OF0 .

In this way, for fixed nonempty I ⊂ {0, . . . ,m}, the set

ΛI := {Λi | i ∈ ±I + nZ }
forms a polarized chain of OF -lattices over OF0

in the sense of [25, Def. 3.14].
Now define the 2n-dimensional F -vector space

V := Fn ⊗F0
F,

where F acts on the right tensor factor. The nth wedge power Vn :=
∧n
F V admits a canonical

decomposition

Vn =
⊕
r+s=n
ε∈{±1}

Vn r,s
ε (7.3)

which is described in [29, §§2.3, 2.5].3 Let us briefly review it. The operator π⊗1 acts F -linearly
on V with eigenvalues ±π; let

V = Vπ ⊕ V−π.

3Here and below we replace the symbol W used in loc. cit. with Vn .
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denote the corresponding eigenspace decomposition. For a partition r + s = n, define4

Vn r,s :=
∧r

F
Vπ ⊗F

∧s

F
V−π,

which is naturally a subspace of Vn . Furthermore, the symmetric form ( , ) splits after base
change to V , and therefore there is a decomposition

Vn = Vn 1 ⊕ Vn −1 (7.4)

as an SO(( , ))(F )-representation. The subspaces Vn ±1 have the property that for any La-
grangian (i.e. totally isotropic n-dimensional) subspace F ⊂ V , the line

∧n
F F ⊂ Vn is contained

in one of them, and in this way they distinguish the two connected components of the orthogonal
Grassmannian OGr(n, V ) over SpecF . The subspaces Vn ±1 are canonical up to labeling, and
we will follow the labeling conventions in loc. cit., to which we refer the reader for details. The
summands in the decomposition (7.3) are then given by

Vn r,s
ε := Vn r,s ∩ Vn ε

(intersection in Vn ) for ε ∈ {±1}.
Given an OF -lattice Λ ⊂ Fn, now define

Λn :=
∧n

OF

(Λ⊗OF0
OF ),

which is naturally a lattice in Vn . For fixed r, s, and ε, define

Λn r,s
ε := Λn ∩ Vn r,s

ε (7.5)

(intersection in Vn ). Then Λn r,s
ε is a direct summand of Λn , since the quotient Λn / Λn r,s

ε is
torsion-free. For an OF -scheme S, define

Lr,si,ε (S) := im
[

(Λi)
n r,s

ε ⊗OF
OS → Λn i ⊗OF

OS
]
. (7.6)

For nonempty I ⊂ {0, . . . ,m}, let Aut(ΛI) denote the scheme of automorphisms of the polarized
OF -lattice chain ΛI over SpecOF0

, in the sense of [25, Th. 3.16] or [15, p. 581] (this is denoted
by P in [15]).

Lemma 7.1. For any OF -scheme S and Λi ∈ ΛI , the submodule Lr,si,ε (S) ⊂ Λn i⊗OF
OS is stable

under the natural action of Aut(ΛI)(S) on Λn i ⊗OF
OS.

Proof. Let C ⊂ Aut(ΛI)OF
be the stabilizer of Lr,si,ε ,

C(S) :=
{
g ∈ Aut(ΛI)(S)

∣∣ g · Lr,si,ε (S) = Lr,si,ε (S)
}
.

Then C is a closed subscheme of Aut(ΛI)OF
. Since Aut(ΛI)F0

∼= U(h), it is obvious that C
contains the F -generic fiber Aut(ΛI)F . Therefore C = Aut(ΛI)OF

, since Aut(ΛI)OF
is smooth,

and hence flat, over SpecOF by [25, Th. 3.16] and [15, Th. 2.2(a)]. �

This concludes our discussion for general n. We now formulate our condition on the triple
(X, ι, λ) over a Spf OF̆ -scheme S in the case of odd n, which will make use of the above discussion
in the case I = {m}. Let M(X) and M(X∨) denote the respective Lie algebras of the universal
vector extensions of X and X∨. Since kerλ ⊂ X[ι(π)], there is a unique (necessarily OF -linear)
isogeny λ′ such that the composite

X
λ−→ X∨

λ′−→ X

is ι(π). Since kerλ furthermore has rank qn−1, the induced diagram

M(X)
λ∗−→M(X∨)

λ′∗−→M(X)

extends periodically to a polarized chain of OF⊗OF0
OS-modules of type Λ{m}, in the terminology

of [25]. By Theorem 3.16 in loc. cit., étale-locally on S there exists an isomorphism of polarized
chains

[ · · · λ′∗−→M(X)
λ∗−→M(X∨)

λ′∗−→ · · · ] ∼−→ Λ{m} ⊗OF0
OS , (7.7)

4Here and below we interchange r and s in the notation relative to [29].
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which in particular gives an isomorphism of OF ⊗OF0
OS-modules

M(X)
∼−→ Λ−m ⊗OF0

OS . (7.8)

The module M(X) fits into the covariant Hodge filtration

0 −→ Fil1 −→M(X) −→ LieX −→ 0

for X, and the condition we finally impose is that

upon identifying Fil1 with a submodule of Λ−m ⊗OF0
OS via (7.8), the line bundle∧n

OS

Fil1 ⊂ Λn −m ⊗OF
OS (7.9)

is contained in Ln−1,1
−m,−1(S).

Note that Lemma 7.1 gives exactly what is needed to conclude that condition (7.9) is independent
of the choice of chain isomorphism in (7.7).

To complete the definition of Nn, it remains to specify a framing object (Xn, ιXn
, λXn

) for this
moduli problem over k. In contrast to the cases we have encountered previously, such a triple is
not unique up to quasi-isogeny. In fact, there are two isogeny classes (as always, up to OF -linear
quasi-isogeny compatible with the polarizations) such that Xn is supersingular, corresponding
to the two possible isometry classes of the hermitian space C in the proof of [21, Prop. 3.1].5 As
an explicit representative for which V is non-split, we take the same framing object as in [21].
Thus when n = 1 we define

X(1)
1 := E, ιX(1)

1
:= ιE, and λX(1)

1
:= −λE. (7.10)

Then V(X(1)
1 ) = Hom◦OF

(E,E) is the −1-eigenspace D− for the conjugation action by ιE(π) in
D, endowed with the hermitian norm (x, x) = −Nx, which is indeed non-split. When n ≥ 3, we
take

X(1)
n := Xn−1 × E, ιX(1)

n
:= ιXn−1

× ιE, and λX(1)
n

:= λXn−1
× λE; (7.11)

here n− 1 is even and Xn−1 is as defined in §6. Then by (2.3) and the fact that V(Xn−1) is the

non-split hermitian space of dimension n− 1, V(X(1)
n ) is indeed the non-split space of dimension

n. To fix a framing object in the other isogeny class, for all n we simply multiply the polarization

of X(1)
n by a non-norm unit, i.e. we fix ε ∈ O×F0

r NF× and define

X(0)
n := X(1)

n , ιX(0)
n

:= ιX(1)
n
, and λX(0)

n
:= ελX(1)

n
. (7.12)

Then, since n is odd and ε /∈ NF×, V(X(0)
n ) is the split hermitian space of dimension n. Note

that such an ε exists since F/F0 is ramified.

Taking X(0)
n and X(1)

n as the framing objects, we obtain respective moduli spaces N (0)
n and

N (1)
n . However, these spaces are isomorphic via the map

N (1)
n

∼ // N (0)
n

(X, ι, λ, ρ) � //
(
X, ι, λ ◦ ι(ε), ρ

)
.

To simplify notation in the rest of the paper, from now on we set

Nn := N (1)
n and Xn := X(1)

n .

Example 7.2 (n = 1). When n = 1, the moduli problem for N1 is just the moduli problem of
lifting E as a formal OF -module. Thus the solution is N1 = Spf OF̆ , with universal object the
canonical lift (E , ιE ,−λE , ρE). (In this case condition (7.9) is redundant in the moduli problem.)

5Note that the statement in loc. cit. considers quasi-isogenies which are compatible with the polarizations

only up to scalar, whereas here we are requiring compatibility on the nose.
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Remark 7.3. Of course the Kottwitz condition (4.1), the wedge condition (6.1), and the spin
condition (6.2) all continue to make sense as written in the odd ramified setting. The first two of
these conditions are implied by condition (7.9), cf. [29, Lem. 5.1.2, Rem. 5.2.2] (which shows that
these implications hold on the local model6). On the other hand, let N ◦n be the moduli space of
quadruples (X, ι, λ, ρ) as in the definition of Nn, except that instead of imposing condition (7.9),
we impose conditions (6.1) and (6.2). Then (6.1) and (6.2) imply condition (7.9), and in this
way N ◦n is an open formal subscheme of Nn. Indeed, this statement follows from the analogous
statement for the corresponding local models, which is explained in [29, §3.3]. (More precisely,
loc. cit. shows that the local model for N ◦n is the complement of the “worst point” in the local

model for Nn.) We note that when n ≥ 3, the framing objects X(1)
n and X(0)

n obviously satisfy
(6.1) and (6.2) (because Xn−1 does), and therefore they indeed satisfy (7.9); and it is trivial to

check directly that X(1)
1 and X(0)

1 satisfy (7.9) when n = 1. We further note that [21] uses the
notation Nn for what we call N ◦n , and what we call Nn is the “better” formal scheme alluded to
in Rem. 3.13 of loc. cit.

Remark 7.4. There is a natural analog of condition (7.9) on Nn when n is even (still with F/F0

ramified). However this analog is automatically satisfied on the whole space, which follows from
the fact that this condition is automatically satisfied in the generic fiber of the local model for
Nn, and this local model is already flat (in fact smooth).

As when n is even, we know less about the structure of Nn than in the unramified case, but
at least we have the analog of Theorem 4.3(i).

Theorem 7.5 (Exotic smoothness). Recall that n is odd. The formal scheme Nn is formally
locally of finite type, essentially proper, and formally smooth of relative formal dimension n− 1
over Spf OF̆ . In particular, Nn is regular of dimension n.

Proof. This is proved in the same way as [21, Prop. 3.8], using that the local model for Nn is a
closed subscheme of the “naive” local model, and is furthermore smooth by Richarz’s result [2,
Prop. 4.6] and [29, Th. 1.4]. (Note that [21, Prop. 3.8] proves that N ◦n satisfies all the conclusions
of this theorem except essential properness.) �

Again, the analog of Theorem 4.3(ii) is only known for low values of n.

Conjecture 7.6. The reduced underlying scheme (Nn)red has a Bruhat–Tits stratification by
Deligne–Lusztig varieties of dimensions 0, 1, . . . , n−1

2 attached to orthogonal groups in an odd
number of variables and to Coxeter elements, with strata parametrized by the vertices of the

Bruhat–Tits complex of SU(V(X(1)
n )).

As evidence for this conjecture, we again note that it holds in the equal characteristic analog
[5].

Example 7.7 (n = 3). In the case n = 3, as in Example 6.7, there are strata of dimensions
0 and 1 in (N3)red. Every irreducible component is a projective line containing p + 1 special
points, and every special point lies in the intersection of p + 1 projective lines. The following
figure illustrates the case p = 3.

Taking Theorems 6.3 and 7.5 together, we obtain the following corollary. For arbitrary n ≥ 2,
define

Nn−1,n := Nn−1 ×Spf OF̆
Nn.

6Strictly speaking, loc. cit. shows this in the case of signature opposite to ours, but up to isomorphism the
local model is the same, cf. [21, footnote p. 19]. The same remark applies to essentially all of the subsequent

references we make to the local models in [2], [17], [18, §2.6], and [29].
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Corollary 7.8. For arbitrary n, the formal scheme Nn−1,n is regular of formal dimension
2(n− 1). �

Remark 7.9. For arbitrary n, the space Nn is an (open and closed formal subscheme of an)
RZ space with “special maximal parahoric level structure” in the sense that, in the notation of
[25, §1.38, Def. 3.18], it arises from a PEL datum with B = F , V = Fn, ( , ) = 〈 , 〉, b∗ = b,
G = GU(h), and L = Λ{m}; and the stabilizer of the lattice chain Λ{m} in GU(h)(F0) is a special
maximal parahoric subgroup. For F/F0 ramified, up to conjugacy there is one further case of
a special maximal parahoric subgroup in GU(h)(F0), namely the stabilizer of a self-dual lattice
in Fn when n is odd [17, §1.2.3]. The corresponding RZ space, in which the polarization λ in
the moduli problem is principal (still with Kottwitz condition (4.1) of signature (1, n − 1)), is
studied for n both even and odd in [23]. This space is not regular for n ≥ 3, and therefore it
does not appear to fit into the framework of this paper. The case n = 2 is exceptional,7 however,
and we will turn to this in the next section.

8. Ramified self-dual type, n = 2

In this section, continuing from Remark 7.9, we consider the formal moduli space of [23] in the
special case n = 2, still with F/F0 ramified; see also [10]. This is a moduli space for quadruples
(X, ι, λ, ρ) as before, with (X, ι) satisfying the Kottwitz condition

char
(
ι(π) | LieX

)
= T 2 −$, (8.1)

and where this time the polarization λ is principal. As in the previous section in the case of odd
n (and via the same argument), there are two isogeny classes of supersingular framing objects
over k. Accordingly we obtain two moduli spaces, both defined over Spf OF̆0

, which we denote by

Ñ (0)
2 and Ñ (1)

2 according as the hermitian space (1.5) of the framing object is split or non-split.

These two spaces really are different, in contrast to the case of N (0)
n and N (1)

n in the previous
section. In fact, we can describe both of these spaces explicitly.

(i) For the formal scheme Ñ (0)
2 , there is a natural isomorphism

Ñ (0)
2
∼= Ω̂2

F0
×Spf OF0

Spf OF̆0
(8.2)

which is equivariant for the respective actions of SU(X̃(0)
2 ) ∼= SL2(F0) on both sides. This is the

alternative description of the Drinfeld half-plane in [10].

(ii) For the formal scheme Ñ (1)
2 , there is an isomorphism

Ñ (1)
2 ' Spf OF̆0

[[x, y]]/(xy −$).

More precisely, we are now going to show in (ii) that Ñ (1)
2 is isomorphic to the deformation

space with Iwahori level structure MΓ0($). Let us recall the definition of this latter space.

Definition 8.1. The formal schemeMΓ0($) represents the functor over Spf OF̆0
that associates

to each scheme S the set of isomorphism classes of quadruples

(Y, Y ′, φ : Y → Y ′, ρY ),

where Y and Y ′ are formal OF0
-modules of relative height 2 and dimension 1 over S, φ is an

isogeny of degree q, and ρY : Y ×S S → E×Spec k S is an OF0
-linear quasi-isogeny of height 0.

When F0 = Qp, it follows that MΓ0(p) can be identified with the formal completion at a
supersingular point of the moduli space of elliptic curves with Γ0(p)-structure.

To define the desired isomorphism MΓ0($) → Ñ (1)
2 , let (Y, Y ′, φ, ρY ) be an S-point on

MΓ0($). Set

X := Y × Y ′.

7Exceptional in three ways: in this case the space is defined over Spf OF̆0
instead of Spf OF̆ ; it is regular;

and the corresponding parahoric subgroup of GU(h)(F0) is not a maximal parahoric subgroup, but an Iwahori

subgroup, cf. [18, Rem. 2.35].
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Since kerφ is $-power torsion and of rank q, i.e. of relative OF0
-height 1, it is killed by $. Hence

there exists a unique (necessarily OF0
-linear) isogeny φ′ such that the composite

Y
φ−→ Y ′

φ′−→ Y (8.3)

is multiplication by $. Let

ι(π) :=

[
φ′

φ

]
∈ EndOF0

(X).

Then ι(π)2 is multiplication by $. Hence ι(π) defines an OF -action ι on X extending the OF0
-

action. It is easy to verify that ι satisfies the Kottwitz condition (8.1). Now define the composite
quasi-isogeny over the special fiber S,

ρY ′ : Y
′
S

φ−1

−−→ YS
ρY−−→ ES

ιE(π)−−−→ ES . (8.4)

Then the pullbacks ρ∗Y (λE) and ρ∗Y ′(λE) lift to principal polarizations λY of Y and λY ′ of Y ′,
respectively (since the same holds for the universal object over the Lubin–Tate spaceM of formal
OF0

-modules of dimension 1 and relative height 2 equipped with a quasi-isogeny of height 0 to
E in the special fiber). Let

λ :=

[
λY

λY ′

]
∈ HomOF0

(X,X∨).

In the particular case that S = Spec k and (Y, Y ′, φ, ρY ) = (E,E, ιE(π), idE), our construction
produces the triple

X := E× E, ιX(π) :=

[
ιE(π)

ιE(π)

]
, λX :=

[
λE

λE

]
. (8.5)

It is straightforward to calculate that the space V(X) defined in (1.5) has no nonzero isotropic
vectors, so that V(X) is the non-split F/F0-hermitian space of dimension 2. Hence we may and

will take (X, ιX, λX) as the framing object for Ñ (1)
2 .8 For a general S and quadruple (Y, Y ′, φ, ρY ),

we define the framing map
ρ := ρY × ρY ′ : XS −→ XS .

Then tautologically ρ∗(λX) = λS , and ρ is readily seen to be OF -linear. Since it is obvious
that RosλX(ιX(π)) = −ιX(π), it follows that Rosλ(ι(π)) = −ι(π). In this way we have defined a
morphism

MΓ0($)
// Ñ (1)

2

(Y, Y ′, φ, ρY ) � // (X, ι, λ, ρ).
(8.6)

Proposition 8.2. The morphism MΓ0($) → Ñ
(1)
2 is an isomorphism.

Proof. We first show that both spaces have only one k-valued point. For MΓ0($), this is well-

known and easily checked. For Ñ (1)
2 , consider the covariant isocrystal N of the framing object

X, which has the structure of an F̆ /F̆0-hermitian space of dimension 2 as in §6. By Dieudonné

theory, Ñ (1)
2 (k) identifies with the set of OF̆ -lattices M in N which are self-dual and satisfy

$M ⊂2 VM ⊂2 M , where V denotes the Verschiebung on N. Let σ denote the Frobenius
operator on F̆0, let ζ ∈ O×

F̆0
be a square root of −1, and let τ := ζπV −1. Then τ is a σ-linear

operator on N with all slopes equal to zero. Let C := Nτ . Then the restriction of the hermitian
form to C makes C into a 2-dimensional F/F0-hermitian space, cf. [23, pp. 1170–1].9 We claim
that C is non-split. Indeed we can see this in at least two ways. First consider the framing
object X2 of N2 defined in §6. The OF0

-linear isogeny

ς0 : X2 = E× E id×ιE(π)−−−−−→ X = E× E
is in fact OF -linear (in terms of the Serre construction X2 = OF ⊗OF0

E, ς0 is induced by the

inclusion of E into the first factor in the target) and satisfies ς∗0 (λX) = − 1
2λX2 . Hence ς0 gives an

8Note that later on, for technical convenience, we will rescale the polarization λX, cf. Example 9.4.
9Note that the quantity η in loc. cit. should be a square root of −ε−1, rather than a square root of ε−1.
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identification of F̆ /F̆0-hermitian isocrystals between the (rescaled) isocrystal for X2 and N. The
“τ -fixed” space in the former isocrystal is non-split by [21, Lem. 3.3] (as is used in the proofs
of Prop. 3.1 and Lem. 6.1 in loc. cit.), which proves the claim. A second way to see that C is
non-split is by explicit computation: up to isomorphism, the isocrystal with F -action for E is
given by F̆ 2

0 with Verschiebung [
$

1

]
σ−1

and with π acting by [
$

1

]
.

(Of the course the alternating form on this 2-dimensional space is uniquely determined up to
scalar.) From this and (8.5) one obtains an explicit form for N, and it is easy to then calculate
that C has no nonzero isotropic vectors, which characterizes it as the non-split space of dimension
2.

Now let M ⊂ N correspond to a point in Ñ (1)
2 (k). By an obvious variant of [25, Prop. 2.17]

(with F̆ in place of WQ, π in place of p, etc.), since N is 2-dimensional over F̆ , either M = τM ,
or M 6= τM and M + τM = τ(M + τM). In the first case Mτ is a self-dual OF -lattice in C,
and hence is the unique such lattice since C is non-split of dimension 2. The other case does not
occur, since otherwise π(M + τM)τ would be a π-modular lattice in C (via the same proof as
for [10, Lem. 3.2(iii)]), contrary to the fact that C is non-split. This completes the proof that

Ñ (1)
2 (k) consists of a single point.
To complete the proof of the proposition, it now suffices to show that the morphism (8.6) is

formally étale. We will do this via the local models for the source and target spaces, which we
now pause to discuss.

The local model forMΓ0($) is the standard Iwahori local model for GL2 and the cocharacter
µ = (1, 0) over SpecOF0 , cf. [4] or [18, Eg. 2.4]. Let us review the definition. Let f1, f2 denote
the standard basis for F 2

0 , and define the OF0-lattices

λ0 := OF0
f1 +OF0

f2, and λ1 := OF0
$−1f1 +OF0

f2.

The local model MΓ0($) associated to these data is the scheme representing the functor that
associates to each OF0

-scheme S the set of pairs (F0,F1), where Fi ⊂ λi⊗OF0
OS is an OS-locally

direct summand of rank 1 for each i, and where the natural maps

Φ: λ0 ⊗OF0
OS −→ λ1 ⊗OF0

OS and Φ′ : λ1 ⊗OF0
OS

$⊗id−−−→ λ0 ⊗OF0
OS (8.7)

carry F0 into F1 and F1 into F0, respectively.

To define the local model for Ñ (1)
2 , we use the notation of §7 in the case n = 2. In particular,

recall the OF -lattice Λ0 = O2
F ⊂ F 2, which is self-dual with respect to the alternating form 〈 , 〉

defined in (7.2). The local model Ñ
(1)
2 is the scheme representing the functor that associates to

each OF0
-scheme S the set of all OF ⊗OF0

OS-submodules F ⊂ Λ0⊗OF0
OS which are OS-locally

direct summands of rank 2, which are Lagrangian for the form 〈 , 〉 ⊗OF0
OS , and which satisfy

the Kottwitz condition char(π ⊗ 1 | F) = T 2 −$. (This is Definition 9.6 below in the special
case (r, s) = (1, 1) and I = {0}, cf. also Remark 9.13.)

We now define an analog of the map (8.6) for MΓ0($) and Ñ
(1)
2 . First make the direct sum

λ0 ⊕ λ1 into an OF -module by taking S = SpecOF0 in (8.7) and letting π act as[
Φ′

Φ

]
.

Of course this is well-defined since the square of this matrix is multiplication by $. We then
identify

λ0 ⊕ λ1
∼= Λ0 (8.8)
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as OF -modules by identifying the elements f2 ∈ λ0 and $−1f1 ∈ λ1 with the standard basis
elements e1, e2 ∈ Λ0, respectively. Relative to these identifications, we define

MΓ0($)
// Ñ

(1)
2

(F0,F1) � // F0 ⊕F1.
(8.9)

It is easy to see that F0 ⊕ F1 satisfies all the conditions in the definition of Ñ
(1)
2 , so that this

morphism is well-defined.

Lemma 8.3. The morphism MΓ0($) → Ñ
(1)
2 is an isomorphism.

Proof. This is easily checked locally on standard affine charts. For example, the most interesting
chart on the source consists of all points of the form

F0 = span{f1 + xf2}, F1 = span{y$−1f1 + f2}
such that xy = $, cf. [18, Eg. 2.4]. The most interesting chart on the target consists of all points
expressible as the column span of 

x11 x12

x21 x22

1
1


relative to the OF0-basis e1, e2, πe1, πe2 for Λ0; this is easily seen to be the scheme of such
matrix entries such that x11 = x22 = 0 and x12x21 = $, cf. [18, Rem. 2.35]. Thus the map (8.9)
visibly identifies these two charts. One sees similarly (and in fact more easily) that (8.9) is an
isomorphism on all other standard charts, as desired. �

Remark 8.4. The map (8.9) makes explicit the isomorphism between these local models alluded
to at the end of [18, Rem. 2.35].

Completion of the proof of Proposition 8.2. It remains to show that the map (8.6) is formally
étale, which follows by combining Lemma 8.3 with the local model diagrams

Mtriv
Γ0($)

MΓ0($) (MΓ0($))Spf OF̆0

µ

��

µ′

��

and

(
Ñ (1)

2

)triv

Ñ (1)
2

(
Ñ

(1)
2

)
Spf OF̆0

ν

��

ν′

��

.

Here Mtriv
Γ0($) is a moduli space for tuples (Y, Y ′, φ, ρY , γ0, γ1), where the first four entries form

a point onMΓ0($), and where, letting S denote the base scheme and M denote the functor that
assigns to a p-divisible group the Lie algebra of its universal vector extension,

γ0 : M(Y )
∼−→ λ0 ⊗OF0

OS and γ1 : M(Y ′)
∼−→ λ1 ⊗OF0

OS
are isomorphisms of OS-modules. We require that γ0 and γ1 respect the alternating forms on
both sides, where the forms on the targets are defined by restricting 〈 , 〉 via (8.8); and that the
diagram

M(Y )
φ∗ //

γ0 ∼
��

M(Y ′)
φ′∗ //

γ1 ∼
��

M(Y )

γ0 ∼
��

λ0 ⊗OF0
OS

Φ // λ1 ⊗OF0
OS

Φ′ // λ0 ⊗OF0
OS

commutes, where φ′ is as in (8.3). Similarly, (Ñ (1)
2 )triv is a moduli space for points (X, ι, λ, ρ) on

Ñ (1)
2 endowed with an OF ⊗OF0

OS-linear trivialization γ : M(X)
∼−→ Λ0 ⊗OF0

OS that respects
the alternating forms on both sides. Furthermore µ and ν are the natural forgetful maps, and

µ′(Y, Y ′, φ, ρY , γ0, γ1) :=
(
γ0(ker[M(Y )→ LieY ]), γ1(ker[M(Y ′)→ LieY ′])

)
,

ν′(X, ι, λ, ρ) := γ(ker[M(X)→ LieX]).
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It is obvious that the maps (8.6) and (8.9), together with the map

Mtriv
Γ0($)

//
(
Ñ (1)

2

)triv
(Y, Y ′, φ, ρY , γ0, γ1) � // (X, ι, λ, ρ, γ0 ⊕ γ1)

defined in terms of (8.6) and the identification (8.8), give a morphism of local model diagrams.
Since the map (8.9) on local models is an isomorphism, it follows from [25, Prop. 3.33] that (8.6)
is formally étale. �

Remark 8.5 (Equivariance). The group O×D = AutOF0
(E) acts naturally on MΓ0($) by com-

posing with the framing ρY ; hence so does its subgroup D1 of norm one elements. Similarly,

U(V(X̃(1)
2 )) acts on Ñ (1)

2 ; hence so does its subgroup SU(V(X̃(1)
2 )). The isomorphism (8.6) is

then equivariant for these actions under the natural identification D1 ∼= SU(X̃(1)
2 ). Note that

this equivariance does not express the actions of the larger groups O×D and U(X̃(1)
2 ) in terms of

the other side of the isomorphism (8.6).

9. Some auxiliary spaces in the ramified case

In this section we give two closely related generalizations (different than in [23]) of the space

Ñ (1)
2 of the previous section to any even n. However the spaces we define are not regular, and

they will play only an auxiliary role in the ATC we formulate in §12. Let n ≥ 2 be even, still
with F/F0 ramified.

The first space we define, which we denote by Pn, is a moduli space over Spf OF̆ for quadruples
(X, ι, λ, ρ) as before, with the framing object to be specified below, except in this case we impose
on the polarization λ that

kerλ ⊂ X[ι(π)] is of rank qn−2.

We further require that the triple (X, ι, λ) satisfies the wedge condition (6.1) and condition (9.2)
below, which is the natural analog of condition (7.9). As in §7, let M(X) and M(X∨) denote the
respective Lie algebras of the universal vector extensions of X and X∨. Since kerλ is contained
in X[ι(π)] and of rank qn−2, there is a unique (necessarily OF -linear) isogeny λ′ such that the
composite

X
λ−→ X∨

λ′−→ X

is ι(π), and the induced diagram

M(X)
λ∗−→M(X∨)

λ′∗−→M(X)

then extends periodically to a polarized chain of OF ⊗OF0
OS-modules of type Λ{m−1}. By [25,

Th. 3.16], étale-locally on S there exists an isomorphism of polarized chains

[ · · · λ′∗−→M(X)
λ∗−→M(X∨)

λ′∗−→ · · · ] ∼−→ Λ{m−1} ⊗OF0
OS ,

which in particular gives an isomorphism of OF ⊗OF0
OS-modules

M(X)
∼−→ Λ−(m−1) ⊗OF0

OS . (9.1)

Denoting by Fil1 ⊂ M(X) the covariant Hodge filtration for X, the analog of (7.9) we impose
is that

upon identifying Fil1 with a submodule of Λ−(m−1) ⊗OF0
OS via (9.1), the line bundle∧n

OS

Fil1 ⊂ Λn −(m−1) ⊗OF
OS (9.2)

is contained in Ln−1,1
−(m−1),−1(S), cf. (7.6).

Just as before, condition (9.2) is independent of the above choice of chain isomorphism by Lemma
7.1.

As in the previous two sections, over k there are two supersingular isogeny classes of framing
objects for this moduli problem, distinguished by the splitness of the hermitian space V in (1.5).
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To complete the definition of Pn, we will choose a framing object X̃n for which V(X̃n) is non-split.

First let X1 be the framing object X1 = X(1)
1 (cf. (7.10)) endowed with the conjugate OF -action,(

X1, ιX1
, λX1

)
:=
(
E, ιE,−λE

)
.

Then we take X̃n to be the product of the framing object Xn−1 = X(1)
n−1 (cf. (7.11)) and X1,(

X̃n, ιX̃n
, λX̃n

)
:=
(
Xn−1 × X1, ιXn−1

× ιX1
, λXn−1

× λX1

)
. (9.3)

Since V(Xn−1) is non-split and n is even, it follows from (2.3) that V(X̃n) is indeed the non-split

space of dimension n. Furthermore, X̃n obviously satisfies (6.1) because Xn−1 does, and it is

easy to see that X̃n satisfies (9.2) because Xn−1 satisfies (7.9).

Remark 9.1. As in Remark 7.3, the Kottwitz condition (4.1) is implied on Pn by condition
(9.2), cf. [29, Lem. 5.1.2]. Furthermore, it will be shown in forthcoming work of Yu [34] that
(9.2) also implies the wedge condition (6.1) (and hence (6.1) is redundant in the definition of
Pn). On the other hand, when n = 2 the Kottwitz condition implies (6.1) and (9.2), since this
is obviously true in the generic fiber of the local model, and the local model defined by the

Kottwitz condition alone is already flat. Hence P2 ' (Ñ (1)
2 )Spf OF̆

. (Strictly speaking, to make

such an identification precise we must specify a quasi-isogeny between the framing objects X̃2

and X on the two sides; we will do so in Example 9.4 below.) Note that although Ñ (1)
2 is regular,

the space P2 is not, since the ramified base change OF̆0
→ OF̆ does not preserve semi-stable

reduction.

Remark 9.2. Of course one obtains another formal moduli space by taking a framing object

in the supersingular isogeny class for which V is split; this recovers the space (Ñ (0)
2 )Spf OF̆

when
n = 2. As the case n = 2 shows, and in contrast to the situation in §7, the resulting space
really is different from Pn. However, when n ≥ 4 we will have no occasion to consider this space
further.

It follows from the general theory of RZ spaces [25] that Pn is formally locally of finite type
and essentially proper over Spf OF̆ . However, as we have already noted, it is not regular. Having
fixed the polarization type in the moduli problem for Pn, the remaining conditions in its defintion
are the “right” ones in the sense that the corresponding local model is flat, which will be shown
by Yu in [34], cf. Remark 9.10 below.

The second moduli space we define, which we denote by P ′n, will turn out to be isomorphic

to two copies of Pn, and in this sense is another generalization of Ñ (1)
2 . The advantage of P ′n is

that, by definition, it will also admit a natural map to Nn. To state the definition, we first need
to fix an OF -linear isogeny of degree q,

φ0 : Xn −→ X̃n, (9.4)

such that φ∗0(λX̃n
) = λXn

; here we recall the framing object Xn from §6. When n = 2, we have

X2 = OF ⊗OF0
E and X̃2 = E× E

as OF -modules, and we define φ0 to be the OF -linear isogeny induced by adjunction from the

diagonal map E (id,id)−−−−→ E × E. It is easy to verify from the explicit expressions (6.3) and (9.3)
of the polarizations that φ∗0(λX̃2

) = λX2 . When n ≥ 4, we have

Xn = X̃n = Xn−2 × E× E

as OF -modules, and we define

φ0 := idXn−2 ×
[
1 ιE(π)/2
1 −ιE(π)/2

]
.

It is again easy to check that φ∗0(λX̃n
) = λXn

.

We now define P ′n to be the moduli space for tuples

(X, ι, λ, ρ,X ′, ι′, λ′, φ : X → X ′),
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where (X, ι, λ, ρ) is a point on Nn, (X ′, ι′, λ′, ρ′) is a point on Pn, and φ is an OF -linear isogeny
of degree q. Here we define ρ′ to be the composite quasi-isogeny

ρ′ : X ′
S

φ−1

S−−→ XS

ρ−→ Xn,S
φ0,S−−−→ X̃n,S ,

where S denotes the base scheme. Note that since φ∗0(λX̃n
) = λXn

, ρ∗(λXn,S
) = λS , and

ρ′∗(λX̃n,S
) = λ′

S
, it follows from rigidity for quasi-isogenies that φ∗(λ′) = λ. The notion of

isomorphism between tuples as above is the obvious one.
By definition, there are tautological projection maps

P ′n

��

ϕ

��

Pn Nn.

(9.5)

By Proposition 6.4, Nn decomposes into a disjoint union Nn = N+
n q N−n . Pulling back along

ϕ, we obtain a decomposition
P ′n = (P ′n)+ q (P ′n)−. (9.6)

Theorem 9.3. Writing (P ′n)± for either of the summands in (9.6), the projection P ′n → Pn
induces an isomorphism

(P ′n)±
∼−→ Pn.

Proof. We follow the same strategy as in the proof of Proposition 8.2. We first show that the
map is a bijection on k-points. Let N denote the covariant isocrystal of the framing object
Xn, made into an F̆ /F̆0-hermitian space as in §6. Let V denote the Verschiebung on N. By
Dieudonné theory, P ′n(k) identifies with the set of pairs of OF̆ -lattices L ⊂ L′ in N such that

$L ⊂ V L ⊂ L and $L′ ⊂ V L′ ⊂ L′, such that10

V L ⊂1 V L+ πL and V L′ ⊂≤1 V L′ + πL′,

and such that
L ⊂1 L′ ⊂n−2 (L′)∨ ⊂1 L∨ = π−1L. (9.7)

Our problem is to show that, starting from L′, we can uniquely recover L. Note that a π-modular
lattice L fits into the diagram (9.7) if and only if

π(L′)∨ ⊂1 L ⊂1 L′. (9.8)

The hermitian form on N induces a nondegenerate symmetric k-bilinear form on the 2-dimensional
space L′/π(L′)∨, and the π-modular lattices L satisfying (9.8) then correspond to the isotropic
lines in the 2-dimensional space L′/π(L′)∨. This gives at most two possibilities for L; since these
possibilities have odd colength in their sum L′, by definition, one of them will correspond to a
point on (P ′n)+, and the other a point on (P ′n)−. Thus to complete this part of the proof, we
have to show that any π-modular L satisfying (9.8) automatically satisfies $L ⊂ V L ⊂ L and
V L ⊂1 V L + πL. Since the Dieudonné module M of Xn satisfies VM ⊂1 VM + πM, it follows
from [21, Lem. 3.3] that the colength of V L in V L+ πL is odd. The diagram

V L+ πL

∪
⊂ V L′ + πL′

∪≤1

V L ⊂1 V L′

then shows that this colength is ≤ 2, and hence must be 1. This implies, in turn, that π kills
the quotient (V L + πL)/V L, so that $L ⊂ V L. The containment V L ⊂ L follows similarly
from L ⊂1 L+π−1V L, which in turn follows similarly from L ⊂1 L′ ⊂≤1 L′+π−1V L′, where in
the second containment we use that, since the isocrystal N is supersingular, the lattices L′ and
π−1V L′ have the same colength in any lattice that contains them both.

10Here the condition V L′ ⊂≤1 V L′ + πL′ is manifestly equivalent to the wedge condition in the moduli

problem for Pn, via the canonical isomorphism LieX′ ∼= L′/V L′. For the purposes of the proof, we only need to

know that the moduli problem implies this condition on L′; we leave it as an exercise to show that, for k-points,

condition (9.2) imposes nothing further.
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To complete the proof of the proposition, since (P ′n)± is formally locally of finite type over
Spf OF̆ , it now suffices to show that (P ′n)± → Pn is formally étale. This follows from Proposition
9.12(ii) below in the case I = {m−1}, via an entirely similar argument involving the local model
diagrams as in the proof of Proposition 8.2. The easy details are left to the reader. �

Example 9.4 (n = 2). When n = 2, Proposition 8.2 identifies Ñ (1)
2
∼=MΓ0($). Thus by Remark

9.1, P2 is isomorphic to the base change (MΓ0($))Spf OF̆
. To specify a particular isomorphism,

it is convenient to first replace the polarization λX of the framing object X for Ñ (1)
2 by −2λX,

and to then modify the isomorphism MΓ0($)
∼−→ Ñ (1)

2 to send

(Y, Y ′, φ, ρY ) 7−→
(
Y × Y ′, ι,−2(λY × λY ′), ρ

)
,

where ι and ρ are as defined in §8. Up to canonical isomorphism, this leaves the moduli problem

for Ñ (1)
2 unchanged, and the modified morphism remains an isomorphism. Furthermore, using

this rescaled λX, and with respect to the OF0
-linear decompositions X̃2 = X = E2, the morphism

ψ0 : X

[
1 1
1 −1

]
−−−−−→∼ X̃2 (9.9)

is an OF -linear isomorphism such that ψ∗0(λX̃2
) = λX. Hence ψ0 determines an isomorphism

(Ñ (1)
2 )Spf OF̆

∼−→ P2 sending (X, ι, λ, ρ) 7→ (X, ι, λ, ψ0 ◦ ρ), and in this way we identify P2 with
(MΓ0($))Spf OF̆

.
In fact, the entire diagram (9.5) comes by extension of scalars from the diagram over Spf OF̆0

,

MΓ0($) qMΓ0($)

}}

ϕ

!!

MΓ0($) MqM.

Here on the lower right we use the identification (N2)Spf OF̆0

∼=MqM, where M denotes the

Lubin–Tate moduli space of formal OF0
-modules of dimension 1 and relative height 2 equipped

with a quasi-isogeny of height 0 to E in the special fiber, cf. Example 6.5. By definition the
morphism ϕ respects the disjoint union decompositions in its source and target. Thus ϕ is given
by two maps MΓ0($) → M, and one easily unwinds the definitions to find that these are the
tautological projections (Y, Y ′, φ, ρY ) 7→ (Y, ρY ) and (Y, Y ′, φ, ρY ) 7→ (Y ′, ρY ′), where ρY ′ is
defined in (8.4).

Remark 9.5. As Example 9.4 shows, the morphism ϕ is finite when n = 2. When n ≥ 4, this is
no longer the case. Indeed, the fiber over a k-point (X, ι, λ, ρ) is given by the scheme of isotropic
subgroup schemes of order q in X[ι(π)].

The remaining step in the proof of Theorem 9.3 is to show that the corresponding map on
local models is an isomorphism. In fact we will formulate the result we need for any signature.
For the moment let n be even or odd, fix a partition r + s = n, and set

E := F0 if r = s, and E = F if r 6= s.

We set m := bn/2c and again take up the notation of §7.

Definition 9.6. For nonempty I ⊂ {0, . . . ,m}, the naive local model Mnaive
I is the scheme over

SpecOE representing the functor that assigns to each OE-scheme S the set of all families

(Fi ⊂ Λi ⊗OF0
OS)i∈±I+nZ

such that

(1) for all i, Fi is an OF ⊗OF0
OS-submodule of Λi ⊗OF0

OS which is Zariski-locally on S an
OS-direct summand of rank n;

(2) for all i < j, the natural arrow Λi ⊗OF0
OS → Λj ⊗OF0

OS carries Fi into Fj ;

(3) for all i, the isomorphism Λi ⊗OF0
OS

π⊗1−−−→∼ Λi−n ⊗OF0
OS identifies Fi

∼−→ Fi−n;
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(4) for all i, the perfect OS-bilinear pairing

〈 , 〉i : (Λi ⊗OF0
OS)× (Λ−i ⊗OF0

OS)
〈 , 〉⊗OS−−−−−−→ OS

identifies F⊥i with F−i inside Λ−i ⊗OF0
OS ; and

(5) (Kottwitz condition) for all i, the section π ⊗ 1 ∈ OF ⊗OF0
OS acts on Fi as an OS-linear

endomorphism with characteristic polynomial

char(π ⊗ 1 | Fi) = (T − π)r(T + π)s ∈ OS [T ].

The local model M loc
I is the scheme-theoretic closure of the generic fiber in Mnaive

I . We define
MI to be the closed subscheme of Mnaive

I defined by the additional conditions11

(6) (wedge condition) for all i, the operators∧s+1

OS

(π ⊗ 1− 1⊗ π | Fi) = 0 and
∧r+1

OS

(π ⊗ 1 + 1⊗ π | Fi) = 0;

and

(7) for all i, the line bundle
∧n
OS
Fi ⊂ Λn i ⊗OF

OS is contained in Lr,si,(−1)r (S).

We will typically abbreviate the notation for points on Mnaive
I to (Fi)i∈I , since by conditions

(3) and (4) such a tuple determines the full tuple (Fi)i∈±I+nZ.
In the generic fiber, the Kottwitz condition implies conditions (6) and (7). Therefore there

are inclusions of closed subschemes

M loc
I ⊂MI ⊂Mnaive

I .

On the other hand, (7) implies the Kottwitz condition in general by [29, Lem. 5.1.2]. In the
particular situation of Remark 7.3 (which is for n odd, (r, s) = (n−1, 1), and I = {m}), condition
(7) also implies the wedge condition, but we do not know if this implication holds in general. In
all cases, the following is conjectured in [29].12

Conjecture 9.7. For any signature (r, s) and nonempty I ⊂ {0, . . . ,m}, the scheme MI is flat
over SpecOE, or in other words M loc

I = MI .

Remark 9.8. Condition (7) can be regarded as a kind of common refinement of the Kottwitz
condition and the spin condition introduced in [17]. Let us recall the latter. Let S be an OF -
scheme, and recall the decomposition Vn = Vn 1 ⊕ Vn −1 in (7.4). For each i ∈ ±I + nZ, in
analogy with the definitions of Λn r,s

ε in (7.5) and Lr,si,ε (S) in (7.6), define

(Λi)
n

ε := (Λi)
n ∩ Vn ε and Li,ε(S) := im

[
(Λi)
n

ε ⊗OF
OS −→ Λn i ⊗OF

OS
]
. (9.10)

Then the spin condition on an S-point (Fi)i of Mnaive
I is that

for all i, the line bundle
∧n
OS
Fi ⊂ Λn i ⊗OF

OS is contained in Li,(−1)r (S). (9.11)

As in the formulation of conditions (6) and (7), when r = s the spin condition descends from
(Mnaive

I )OF
to Mnaive

I . Of course, the spin condition is trivially implied by condition (7).

Remark 9.9. In the special case that n is even and I = {m}, the above discussion can be
simplified. For S an OE-scheme, consider the OS-bilinear form

( , )m : (Λm ⊗OF0
OS)× (Λm ⊗OF0

OS)
id×(π⊗1)−−−−−−→∼ (Λm ⊗OF0

OS)× (Λ−m ⊗OF0
OS)

〈 , 〉m−−−−→ OS ,

which is split symmetric. Then, using condition (3), condition (4) is equivalent to requiring that
Fm is Lagrangian for ( , )m. Thus Mnaive

{m} naturally embeds into the orthogonal Lagrangian

Grassmannian OGr(n,Λm ⊗OF0
OF ). Now, the generic fiber (Mnaive

{m} )E is connected (cf. [17,

§1.5.3]), and the spin condition is then that Fm lies on the one of the two connected components
of OGr(n,Λm ⊗OF0

OF ) marked by (Mnaive
{m} )E ; cf. Rem. 2.32 and the paragraph following it in

11Here conditions (6) and (7) make sense as written whenever S is an OF -scheme, and when r = s they
descend to conditions on Mnaive

I over SpecOE = SpecOF0
.

12Strictly speaking loc. cit. requires I to have the property that if n is even and m− 1 ∈ I, then m ∈ I, but
here we drop this requirement. Note that on the other hand, Proposition 9.12 below allows one to view sets I

not satisfying this property as being redundant in some sense.
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[18]. Thus the spin condition is a purely pointwise condition on Mnaive
{m} ; after base change to

SpecOF , it may also be characterized as the condition that the rank of π ⊗ 1− 1⊗ π on Fm at
each point has the same parity as the common parity of r and s.

The relevant signature in the context of Theorem 9.3 is (r, s) = (n − 1, 1). In this case, in
the presence of the wedge condition, the spin condition is simply that π ⊗ 1 − 1 ⊗ π acts on
Fm with rank 1 at each point. Furthermore, the calculations in [17, §5.3] show that in this
case, Conjecture 9.7 holds true, and that in fact M loc

{m} is smooth and is characterized just by

conditions (1)–(4), the condition
∧2
OS

(π ⊗ 1− 1⊗ π | Fm) = 0, and the spin condition.

Remark 9.10. In the special case that n is even, I = {m−1}, and (r, s) = (n−1, 1), Conjecture
9.7 will be proved in the forthcoming paper [34] of Yu. Furthermore, she will show that in this
case M loc

{m−1} is characterized just by conditions (1)–(4) and (7).

We now return to our assumption that n is even. For j ∈ {m− 1,m}, let C{j} be the closed
subscheme of

∏
i∈±j+nZ Gr(n,Λi ⊗OF0

OE) defined by conditions (1)–(4) in Definition 9.6 and

the spin condition (9.11). Then projection onto the jth factor identifies C{j} with a closed

subscheme in Gr(n,Λj⊗OF0
OE), and Mnaive

{j} is naturally a closed subscheme of C{j}. Note that

we do not impose the Kottwitz condition on C{j}, and therefore C{j} depends on the signature
(r, s) only through the common parity of r and s in the spin condition.

We are going to define a morphism C{m−1} → C{m} via the following lemma. Quite generally,
let S be an OE-scheme, and for any i, let

Ti : Λi ⊗OF0
OS −→ Λi+1 ⊗OF0

OS (9.12)

denote the natural map.

Lemma 9.11. Let Fm−1 ⊂ Λm−1⊗OF0
OS be an S-point on C{m−1}. Then there exists a unique

OS-locally direct summand Fm ⊂ Λm ⊗OF0
OS which contains Tm−1(Fm−1), is Lagrangian for

the symmetric form ( , )m (cf. Remark 9.9), and satisfies the spin condition. Furthermore, Fm
is an S-point on C{m}, and Tm(Fm) ⊂ Fm+1.

Proof. By the uniqueness claim, it suffices to prove the lemma in the case that S is the spectrum
of a local ring R. Let κ denote the residue field of R, and let us systematically use a bar
to denote base change from R to κ. Over κ, the map Tm−1 has kernel of dimension 1 or 0
(according as $R is contained in the maximal ideal or not). Either way, there exists an (n− 1)-
dimensional subspace in Fm−1 mapped isomorphically by Tm−1 to its image in Λm ⊗OF0

κ.
Using Nakayama’s lemma, it follows that we may choose a free basis a1, . . . , an of Fm−1 such
that the images b1, . . . , bn−1 of the first n− 1 basis elements under Tm−1 form a free basis for a
summand F of Λm ⊗OF0

R.

Now, for any i, it is obvious from the definition of the pairings in condition (4) in Defintion
9.6 that there is an adjunction relation〈

u, T−i−1(v)
〉
i

=
〈
Ti(u), v

〉
i+1

for all u ∈ Λi ⊗OF0
R, v ∈ Λ−i−1 ⊗OF0

R. (9.13)

Applying this when i = m − 1, and using condition (3) and the equality F−(m−1) = F⊥m−1, it
follows that Tm−1(Fm−1) is totally isotropic for ( , )m. Hence

F ⊂ Tm−1(Fm−1) ⊂ F⊥.
The quotient F⊥/F is then naturally made by ( , )m into a free quadratic R-module of rank
2. Since R is local, 2 ∈ R×, F is totally isotropic, and ( , )m is split, it follows from Roy’s
cancellation theorem [26, Th. 8.1] that F⊥/F is split. Hence there exist isotropic elements
c, d ∈ F⊥ such that b1, . . . , bn−1, c, d form a free basis of F⊥, and

spanR{b1, . . . , bn−1, c} and spanR{b1, . . . , bn−1, d}
are the (only) two Lagrangian submodules of Λm ⊗OF0

R containing F . Since the intersection
of these Lagrangians has odd corank in each of them, they are classified by points on different
connected components of OGr(n,Λm ⊗OF0

OF ), cf. [17, §7.1.4]. Hence exactly one of them, say
the first, satisfies the spin condition, and we define this to be Fm. Note that this already proves
the uniqueness claim for Fm in the statement of the lemma.
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To show that Fm contains Tm−1(Fm−1), first note that since Fm−1 is spanned by a1, . . . , an,
Tm−1(Fm−1) is generated by

b1, . . . , bn−1, xc+ yd

for some x, y ∈ R. Let

w := b1 ∧ · · · ∧ bn−1 ∧ (xc+ yd)

= x · b1 ∧ · · · ∧ bn−1 ∧ c+ y · b1 ∧ · · · ∧ bn−1 ∧ d ∈ Λn m ⊗OF
R.

Consider the commutative diagram

(Λm−1)n
(−1)r ⊗OF

R //

∼

��

(Λm)n
(−1)r ⊗OF

R

∼

��

Lm−1,(−1)r (R)

∩
Lm,(−1)r (R)

∩
Λn m−1 ⊗OF

R

∧n Tm−1
// Λn m ⊗OF

R,

where we recall the modules (Λi)
n

±1 and Li,±1(R) from (9.10). Then w generates the image
of
∧n Fm−1 under the bottom map. Since

∧n Fm−1 is contained in Lm−1,(−1)r (R) by the spin
condition, the diagram shows that w ∈ Lm,(−1)r (R). Now, in the special case i = m, it is easy
to verify from the definitions in [17, §7] or [29, §2.3] that there is a direct sum decomposition

Λm
n = (Λm)n

1 ⊕ (Λm)n
−1,

and hence

Λm
n ⊗OF

R = Lm,1(R)⊕ Lm,−1(R).

Since w lies in Lm,(−1)r (R), its component in the summand Lm,(−1)r+1(R) is zero. Hence y = 0
and Tm−1(Fm−1) ⊂ Fm.

To complete the proof, it remains to show that Tm(Fm) ⊂ Fm+1 and that Fm is π⊗ 1-stable.
The first of these is an easy consequence of the adjunction relations (9.13) and conditions (3) and
(4) for Fm−1 and Fm+1. For the second, note that the action of π ⊗ 1 on Λm ⊗OF0

R identifies
with the composite

Λm ⊗OF0
R

Tm // Λm+1 ⊗OF0
R

∼ π⊗1

��

Λ−m+1 ⊗OF0
R

Tm−2◦···◦T−m+1
// Λm−1 ⊗OF0

R
Tm−1

// Λm ⊗OF0
R.

Thus the containment (π ⊗ 1)(Fm) ⊂ Fm follows from the containment Tm(Fm) ⊂ Fm+1, from
conditions (2) and (3) on C{m−1}, and from the containment Tm−1(Fm−1) ⊂ Fm. �

In the notation of the lemma, we now define

ν : C{m−1} // C{m}

Fm−1
� // Fm.

Then ν is plainly an isomorphism between generic fibers, and it restricts to an isomorphism
between the generic fibers of the closed subschemes Mnaive

{m−1} and Mnaive
{m} in the source and

target, respectively. Hence, passing to flat closures, ν restricts to a map

ν : M loc
{m−1} −→M loc

{m}. (9.14)

We now have the following.

Proposition 9.12. Suppose that m− 1 ∈ I and m /∈ I, and fix the signature (r, s).

(i) The natural forgetful morphism

M loc
I∪{m}

// M loc
I(

(Fi)i∈I ,Fm
) � // (Fi)i∈I
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is an isomorphism.

(ii) The analogous forgetful morphism MI∪{m} →MI is an isomorphism when (r, s) = (n−1, 1).

(iii) If Conjecture 9.7 holds true for signature (r, s) and the set I = {m− 1}, then the analogous
forgetful morphism MI∪{m} →MI is an isomorphism for any I as above.

Proof. By Lemma 9.11, the inverse in all cases is given by (Fi)i∈I 7→ ((Fi)i∈I , ν(Fm−1)). Note
that in (iii), flatness of M{m−1} ensures that ν carries M{m−1} into M{m}, and hence that this
inverse carries MI into MI∪{m}. Part (ii) then follows from (iii) in light of Yu’s forthcoming
result (cf. Remark 9.10), but let us also sketch a direct proof of (ii). It similarly suffices to show
that ν carries M{m−1} into M{m}.

As in Lemma 7.1, consider the automorphism scheme Aut(Λ{m−1,m}) of the polarized OF -
lattice chain Λ{m−1,m} over SpecOF0 . Then Aut(Λ{m−1,m})OF

acts on M{m−1} and M{m}, and

ν is equivariant for these actions. The k-point F := (π ⊗ 1)(Λm−1 ⊗OF0
k) ⊂ Λm−1 ⊗OF0

k on

M{m−1} (which is the unique k-point on which π ⊗ 1 acts as zero) is in the closure of every
orbit for Aut(Λ{m−1,m})k on the geometric special fiber, and therefore we reduce to considering
points Fm−1 on M{m−1} in an affine chart around F . For j ∈ {m− 1,m}, we take the ordered
OF0

-basis for Λj ,

π−1e1, . . . , π
−1ej , ej+1, . . . , en, e1, . . . , ej , πej+1, . . . , πen. (9.15)

With respect to this basis in the case j = m−1, we look at the affine chart on M{m−1} of points
Fm−1 of the form

Fm−1 = colspan

[
X
1n

]
, X = (xij), (9.16)

where the blocks are of size n× n. (Thus F is the k-point X = 0.) Write X in the block form

X =

 A ∗ B
R1 xmm R2

C ∗ D

 ,
where A has size (m− 1)× (m− 1), B has size (m− 1)×m, C has size m× (m− 1), D has size
m×m, R1 has size 1× (m− 1), R2 has size 1×m, and the blocks marked ∗ are columns of the
appropriate sizes. We claim that, with respect to the basis (9.15) for Λm, we have

ν(Fm−1) = colspan



A B

0
Rad

2 0

1
C −Rad

1
D

1m−1

R1 R2

1m


, (9.17)

where, defining

Hi :=

 1
. .
.

1


to be the unit antidiagonal matrix of size i× i, we set

Rad
1 := Hm−1 R

t
1 and Rad

2 := Hm Rt 2.

Indeed, in terms of our bases, the map Λm−1 → Λm is given by the 2n× 2n matrix

U :=


1m−1

$
1n−1

1
1m

 ,
where the $ is the (m,n + m)-entry, and the off-diagonal 1 is the (n + m,m)-entry. The first
m−1 and last m columns in (9.17) are the image under multiplication by U of the corresponding
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columns in (9.16); since these columns evidently span a direct summand of rank n−1, the proof
of Lemma 9.11 shows that ν(Fm−1) is the unique Lagrangian subspace containing these columns
and satisfying the spin condition. To show that the right-hand side of (9.17) satisfies these
properties, first recall the symmetric form ( , )m from Remark 9.9. With respect to the basis
(9.15) for Λm, the matrix of ( , )m is  Hm

−Hn

Hm

 . (9.18)

It follows that the mth column in the matrix in (9.17) pairs to zero under ( , )m with every
column in this matrix. Hence the right-hand side in (9.17) is Lagrangian (recall from the proof
of Lemma 9.11 that the other n− 1 columns in (9.17), being in the image of the point Fm−1 on
M{m−1}, automatically span a totally isotropic subspace). Thus to prove the equality asserted
in (9.17), it remains to show that the right-hand side satisfies the spin condition. By Remark
9.9, both this and the fact that the right-hand side is a point on M{m} follow from the single
claim that every column of the matrix in (9.17) becomes a multiple of the mth one after applying
the operator π ⊗ 1 − 1 ⊗ π (note that the mth column obviously continues to span a rank one
summand after applying this operator).

With respect to our basis for Λm, the operator π ⊗ 1− 1⊗ π is given by the matrix[
−π1n $1n

1n −π1n

]
.

Writing the product of this with the matrix in (9.17) in block form

[
Y
Z

]
(n×n blocks), we have

Z =


A− π1m−1 B

−πR1
Rad

2 −πR2

1
C −Rad

1
D − π1m

 and Y = −πZ.

Our problem is thus to show that every column in Z is a multiple of its mth one. In the case of
the jth column for j 6= m,m+ 1, this means that we have to show that

xij = xm+1,jxm,i∨ , i < m, i 6= j,

xjj − π = xm+1,jxm,j∨ if j < m,

−πxmj = xm+1,jxm,m+1,

xjj − π = −xm+1,jxm,j∨ , if j > m+ 1,

xij = −xm+1,jxm,i∨ , i > m+ 1, i 6= j,

(9.19)

where for any i we set

i∨ := n+ 1− i.
Similarly, in the case of the (m+ 1)th column in Z, we have to show that

xi,m+1 = (xm+1,m+1 − π)xm,i∨ i < m,

−πxm,m+1 = (xm+1,m+1 − π)xm,m+1,

xi,m+1 = −(xm+1,m+1 − π)xm,i∨ , i > m+ 1.

(9.20)

We are going to deduce all of these relations from the fact that the columns in (9.17) are pairwise
orthogonal under ( , )m and from condition (7) in the definition of M{m−1}.

Let us first make explicit the orthogonality relations we need. For i and j distinct from m
and m+ 1, pairing the ith and jth columns in (9.17) with respect to (9.18), we obtain

0 = xm+1,ixmj + xj∨i + xi∨j + xmixm+1,j , i, j < m

0 = xj∨i − xm+1,ixm,j − xi∨,j − xmixm+1,j , i < m, m+ 1 < j

0 = xj∨i − xm+1,ixmj − xmixm+1,j + xi∨j , m+ 1 < i, j.

(9.21)
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Similarly, for j 6= m,m+ 1, pairing the jth column with the (m+ 1)th column, we obtain

0 = xm+1,jxm,m+1 + xj∨,m+1 + xmjxm+1,m+1, j < m,

0 = −xm+1,jxm,m+1 − xmjxm+1,m+1 + xj∨,m+1, j > m+ 1;
(9.22)

and pairing the (m+ 1)th column with itself (and using that 2 is a unit), we obtain

0 = xm+1,m+1xm,m+1. (9.23)

Now we turn to condition (7) in the definition of M{m−1}. We continue to use the notation
of §7. We closely follow the analysis in [29]. Similarly to §4 in loc. cit., we introduce the basis
elements in V ,

gi := ei ⊗ 1 + πei ⊗ π−1, gn+i :=
ei ⊗ 1− πei ⊗ π−1

2
, i = 1, . . . , n.

Then g1, . . . , gn is a basis for Vπ, and gn+1, . . . , g2n is a basis for V−π. For S = {i1 < · · · < in} ⊂
{1, . . . , 2n} of cardinality n, we define

gS := gi1 ∧ · · · ∧ gin ∈ Vn .

Furthermore, we say that S has type (r, s) if S∩{1, . . . , n} has r elements and S∩{n+1, . . . , 2n}
has s elements. As S varies through the sets of type (n− 1, 1), the elements gS form a basis of

Vn n−1,1, and the elements gS − sgn(σS)gS⊥ span Vn n−1,1
−1 , cf. [29, Lem. 4.2]. Here we set

S∗ := { 2n+ 1− i | i ∈ S } and S⊥ := {1, . . . , 2n}r S∗,

and σS is the permutation on {1, . . . , 2n} sending the elements 1, . . . , n onto S in increasing
order, and n + 1, . . . , 2n onto the complement of S in increasing order. By [29, Lem. 2.8],
sgn(σS) = (−1)ΣS+n/2, where ΣS denotes the sum of the elements in S. If S is of type (n−1, 1),
then S = {1, . . . , ̂, . . . , n, n + i} for unique integers 1 ≤ i, j ≤ n, where the hat means that the
entry is omitted; and, since n is even,

sgn(σS) = (−1)
n(n+1)

2 −j+n+i+ n
2 = (−1)i+j .

Now let T = {i1 < · · · < in} ⊂ {1, . . . , 2n} be of cardinality n. Regarding the (images of the)
basis elements (9.15) in the case j = m− 1 as an ordered OF -basis for Λm−1 ⊗OF0

OF , define

eT := (i1th basis element) ∧ · · · ∧ (inth basis element) ∈ Λn m−1 ⊂ Vn .

For 1 ≤ i < j ≤ n with i, j /∈ {m,m+ 1}, consider the set

T0 :=
{
m,m+ 1, n+ 1, . . . , n̂+ i, . . . , n̂+ j, . . . , 2n

}
.

In taking the wedge product of the columns of the matrix in (9.16) and expressing this as a
linear combination of eT ’s for varying T , the coefficient aT0

of eT0
is ±(xmixm+1,j −xm+1,ixmj).

On the other hand, for S of type (n− 1, 1), when gS is written as a linear combination of eT ’s,
the only eT ’s that occur are for T containing at most one pair of the form k, n + k. Since T0

contains two such pairs (for k = m and m+ 1), condition (7) on Fm−1 implies that aT0
must be

zero. We conclude that

xmixm+1,j = xm+1,ixmj for all i, j /∈ {m,m+ 1}. (9.24)

Now let us now show that the first relation in (9.19) holds in the case that j < m. Consider
the set

S := {1, . . . , ̂, . . . , n, n+ i}.
Then

S⊥ =
{

1, . . . , î∨, . . . , n, n+ j∨
}
.

We recall the notion of “worst term” from [29, Def. 4.8], which we take with respect to the
eT -basis for Vn . We denote the worst term of a vector v by WT(v). Using that

gi ∧ gn+i = (π−1ei ⊗ π) ∧ (ei ⊗ 1) (9.25)

for any i, we have

WT(gS) = (e1 ⊗ 1) ∧ · · · ∧ ̂(ej ⊗ 1) ∧ · · · ∧ (em−1 ⊗ 1)

∧ (πem ⊗ π−1) ∧ · · · ∧ (πen ⊗ π−1) ∧ (−π−1ei ⊗ π)
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and

WT(gS⊥) = (e1 ⊗ 1) ∧ · · · ∧ (em−1 ⊗ 1)

∧ (πem ⊗ π−1) ∧ · · · ∧ ̂(πei∨ ⊗ π−1) ∧ · · · ∧ (πen ⊗ π−1) ∧ (ej∨ ⊗ 1).

Let

T0 :=
{
i, n+ 1, . . . , n̂+ j, . . . , 2n

}
and T ′0 :=

{
j∨, n+ 1, . . . , n̂+ i∨, . . . , 2n

}
.

Then the eT0-term and the eT ′0-term in the wedge of the columns of (9.16) are, respectively,

(e1 ⊗ 1) ∧ · · · ∧ (π−1ei ⊗ xij)︸ ︷︷ ︸
in place of ej⊗1

∧ · · · ∧ (em−1 ⊗ 1) ∧ (πem ⊗ 1) ∧ · · · ∧ (πen ⊗ 1)

and

(e1 ⊗ 1) ∧ · · · ∧ (em−1 ⊗ 1) ∧ (πem ⊗ 1) ∧ · · · ∧ (ej∨ ⊗ xj∨i∨)︸ ︷︷ ︸
in place of πei∨⊗1

∧ · · · ∧ (πen ⊗ 1).

The sum of these terms is

(−1)n−j+1xijπ
m WT(gS) + (−1)n−i

∨
xj∨i∨π

m WT(gS⊥)

= (−1)j+1πm
[
xij WT(gS)− (−1)i+j+1xj∨i∨ WT(gS⊥)

]
= (−1)j+1πm

[
xij WT(gS)− (−xj∨i∨) sgn(σS) WT(gS⊥)

]
.

Since S is the only set of type (n− 1, 1) for which gS , when expressed in terms of the eT -basis,
involves eT0

, and ditto for S⊥ and eT ′0 , we conclude from condition (7) on Fm−1 that

xij = −xj∨i∨ .

Combining this with (9.24) and the second orthogonality relation in (9.21) (where j is replaced
by j∨), and using that 2 is a unit, we obtain the first relation in (9.19). The case that j > m is
handled in a similar way, as is the last relation in (9.19).

We next show that the third relation in (9.19) holds. We first need to obtain an analog of
(9.24) in the case that i = m+ 1. Assume that j < m, and consider the sets

T0 :=
{
m,n+ 1, . . . , . . . , n̂+ j, . . . , 2n

}
,

T ′0 :=
{
m,m+ 1, n+ 1, . . . , n̂+ j, . . . , ̂n+m+ 1, . . . , 2n

}
.

When we express the wedge product of the columns in (9.16) as a linear combination of eT ’s,
the eT0

-term is

(−1)j−1xmjeT0 , (9.26)

and the eT ′0 -term is

(−1)m−j det

[
xmj xm,m+1

xm+1,j xm+1,m+1

]
eT ′0 .

On the other hand, the only set S of type (n−1, 1) for which eT0
and eT ′0 occur when we express

gS as a linear combinator of eT ’s is

S = {1, . . . , ̂, . . . , n, n+m}.

Using (9.25) in the case i = m, the worst term of gS is its eT0
-term,

WT(gS) = (e1 ⊗ 1) ∧ · · · ∧ ̂(ej ⊗ 1) ∧ · · · ∧ (em−1 ⊗ 1)

∧ (πem ⊗ π−1) ∧ · · · ∧ (πen ⊗ π−1) ∧ (em ⊗ 1)

= −π−(m+1)eT0
.

(9.27)

The eT ′0 -term in gS is

(e1 ⊗ 1) ∧ · · · ∧ ̂(ej ⊗ 1) ∧ · · · ∧ (em−1 ⊗ 1) ∧ (πem ⊗ π−1)

∧ (em+1 ⊗ 1) ∧ (πem+2 ⊗ π−1) ∧ · · · ∧ (πen ⊗ π−1) ∧ (em ⊗ 1)

= (−1)mπ−meT ′0 .
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Condition (7) on Fm−1 then implies that

det

[
xmj xm,m+1

xm+1,j xm+1,m+1

]
= πxmj .

If j > m+ 1, then one similarly finds that the same relation holds. We conclude that

xmjxm+1,m+1 − xm+1,jxm,m+1 = πxmj , j 6= m,m+ 1. (9.28)

To apply this to the third relation in (9.19), suppose that j < m. Combining (9.28) and
(9.22) (and again using that 2 is a unit), it suffices to show that

πxmj = xj∨,m+1.

We again consider the set S = {1, . . . , ̂, . . . , n, n+m}, and also its perp

S⊥ =
{

1, . . . , m̂+ 1, . . . , n, n+ j∨
}
.

Let

T ′′0 :=
{
j∨, n+ 1, . . . , ̂n+m+ 1, . . . , 2n

}
.

The eT ′′0 -term that occurs in the wedge product of the columns of (9.16) is

(−1)mxj∨,m+1eT ′′0 . (9.29)

On the other hand, S⊥ is the only set of type (n − 1, 1) for which gS⊥ involves eT ′′0 , and the

eT ′′0 -term in gS − sgn(σS)gS⊥ = gS − (−1)j+mgS⊥ is then

(−1)j+m+1(e1 ⊗ 1) ∧ · · · ∧ (em−1 ⊗ 1)

∧ (πem ⊗ π−1) ∧ (πem+2 ⊗ π−1) ∧ · · · ∧ (πen ⊗ π−1) ∧ (ej∨ ⊗ 1)

= (−1)j+mπ−meT ′′0 .

Since Fm−1 satisfies condition (7), it follows from this, (9.26), (9.27), and (9.29) that πxmj =
xj∨,m+1, as desired. A similar argument shows that the third relation in (9.19) holds when
j > m+ 1.

We next show that the second and fourth relations in (9.19) hold. Assume j < m. By the
second orthogonality relation in (9.21) (with j in place of i and j∨ in place of j) and by (9.24)
(with j∨ in place of i), both of the desired relations follow (again using that 2 is a unit) from
showing that

xjj − π = π − xj∨j∨ .
For any 1 ≤ i ≤ n, define

Si := {1, . . . , ı̂, . . . , n, n+ i}.
Then S⊥i = Si∨ and sgn(σS) = 1. By a similar calculation to the one in [29, Lem. 4.11], for
i ≤ m,

gSi
− sgn(σS)gS⊥i = gSi

− gSi∨

= (−1)ig1 ∧ · · · ∧ ĝi ∧ · · · ∧ ĝi∨ ∧ · · · ∧ gn
∧ [(ei ⊗ 1) ∧ (ei∨ ⊗ 1)− (π−1ei ⊗ 1) ∧ (πei∨ ⊗ 1)].

It follows that Sm and Sm+1 are the only sets S of type (n−1, 1) for which gS−sgn(σS) involves
e{n+1,...,2n}; and that for

Tj :=
{
j, n+ 1, . . . , n̂+ j, . . . , 2n

}
and Tj∨ :=

{
j∨, n+ 1, . . . , n̂+ j∨, . . . , 2n

}
,

the sets Sj , Sm, Sm+1, Sj∨ are the only sets S of type (n − 1, 1) for which gS − sgn(σS)gS⊥
involves eTj

(and ditto for eTj∨ ). Furthermore, essentially the same argument as in the proof of

[29, Prop. 4.12] (especially the last two paragraphs) shows that for ai ∈ F ,
m∑
i=1

ai(gSi − gSi∨ ) ∈ Λn m−1 ⇐⇒ ordπ(ai) ≥ m for all i, and ordπ(am) ≥ m+ 1.

Now note that the worst term in gSm
− gSm+1

is its e{n+1,...,2n}-term,

WT(gSm − gSm+1) = (−1)m+1π−(m+1)e{n+1,...,2n}, (9.30)
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and that the eTj
- and eTj∨ -terms in gSm

− gSm+1
are, respectively,

(−1)m+1π−m(e⊗ 1) ∧ · · · ∧ (π−1ej ⊗ 1)︸ ︷︷ ︸
in place of ej⊗1

∧ · · · ∧ (em−1 ⊗ 1) ∧ (πem ⊗ 1) ∧ · · · ∧ (πen ⊗ 1) (9.31)

and

(−1)m+1π−m(e⊗ 1) ∧ · · · ∧ (em−1 ⊗ 1) ∧ (πem ⊗ 1) ∧ · · · ∧ (ej∨ ⊗ 1)︸ ︷︷ ︸
in place of πej∨⊗1

∧ · · · ∧ (πen ⊗ 1). (9.32)

Similarly, the eTj - and eTj∨ -terms in gSj − gSj∨ are, respectively,

(−1)i+1π−m(e⊗ 1) ∧ · · · ∧ (π−1ej ⊗ 1)︸ ︷︷ ︸
in place of ej⊗1

∧ · · · ∧ (em−1 ⊗ 1) ∧ (πem ⊗ 1) ∧ · · · ∧ (πen ⊗ 1) (9.33)

and

(−1)iπ−m(e⊗ 1) ∧ · · · ∧ (em−1 ⊗ 1) ∧ (πem ⊗ 1) ∧ · · · ∧ (ej∨ ⊗ 1)︸ ︷︷ ︸
in place of πej∨⊗1

∧ · · · ∧ (πen ⊗ 1). (9.34)

Note that the coefficients in (9.31) and (9.32) are π times the coefficient in (9.30), and that
there is a relative sign of −1 between the coefficients in (9.33) and (9.34). When we express the
wedge product of the columns of (9.16) as a linear combination of eT ’s, since the coefficient of
e{n+1,...,2n} is evidently 1, and since Fm−1 satisfies condition (7), it follows that

xjj = π + c and xj∨j∨ = π − c

for some scalar c. Hence xjj − π = π − xj∨j∨ , as desired.
To complete the proof, it remains to show that the relations (9.20) hold. This is now very

easy: the first and third relations are obvious from the third relation in (9.19) and from (9.22)
(both with i∨ in place of j), and the second relation is obvious from the orthogonality relation
(9.23). �

Remark 9.13 (n = 2). Proposition 9.12 is a generalization of (part of) [18, Rem. 2.35], which
contains the case n = 2.

Remark 9.14. In the case that (r, s) = (n − 1, 1), we remark that if one weakens the moduli
problem defining M{m−1} by substituting the spin condition (9.11) for condition (7), then the
resulting scheme can fail to be carried by ν into M{m}, and hence can fail to be flat. To give a
simple example, take R := OF /$OF , and let Fm−1 := (π ⊗ 1)(Λm−1 ⊗OF0

R) ⊂ Λm−1 ⊗OF0
R.

Then π ⊗ 1 acts as 0 on Fm−1. If the characteristic of k divides n− 2, then Fm−1 satisfies the
Kottwitz condition, and it is easy to see that Fm−1 furthermore gives a point in Mnaive

{m−1}(R)

satisfying the wedge and spin conditions. However, the corresponding point ν(Fm−1) ∈ C{m}(R)
is given by

ν(Fm−1) = spanR{e1 ⊗ 1, . . . , em−1 ⊗ 1, em+1 ⊗ 1, πem+1 ⊗ 1, . . . , πen ⊗ 1},

which does not satisfy the wedge condition. This shows that for even n = 2m and signature
(r, s) = (n − 1, 1), the statement of [17, Conj. 7.3] can fail for I = {m − 1}. Now, strictly
speaking, such an I is not allowed in this conjecture (cf. §§1.4, 7.2.1 in loc. cit.), so this does not
give an honest counterexample. It would be interesting to see if this example sheds any light on
the validity of this conjecture for those I which are allowed. (It is known that this conjecture
can fail for odd n and signature (n− 1, 1), cf. [29].)

Part 3. The conjectures

In this part of the paper, we formulate various arithmetic transfer conjectures arising from
morphisms between the spaces we have defined previously. Except where noted to the contrary,
we denote by S = Sn the scheme over SpecF0 defined in (2.6).
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10. Arithmetic transfer conjecture, F/F0 unramified, almost self-dual type

In this section F/F0 is unramified and n ≥ 2, as in §5. We take the special vectors ui ∈ Wi

(cf. §2.1) to satisfy (ui, ui) = $. Recall the p-divisible group E from the Introduction, with its
OF -action ιE , principal polarization λE , and framing isomorphism ρE . Let

E ′ := E , ιE′ := ιE , λE′ := $λE , and ρE′ := ρE : E ′k
∼−→ E′,

where E′ is defined in (5.2). Then ρE′ is OF -linear, and ρ∗E′(λE
′) = (λE′)k. We define a closed

embedding of formal schemes

δ̃N : Nn−1
// Ñn

(X, ι, λ, ρ) � //
(
X × E ′, ι× ιE′ , λ× λE′ , ρ× ρE′

)
.

Here the last entry is a framing to the constant object in the special fiber defined by X̃n =

Xn−1 × E′, cf. (5.3). We therefore obtain as in the case of the AFL a closed embedding

∆̃N : Nn−1

(idNn−1
,δ̃N )

−−−−−−−−→ Ñn−1,n = Nn−1 ×Spf OF̆
Ñn,

whose image we denote by

∆̃ := ∆̃N (Nn−1).

Note that the canonical vector

u := (0, idE) ∈ V
(
X̃n
)

= V(Xn−1)⊕ V
(
E′
)

has norm $. Since V(Xn−1) is non-split, it follows from (2.3) that V(X̃n) is split. Thus we may

identify the triple (V(X̃n), u,V(Xn−1)) with (W0, u0,W
[
0). In this way H0(F0) acts on Nn−1,

GW0
acts on Ñn, and ∆̃N is equivariant for the embedding H0(F0) ↪→ GW0

(F0).

Remark 10.1. We note that the image of δ̃N is contained in the smooth locus of Ñn. Indeed,
via the usual local model diagram argument, it suffices to prove the analogous claim for the

corresponding map on local models. Identifying the local model for Ñn with the standard local
model for GLn as in the proof of Theorem 5.1, points (F ′i ⊂ (Λi⊗OF0

OS)′)i=0,1 which lie in the

image of this map have the property that the induced map (Λ0⊗OF0
OS)′/F ′0 → (Λ1⊗OF0

OS)′/F ′1
is an isomorphism. Such points are contained in the smooth locus, which is easy to deduce from
the explicit description in [4, §4.4.5] (in the case κ = 1 and r = n− 1).

Remark 10.2. As in the case of the formal scheme Nn in Remark 4.5, one can define a special

cycle Z̃(u) in Ñn as the locus where the quasi-homomorphism u : E → Xn lifts to a homomor-

phism from E to the universal object over Ñn. When n = 2, it is known that Z̃(u) is a relative

divisor and that δ̃N induces an isomorphism N1 ' Z̃(u), cf. [27, Th. 3.14]. In this case

(1× g)∆̃ = Z̃(gu), g ∈ U
(
V(X2)

)
.

Hence for n = 2, the intersection number Int(g) appearing in Conjecture 10.4 below is a special
case of the intersection number of two unitary special divisors, in the terminology of Sankaran.

Now fix a self-dual lattice
Λ[1 ⊂W [

1 ;

this exists (and is unique up to H1(F0)-conjugacy) since W [
1 is split by (2.3). Let

Λ1 := Λ[1 ⊕OFu1 ⊂W1.

Then Λ1 is an almost self-dual OF -lattice, i.e. Λ1 ⊂1 Λ∨1 ⊂ $−1Λ1. Let

K[
1 ⊂ H1(F0)

denote the stabilizer of Λ[1, and let

K1 ⊂ G1(F0) and k1 ⊂ g1(F0)

denote the respective stabilizers of Λ1. Then K[
1 and K1 are both maximal parahoric subgroups.

We normalize the Haar measure on H1(F0) (and hence the product measure on HW1
(F0) =
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H1(F0)×H1(F0)) by assigning K[
1 volume 1. We normalize the Haar measures on H ′1(F0) and

H ′2(F0) as in §3, and we take the transfer factors ωG′ on G′(F0)rs, ωS on S(F0)rs, and ωs on
g(F0)rs as in (3.1).

Before stating the ATC in the present situtation, we first formulate a fundamental lemma
conjecture; this will, in turn, motivate an AFL conjecture as part of the ATC. On the general
linear group side, let

K0($) :=

{
g ∈ GLn(OF )

∣∣∣∣ g ≡ [∗ 0
∗ ∗

]
mod $

}
(diagonal blocks of respective sizes (n− 1)× (n− 1) and 1× 1), and define

K ′ := S(OF0
) ∩K0($) ⊂ S(F0). (10.1)

We also make the Lie algebra versions of these definitions,

k0($) :=

{
y ∈ gln(OF )

∣∣∣∣ y ≡ [∗ 0
∗ ∗

]
mod $

}
(10.2)

(same block sizes as before) and

k′ := s(OF0
) ∩ k0($). (10.3)

Conjecture 10.3 (Fundamental lemma).

(a) (Homogeneous version) The function (−1)n−1 q
n−1
q−1 1GLn−1(OF )×K0($) ∈ C∞c (G′) transfers to

the pair of functions (0,1K[
1×K1

) ∈ C∞c (GW0)× C∞c (GW1).

(b) (Inhomogeneous version) The function (−1)n−11K′ ∈ C∞c (S) transfers to the pair of func-
tions (0,1K1

) ∈ C∞c (G0)× C∞c (G1).

(c) (Lie algebra version) The function (−1)n−11k′ ∈ C∞c (s) transfers to the pair of functions
(0,1k1) ∈ C∞c (g0)× C∞c (g1).

We will show in Theorem 14.1 below that part (c) of this conjecture is equivalent to the Lie
algebra FL Conjecture 3.1(c), and that parts (a) and (b) follow from these when q ≥ n.

We now come to the ATC, as well as an AFL conjecture for the functions appearing on the
general linear group side of Conjecture 10.3. In analogy with (4.4), for g ∈ GW0

(F0)rs we set

Int(g) :=
〈
∆̃, g∆̃

〉
Ñn−1,n

,

and for g ∈ G0(F0)rs we set

Int(g) :=
〈
∆̃, (1× g)∆̃

〉
Ñn−1,n

.

In the Lie algebra setting, for any quasi-endomorphism x of X̃n, and in particular for x ∈
g0(F0) = Lie U(V(X̃n))(F0) ∼= {x ∈ End◦OF

(X̃n) | x + RosλX̃n
(x) = 0}, we define (abusing

notation in the obvious way, as in (4.5))

∆̃x :=
{

(Y,X) ∈ Ñn−1,n

∣∣ x : X̃n → X̃n lifts to a homomorphism Y × E ′ → X
}
.

As in the case of (4.5), when g ∈ G0(F0) we have ∆̃g = (1× g)∆̃. When ∆̃ ∩ ∆̃x is an artinian
scheme, we define

`-Int(x) := length
(
∆̃ ∩ ∆̃x

)
.

Conjecture 10.4 (Arithmetic transfer conjecture and arithmetic fundamental lemma, almost
self-dual case).

(a) (Homogeneous version) Let f ′ ∈ C∞c (G′) be a function transferring to the pair (0,1K[
1×K1

) ∈
C∞c (GW0) × C∞c (GW1). Then there exists a function f ′corr ∈ C∞c (G′) such that, for any γ ∈
G′(F0)rs matching an element g ∈ GW0

(F0)rs,

ωG′(γ) ∂Orb(γ, f ′) = − Int(g) · log q + ω(γ) Orb(γ, f ′corr).

Furthermore, for all such matching γ and g, there is an AFL identity

ωG′(γ) ∂Orb

(
γ, (−1)n−1 q

n − 1

q − 1
· 1GLn−1(OF )×K0($)

)
= − Int(g) · log q.
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(b) (Inhomogeneous version) Let f ′ ∈ C∞c (S) be a function transferring to the pair (0,1K1
) ∈

C∞c (G0)× C∞c (G1). Then there exists a function f ′corr ∈ C∞c (S) such that, for any γ ∈ S(F0)rs

matching an element g ∈ G0(F0)rs,

ωS(γ) ∂Orb(γ, f ′) = − Int(g) · log q + ω(γ) Orb(γ, f ′corr).

Furthermore, for all such matching γ and g, there is an AFL identity

ωS(γ) ∂Orb
(
γ, (−1)n−11K′

)
= − Int(g) · log q.

(c) (Lie algebra version) Let φ′ ∈ C∞c (s) be a function transferring to the pair (0,1k1) ∈ C∞c (g0)×
C∞c (g1). Then there exists a function φ′corr ∈ C∞c (S) such that, for any y ∈ s(F0)rs matching an

element x ∈ g0(F0)rs for which the intersection ∆̃ ∩ ∆̃x is an artinian scheme,

ωs(y) ∂Orb(y, φ′) = −`-Int(x) · log q + ω(y) Orb(y, φ′corr).

Furthermore, for all such matching y and x, there is an AFL identity

ωs(y) ∂Orb
(
y, (−1)n−11k′

)
= −`-Int(x) · log q.

In §14.2 we will show that Conjecture 10.4 reduces to the AFL in the self-dual case (i.e.
Conjecture 4.1) in the case of a nondegenerate intersection. In particular, this will show that
the conjecture holds when n = 2 or n = 3.

11. Arithmetic transfer conjecture, F/F0 ramified, n odd

In this section F/F0 is ramified, n ≥ 3 is odd, and we take the special vectors ui ∈ Wi to
have norm 1. This case is the subject of [21], to which we refer the reader for more details. We
continue to use the p-divisible group E and its attendant structure from the Introduction. Recall

from §7 that we take Nn = N (1)
n , i.e. we require that the hermitian space V(Xn) attached to the

framing object Xn = X(1)
n is non-split. As in the case of the AFL, taking the product with E

defines a closed embedding of formal schemes

δN : Nn−1
// Nn

(X, ι, λ, ρ) � //
(
X × E , ι× ιE , λ× λE , ρ× ρE

)
.

Here the last entry is a framing to the constant object over the special fiber defined by Xn =
Xn−1 × E. We obtain as before a closed embedding

∆N : Nn−1

(idNn−1
,δN )

−−−−−−−−→ Nn−1,n = Nn−1 ×Spf OF̆
Nn,

whose image we again denote by

∆ := ∆N (Nn−1).

Let

u := (0, idE) ∈ V(Xn) = V(Xn−1)⊕ V
(
E
)
,

which is a vector of norm 1. Since V(Xn) is non-split, we may therefore identify the triple
(V(Xn), u,V(Xn−1)) with (W1, u1,W

[
1). In this way ∆N is equivariant for the embedding

H1(F0) ↪→ GW1
(F0) as before.

Now recall that in the ramified case, an F/F0-hermitian space contains a π-modular lattice Λ
(i.e. Λ∨ = π−1Λ) if and only if the space is split of even dimension (and all π-modular lattices
are then conjugate under the unitary group). By (2.3) this is the case for W [

0 , and therefore we
may fix a π-modular lattice

Λ[0 ⊂W [
0 .

Let

Λ0 := Λ[0 ⊕OFu0 ⊂W0.

Then Λ0 is almost π-modular, i.e. Λ0 ⊂ Λ∨0 ⊂1 π−1Λ0. Let

K[
0 ⊂ H0(F0)

denote the stabilizer of Λ[0, and let

K0 ⊂ G0(F0) and k0 ⊂ g0(F0)
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denote the respective stabilizers of Λ0. Then K[
0 is a special maximal parahoric subgroup, and

K0 contains a special maximal parahoric subgroup with index 2, cf. [16, §4.a]. We normalize the
Haar measure on H0(F0) (and hence the product measure on HW0

(F0) = H0(F0)×H0(F0)) by
assigning K[

0 volume 1. We normalize the Haar measures on H ′(F0), H ′1(F0), and H ′2(F0) as in
§3. We finally define the intersection number Int(g) for g ∈ GW1

(F0)rs or g ∈ G1(F0)rs, and the
formal locus ∆x and the quantity `-Int(x) for x ∈ g1(F0)rs, as in §4.

Conjecture 11.1 (Arithmetic transfer conjecture).

(a) (Homogeneous version) Let f ′ ∈ C∞c (G′) be a function transferring to the pair (1K[
0×K0

, 0) ∈
C∞c (GW0

) × C∞c (GW1
). Then there exists a function f ′corr ∈ C∞c (G′) such that, for any γ ∈

G′(F0)rs matching an element g ∈ GW1
(F0)rs,

ωG′(γ) ∂Orb(γ, f ′) = − Int(g) · log q + ω(γ) Orb(γ, f ′corr).

Furthermore, there exist such functions f ′ for which f ′corr = 0.

(b) (Inhomogeneous version) Let f ′ ∈ C∞c (S) be a function transferring to the pair (1K0 , 0) ∈
C∞c (G0)× C∞c (G1). Then there exists a function f ′corr ∈ C∞c (S) such that, for any γ ∈ S(F0)rs

matching an element g ∈ G1(F0)rs,

2ωS(γ) ∂Orb(γ, f ′) = − Int(g) · log q + ω(γ) Orb(γ, f ′corr).

Furthermore, there exist such functions f ′ for which f ′corr = 0.

(c) (Lie algebra version) Let φ′ ∈ C∞c (s) be a function transferring to the pair (1k0 , 0) ∈ C∞c (g0)×
C∞c (g1). Then there exists a function φ′corr ∈ C∞c (s) such that, for any y ∈ s(F0)rs matching an
element x ∈ g1(F0)rs for which the intersection ∆ ∩∆x is an artinian scheme,

2ωs(y) ∂Orb(y, φ′) = −`-Int(x) · log q + ω(y) Orb(y, φ′corr).

Furthermore, there exist such functions φ′ for which φ′corr = 0.

A proof of this conjecture in the case n = 3 is contained in [21].

12. Arithmetic transfer conjecture, F/F0 ramified, n even

In this section F/F0 is ramified, n ≥ 2 is even, and we take the special vectors ui ∈ Wi to
have norm −1. We are going to formulate an AT conjecture analogous to the ones we have
already encountered, but the setup in the even ramified case is more complicated. Indeed, in
this case “taking the product with E” defines a map on Nn−1 with values in the space Pn defined
in §9. Since Pn is not regular, we cannot emulate the formulation of the previous AFL and AT
conjectures in the most literal-minded fashion, with Pn in the place of Nn. Instead, we will use
the results of §9 to compose the morphism Nn−1 → Pn with a morphism (in fact, two of them)
from Pn to Nn.

To make this precise, recall from Example 7.2 the universal object (E , ιE ,−λE , ρE) over N1.
Taking the product with the conjugate of this object defines a closed embedding

δ̃N : Nn−1
// Pn

(X, ι, λ, ρ) � //
(
X × E , ι× ιE , λ× (−λE), ρ× ρE

)
,

(12.1)

where the last entry is a framing to the constant object over the special fiber defined by X̃n =
Xn−1 × X1, cf. (9.3). It is easy to verify directly from the wedge condition and condition (7.9)

on Nn−1 that δ̃N produces points satisfying the wedge condition and condition (9.2) on Pn, so

that δ̃N is well-defined. (Well-definedness also follows from flatness of the local model for Nn−1.)

Now recall from §9 the space P ′n, its tautological projections P ′n → Pn and P ′n
ϕ−→ Nn, and its

decomposition P ′n = (P ′n)+ q (P ′n)−. By Theorem 9.3, the projection to Pn sends each of these

summands isomorphically to Pn, and we denote by ψ± the inverse isomorphism Pn
∼−→ (P ′n)±.

We then define the composite morphism

δ±N : Nn−1
δ̃N−−→ Pn

ψ±−−→∼ (P ′n)±
ϕ−→ Nn.

Proposition 12.1. The morphism δ±N is a closed embedding.
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Proof. Since Nn−1 is essentially proper over Spf OF̆ , it suffices to show that δ±N is universally
injective and formally unramified. For the first claim, for notational simplicity we just show that
δ±N is an injection on k-points; the argument for points in an arbitrary algebraically closed field

is the same. Let Nn, Ñn, Nn−1, and N1 denote the (covariant, as always) rational Dieudonné

modules of Xn, X̃n, Xn−1, and X1, respectively. We endow all of these with an F̆ /F̆0-hermitian

structure as before. In particular, N1 is a 1-dimensional F̆ -vector space, and we choose a basis
vector e such that OF̆ e ⊂ N1 is the (self-dual) Dieudonné lattice of X1. Identify Nn with

Ñn = Nn−1 ⊕ X1 via the isogeny φ0 in (9.4). Let (Y, ι, λ, ρ) ∈ Nn−1(k) with Dieudonné module
L ⊂ Nn−1. Our problem is to show that if M is a π-modular Dieudonné lattice in Nn with
πL∨ ⊕ πOF̆ e ⊂1 M ⊂1 L ⊕ OF̆ e, then we can recover L uniquely from M . Since the image of
M in (L⊕OF̆ e)/(πL∨⊕ πOF̆ e) is an isotropic line and e has non-zero norm modulo π, we have
e /∈M . Hence M +OF̆ e = L⊕OF̆ e, from which we can indeed recover L.

To show that δ±N is formally unramified, it suffices to show that the corresponding map on
local models is a closed embedding; the conclusion then follows from the usual local model
diagram argument. We use (essentially) the notation of §7 for lattices and related objects in Fn,
and we use a [ to denote the analogous objects in Fn−1. In particular, we denote by e[1, . . . , e

[
n−1

the standard basis in Fn−1, endowed with the standard split hermitian form (7.1). Consider a
one-dimensional hermitian space Fe with basis vector e of norm −1, and let Λ := OF e ⊂ Fe
denote the self-dual lattice. We take the vectors

ei := e[i , 1 ≤ i ≤ m− 1; em := e[m − e; em+1 :=
e[m + e

2
; ei := e[i−1, m+ 2 ≤ i ≤ n

as a basis for Fn−1⊕Fe. With respect to this basis, the orthogonal sum of the hermitian forms
on Fn−1 and Fe is the standard one (7.1). We define the lattices Λi ⊂ Fn−1 ⊕ Fe with respect
to e1, . . . , en as in §7. In particular, we have Λm−1 = Λ[m−1⊕Λ. Let M{m−1} and M{m} denote

the schemes over SpecOF defined in Definition 9.6 in the case of signature (r, s) = (n− 1, 1),13

and analogously let M [
{m−1} denote the scheme defined with respect to the basis e[1, . . . , e

[
n−1 in

the case of signature (r, s) = (n − 2, 1) and I = {bn−1
2 c} = {m − 1}. Then M [

{m−1}, M{m−1},

and M{m} are the local models for Nn−1, Pn, and Nn, respectively. The map between local

models corresponding to δ±N is the composite

M [
{m−1}

// M{m−1}
ν // M{m}

Fm−1
� // Fm−1 ⊕F

, (12.2)

where, for S a base scheme, F is the rank one submodule (e⊗π+πe⊗1) ⊂ Λ⊗OF0
OS , and ν is the

morphism (9.14) (here we use that M{m−1} is flat, cf. Remark 9.10). Since the local models are
proper, to show that (12.2) is a closed embedding, we need only show that it is a monomorphism.
Let Fm−1 be an S-point on M [

{m−1}. Note that the inclusions Λ[m−1 ⊂ Λm−1 ⊂ Λm present

Λ[m−1 as a direct summand of Λm. Therefore, in the notation of (9.12), Tm−1(Λ[m−1⊗OF0
OS) is

a direct summand of Λm ⊗OF0
OS , and Tm−1(Fm−1) is a locally direct summand of rank n− 1.

The proof of Lemma 9.11 then shows that ν(Fm−1⊕F) is the unique Lagrangian submodule in
Λm ⊗OF0

OS for the form ( , )m (cf. Remark 9.9) which contains Tm−1(Fm−1) and satisfies the

spin condition. Now, one sees readily that ( , )m restricts to a nondegenerate split symmetric
form on Tm−1(Λ[m−1⊗OF0

OS), and hence Tm−1(Fm−1) is Lagrangian in Tm−1(Λ[m−1⊗OF0
OS).

Hence

ν(Fm−1 ⊕F) ∩ Tm−1(Λ[m−1 ⊗OF0
OS) = Tm−1(Fm−1),

which shows that we can recover Fm−1 from its image in M{m}. �

As usual, we take the graph morphism of δ±N to obtain a closed embedding

∆±N : Nn−1

(idNn−1
,δ±N )

−−−−−−−−→ Nn−1,n = Nn−1 ×Spf OF̆
Nn.

13When (r, s) = (1, 1), these schemes are defined over SpecOF0
, and here we implicitly replace them with

their base change to SpecOF .
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Let ∆ denote the (disjoint) union of the images of these embeddings,

∆ := ∆+
N (Nn−1)q∆−N (Nn−1).

Of course, ∆ can also be described as the image of the closed embedding

∆N : Nn−1 × {±1} =
(
Nn−1 × {+1}

)
q
(
Nn−1 × {−1}

) ∆+
Nq∆−N−−−−−−→ Nn−1,n.

Identifying V(Xn) and V(X̃n) = V(Xn−1 × X1) via the isogeny φ0 in (9.4), let

u := (0, idE) ∈ V(Xn) ' V
(
X̃n
)

= V(Xn−1)⊕ V
(
X1

)
. (12.3)

Then u has norm −1, and therefore we may identify (V(Xn), u,V(Xn−1)) with (W1, u1,W
[
1). In

this way ∆N is equivariant for the embedding H1(F0) ↪→ GW1(F0), where H1(F0) acts via the
Kottwitz map on {±1} and diagonally on the product Nn−1×{±1}. (Note that the embeddings
∆+
N and ∆−N are not separately H1(F0)-equivariant.)

Example 12.2 (n = 2). Let us make the the above discussion “concrete” when n = 2. Recall
that N1 = Spf OF̆ is the universal deformation space for E as a formal OF -module, with universal
object (E , ιE , ρE), cf. Example 7.2; that N2 identifies with two copies of the Lubin–Tate space
MSpf OF̆

, cf. Example 6.5; and that P2 identifies with (MΓ0($))Spf OF̆
, cf. Remark 9.4. In terms

of these identifications, we claim that δ̃N : N1 → P2 is the morphism

Spf OF̆
// (MΓ0($))Spf OF̆

(E , ιE , ρE) � // (E , E , ιE(π), ρE).

Indeed, δ̃N sends (E , ιE , ρE) to the point (E × E , ιE × ιE ,−(λE × λE), ρE × ρE) on P2; and the
asserted value in (MΓ0($))Spf OF̆

identifies with the point (E × E , ι,−2(λE × λE), ψ0 ◦ (ρE × ρE))
on P2, where ι is defined by

ι(π) =

[
ιE(π)

ιE(π)

]
,

where ψ0 is the isomorphism X ∼−→ X̃2 in (9.9), and where ρE×ρE is a framing to X. It is obvious
from the definition of ψ0 that the isomorphism in the special fiber given by the framings lifts
to an isomorphism between these two quadruples, which proves the claim. Combining this with
Example 9.4, it follows that both morphisms δ±N identify with the embedding of N1 in MSpf OF̆

sending (E , ιE , ρE) 7→ (E , ρE). Furthermore, the composition

N1
δ±N−−→MSpf OF̆

−→M
identifies with the canonical divisor in M associated to the embedding ιE : F ↪→ D in the sense
of [7] and [33, Def. 1.2]. Finally, note that ∆±N = δ±N under the identification N1,2

∼= N2.

Now fix an almost π-modular lattice

Λ[0 ⊂W [
0 ;

recall that when F/F0 is ramified, such lattices exist in any odd-dimensional hermitian space
and are all conjugate under the corresponding unitary group. Then

Λ\0 := Λ[0 ⊕OFu0 (12.4)

is a vertex lattice of type n − 2 in W0, i.e. Λ\0 ⊂n−2 (Λ\0)∨ ⊂2 π−1Λ\0. Since W0 is split, it

follows that there are two π-modular lattices Λ+
0 ,Λ

−
0 contained in Λ\0 (corresponding to the two

isotropic lines in Λ\0/π(Λ\0)∨). Let

K[
0 ⊂ H0(F0)

denote the stabilizer of Λ[0, and let

K±0 ⊂ G0(F0) and k±0 ⊂ g0(F0)

denote the respective stabilizers of Λ±0 . Then K[
0 is a maximal compact subgroup containing

a special maximal parahoric subgroup with index 2, and K±0 are special maximal parahoric

subgroups, cf. [16, §4.a]. Note that the two lattices Λ±0 are K[
0-conjugate under the embedding

K[
0 ⊂ G0(F0), since, for example, K[

0 contains elements of nontrivial Kottwitz invariant.
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Remark 12.3. The fact that we take K[
0 to be the stabilizer of an almost π-modular lattice

in W [
0 reflects that we have almost π-modular polarizations in the moduli problem for Nn−1;

and similarly, that K±0 are stabilizers of π-modular lattices reflects that the polarizations in

the moduli problem for Nn are π-modular. The fact that K[
0 6⊂ K±0 under the embedding

H0(F0) ⊂ G0(F0) can then be regarded as a group-theoretic reflection of why δN cannot be
defined as simply in the even ramified case as in the cases we have encountered previously.

We normalize the Haar measure on H0(F0) (and hence the product measure on HW0
(F0) =

H0(F0) × H0(F0)) by assigning K[
0 volume 1. As before we normalize the Haar measures on

H ′(F0), H ′1(F0), and H ′2(F0) as in §3. For g ∈ GW1
(F0)rs or g ∈ G1(F0)rs, we define the

intersection number Int(g) with respect to the above cycle ∆ as in §4. For x ∈ g1(F0)rs, we
define (abusing notation in the usual obvious way)

∆x :=

{
(Y,X) ∈ Nn−1,n

∣∣∣∣ Zariski-locally on the base, x : Xn → Xn
lifts to a homomorphism δ+

N (Y )→ X or δ−N (Y )→ X

}
.

As in the case of the AFL, this definition makes sense for any quasi-endomorphism x of Xn, and
for g ∈ G1(F0) we have ∆g = (1× g)∆. As usual, when ∆∩∆x is an artinian scheme, we define

`-Int(x) := length(∆ ∩∆x).

Conjecture 12.4 (Arithmetic transfer conjecture).

(a) (Homogeneous version) Let f ′ ∈ C∞c (G′) be a function transferring to the pair of functions
(1K[

0×K
+
0

+ 1K[
0×K

−
0
, 0) ∈ C∞c (GW0

) × C∞c (GW1
). Then there exists f ′corr ∈ C∞c (G′) such that,

for any γ ∈ G′(F0)rs matching an element g ∈ GW1
(F0)rs,

ωG′(γ) ∂Orb(γ, f ′) = − Int(g) · log q + ω(γ) Orb(γ, f ′corr).

Furthermore, there exist such functions f ′ for which f ′corr = 0.

(b) (Inhomogeneous version) Let f ′ ∈ C∞c (S) be a function transferring to the pair of functions
(1K[

0K
+
0

+ 1K[
0K
−
0
, 0) ∈ C∞c (G0)× C∞c (G1). Then there exists f ′corr ∈ C∞c (S) such that, for any

γ ∈ S(F0)rs matching an element g ∈ G1(F0)rs,

2ωS(γ) ∂Orb(γ, f ′) = − Int(g) · log q + ω(γ) Orb(γ, f ′corr).

Furthermore, there exist such functions f ′ for which f ′corr = 0.

(c) (Lie algebra version) Let φ′ ∈ C∞c (s) be a function transferring to the pair of functions
(1k+0

+1k−0
, 0) ∈ C∞c (g0)×C∞c (g1). Then there exists φ′corr ∈ C∞c (s) such that, for any y ∈ s(F0)rs

matching an element x ∈ g1(F0)rs for which the intersection ∆ ∩∆x is an artinian scheme,

2ωs(y) ∂Orb(y, φ′) = −`-Int(x) · log q + ω(y) Orb(y, φ′corr).

Furthermore, there exist such functions φ′ for which φ′corr = 0.

Remark 12.5. Note that in the inhomogeneous version, we have

1K[
0K

+
0

+ 1K[
0K
−
0

= 1K+
0 K

[
0

+ 1K−0 K[
0
.

Moreover, we may replace the test function 1K[
0K

+
0

+1K[
0K
−
0

by 2 ·1K[
0K

+
0

or 2 ·1K[
0K
−
0

, since they

all have the same orbital integrals (the two groups K±0 are conjugate under H0(F0)). Similarly,
in the Lie algebra version, we may replace the test function 1k+0

+ 1k−0
by 2 · 1k+0

or 2 · 1k−0
.

The proof of Conjecture 12.4 in the case n = 2 is contained in §15.

13. Arithmetic transfer theorems for Ñ (0)
2 and Ñ (1)

2

In this final section of Part 3, we state AT theorems attached to the spaces Ñ (0)
2 and Ñ (1)

2

defined in §8 over Spf OF̆0
. To formulate the statements, we will define an embedding of N1

into each of them, and then proceed in a way similar to before, albeit with a few differences. In
particular, we will only obtain statements in the inhomogeneous group and Lie algebra cases;
and in order to intersect cycles in a regular space, it is crucial that we work over OF̆0

instead of

OF̆ . Let F/F0 be ramified.
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13.1. The case of Ñ (0)
2 . Identify F with its image in D via ιE, and fix ζ ∈ O×D such that

ζπ = −πζ. Then the elements π and ζ generate OD over OF0
since p 6= 2. Furthermore, we have

ε := ζ2 ∈ O×F0
r NF×.

We take the special vectors ui ∈Wi to have norm −ε. Let(
X(0)

1 , ιX(0)
1

, λX(0)
1

)
:=
(
E, ιE,−ελE

)
,

which is the conjugate of the framing object X(0)
1 for N (0)

1 , cf. (7.10) and (7.12). Taking the

product with the conjugate of the corresponding universal object over N (0)
1 then defines a closed

embedding

δ̃
(0)
N : N1

// (Ñ (0)
2 )Spf OF̆

(E , ιE ,−λE , ρE) � //
(
E × E , ιE × ιE ,−(λE × ελE), ρE × ρE

)
.

Here the last entry ρE × ρE is a framing to the constant object over the special fiber defined by

X̃(0)
2 := X1 × X(0)

1 =
(
E× E, ιE × ιE,−(λE × ελE)

)
. (13.1)

Note that since V(X1) = V(X(1)
1 ) is non-split, V(X̃(0)

2 ) is indeed split by (2.3). We compose with

the projection to the regular space Ñ (0)
2 to obtain

∆̃
(0)
N : N1

δ̃
(0)
N−−→ (Ñ (0)

2 )Spf OF̆
−→ Ñ (0)

2 .

By inspection ∆̃
(0)
N is again a closed embedding, and we denote its image by

∆̃(0) ⊂ Ñ (0)
2 .

The canonical vector

u := (0, idE) ∈ V
(
X̃(0)

2

)
= V(X1)⊕ V

(
X(0)

1

)
has norm −ε, and therefore we may identify the triple (V(X̃(0)

2 ), u,V(X1)) with (W0, u0,W
[
0). In

this way ∆̃
(0)
N is equivariant for the embedding H0(F0) ↪→ G0(F0).

To express the above discussion in terms of the natural identifications we have previously noted
for the spaces in play, recall from Example 7.2 that N1 = Spf OF̆ is the universal deformation
space for E as a formal OF -module, with universal object (E , ιE , ρE). Further recall from (8.2)

that Ñ (0)
2 identifies with the Drinfeld space (Ω̂2

F0
)Spf OF̆0

. In fact, we will now use a slightly

different description for the moduli problem for (Ω̂2
F0

)Spf OF̆0
than the one in [10], by changing

the framing object. Let
XDr := E× E,

endowed with its natural OF -action ιXDr
on the right-hand side, and extend this to an OD-action

by defining

ιXDr(ζ) :=

[
ε

1

]
. (13.2)

Then ιXDr
(ζ)ιXDr

(π) = −ιXDr
(π)ιXDr

(ζ), as required, and we take XDr as the framing object for
the Drinfeld moduli problem. Now let

λXDr
:= −(λE × ελE).

It is easy to verify that

RosλXDr

(
ιXDr(π)

)
= −ιXDr(π) and RosλXDr

(
ιXDr(ζ)

)
= ιXDr(ζ).

Hence by [10, Th. 1.2], for any object (X, ι, ρ) of the Drinfeld moduli problem, there is a unique
principal polarization λ on X lifting λXDr

, and (X, ι, ρ) 7→ (X, ι|OF
, λ, ρ) defines an isomorphism

(Ω̂2
F0

)Spf OF̆0

∼−→ Ñ (0)
2 . In terms of this identification, the map ∆̃

(0)
N is therefore given by

Spf OF̆
// (Ω̂2

F0
)Spf OF̆0

(E , ιE , ρE) � // (E × E , ι, ρE × ρE),



52 M. RAPOPORT, B. SMITHLING, AND W. ZHANG

where ι restricts to the natural OF -action on E × E , and ι(ζ) is defined as in (13.2).

Remark 13.1. Again, as in the case of Remark 4.5, one can introduce the special cycle Z(u) in

Ñ (0)
2 . However, according to Sankaran [28], Z(u) is not a divisor, but has embedded components.

The divisor ∆̃
(0)
N (N1) is the purification of Z(u).

Now consider the one-dimensional space W [
1 , and let

Λ[1 ⊂W [
1

be the unique self-dual OF -lattice. Let

Λ1 := Λ[1 ⊕OFu1 ⊂W1,

which is again self-dual. Let

K̃1 ⊂ G1(F0) and k̃1 ⊂ g1(F0)

denote the respective stabilizers of Λ1. Then K̃1 contains the connected stabilizer of Λ1 (which is
the unique parahoric subgroup14) with index 2. We normalize the Haar measure on H1(F0) = F 1

by assigning it volume 1. As usual we normalize the Haar measure on H ′(F0) as in §3. For

g ∈ G0(F0)rs, we define the intersection number Int(g) with respect to the cycle ∆̃(0) ⊂ Ñ (0)
2 in

analogy with before,

Int(g) :=
〈
∆̃(0), g∆̃(0)

〉
Ñ (0)

2
.

Since ∆̃(0) ∩ g∆̃(0) is an artinian scheme, this intersection number is simply given by the length

Int(g) = length
(
∆̃(0) ∩ g∆̃(0)

)
,

cf. [21, Prop. 8.10]. For x ∈ g0(F0)rs, we define (abusing notation as usual)

∆̃(0)
x :=

{
X ∈ Ñ (0)

2

∣∣ x : X̃(0)
2 → X̃(0)

2 lifts to a homomorphism E × E → X
}
.

Then ∆̃(0) ∩ ∆̃
(0)
x is an artinian scheme, and we define

`-Int(x) := length(∆̃(0) ∩ ∆̃(0)
x ).

Theorem 13.2 (Arithmetic transfer theorem).

(a) (Inhomogeneous version) Let f ′ ∈ C∞c (S) be a function transferring to the pair (0,1K̃1
) ∈

C∞c (G0)× C∞c (G1). Then there exists a function f ′corr ∈ C∞c (S) such that, for any γ ∈ S(F0)rs

matching an element g ∈ G0(F0)rs,

2ωS(γ) ∂Orb(γ, f ′) = − Int(g) · log q + ω(γ) Orb(γ, f ′corr).

Furthermore, there exist such functions f ′ for which f ′corr = 0.

(b) (Lie algebra version) Let φ′ ∈ C∞c (s) be a function transferring to the pair (0,1k̃1
) ∈ C∞c (g0)×

C∞c (g1). Then there exists a function φ′corr ∈ C∞c (s) such that, for any y ∈ s(F0)rs matching an
element x ∈ g0(F0)rs,

2ωs(y) ∂Orb(y, φ′) = −`-Int(x) · log q + ω(y) Orb(y, φ′corr).

Furthermore, there exist such functions φ′ for which φ′corr = 0.

We will prove Theorem 13.2 in §16.1.

14After extension of scalars, this becomes an Iwahori subgroup.
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13.2. The case of Ñ (1)
2 . Now we take the special vectors ui ∈Wi to have norm −1. To obtain

an analogous embedding of N1 into Ñ (1)
2 , we simply use the morphism δ̃N defined in (12.1),

followed by the natural projection to Ñ (1)
2 ,

∆̃
(1)
N : N1

δ̃N−−→ P2 ' (Ñ (1)
2 )Spf OF̆

−→ Ñ (1)
2 ,

where the isomorphism in the middle is the one in Example 9.4. Recall from Example 12.2 that

in concrete terms we have N1
∼= Spf OF̆ and Ñ (1)

2
∼=MΓ0($), and that ∆̃

(1)
N then identifies with

Spf OF̆
//MΓ0($)

(E , ιE , ρE) � // (E , E , ιE(π), ρE).

Now recall the framing object X for Ñ (1)
2 , which is isomorphic to the framing object for P2,

X̃(1)
2 := X̃2 = X1 × X1 =

(
E× E, ιE × ιE,−(λE × λE)

)
,

via (9.9). This gives us a canonical vector

u := (0, idE) ∈ V(X) ' V
(
X̃(1)

2

)
= V(X1)⊕ V

(
X1

)
(13.3)

of norm −1, and therefore we may identify the triple (V(X̃(1)
2 ), u,V(X1)) with (W1, u1,W

[
1). In

this way ∆̃
(1)
N is equivariant for the embedding H1(F0) ↪→ G1(F0).

Remark 13.3. Again, as in the AFL case, one can introduce the special cycle Z(u) in Ñ (0)
2 ,

cf. Remark 4.5. It seems likely that Z(u) is not a divisor, but has embedded components [11],

comp. Remark 13.1. The divisor ∆̃
(0)
N (N1) is the purification of Z(u).

Now consider the one-dimensional space W [
0 , and let

Λ[0 ⊂W [
0

be the unique self-dual lattice. Let

Λ0 := Λ[0 ⊕OFu0 ⊂W0,

which is again self-dual. Let

K̃0 ⊂ G0(F0) and k̃0 ⊂ g0(F0)

denote the respective stabilizers of Λ0. Then K̃0 contains an Iwahori subgroup with index 2,
cf. [16, §4.a]. We normalize the Haar measure on H0(F0) = F 1 by assigning it volume 1. The
other normalizations and transfer factors for S and s are all as in the previous subsection. Finally,
as in the previous subsection, we define Int(g) and `-Int(x) for g ∈ G1(F0)rs, resp. x ∈ g1(F0)rs

(again, both are given by a length).

Theorem 13.4 (Arithmetic transfer theorem).

(a) (Inhomogeneous version) Let f ′ ∈ C∞c (S) be a function transferring to the pair (1K̃0
, 0) ∈

C∞c (G0)× C∞c (G1). Then there exists a function f ′corr ∈ C∞c (S) such that, for any γ ∈ S(F0)rs

matching an element g ∈ G1(F0)rs,

2ωS(γ) ∂Orb(γ, f ′) = − Int(g) · log q + ω(γ) Orb(γ, f ′corr).

Furthermore, there exist such functions f ′ for which f ′corr = 0.

(b) (Lie algebra version) Let φ′ ∈ C∞c (s) be a function transferring to the pair (1k̃0
, 0) ∈ C∞c (g0)×

C∞c (g1). Then there exists a function φ′corr ∈ C∞c (s) such that, for any y ∈ s(F0)rs matching an
element x ∈ g1(F0)rs,

2ωs(y) ∂Orb(y, φ′) = −`-Int(x) · log q + ω(y) Orb(y, φ′corr).

Furthermore, there exist such functions φ′ for which φ′corr = 0.

We will prove Theorem 13.4 in §16.2.
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Part 4. Results

In this part of the paper we prove results on the conjectures formulated in Part 3 (except
Conjecture 11.1, which is proved for n = 3 in [21]). We continue to take S = Sn as in (2.6).

14. On the ATC for F/F0 unramified, almost self-dual type

We resume the setup of §10, with F/F0 unramified and n ≥ 2. Recall that we have an
orthogonal decomposition

Wi = W [
i ⊕ Fui, (ui, ui) = $, i ∈ {0, 1},

where W0 is the split hermitian space of dimension n, and W1 is the non-split hermitian space
of dimension n; and, by (2.3), W [

0 is the non-split space of dimension n− 1, and W [
1 is the split

space of dimension n− 1.

14.1. On the FL Conjecture 10.3. In this subsection we prove the following theorem.

Theorem 14.1. (i) The Lie algebra FL Conjectures 3.1(c) and 10.3(c) are equivalent to each
other.

(ii) The homogeneous and inhomogeneous FL Conjectures 10.3(a) and 10.3(b) are equivalent to
each other.

(iii) Assume q ≥ n. Then Conjecture 10.3(c) implies Conjecture 10.3(a)(b).

In order to make the relation between the conjectures in part (i), we first introduce some
auxiliary spaces. Let

W̃i = W̃ [
i ⊕ Fũi, (ũi, ũi) = 1, i ∈ {0, 1},

where W̃0 is a split hermitian space and W̃1 is non-split. Thus W̃i and Wi are isometric, but we
are choosing different special vectors in these spaces. Let

G̃i := U
(
W̃i

)
, H̃i := U

(
W̃ [
i

)
, and g̃i := Lie G̃.

Recall from §10 the self-dual lattice Λ[1 ⊂W [
1 , the almost self-dual lattice Λ1 = Λ[1⊕Fu1 ⊂W1,

and the Lie algebra stabilizer k1 ⊂ g1(F0) of Λ1. We similarly fix an almost self-dual lattice
Λ[0 ⊂ W [

0 ; we set Λ0 := Λ[0 ⊕ OFu0 (a vertex lattice of type 2 in W0); and we denote by

k0 ⊂ g0(F0) the stabilizer of Λ0. We choose an identification W̃ [
i = W [

1−i, and we take

Λ̃[i := Λ[1−i.

We set Λ̃i := Λ̃[i ⊕OF ũi, and we denote by k̃i ⊂ g̃i(F0) the stabilizer of Λ̃i.

We next choose an OF -basis of Λ[i (and hence of Λ̃[1−i) and extend it by adding ui (resp. ũ1−i)

to obtain an F -basis of Wi (resp. W̃1−i). In this way, all the groups under consideration identify
with subgroups of GLn(F ), and all the Lie algebras identify with F0-subspaces of Mn(F ). We
define a GLn−1(F )-equivariant map

θ : Mn(F ) // Mn(F )[
A b
c d

]
� //

[
A $−1b
c d

]
,

where as usual the diagonal blocks are of sizes (n− 1)× (n− 1) and 1× 1, respectively. Finally,
we recall the compact open subgroup k′ ⊂ s(OF0

) defined in (10.3).

Lemma 14.2. (i) The restriction of θ to s(F0) gives a GLn−1(F0)-equivariant bijection

θ : s(F0)
∼−→ s(F0)

such that

θ(k′) = s(OF0
).

In addition, θ further restricts to a bijection s(F0)rs
∼−→ s(F0)rs, and

ωs(y) = (−1)n−1ωs

(
θ(y)

)
and Orb(y,1k′ , s) = Orb

(
θ(y),1s(OF0

), s
)
, y ∈ s(F0)rs.
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(ii) For i ∈ {0, 1}, the restriction of θ to gi(F0) gives an Hi(F0) = H̃1−i(F0)-equivariant bijection

θ : gi(F0)
∼−→ g̃1−i(F0)

such that

θ(ki) = k̃1−i.

In addition, θ further restricts to a bijection gi(F0)rs
∼−→ g̃1−i(F0)rs, and

Orb(x,1ki) = Orb
(
θ(x),1k̃1−i

)
, x ∈ gi(F0)rs.

Here the final asserted equality of unitary orbital integrals when i = 0 is with respect to any

fixed Haar measure on H0(F0) = H̃1(F0); the particular choice will not be important for us.

Proof. We just prove the claim for the transfer factor; all of the other assertions are straightfor-

ward. Let y =
[
A b
c d

]
∈ s(F0)rs. By (3.1), ωs(y) = (−1)v(det(yie)0≤i≤n−1) = (−1)v(det(Aib)0≤i≤n−2).

The claim now follows since applying θ to y replaces b by $−1b. �

Proof of Theorem 14.1(i). Noting that the lattice Λ̃0 ⊂ W̃0 defined above is self-dual, Conjecture
3.1(c) asserts that 1s(OF0

) ∈ C∞c (s) transfers to (1k̃0
, 0) ∈ C∞c (g̃0) × C∞c (g̃1). The equivalence

of this with Conjecture 10.3(c) now follows immediately from Lemma 14.2. �

The key tool in proving part (iii) of Theorem 14.1 will be the Cayley transform. For any
ξ ∈ F 1 and y ∈ Mn(F ) with det(1− y) 6= 0, the Cayley map cξ is defined by

cξ(y) = ξ
1 + y

1− y
∈ Mn(F ).

Its inverse is given by the formula

c−1
ξ (γ) =

γ − ξ
γ + ξ

.

Note that both of these maps are equivariant for the conjugation action by GLn(F ). We introduce
the following terminology.

Definition 14.3. (i) An element γ ∈ S(F0) is integral if its characteristic polynomial has coef-
ficients in OF . We make the same definition for y ∈ s(F0), for g ∈ Gi(F0), and for x ∈ gi(F0).

(ii) An element y ∈ s(F0) is strongly integral if it is integral and det(1 − y) ∈ O×F . We make
the same definition for x ∈ gi(F0). We denote the subsets of strongly integral elements by
s(F0)◦ ⊂ s(F0) and gi(F0)◦ ⊂ gi(F0).

(iii) Let ξ ∈ F 1. An element γ ∈ S(F0) is ξ-strongly integral if it is integral and det(γ+ξ) ∈ O×F .
We make the same definition for g ∈ Gi(F0). We denote the subsets of ξ-strongly integral
elements by S(F0)◦ξ ⊂ S(F0) and Gi(F0)◦ξ ⊂ Gi(F0).

Also recall the compact open subsets K ′ ⊂ S(F0) and K1 ⊂ G1(F0) from §10, and define

k′◦ := k′ ∩ s(F0)◦, K ′◦ξ := K ′ ∩ S(F0)◦ξ , k◦1 := k1 ∩ g1(F0)◦, K◦1,ξ := K1 ∩G1(F0)◦ξ .

Lemma 14.4. Let ξ ∈ F 1.

(i) The Cayley transform cξ induces bijections

s(F0)◦
∼−→ S(F0)◦ξ , g0(F0)◦

∼−→ G0(F0)◦ξ , and g1(F0)◦
∼−→ G1(F0)◦ξ

which are equivariant for the respective actions of H ′(F0), H0(F0), and H1(F0). These bijections
respect the regular semi-simple sets on both sides, and they have the property that regular semi-
simple elements y ∈ s(F0)◦ and x ∈ gi(F0)◦ match if and only if cξ(y) ∈ S(F0)◦ξ and cξ(x) ∈
Gi(F0)◦ξ match.

(ii) Similarly, cξ induces bijections

k′◦
∼−→ K ′◦ξ and k◦1

∼−→ K◦1,ξ.
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Proof. The only claim that possibly requires proof is that the bijections in (i) respect the sets
of regular semi-simple elements on both sides. This follows by using that the Cayley–Hamilton
theorem gives an equality of F -algebras F [y] = F [cξ(y)], and that an arbitrary y ∈ Mn(F ) is

regular semi-simple if and only if the sets {yie}n−1
i=0 and { et yi}n−1

i=0 are linearly independent; cf.
the proofs of [21, Lems. 8.7, 10.6]. �

Lemma 14.5. Let ξ ∈ F 1. Then for any regular semi-simple y ∈ s(F0)◦,

ωs(y) = ωS
(
cξ(y)

)
and Orb(y,1k′ , s) = Orb

(
cξ(y),1K′ , s

)
.

Similarly, for any regular semi-simple x ∈ g1(F0)◦,

Orb(x,1k1) = Orb
(
cξ(x),1K1

)
.

Proof. Since we take y and x to be strongly integral, the equalities for the orbital integrals follow
from equivariance of the Cayley maps and from Lemma 14.4 (especially part (ii)). The equality
for the transfer factor is proved as for [21, Lem. 11.9]. (Note that loc. cit. considers the case
that F/F0 is ramified and n is odd; when F/F0 is unramified, the proof simplifies and is valid
for any n.) �

Now we are ready to prove part (iii) of the theorem.

Proof of Theorem 14.1(iii). We show that part (c) of Conjecture 10.3 implies part (b); that
this also implies (a) will follow from Theorem 14.1(ii). We must show that for all matching
γ ∈ S(F0)rs and g ∈ Gi(F0)rs,

ωS(γ) Orb
(
γ, (−1)n−11K′

)
=

{
0, g ∈ G0(F0)rs;

Orb(g,1K1), g ∈ G1(F0)rs.

First assume that γ is not integral. Then Orb(γ,1K′) = 0, and we have to show that
Orb(g,1K1

) = 0 if g ∈ G1(F0). But since γ and g have identical characteristic polynomials, g is
also not integral, and hence Orb(g,1K1

) vanishes.
Now assume that γ is integral. Since we assume that q ≥ n, there exist at least n+1 elements

ξ0, ξ1, . . . , ξn ∈ F 1 with pairwise distinct residues mod $ (since the kernel of the norm map
F×q2 → F×q has q + 1 elements). Hence there exists some ξ = ξi such that det(γ + ξ) ∈ O×F , i.e.

γ is ξ-strongly integral. Since γ and g have the same characteristic polynomial, g is ξ-strongly
integral too. Let y := c−1

ξ (γ) ∈ s(F0)◦ and x := c−1
ξ (g) ∈ gi(F0)◦. Then y and x are matching

regular semi-simple elements, and by Lemma 14.5 and Conjecture 10.3(c),

ωS(γ) Orb
(
γ, (−1)n−11K′

)
= ωs(y) Orb

(
y, (−1)n−11k′

)
=

{
0, g ∈ G0(F0)rs;

Orb(x,1k1) = Orb(g,1K1
), g ∈ G1(F0)rs,

as desired. �

Remark 14.6. The idea to reduce the group statement to the Lie algebra statement via the
Cayley transform also appears in [21, Lem. 8.4, Lem. 11.1, Prop. 11.14], and in fact our situation
is simpler than in loc. cit. If we assume that q ≥ n+ 2, then we may show the converse to (iii),
i.e. the group version also implies the Lie algebra version, cf. [14, Prop. 2.4].

It remains to prove Theorem 14.1(ii), which we will do by relating functions and orbital
integrals on G′(F0) and S(F0) as in [39, §2.1] and [21, §5.2]. We recall the map r(g) = gg−1

from (2.8), and we continue to normalize the Haar measures as in §3. Also recall that since we are
in the unramified case, η̃ is the natural extension η̃(x) = (−1)v(x) of η to F×. For g ∈ GLn(F ),
we write η̃(g) := η̃(det g).

Lemma 14.7. Let f ′ ∈ C∞c (G′), and define the function f̃ ′ on S(F0) by, for g ∈ GLn(F ),

f̃ ′
(
r(g)

)
:=

∫
GLn−1(F )×GLn(F0)

f ′(h−1
1 , h−1

1 gh2)η̃(gh2)n−1 dh1 dh2.

(i) f̃ ′ ∈ C∞c (S), and every element in C∞c (S) arises in this way.
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(ii) We have
qn − 1

q − 1
· 1̃GLn−1(OF )×K0($) = 1K′ .

(iii) For all γ = (γ1, γ2) ∈ G′(F0)rs,

Orb
(
r(γ−1

1 γ2), f̃ ′
)

= η̃(γ−1
1 γ2)n−1 Orb(γ, f ′).

(iv) Suppose that f ′ transfers to (0, f1) for some f1 ∈ C∞c (GW1
), and that the support of f ′

is contained in {(γ1, γ2) ∈ G′(F0) | |det γ1| = 1}. Then for any γ matching an element in
GW0(F0)rs,

∂Orb
(
r(γ−1

1 γ2), f̃ ′
)

= η̃(γ−1
1 γ2)n−1 ∂Orb(γ, f ′).

Proof. Part (i) is clear, and parts (iii) and (iv) are proved as in [21, Lem. 5.7].15 We prove (ii).
For g ∈ GLn(F ), we have

1̃GLn−1(OF )×K0($)

(
r(g)

)
=

∫
GLn−1(F )×GLn(F0)

1GLn−1(OF )×K0($)(h
−1
1 , h−1

1 gh2)η̃(gh2)n−1 dh1 dh2

=

∫
GLn−1(OF )×GLn(F0)

1K0($)(h
−1
1 gh2)η̃(gh2)n−1 dh1 dh2

=

∫
GLn(F0)

1K0($)(gh2)η̃(gh2)n−1 dh2, (14.1)

where the last equality holds because GLn−1(OF ) ⊂ K0($). We claim that

r(g) ∈ K ′ ⇐⇒ gGLn(F0) ∩K0($) 6= ∅. (14.2)

Before establishing this claim, let us show that it implies the conclusion of (ii). If r(g) /∈ K ′,
then 1̃GLn−1(OF )×K0($)(r(g)) = 0 because, by (14.2), the integrand in (14.1) is identically zero.
If r(g) ∈ K ′, then by (14.2) we may assume that g ∈ K0($). Since η̃ is identically one on
K0($), we conclude from (14.1) that

1̃GLn−1(OF )×K0($)

(
r(g)

)
= vol

(
GLn(F0) ∩K0($)

)
=

1

[GLn(OF0
) : GLn(OF0

) ∩K0($)]
=

1
qn−1
q−1

,

where in the last equality we use that the index in question equals #Pn−1
k (k) (note that GLn(OF0)

acts transitively on the lines in kn, and GLn(OF0)∩K0($) is the stabilizer of a line). This proves
(ii).

It remains to establish the equivalence (14.2). The reverse implication is trivial. To prove the
forward implication, let Λ := OnF and Λ′ := On−1

F ⊕ $−1OF . Then K0($) is the stabilizer in
GLn(F ) of the lattice chain Λ ⊂ Λ′. Since r(g) ∈ K ′, we have g−1Λ = g−1Λ and g−1Λ′ = g−1Λ′.
Hence these are Galois-stable lattices in Fn, so that they come from an OF0

-lattice chain in F0.
Hence there exists h ∈ GLn(F0) such that h · (Λ ⊂ Λ′) = g−1 · (Λ ⊂ Λ′). Hence gh ∈ K0($), as
desired. �

Proof of Theorem 14.1(ii). By Lemma 14.7(ii)(iii) and the definition of the transfer factors in
§2.4,

ωG′(γ) Orb

(
γ,
qn − 1

q − 1
· 1GLn−1(OF )×K0($)

)
= ωS

(
r(γ−1

1 γ2)
)

Orb
(
r(γ−1

1 γ2),1K′
)

for all γ = (γ1, γ2) ∈ G′(F0)rs. On the other hand, it is easy to verify that

Orb(g,1K[
1×K1

) = Orb(g−1
1 g2,1K1

)

15Note that in loc. cit. n is odd, which in the case of our η̃ implies that η̃(γ−1
1 γ2)n−1 = 1; however the proof

for arbitrary n is analogous. Furthermore, there is a factor of 2 in the formula for the derivatives in loc. cit.

This discrepancy is due to the fact that in the ramified case, the normalized absolute value on F restricts to the
square of the normalized absolute on F0; whereas in the present unramified case, the normalized absolute value

on F restricts to the normalized absolute value on F0.
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for all g = (g1, g2) ∈ GW1
(F0)rs. Since the maps

G′(F0)rs
// S(F0)rs

(γ1, γ2)
� // r(γ−1

1 γ2)
and

GWi
(F0)rs

// Gi(F0)rs

(g1, g2) � // g−1
1 g2

(14.3)

are compatible with the matching relation, the theorem follows. �

Let us finally note that, in analogy with [37, Lem. 2.5] in the self-dual case, the transfer
relations asserted in the FL Conjecture 10.3 are easy to verify in the case that the unitary
matching elements are attached to the split hermitian space. For any y ∈ Mn(F ), define

y∗ := diag(1, . . . , 1, $−1) yt diag(1, . . . , 1, $).

Lemma 14.8. (i) Suppose that f ′ ∈ C∞c (G′) satisfies f ′(γ1, γ2) = f ′( γt −1
1 , γ∗ −1

2 ). Then for all
γ ∈ G′(F0)rs matching an element g ∈ GW0

(F0)rs,

Orb(γ, f ′) = 0.

In particular, Orb(γ,1GLn−1(OF )×K0($)) = 0 for such γ.

(ii) Suppose that f ′ ∈ C∞c (S) satisfies f ′(γ) = f ′( γ∗ ). Then for all γ ∈ S(F0)rs matching an
element g ∈ G0(F0)rs,

Orb(γ, f ′) = 0.

In particular, Orb(γ,1K′) = 0 for such γ.

(iii) Suppose that φ′ ∈ C∞c (s) satisfies φ′(y) = φ′( y∗ ). Then for all y ∈ s(F0)rs matching an
element x ∈ g0(F0)rs,

Orb(y, φ′) = 0.

In particular, Orb(γ,1k′) = 0 for such y.

Proof. The proofs of (ii) and (iii) are virtually identical to that of [37, Lem. 2.5]. Part (i) then

follows from (ii) by the easily verified fact that if f ′ satisfies the hypothesis in (i), then f̃ ′ satisfies
the hypothesis in (ii); by the fact that the maps in (14.3) respect the matching relation; and by
Lemma 14.7(iii). �

14.2. On the AT and AFL Conjecture 10.4. In this subsection we prove results related to
Conjecture 10.4. We retain the notation of the previous subsection.

Theorem 14.9. The AFL identity in Conjecture 10.4(c) holds true for an element x ∈ g0(F0)rs

if and only if Conjecture 4.1(c) holds true for θ(x) ∈ g1(F0)rs.

Proof. Forgetting the polarizations, the framing objects Xn of Nn and X̃n of Ñn are identical,

as are the objects E and E ′ used to define the respective embeddings δN : Nn−1 → Nn and

δ̃N : Nn−1 → Ñn. Hence for any x ∈ End◦OF
(X̃n) = End◦OF

(Xn), we have an equality of closed
formal subschemes of Nn−1,

∆̃ ∩ ∆̃x = ∆ ∩∆x.

Now let x ∈ g0(F0). We claim that

∆ ∩∆x = ∆ ∩∆θ(x).

Indeed, with respect to the product decomposition X̃n = Xn = Xn−1 × E, write

x =

[
A b
c d

]
,

where A ∈ End◦OF
(Xn−1), b ∈ Hom◦OF

(E,Xn−1), c ∈ Hom◦OF
(Xn−1,E), and d ∈ End◦OF

(E).

Since x+ RosλX̃n
(x) = 0, we have b = −$ ct , where ct := λ−1

Xn−1
◦ c∨ ◦ λE. Hence

θ(x) =

[
A − ct

c d

]
.

Given a point Y on Nn−1, we see by inspection that x lifts to an endomorphism of Y ×E if and
only if θ(x) does, which proves the claim.
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Of course, it follows from the claim that ∆̃ ∩ ∆̃x is artinian if and only if ∆ ∩∆θ(x) is, and
when they are,

`-Int(x) = `-Int
(
θ(x)

)
.

On the orbital integral side, it follows from Lemma 14.2(i) that

ωs(y) ∂Orb
(
y, (−1)n−11k′

)
= ωs

(
θ(y)

)
∂Orb

(
θ(y),1s(OF0

)

)
, y ∈ s(F0)rs.

This completes the proof. �

Theorem 14.10. Assume q ≥ n. Then the AFL identities in Conjecture 10.4(a)(b) hold true
for all g ∈ GW0

(F0)rs, resp. g ∈ G0(F0)rs, for which the intersection is non-degenerate, provided
that the AFL identity in Conjecture 10.4(c) holds true.

Proof. First note that homogeneous AFL identity reduces to the inhomogeneous one via Lemma
14.7(ii)(iv), Lemma 14.8(i), and the easy fact that Int(g) = Int(g−1

1 g2) for any g = (g1, g2) ∈
GW0

(F0)rs. Thus we show that the inhomogeneous identity holds. The proof again uses Cayley
maps (cf. also the proof of [14, Lem. 2.2]). Let g ∈ G0(F0)rs be such that the intersection is
non-degenerate. Let γ ∈ S(F0)rs be a matching element. We need to show that

ωS(γ) ∂Orb
(
γ, (−1)n−11K′

)
= − Int(g) · log q. (14.4)

As in the proof of Theorem 14.1(iii), we consider cases based on the integrality of γ. If γ is
not integral, then the left-hand side of (14.4) is obviously zero. But then g is also not integral,

and we claim this forces the intersection ∆̃ ∩ (1× g)∆̃ to be empty, so that the right-hand side
of (14.4) is also zero. Indeed, if instead this intersection were nonempty, then it would contain
a k-point, and g would stabilize the corresponding Dieudonné module. Hence the characteristic
polynomial of g would lie in OF̆ [T ], contrary to the non-integrality of g.

Now assume that γ is integral. Since q ≥ n, γ is ξ-strongly integral for some ξ ∈ F 1, and
hence so is the matching element g. Let y := c−1

ξ (γ) ∈ s(F0)◦ and x := c−1
ξ (g) ∈ g0(F0)◦. Then

y and x also match. By Lemma 14.5,

ωs(y) ∂Orb(y,1k′) = ωS(γ) ∂Orb(γ,1K′).

To complete the proof, since we assume the AFL identity in Conjecture 10.4(c), it suffices to

show that ∆̃ ∩ ∆̃x is artinian if and only if ∆̃ ∩ (1× g)∆̃ = ∆̃ ∩ ∆̃g is, and when they are, that

`-Int(x) = Int(g). (14.5)

Both of these statements follow from the equality of subschemes of ∆̃, for any strongly integral
x and g = cξ(x),

∆̃ ∩ ∆̃x = ∆̃ ∩ ∆̃g. (14.6)

Indeed, this implies (14.5) because, when ∆̃ ∩ ∆̃g is artinian, its length is equal to Int(g), cf.
[21, Prop. 8.10]. Now, the two sides (14.6) are the loci of points Y in Nn−1 where, respectively,

x : X̃n → X̃n and g : X̃n → X̃n lift to a homomorphism Y × E → Y × E . But by the Cayley–
Hamilton theorem, for strongly integral x we have OF [x] = OF [cξ(x)] as OF -subalgebras of

End◦OF
(X̃n). Hence x lifts if and only if g does. This establishes (14.6) and completes the

proof. �

Corollary 14.11. Conjecture 10.4 holds when n = 2 or 3.

Proof. Let us first consider the AFL identities in Conjecture 10.4. In these cases the intersection
is automatically non-degenerate. Furthermore, q ≥ 3 ≥ n. Thus by the two preceding theorems,
these identities follow from the Lie algebra AFL Conjecture 4.1(c) for n = 2 and 3. This is
proved in [14]. (When q ≥ 5, the Lie algebra AFL for n = 3 can also be deduced from the group
version proved in [37]; see [14, Lem. 2.2].)

Now we consider the rest of Conjecture 10.4. By the same proof as for [21, Lem. 5.17],
this follows from the density principle for our weighted orbital integrals, i.e. the analog in the
unramified case of [21, Conj. 5.15]. This conjectural density principle is known to hold for n = 2
or 3, cf. [38, Th. 1.1] and [21, Rem. 5.16]. �
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Remark 14.12. The AFL in the self-dual case (Conjecture 4.1) is known for arbitrary n and
F0 = Qp, provided that g is minuscule in the sense of [24], and p ≥ n/2 + 1. If p ≥ n+ 2, then
we may deduce from this the AFL identity in Conjecture 10.4(b) in the almost self-dual case for
certain g, by applying [14, Th. 2.5] and then passing through the Lie algebras as above.

15. On the ATC for F/F0 ramified, n = 2

In this section we prove Conjecture 12.4 when n = 2.

15.1. The groups. On the symmetric space S(F0) = S2(F0), we write an element as

γ =

[
a b
c d

]
∈ S(F0).

Then γ is regular semi-simple if and only if bc 6= 0, in which case we may write γ as

γ = γ(a, b) :=

[
a b

(1−Na)/b −ab/b

]
=

[
1

−b/b

] [
a b

−(1−Na)/b a

]
∈ S(F0)rs, a ∈ F r F 1, b ∈ F×.

(15.1)

We define the set of semi-simple but irregular elements

AS :=

{[
a

d

]
∈ S(F0)

∣∣∣∣ a, d ∈ F 1

}
.

Similarly, in the “Lie algebra” s(F0) = s2(F0) we write an element as

y = y(a, b, c, d) =

[
a b
c d

]
∈ s(F0), a, b, c, d ∈ πF0. (15.2)

The set of semi-simple but irregular elements is

as :=

{[
a

d

]
∈ s(F0)

∣∣∣∣ a, d ∈ πF0

}
.

On the unitary side, we first look at objects attached to the split hermitian space. Recall
from §12 that we have

W0 = W [
0 ⊕ Fu0, (u0, u0) = −1.

By (2.3) the space W [
0 is also split, and we choose a basis vector u[ ∈ W [

0 with (u[, u[) = 1.
This choice determines a special embedding G0(F0) = U(W0)(F0) ↪→ GL2(F ) as in §2.2, which
realizes G0 as the unitary group associated to the diagonal hermitian matrix diag(1,−1). In this
way, the set of irregular elements in G0(F0) is

AG0 :=

{[
a

d

]
∈ M2(F )

∣∣∣∣ a, d ∈ F 1

}
. (15.3)

These elements are all semi-simple since the group H0 = U(W [
0) is anisotropic. Similarly, we

embed the Lie algebra g0(F0) ↪→ M2(F ), and we denote its set of irregular semi-simple elements
by

ag0
:=

{[
a

d

]
∈ M2(F )

∣∣∣∣ a, d ∈ πF0

}
.

Now recall the lattice Λ\0 = Λ[0 ⊕ OFu0 from (12.4), which is self-dual since n = 2. The two

π-modular lattices lying between πΛ\0 and Λ\0 are given by

Λ±0 = πΛ\0 +OF (u0 ± u[).

They are both stable under elements of K[
0 = F 1 with reduction 1 mod π, and they are permuted

by elements with reduction −1 mod π. Now let Λ0 be either of them, and let K0 ⊂ G0(F0) and
k0 ⊂ g0(F0) be the respective stabilizers of Λ0. A subtle point is that

AG0
∩K0 =

{[
a

d

]
∈ G0(F0)

∣∣∣∣ a ≡ 1 mod π

}



REGULAR FORMAL MODULI SPACES AND ARITHMETIC TRANSFER CONJECTURES 61

is a subgroup of AG0
of index 2. However, we do have

AG0 ∩K[
0K0 = AG0 . (15.4)

In the Lie algebra g0(F0), we have

ag0
∩ k0 =

{[
a

d

]
∈ g0(F0)

∣∣∣∣ a, d ∈ πOF0

}
. (15.5)

We now look at the non-quasi-split unitary group G1. Recall from (12.3) that the hermitian
space

W1 = V(X2) ∼= V
(
X̃2

)
= Hom◦OF

(
E,X1 × X1

)
= V(X1)⊕ V

(
X1

)
has a special vector u = (0, idE) with norm −1. Note that the rightmost space in the display is
canonically D = D− ⊕ F (as an F0-vector space) with hermitian norm given by (v, v) = −Nv
for v ∈ D, and the special vector u corresponds to 1 ∈ D. We identify

End◦OF0

(
X̃2

)
= End◦OF0

(
E2
)

= M2(D),

and theOF -action is given by π 7→ diag(π,−π) ∈ M2(D). Then theOF -linear quasi-endomorphism
algebra is

End◦OF

(
X̃2

)
=

{[
a b
c d

]
∈ M2(D)

∣∣∣∣ a, d ∈ F, b, c ∈ D−}.
The Rosati involution is given by

RosλX̃2
(x) = x† = xt ,

where x 7→ x is the entry-wise main involution on M2(D). We then have the unitary group

G1(F0) =
{
x ∈ End◦OF

(
X̃2

) ∣∣ x†x = 1
}
,

and its Lie algebra

g1(F0) =
{
x ∈ End◦OF

(
X̃2

) ∣∣ x† + x = 0
}
.

They may be explicitly presented as

G1(F0) =

{[
1

α

] [
a b
b a

]
∈ M2(D)

∣∣∣∣ a ∈ F, b ∈ D−, Na+ Nb = 1, α ∈ F 1

}
(15.6)

and

g1(F0) =

{[
a b
b d

]
∈ M2(D)

∣∣∣∣ a, d ∈ πF0, b ∈ D−
}
. (15.7)

If we fix a basis element ζ ∈ D−, then we may also express these presentations in terms of special
embeddings into M2(F ),[

1
α

] [
a b
b a

]
∈ G1(F0) ⊂ M2(D) identifies with

[
a bζ−1

αbζ αa

]
∈ M2(F ),

and [
a b
b d

]
∈ g1(F0) ⊂ M2(D) identifies with

[
a bζ−1

bζ −d

]
∈ M2(F ).

Similarly to before, the irregular semi-simple elements in G1(F0) are given by the diagonal
elements

AG1
:=

{[
a

d

]
∈ M2(D)

∣∣∣∣ a, d ∈ F 1

}
=

{[
a

d

]
∈ M2(F )

∣∣∣∣ a, d ∈ F 1

}
,

and the irregular semi-simple elements in g1(F0) are given by

ag1
:=

{[
a

d

]
∈ M2(D)

∣∣∣∣ a, d ∈ πF0

}
=

{[
a
−d

]
∈ M2(F )

∣∣∣∣ a, d ∈ πF0

}
.
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15.2. Orbit matching. Let us now indicate how regular semi-simple orbits match in terms of
the presentations just given. Recall from [20, Prop. 6.2] that in the case n = 2, two regular semi-
simple elements in M2(F ) (cf. §2.2) are GL1(F )-conjugate if and only if their diagonal entries
are the same and the products of their off-diagonal entries are the same. In the group setting, it
is easy to verify from this that elements γ ∈ S(F0)rs and g ∈ Gi(F0)rs match if and only if, after
regarding g as an element of GL2(F ) via a special embedding, det γ = det g and the upper-left
entries of these matrices are equal. Let Srs,i denote the subset of S(F0)rs of elements matching
with elements in Gi(F0)rs. It is easy to see that

γ(a, b) ∈ Srs,i ⇐⇒ η(Na− 1) = (−1)i. (15.8)

Furthermore, in terms of the presentation (15.6),

γ(a, b) ∈ Srs,1 matches g =

[
1

α

] [
a′ b′

b′ a′

]
∈ G1(F0)rs

if and only if a = a′ and −b/b = det γ(a, b) = det g = α.
In the Lie algebra setting, we analogously denote by srs,i the subset of s(F0)rs of elements

matching with elements in gi(F0)rs. It is easy to see that

y(a, b, c, d) ∈ srs,i ⇐⇒ bc 6= 0 and η(bc) = (−1)i.

In terms of the presentation (15.7),

y(a, b, c, d) ∈ srs,1 matches x =

[
a′ b′

b′ d′

]
∈ g1(F0)rs

if and only if a = a′, d = −d′, and bc = −Nb′.

15.3. Harmonic analysis. The harmonic analysis on S(F0) is done in Mihatsch’s article [13].
We briefly recall the results in loc. cit.

The orbital integral for γ = γ(a, b) ∈ S(F0)rs and a function f ′ ∈ C∞c (S) is given by

Orb(γ, f ′, s) =

∫
F×0

f ′
([

a b/x

x(1−Na)/b −ab/b

])
η(x)|x|s dx.

The transfer factor takes the form

ωS(γ) = η̃
(
b
)

= η̃(b)−1, (15.9)

cf. §2.4. Similarly, the orbital integral for fi ∈ C∞c (Gi), i ∈ {0, 1}, is given by

Orb(g, fi) =

∫
Hi(F0)

fi(h
−1gh) dh.

This is well-defined for all g, since Hi(F0) = F 1 is compact. Recall that the Haar measure on
H0(F0) is chosen to give K[

0 = H0(F0) volume one. We similarly assign H1(F0) volume one. We
also recall the orbital integrals for functions on the Lie algebras from §2.3.

Theorem 15.1. (i) Let f ′ ∈ C∞c (S) transfer to (f0, f1) ∈ C∞c (G0) × C∞c (G1), and let γ0 =
diag(a0, d0) ∈ AS. If fi = 0 for some i ∈ {0, 1}, then there is the following germ expansion for
γ = γ(a, b) ∈ Srs,i in a neighborhood of γ0,

ωS(γ) ∂Orb(γ, f ′) =
1

2
Orb

(
diag(a0, d0), f1−i

)
log|1−Na|+ C,

where C is a constant depending on γ0, f ′, and i, but not on γ.

(ii) Let f ′ ∈ C∞c (s) transfer to (f0, f1) ∈ C∞c (g0) × C∞c (g1), and let y0 = diag(a0, d0) ∈ as.
If fi = 0 for some i ∈ {0, 1}, then there is the following germ expansion for y = y(a, b, c, d) ∈
s(F0)rs,i in a neighborhood of y0,

ωs(y) ∂Orb(y, f ′) =
1

2
Orb

(
diag(a0, d0), f1−i

)
log|bc|+ C,

where C is again a constant which does not depend on y.
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Proof. (i) By [13, Th. 3.5, Cor. 3.8] and (15.9), there is a germ expansion for regular semi-simple
γ = γ(a, b) in a neighborhood of γ0,

ωS(γ) Orb(γ, f ′, s) = φ+(γ0, s)|b|s + φ−(γ0, s)η̃
(
−b2

)
η(Na− 1)

∣∣(1−Na)/b
∣∣−s,

where φ±(γ0, s) are Laurent polynomials in qs depending on γ0 and f ′. Here | | denotes the
natural extension of the normalized absolute value on F0 to F . For all γ sufficiently near γ0, the
factor η̃(−b2) = η̃(−b/b) is constant-valued. Hence, after possibly shrinking the neighborhood
around γ0 and replacing φ− by a constant multiple of itself, we obtain

ωS(γ) Orb(γ, f ′, s) = φ+(γ0, s)|b|s + φ−(γ0, s)η(Na− 1)
∣∣(1−Na)/b

∣∣−s. (15.10)

Evaluation at s = 0 yields

ωS(γ) Orb(γ, f ′) = φ+(γ0) + φ−(γ0)η(Na− 1), (15.11)

where φ±(γ0) := φ±(γ0, 0).
Similarly (and more simply), on the unitary side, the function g 7→ Orb(g, fi) is locally

constant (and compactly supported) on Gi(F0). In particular, for g0 := diag(a0, d0) ∈ AGi ,
there is a neighborhood of g0 in Gi(F0) on which for all elements g,

Orb(g, fi) = Orb(g0, fi).

Since f ′ transfers to (f0, f1), we obtain from this, (15.8), and (15.11) that

Orb
(
diag(a0, d0), f0

)
= φ+(γ0) + φ−(γ0),

Orb
(
diag(a0, d0), f1

)
= φ+(γ0)− φ−(γ0).

(15.12)

Now assume that i = 1 in the statement of the theorem. Then by (15.12),

φ+(γ0) = φ−(γ0) =
1

2
Orb

(
diag(a0, d0), f0

)
. (15.13)

When γ ∈ Srs,1, i.e. η(Na− 1) = −1, we may rewrite (15.10) as

ωS(γ) Orb(γ, f ′, s) = |b|s
(
φ+(γ0, s)− φ−(γ0, s)

)
+ |b|sφ−(γ0, s)

(
1− |1−Na|−s

)
.

Taking the derivative, we obtain

ωS(γ) ∂Orb(γ, f ′) = C + φ−(γ0) log|1−Na|,

where C := d
ds

∣∣
s=0

(φ+(γ0, s) − φ−(γ0, s)) is a constant. The desired result now follows from

(15.13). The case i = 0 is analogous.
(ii) The proof is analogous to (i). Note that Th. 3.5 and Cor. 3.8 in [13] are only stated in the

group setting. In the Lie algebra setting, one analogously proves that for all regular semi-simple
y = y(a, b, c, d) in a neighborhood of y0,

Orb(y, f ′, s) = φ+(y0, s)η̃(b)|b|s + φ−(y0, s)η̃(c)−1|c|−s

for some Laurent polynomials φ±(y0, s) in qs depending on y0 and f ′. Also note that the Lie
algebra transfer factor is given by ωs(y) = η̃(−b) = η̃

(
b
)
. With these remarks the proof of (i)

carries over in a straightforward way. �

For the specific test function f0 = 1K[
0K0
∈ C∞c (G0), the irregular orbital integrals are as

follows.

Lemma 15.2. The irregular orbital integrals of 1K[
0K0

are given by

Orb
(
diag(a, d),1K[

0K0

)
= 1, a, d ∈ F 1.

The irregular orbital integrals of 1k0 are given by

Orb
(
diag(a, d),1k0

)
=

{
1, a, d ∈ πOF0

,

0, otherwise.

Proof. This is immediate from the fact that the conjugation action of H0(F0) on diagonal ma-
trices is trivial, from the normalization volH0(F0) = 1, and from (15.4) and (15.5). �
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15.4. Intersection numbers. We now record the values of the intersection numbers appearing
in parts (b) and (c) of Conjecture 12.4. Recall that v denotes the normalized valuation on F0.

Proposition 15.3. Let g =

[
1

α

] [
a b
b a

]
∈ G1(F0)rs, expressed in the presentation (15.6).

Then

Int(g) = 2v(Nb) + 2.

Similarly, for x =

[
a b
b d

]
∈ g1(F0)rs expressed in the presentation (15.7),

`-Int(x) =

{
2v(Nb) + 2, a, d ∈ πOF0 and b ∈ OD ∩D−;

0, otherwise.

Proof. We first consider the group version. Note that under the parametrization (15.6), a+ b is
a norm one element in D, and hence a ∈ OF and b ∈ OD ∩D− are both integral.

The coordinates (15.6) express g naturally as a quasi-endomorphism of X̃2; the quasi-endo-

morphism of X2 attached to g is the conjugate φ−1
0 gφ0, where φ0 : X2 → X̃2 is the isogeny (9.4).

With respect to the OF0
-linear decompositions X2 = OF ⊗OF0

E = (1⊗E)⊕(π⊗E) and X̃2 = E2,

the element φ0 ∈ Hom◦OF
(X2, X̃2) ⊂ End◦OF0

(E2) = M2(D) identifies with the matrix[
1 π
1 −π

]
.

Hence the conjugate φ−1
0 gφ0 identifies with the matrix[

1 π
1 −π

]−1 [
a b
αb αa

] [
1 π
1 −π

]
=

1

2

[
(1 + α)(a+ b) π(1− α)(a+ b)

π−1(1− α)(a+ b) (1 + α)(a+ b)

]
. (15.14)

Now recall from Example 12.2 that N1,2
∼= N2 = N+

2 qN
−
2 , where each of the summands N±2

identifies with MSpf OF̆
, and the cycle ∆ identifies with the canonical divisor attached to the

embedding ιE : F ↪→ D in each copy ofMSpf OF̆
. More precisely, under these identifications, the

universal object over ∆ ∩ N+
2 is δ+

N (E) = (OF ⊗OF0
E , OF ⊗ ρE), and the universal object over

∆∩N−2 is δ−N (E) = (OF ⊗OF0
E , κ0 ◦ (OF ⊗ ρE)); here we have suppressed auxiliary structure in

the obvious way, and

κ0 :=

[
π

π−1

]
∈ Aut◦OF

(X2) ⊂ M2(D)

is a self-quasi-isogeny of X2 which lies in the unitary group G1(F0) and has Kottwitz invariant
−1 (so that the action of κ0 on N2 interchanges the components N±2 ).

Now we compute Int(g). First note that, as in [21, Prop. 8.10], there are no higher Tor terms
in the calculation. Thus Int(g) is simply the length of ∆ ∩ (1× g)∆, which in turn is twice the
length of ∆∩ (1×g)∆∩N+

2 . This last intersection is the locus in Spf OF̆ where φ−1
0 gφ0 lifts to a

homomorphism δ+
N (E)→ δ+

N (E) or δ−N (E)→ δ+
N (E), or equivalently, where φ−1

0 gφ0 or φ−1
0 gφ0κ0

lifts to a homomorphism δ+
N (E)→ δ+

N (E). In other words, this is the locus where all the entries
of the right-hand side of (15.14), or all the entries of

φ−1
0 gφ0κ0 =

1

2

[
(1− α)(a− b) π(1 + α)(a− b)

π−1(1 + α)(a− b) (1− α)(a− b)

]
, (15.15)

lift to endomorphisms of the canonical lifting E . In the group setting, only one of these matrices
will have all entries integral to begin with; this is governed by the Kottwitz invariant of g, that
is, by the residue class of the norm one element α mod π. Indeed, suppose that α ≡ 1 mod π.
Then 1 + α ∈ O×F since p 6= 2. Since N(a − b) = Na + Nb = 1, we conclude that the lower left
entry in (15.15) is non-integral. Continuing to assume α ≡ 1, we evidently have that π | 1− α,
and therefore the locus where the entries of (15.14) lift is the locus where a+ b lifts. By Gross’s
formula [30, Th. 2.1], the length of this locus is ` + 1, where ` is the nonnegative integer such
that a + b ∈ (OF + π`OD) r (OF + π`+1OD); comp. also [21, Prop. 9.1]. Since a ∈ OF and
b ∈ OD ∩D−, the asserted formula for Int(g) follows.
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If α ≡ −1 mod π, then one similarly finds that the lower left entry of (15.14) is non-integral,
and that the locus where the entries of (15.15) lift is the locus where a − b lifts, which has the
same length as before. This completes the proof in the group case.

The Lie algebra case is quite similar, and we only briefly outline the differences. The matrices
(15.14) and (15.15) are replaced by

1

2

[
a+ d+ 2b π(a− d)
π−1(a− d) a+ d+ 2b

]
and

1

2

[
a− d π(a+ d− 2b)

π−1(a+ d− 2b) a− d

]
,

respectively, and `-Int(x) is twice the length of the locus where all the entries of at least one
of these matrices lift to endomorphisms of E . If any one of a, b, or d is non-integral, then it is
easy to see (again using that p 6= 2) that both of these matrices have a non-integral entry, and
hence `-Int(x) = 0. If all of them are integral, then the locus where the entries in the second
matrix lift is contained in the locus where the entries in the first matrix lift, and the length of
this latter locus is again given by Gross’s formula as v(Nb) + 1. �

15.5. Proof of Conjecture 12.4 for n = 2. The homogeneous group version (a) reduces to the
inhomogeneous version (b) as in [21, Lem. 5.8] (see also Lemma 14.7 for the unramified analog
of [21, Lem. 5.7] when n is even). Thus we show that (b) holds. To prove the first assertion in
(b), fix γ0 = diag(a0, d0) ∈ AS = AG0

. It suffices to show that the sum

2ωS(γ) ∂Orb(γ, f ′) + Int(g) log q (15.16)

is constant when γ ∈ Srs,1 is in a neighborhood of γ0 (and g ∈ G1(F0)rs is any match of γ). It
then follows from, for example, [13, Cor. 3.8] that (15.16) is an orbital integral function, which
is what we have to show.

We have for f0 = 1K[
0K

+
0

+ 1K[
0K
−
0

and g ∈ G0(F0),

Orb(g, f0) = 2 Orb(g,1K[
0K

+
0

) = 2 Orb(g,1K[
0K
−
0

).

We may therefore replace f0 by 2 ·1K[
0K0

, cf. Remark 12.5. By Theorem 15.1 (in the case i = 1)

and Lemma 15.2, there exists a neighborhood of γ0 on which for all γ = γ(a, b) ∈ Srs,1,

2ωS(γ) ∂Orb(γ, f ′) = 2 log|1−Na|+ C = −2v(1−Na) log q + C

for some constant C. Proposition 15.3 then yields immediately that the sum (15.16) is a constant
for all such γ, as desired. The second assertion in (b), namely that there exists an f ′ transferring
to (1K[

0K
+
0

+ 1K[
0K
−
0
, 0) for which f ′corr = 0, now follows by the same argument as in [21, Prop.

5.14].
The Lie algebra version (c) for n = 2 follows similarly, by the corresponding statements in

Theorem 15.1, Lemma 15.2, and Proposition 15.3. �

16. Proofs of Theorems 13.2 and 13.4

16.1. Proof of Theorem 13.2. We resume the setup of §13.1. Let us recall the groups and

their Lie algebras. The quasi-split unitary group G0 is associated to the framing object X̃(0)
2 of

Ñ (0)
2 , cf. (13.1). We identify

End◦OF0

(
X̃(0)

2

)
= End◦OF0

(
E2
)

= M2(D),

and theOF -action is given by π 7→ diag(π,−π) ∈ M2(D). Then theOF -linear quasi-endomorphism
algebra is

End◦OF

(
X̃(0)

2

)
=

{[
a b
c d

]
∈ M2(D)

∣∣∣∣ a, d ∈ F, b, c ∈ D−}.
The Rosati involution is given by

Rosλ
X̃(0)
2

(x) = x† =

[
1

ε

]−1

xt
[
1

ε

]
,

where x 7→ x is the entry-wise main involution on M2(D). Recall that ε ∈ O×F0
is a non-norm.

We then have the unitary group

G0(F0) =
{
x ∈ End◦OF

(
X̃(0)

2

) ∣∣ x†x = 1
}
,
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and its Lie algebra

g0(F0) =
{
x ∈ End◦OF

(
X̃(0)

2

) ∣∣ x† + x = 0
}
.

They may be explicitly presented as

G0(F0) =

{[
1

α

] [
a b

ε−1b a

]
∈ M2(D)

∣∣∣∣ a ∈ F, b ∈ D−, Na+ ε−1Nb = 1, α ∈ F 1

}
,

and

g0(F0) =

{[
a b

ε−1b d

]
∈ M2(D)

∣∣∣∣ a, d ∈ πF0, b ∈ D−
}
.

The matching of orbits is analogous to §15.2: in terms of the parametrization (15.1) for
elements in S(F0)rs, we have

γ(a, b) ∈ Srs,0 matches g =

[
1

α

] [
a′ b′

ε−1b′ a′

]
∈ G0(F0)rs

if and only if a = a′ and −b/b = det γ(a, b) = det g = α. In the Lie algebras, in terms of the
parametrization (15.2) for elements in s(F0), we have

y(a, b, c, d) ∈ srs,0 matches x =

[
a′ b′

ε−1b′ d′

]
∈ g0(F0)rs

if and only if a = a′, d = −d′, and bc = −ε−1Nb′.
The unitary group G1 is associated to to the non-split hermitian space

W1 = W [
1 ⊕ Fu1, (u1, u1) = −ε.

By (2.3) the space W [
1 is split, and we choose a basis vector u[ ∈ W [

1 with (u[, u[) = 1. In this
way we view G1 and its Lie algebra g1 as attached to the diagonal hermitian form diag(1,−ε).
The irregular elements in the F0-points of each then consist of the diagonal matrices contained
in each. Now recall from §13.1 the self-dual lattice Λ1 ⊂ W1 and its respective stabilizers

K̃1 ⊂ G1(F0) and k̃1 ⊂ g1(F0).

Lemma 16.1. The irregular orbital integrals of 1K̃1
are given by

Orb
(
diag(a, d),1K̃1

)
= 1, a, d ∈ F 1.

The irregular orbital integrals of 1k̃1
are given by

Orb
(
diag(a, d),1k̃1

)
=

{
1, a, d ∈ πOF0 ,

0, otherwise.

Proof. This is the same as the proof of Lemma 15.2, noting that K̃1 contains the irregular

group elements, and that the intersection of k̃1 with the irregular Lie algebra elements is the set
{diag(a, d) | a, d ∈ πOF0

}. �

Proposition 16.2. Let g =

[
1

α

] [
a b

ε−1b a

]
be an element in G0(F0)rs. Then

Int(g) =

{
v(Nb) + 1, a ∈ OF and b ∈ OD ∩D−;

0, otherwise.

Similarly, for an element x =

[
a b

ε−1b d

]
in g0(F0)rs,

`-Int(x) =

{
v(Nb) + 1, a, d ∈ πOF0

and b ∈ OD ∩D−;

0, otherwise.

Proof. The method of proof is the same as that of Proposition 15.3, except this time the details
are much simpler. In the group case, Int(g) is the length of the locus in Spf OF̆ where

[
a b

αε−1b αa

]
lifts from an endomorphism of E×E to an endomorphism of E ×E , or in other words, where each
of the entries lifts to an endomorphism of E . If a or b is non-integral, then this locus is empty
and we obtain Int(g) = 0. If a and b are integral, then a, α, ε−1 ∈ OF lift without constraint,
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and the length in question is again given by Gross’s formula as v(Nb) + 1. The Lie algebra case
is analogous. We remind the reader that the factor of 2 in Proposition 15.3 is due to the fact
that there are two copies of M involved there. �

Now we complete the proof of the theorem.

Proof of Theorem 13.2. We first prove the group version (a); the argument is formally the same
as the proof of Conjecture 12.4(b) for n = 2 in §15.5. To prove the first assertion in (a), fix
γ0 = diag(a0, d0) ∈ AS , which we also regard as an irregular element in G1(F0). It again suffices
to show that the sum

2ωS(γ) ∂Orb(γ, f ′) + Int(g) log q (16.1)

is constant when γ ∈ Srs,0 is in a neighborhood of γ0 (and g ∈ G0(F0)rs is any match of γ). By
Theorem 15.1 (in the case i = 0) and Lemma 16.1, there exists such a neighborhood on which
for all γ = γ(a, b) ∈ Srs,0,

2ωS(γ) ∂Orb(γ, f ′) = log|1−Na|+ C = −v(1−Na) log q + C

for some constant C. Proposition 16.2 then yields that (16.1) is constant for such γ, as desired.
The second assertion in (a) again follows by the argument in [21, Prop. 5.14].

The Lie algebra version (b) follows similarly, by the corresponding statements in Theorem
15.1, Lemma 16.1, and Proposition 16.2. �

16.2. Proof of Theorem 13.4. Now we resume the setup of §13.2. This case is very similar
to the π-modular case in §15. The groups are the same as in §15. In particular, the irregular

elements in G0(F0) are the subset AG0
(15.3). Recall that the compact open subgroups K̃0 ⊂

G0(F0) and k̃0 ⊂ g0(F0) are the respective stabilizers of the self-dual lattice Λ0 ⊂ W0. By the
same argument as in the proofs of Lemmas 15.2 and 16.1, we obtain the following.

Lemma 16.3. The irregular orbital integrals of 1K̃0
are given by

Orb
(
diag(a, d),1K̃0

)
= 1, a, d ∈ F 1.

The irregular orbital integrals of 1k̃0
are given by

Orb
(
diag(a, d),1k̃0

)
=

{
1, a, d ∈ πOF0 ,

0, otherwise.
�

Proposition 16.4. Let g =

[
1

α

] [
a b
b a

]
∈ G1(F0)rs, expressed in the presentation (15.6).

Then
Int(g) = v(Nb) + 1.

Similarly, for x =

[
a b
b d

]
∈ g1(F0)rs expressed in the presentation (15.7),

`-Int(x) =

{
v(Nb) + 1, a, d ∈ πOF0

and b ∈ OD ∩D−;

0, otherwise.

Proof. The proof is virtually identical to that of Proposition 16.2. Note that in the group case,
as in Proposition 15.3, the entries a and b are automatically integral. �

Now we complete the proof of the theorem.

Proof of Theorem 13.4. The proof is essentially the same as the proofs of Conjecture 12.4(b)(c)
when n = 2 and Theorem 13.2. We first prove the group version (a). For the first assertion, fix
γ0 = diag(a0, d0) ∈ AS , which we also regard as an irregular element in G0(F0). As before, it
suffices to show that the sum

2ωS(γ) ∂Orb(γ, f ′) + Int(g) log q (16.2)

is constant when γ ∈ Srs,1 is in a neighborhood of γ0 (and g matches γ). By Theorem 15.1 (in the
case i = 1) and Lemma 16.3, there exists such a neighborhood on which for all γ = γ(a, b) ∈ Srs,1,

2ωS(γ) ∂Orb(γ, f ′) = log|1−Na|+ C = −v(1−Na) log q + C
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for some constant C. Proposition 16.4 then yields that (16.2) is constant for such γ, as desired.
The second assertion in (a) again follows by the argument in [21, Prop. 5.14].

The Lie algebra version (b) follows similarly, by the corresponding statements in Theorem
15.1, Lemma 16.3, and Proposition 16.4. �
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