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Abstract. In the relative trace formula approach to the arithmetic Gan–Gross–Prasad con-

jecture, we formulate a local conjecture (arithmetic transfer) in the case of an exotic smooth

formal moduli space of p-divisible groups, associated to a unitary group relative to a ramified
quadratic extension of a p-adic field. We prove our conjecture in the case of a unitary group

in three variables.
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1. Introduction

The theorem of Gross and Zagier [6] relates the Neron–Tate heights of Heegner points on
modular curves to special values of derivatives of certain L-functions. This has been generalized
in various ways to higher-dimensional Shimura varieties. One such generalization, which is still
conjectural, has been proposed by Gan–Gross–Prasad [4] and the third-named author [32, 33].
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This arithmetic Gan–Gross–Prasad conjecture is inspired by the (usual) Gan–Gross–Prasad
conjecture relating period integrals on classical groups to special values of certain L-functions.
In [8] Jacquet and Rallis proposed a relative trace formula approach to this last conjecture in
the case of unitary groups, which led them to formulate two local conjectures in this context: a
fundamental lemma (FL) conjecture, and a smooth transfer (ST) conjecture. Both of their local
conjectures are now proved to a large extent, the first for p� 0 thanks to the work of Yun [30]
(and Gordon [5]), and the second for arbitrary p-adic non-archimedean fields by the third-named
author [35].

In [33] the third-named author proposed a relative trace formula approach to the arithmetic
Gan–Gross–Prasad conjecture. In this context, he formulated the arithmetic fundamental lemma
(AFL) conjecture, cf. [33, 21]. The AFL conjecturally relates the special value of the derivative
an orbital integral to an arithmetic intersection number on a Rapoport–Zink formal moduli space
of p-divisible groups attached to a unitary group. The AFL is proved for low ranks of the unitary
group (n = 2 and 3) in [33], and for arbitrary rank n and minuscule group elements in [21]. A
simplified proof for n = 3 appears in [12]. At present, the general case of the AFL seems out
of reach, even though Yun has obtained interesting results concerning the function field analog
[31].

In the present paper, we address an arithmetic transfer (AT) analog of the ST conjecture in
the arithmetic context, in a very specific case; we refer to [19] for a more general context in
which we expect such arithmetic analogs of ST. The special feature of the case at hand is that,
despite the fact that we take the unitary group to be ramified, the corresponding RZ space is
smooth, cf. [15]. For this reason we speak of exotic smoothness.

Now that we have explained the title of the paper, let us describe its contents in more detail.

Let p be an odd prime number, and let F0 be a finite extension of Qp. Let F/F0 be a
quadratic field extension. We denote by a 7→ a the non-trivial automorphism of F/F0, and by
η = ηF/F0

the corresponding quadratic character on F×0 . Let e := (0, . . . , 0, 1) ∈ Fn0 , and let
GLn−1 ↪→ GLn be the natural embedding that identifies GLn−1 with the subgroup fixing e under
left multiplication, and fixing the transposed vector et under right multiplication. Let

Sn := { s ∈ ResF/F0
GLn | ss = 1 },

with its action by conjugation of GLn−1. On the other hand, let W0 and W1 be the respective
split and non-split F/F0-hermitian spaces of dimension n. For i = 0 and 1, fix a vector ui ∈Wi

of length 1, and denote by W [
i the orthogonal complement of the line spanned by ui. The unitary

group U(W [
i ) acts by conjugation on U(Wi).

We now explain the matching relation between regular semi-simple elements of Sn(F0) and
of U(W0)(F0) and U(W1)(F0). Here an element of Sn(F0), resp. of U(Wi)(F0), is called regular
semi-simple (rs) if its orbit under GLn−1, resp. U(W [

i ), is Zariski-closed of maximal dimension.
For each i, choose a basis of Wi by first choosing a basis of W [

i and then appending ui to it.
This identifies U(W [

i )(F0) with a subgroup of GLn−1(F ) and U(Wi)(F0) with a subgroup of
GLn(F ). An element γ ∈ Sn(F0)rs is said to match an element g ∈ U(Wi)(F0)rs if both elements
are conjugate under GLn−1(F ) when considered as elements in GLn(F ). This matching relation
induces a bijection [

U(W0)(F0)rs

]
q
[
U(W1)(F0)rs

]
'
[
Sn(F0)rs

]
,

cf. [33, §2], where the brackets indicate the sets of orbits under U(W [
i )(F0), resp. GLn−1(F0).

Dual to the matching of elements is the transfer of functions, which is defined through
weighted, resp. ordinary, orbital integrals. For a function f ′ ∈ C∞c (Sn(F0)), an element γ ∈
Sn(F0)rs, and a complex parameter s ∈ C, we define the weighted orbital integral

Orb(γ, f ′, s) :=

∫
GLn−1(F0)

f ′(h−1γh)|deth|sη(deth) dh,

as well as its special value

Orb(γ, f ′) := Orb(γ, f ′, 0).
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Here the Haar measure on GLn−1(F0) is normalized so that vol(GLn−1(OF0
)) = 1. For a function

fi ∈ C∞c (U(Wi)(F0)) and an element g ∈ U(Wi)(F0)rs, we define the orbital integral

Orb(g, fi) :=

∫
U(W [

i )(F0)

fi(h
−1gh) dh.

Then the function f ′ ∈ C∞c (Sn(F0)) is said to transfer to the pair of functions (f0, f1) in
C∞c (U(W0)(F0))× C∞c (U(W1)(F0)) if

ω(γ) Orb(γ, f ′) = Orb(g, fi)

whenever γ ∈ Sn(F0)rs matches the element g ∈ U(Wi)(F0)rs. Here

ω : Sn(F0)rs −→ C×

is a fixed transfer factor [35, p. 988], and the Haar measures on U(W [
i )(F0) are fixed. The ST

conjecture asserts that for any f ′, a transfer (f0, f1) exists (non-uniquely), and that any pair
(f0, f1) arises as a transfer from some (non-unique) f ′. The FL conjecture asserts a specific
transfer relation in a completely unramified situation.

When F/F0 is unramified, if one takes for ω : Sn(F0)rs → {±1} the natural transfer factor (see
[21, (1.5)]), and normalizes the Haar measure on U(W [

0)(F0) by giving a hyperspecial maximal
compact subgroup volume one, then the FL conjecture asserts that 1Sn(OF0

) transfers to (1K0 , 0),

where K0 ⊂ U(W0)(F0) denotes a hyperspecial maximal open subgroup.
By contrast, when F/F0 is ramified, there is no natural choice of a conjugacy class of open

compact subgroups K0, no natural choice of a transfer factor, and no natural candidate for f ′

transferring to (1K0 , 0).

We next pass to the AFL conjecture, which requires, just as in the FL conjecture, that F/F0

is unramified. We take the same transfer factor as in the FL conjecture, and the same fixed
Haar measure on U(W [

0)(F0). For f ′ ∈ C∞c (Sn(F0)) and γ ∈ Sn(F0)rs, set

∂Orb(γ, f ′) :=
d

ds

∣∣∣
s=0

Orb(γ, f ′, s).

Then the AFL conjecture asserts that

ω(γ) ∂Orb
(
γ,1Sn(OF0

)

)
= −Int(g) · log q, (1.1)

whenever γ ∈ Sn(F0)rs matches g ∈ U(W1)(F0)rs (note that the FL conjecture asserts that
Orb(γ,1Sn(OF0

)) = 0 for such γ). Here q denotes the number of elements in the residue field of
F0.

The term Int(g) requires explanation. Let Nn = NF/F0,n denote the formal scheme over
Spf OF̆ which represents the following functor on the category of OF̆ -schemes S such that p·OS is
a locally nilpotent ideal sheaf. The functor associates to S the set of isomorphism classes of tuples
(X, ι, λ, ρ) where X is a formal p-divisible OF0

-module of relative height 2n and dimension n,
where ι : OF → End(X) is an action of OF satisfying the Kottwitz condition of signature (1, n−1)
on Lie(X) (cf. [9, §2]), where λ is a principal polarization whose Rosati involution induces the
automorphism a 7→ a on ι(OF ), and where ρ : X×SS → Xn×Spec kS is a framing of the restriction

of X to the special fiber S of S, compatible with ι and λ in a certain sense, cf. [21, §2]. Then Nn
is formally smooth of relative formal dimension n − 1 over Spf OF̆ . The automorphism group
(in a certain sense) of the framing object Xn can be identified with U(W1)(F0); it acts on Nn by
changing the framing. Let E be the canonical lifting of the formal OF -module of relative height
1 and dimension 1 over Spf OF̆ , with its canonical OF -action ιE and its natural polarization λE .
There is a natural closed embedding of Nn−1 into Nn,

δN : Nn−1
// Nn

Y � // Y × E .

Here all auxiliary structure (OF -action, polarization, framing) has been suppressed from the
notation, and E denotes E , with ιE replaced by its conjugate. Let

∆ ⊂ Nn−1 ×Spf OF̆
Nn
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denote the graph of δN . Then Int(g) is defined as the intersection number of ∆ with its translate
under the automorphism 1× g of Nn−1 ×Spf OF̆

Nn,

Int(g) = χ
(
O∆ ⊗L O(1×g)∆

)
.

This concludes the statement of the AFL conjecture.
It should be true in the situation of the AFL that for any f ′ ∈ C∞c (Sn(F0)) with transfer

(1K0
, 0), there exists a function f ′corr ∈ C∞c (Sn(F0)) such that

ω(γ) ∂Orb(γ, f ′) = −Int(g) · log q + ω(γ) Orb(γ, f ′corr)

whenever γ ∈ Sn(F0)rs matches g ∈ U(W1)(F0)rs. This would follow along the lines of Lemma
5.17 below from a conjectural density principle on weighted orbital integrals. See Conjecture
5.15 for the statement of the density principle in the setting of this paper.

Now we come to the formulation of our AT conjecture. We assume for this that F/F0 is
ramified. We then modify the definition of the formal moduli space NF/F0,n = Nn by slightly
changing the conditions on the tuples (X, ι, λ, ρ). Namely, in addition to the Kottwitz condition
of signature (1, n − 1), we impose on ι the Pappas wedge condition of signature (1, n − 1), and
the spin condition. The latter condition states that for a uniformizer π of F , the endomorphism
ι(π) | Lie(X) is nowhere zero on S. Furthermore, we change the condition that λ is principal to
the condition

Ker(λ) ⊂ X[ι(π)] with |Ker(λ)| = q2bn/2c.

It turns out that Nn is again formally smooth of relative formal dimension n − 1 over Spf OF̆ ,
and is essentially proper when n is even. We stress that this result is quite surprising in the
presence of ramification.

The morphism δN : Nn−1 → Nn can be defined exactly as before when discussing the AFL
setup, provided that n is odd, since then 2bn−1

2 c = 2bn2 c. We then define Int(g) as before. Our
AT conjecture is as follows.

Conjecture 1.1. Let F/F0 be ramified, and let n ≥ 3 be odd.

(a) There exists a function f ′ ∈ C∞c (S(F0)) with transfer (1K0
, 0) such that

2ω(γ) ∂Orb(γ, f ′) = −Int(g) · log q (1.2)

for any γ ∈ S(F0)rs matching an element g ∈ U(W1)(F0)rs.

(b) For any f ′ ∈ C∞c (S(F0)) with transfer (1K0
, 0), there exists a function f ′corr ∈ C∞c (S(F0))

such that
2ω(γ) ∂Orb(γ, f ′) = −Int(g) · log q + ω(γ) Orb(γ, f ′corr)

for any γ ∈ S(F0)rs matching an element g ∈ U(W1)(F0)rs.

Here K0 denotes the maximal compact subgroup stabilizing a nearly π-modular lattice Λ0 in
W0 (see (5.3) below), and ω is the transfer factor defined in (5.5) below. The Haar measure on
U(W [

0)(F0) is defined by volK[
0 = 1 for a special maximal compact subgroup K[

0 of U(W [
0)(F0).

We also formulate a “homogeneous” variant of the AT conjecture (Conjecture 5.3), which we
show is equivalent to the above conjecture in §5.2. Note that between the statements of the
AFL conjecture (1.1) and the AT conjecture (1.2), there is a discrepancy of a factor of 2. This
is a genuine difference between the unramified and ramified cases, and we refer to [19] for an
explanation by way of a global comparison between the height pairing and the derivative of a
relative trace formula.

Our main result concerns the first non-trivial case n = 3 of the AT conjecture. More precisely,
we prove the following.

Theorem 1.2. Let F0 = Qp, and let n = 3. Then Conjecture 1.1 holds true. In addition, for
any g ∈ U(W1)(F0)rs, the intersection of ∆ and (1× g)∆, if non-empty, is an artinian scheme
with two points, and Int(g) = length(∆ ∩ (1× g)∆).

We also prove a Lie algebra version of the above theorem; see Theorem 5.22.

Let us comment on the proof of Theorem 1.2. In those cases in which the AFL conjecture
has been established, the proof proceeds by calculating explicitly both sides of the conjectured
identity and comparing the results. This approach fails for the AT conjecture because the
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left-hand side of the identity is not well-determined by the pair of transfer functions (1K0
, 0).

Unlike the AFL situation, there is no canonical choice for the function f ′; in fact, f ′ cannot come
from the Iwahori Hecke algebra, cf. Remark 5.4(iii). In particular, we note that the characteristic
function 1S(OF0

) has vanishing orbital integrals at all regular semi-simple elements in the ramified

setting, i.e. it transfers to (0, 0). Instead we prove part (b) of Conjecture 1.1 (in the case F0 = Qp
and n = 3) by showing that, for any f ′ as in the statement, the sum

2ω(γ) ∂Orb(γ, f ′) + Int(g) · log q (1.3)

is an orbital integral function, i.e. of the form ω(γ) Orb(γ, f ′corr) for a suitable function f ′corr.
Then part (a) of Conjecture 1.1 follows easily.

To prove that (1.3) is an orbital integral function, we first remark that (1.3) may be viewed
as a function on an open subset of the categorical quotient of Sn by GLn−1, and then use the
fact [35] that the desired property may be checked locally on the base. To achieve this goal, we
proceed in two steps. First, we determine explicitly Int(g). Second, we develop a germ expansion
around each point of the categorical quotient, which is sufficiently explicit that it determines
ω(γ) ∂Orb(γ, f ′) up to a local orbital integral function. Putting these two steps together, we
check that (1.3) is an orbital integral function. The description just given is inaccurate, insofar
as we first perform a reduction to a Lie algebra analog. Here the Cayley transform from [35]
plays a key role. For the first step we use, similarly to [9], the results of Gross and Keating [1]
on quasi-canonical liftings (the reduction to [1] in [9, §8] is transposed here to the ramified case;
in fact, we found a drastic simplification of the proof (due to Zink) in loc. cit., which applies
to both the unramified and the ramified case). For the second step, we base ourselves on the
results on local harmonic analysis in [34], which we complete and make more explicit in various
ways.

Additionally, let us point out two group-theoretic features in the case n = 3 which seem to be
important. The first is the exceptional isomorphism SL2 ' SU2. One geometric manifestation of
this is that there is a natural isomorphism betweenM and a connected component of N2, where
M is the Lubin–Tate deformation space over Spf OF̆ of the formal OF0 -module of dimension 1
and height 2; see Proposition 6.3. To state the second feature, we note that the aforementioned
maximal compact subgroups K0 and K[

0 have symplectic reductions; see Remark 5.2. When
n = 3, associated to the reduction of K[

0 is a second exceptional isomorphism Sp2 ' SL2, which
plays a role in reducing the conjecture to a Lie algebra version; see the proof of Lemma 11.1.

Let us also remark on the restriction to F0 = Qp in Theorem 1.2. While we certainly expect
that the overall framework of this paper should be valid for any p-adic field F0, there are a few
instances, all of which occur when working with Nn or related formal schemes, where we need
to appeal to results in the literature which are only established at the level of generality of q = p
or F0 = Qp. Indeed, strictly speaking, this is already the case for the representability result in
[23] which is needed to know that Nn is a formal scheme in the first place! In accordance with
our expectations, we will use the general notation q and F0 throughout the paper, but when
working in a context where formal schemes are present, we will always tacitly take q = p and
F0 = Qp. By contrast, the parts of this paper lying in the realm of harmonic analysis are valid
without any restriction on F0.

Now let us comment on the possibility of extending our main result to odd integers n > 3.
The difficulties seem formidable. First, one would have to deal with degenerate intersections.
Related to this is the fact that the reduction procedure to a Lie algebra analog breaks down. In
fact, we are unable to even formulate a conjectural Lie algebra version of Conjecture 1.1, since we
are lacking a reasonable definition of an intersection multiplicity in this context; see Conjecture
5.10 below, in which we have to assume that the intersection is artinian. The second difficulty
is that our knowledge of local harmonic analysis when n > 3 is not advanced enough; even a
germ expansion principle is missing beyond the case of n = 3 [34]. One possibility for making
further progress would be to consider Conjecture 1.1 only for elements γ and g that satisfy
certain simplifying restrictions, in the spirit of [21] (which considers only minuscule elements).

On the positive side, there are other instances of AT conjectures. Indeed, in [19], we formulate
AT conjectures for F/F0 ramified (as in the present paper) and n even, and also for F/F0

unramified and any n. The methods developed in the present paper can be applied to some
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low-dimensional cases of them, cf. [19]. We also refer to loc. cit. for the global motivation behind
all of these conjectures.

We now give an overview of the contents of this paper. The paper consists of four parts.
In Part 1, we give the group-theoretic setup (in its homogeneous, its inhomogeneous, and its

Lie algebra versions); we define the formal moduli spaces of p-divisible groups, and establish
some structural properties for them; and we define the arithmetic intersection numbers that
enter into the formulation of our conjectures and results. In §5, we formulate our main results.

In Part 2, we explicitly calculate the arithmetic intersection numbers in the case n = 3, by
reduction to the Lie algebra and by relating this case to the Gross–Keating formulas.

In Part 3, we tackle the left-hand side of the identities to be proved in Theorem 1.2. This is
done by reducing the problem to one on the reduced subset of the Lie algebra. The rest of part
3 is devoted to explicitly evaluating the germ expansion of the orbital integral of a function f ′

with transfer (1K0 , 0), and then making the comparison with the result of part 2. At the end of
part 3, the proof of Theorem 1.2 is complete.

In Part 4, we prove the germ expansion of the orbital integral of a general function f ′. This
part of the paper can be read independently of the rest and lies squarely in the domain of local
harmonic analysis for the Jacquet–Rallis relative trace formula approach to the Gan–Gross–
Prasad conjecture.
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Notation. We list here some notation that we use throughout the whole paper. We denote by
p an odd prime number.
F/F0 is a ramified quadratic extension of finite extensions of Qp. We denote by a 7→ a the

nontrivial automorphism of F/F0, and by η = ηF/F0
the corresponding quadratic character on

F×0 . When h is a square matrix with entries in F0, we sometimes abbreviate η(deth) to η(h).
Since p 6= 2, we may and do choose uniformizers π of F and $ of F0 such that π2 = $. We denote
by k an algebraic closure of the common residue field k of F and F0, and we set q := #k. As
stated above, when working in an algebro-geometric context where formal schemes are present,
we always understand that q = p and F0 = Qp. We denote the group of norm 1 elements in F×

by

F 1 := { a ∈ F | aa = 1 }.
We denote by F̆0 the completion of a maximal unramified extension of F0, and by F̆ := F̆0⊗F0

F
the analogous object for F .

A polarization on a p-divisible group X is an anti-symmetric isogeny X → X∨, where X∨

denotes the dual. We use a superscript ◦ to denote the operation − ⊗Z Q on groups of homo-
morphisms, so that for example

Hom◦(X,Y ) := Hom(X,Y )⊗Z Q,

where Y is another p-divisible group. For any quasi-isogeny ρ : X → Y and polarization λ on Y ,
we define the pullback polarization

ρ∗(λ) := ρ∨ ◦ λ ◦ ρ.
We denote by E the unique (up to isomorphism) formal OF0

-module of relative height 2 and
dimension 1 over Spec k. We set

OD := EndOF0
(E) and D := OD ⊗OF0

F0.

Thus D is “the” quaternion division algebra over F0, and OD is its maximal order. Since F/F0

is ramified, any F0-embedding of F into D makes E into a formal OF -module of relative height
1. We fix such an embedding

ιE : F −→ D
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once and for all, and we always understand E to be a formal OF -module via ιE. We denote by E
the corresponding canonical lift of E over Spf OF̆ , equipped with its OF -action ιE and OF -linear

framing isomorphism ρE : Ek
∼−→ E. We denote by E the same object as E, except where the

OF -action ιE is equal to ιE precomposed by the nontrivial automorphism of F/F0; and ditto for

E in relation to E , which is furthermore equipped with the same framing ρE := ρE on the level

of OF0
-modules over Spec k. Of course E is a formal OF -module of relative height 1 in its own

right, but note that E is not its canonical lift. In §3.3 we will specify a principal polarization λE
on E, and we will denote by λE the principal polarization on E lifting λE. We write λE := λE and

λE := λE for the same polarizations when we regard them as defined on E and E , respectively.
We denote the main involution on D by c 7→ c, and the reduced norm by N. We also write

N for the norm map F× → F×0 ; of course, all of this is compatible with any embedding of F
into D. We write vD for the normalized valuation on D, and we use π as a uniformizer for D,
via ιE. We write v for the normalized (i.e. $-adic) valuation on F0. For c ∈ D×, we define the
conjugate embedding

ιc E : F // D

a
� // cιE(a)c−1.

(1.4)

We denote by Fc the image of ιc E.
Given a variety V over SpecF0, we of course denote by C∞c (V (F0)) the set of locally constant,

compactly supported functions on the space V (F0), endowed with its $-adic topology; and we
typically abbreviate this set to C∞c (V ). We choose the Haar measures on F0 and F (F×0 and
F×, resp.) such that the volume vol(OF0) = vol(OF ) = 1 (vol(O×F0

) = vol(O×F ) = 1, resp.).
We write 1n for the n× n identity matrix, and A for the affine line. We use a subscript S to

denote base change to S, and when S = SpecA, we often use a subscript A instead.

Part 1. The conjectures

In this first part of the paper we introduce the objects involved in the statements of our AT
conjectures. In §5 we state the conjectures and our main results.

2. Group-theoretic setup and orbit matching

We begin by explaining the general group-theoretic setup in this paper and the attendant
matching relation for regular semi-simple elements. We consider three cases: the homogeneous
group setting, the inhomogeneous group setting, and the Lie algebra setting. In this section
n ≥ 2 is an integer.

2.1. Homogenous setting. We begin with the algebraic group

G′ := ResF/F0
(GLn−1 ×GLn)

over F0. We consider the following two subgroups of G′. The first subgroup is

H ′1 := ResF/F0
GLn−1,

which is embedded diagonally, via the inclusion of GLn−1 in GLn sending A 7→ diag(A, 1). The
second subgroup is

H ′2 := GLn−1 ×GLn,

with its obvious embedding into G′. Let

H ′1,2 := H ′1 ×H ′2.

Then H ′1,2 acts on G′ by (h1, h2) : γ 7→ h−1
1 γh2. We call an element γ ∈ G′(F0) regular semi-

simple if it is regular semi-simple for the action of H ′1,2, i.e. its orbit under H ′1,2 is closed, and
its stabilizer is of minimal dimension. In the case at hand, it is equivalent that γ have closed
orbit and trivial stabilizer, which follows from [17, Th. 6.1]. We denote by G′(F0)rs the set of
regular semi-simple elements in G′(F0).

We next consider F/F0-hermitian spaces of dimension n. Up to isomorphism there are two
of them, a split one W0 and a non-split one W1. They are distinguished by the rule

η
(
(−1)n(n−1)/2 detWi

)
= (−1)i, (2.1)
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where detWi := det Ji for any hermitian matrix Ji (relative to the choice of a basis) representing
the hermitian form. Let i ∈ {0, 1}. Write

Ui := U(Wi), (2.2)

and let
ui ∈Wi

be a non-isotropic vector, which we call the special vector. We will choose u0 and u1 such that
their norms are congruent mod NF×, which can always be done since n ≥ 2. Let W [

i denote the
orthogonal complement in Wi of the line spanned by ui, and let

Hi := U(W [
i ).

Then Hi naturally embeds into Ui as the stabilizer of ui. Since we assume that u0 and u1 have
congruent norms mod NF×, W [

0 and W [
1 are non-isomorphic as hermitian spaces.

To lighten notation, now set W := Wi, and define W [, U , H, and u analogously. Let

GW := H × U,
and consider H as a subgroup of GW , embedded diagonally. Then H ×H acts on GW via the
rule

(h1, h2) : g 7−→ h−1
1 gh2.

An element g ∈ GW (F0) is called regular semi-simple if it is regular semi-simple for the action
of H ×H. We denote by GW (F0)rs the set of regular semi-simple elements in GW (F0).

We now recall the matching relation between regular semi-simple elements, as in [33]. Choose
an F -basis for W [ and complete it to a basis for W by adjoining u. This identifies W [ with
Fn−1 and W with Fn in such a way that u corresponds to the column vector

e := (0, . . . , 0, 1)

in Fn, and hence determines embeddings of groups U ↪→ ResF/F0
GLn and GW ↪→ G′. We

call the embeddings obtained in this way special embeddings. An element γ ∈ G′(F0)rs and an
element g ∈ GW (F0)rs are said to match if these two elements, when considered as elements in
G′(F0), are conjugate under H ′1,2(F0). The matching relation is independent of the choice of

special embedding and induces a bijection [33, §2]1[
GW0(F0)rs

]
q
[
GW1(F0)rs

]
'
[
G′(F0)rs

]
.

Here on the left-hand side, the square brackets denote the sets of orbits under the respective
actions of H0(F0)×H0(F0) and H1(F0)×H1(F0), whereas the brackets on the right-hand side
denote the set of orbits under H ′1,2(F0).

2.2. Inhomogeneous setting. Now we pass to the inhomogeneous version of the previous
subsection. Consider the following identifications of algebraic varieties over F0. First,

H ′1\G′
∼−→ ResF/F0

GLn, γ = (γ1, γ2) 7−→ γ−1
1 γ2.

Second, let
S := Sn := { g ∈ ResF/F0

GLn | gg = 1n }
and

H ′ := GLn−1.

Then
ResF/F0

(GLn)
/

GLn
∼−→ S, γ 7−→ γγ−1,

and the above two identifications induce an identification on F0-rational points

G′(F0)
/
H ′1,2(F0) ' S(F0)

/
H ′(F0). (2.3)

Here the action of H ′ on S is through conjugation. In other words, the map

G′(F0) −→ S(F0), γ = (γ1, γ2) 7−→ s(γ) := (γ−1
1 γ2)

(
γ−1

1 γ2

)−1
,

induces the bijection (2.3).

1In loc. cit. only the inhomogeneous version, which will be taken up in the next subsection, is considered.

However, the inhomogeneous version easily implies the homogeneous version.
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On the unitary group side, let i ∈ {0, 1} and use the notation W , U , H, etc. as in the previous
subsection. Then we similarly have an identification of F0-points of algebraic varieties over F0,

GW (F0)
/(
H(F0)×H(F0)

)
' U(F0)

/
H(F0), (g1, g2) 7−→ g−1

1 g2.

Here the action of H(F0) on U(F0) is by conjugation.
The definitions from the homogeneous setting readily transfer to the inhomogeneous setting.

Thus an element γ ∈ S(F0) is called regular semi-simple if it is regular semi-simple for the
action of GLn−1 on GLn. As in the homogeneous setting, it is again equivalent that γ have
closed orbit and trivial stabilizer, cf. [17, Th. 6.1]. We denote by S(F0)rs or Sn(F0)rs the set
of regular semi-simple elements in S(F0). An element g ∈ U(F0) is regular semi-simple if it is
regular semi-simple for the action of H on U ; equivalently, when g is considered as an element
in GLn(F ) upon choosing a special embedding for U as in the previous subsection, it is regular
semi-simple for the action of GLn−1 on GLn. We denote by U(F0)rs the set of regular semi-simple
elements in U(F0).

An element γ ∈ S(F0)rs matches an element g ∈ U(F0)rs if these two elements are conjugate
under GLn−1(F ) when considered as elements of GLn(F ), upon choosing a special embedding for
U . The matching relation is again independent of the choice of special embedding, and induces
a bijection [33, §2] [

U0(F0)rs

]
q
[
U1(F0)rs

]
'
[
S(F0)rs

]
,

where on the left-hand side are the respective sets of orbits under H0(F0) and H1(F0), and on
the right-hand side the set of orbits under GLn−1(F0). In particular, there is a disjoint union
decomposition

S(F0)rs = Srs,0 q Srs,1, (2.4)

where Srs,i denotes the set of elements in S(F0)rs that match with elements in Ui(F0)rs.

2.3. Lie algebra setting. We also consider a Lie algebra version of the inhomogeneous setup.
We introduce the Lie algebra version of Sn,

s := sn :=
{
y ∈ ResF/F0

Mn

∣∣ y + y = 0
}
. (2.5)

Then H ′ = GLn−1 acts on s, and we call an element of s(F0) regular semi-simple if its H ′-orbit
is closed and of maximal dimension. It is again equivalent that the element have closed orbit
and trivial stabilizer. We denote by s(F0)rs = sn(F0)rs the set of regular semi-simple elements
in s(F0).

For i ∈ {0, 1}, let

ui := LieUi.

An element of ui(F0) is called regular semi-simple if its orbit under Hi is closed and of maximal
dimension. We denote by ui(F0)rs the set of regular semi-simple elements in ui(F0).

As in §2.1, the choice of a basis for W [
i , extended by ui to a basis for Wi, determines an

embedding ui ↪→ ResF/F0
Mn, which we again call a special embedding. An element y ∈ s(F0)rs

matches an element x ∈ ui(F0)rs if these two elements are conjugate under GLn−1(F ) when
considered as elements of Mn(F ). The matching relation is independent of the special embedding
and induces a bijection [8, §5]

[u0(F0)rs]q [u1(F0)rs] ' [s(F0)rs],

where on the left-hand side are the respective sets of orbits under H0(F0) and H1(F0), and
on the right-hand side the set of orbits under GLn−1(F0). As before, we get a disjoint union
decomposition

s(F0)rs = srs,0 q srs,1,

where srs,i denotes the set of elements in s(F0)rs that match with elements in ui(F0)rs.
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2.4. Linear algebra characterizations. We now recall the linear algebra characterizations of
regular semi-simple elements and of their matching, in the inhomogeneous group setting and the
Lie algebra setting. First we introduce the discriminant ∆, which is a morphism of varieties

∆: ResF/F0
Mn

// ResF/F0
A

x � // det( et xi+je)0≤i,j≤n−1

(2.6)

over F0. We remark that beginning in §8 we will actually work with a rescaled version of ∆,
cf. (8.12).

An element γ ∈ S(F0) is regular semi-simple if and only if, considering γ as an element of
GLn(F ), the sets of vectors {γie}n−1

i=0 and { et γi}n−1
i=0 are both linearly independent [17, Th. 6.1].2

Equivalently, ∆(γ) 6= 0. Hence the regular semi-simple locus inside S is the complement of the
locus ∆ = 0, i.e. the Zariski-open subscheme

Srs := Sn,rs :=
{
γ ∈ S

∣∣ ∆(γ) 6= 0
}
.

Thus we may write S(F0)rs and Srs(F0) interchangeably.
To x ∈ Mn(F ) we associate the following numerical invariants: the n coefficients of the

characteristic polynomial charx(T ) ∈ F [T ], and the n−1 elements et xie ∈ F for i = 1, . . . , n−1.
Then two elements of S(F0)rs are conjugate under GLn−1(F0) if and only if they have the same
numerical invariants when considered as elements of Mn(F ), cf. [33].

For i ∈ {0, 1} and U = Ui, an element g ∈ U(F0) is regular semi-simple if and only if, when
considered as an element of GLn(F ) via any special embedding, g satisfies the conditions above,
i.e. the sets of vectors {gie}n−1

i=0 and { et gi}n−1
i=0 are both linearly independent. Equivalently,

∆(g) 6= 0, so that the regular semi-simple set is the Zariski open complement to the locus
∆(g) = 0, and we write U(F0)rs and Urs(F0) interchangeably. Two elements g ∈ U(F0)rs and
γ ∈ S(F0)rs are matched if and only if their numerical invariants, when both are considered as
elements of Mn(F ), coincide.

The theory in the Lie algebra setting is entirely analogous. An element y ∈ s(F0) is regular
semi-simple if and only if, considering y as an element of Mn(F ), the sets of vectors {yie}n−1

i=0 and

{ et yi}n−1
i=0 are both linearly independent [17, Th. 6.1]. Equivalently, ∆(y) 6= 0, i.e. the regular

semi-simple set is the Zariski open complement to the locus ∆(y) = 0, and we write s(F0)rs and
srs(F0) interchangeably. Furthermore, two elements of s(F0)rs are conjugate under GLn−1(F0)
if and only if they have the same numerical invariants when considered as elements of Mn(F ),
cf. [17].

For i ∈ {0, 1} and u = ui, an element x ∈ u(F0) is regular semi-simple if and only if, when
considered as an element of Mn(F ) via any special embedding, x satisfies the conditions above,
i.e. the sets of vectors {xie}n−1

i=0 and { et xi}n−1
i=0 are both linearly independent. Equivalently,

∆(x) 6= 0, and we again write u(F0)rs and urs(F0) interchangeably. Two elements x ∈ u(F0)rs

and y ∈ s(F0)rs are matched if and only if their numerical invariants, when both are considered
as elements of Mn(F ), coincide [8, 33].

From now on in the paper, we make the blanket assumption that

the special vectors u0 ∈W0 and u1 ∈W1 have norm 1. (2.7)

Under this assumption, we have the following simple formula to distinguish between W0 and W1

in terms of the discriminant.

Lemma 2.1. For i ∈ {0, 1} and any x ∈ ui(F0)rs,

η
(
∆(x)

)
= (−1)i.

Proof. Let u = ui and W = Wi. Let h denote the hermitian form on W . By (2.7),

et xi+je = h(u, xi+ju).

Since x is in the Lie algebra ui we have h(xv,w) = −h(v, xw) for all v, w ∈W . Hence

h(u, xi+ju) = (−1)ih(xiu, xju).

2In [17], the Lie algebra version is considered, but it is easy to deduce the group version from this.



ON THE ARITHMETIC TRANSFER CONJECTURE FOR EXOTIC SMOOTH MODULI SPACES 11

Hence

∆(x) = det
(
(−1)ih(xiu, xju)0≤i,j≤n−1

)
= (−1)n(n−1)/2 deth(xiu, xju)0≤i,j≤n−1.

Since x is regular semi-simple, the vectors u, xu, . . . , xn−1u form a basis of W . Hence the lemma
follows from (2.1). �

2.5. Invariants in the Lie algebra setting. Consider the 2n− 1 maps of varieties over F0

ResF/F0
Mn −→ ResF/F0

A
defined on points by sending x to the quantities

tr∧ix, 1 ≤ i ≤ n, and et xje, 1 ≤ j ≤ n− 1. (2.8)

When restricted to the subscheme s = sn ⊂ ResF/F0
Mn, each of these maps factors through

either A ⊂ ResF/F0
A or s1 ⊂ ResF/F0

A according as i, resp. j, is even or odd. Here we have
allowed the case n = 1 in the definition (2.5) of sn, i.e. s1 denotes the scheme of points y in
ResF/F0

A such that y = −y. Upon choosing special embeddings u0, u1 ↪→ ResF/F0
Mn, the same

statement is true of each of the maps in (2.8) when restricted to u0 and u1. Thus we obtain a
map from each of s, u0, and u1 into the common (2n− 1)-fold product of the corresponding A’s
and s1’s; and in the case of u0 and u1, this map is independent of the choice of special embedding.
These maps into the product of A’s and s1’s are invariant for the respective actions of H ′, H0,
and H1 on s, u0, and u1, and it is shown in [35, Lem. 3.1] that they identify the target with the
categorical quotients s/H ′, u0/H0, and u1/H1. In other words, the ring of global invariants on
each of s, u0, and u1 is a polynomial ring over F0 generated by the 2n− 1 functions (2.8).

There is another set of polynomial generators, also given in loc. cit., which will be a little
more convenient for us to work with. Write a point x in ResF/F0

Mn in the form

x =

[
A b
c d

]
, (2.9)

where the block decomposition is with respect to the special vector e. Then the functions

tr∧iA, 1 ≤ i ≤ n− 1, cAjb, 0 ≤ j ≤ n− 2, and d (2.10)

realize the categorical quotients s/H ′, u0/H0, and u1/H1 as above (again after choosing any
special embeddings u0, u1 ↪→ ResF/F0

Mn for the latter two). Explicitly, for b any of these three
quotients, the invariants (2.10) induce an isomorphism of schemes over F0

b
∼ //

n−1
alternating

factors︷ ︸︸ ︷
s1 × A× · · ·×

n−1
alternating

factors︷ ︸︸ ︷
A× s1 × · · ·× s1

x � // (trA, tr∧2A, . . . , cb, cAb, . . . , d).

(2.11)

3. The moduli space

In this section we introduce the moduli space of p-divisible groups Nn over Spf OF̆ . It is an
analog of spaces appearing in [9, 21, 27, 28, 33] in the unramified setting, but in the ramified
setting a subtler definition is required to obtain a formally smooth space. In accordance with
our convention in the Introduction, throughout this section we take F0 = Qp. Let n ≥ 1 be an
integer.

3.1. Unitary p-divisible groups. Let S be a scheme over Spf OF̆ . A unitary p-divisible group
of signature (1, n− 1) in the setting of this paper is a triple

(X, ιX , λX)

consisting of a p-divisible group X over S, a homomorphism

ιX : OF −→ EndS(X),

and a polarization

λX : X −→ X∨,

subject to the following constraints:
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• (Kottwitz condition) for the action of OF on LieX induced by ιX , there is an equality of
polynomials

char
(
ιX(π) | LieX

)
= (T − π)(T + π)n−1 ∈ OS [T ];

• (wedge condition)
∧2
OS

(
ιX(π) + π | LieX

)
= 0;

• (spin condition) if n > 1, then for every point s ∈ S, the operator ιX(π) | LieXs is nonzero;

• the Rosati involution on End◦S(X) attached to λX induces the nontrivial Galois automorphism
on OF ; and

• if n is even, then KerλX = X[ιX(π)]; and if n is odd, then KerλX ⊂ X[ιX(π)] of height n−1.

Let us make a few remarks on the definition. First note that our formulation of the Kottwitz
condition implies that

char
(
ιX(a) | LieX

)
= (T − a)(T + a)n−1 ∈ OS [T ] for all a ∈ OF ,

and that rankOS (LieX) = n. Since X is isogenous to its dual, it follows that X has height 2n.
We also note that the Rosati condition on λX is equivalent to requiring that λX is OF -linear,
where OF acts on the dual X∨ via the rule

ιX∨(a) = ιX(a)∨. (3.1)

The wedge condition is due to Pappas [13]. There is another part to the wedge condition in
loc. cit., which for signature (1, n− 1) is∧n

OS

(
ιX(π)− π | LieX

)
= 0.

Since LieX has rank n, this condition holds automatically by the Kottwitz condition. Similarly,
the wedge condition as we have formulated it above is implied by the Kottwitz condition when
n ≤ 2.

The spin condition is based on the spin condition introduced in [15]; see Remark 3.11 below
for further discussion. Note that the spin condition is a condition only on the underlying point
set of S. Since S lies over Spf OF̆ , we have π ·κ(s) = 0 for every point s ∈ S. Thus in the presence
of the wedge condition, the spin condition is equivalent to the condition that ιX(π) | LieXs has
rank 1 for every s ∈ S.

3.2. Serre tensor construction. Before continuing, we pause to briefly review the Serre tensor
construction, which will also play a central role in §6.

Quite generally, let S be any base scheme, A a commutative ring, M a finite projective A-
module, and X a contravariant functor on the category of S-schemes, valued in A-modules. For
T a scheme over S, define

(M ⊗A X)(T ) := M ⊗A X(T ).

When X is a scheme, so is M⊗AX, and moreover many properties of X are inherited by M⊗AX.
See [3, §7]. It follows easily from loc. cit. that M ⊗A X is a p-divisible group when X is, which
will be the case of interest to us. In this case, one furthermore has canonical isomorphisms

(M ⊗A X)∨ ∼= M∨ ⊗A X∨,

where M∨ := HomA(M,A) is the dual A-module; and

Lie(M ⊗A X) ∼= M ⊗A LieX.

3.3. Framing objects. In this subsection we consider unitary p-divisible groups of signature
(1, n− 1) over Spec k. The first point of business is that, up to isogeny, there is only one whose
underlying p-divisible group is supersingular, in the following sense.

Proposition 3.1. Let (X, ιX , λX) and (Y, ιY , λY ) be supersingular unitary p-divisible groups of
signature (1, n− 1) over Spec k. Then there exists an OF -linear quasi-isogeny

ρ : X −→ Y

such that ρ∗(λY ) is an F×0 -multiple of λX in Hom◦OF (X,X∨).
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Proof. Let M denote the covariant Dieudonné module of X, endowed with its Frobenius operator
F and Verschiebung V . The polarization on X translates to an alternating form 〈 , 〉 on M
satisfying

〈Fx, y〉 = 〈x, V y〉σ for all x, y ∈M,

where σ denotes the Frobenius operator on W (k) = OF̆0
. The OF -action on X translates to an

OF -action on M commuting with F and V and satisfying

〈ax, y〉 = 〈x, ay〉

for all x, y.
Let N := M ⊗OF̆0

F̆0 denote the rational Dieudonné module of X. Then 〈 , 〉 extends to a

nondegenerate alternating form on N . We must show that the rational Dieudonné module of
Y is isomorphic to N as a polarized isocrystal (with the polarization taken up to scalar in F×0 )
with F -action.

Let ζ ∈ O×
F̆0

satisfy ζ2π0 = −p. Since N is supersingular, all slopes of the σ-linear operator

τ := ζπV −1 : N −→ N (3.2)

are 0. Hence

C := Nτ=1

is an F0-subspace of N such that

C ⊗F0
F̆0

∼−→ N ;

and in this way idC ⊗ σ identifies with τ . Furthermore C is F -stable, the restriction of 〈 , 〉 to
C takes values in F0, and the form

h(x, y) := 〈πx, y〉+ 〈x, y〉π, x, y ∈ C,

makes C into a nondegenerate F/F0-hermitian space of dimension n, cf. [20, pp. 1170–1].3

Clearly, to classify N up to isomorphism as a polarized isocrystal with F -action is to classify
C up to similarity as a hermitian space. When n is odd, all nondegenerate n-dimensional F/F0-
hermitian spaces are similar, which proves the lemma. When n is even, the two isomorphism
types of nondegenerate n-dimensional hermitian spaces remain non-similar. By Dieudonné the-
ory, the Lie algebra of X identifies with M/VM = M/πτ−1M , and the spin condition is that
dimk(πM+πτ−1M)/πτ−1M = 1. The condition KerλX = X[ιX(π)] translates to M∨ = π−1M
inside N , where the dual lattice M∨ is the set of x ∈ N such that 〈x,M〉 ⊂ OF̆0

, or equivalently

such that h(x,M) ⊂ OF̆ . The lemma is now a consequence of the general result in Lemma 3.3
below. �

We will need to prepare a little before coming to Lemma 3.3. Suppose that n is even, and let
N be “the” n-dimensional F̆ /F̆0-hermitian space. Let M be a π-modular OF̆ -lattice in N , which
is to say that the dual lattice of M with respect to the hermitian form is π−1M . Let U := U(N)

denote the (quasi-split) unitary group of N over Spec F̆0. Let K denote the stabilizer in U(F̆0)

of M . Then K is a special maximal parahoric subgroup of U(F̆0), and all special maximal

parahoric subgroups of U(F̆0) are conjugate to K; see e.g. case (b) in [14, §4.a]. We also need

the Kottwitz homomorphism on U(F̆0), which is a homomorphism

κ : U(F̆0) −→ {±1} (3.3)

admitting the following simple description. For any g ∈ U(F̆0), the determinant detF (g) is a

norm 1 element in F̆ , and κ(g) takes the value ±1 according as detF (g) ≡ ±1 mod π; this follows
from e.g. [14, §§3.b.1, 4.a], or see [15, §1.2.3(b)] for the closely related case of quasi-split GUn.

Lemma 3.2. For n even and any g ∈ U(F̆0), κ(g) equals 1 or −1 according as the OF̆ -length
of (M + gM)/M is even or odd.

3Note that the quantity η in loc. cit. should be a square root of −ε−1, rather than a square root of ε−1.
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Proof. We use the Cartan decomposition. We can choose a split F̆ -basis e1, . . . , en for N (mean-
ing that ei and ej pair to δi,n+1−j under the hermitian form) such that

M = OF̆ e1 + · · ·+OF̆ en/2 +OF̆πen/2+1 + · · ·+OF̆πen.

Let T be the maximal torus in U whose F̆0-points are

T (F̆0) =
{

diag
(
a1, . . . , an/2, a

−1
n/2, . . . , a

−1
1

) ∣∣ a1, . . . , an/2 ∈ F̆×
}
.

Since K is a special maximal parahoric subgroup, by the Cartan decomposition g = k1tk2 for
some k1, k2 ∈ K and t ∈ T (F̆0). Then (M + gM)/M = (M + k1tM)/M , which, multiplying by
k−1

1 , is isomorphic to (M + tM)/M . Since k1 and k2 of course have trivial Kottwitz invariant,
we have therefore reduced the lemma to the case g = t, where it is obvious. (It may be helpful

to note that an element of the form a/a, a ∈ F̆×, is congruent to (−1)ordπ a mod π.) �

Lemma 3.3. Let n be even, let C be an F/F0-hermitian space of dimension n, let N := C⊗F0
F̆0,

and let τ := idC⊗σ. Let M be an OF̆ -lattice in N which is π-modular with respect to the induced

F̆ /F̆0-hermitian form. Then the OF̆ -length of (M + τ−1M)/τ−1M is even or odd according as
C is a split or non-split hermitian space.

Proof. The length in question is the same as the length of the module (M + τM)/M , which we
will work with instead. Let U denote the unitary group of C over SpecF0. (In terms of the
notation in the previous lemma, in this way we view the unitary group of N as defined over F0.)

If C is split, then it contains a π-modular OF -lattice Λ. Let L := OF̆ ·Λ ⊂ N . Then M = gL

for some g ∈ U(F̆0). Hence τM = σ(g)L, and

(M + τM)/M =
(
M + σ(g)g−1M

)/
M.

Since σ(g) and g have the same Kottwitz invariant, we conclude from Lemma 3.2 that the
OF̆ -length of the displayed module is even.

If C is non-split, then it can be expressed as an orthogonal direct sum of a non-split 2-
dimensional space C1 and a split (n− 2)-dimensional space C2. There exists a basis e1, e2 of C1

such that the associated matrix of the hermitian form is of the form[
1
−b

]
for some b ∈ O×F0

r NO×F . Let β ∈ OF̆0
be a square root of b. Then the vectors

f1 := e1 + β−1e2, f2 :=
1

2
(e1 − β−1e2)

form a split basis of N1 := C1 ⊗F0 F̆0. Hence L1 := OF̆ f1 + OF̆πf2 is a π-modular lattice in

N1. Since C2 is split, N2 := C2 ⊗F0
F̆0 contains a π-modular lattice L2 which is stable under

idC2
⊗ σ. Then the lattice L := L1 ⊕ L2 in N is π-modular, and by inspection, L and τL differ

by the transformation g0 ∈ U(F̆0) which interchanges f1 and f2 and is the identity on N2. Then
det(g0) = −1, and hence κ(g0) = −1. Now we argue as in the case that C is split. Writing

M = gL for an appropriate g ∈ U(F̆0), we have

(M + τM)/M =
(
gL+ σ(g)τL

)
/gL ∼=

(
L+ g−1σ(g)g0L

)/
L.

By Lemma 3.2, the length of the module on the right is odd. �

In the rest of this subsection we are going to fix particular framing objects (Xn, ιXn , λXn),
n ≥ 1, over Spec k for use in the rest of the paper. When n = 1, we define

(X1, ιX1) := (E, ιE),

where as in the Introduction, E is the unique (up to isomorphism) connected p-divisible group
of dimension 1 and height 2 over Spec k, and ιE is an embedding

ιE : OF ↪→ OD = EndOF0
(E),
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which makes E into a formal π-divisible module of relative height 1. (Recall that in this section
F0 = Qp.) The Dieudonné module M of E can be identified with W (k)2 = O2

F̆0
endowed with

the Frobenius operator given in matrix form by[
0 $
1 0

]
σ,

where σ denotes the usual Frobenius homomorphism on the Witt vectors. To give a polarization
on E is to give an alternating bilinear pairing on M with associated matrix of the form[

0 δ
−δ 0

]
for δ ∈ OF̆0

satisfying σ(δ) = −δ. We define the (principal) polarization λX1 = λE by fixing any

such δ ∈ O×
F̆0

once and for all. Note that any other principal polarization of E differs from λE

by an O×F0
-multiple. The F0-algebra D = End◦OF0

(E) is the quaternion division algebra over F0,

and OD = EndOF0
(E) is its maximal order. The Rosati involution attached to λE is the main

involution on D, and therefore it induces the nontrivial Galois automorphism on OF .
When n = 2, we define

X2 := OF ⊗OF0
E

via the Serre tensor construction, with ιX2 given by the tautological OF -action on the left tensor
factor. Then canonically

Lie(OF ⊗OF0
E) ∼= OF ⊗OF0

LieE

as (OF ⊗OF0
k)-modules. It is clear from this that (X2, ιX2

) satisfies the Kottwitz and spin
conditions. To define the polarization λX2

, first note that canonically

X∨2 ∼= O∨F ⊗OF0
E∨

as OF -modules (where OF acts on X∨2 as prescribed by (3.1)); here O∨F is the OF0
-linear dual of

OF , made into an OF -module by the rule

(x · f)(y) = f(xy) for x, y ∈ OF , f ∈ O∨F .

Define the (injective but not surjective) OF -linear map

ϕ : OF −→ O∨F , x 7−→
[
y 7→ 1

2 trF/F0
(xy)

]
. (3.4)

Then we define λX2
to be the map

OF ⊗OF0
E ϕ⊗λE−−−→ O∨F ⊗OF0

E∨ ∼= (OF ⊗OF0
X)∨.

Note that λX2
is anti-symmetric because ϕ is symmetric and λE is anti-symmetric,4 and one

readily verifies that KerλX2
= X2[ιX2

(π)].
The triple (X2, ιX2

, λX2
) can be expressed in more concrete terms after choosing an OF0

-basis
for OF . Indeed the choice of basis 1, π induces an isomorphism of OF0 -modules

OF ⊗OF0
E ' E× E. (3.5)

The action of π on the left-hand side of this isomorphism translates to the action of the matrix[
0 $
1 0

]
on the right-hand side. Using the dual basis to identify O∨F ⊗OF0

E∨ ' (E∨)2, the polarization
λX2 is given by the matrix [

λE 0
0 −$λE

]
. (3.6)

4There is a mistake in [9, (6.2)]: the δ−1 in loc. cit. should be eliminated to obtain an anti-symmetric

homomorphism into the dual, rather than a symmetric one.
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Remark 3.4. A framing object in our setting in the case n = 2 is also described in [11, §5 d)],
but contrary to the claim made there, it does not give rise to a formally smooth moduli space.
Indeed this object manifestly does not satisfy the spin condition; or one can check directly
that the hermitian space corresponding to it (defined as in §3.4 below) is split. The object in
loc. cit. should be replaced with X2 as we have just defined it.

Now we define framing objects for n > 2. As in the Introduction, we denote by E the same
OF0

-module as E, but with OF -action ιE equal to ιE precomposed by the nontrivial Galois
automorphism. Then λE is still OF -linear with respect to ιE, and we denote it by λE. If n is
even, then we define

Xn := X2 × En−2
,

ιXn := ιX2 × ιn−2

E ,

and, in matrix form,

λXn := λX2 × diag

([
0 λEιE(π)

−λEιE(π) 0

]
, . . . ,

[
0 λEιE(π)

−λEιE(π) 0

]
︸ ︷︷ ︸

(n−2)/2 times

)
.

Then indeed KerλXn = Xn[ιXn(π)]. If n is odd, then we define

(Xn, ιXn , λXn) := (Xn−1 × E, ιXn−1 × ιE, λXn−1 × λE). (3.7)

Then indeed KerλXn ⊂ Xn[ιXn(π)] of height n − 1. For either parity of n, if n > 1, then it is
clear that ιXn(π) acts on LieXn with rank 1. Hence (Xn, ιXn , λXn) is a unitary p-divisible group
of signature (1, n− 1) for all n.

3.4. Automorphisms of framing objects. For n ≥ 1, let g 7→ g† denote the Rosati involution
on End◦OF (Xn) induced by λXn . Define

U(Xn) := U(Xn, ιXn , λXn) :=
{
g ∈ End◦OF (Xn)

∣∣ gg† = idXn
}
. (3.8)

Thus U(Xn) is the group of OF -linear self-quasi-isogenies of Xn which preserve λXn on the nose.
Next define the space of special quasi-homomorphisms

Vn := Hom◦OF
(
E,Xn

)
; (3.9)

cf. e.g. [9, Def. 3.1]. Then Vn is an n-dimensional F -vector space. It carries a natural F/F0-
hermitian form h: for x, y ∈ Vn, the composite

E y−→ Xn
λXn−−→ X∨n

x∨−−→ E∨
λ−1

E−−→ E

lies in End◦OF (E), and hence identifies with an element h(x, y) ∈ F via the isomorphism

ιE : F
∼−→ End◦OF (E).

Lemma 3.5. The hermitian space (Vn, h) is non-split for all n.

Proof. When n = 1, we have V1 = Hom◦OF (E,E) and the lemma is clear. When n = 2, using
the OF0-linear isomorphism X2 ' E× E in (3.5), V2 identifies with{[

a
b

]
∈ M2×1(D)

∣∣∣∣ [ $
1

] [
a
b

]
=

[
a
b

]
ιE(π)

}
=

{[
bιE(π)
b

] ∣∣∣∣ b ∈ D}.
For b ∈ D, one computes from the explicit form (3.6) of the polarization that

[
bιE(π)
b

]
pairs with

itself under h to −2$Nb. Thus V2 has no nonzero isotropic vectors, which characterizes it as
the non-split hermitian space of dimension 2.

To complete the proof for higher n, note that the definition of Vn as a hermitian space makes
sense for any polarized formal OF -module in place of Xn. Doing this for the pair (E, λE), we
obtain a 1-dimensional space V1 which is obviously split; and doing this for(

E2
,

[
0 λEιE(π)

−λEιE(π) 0

])
,
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we obtain a 2-dimensional space V2 which is obviously split. When n is even, we conclude that

Vn ∼= V2 ⊕ V (n−2)/2
2

is non-split, because it is the orthogonal direct sum of a non-split space and an even-dimensional
split space. When n is odd, we conclude that

Vn ∼= Vn−1 ⊕ V1

is non-split, because it is the orthogonal direct sum of an even-dimensional non-split space with
a split space. �

The group U(Xn) acts naturally from the left on Vn, and in this way identifies with U(h).
Thus in terms of the notation (2.2), we may, and will, choose an isomorphism

U(Xn) ' U1(F0) (3.10)

for all n.

3.5. The moduli space. We now define the moduli space Nn. For S a scheme over Spf OF̆ , let

S := SpecOS/πOS .

The S-points on Nn are isomorphism classes of quadruples

(X, ιX , λX , ρX),

where (X, ιX , λX) is a unitary p-divisible group of signature (1, n− 1), and where

ρX : X ×S S −→ Xn ×Spec k S

is an OF -linear quasi-isogeny of height 0 such that ρ∗X(λXn ×Spec k S) is locally an O×F0
-multiple

of λX ×S S in Hom◦OF (XS , X
∨
S

), i.e., locally on S,

ρ∗X(λXn ×Spec k S) = c(λX) · (λX ×S S), c(λX) ∈ O×F0
. (3.11)

Here an isomorphism between quadruples (X, ιX , λX , ρX)
∼−→ (Y, ιY , λY , ρY ) is an OF -linear

isomorphism of p-divisible groups α : X
∼−→ Y over S such that ρY ◦ (α ×S S) = ρX and such

that α∗(λY ) is locally an O×F0
-multiple of λX .

Each g in the group U(Xn) (3.8) is a quasi-isogeny of height 0, and therefore U(Xn) acts
naturally on Nn on the left via the rule g · (X, ιX , λX , ρX) = (X, ιX , λX , gρX).

Remark 3.6. We have formulated the moduli problem defining Nn in a way that conforms with
other instances of RZ spaces in the literature, by taking the polarization λX up to scalar in O×F0

.
But the definition can be reformulated without reference to scalar factors: consider the moduli
problem of quadruples (X, ιX , λX , ρX) as above, except where ρ∗X(λXn ×Spec k S) is required to

equal λX ×S S on the nose, and where isomorphisms α as above satisfy α∗(λY ) = λX on the
nose. It is easy to see that the functor this defines is isomorphic to Nn; and in some situations
this version of the moduli problem is a little more convenient to work with.

Example 3.7 (n = 1). Let us make the definition of Nn explicit in the case n = 1. The framing
object E = X1 is a formal π-divisible OF -module of height 1 via ιE. It is easy to see that any
framing map ρ of height 0 into E as above must be an isomorphism, and it follows that N1 is
the universal deformation space of E over Spf OF̆ , which is just Spf OF̆ itself. We write E for
the universal p-divisible group over N1, endowed with its OF -action ιE , principal polarization
λE , and framing ρE : Ek

∼−→ E. Of course, the triple (E , ιE , ρE) is nothing but the canonical lift
of (E, ιE) in the sense of Lubin–Tate theory, as in the Introduction.
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3.6. Formal smoothness and essential properness. In this subsection we prove the follow-
ing basic result on the geometry of Nn.

Proposition 3.8. The formal scheme Nn is formally locally of finite type and formally smooth
over Spf OF̆ of relative formal dimension n−1 at every point. If n is even, then Nn is essentially
proper over Spf OF̆ .

Here essentially proper means that every irreducible component of (Nn)red is proper over
Spec k. The proof of the proposition is via the local model, whose definition we now recall in the
situation at hand. Let

m := bn/2c.
Let e1, . . . , en denote the standard basis in Fn. Let φ be the (split) F/F0-hermitian form on Fn

specified by
φ(aei, bej) = abδi,n+1−j (Kronecker delta).

Let 〈 , 〉 be the alternating F0-bilinear form Fn × Fn → F0 defined by

〈x, y〉 :=
1

2
trF/F0

(
π−1φ(x, y)

)
.

Then
〈πx, y〉 = −〈x, πy〉 for all x, y ∈ Fn. (3.12)

For i = bn+ c with 0 ≤ c < n, define the OF -lattice

Λi :=

c∑
j=1

π−b−1OF ej +

n∑
j=c+1

π−bOF ej ⊂ Fn.

For each i, the form 〈 , 〉 induces a perfect OF0
-bilinear pairing

Λi × Λ−i −→ OF0
.

In this way, for fixed nonempty I ⊂ {0, . . . ,m}, the set

ΛI := {Λi | i ∈ ±I + nZ }
forms a polarized chain of OF -lattices over OF0 in the sense of [23, Def. 3.14]. The following
definition of the naive local model is an alternative formulation of [23, Def. 3.27] in our situation,
in the case I = {m}.

Definition 3.9. The naive local model Mnaive is the scheme over SpecOF representing the
functor that sends each OF -scheme S to the set of all families

(Fi ⊂ Λi ⊗OF0
OS)i∈±m+nZ

such that

(1) for all i, Fi is an OF ⊗OF0
OS-submodule of Λi ⊗OF0

OS which is Zariski-locally on S an
OS-direct summand of rank n;

(2) for all i < j, the natural arrow Λi ⊗OF0
OS → Λj ⊗OF0

OS carries Fi into Fj ;

(3) for all i, the isomorphism Λi ⊗OF0
OS

π⊗1−−−→∼ Λi−n ⊗OF0
OS identifies Fi

∼−→ Fi−n;

(4) for all i, the perfect OS-bilinear pairing

(Λi ⊗OF0
OS)× (Λ−i ⊗OF0

OS)
〈 , 〉⊗OS−−−−−−→ OS

identifies F⊥i with F−i inside Λ−i ⊗OF0
OS ; and

(5) (Kottwitz condition) for all i, the section π ⊗ 1 ∈ OF ⊗OF0
OS acts on Fi as an OS-linear

endomorphism with characteristic polynomial

char(π ⊗ 1 | Fi) = (T − π)n−1(T + π) ∈ OS [T ].

The local model M loc is the subscheme of Mnaive defined by the additional conditions

(6) (wedge condition) for all i, ∧2

OS
(π ⊗ 1− 1⊗ π | Fi) = 0;

and
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(7) if n > 1, then π ⊗ 1 | Fi ⊗OS κ(s) is nonvanishing for all s ∈ S and all i.

Plainly Mnaive is representable by a closed subscheme of a product of Grassmannians. Fur-
thermore the inclusion M loc ⊂ Mnaive is an isomorphism on generic fibers, which both identify
naturally with Pn−1

F [15, §1.5.3].

Proposition 3.10. M loc is smooth over SpecOF of relative dimension n − 1 at every point,
and a closed subscheme of Mnaive when n is even.

Proof. This is essentially a matter of collecting results in the literature. Let M∧ denote the
closed subscheme of Mnaive defined by the wedge condition. Then M loc is an open subscheme
of M∧. As is explained in [15, §3.3], the geometric special fiber Mnaive

k
of the naive local model

embeds into an affine flag variety for GUn, where it and M∧
k

decompose (topologically) into

unions of Schubert cells. In the present setting, the Schubert cells Cr that occur in Mnaive
k

are
described in §2.4 of loc. cit. They are indexed by the rank r of π ⊗ 1 acting on Fm at each
point. On the level of topological spaces, it follows from the definitions that M∧

k
= C0 ∪C1 and

M loc
k

= C1. Now, Arzdorf [2, Prop. 3.2] and [15, §5.3] show respectively for odd and even n that

M∧ contains an open subscheme isomorphic to An−1
OF

, and it is immediate from these references

that this open subscheme is contained in M loc.5 Since M loc has generic fiber Pn−1
F , and since C1

is an orbit for a group action, it follows that M loc is everywhere smooth of relative dimension
n− 1.

Furthermore, when n is even, one readily verifies that the perfect pairing

Λm × Λm
id×π−−−→∼ Λm × Λ−m

〈 , 〉−−→ OF0

is split symmetric. Hence by conditions (3) and (4) above, Mnaive embeds into the orthogonal
Grassmannian OGr of totally isotropic n-planes in 2n-space; cf. [16, Rem. 2.32]. The scheme
OGr has 2 connected components, and it is easy to see that these separate C0, which consists
of a single point in the special fiber, from the rest of M∧. Hence M loc = M∧ r C0 is closed in
M∧, and hence in Mnaive. �

Remark 3.11. When n is even, and in the presence of the other conditions in the definition
of M loc, condition (7) is equivalent to the spin condition formulated in [15, §7.2]. For a general
signature and parahoric level structure, the spin condition in loc. cit. is not a purely topological
condition, but in this special case it is; see again Rem. 2.32 and the paragraph following it in
[16].

When n is odd, and again in the presence of the other conditions, condition (7) implies the
spin condition in [15]. Indeed, the spin condition is a closed condition on Mnaive which is satisfied
on the generic fiber, and hence on the flat closure of the generic fiber, and we have just seen that
M loc is smooth, and hence flat, with the same generic fiber. However, (7) and the spin condition
are not equivalent, since imposing the spin condition on M∧ does not eliminate the point C0.

The above relationships are the origin of the term “spin condition” in the definition of unitary
p-divisible group in §3.1. But, for the reason just explained, note that this is a slight abuse of
language when n is odd.

Remark 3.12. More is true when n is odd. Indeed, in this case let N denote the scheme-
theoretic closure of the generic fiber of Mnaive in Mnaive. Then N contains M loc as an open
subscheme, and is itself smooth over SpecOF by Richarz [2, Prop. 4.16]. The main result of
[24] establishes a moduli description for N , by introducing a condition which is weaker than
(7) above but stronger than the spin condition in [15]. However, this condition is much more
complicated to state than (7), and for the purposes of this paper it suffices to work just with (7)
instead.

5Strictly speaking, these references work with signature (n− 1, 1), whereas we are working with the opposite

signature (1, n−1). But these situations are isomorphic: explicitly, the isomorphism Fn
∼−→ Fn given by applying

the nontrivial Galois automorphism on each factor induces an isomorphism of lattice chains ΛI
∼−→ ΛI , which

in turn induces an isomorphism between the corresponding local models. Also, when n is odd, we note that the

scheme denoted M loc in [2] does not coincide with M loc as we have defined it.
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The link between Propositions 3.8 and 3.10 is via the local model diagram [23]. Let N naive
n

denote the moduli functor over Spf OF̆ defined in the same way as Nn, except without the

wedge and spin conditions. By [23, Th. 3.25], N naive
n is representable by a formal scheme which

is formally locally of finite type over Spf OF̆ . We will see in the course of proving Proposition
3.8 below that the inclusion

Nn ⊂ N naive
n

is a closed immersion when n is even, and an immersion in general.

Let Ñ naive
n denote the functor that associates to each scheme S over Spf OF̆ the set of iso-

morphism classes of quintuples

(X, ιX , λX , ρX , γ),

where (X, ιX , λX , ρX) ∈ N naive
n (S), and γ is an isomorphism of polarized chains of OF ⊗OF0

OS-
modules

[ · · · ιX(π)∗−−−−→M(X)
ιX(π)∗−−−−→M(X)

ιX(π)∗−−−−→ · · · ] γ−→∼ Λ{m} ⊗OF0
OS

when n is even, and

[ · · · −→M(X)
(λX)∗−−−−→M(X∨)

µ∗−→ · · · ] γ−→∼ Λ{m} ⊗OF0
OS

when n is odd, in the terminology of [23]. Let us explain the notation. We have denoted by M
the functor that assigns to a p-divisible group the Lie algebra of its universal vector extension.
Our requirements for ιX and λX imply that there is a unique (necessarily OF -linear) isogeny
µ : X∨ → X such that the composite

X
λX−−→ X∨

µ−→ X

is ιX(π); thus µ is an isomorphism or of height 1 according as n is even or odd. Upon applying
M , this diagram extends periodically to the chains appearing above (and it explains the source
of the chain’s polarization when n is even).

The functor Ñ naive
n is representable by a formal scheme over Spf OF̆ , and it sits in a diagram

Ñ naive
n

ϕ

��   

N naive
n Mnaive

Spf OF̆
.

Here ϕ is the natural map that forgets γ; it is a torsor under the automorphism scheme of Λ{m}
as a polarized OF -lattice chain over OF0

, which is smooth. The arrow on the right sends an
S-point (X, ιX , λX , ρX , γ) to the family (Fi ⊂ Λi ⊗OF0

OS)i∈±m+nZ, where for each i, Fi is the

image under γ in Λi⊗OF0
OS of the Fil1 term in the covariant Hodge filtration for the p-divisible

group. With this in hand, we now arrive at the proof of Proposition 3.8.

Proof of Proposition 3.8. The key point is that by [23, Prop. 3.33], after passing to an étale
cover U → N naive

n , the map ϕ admits a section s such that the composite U → Mnaive
Spf OF̆

in the

diagram

U
Ñ naive
n

N naive
n

Mnaive
Spf OF̆

s 22

��

ϕ

�� ��

is formally étale. We claim that the respective inverse images of Nn and M loc
Spf OF̆

in U coincide.

In fact, we will show that the respective wedge conditions on the one hand, and the spin condition
and condition (7) on the other hand, separately pull back to equivalent conditions on U .

First consider the wedge conditions. Let (Fi ⊂ Λi⊗OF0
OMnaive)i denote the universal object

over Mnaive. For fixed i, consider the tautological exact sequence

0 −→ Fi −→ Λi ⊗OF0
OMnaive −→ (Λi ⊗OF0

OMnaive)/Fi −→ 0. (3.13)
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It is easy to see that on the explicit affine charts on Mnaive calculated in [15, §5.1–5.3],∧2

OMnaive

(π ⊗ 1− 1⊗ π | Fi) = 0 ⇐⇒
∧2

OMnaive

(
π ⊗ 1 + 1⊗ π | (Λi ⊗OF0

OMnaive)/Fi
)

= 0.

Since these charts meet every Schubert cell in the special fiber (after embedding the geomet-
ric special fiber into an affine flag variety, as discussed in the proof of Proposition 3.10), the
equivalence in the display holds on all of Mnaive.6 Now consider the OMnaive -linear dual of
(3.13),

0 −→
(
(Λi ⊗OF0

OMnaive)/Fi
)∨ −→ (Λi ⊗OF0

OMnaive)∨ −→ F∨i −→ 0.

The isomorphism Λ−i ⊗OF0
OMnaive

∼−→ (Λi ⊗OF0
OMnaive)∨ induced by 〈 , 〉 identifies F−i with

((Λi⊗OF0
OMnaive)/Fi)∨ by condition (4), and it identifies the operator π⊗1 on Λ−i⊗OF0

OMnaive

with−π⊗1 on (Λi⊗OF0
OMnaive)∨ by (3.12). It follows from these observations and from condition

(3) that the wedge condition on Mnaive holds for all i as soon as it holds for a single i, and that
it and the wedge condition on N naive

n pull back to equivalent conditions on U .
Now consider condition (7) on Mnaive. This condition is automatically satisfied in the generic

fiber, so let S be the spectrum of a field κ which is an extension of k. Let (Fi ⊂ Λi ⊗OF0
κ)i be

an S-point on Mnaive. Then

(π ⊗ 1 | Fi) = 0 ⇐⇒ Fi = (π ⊗ 1) · (Λi ⊗OF̆ κ) ⇐⇒
(
π ⊗ 1 | (Λi ⊗OF0

κ)/Fi
)

= 0.

Using conditions (3) and (4), it follows as above that (7) holds for all i as soon as it holds for a
single i, and that it and the spin condition on N naive

n pull back to equivalent conditions on U .
Thus we have shown that Nn and M loc

Spf OF̆
have common inverse image in U . We conclude

that Nn ⊂ N naive
n is an immersion in general and closed immersion when n is even, since the

same is true of M loc ⊂Mnaive. Thus Nn inherits the property of being formally locally of finite
type from N naive

n . By Proposition 3.10, it also follows that Nn is formally smooth over Spf OF̆ of

relative formal dimension n− 1. Finally, by Prop. 2.32 and the proof of Th. 3.25 in [23], N naive
n

is essentially proper over Spf OF̆ . Thus the same is true of Nn when n is even. �

Remark 3.13. In analogy with Remark 3.12, when n is odd, one can replace the spin condition
in the definition of Nn with a weaker condition, based on the one introduced in [24], to obtain an
essentially proper, formally smooth formal scheme containing Nn as an open formal subscheme.
Although this formal scheme is in some sense a “better” object, its definition is much more
complicated to state, and for the purposes of this paper it suffices to work with Nn as we have
defined it.

4. Intersection numbers

In this section we define the intersection numbers that appear in our AT conjectures. Let
n ≥ 3 be an odd integer.

4.1. The morphisms δN and ∆N . We begin by introducing some closed embeddings of moduli
spaces. As in the Introduction, over OF̆ we have the canonical lift E of E equipped with its action

ιE : OF → End(E), its principal polarization λE , and its framing isomorphism ρE : Ek
∼−→ E; see

also Example 3.7. We further have the quadruple (E , ιE , λE , ρE), where E is the same underlying
p-divisible group, where the OF -action ιE is obtained by precomposing ιE with the nontrivial
Galois automorphism on OF , and where λE = λE and ρE = ρE .

Using (E , ιE , λE , ρE), we define a morphism of formal moduli schemes

δN : N naive
n−1 −→ N naive

n (4.1)

as follows. Let S be a scheme over Spf OF̆ , and let (Y, ιY , λY , ρY ) ∈ N naive
n−1 (S), cf. §§3.5, 3.6.

Then locally on S there exists cY ∈ O×F0
such that ρ∗Y (λXn−1

×Spec k S) = cY · (λY ×S S),

6Strictly speaking, when n is odd, [15] computes an affine chart for a different maximal parahoric level structure

than the one we are using. But the calculations in [15] are easily adapted to our case. See also Arzdorf [2].
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cf. (3.11). Recall that for odd n we have the framing object Xn = Xn−1 ×Spec k E and its
polarization λXn = λXn−1 × λE. We define

δN : (Y, ιY , λY , ρY ) 7−→
(
Y × E , ιY × ιE , λY × c

−1
Y λE , ρY × ρE

)
.

This is a well-defined functor. Indeed, (ρY × ρE)∗(λXn−1
×λE) = cY (λY × c−1

Y λE). Furthermore,
if (Y, ιY , λY , ρY ) is isomorphic to (Y ′, ιY ′ , λY ′ , ρY ′), then there exists an OF -linear isomorphism

α : Y ′
∼−→ Y compatible with ρY ′ and ρY , and such that, locally on the base, γλY ′ = α∗(λY )

for some γ ∈ O×F0
. But then cY ′ = γcY , from which one verifies that α× idE : Y ′ × E ∼−→ Y × E

defines an isomorphism from δN (Y ′, ιY ′ , λY ′ , ρY ′) to δN (Y, ιY , λY , ρY ).

Remark 4.1. If one uses the alternative formulation of the moduli problem defining Nn given
in Remark 3.6, where cY is required to equal 1, then the well-definedness of δN is essentially
obvious.

Lemma 4.2. The map δN induces a closed immersion of formal schemes

δN : Nn−1 −→ Nn.

Proof. If (Y, ι, λ, ρ) is a point on Nn−1, then (ι× ιE)(π) | Lie(Y × E) is pointwise nonvanishing
because ι(π) | LieY is, and δN (Y, ι, λ, ρ) satisfies the wedge condition because (Y, ι, λ, ρ) does
and because (ιE(π) + π | Lie E) = 0. �

Using δN , we obtain a closed immersion of formal schemes,

∆N : Nn−1

(idNn−1
,δN )

−−−−−−−−→ Nn−1 ×Spf OF̆
Nn.

Let us conclude this subsection by explaining the equivariance properties of the maps δN and
∆N . Since n is odd, the non-split hermitian space Vn = Hom◦OF (E,Xn) in (3.9) has a canonical
special vector u of norm 1, namely

u := (0, idE) ∈ Hom◦OF
(
E,Xn

)
= Hom◦OF

(
E,Xn−1 × E

)
. (4.2)

The stabilizer of u in U(Xn) ∼= U(Vn) identifies with U(Xn−1). In this way we obtain an
identification of

H1(F0) ⊂ U1(F0) with U(Xn−1) ⊂ U(Xn), (4.3)

as in (3.10). Via these identifications, H1(F0) acts on Nn−1, U1(F0) acts on Nn, and the product
GW1(F0) = H1(F0)×U1(F0) acts onNn−1×Spf OF̆

Nn. The maps δN and ∆N are then equivariant
for the action of H1(F0), i.e.

δN
(
h · (Y, ιY , λY , ρY )

)
= h · δN

(
(Y, ιY , λY , ρY )

)
,

∆N
(
h · (Y, ιY , λY , ρY )

)
= h ·∆N

(
(Y, ιY , λY , ρY )

)
,

(4.4)

where H1(F0) acts via its diagonal embedding into GW1
(F0) on the right-hand side of the second

equation.

4.2. Homogeneous setting. We now use ∆N to define intersection numbers. We start with
the homogeneous case. Define the closed formal subscheme of Nn−1 ×Spf OF̆

Nn,

∆ := ∆N (Nn−1). (4.5)

Of course this is not to be confused with the discriminant (2.6); throughout the paper context
should suffice to make the meaning of ∆ clear. For g ∈ GW1

(F0), we define the translate

∆g := g∆. (4.6)

We then define the intersection number of ∆ and ∆g by the Euler-Poincaré characteristic of the
derived tensor product (cf. [9]),

Int(g) := 〈∆,∆g〉 := χ
(
O∆ ⊗L O∆g

)
. (4.7)

Note that, since Nn−1 ×Spf OF̆
Nn is a regular formal scheme by Proposition 3.8, this derived

tensor product is represented by a finite complex of locally free coherent modules. Furthermore,
the intersection ∆ ∩∆g can be identified with

∆ ∩∆g = ∆−1
N (∆g),
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where ∆ and ∆g are closed formal subschemes of Nn−1 ×Spf OF̆
Nn. It follows that ∆∩∆g may

be identified with a closed formal subscheme of Nn−1. Since n− 1 is an even integer, the formal
scheme Nn−1 is essentially proper over Spf OF̆ by Proposition 3.8. It follows that Int(g) is finite,
provided that the underlying reduced scheme of the intersection ∆ ∩ ∆g is of finite type over
SpecOF̆ , and that the ideal of definition of this formal scheme is nilpotent. Indeed, under these
conditions, ∆ ∩∆g will be a scheme X proper over SpecOF̆ with support in the special fiber,
and the cohomology groups of any perfect complex of OX -modules are finite length OF̆ -modules,
and there are only finitely many of them. For situations where we can make sure this happens,
see Remark 4.5 below.

Remark 4.3. We note that Int(g) only depends on the double coset of g modulo H1(F0) (with
respect to the diagonal embedding H1(F0) ⊂ GW1

(F0)). Indeed, the equivariance property (4.4)
implies that

h∆ = ∆ for all h ∈ H1(F0).

Hence

∆gh2 = gh2∆ = g∆ = ∆g,

and

〈∆,∆h1gh2
〉 = 〈∆,∆h1g〉 = 〈∆, h1∆g〉 = 〈h−1

1 ∆,∆g〉 = 〈∆,∆g〉.

4.3. Inhomogeneous setting. For the inhomogeneous case, we recycle notation by introduc-
ing, for g ∈ U1(F0), the closed formal subscheme of Nn−1 ×Spf OF̆

Nn,

∆g := (1× g)∆, (4.8)

and setting

Int(g) := 〈∆,∆g〉 = χ(O∆ ⊗L O∆g
). (4.9)

The same remarks as in the homogeneous case above apply to this definition.

Remark 4.4. It follows from Remark 4.3 that in the inhomogeneous setting, Int(g) only depends
on the orbit of g under the conjugation action of H1(F0).

Remark 4.5. Identify U1(F0) with U(Xn), and GW1
(F0) with U(Xn−1)× U(Xn), according to

(4.3). We claim that for any g ∈ U1,rs(F0) in the inhomogeneous case, or any g ∈ GW1,rs(F0) in
the homogeneous case, the quantity Int(g) is finite. More precisely, we claim that in either case,
the intersection of ∆ and ∆g inside Nn−1 ×OF̆ Nn is a scheme over Spf OF̆ (i.e., any ideal of
definition of this formal scheme is nilpotent) which is proper over SpecOF̆ .

Indeed, for simplicity, let us consider the inhomogeneous case. Then the proof of [33, Lem. 2.8]
goes through, although we are lacking at the moment a suitable reference for the global facts
used in loc. cit. The argument is based on the relation with KR divisors [9]. Namely, let
Z(u) be the special cycle defined by the special vector u = u1. Then there is the identification
Z(u) = δN (Nn−1). Via the second projection there is an identification ∆∩∆g ⊂ N g

n . Therefore
we obtain an inclusion

∆ ∩∆g ⊂ Z(u) ∩ Z(gu) ∩ · · · ∩ Z(gn−1u).

But since g is regular semi-simple, the vectors u, gu, . . . , gn−1u in Vn are linearly independent,
cf. §2.4. In other words, the fundamental matrix of the special divisors Z(u), . . . ,Z(gn−1u) is
non-singular. Now we approximate the vectors u, gu, . . . , gn−1u by “global vectors” v1, . . . , vn,
and we imitate in the present ramified case the global argument of [33, Lem. 2.8], which shows
that there is a chain of inclusions of schemes

Z(u) ∩ Z(xu) ∩ · · · ∩ Z(xn−1u) ⊂ Z(v1) ∩ Z(v2) ∩ · · · ∩ Z(vn) ⊂ Shss.

Here Shss denotes the supersingular locus of the integral model of the global Shimura variety,
and we are implicitly using nonarchimedean uniformization to make these identifications. (In
the unramified situation the Z(vi) are relative divisors on Sh, whereas in our ramified situation
we can only assert that the underlying point set has codimension one.)

On the other hand, in the case n = 3, we will show directly in Theorem 5.20 below that
∆ ∩∆g is an artinian scheme whenever g ∈ U1,rs(F0). The proof of this does not use a global
argument.
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4.4. Lie algebra setting. It would be interesting to transpose the above to the Lie algebra
case. To this end, first note that the closed formal subscheme (4.8) can be identified with the
closed sublocus of points ((Y, ιY , λY , ρY ), (X, ιX , λX , ρX)) ∈ Nn−1 ×Spf OF̆

Nn where

the quasi-endomorphism g : Xn → Xn lifts to a homomorphism Y × E → X . (4.10)

Here we recall from (3.7) that Xn = Xn−1×E by definition, and by “lifts” we mean with respect
to the framings ρY of Y , resp. ρE of E , resp. ρX of X.

Note that condition (4.10) still makes sense when g is replaced by any quasi-endomorphism
Xn. Hence we may replace the formal subspace ∆g = (1× g) ·∆N (Nn−1) in the inhomogeneous
version above by the analogous subspace ∆x, for any x in the Lie algebra u1 of U1. Unfortunately,
we do not know how to give a reasonable definition of Int(x) = 〈∆,∆x〉 in general, cf. our remarks
in the Introduction. Here by “reasonable” we mean that at least, as in Remark 4.3, Int(x) only
depends on the conjugation orbit of x under H1(F0), and that if ∆ ∩∆x is an artinian scheme,
then Int(x) coincides with the length of ∆∩∆x. One problem, pointed out to us by A. Mihatsch,
is that it may happen that the formal dimension of ∆x is smaller than n.

Remark 4.6. For any quasi-endomorphism x of Xn and any h1, h2 ∈ H1(F0), it is elementary
to verify that

(h2 × h1)∆x = ∆h1xh
−1
2
.

Taking h1 = h2 =: h, and taking H1(F0) to act diagonally on Nn−1 ×Spf OF̆
Nn as before, we

conclude that the formal subspaces ∆ ∩ ∆x and ∆ ∩ ∆hxh−1 = ∆ ∩ h∆x = h(∆ ∩ ∆x) are
isomorphic.

Remark 4.7. Similar to Remark 4.5, the intersection ∆∩∆x is a scheme proper over SpecOF̆ ,
provided that x ∈ u1,rs(F0). Indeed, the same proof works, once the following two observations
are taken into account. First,

∆ ∩∆x ⊂ ∆ ∩∆xi , i ≥ 1.

Indeed, abusing notation in the obvious way, the left-hand side is the locus of points (Y,X) in
Nn−1 ×Spf OF̆

Nn where Y ×E ' X and where x lifts to an endomorphism of X. It is clear that

then also xi lifts as an endomorphism of X, for any i ≥ 1. Second, for any y ∈ EndOF (Xn),

∆y ⊂ Z(yu).

Indeed, the restriction of y : Y ×E → X to the second factor coincides with the homomorphism
yu : E → X, hence the locus where y extends to a homomorphism is contained in the locus
Z(yu) where the homomorphism yu extends. We conclude that

∆ ∩∆x ⊂ Z(u) ∩ Z(xu) ∩ · · · ∩ Z(xn−1u),

and the proof proceeds from here as in the group case.

We also conjecture the following partial converse to Remarks 4.5 and 4.7.

Conjecture 4.8. Let g ∈ GW1
(F0) be semi-simple (i.e., its orbit under H1 × H1 is Zariski-

closed). If the intersection of ∆ and ∆g inside Nn−1×OĔ Nn is a nonempty scheme proper over
SpecOF̆ , then g is regular semi-simple. The inhomogeneous version for g ∈ U1(F0) and the Lie
algebra version for x ∈ u1(F0) instead of g also hold true.

5. Conjectures and main results

In this section, we formulate the general conjecture that is addressed in this paper. Following
the case distinctions we have made earlier, we will formulate three variants: a homogeneous
version, an inhomogeneous version, and a Lie algebra version. We continue to denote by F/F0

a ramified quadratic extension (and assume p 6= 2). Throughout this section, n ≥ 3 is an odd
integer.



ON THE ARITHMETIC TRANSFER CONJECTURE FOR EXOTIC SMOOTH MODULI SPACES 25

5.1. Homogeneous setting. For γ ∈ G′(F0)rs, for a function f ′ ∈ C∞c (G′), and for a complex
parameter s ∈ C, we introduce the weighted orbital integral

Orb(γ, f ′, s) :=

∫
H′1,2(F0)

f ′(h−1
1 γh2)|deth1|sη(h2) dh1 dh2. (5.1)

Here η = ηF/F0
is the quadratic character corresponding to F/F0, and we are using a product

Haar measure on H ′1,2(F0) = H ′1(F0)×H ′2(F0). Also, for

h2 = (h′2, h
′′
2) ∈ H ′2(F0) = GLn−1(F0)×GLn(F0),

we write η(h2) for η(deth′2). Note that deth1 is an element of F , and we are taking the
normalized absolute value on F in (5.1). We also introduce

Orb(γ, f ′) := Orb(γ, f ′, 0) and ∂Orb(γ, f ′) :=
d

ds

∣∣∣
s=0

Orb(γ, f ′, s).

The integral in (5.1) is absolutely convergent, and

Orb(h−1
1 γh2, f

′) = η(h2) Orb(γ, f ′) for (h1, h2) ∈ H ′1,2(F0) = H ′1(F0)×H ′2(F0).

Now let i ∈ {0, 1}, and set W := Wi and H := Hi. For g ∈ GW (F0)rs and for a function
f ∈ C∞c (GW ), we introduce the orbital integral

Orb(g, f) :=

∫
H(F0)×H(F0)

f(h−1
1 gh2) dh1 dh2.

Here on H(F0)×H(F0) we take a product measure of identical Haar measures on H(F0).
Dual to the matching of regular semi-simple elements discussed in §2 is the transfer relation

of functions on G′(F0), GW0(F0), and GW1(F0). To define this, recall that a transfer factor is a
function Ω: G′(F0)rs → C× such that

Ω(h−1
1 γh2) = η(h2)Ω(γ) for all (h1, h2) ∈ H ′1,2(F0) = H ′1(F0)×H ′2(F0).

Transfer factors always exist, and we will specify our particular choice below.

Definition 5.1. A function f ′ ∈ C∞c (G′) and a pair of functions (f0, f1) ∈ C∞c (GW0)×C∞c (GW1)
are transfers of each other, or are associated (for the fixed choices of Haar measures and a fixed
choice of transfer factor and a fixed choice of special vectors ui in Wi), if for each i ∈ {0, 1} and
each g ∈ GWi

(F0)rs,

Orb(g, fi) = Ω(γ) Orb(γ, f ′)

whenever γ ∈ G′(F0)rs matches g.

In the specific case at hand, we will take the transfer factor Ω = ω to be given by the following
formula. Let η̃ be an extension of η from F×0 to F× (not necessarily of order 2). Then we take7

ω(γ) := η̃
(
det(γ̃)−(n−1)/2 det(γ̃ie)i=0,...,n−1

)
, (5.2)

where for γ = (γ1, γ2) ∈ G′(F0)rs we set γ̃ = s(γ) = (γ−1
1 γ2)

(
γ−1

1 γ2

)−1 ∈ Sn(F0), and where we
recall the column vector e = (0, . . . , 0, 1) ∈ Fn. We point out that

det(γ̃)−(n−1)/2 det(γ̃ie)i=0,1,...,n−1

is an eigenvector under the Galois involution, i.e., it is in either F0 or πF0.
Let us fix the rest of the choices that go into the statement of our AT conjecture. We normalize

the Haar measure in (5.1) by assigning the subgroup H ′1(OF0) = GLn−1(OF ) measure 1, and by
taking the product Haar measure on H ′2(F0) = GLn−1(F0) × GLn(F0) such that GLn−1(OF0

)
and GLn(OF0

) have measure 1. On the unitary side, recall from (2.7) that we assume that the
special vectors u0 ∈ W0 and u1 ∈ W1 have norm 1. Since n is odd, it follows that the perp
spaces W [

0 and W [
1 are the respective split and non-split hermitian spaces of dimension n − 1.

Since W [
0 is furthermore even dimensional, it contains a π-modular lattice [7, Prop. 8.1(b)], that

is, an OF -lattice Λ[0 such that (Λ[0)∨ = π−1Λ[0, where (Λ[0)∨ ⊂ W [
0 denotes the set of elements

that pair with Λ[0 to values in OF under the hermitian form. We fix such a Λ[0 and denote by K[
0

7Note that in this paper our choice of various transfer factors is slightly different from that in [35].
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its stabilizer in H0(F0). We normalize the Haar measure on H0(F0) such that K[
0 gets measure

1. The normalization of the Haar measure on H1(F0) will not be important for us. We set

Λ0 := Λ[0 ⊕OFu0, (5.3)

which is a nearly π-modular lattice in W0, i.e. Λ0 ⊂ Λ∨0 ⊂ π−1Λ0 with π−1Λ0/Λ
∨
0 of length 1.

We denote by K0 the stabilizer of Λ0 in U0(F0).

Remark 5.2. The maximal compact open subgroupK[
0 ⊂ H0(F0) is a special maximal parahoric

subgroup in the sense of Bruhat–Tits theory. The maximal compact open subgroup K0 ⊂ U0(F0)
is the full stabilizer in U0(F0) of a special vertex in the (extended) building, and contains the
associated maximal parahoric subgroup with index 2. See [14, §4.a]. These subgroups have
symplectic reduction in the sense that the quotients (Λ[0)∨/Λ[0 and Λ∨0 /Λ0 have dimension n− 1
over the residue field k, and the hermitian form on the ambient space induces a non-degenerate
alternating bilinear pairing on both.

We now state the homogeneous version of the arithmetic transfer conjecture in the case at
hand. For g ∈ GW1(F0), recall the intersection number Int(g) from (4.7).

Conjecture 5.3 (Homogeneous AT conjecture).

(a) There exists a function f ′ ∈ C∞c (G′) which transfers to (1K[
0×K0

, 0) ∈ C∞c (GW0
)×C∞c (GW1

),

and which satisfies the following identity for any γ ∈ G′(F0)rs matched with an element g ∈
GW1

(F0)rs:

ω(γ) ∂Orb(γ, f ′) = −Int(g) · log q.

(b) For any f ′ ∈ C∞c (G′) which transfers to (1K[
0×K0

, 0) ∈ C∞c (GW0)×C∞c (GW1), there exists a

function f ′corr ∈ C∞c (G′) such that for any γ ∈ G′(F0)rs matched with an element g ∈ GW1
(F0)rs,

ω(γ) ∂Orb(γ, f ′) = −Int(g) · log q + ω(γ) Orb(γ, f ′corr).

Remarks 5.4. (i) Both sides of these identities depend only on the respective orbits of γ and
g: for the right-hand side this follows from Remark 4.3; and for the left-hand side, this follows
from Orb(γ, f ′) = 0 for any γ ∈ G′(F0)rs matched with an element g ∈ GW1(F0)rs, which holds
because f ′ transfers to 0 on GW1

(F0).

(ii) Part (a) of Conjecture 5.3 follows from part (b); see Proposition 5.14 below. The converse
(a) =⇒ (b) would follow from a conjectural density principle (Conjecture 5.15); see Lemma 5.17
below.

(iii) The function f ′ in Conjecture 5.3(a) cannot be taken to lie in the Iwahori Hecke algebra of
G′(F0) = GLn−1(F ) ×GLn(F ) due to the presence of the ramified quadratic character η. It is
tempting to guess that such an f ′ could be taken in the pro-unipotent Hecke algebra of G′(F0),
i.e., to be bi-invariant under the pro-unipotent radical of an Iwahori subgroup. But even in the
case n = 3 we do not know how to prove this.

5.2. Inhomogeneous setting. Now we give the inhomogeneous version of the conjecture. Re-
call the scheme S = Sn = {g ∈ ResF/F0

GLn | gg = 1n}. For γ ∈ S(F0)rs, a function f ′ ∈ C∞c (S),
and a complex parameter s ∈ C, we introduce the weighted orbital integral

Orb(γ, f ′, s) :=

∫
H′(F0)

f ′(h−1γh)|deth|sη(h) dh, (5.4)

as well as the special values

Orb(γ, f ′) := Orb(γ, f ′, 0) and ∂Orb(γ, f ′) :=
d

ds

∣∣∣
s=0

Orb(γ, f ′, s).

Here we write η(h) for η(deth), as in the Introduction. Note that deth ∈ F0, and in (5.4) we
are taking its absolute value for the normalized absolute value on F0. As in the homogeneous
setting, the integral defining Orb(γ, f ′, s) is absolutely convergent, and

Orb(h−1γh, f ′) = η(h) Orb(γ, f ′) for all h ∈ H ′(F0) = GLn−1(F0).
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For i ∈ {0, 1}, set U := Ui and H := Hi. For g ∈ U(F0)rs and a function f ∈ C∞c (U), we
similarly introduce the orbital integral

Orb(g, f) :=

∫
H(F0)

f(h−1gh) dh.

A transfer factor on S(F0)rs is a function Ω: S(F0)rs → C× such that Ω(h−1γh) = η(h)Ω(γ)
for all γ ∈ S(F0)rs and h ∈ H ′(F0). Quite analogously to the homogeneous setting, in the case
at hand we take the transfer factor Ω = ω given by

ω(γ) := η̃
(
det(γ)−(n−1)/2 det(γie)i=0,...,n−1

)
. (5.5)

By definition, this is compatible with the transfer factor (5.2) on G′(F0) in the sense that, for
γ ∈ G′(F0),

ω(γ) = ω
(
s(γ)

)
. (5.6)

We take the other normalizations (the length of the special vectors, the Haar measures on
H ′(F0) and H(F0)) and the notation K0 as in the homogeneous setting. The transfer relation
for functions is the following.

Definition 5.5. A function f ′ ∈ C∞c (S) and a pair of functions (f0, f1) ∈ C∞c (U0) × C∞c (U1)
are transfers of each other, or are associated, if for each i ∈ {0, 1} and each g ∈ Ui(F0)rs,

Orb(g, fi) = ω(γ) Orb(γ, f ′)

whenever γ ∈ S(F0)rs matches g.

The inhomogeneous version of the conjecture takes the following form.

Conjecture 5.6 (Inhomogeneous AT conjecture).

(a) There exists a function f ′ ∈ C∞c (S) which transfers to (1K0
, 0) ∈ C∞c (U0) × C∞c (U1), and

which satisfies the following identity for any γ ∈ S(F0)rs matched with an element g ∈ U1(F0)rs:

2ω(γ) ∂Orb(γ, f ′) = −Int(g) · log q.

(b) For any f ′ ∈ C∞c (S) which transfers to (1K0
, 0) ∈ C∞c (U0)×C∞c (U1), there exists a function

f ′corr ∈ C∞c (S) such that for any γ ∈ S(F0)rs matched with an element g ∈ U1(F0)rs,

2ω(γ) ∂Orb(γ, f ′) = −Int(g) · log q + ω(γ) Orb(γ, f ′corr).

Note that there is a factor of 2 in Conjecture 5.6 which is not present in Conjecture 5.3; this
is due to the fact that the restriction to F0 of the normalized absolute value of F is the square
of the normalized absolute value of F0, cf. Lemma 5.7 and its proof below.

In the rest of this subsection, we show that Conjectures 5.3 and 5.6 are equivalent.

Lemma 5.7. Let f ′ ∈ C∞c (G′), and define the function f̃ ′ on S(F0) by, for g ∈ GLn(F ),

f̃ ′(gg−1) :=

∫
GLn−1(F )×GLn(F0)

f ′(h1, h1gh2) dh1 dh2. (5.7)

(i) f̃ ′ ∈ C∞c (S), and every element in C∞c (S) arises in this way.

(ii) For all γ ∈ G′(F0)rs,

Orb(γ, f ′) = Orb
(
s(γ), f̃ ′

)
. (5.8)

If moreover f ′ transfers to (f0, 0) for some f0 ∈ C∞c (GW0
), then for any γ matching an element

in GW1(F0)rs,

∂Orb(γ, f ′) = 2 ∂Orb
(
s(γ), f̃ ′

)
. (5.9)

Proof. Part (i) is clear; we show part (ii). Note that for (γ1, γ2) ∈ G′(F0) = GLn−1(F )×GLn(F ),

Orb
(
(γ1, γ2), f ′, s

)
= |γ1|−s Orb

(
(1, γ−1

1 γ2), f ′, s
)
.

It is then clear that the left-hand sides of both (5.8) and (5.9) are invariant if we replace (γ1, γ2)
by (1, γ−1

1 γ2) under the assumption of the lemma. Hence it suffices to consider elements of the
form (1, γ) ∈ G′(F0). By definition,

Orb
(
(1, γ), f ′, s

)
=

∫
H′1,2(F0)

f ′(h−1
1 h′2, h

−1
1 γh′′2)|deth1|sη(h′2) dh1 dh

′
2 dh

′′
2 ,



28 M. RAPOPORT, B. SMITHLING, AND W. ZHANG

where h1 ∈ H ′1(F0) = GLn−1(F ) and (h′2, h
′′
2) ∈ H ′2(F0) = GLn−1(F0)×GLn(F0). Replacing h1

by h′2h1, we have

Orb
(
(1, γ), f ′, s

)
=

∫
H′1,2(F0)

f ′
(
h−1

1 , h−1
1 (h′2)−1γh′′2

)
|det(h′2h1)|sη(h′2) dh1 dh

′
2 dh

′′
2 .

This is equal to the sum of∫
H′1,2(F0)

f ′
(
h−1

1 , h−1
1 (h′2)−1γh′′2

)
|deth′2|sη(h′2) dh1 dh

′
2 dh

′′
2 (5.10)

and ∫
H′1,2(F0)

f ′
(
h−1

1 , h−1
1 (h′2)−1γh′′2

)
(|deth1|s − 1)|deth′2|sη(h′2) dh1 dh

′
2 dh

′′
2 . (5.11)

Comparing with the definition (5.4), we see that the term (5.10) is equal to∫
GLn−1(F0)

f̃ ′
(
(h′2)−1γγ−1h′2

)
|deth′2|2sF0

dh′2 = Orb
(
γγ−1, f̃ ′, 2s

)
.

The term (5.11) has an obvious zero at s = 0 for all regular semi-simple elements (1, γ). This
establishes (5.8). To prove (5.9), we note that, when (1, γ) matches an element in GW1

(F0)rs,
the term (5.11) has vanishing order at least two at s = 0. Indeed since |deth1|s − 1 has a zero
at s = 0, the first derivative evaluated at s = 0 is equal to∫

H′1,2(F0)

f ′
(
h−1

1 , h−1
1 (h′2)−1γh′′2

)
η(h′2) dh1 dh

′
2 dh

′′
2 = Orb

(
(1, γ), f ′, 0

)
= 0,

since f ′ is assumed to transfer to some (f0, 0). This completes the proof. �

Lemma 5.8. Conjectures 5.3(a) and 5.6(a) are equivalent. Similarly for Conjectures 5.3(b) and
5.6(b).

Proof. We have

Int(h1gh2) = Int(g) for all g ∈ GW1(F0), h1, h2 ∈ H1(F0).

Therefore it suffices to consider elements of the form (1, g) for g ∈ U1(F0). By (5.6), we have
ω(γ) = ω(s(γ)) for γ ∈ G′(F0). The equivalence between Conjectures 5.3(a) and 5.6(a) is
now clear by Lemma 5.7. Indeed, if f ′ ∈ C∞c (G′) satisfies the conclusion of Conjecture 5.3(a),

then the function f̃ ′ ∈ C∞c (S) will satisfy the conclusion of Conjecture 5.6(a). Conversely, if
f ′′ ∈ C∞c (S) satisfies the conclusion of Conjecture 5.6(a), then we may choose f ′ ∈ C∞c (G′) such

that f̃ ′ = f ′′, and f ′ will then satisfy the conclusion of Conjecture 5.3(a). One may similarly
show the equivalence between Conjectures 5.3(b) and 5.6(b), by taking the f ′corr in Conjecture

5.6(b) to be f̃ ′corr (cf. (5.7)) for the f ′corr in Conjecture 5.3(b). �

5.3. Lie algebra setting. We would like to formulate a Lie algebra version of Conjecture 5.6.
At least the analytic side of the conjecture makes sense. Recall the Lie algebra version of the
symmetric space S = Sn,

s =
{
y ∈ ResF/F0

Mn

∣∣ y + y = 0
}
.

For a regular semi-simple element y ∈ s(F0)rs, a function φ′ ∈ C∞c (s), and a complex parameter
s, we define the weighted orbital integral

Orb(y, φ′, s) :=

∫
H′(F0)

φ′(h−1yh)|deth|sη(h) dh,

as well as the special values

Orb(y, φ′) := Orb(y, φ′, 0) and ∂Orb(y, φ′) :=
d

ds

∣∣∣
s=0

Orb(y, φ′, s).

As in (5.4), here we are using the normalized absolute value on F0. As before, the integral
defining Orb(y, φ′, s) is absolutely convergent, and

Orb(h−1yh, φ′) = η(h) Orb(y, φ′) for all h ∈ H ′(F0) = GLn−1(F0).
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For i ∈ {0, 1}, set u := ui and H := Hi. For x ∈ u(F0)rs and a function φ ∈ C∞c (u), we similarly
introduce the orbital integral

Orb(x, φ) :=

∫
H(F0)

φ(h−1xh) dh.

A transfer factor on s(F0)rs is a function Ω: s(F0)rs → C× such that Ω(h−1yh) = η(h)Ω(y)
for all y ∈ s(F0)rs and h ∈ H ′(F0). We take the transfer factor Ω = ω on s(F0)rs given by

ω(y) := η̃
(
det(yie)i=0,1,...,n−1

)
; (5.12)

cf. [35, (3.7)]. Again we normalize the Haar measure on the symmetric space side such that
H ′(OF0) = GLn−1(OF0) has measure 1. On the unitary side, we denote by k0 the stabilizer in
u0(F0) of the nearly π-modular lattice Λ0 ⊂ W0 defined in (5.3). Again we normalize the Haar
measure on H0(F0) such that the stabilizer K[

0 of Λ[0 has measure 1. The transfer relation for
functions extends readily to the Lie algebra setting as follows.

Definition 5.9. A function φ′ ∈ C∞c (s) and a pair of functions (φ0, φ1) ∈ C∞c (u0) × C∞c (u1)
are transfers of each other, or are associated, if for each i ∈ {0, 1} and each x ∈ ui(F0)rs,

Orb(x, φi) = ω(y) Orb(y, φ′)

whenever y ∈ s(F0)rs matches x.

Now we state the Lie algebra version of the conjecture.

Conjecture 5.10 (Lie algebra AT conjecture).

(a) There exists a function φ′ ∈ C∞c (s) which transfers to (1k0 , 0) ∈ C∞c (u0) × C∞c (u1), and
which satisfies the following identity for any y ∈ s(F0)rs matched with an element x ∈ u1(F0)rs

for which the intersection ∆ ∩∆x is an artinian scheme:

2ω(y) ∂Orb(y, φ′) = −`-Int(x) · log q.

Here we set

`-Int(x) := length(∆ ∩∆x).

(b) For any φ′ ∈ C∞c (s) which transfers to (1k0 , 0) ∈ C∞c (u0)× C∞c (u1), there exists a function
φ′corr ∈ C∞c (s) such that for any y ∈ s(F0)rs matched with an element x ∈ u1(F0)rs for which the
intersection ∆ ∩∆x is an artinian scheme,

2ω(y) ∂Orb(y, φ′) = −`-Int(x) · log q + ω(y) Orb(y, φ′corr).

Remark 5.11. It is not currently clear to us how to formulate a conjecture without the hy-
pothesis that ∆ ∩∆x is artinian; see our comments right before Remark 4.7.

5.4. Relation between parts (a) and (b) of the conjectures. In this subsection we explain
how parts (a) and (b) in each of Conjectures 5.3, 5.6, and 5.10 are related.

The group H ′(F0) = GLn−1(F0) acts on S(F0) and hence on the space C∞c (S). For a function
f ′ ∈ C∞c (S) and an element h ∈ H ′(F0), we denote by fh ′ ∈ C∞c (S) the function defined by

fh ′ : γ 7−→ f ′(h−1γh).

We also denote by fη(h)h−1 ′ ∈ C∞c (S) the function

fη(h)h−1 ′ : γ 7−→ η(h)f ′(h−1γh)− f ′(γ).

We use analogous notation in the Lie algebra setting, with s in place of S.

Lemma 5.12. (i) For any f ′ ∈ C∞c (S), γ ∈ S(F0)rs, and h ∈ H ′(F0),

Orb
(
γ, fη(h)h−1 ′) = 0 and ∂Orb

(
γ, fη(h)h−1 ′) = log|deth|Orb(γ, f ′).

(ii) For any φ′ ∈ C∞c (s), γ ∈ S(F0)rs, and h ∈ H ′(F0),

Orb
(
γ, φη(h)h−1 ′) = 0 and ∂Orb

(
γ, φη(h)h−1 ′) = log|deth|Orb(γ, φ′).
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Proof. We prove (i); the proof of (ii) is analogous. The integral Orb(γ, f ′, s) transforms under
the action of H ′(F0) on f ′ by the character ηs ◦ det, where

ηs(a) := η(a)|a|s, a ∈ F×0 ,
i.e.

Orb
(
γ, fh ′, s

)
= ηs(deth) Orb(γ, f ′, s).

It follows that
Orb

(
γ, fη(h)h−1 ′, s

)
= (|deth|s − 1) Orb(γ, f ′, s).

The proves the first desired identity, and the second follows by differentiating. �

Lemma 5.13. (i) For any f ′ ∈ C∞c (S), there exists f ′] ∈ C∞c (S) such that

Orb(γ, f ′) = ∂Orb
(
γ, f ′]

)
for all γ ∈ S(F0)rs.

Furthermore, we may choose f ′] such that it transfers to (0, 0) ∈ C∞c (U0)× C∞c (U1).

(ii) For any φ′ ∈ C∞c (s), there exists φ′] ∈ C∞c (s) such that

Orb(y, φ′) = ∂Orb
(
y, φ′]

)
for all y ∈ s(F0)rs.

Furthermore, we may choose φ′] such that it transfers to (0, 0) ∈ C∞c (u0)× C∞c (u1).

Proof. Again we just prove (i). Choose any h ∈ H ′(F0) with deth a non-unit, and set

f ′] :=
fη(h)h−1 ′

log|deth|
.

Then f ′] has all desired properties by Lemma 5.12. �

Proposition 5.14. Part (b) implies part (a) in each of Conjectures 5.3, 5.6, and 5.10.

Proof. By the proof of the ST conjecture in [35, Th. 2.6] (resp. its Lie algebra analog in §4.5
of loc. cit.), there exists some function f ′′ ∈ C∞c (S) transferring to (1K0 , 0) (resp. φ′′ ∈ C∞c (s)
transferring to (1k0 , 0)). Of course f ′′ and φ′′ needn’t satisfy the conclusion of part (a) in
Conjectures 5.6 and 5.10, respectively, but assuming part (b) in these conjectures, we may use
Lemma 5.13 to modify them into functions that do. The implication (b) =⇒ (a) for Conjecture
5.3 then follows from Lemma 5.8. �

For the converse direction from (a) to (b), we need the following.

Conjecture 5.15 (Density principle). The orbital integrals Orb(γ, · ) for all regular semi-simple
γ span a weakly dense subspace in the space of (H ′(F0), η)-invariant distributions on S(F0). The
same holds for s(F0).

Remarks 5.16. (i) An equivalent statement to the above density principle for S(F0) is as fol-
lows: if a function f ′ ∈ C∞c (S) has vanishing orbital integrals Orb(γ, f ′) = 0 for all regular
semi-simple γ ∈ S(F0), then it lies in the subspace of C∞c (S) spanned by functions of the form

fη(h)h−1 ′′ for f ′′ ∈ C∞c (S) and h ∈ H ′(F0). (Of course the orbital integrals of fη(h)h−1 ′′ vanish
by Lemma 5.12.)

(ii) It is easy to see that the density principles for S(F0) and s(F0) are equivalent.

(iii) The density principle holds for s(F0) when n = 3 by [34, Th. 1.1]; cf. Theorem 11.11 below.
It is still open for n ≥ 4.

Lemma 5.17. Assume that Conjecture 5.15 holds. Then part (a) implies part (b) in each of
Conjectures 5.3, 5.6, and 5.10.

Proof. We show the implication (a) =⇒ (b) in Conjecture 5.6. The analogous implication for
Conjecture 5.10 can be proved in a similar way, and that for Conjecture 5.3 follows by Lemma
5.8. Suppose that f ′0 ∈ C∞c (S) satisfies the conclusion of (a), and let f ′ ∈ C∞c (S) be any
function transferring to (1K0 , 0). Then the function f ′− f ′0 has vanishing orbital integrals at all
γ ∈ S(F0)rs. By Conjecture 5.15, we may assume that f ′ − f ′0 is a sum of functions of the form

fη(h)h−1 ′′ for f ′′ ∈ C∞c (S) and h ∈ H ′(F0). By Lemma 5.12(i) (applied to f ′′), it follows that
the function ∂Orb(γ, f ′− f ′0) is of the form Orb(γ, f ′corr) for some f ′corr ∈ C∞c (S), and hence (b)
holds. This completes the proof. �
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5.5. Uniqueness of the function in part (a) of the conjectures. In this subsection we
explain the extent to which the function f ′ in Conjecture 5.6(a) is unique, assuming the density
principle (Conjecture 5.15). An analogous statement holds for Conjecture 5.3(a). The statement
does not carry over to Conjecture 5.10(a) as we have formulated it, owing to the additional
hypothesis (artinian intersection) that we impose, cf. Remark 5.11.

Let ε := η(detW [
0) ∈ {±1}. Then −ε = η(detW [

1). Here we assume as usual that the norm
of the special vector ui ∈Wi is 1. Otherwise we may modify the definition of ε accordingly.

We consider the action of the transpose on S(F0) and on C∞c (S). For f ′ ∈ C∞c (S), we define
the function f ′t by f ′t(γ) := f ′( γt ) for γ ∈ S(F0). Clearly, each f ′ can be written in a unique
way as

f ′ = f ′+ + f ′−

where f ′t± = ±εf ′±. Now recall the decomposition S(F0)rs = Srs,0 q Srs,1 from (2.4).

Lemma 5.18. For any f ′ ∈ C∞c (S),

Orb(γ, f ′+) = 0 for all γ ∈ Srs,1 and Orb(γ, f ′−) = 0 for all γ ∈ Srs,0.

Proof. This is a consequence of how Orb transforms with respect to the transpose operation. For
γ ∈ S(F0)rs, since γt and γ have the same invariants, there exists a unique element hγ ∈ H ′(F0)
such that

γt = h−1
γ γhγ . (5.13)

Moreover, the element hγ is symmetric, i.e. hγ = ht γ ; and if γ ∈ Srs,i, then hγ defines a

hermitian space isometric to W [
i , i.e. η(hγ) = η(detW [

i ) (cf. the proof of [33, Lem. 2.3]). Writing
ηs(h) := ηs(deth) for h ∈ H ′(F0), it follows from (5.13) and suitable substitutions that

Orb(γ, f ′t, s) =

∫
H′(F0)

f ′( ht γt ht −1)ηs(h) dh

=

∫
H′(F0)

f ′(hh−1
γ γhγh

−1)ηs(h) dh

=

∫
H′(F0)

f ′(h−1γh)ηs(h
−1hγ) dh

= ηs(h
−1
γ ) Orb(γ, f ′, s).

In particular,

Orb(γ, f ′t) = η(hγ) Orb(γ, f ′).

The lemma follows from this. �

Lemma 5.19. Assume that Conjecture 5.15 holds. Let f ′ ∈ C∞c (S) be a function satisfying
the conclusion of Conjecture 5.6(a). Then f ′ is unique up to adding a linear combination of
functions of the form

(i) (η(h1)h1−1 θη(h2)h2−1 );

(ii) (Θ + εΘt)η(h)h−1 ; and

(iii)
∑m
i=1 f ′i

η(hi)hi−1
such that

∑m
i=1 log|dethi|f ′i = 0,

where h, hi ∈ H ′(F0) and θ,Θ, f ′i ∈ C∞c (S). Conversely, adding any function of the form (i),
(ii), or (iii) to f ′ gives a new function satisfying the conclusion of Conjecture 5.6(a).

Proof. First consider the following two properties of a function f ′′ ∈ C∞c (S):

(1) Orb(γ, f ′′) = 0 for all γ ∈ S(F0)rs; and

(2) ∂Orb(γ, f ′′) = 0 for all γ ∈ Srs,1.

If f ′′ is of type (i), (ii), or (iii) above, then f ′′ satisfies (1) and (2) by Lemma 5.12(i), with an
assist from Lemma 5.18 for property (2) when f ′′ is of type (ii). For such f ′′, the function f ′+f ′′

therefore satisfies the conclusion of Conjecture 5.6(a) whenever f ′ does.
Now suppose that both f ′1 and f ′2 satisfy the conclusion of Conjecture 5.6(a), and set

f ′′ := f ′1 − f ′2.
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Then f ′′ satisfies (1) and (2). By (1), it follows from Conjecture 5.15 that

f ′′ =

m∑
i=1

f ′′i
η(hi)hi−1

for some f ′′i ∈ C∞c (S), hi ∈ H ′(F0).

If log|dethi| = 0 for all i, then f ′′ is of type (iii) above, and we’re done. If not, then say
log|deth1| 6= 0. By Lemma 5.12(i),

∂Orb(γ, f ′′) = Orb(γ,Θ) for Θ :=

m∑
i=1

log|dethi|f ′′i .

By (2), we have Orb(γ,Θ) = 0 for all γ ∈ Srs,1. This and Lemma 5.18 imply that Orb(γ,Θ−) = 0
for all γ ∈ S(F0)rs. So by another application of Conjecture 5.15, we may write

Θ− =

k∑
j=1

θ
η(h′j)h

′
j−1

j for some θj ∈ C∞c (S), h′j ∈ H ′(F0).

It follows that Θη(h1)h1−1 = (Θ+ + Θ−)η(h1)h1−1 is a sum of functions type (i) and (ii). Since

f ′′ − Θη(h1)h1−1

log|deth1|
=

m∑
i=2

(
f ′′i

η(hi)hi−1 − log|dethi|
log|deth1|

f ′′i
η(h1)h1−1

)
is a function of type (iii), we conclude that f ′′ is of the asserted form. �

5.6. Statement of the main results. Now we state our main results. In the remainder of
the paper, we will be concerned with the case n = 3, with (apart from §10) only occasional
remarks about the case of general n. In this case, the following result gives a combined version
of Remark 4.5, Remark 4.7, and Conjecture 4.8. Recall from (4.5) the notation ∆ = ∆N (N2),
and from (4.6) (or from (4.10) in the Lie algebra case) the notation ∆g. Note that, by the
identification (3.10), we may view U1(F0) and u1(F0) as subsets of End◦OF (Xn). Also, recall
from the Introduction that, since the statements below involve the geometry of formal schemes,
we are taking F0 = Qp throughout.

Theorem 5.20. Let n = 3. Then for any x ∈ u1(F0), the intersection ∆ ∩∆x is non-empty if
and only if x ∈ EndOF (X3), and the following three properties are equivalent.

(i) x ∈ EndOF (X3) ∩ u1(F0)rs.

(ii) The intersection of ∆ and ∆x is a non-empty scheme proper over SpecOF̆ .

(iii) The intersection of ∆ and ∆x is non-empty artinian.

The analog where x ∈ u1(F0) is replaced by g ∈ U1(F0) also holds true.

We complete the proof of Theorem 5.20 in §8.4, modulo some explicit calculations which we
carry out in §9.

We also prove the AT conjectures formulated above in the case n = 3, namely the following
theorems.

Theorem 5.21 (Group version). Let n = 3. Then for any g ∈ U1(F0)rs, the intersection of ∆
and ∆g is an artinian scheme with two points unless it is empty, and there are no higher Tor
terms in the expression (4.9) for Int(g). Furthermore, statements (a) and (b) of Conjecture 5.6
hold true.

By Lemma 5.8, this theorem also implies the homogeneous group version, i.e. where g ∈
GW1

(F0)rs, cf. Conjecture 5.3.

Theorem 5.22 (Lie algebra version). Let n = 3. Then for any x ∈ u1(F0)rs, the intersection of
∆ and ∆x is an artinian scheme with two points, unless it is empty. Furthermore, statements
(a) and (b) of Conjecture 5.10 hold true.

The proofs of Theorems 5.21 and 5.22 will occupy essentially the entire rest of the paper.
We prove these theorems by a combination of methods from geometry and from local harmonic
analysis, which in rough outline goes as follows. In §6 and §7, we relate the moduli space N2 to
the formal deformation space of formal OF0

-modules, and the special divisors on N2 (the analog
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of KR-divisors in the present setting of a ramified quadratic extension) to quasi-canonical divisors
on this formal deformation space. In §8, using the Cayley transform, we reduce the computation
of Int(g) to the calculation of `-Int(x) in the Lie algebra, and even in the reduced subset of the
Lie algebra. The calculation of `-Int(x) for a reduced element x in the Lie algebra is then carried
out in §9. This uses the calculation of intersection numbers of special cycles, and is based on the
Gross-Keating formulas for the intersection numbers of quasi-canonical divisors. At this point
the inputs to the proof from geometry are in place. The local harmonic analysis set-up used
in our proof is explained in §10. Using this, we show in Proposition 11.14 that Theorem 5.21
follows from Theorem 5.22. We show in Proposition 12.4 that, in turn, Theorem 5.22 follows
from Theorem 12.1, which is its analog for the reduced sets in the Lie algebra setting (cf. §8.2,
§10.3, and §11.2). We then obtain Theorem 12.1 from a comparison of the result of the geometry
side with the germ expansion of the orbital integral side. This part of the proof, carried out in
§14 and §15, is explained in §13. The general germ expansion is established in Part 4, and has
its own introduction in §16.

Part 2. Geometric side

In this part of the paper we address the geometric aspects of Theorems 5.21 and 5.22, including
the geometric side of the identities to be proved in these theorems. Along the way we also prove
Theorem 5.20. Throughout this part we take n = 3.

6. The Serre map

The main aim of this section is to describe the moduli space N2 in terms of the Serre tensor
construction (see §3.2), and to use it to analyze special cycles.

6.1. The Serre map. The first basic fact we need about N2 is the following.

Lemma 6.1. N2

(
k
)

consists of two points.

Proof. Let N denote the rational covariant Dieudonné module of the framing object X2, and
recycle the notation 〈 , 〉, h, τ , and C from the proof of Proposition 3.1. Since X2 satisfies the
spin condition, the hermitian space C is non-split by Lemma 3.3. By Dieudonné theory, N2(k)
identifies with the set of OF̆ -lattices L in N such that

$L ⊂2 πτL ⊂2 L, (6.1)

where the superscripts indicate the k-dimension of the corresponding quotients, and such that
L∨ = π−1L, where L∨ denotes the dual lattice in N with respect to 〈 , 〉, or equivalently with
respect to h; cf. [22, Eg. 4.14], or [20, Prop. 2.2] for the variant where the polarization in the
moduli problem is principal. Note that, since C is non-split, the p-divisible group corresponding
to any such L automatically satisfies the spin condition by Lemma 3.3. Given such L, we have

L ⊂1 L+ τL ⊂1 π−1L. (6.2)

By an obvious variant of [23, Prop. 2.17] (with F̆ in place of WQ, π in place of p, etc.), the lattice

L+ τL in the 2-dimensional F̆ -vector space N is τ -stable. This lattice is also self-dual, since the
dual lattice

(L+ τL)∨ = L∨ ∩ (τL)∨ = L∨ ∩ τ(L∨) = π−1(L ∩ τL)

contains L+τL by (6.1), and both L+τL and (L+τL)∨ are contained in π−1L with codimension
1 by (6.2) (and the dual of the diagram (6.2)). Now, since C is non-split and 2-dimensional, C
contains a unique self-dual OF -lattice Λ. Hence L+ τL = OF̆ ·Λ inside N . The hermitian form

h induces a symmetric form on V := Λ⊗OF k, and the image of L in V is an isotropic line. Since
V is 2-dimensional, there are exactly two isotropic lines in V , and these correspond to the two
possibilities for L. �

Remark 6.2. We record for later use that, in the notation of the proof, τ interchanges the two
lattices in N corresponding to the two points in N2(k).
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Since N2 is formally locally of finite type over Spf OF̆ , we conclude that it consists of two
connected components

N2,+ and N2,−,

each reduced to a point topologically. These components are distinguished as the respective loci
in N2 where the framing map ρ is and is not an isomorphism. They are interchanged under the
group action of U(X2) ' U1(F0) by elements of nontrivial Kottwitz invariant, cf. (3.3). Thus to
understand the structure of N2, it remains to understand either one of these components. We
will do this in the rest of this subsection via the Serre map.

Forgetting the OF -action, consider E as a connected p-divisible OF0
-module of dimension 1

and height 2 over Spec k. Let MOF̆0
denote its formal deformation space over Spf OF̆0

. Thus

for each scheme S over Spf OF̆0
, MOF̆0

(S) is the set of isomorphism classes of pairs (Y0, β),

where Y0 is a p-divisible OF0
-module over S and β : Y0,S

∼−→ ES is an OF0
-linear isomorphism.

An isomorphism between such pairs is an isomorphism between p-divisible OF0
-modules over S

which is compatible with the isomorphisms to ES in the obvious sense. By Lubin–Tate theory,
MOF̆0

' Spf OF̆0
[[t]]. Set

M :=MOF̆0
×Spf OF̆0

Spf OF̆ .

Proposition 6.3. The Serre construction Y0 7→ OF ⊗OF0
Y0 induces an isomorphism of formal

schemes over Spf OF̆ ,

M ∼−→ N2,+.

Proof. Given (Y0, β : Y0,S
∼−→ ES) ∈ M(S), we first have to explain how to define the rest of

the quadruple (OF ⊗OF0
Y0, ι, λ, ρ) ∈ N2,+(S). For simplicity, we use the version of the moduli

problem for N2 described in Remark 3.6. Of course, the notation signifies that for ι we take the
tautological OF -action on OF ⊗OF0

Y0. There is a canonical isomorphism

Lie(OF ⊗OF0
Y0) ∼= OF ⊗OF0

LieY0

as OF ⊗OF0
OS-modules, from which it follows that (OF ⊗OF0

Y0, ι) satisfies the Kottwitz and
spin conditions. We define the framing map ρ to be the isomorphism

ρ : OF ⊗OF0
Y0,S

idOF⊗β−−−−−→∼ OF ⊗OF0
ES = X2,S .

It remains to define the polarization λ. SinceM is a formal scheme over Spf OF̆ with a single

k-point, it suffices to assume that S is the spectrum of an Artin local ring with residue field k.
Let λ0 be any principal polarization of Y0; this exists, for example, because E is isomorphic to
the p-divisible group of an elliptic curve, and hence so is Y0 by the Serre–Tate theorem. Over
S = Spec k, the principal polarizations λ0,k and β∗(λE) of Y0,k differ by an O×F0

-multiple by our

remarks in §3.3. Rescaling λ0 as needed, we may assume that λ0,k = β∗(λE). Then we define λ
to be the polarization

λ : OF ⊗OF0
Y0

ϕ⊗λ0−−−→ O∨F ⊗OF0
Y ∨0
∼= (OF ⊗OF0

Y0)∨,

where ϕ : OF → O∨F is the symmetric OF -linear map defined in (3.4). Just as when we defined
X2, one readily verifies that Kerλ = (OF ⊗OF0

Y0)[ι(π)]. Furthermore

λk = ϕ⊗ λ0,k = ϕ⊗ β∗(λE) = ρ∗(ϕ⊗ λE) = ρ∗(λX2
).

Hence (OF ⊗OF0
Y0, ι, λ, ρ) gives a point in N2,+(S), and its isomorphism class is clearly well-

defined in terms of the isomorphism class of (Y0, β). This defines the map M→N2,+.

Now we show that the map is an isomorphism. SinceM and N2,+ both have a single k-point
and are formally smooth over Spf OF̆ of relative formal dimension 1 (using Proposition 3.8 in
the case of N2,+), it suffices to show that the induced map on tangent spaces is nonzero. For
this we might as well prove the a priori stronger fact that M(S) → N2,+(S) is an injection for
any Spf OF̆ -scheme S. Let (Y0, β) and (Y ′0 , β

′) be S-points on M, and let (OF ⊗OF0
Y0, ι, λ, ρ)

and (OF ⊗OF0
Y ′0 , ι

′, λ′, ρ′) be the corresponding quadruples as defined above. With respect to
the OF0

-linear decompositions

OF ⊗OF0
Y0 = 1⊗ Y0 + π ⊗ Y0, OF ⊗OF0

Y ′0 = 1⊗ Y ′0 + π ⊗ Y ′0 , and X2 = 1⊗ E + π ⊗ E,
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the framings ρ and ρ′ take the form

ρ = diag(β, β) and ρ′ = diag(β′, β′).

Thus by ridigity (ρ′)−1 ◦ ρ lifts to an isomorphism OF ⊗OF0
Y0

∼−→ OF ⊗OF0
Y ′0 if and only if

(β′)−1 ◦ β lifts to an isomorphism Y0
∼−→ Y ′0 , which completes the proof. �

Remark 6.4. Lemma 6.1 and Proposition 6.3 make precise and supply details for the Claim for
the formal scheme denoted M1 in [22, Eg. 4.14]. Note however that loc. cit. uses the framing
object described in [11, §5 d)]; this framing object should be replaced with our X2, as discussed
in Remark 3.4.8

6.2. Special divisors. Recall the embedding ιE : OF ↪→ End(E) = OD and the corresponding
canonical lift E of E over OF̆ , with its action ιE : OF → End(E) and principal polarization

λE . Let Y0 denote the universal p-divisible group overM, and let c ∈ EndOF0
(E) = EndOF0

(E).

Associated to c is the closed sublocus TF (c) ofM where c lifts to a homomorphism Y0 → E . Note
that the divisors TF (c) are different from the divisors considered by Gross–Keating, i.e. the locus
where c deforms to an endomorphism of Y0, or in other words a divisor of the form Spf W [[t]]/J
in [18, top of p. 147].

Now let Y denote the universal p-divisible group over N2, and let b ∈ HomOF (X2,E). Asso-
ciated to b is the closed sublocus Z(b) of N2,+ where the OF -linear homomorphism b : X2 → E
lifts to a homomorphism Y → E (the analog in our present ramified setting of a KR divisor in
the unramified setting [9]9). By identifying, via Proposition 6.3, the restriction of Y to N2,+

with OF ⊗OF0
Y0, adjunction implies the following lemma.

Lemma 6.5. If c corresponds to b under the adjunction isomorphism

HomOF0

(
E,E

) ∼= HomOF

(
OF ⊗OF0

E,E
)

= HomOF

(
X2,E

)
,

then the Serre isomorphism M∼= N2,+ identifies

TF (c) ∼= Z(b). �

From now on, we often drop the field F from the notation TF (c).

Proposition 6.6. If b and c are nonzero, then both Z(b) and T (c) are relative divisors.

Proof. Of course it suffices to prove this for T (c). Consider S := M ×Spf OF̆
M, with its

universal object Y0 × Y ′0. Recall from [29, Prop. 5.1] that the locus inside S where c lifts to a
homomorphism Y0 → Y ′0 is a relative divisor Z in S. Another divisor D inside S is given by the
locus where Y ′0 = E . Now D 'M is an irreducible divisor that is not contained in Z (otherwise
c would lift to a homomorphism Y0 → E over all of M, which is absurd). Hence T (c) = Z ∩ D
is a divisor on M. It is a relative divisor because c does not lift to a homomorphism Y0 → E
over the whole special fiber M =M×Spf OF̆

Spec k. �

Remark 6.7. There are also quasi-canonical variants of this construction. Let j ≥ 1. Let

Oj := OF,j := OF0
+ πjOF

be the order of conductor j in OF . Let Wj be the ring of integers of the ring class field extension

of F̆ corresponding to Oj , and let Wj := SpecWj . Let Ej be the quasi-canonical lifting of level
j over Wj [29, Def. 3.1]. In particular, W0 = OF̆ and E0 = E . Put

Mj :=M×SpecOF̆
Wj and N2,+,j := N2,+ ×SpecOF̆

Wj .

Let Ej denote the same object as Ej , but where the Oj-action is precomposed by the nontrivial
Galois automorphism. Inside Mj , we have the locus TF,j(c) where the endomorphism c ∈ OD
lifts to a homomorphism Y0 → Ej ; and insideN2,+,j , we have the locus Zj(b) where the OF -linear

homomorphism b : X2 → E lifts to an Oj-linear homomorphism Y → Ej . If c corresponds to b

8Note also that the claim concerning O∨F at the end of [22, Eg. 4.14] is obviously incorrect.
9Note however that in loc. cit. deformations of homomorphisms E→ X2 are considered.
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under the adjunction isomorphism HomOF0
(E,E) ∼= HomOF (OF ⊗OF0

E,E) = HomOF (X2,E),
then

TF,j(c) ∼= Zj(b)
under the Serre isomorphism.

7. Special divisors as sums of quasi-canonical divisors

In this section we express the special divisor T (c) defined in §6.2 as a sum of quasi-canonical
divisors, where c ∈ OD is nonzero. We identify F with its image in D via ιE, but we also consider
the conjugate embedding ι := ιc E : F ↪→ D and its image Fc . Corresponding to ι, we have the
quasi-canonical divisor W Fc ,j on M and the quasi-canonical lift Eι,j of level j over W Fc ,j , as
well as the canonical lift Eι over Spf OF̆ .

Proposition 7.1. There is an equality of divisors on M,

T (c) =
∑

0≤j≤vD(c)

W Fc ,j .

Proof. Note that in the definition of T (c), it is harmless to replace E with E and E with E , since
in both cases the underlying OF0

-modules are the same. Set γ := vD(c), and write c = πγc0
with c0 ∈ O×D. Let j ≤ γ. The element πγ−jc0 ∈ OD conjugates ι into ιE, and therefore lifts
to a homomorphism Eι → E . Over the locus W Fc ,j , the endomorphism ι(πj) of E lifts to a

homomorphism ψj : Eι,j → Eι. Since ι = ι
c−1
0

E, we thus obtain a diagram

Eι,j
ψj

// Eι // E

E
c−1
0 πjc0

// E πγ−jc0 // E,

where the vertical lines indicate reduction to k, and where the bottom row evidently composes to
c. This shows that the divisor W Fc ,j is a component of T (c). We therefore obtain an inequality
of divisors on M,

γ∑
j=0

W Fc ,j ≤ T (c).

The equality will follow by comparing the intersections of both sides with the special fiber M.
For the left-hand side, we note that (W Fc ,j · M) = [Wj : OF̆ ] = qj . For the right-hand side, we
apply the following lemma. �

Lemma 7.2. The intersection multiplicity of the cycle T (c) with the special fiber M is(
T (c) · M

)
=
∑

0≤j≤vD(c)
qj .

Proof. We use the Kummer congruence, cf. [18, Th. 4.1]. Identify M with Spf k[[t]], and the
product of M with itself with Spf k[[t, t′]]. Let (Y0,Y ′0) be the universal p-divisible group over
Spf k[[t, t′]]. Let I be the ideal in k[[t, t′]] describing the closed sublocus where c : E→ E lifts to
a homomorphism c̃ : Y0 → Y ′0. By loc. cit., the uniformizers t and t′ may be chosen such that I
is generated by the element

g :=
(
t− (t′)q

γ)(
tq − (t′)q

γ−1)
· · ·
(
tq
γ

− t′
)
,

where as in the previous proof γ = vD(c). On the other hand, the locus where Y ′ = E is defined
by t′ = 0. Hence the intersection multiplicity in question is equal to the length of the Artin ring

k[[t, t′]]/(t′, g) = k[[t]]/(t1+q+···+qγ ).

The claim follows. �

Remarks 7.3. (i) Note that our convention that q = p when working with formal schemes is
in force in Lemma 7.2. Strictly speaking, we need it to appeal to the Kummer congruence.
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(ii) The analog of Lemma 7.2 in the case when F/F0 is unramified is [9, Prop. 8.2].10 The
proof of this analog in loc. cit., due to Th. Zink, uses displays and is difficult. The proof of
Lemma 7.2 given here transposes in the obvious way to the unramified case, which gives a
drastic simplification of loc. cit.

Conversely, one can reduce Lemma 7.2 to the unramified case in [9] as follows. Let F ′ denote
the unramified quadratic extension of F0. We first point out that the Serre isomorphism in
Proposition 6.3 also holds in the unramified setting (with MOF̆0

isomorphic to the entire space

NF ′/F0,2), as does the compatibility of special divisors in Proposition 6.5. Now let E ′/Spf OF̆0

denote the canonical lifting of E for F ′/F0 (relative to any embedding of F ′ in D). Of course

E ×Spf OF̆
Spec k ' E ′ ×Spf OF̆0

Spec k

as formal OF0
-modules over Spec k. Hence, identifying the special fibers of M and MOF̆0

, we
get an identification of the corresponding divisors

TF (c)×Spf OF̆
Spec k = TF ′(c)×Spf OF̆0

Spec k.

Therefore Lemma 7.2 follows from Proposition 8.2 of [9].

8. Reduction to the Lie algebra

In this section we lay the framework to reduce the geometric calculations in Theorem 5.21 (the
group setting) to those in Theorem 5.22 (the Lie algebra setting). Modulo these calculations,
which will be carried out in the next section, we also prove Theorem 5.20.

8.1. Coordinates on U1 and u1. We begin by presenting the unitary group U1(F0) ' U(X3)
and its Lie algebra u1(F0) in terms of explicit coordinates. First recall the embedding

ιE : OF ↪→ EndOF0

(
E
)

= OD.

Except where stated to the contrary, from now on we will tacitly regard OF as a subring of OD
via ιE, and likewise for F ⊂ D, and drop ιE from the notation. Write

D = D+ ⊕D− (8.1)

for the decomposition of D into its respective +1 and −1 eigenspaces under the conjugation
action of π. Then F = D+. For any α ∈ D, we denote by α+ and α− its respective components
with respect to this decomposition. Note that Nα = Nα+ +Nα−. We also write Dtr=0 for the set
of traceless elements in D, and we analogously define Otr=0

D , F tr=0 = F0π, and Otr=0
F = OF0

π.
Recall from §3.3 that we have defined the framing object

X3 = X2 × E = (OF ⊗OF0
E)× E. (8.2)

Identifying OF ⊗OF0
E ' E× E as in (3.5), we obtain

EndOF0
(X3) ' M3(OD). (8.3)

In terms of this identification, the OF -action ιX3 sends

π 7−→

0 $ 0
1 0 0
0 0 π

 .
Hence we identify

EndOF (X3) =


α β$ bπ
β α b
c πc d

 ∣∣∣∣∣∣ α, β, b, c ∈ OD, d ∈ OF
 .

We emphasize that here and below the symbol π always means ιE(π), in accordance with our
convention.

With regard to the decomposition X3 ' E× E× E, the polarization λX3 is given by

λX3 = diag(λE,−$λE, λE);

10Note that the quantity v in loc. cit. should be replaced by half of its value.
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see (3.6). Since the Rosati involution on D induced by λE = λE is the main involution a 7→ a,

the Rosati involution x 7→ x† = λ−1
X3
◦ x∨ ◦ λX3

on End◦OF (X3) is given by the formulaα β$ bπ
β α b
c πc d

† =

 α −β$ c

−β α cπ−1

−πb −b$ d

 .
Attached to X3 is the identification of unitary groups from (3.10),

U1(F0) ' U(X3) =
{
g ∈ End◦OF (X3)

∣∣ gg† = 1
}

⊂


α β$ bπ
β α b
c πc d

 ∣∣∣∣∣∣ α, β, b, c ∈ D, d ∈ F
 .

(8.4)

Thus we get an identification of Lie algebras,

u1(F0) '
{
x ∈ End◦OF (X3)

∣∣ x+ x† = 0
}

=


 α β$ bπ
β α b

πb b$ d

 ∣∣∣∣∣∣ α ∈ Dtr=0, β ∈ F0, b ∈ D, d ∈ F tr=0

 . (8.5)

Intersecting with EndOF (X3) gives a natural compact open subgroup in each,

K1 := U1(F0) ∩ EndOF (X3) =
{
g ∈ EndOF (X3)

∣∣ gg† = 1
}

and

k1 := u1(F0) ∩ EndOF (X3)

=
{
x ∈ EndOF (X3)

∣∣ x+ x† = 0
}

=


 α β$ bπ
β α b

πb b$ d

 ∣∣∣∣∣∣ α ∈ Otr=0
D , β ∈ OF0

, b ∈ OD, d ∈ Otr=0
F

 . (8.6)

Note that K1 is the stabilizer in U1(F0) of the standard basepoint in N3, i.e. the point

(X3, ιX3
, λX3

, idX3
) ∈ N3

(
k
)
.

Furthermore we set

K1,rs := K1 ∩ U1,rs(F0) and k1,rs := k1 ∩ u1,rs(F0).

8.2. Invariants on u1 and reduced elements. We now make explicit the invariants on u1

discussed in §2.5 in terms of the coordinates just introduced. Let

x =

 α β$ bπ
β α b

πb b$ d

 ∈ u1(F0)

be expressed in the form (8.5). Write

A′ :=

[
α β$
β α

]
, b′ :=

[
bπ
b

]
, c′ :=

[
πb b$

]
,

so that

x =

[
A′ b′

c′ d

]
.

Note that this block decomposition for x is not the same as the earlier one in (2.9), since here
we allow matrix entries in D. With respect to the identifications (8.2) and (8.3), we have

A′ ∈ End◦OF (X2), b′ ∈ Hom◦OF
(
E,X2

)
= V2, and c′ ∈ Hom◦OF

(
X2,E

)
. (8.7)

Using these identifications, one sees that the quantities

λ(x) := detF (A′ | V2), u(x) := $−1c′b′, w(x) := $−1c′A′b′, trF (A′ | V2), d (8.8)
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are the five polynomial generators of the invariant ring listed in (2.10), except for the factor $−1

in front of the second and third invariants, which we have inserted to give a more convenient
normalization; see e.g. Lemma 11.3 below.

To make the first and fourth invariants in (8.8) explicit, note that the map

V2 =

{[
bπ
b

] ∣∣∣∣ b ∈ D} −→ D,

[
bπ
b

]
7−→ b,

is an F -linear isomorphism, where F acts naturally on the right on source and target. In this
way A′ acting on V2 identifies with the F -linear map

b 7−→ αb+ bβπ

on D. Hence

trF (A′ | V2) = 2βπ and λ(x) = detF (A′ | V2) = Nα+ β2$.

Definition 8.1. An element x ∈ u1(F0) written as above is called reduced if its invariants
trF (A′ | V2) and d are 0, that is, if β = d = 0. We denote by u1,red(F0) the subspace of reduced
elements in u1(F0).

Of course, the invariants trF (A′ | V2) and d as written here arise from regular functions on
u1, and their vanishing therefore defines u1,red as a closed subscheme of u1; hence the notation.
We also set

u1,red,rs := u1,red ∩ u1,rs, k1,red := k1 ∩ u1,red(F0), and k1,red,rs := k1,red ∩ k1,rs.

There is a natural map u1(F0)→ u1,red(F0), which we denote by x 7→ xred, defined by α β$ bπ
β α b

πb b$ d

 7−→
 α 0 bπ

0 α b

πb b$ 0

 .
Taking this map together with the last two invariants in (8.8) gives a product decomposition

u1(F0)
∼ // u1,red(F0)× s1(F0)× s1(F0)

x � // (xred, 2βπ, d).
(8.9)

In §8.4 we are going to explain how to reduce the calculation of intersection numbers not just
to the Lie algebra setting, but to reduced elements in u1(F0). The first basic fact in this direction
is the following.

Lemma 8.2. An element x ∈ u1(F0) is regular semi-simple if and only if xred is.

Proof. By the linear algebra characterization of regular semi-simple elements in §2.4, relative to
the canonical special vector u ∈ V3 in (4.2), it suffices to show that the three vectors u, xu, x2u
are linearly independent over F if and only if the vectors u, xredu, x

2
redu are, and analogously for

ut , ut x, ut x2 and ut , ut xred, u
t x2

red. For clarity we denote the F -action on V3 as a right action.
Expressing x in terms of the coordinates (8.5), the first of these equivalences follows from the
easily verified relations

xu = xredu+ ud

and

x2u = xxredu+ xud = x2
redu+ xreduβπ + xredud+ ud2 = x2

redu+ xredu(βπ + d) + ud2.

The second, “transposed” equivalence is proved in a similar way. �

We conclude this subsection by giving a simple characterization of regular semi-simplicity for
reduced elements. Let

x =

 α 0 bπ
0 α b

πb b$ 0

 ∈ u1,red(F0), α ∈ Dtr=0, b ∈ D. (8.10)
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The first three invariants in (8.8) take the values on x,

λ(x) = Nα = Nα+ + Nα− = Nα′+ + Nα′−,

u(x) = $−1(πbbπ + b$b) = 2Nb,

w(x) = $−1(πbαbπ + b$αb) = Nb · (π−1α′π + α′) = 2Nb · α′+.
(8.11)

Here in the expressions involving α′, we have assumed that b 6= 0 and set

α′ := b−1αb;

recall that the subscripts + and − denote the components of an element with respect to the
decomposition (8.1). Of course, if b = 0, then u(x) = w(x) = 0.

Now recall from §2.4 that x is regular semi-simple if and only if ∆(x) 6= 0, where

∆(x) := −$−2 det( et xi+je)0≤i,j≤2. (8.12)

Note that here we have rescaled the discriminant defined in (2.6), which will give us a more
convenient normalization later on. From now on we will always understand ∆ in the sense of
(8.12).

Lemma 8.3. A reduced element x ∈ u1,red(F0) in the form (8.10) is regular semi-simple if and
only if b 6= 0 and α′− 6= 0.

Proof. We calculate the discriminant as

∆(x) = −$−2 det

 1 0 $u
0 $u $w
$u $w −λ$u+$2u2


= λu2 + w2

= 4(Nb)2Nα′−.

(8.13)

�

8.3. The Cayley transform. Our main tool in passing from the group setting to the Lie
algebra setting will be the Cayley transform x 7→ (1 + x)(1− x)−1 from u1(F0) to U1(F0). More
precisely, let

u◦1(F0) :=
{
x ∈ u1(F0)

∣∣ 1− x is invertible
}
. (8.14)

Then the Cayley transform is defined on u◦1(F0). In fact, we will need the variant

cξ : u◦1(F0) −→ U1(F0)

defined by

x 7−→ ξ
1 + x

1− x
, (8.15)

where ξ ∈ U1(F0) is a fixed element of the form diag(±12,±1), expressed in the presentation
(8.4) of U1(F0). We remark that in §10.2 we will give a slightly more general definition of the
Cayley transform for u1, and also define it for s and u0.

Lemma 8.4 (Cayley transform for k1). There is an inclusion k1 ⊂ u◦1(F0), and hence the
restriction of the Cayley map cξ to k1 is well-defined, where ξ = diag(±12,±1). Furthermore,
this restriction factors through K1,

cξ : k1 −→ K1,

and the images cξ(k1), as ξ varies over these four elements, cover K1.

Proof. Let

x =

 α β$ bπ
β α b

πb b$ d

 ∈ k1,

expressed in the form (8.6). Then x mod π is an upper triangular block matrix of the formα 0 0
β α b
0 0 d

 mod π. (8.16)
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Since α ∈ Otr=0
D and d ∈ Otr=0

F , we have 1−α, 1−d ∈ O×D. It follows that 1−x is invertible and
that its inverse has entries in OD. Hence x ∈ u◦1(F0) and cξ(x) ∈ EndOF (X3) ∩ U1(F0) = K1.

To show that the images cover K1, it suffices to show that for every g ∈ K1, there exists
ξ = diag(±12,±1) such that c−1

ξ (g) is well-defined and has integral entries. Here

c−1
ξ (g) = −1− ξ−1g

1 + ξ−1g
. (8.17)

From the equation gg† = 1 it follows that g mod π is also of the form (8.16). Since 1 + α and
1−α sum to 2 ∈ O×D, at least one of them is in O×D too, and likewise for 1± d. Thus the desired
ξ exists. �

Remark 8.5. Even though cξ(k1) ⊂ K1, there are elements x ∈ u◦1(F0) r k1 with cξ(x) ∈ K1.

In the case of c := cidX3
, we also have the following.

Lemma 8.6. Let x ∈ k1. Then there is an equality of subalgebras of EndOF (X3),

OF [x] = OF [c(x)].

Proof. Let y := 1 − x. Then y is an automorphism of X3 by Lemma 8.4. It follows from the
Cayley–Hamilton theorem that y−1 is expressible as a polynomial with coefficients in OF in y,
and hence in x. Hence c(x) = (1 + x)(1 − x)−1 is a polynomial in x. Conversely, the same
argument, using the inverse formula (8.17), shows that x is a polynomial in c(x). �

Lemma 8.7. Let x ∈ k1 and ξ = diag(±12,±1). Then x is regular semi-simple if and only if
cξ(x) is.

Proof. Use the linear algebra characterization of regular semi-simple elements, as in the proof of
Lemma 8.2, twice: first to deduce the lemma in the case ξ = idX3

from Lemma 8.6, and then to
see that c(x) is regular semi-simple if and only if cξ(x) = ξc(x) is (which is a simple exercise). �

8.4. Relation to intersection numbers. We now apply the material in the previous sub-
sections to intersection numbers. In this subsection ∆ = ∆N (N2) ⊂ N2 ×Spf OF̆

N3 (not to be
confused with the discriminant!). We begin with a basic lemma on the geometry of intersections.
For any quasi-endomorphism x ∈ End◦OF (X3), recall the subspace ∆x of N2 ×Spf OF̆

N3 defined
by the condition (4.10).

Lemma 8.8. For x ∈ End◦OF (X3), the following are equivalent.

(i) ∆ ∩∆x is nonempty.

(ii) (∆ ∩∆x)red consists of two points.

(iii) x ∈ EndOF (X3).

Proof. By Lemma 6.1, N2(k) consists of two points, the standard basepoint

z+ := (X2, ιX2 , λX2 , idX2)

and another point z−. Thus ∆red consists of the two points (z+, δN (z+)) and (z−, δN (z−)) in
N2 × N3. According to the definitions, δN (z+) = (X3, ιX3 , λX3 , idX3). Thus what we have to
show is that x either does or does not give an (honest) endomorphism of the framed p-divisible
groups corresponding to δN (z+) and δN (z−) simultaneously. For this we translate the problem
to Dieudonné modules. Let N1, N2, and N3 denote the respective rational covariant Dieudonné
modules of E, X2, and X3. We must show that the lattices in N3 corresponding to δN (z+) and
δN (z−) either are or are not simultaneously carried into themselves under the endomorphism of
N3 corresponding to x. For i = 1, 2, 3, let τi be the τ -operator on Ni defined in (3.2). Then

N3 = N2 ⊕N1 and τ3 = τ2 ⊕ τ1.

Since N1 is 1-dimensional over F̆ , the Dieudonné lattice in N1 corresponding to E is τ1-stable.
By Remark 6.2, τ2 interchanges the lattices in N2 corresponding to z+ and z−. Therefore τ3
interchanges the lattices in N3 corresponding to δN (z+) and δN (z−). Since the endomorphism
of N3 induced by x commutes with τ3, the lemma follows. �
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Thus nonzero intersection numbers can only occur for g ∈ K1 in the group setting, and for
x ∈ k1 in the Lie algebra setting.

Lemma 8.9. For x ∈ k1 and ξ = diag(±12,±1), there are equalities of closed formal subschemes
of N2 ×Spf OF̆

N3,
∆ ∩∆x = ∆ ∩∆xred

= ∆ ∩∆cξ(x).

Proof. Let (Y, ι, λ, ρ) be a point on N2. It has to be shown that the endomorphism x of X3 lifts
to an endomorphism of Y ×E (via the framing ρ×ρE) if and only if the endomorphism xred lifts
if and only if the endomorphism cξ(x) lifts. Writing x in terms of the usual coordinates (8.6),
the first two of these conditions are equivalent because the endomorphism

ιX2
(βπ) =

[
0 β$
β 0

]
(β ∈ OF0

)

of X2 and the endomorphism d ∈ OF of E automatically lift. Furthermore, since ξ obviously lifts,
the equivalence of the first and third conditions is an immediate consequence of Lemma 8.6. �

Combined with Lemma 8.8, the following proves Theorem 5.20.

Proposition 8.10. The following three properties of x ∈ u1(F0) are equivalent.

(i) x ∈ k1,rs.

(ii) ∆ ∩∆x is a nonempty scheme, proper over SpecOF̆ .

(iii) ∆ ∩∆x is artinian with two points.

The analog where x ∈ u1(F0) is replaced by g ∈ U1(F0) and k1,rs is replaced by K1,rs is also true.
Furthermore, in the group case, under these conditions, there are no higher Tor terms in the
expression (4.9) defining Int(g).

Proof. Lemma 8.8 immediately gives the equivalence of (ii) and (iii) in both the Lie algebra and
group cases; and in the proof of the rest of the proposition, it also allows us to assume that
x ∈ k1 in the Lie algebra case (resp. g ∈ K1 in the group case) and that the intersection in
question is nonempty. By Lemmas 8.2, 8.4, 8.7, and 8.9, the equivalence of (i) and (ii) in both
the Lie algebra and group cases follows from their equivalence in the case that x is a reduced
element in the Lie algebra. When x ∈ k1,red is regular semi-simple, we will show in §9.2 that
∆ ∩∆x is an artinian scheme by explicitly computing its (finite) length. Thus (i) implies (ii).

To complete the proof of the equivalence of the three properties, we will show that if x ∈ k1,red

is not regular semi-simple, then the intersection ∆ ∩∆x is not a scheme. Write x in the form
(8.10), with α ∈ Otr=0

D and b ∈ OD. Then x is not regular semi-simple (if and) only if the
elements αb and b are linearly dependent over F (which as before we take to act on D on the
right).

First suppose that b 6= 0. Then b−1αb ∈ F inside D. Or in other words, α is in the
image of the conjugate embedding ι := ιb E, in the notation of (1.4). Since F/F0 is ramified, ι
makes E into a formal OF -module of height 1, and we denote by Eι the corresponding canonical
lift of E over Spf OF̆ . Via the Serre construction, OF ⊗OF0

Eι gives a Spf OF̆ -point on N2.

Since α lifts to an endomorphism of Eι, diag(α, α) lifts to an endomorphism of OF ⊗OF0
Eι.

Since b ∈ OD conjugates ιE into ι, it lifts to a homomorphism E → Eι. Hence
[
bπ
b

]
lifts to a

homomorphism E → OF ⊗OF0
Eι. Similarly, since b = b−1Nb conjugates ι into ιE,

[
πb b$

]
lifts to a homomorphism OF ⊗OF0

Eι → E . This shows that x lifts to an endomorphism of

(OF ⊗OF0
Eι)×E . Thus we’ve constructed a Spf OF̆ -point on ∆∩∆x, which shows that ∆∩∆x

cannot be a scheme.
The case that b = 0 is even simpler: let E0 be any formal OF0 -module over Spf OF̆ which

lifts E and for which the endomorphism α lifts. Then as before x lifts to an endomorphism of
(OF ⊗OF0

E0)× E , so that we again obtain a Spf OF̆ -point on ∆ ∩∆x.

Now let us prove the final assertion, i.e. that for g ∈ U1,rs(F0) we have

Int(g) = length(∆ ∩∆g). (8.18)

We follow [25, Lem. 4.1] and [10, Prop. 11.6]. Let R be the local ring at a point x ∈ ∆ ∩ ∆g

of N2 × N3. Then ∆ is defined in x by the ideal generated by a regular sequence f1, f2 of R.
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Hence the Koszul complex K(f1, f2) is a free resolution of the R-module O∆,x, and the complex
K(f1, f2)⊗R O∆g,x represents (O∆ ⊗L O∆g

)x. But

K(f1, f2)⊗R O∆g
= K

(
f1, f2

)
,

where f i denotes the image of fi in O∆g , and where on the right-hand side appears the Koszul

complex as O∆g,x-module. Since ∆ and ∆g intersect properly, f1, f2 forms a regular sequence in

O∆g,x which generates the ideal of ∆∩∆g, we see that K(f1, f2) is a free resolution of O∆∩∆g,x.

Hence (O∆ ⊗L O∆g
)x is represented by O∆∩∆g,x. The asserted equality (8.18) follows. �

Corollary 8.11. For x ∈ k1,rs and ξ = diag(±12,±1),

`-Int(x) = `-Int(xred) = length
(
∆ ∩∆cξ(x)

)
= Int

(
cξ(x)

)
.

Proof. Lemma 8.9 gives the first two equalities, and the vanishing of higher Tor terms asserted
in Proposition 8.10 gives the last one. �

9. Explicit calculations for the Lie algebra

By the results of the previous section, the calculation of intersection numbers in the situations
of interest to us reduces to the calculation of `-Int(x) for a reduced, regular semi-simple element
x ∈ k1. In this section we effect this calculation.

9.1. Keating invariants. To begin, we briefly recall the theorem of Keating [26, Th. 2.1] in the
case that F/F0 is ramified. Fix any F0-embedding of F into D, and let ψ ∈ OD. Let distj(ψ)
be the “distance” of ψ to the order Oj of conductor j in F , i.e.

distj(ψ) := max
{
vD(x+ ψ)

∣∣ x ∈ Oj }.
Equivalently, distj(ψ) is the positive integer ` such that

ψ ∈
(
Oj + π`OD

)
r
(
Oj + π1+`OD

)
.

(Recall that we use the uniformizer π of F as the uniformizer of OD.) We may also describe the
distance as the minimum

distj(ψ) = min
{
`(ψ−), `j(ψ+)

}
, (9.1)

where ψ+ and ψ− are the components of ψ with respect to the decomposition (8.1), and

`(ψ−) = vD(ψ−) and `j(ψ+) =

{
vD
(
Im(ψ+)

)
, vD

(
Im(ψ+)

)
< 2j;

+∞, vD
(
Im(ψ+)

)
≥ 2j.

Here Im(ψ+) =
(
ψ+ − ψ+

)
/2 ∈ F tr=0 is the imaginary part; note that vD(Im(ψ+)) is always

odd. We adopt the usual convention that vD(0) = +∞.

Proposition 9.1 (Keating). Assume that F/F0 is ramified. For j ≥ 0, let ` = distj(ψ) be
defined as above. Then the length nj(ψ) of the locus inside the quasi-canonical divisor WF,j

where ψ lifts to an endomorphism of the corresponding quasi-canonical lifting is given by

nj(ψ) =



2

`/2∑
i=0

qi − q`/2, ` ≤ 2j is even;

2

(`−1)/2∑
i=0

qi = 2
q(`+1)/2 − 1

q − 1
, ` ≤ 2j is odd;

2

j−1∑
i=0

qi + (`− 2j + 1)qj , ` > 2j.

We refer to the third alternative in the statement as the stable range for j relative to `, and
the first two alternatives as the unstable range for j relative to `.
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9.2. Calculation of `-Int(x) for x ∈ k1,red. Now let us return to our convention that F is
embedded in D via ιE, as in §8. Let x ∈ k1,red be regular semi-simple. By definition,

`-Int(x) = length
(
locus in N2 where x lifts to an endomorphism of Y × E

)
, (9.2)

where Y denotes the universal p-divisible group over N2. We are going to obtain an explicit
expression for this length by pulling the calculation back to M via the Serre map (as in Propo-
sition 6.3) and using Keating’s theorem. Of course, to do so we have to account for the fact
that N2 has two connected components, only one of which is identified with M under the Serre
map. As in the proof of Lemma 8.8, let z± denote the two points in N2(k), with z+ the standard
basepoint. Write `-Int±(x) for the length of the locus occurring in (9.2) supported at z±, so that
`-Int(x) = `-Int+(x) + `-Int−(x). If g ∈ H1(F0) = U(X2) interchanges z+ and z−, then via the
inclusion H1(F0) ⊂ U1(F0),

`-Int(x) = `-Int+(x) + `-Int+(gxg−1). (9.3)

We first consider the term `-Int+(x) in (9.3). Write

x =

 α 0 bπ
0 α b

πb $b 0

 , α ∈ Otr=0
D , b ∈ OD,

in the coordinates (8.6). Recall from §8.1 that the matrix entries are with respect to the OF0 -
linear decomposition of the framing object

X3 = X2 × E = (OF ⊗OF0
E)× E = (1⊗ E + π ⊗ E)× E ' E× E× E.

By Lemma 8.3, since x is regular semi-simple, we have b 6= 0 and α′− 6= 0, where α′ = b−1αb
and the minus denotes the component of α′ with respect to the decomposition (8.1) of D. Now,
inside M is the special divisor T (b) where b lifts to a homomorphism Y0 → E , where we recall
that Y0 denotes the universal formal OF0

-module overM, cf. §6.2. Since λE lifts to the principal
polarizations λY0

of Y0 and λE of E , and since the Rosati involution on D is the main involution,

this is the same as the locus where b lifts to a homomorphism E → Y0. Over the connected
component N2,+ ⊂ N2, the Serre map identifies Y with OF ⊗OF0

Y0 = 1 ⊗ Y0 + π ⊗ Y0. Since

π ∈ OD of course lifts to an endomorphism of E , we conclude that T (b) identifies with the locus
in N2,+ where

[
bπ
b

]
lifts to a homomorphism E → Y and

[
πb $b

]
lifts to a homomorphism

Y → E ; and we further conclude that the locus in T (b) where α lifts to an endomorphism of Y0

identifies with the locus in N2,+ where x lifts to an endomorphism of Y ×E . By Proposition 7.1,

we can write the divisor T (b) as a sum of quasi-canonical divisors

T
(
b
)

=
∑

0≤j≤vD(b)

W Fb ,j ,

where we recall that Fb denotes the image of F in D under the conjugate embedding ιb E. We
obtain from Proposition 9.1

`-Int+(x) =
∑

0≤j≤vD(b)

nj(α
′),

where the length nj(α
′) depends, via Keating’s formula, on the distance of α′ to the original

order in F (not to the conjugate order!).
Now consider the term `-Int+(gxg−1) in (9.3). In terms of the coordinates (8.4) for U1(F0),

let us explicitly take

g :=

 0 π 0
π−1 0 0

0 0 1

 ,
which indeed has nontrivial Kottwitz invariant. Then

gxg−1 =

παπ−1 0 πb
0 π−1απ π−1bπ

$bπ−1 πbπ 0

 =

 απ 0 bπ π
0 απ bπ

π bπ $ bπ 0

 ,
where the superscript π denotes conjugation of the base by π, which we have used is also the
same as conjugation by π−1, since π is traceless. Thus to compute `-Int+(gxg−1), we can
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run through exactly the same analysis as above, with bπ in place of b and απ in place of α.
Since the elements bπ −1 απ bπ = (α′)π and α′ have the same distance to Oj , we conclude that
Int+(gxg−1) = `-Int+(x). Hence

`-Int(x) = 2`-Int+(x).

We now explicitly calculate this length via Keating’s formula. Since tr(α) = 0, we also have
tr(α′) = tr(α′±) = 0. Therefore the formula (9.1) for the distance gives

distj(α
′) =

{
min

{
vD(α′−), vD(α′+)

}
, vD(α′+) < 2j;

vD(α′−), vD(α′+) ≥ 2j.

To lighten notation, set

`− := vD(α′−), `+ := vD(α′+), and m := vD(b).

Note that `+ = vD(α′+) is odd, since α′+ ∈ F is purely imaginary. Also note that these quantities
depend only on the invariants u(x), w(x), and ∆(x) (which are given explicitly in (8.11) and
(8.13)), via

vD(u) = 2m, vD(w) = 2m+ `+, and vD(∆) = 4m+ 2`−. (9.4)

We will make use of the following ancillary calculation at several points below: for any r ≥ 0,
since

r∑
j=0

jqj =
rqr+1

q − 1
− qr+1 − q

(q − 1)2
=
rqr+2 − (r + 1)qr+1 + q

(q − 1)2
,

we have
r∑
j=0

(
2
qj − 1

q − 1
+ (`− − 2j + 1)qj

)

= 2

qr+1−1
q−1 − (r + 1)

q − 1
+ (`− + 1)

qr+1 − 1

q − 1
− 2

rqr+2 − (r + 1)qr+1 + q

(q − 1)2

= qr+1 2 + (`− + 1)(q − 1)− 2(rq − r − 1)

(q − 1)2
− `− + 1 + 2(r + 1)

q − 1
− 2q + 2

(q − 1)2

= qr+1 2(q + 1) + (`− − 2r − 1)(q − 1)

(q − 1)2
− `− + 2r + 1

q − 1
− 4q

(q − 1)2
.

(9.5)

Finally we set

t := q−1.

For the main calculation we now distinguish cases.

Case I: `− ≤ `+. Then for any j,

distj(α
′) = `−.

We divide this case further into three subcases.

(1) `− > 2m. Then all j with 0 ≤ j ≤ m are in the stable range for distj(α
′). Hence

`-Int+(x) =

m∑
j=0

(
2
qj − 1

q − 1
+ (`− − 2j + 1)qj

)
.

Taking r = m in (9.5), replacing q with t−1, and multiplying by 2, we obtain

`-Int(x) = 2t−m
2(1 + t) + (`− − 2m− 1)(1− t)

(1− t)2
− 2(`− + 2m+ 1)t

1− t
− 8t

(1− t)2
.

(2) `− ≤ 2m and `− odd. In this case, there are some j in the stable range and some in the
unstable range. We get

`-Int+(x) =

(`−−1)/2∑
j=0

(
2
qj − 1

q − 1
+ (`− − 2j + 1)qj

)
+

m∑
j=(`−+1)/2

2
q(`−+1)/2 − 1

q − 1
. (9.6)
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Multiplying by 2 and using (9.5) with r = (`− − 1)/2, we get

`-Int(x) = 2q(`−+1)/2 2(q + 1)

(q − 1)2
− 2

2`−
q − 1

− 2
4q

(q − 1)2
+ 2

(
m− `− + 1

2
+ 1

)
2(q(`−+1)/2 − 1)

q − 1

= 2t−(`−−1)/2

(
2m− `− + 3)− (2m− `− − 1)t

(1− t)2
− 2(`− + 2m+ 1)t

1− t
− 8t

(1− t)2
.

(3) `− ≤ 2m and `− even. Again, there are stable and unstable j. Similarly to the previous
subcase, we get

`-Int(x) = 2

`−/2−1∑
j=0

(
2
qj − 1

q − 1
+ (`− + 1− 2j)qj

)
+ 2

m∑
j=`−/2

(
2
q`−/2+1 − 1

q − 1
− q`−/2

)

= 2q`−/2
2(q + 1) + q − 1

(q − 1)2
− 2

2`− − 1

q − 1
− 2

4q

(q − 1)2
+ 2

(
m− `−

2
+ 1

)
q`−/2(q + 1)− 2

q − 1

= 2t−`−/2
(m− `−/2 + 1)(1− t2) + t(t+ 3)

(1− t)2
− 2(`− + 2m+ 1)t

1− t
− 8t

(1− t)2
.

Case II: `− > `+. In this case we have for the distance

distj(α
′) =

{
`+, `+ < 2j;

`−, `+ ≥ 2j.

We consider the following two subcases.

(1) `+ ≥ 2m. Then for all j with 0 ≤ j ≤ m, we have distj(α
′) = `− > 2m. Hence all j lie in

the stable range, and we get the same answer as in Case I(1),

`-Int(x) = 2t−m
2(1 + t) + (`− − 2m− 1)(1− t)

(1− t)2
− 2(`− + 2m+ 1)t

1− t
− 8t

(1− t)2
.

(2) `+ < 2m. In this subcase, the relevant j can be in the stable range as well as in the unstable
range. Note that `+ is odd. Hence we get, similarly to Case I(2),

`-Int(x) = 2

(`+−1)/2∑
j=0

(
2
qj − 1

q − 1
+ (`− + 1− 2j)qj

)
+ 2

m∑
j=(`++1)/2

2
q(`++1)/2 − 1

q − 1

= 2q(`++1)/2 2(q + 1) + (`− − `+)(q − 1)

(q − 1)2

− 2
`− + `+
q − 1

− 2
4q

(q − 1)2
+ 2

(
m− `+ + 1

2
+ 1

)
2(q(`++1)/2 − 1)

q − 1

= 2t−(`+−1)/2 (`− − 2`+ + 2m+ 3)(1− t) + 4t

(1− t)2
− 2(`− + 2m+ 1)t

1− t
− 8t

(1− t)2
.

Part 3. Analytic side

In this part of the paper we turn to the analytic side of the identities to be proved in Theorems
5.21 and 5.22, and, modulo the material in Part 4 on germ expansions of orbital integrals, we
complete the proofs of these theorems.

10. Inputs from local harmonic analysis

In this section we formulate some basic facts about harmonic analysis on the spaces in play
in the Lie algebra and group settings. Except where noted to the contrary, we allow n to be
arbitrary.
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10.1. Lie algebra setting. Let

πs : s −→ b (10.1)

be the categorical quotient of s by H ′ as discussed in §2.5, say by taking either set of invariants
(2.8) or (2.10). Thus b is an affine space over F0 of dimension 2n− 1 (given explicitly in (2.11)
in the case of the invariants (2.10)). Let brs be the image of srs in b. Then

brs =
{
x ∈ b

∣∣ ∆(x) 6= 0
}
,

where ∆ denotes the discriminant (8.12). Since this is a global function on s which is H ′-
invariant, it descends to a global function on b.

For φ′ ∈ C∞c (s), we note that the function y 7→ ω(y) Orb(y, φ′) descends to a function ϕ on
brs(F0). Let C∞rc (brs) denote the space of locally constant functions on brs(F0) whose support
has compact closure in b(F0) (functions with relatively compact support). By [35, Lem. 3.12] the
function ϕ lies in C∞rc (brs). By a slight variant of [35, Prop. 3.8], we have the following.

Theorem 10.1. Let ϕ be a function in C∞rc (brs). The following properties are equivalent.

(i) There exists a function φ′ ∈ C∞c (s) such that

ϕ
(
πs(y)

)
= ω(y) Orb(y, φ′) for all y ∈ srs(F0).

(ii) For every x0 ∈ b(F0), there exists an open neighborhood Vx0 of x0 and a function φ′x0
∈

C∞c (s) such that

ϕ
(
πs(y)

)
= ω(y) Orb(y, φ′x0

) for all y ∈ π−1
s

(
Vx0
∩ brs(F0)

)
= π−1

s (Vx0
) ∩ srs(F0).

�

A function ϕ ∈ C∞rc (brs) satisfying property (i) is called an orbital integral function; a function
ϕ on brs(F0) satisfying property (ii) is called a local orbital integral function [35, Def. 3.7]. More
precisely, if ϕ satisfies property (ii) locally around x0, then ϕ will be called an orbital integral
function locally around x0.

We note that the map πs in (10.1) induces a surjection on F0-rational points, and we have a
decomposition

brs(F0) = brs,0 q brs,1 (10.2)

into a disjoint union of two open (for the p-adic topology) subsets. Here brs,i is the image under
πs of the set srs,i of elements in srs(F0) which match with elements in ui,rs(F0).

This decomposition can also be explained by a similar picture on the unitary side. Taking
the same invariants as used in realizing the quotient map (10.1), by §2.5 we obtain for i ∈ {0, 1}
a categorical quotient map

πui : ui −→ b.

Then brs,i is the image under πui of ui,rs(F0). To be quite clear, the maps πu0
and πu1

do not
induce surjections on F0-rational points, cf. the remark after Lem. 3.1 in [35].

Proposition 10.2. Let n = 3. For i ∈ {0, 1}, an element x ∈ brs(F0) lies in brs,i if and only if
η(−∆(x)) = (−1)i.

Proof. This follows from Lemma 2.1, noting that we rescaled ∆(x) by the factor −$−2 in (8.12).
(One can also use (8.13) for i = 1, taking note that η(−Nα′−) = −1, and the explicit coordinates
given in (11.5) below for i = 0.) �

Of course, Lemma 2.1 works perfectly well to distinguish between the two summands in (10.2)
for any n; we have stated the proposition for n = 3 only because we are now working with the
rescaled version of ∆.

We conclude the subsection by noting the following.

Lemma 10.3. Let φ′ ∈ C∞c (s) be a function with transfer (φ, 0) ∈ C∞c (u0)×C∞c (u1). Then the
function

y 7−→

{
ω(y) ∂Orb(y, φ′), y ∈ srs,1;

0, y ∈ srs,0

descends to a function on brs(F0) which lies in C∞rc (brs).
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Proof. By Remark 5.4(i) (or rather, its Lie algebra analog), the function descends to a function
ϕ on brs(F0). The map πs : s(F0) → b(F0) is continuous and hence sends the support of φ′ (a
compact set) to a compact set in b(F0). The support of ϕ lies in the image of the support of φ′

under πs and is therefore relatively compact. The local constancy of ϕ follows from the same
argument as in [35, Lem. 3.12] (which is about the case y 7→ ω(y) Orb(y, φ′)). �

10.2. Group setting. We now translate the contents of §10.1 to the group setting. Let B
denote the categorical quotient of S by H ′, and Bi the categorical quotient of Ui by Hi for i = 0
and 1. These are affine varieties with rings of global functions given by the ring of invariants.
We denote by

πS : S −→ B and πUi : Ui −→ BUi
the corresponding quotient morphisms, and by Brs, resp. BUi,rs, the images of Srs, resp. Ui,rs,
under these morphisms. All of these are open subschemes defined by the non-vanishing of the
discriminant function (which by equivariance drops to the categorical quotients). On the level of
F0-rational points, we write Brs(F0) and B(F0)rs, resp. BUi,rs(F0) and BUi(F0)rs, interchange-
ably.

We are going to see that, in analogy with the Lie algebra case, the quotients B, BU0 , and
BU1 can all be naturally identified. To facilitate the precise statement and proof of this result,
we introduce the Cayley transform on each of our Lie algebra spaces (cf. §8.3 for the case of u1

when n = 3). Let11

s◦ :=
{
y ∈ s

∣∣ det(1− y) 6= 0
}

and u◦i :=
{
x ∈ ui

∣∣ det(1− x) 6= 0
}
, i = 0 or 1. (10.3)

Then under the respective quotient maps πs, πu0 , and πu1 , these open subschemes descend to
a common open subscheme b◦ of b. Next recall from the Introduction the norm 1 subgroup
F 1 = {ξ ∈ F | Nξ = 1}, and define

S1 :=
{

diag(ξ1 · 1n−1, ξ2)
∣∣ ξ1, ξ2 ∈ F 1

}
⊂ S(F0).

Then S1 canonically identifies with a subgroup in both U0(F0) and U1(F0) (upon choosing any
special embeddings of U0 and U1 as in §2.1).

For ξ ∈ S1, we define the Cayley transform for u0 and u1 via the same formula as in (8.15),

cξ : u◦i
// Ui,

x � // ξ
1 + x

1− x

i = 0 or 1.

(10.4)

Then cξ is Hi-equivariant, and, abusing notation, we continue to denote by cξ the induced map
on the quotients

cξ : b◦ −→ BUi , i = 0 or 1.

Remark 10.4. This definition of cξ on u◦1 generalizes the definition in §8.3 when n = 3 and
ξ = diag(±12,±1). But note that for more general ξ there is a small subtlety between the matrix
notation we are currently using and the coordinates in §8: the element diag(ξ1, ξ1, ξ2) ∈ S1 is
expressed as α β$ 0

β α 0
0 0 ξ2

 ∈ U1(F0)

in the coordinates (8.4), where ξ1 = α+ βπ with α, β ∈ F0.

To define the Cayley transform on s◦, note that the formula in (10.4) only gives a map into
S when ξ is of the form ξ1 · 1n. To define cξ for an arbitrary ξ = diag(ξ1 · 1n−1, ξ2) ∈ S1, first
choose ν1, ν2 ∈ F× such that ν1/ν1 = ξ1 and ν2/ν2 = ξ2, and set

ν := diag(ν1 · 1n−1, ν2).

11Here by det we of course mean the usual n × n determinant ResF/F0
Mn → ResF/F0

A, relative to any

choice of basis for the hermitian space Wi in the case of ui. This definition of u◦1 is consistent with the notation
(8.14) for u◦1(F0), but note that the matrix representations used in §8 involve entries in D, and therefore care
must be taken to correctly interpret their determinant. An analogous remark applies in the definition of U1,ξ

below.
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Then we define
cξ : s◦ // S,

y � // ν · 1 + y

1− y
· ν−1.

(10.5)

As before, cξ is H ′-equivariant. Note that this definition depends on the choice of ν1 and ν2,
but the induced map on the quotients (which we again abusively denote by cξ)

cξ : b◦ −→ B

depends only on ξ. When ξ is a scalar matrix, by convention we always take ν1 = ν2; then the
Cayley transform into S is given by the usual formula y 7→ ξ(1 + y)(1− y)−1.

Lemma 10.5 ([35, Lem. 3.4]). For ξ ∈ S1, define the open subschemes S◦ξ ⊂ S and U◦i,ξ ⊂ Ui
by

S◦ξ :=
{
γ ∈ S

∣∣ det(ξ + γ) 6= 0
}

and U◦i,ξ :=
{
g ∈ Ui

∣∣ det(ξ + g) 6= 0
}
, i = 0 or 1.

(i) The Cayley transform cξ induces an H ′-equivariant isomorphism

s◦
∼−→ S◦ξ .

Furthermore, let ξ1, ξ2, . . . , ξn+1 be n + 1 distinct elements of F 1. Then, as j varies, the open
subschemes S◦ξj ·1n cover S.

(ii) Analogous statement for u0 and U0 (and H0-equivariance) in place of s and S.

(iii) Analogous statement for u1 and U1 (and H1-equivariance) in place of s and S. �

The following generalizes Lemma 8.7.

Lemma 10.6. For any ξ ∈ S1, an element y in any of s◦(F0), u◦0(F0), or u◦1(F0) is regular
semi-simple if and only if cξ(y) is.

Proof. We show that the sets of vectors {yie}n−1
i=0 and { et yi}n−1

i=0 are linearly independent if

and only if {cξ(y)ie}n−1
i=0 and { et cξ(y)i}n−1

i=0 are; see §2.4. Set c := c1n . First note that the
same argument as in the proof of Lemma 8.6 shows that there is an equality of F -algebras
F [y] = F [c(y)], which proves the desired equivalence when ξ = 1n.

For an arbitrary ξ = diag(ξ1 ·1n−1, ξ2), we next claim that {cξ(y)ie}n−1
i=0 is linearly independent

if and only if {c(y)ie}n−1
i=0 is. To show this we make a little calculation which will also be useful

later. Let ζ := diag(1n−1, ξ2/ξ1). By an easy induction argument, for any A ∈ Mn(F ), there is
an equality of matrices

[
e ζAe . . . (ζA)n−1e

]
=
[
e Ae . . . An−1e

] 1 ∗
. . .

1


for some upper triangular unipotent matrix on the right. Hence for the Cayley transform on u◦0
and u◦1,

det
[
e cξ(y)e . . .

(
cξ(y)

)n−1
e
]

= det
[
e ξc(y)e . . .

(
ξc(y)

)n−1
e
]

= ξ
n(n−1)/2
1 det

[
e ζc(y)e . . .

(
ζc(y)

)n−1
e
]

= ξ
n(n−1)/2
1 det

[
e c(y)e . . . c(y)n−1e

]
.

(10.6)

For the Cayley transform on s◦, taking ν = diag(ν1 · 1n−1, ν2) as in the definition of cξ, we have

ν−1 ·
[
e cξ(y)e . . .

(
cξ(y)

)n−1
e
]

=
[
ν−1

2 e ξc(y)ν−1
2 e . . .

(
ξc(y)

)n−1
ν−1

2 e
]
.

Hence, calculating as in (10.6),

det
[
e cξ(y)e . . .

(
cξ(y)

)n−1
e
]

= det(ν) · ν−n2 · ξn(n−1)/2
1 det

[
e c(y)e . . . c(y)n−1e

]
= (ν1/ν2)n−1ξ

n(n−1)/2
1 det

[
e c(y)e . . . c(y)n−1e

]
.

(10.7)



50 M. RAPOPORT, B. SMITHLING, AND W. ZHANG

The equalities (10.6) and (10.7) prove the claim in all cases. A similar calculation shows that
{ et cξ(y)i}n−1

i=0 is linearly independent if and only if { et c(y)i}n−1
i=0 is, which completes the proof. �

For ξ ∈ S1, let B◦ξ denote the image of S◦ξ in B, and let B◦Ui,ξ denote the image of U◦i,ξ in
BUi . Then the Cayley transforms drop to isomorphisms

b◦
∼−→ B◦ξ and b◦

∼−→ B◦Ui,ξ, i = 0 or 1.

Thus we obtain isomorphisms

ϕξ : B◦ξ
∼−→ B◦Ui,ξ, i = 0 or 1. (10.8)

Lemma 10.7. Let i = 0 or i = 1. There is a unique isomorphism B
∼−→ BUi which induces

for each ξ ∈ S1 the isomorphism (10.8). This isomorphism induces an identification of open

subschemes Brs
∼−→ BUi,rs.

Proof. What has to be seen is that for any ξ, η ∈ S1, the isomorphisms ϕξ and ϕη coincide on the
intersection B◦ξ ∩B◦η . Now, after base extension from F0 to F , there are standard isomorphisms
of algebraic varieties

S ⊗F0
F ∼= Ui ⊗F0

F ∼= GLn,F and s⊗F0
F ∼= ui ⊗F0

F ∼= Mn,F .

The latter identification is compatible with the quotient maps πs and πui to b⊗F0
F , and it also

identifies s◦ ⊗F0
F ∼= u◦i ⊗F0

F . Similarly, H ′ ⊗F0
F ∼= Hi ⊗F0

F ∼= GLn−1,F . Since formation
of the categorical quotient commutes with flat base change, the first isomorphism in the display
induces an isomorphism of algebraic varieties over F ,

B ⊗F0 F
∼= BUi ⊗F0 F.

Under the above identifications, the Cayley transforms cξ on s◦ ⊗F0 F and on u◦i ⊗F0 F need
not coincide (indeed the Cayley transform for s is not even well-defined in terms of ξ), but one
readily checks that they are GLn−1(F )-conjugate. In other words, under these identifications,
the base change to F of the isomorphism ϕξ becomes simply the identity morphism. Now the
assertion is obvious. �

Via the lemma, we regard B as the common categorical quotient of S by H ′, of U0 by H0,
and of U1 by H1. Analogously to (10.2), we obtain a disjoint union decomposition

Brs(F0) = Brs,0 qBrs,1, (10.9)

where Brs,i is the image under πUi of Ui,rs(F0). Equivalently, Brs,i is the image under πS of the
set Srs,i of elements in Srs(F0) which match with elements in Ui,rs(F0). We have

Srs = π−1
S (Brs), Srs,0 = π−1

S (Brs,0), and Srs,1 = π−1
S (Brs,1).

Of course, setting

b◦rs := brs ∩ b◦, b◦rs,0 := b◦(F0) ∩ brs,0, and b◦rs,1 := b◦(F0) ∩ brs,1,

the decomposition
b◦rs(F0) = b◦rs,0 q b◦rs,1

is compatible with the decomposition (10.9) under the Cayley transform cξ for any ξ ∈ S1.
For f ′ ∈ C∞c (S), we note that the function γ 7→ ω(γ) Orb(γ, f ′) descends to a function ϕ on

Brs(F0). Just as in the Lie algebra case, ϕ is locally constant with relatively compact support
on Brs(F0). We denote the space of such functions by C∞rc (Brs). By Prop. 3.8 and the remarks
before Lem. 3.6 in [35], we have the following.

Theorem 10.8. Let ϕ be a function in C∞rc (Brs). The following properties are equivalent.

(i) There exists a function f ′ ∈ C∞c (S) such that

ϕ
(
πS(γ)

)
= ω(γ) Orb(γ, f ′) for all γ ∈ Srs(F0).

(ii) For every x0 ∈ B(F0), there exists an open neighborhood Vx0
of x0 and a function f ′x0

∈
C∞c (S) such that

ϕ
(
πS(γ)

)
= ω(γ) Orb(γ, f ′x0

) for all γ ∈ π−1
S

(
Vx0
∩Brs(F0)

)
= π−1

S (Vx0
) ∩ Srs(F0).

�
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As in the Lie algebra setting, we call a function ϕ ∈ C∞rc (Brs) satisfying (ii) a local orbital
integral function, and if ϕ satisfies (ii) locally around x0, then we call ϕ an orbital integral
function locally around x0.

Similarly to Lemma 10.3, we have the following.

Lemma 10.9. Let f ′ ∈ C∞c (S) be a function with transfer (f, 0) ∈ C∞c (U0) × C∞c (U1). Then
the function

γ 7−→

{
ω(γ) ∂Orb(γ, f ′), γ ∈ Srs,1;

0, γ ∈ Srs,0

descends to a function on Brs(F0) which lies in C∞rc (Brs). �

Proof. The same argument as in the proof Lemma 10.3 shows that the function descends to a
function with relatively compact support. The local constancy of the descended function reduces
to Lemma 10.3 by a partition of unity argument (cf. the proof of [35, Lem. 3.6]). �

10.3. Reduced Lie algebra setting. In this subsection, we formulate a variant of the Lie
algebra version which eliminates “trivial” factors from s.

For y a point on s, write y in the block form

y =

[
A b
c d

]
∈ ResF/F0

Mn,

as in (2.9). In analogy with Definition 8.1, let sred denote the closed subscheme of reduced points
in s, defined by

sred := { y ∈ s | trA = 0 and d = 0 }.
Then sred is an H ′-invariant subscheme of s. Define bred to be the product of the middle 2n− 3
factors in the target in (2.11),

bred :=

n−2
alternating

factors︷ ︸︸ ︷
A× s1 × · · ·×

n−1
alternating

factors︷ ︸︸ ︷
A× s1 × · · · .

Then the composite map

πred : sred
� � // s

π′s // bred

y
� // (tr∧2A, . . . , tr∧n−1A, cb, . . . , cAn−2b)

is a categorical quotient for sred by H ′. In terms of this notation, we also realize the quotient
map (10.1) for s by taking b = bred × s1 × s1 and

πs : s // bred × s1 × s1

y � //
(
π′s(y), trA, d

)
(of course this is nothing but a reordering of the factors in (2.11)).

There is a natural H ′-equivariant map s→ sred, y 7→ yred, sending[
A b
c d

]
7−→

[
A− trA

n−1 · 1n−1 b

c 0

]
.

This induces an evident H ′-equivariant product decomposition s ∼= sred×s1×s1, where the map
onto the last two factors is given by taking trA and d. We obtain a commutative diagram

s
∼ //

πs

��

sred × s1 × s1

πred×id×id

��

b bred × s1 × s1.

(10.10)

We also denote by x 7→ xred the natural projection b → bred, and we regard bred as a closed
subscheme of b via the 0 section.

The following extends both the statement and proof of Lemma 8.2 to the case of s.

Lemma 10.10. An element y ∈ s(F0) is regular semi-simple if and only if yred is.
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Proof. By an easy induction argument, there is an equality of matrices

[
e yrede . . . yn−1

red e
]

=
[
e ye . . . yn−1e

] 1 ∗
. . .

1

 (10.11)

for some upper triangular unipotent matrix on the right. Similarly, the matrices
et

et yred

...
et yn−1

red

 and


et

et y
...

et yn−1


differ by left multiplication by a lower triangular unipotent matrix. The conclusion now follows
from the linear algebra characterization of regular semi-simple elements in §2.4. �

All concepts introduced in §10.1 in the Lie algebra context have obvious analogs in the “re-
duced” setting. The analog of Theorem 10.1 for the reduced set is the following. The proof is
essentially the same. Set

sred,rs := sred ∩ srs and bred,rs := bred ∩ brs.

Theorem 10.11. Let ϕ be a function in C∞rc (bred,rs). The following properties are equiva-
lent.

(i) There exists a function φ′ ∈ C∞c (sred) such that

ϕ
(
πred(y)

)
= ω(y) Orb(y, φ′) for all y ∈ sred,rs(F0).

(ii) For every x0 ∈ bred(F0), there exists an open neighborhood Vx0 of x0 and a function φ′x0
∈

C∞c (sred) such that

ϕ
(
πred(y)

)
= ω(y) Orb(y, φ′x0

) for all y ∈ π−1
red

(
Vx0 ∩ bred,rs(F0)

)
= π−1

red(Vx0) ∩ sred,rs(F0).

�

11. Reduction to the Lie algebra

The main aim of this section is to show that Theorem 5.21 (the main group theorem) follows
from Theorem 5.22 (the main Lie algebra theorem). Except where noted to the contrary, from
now on we specialize to the case n = 3.

11.1. Renormalized invariants on s3. We first fix a slight renormalization of the categorical
quotient map πs in §10.3 when n = 3, in analogy with the renormalization of the invariants on
u1 given in (8.8). As in §10.3, we take

b = A× A× s1 × s1 × s1 and bred = A× A× s1

over F0. Then we realize the quotient maps πs and πred as

πs : s // b

y
� //

(
λ(y), u(y), w(y), trA, d

) and
πred : sred

// bred

y � //
(
λ(y), u(y), w(y)

)
,

where we write the point y in the usual block form

y =

[
A b
c d

]
∈ ResF/F0

M3,

and where

λ(y) := detA, u(y) := $−1cb, and w(y) := $−1cAb. (11.1)

Of course, the invariants used in this definition of πs, regarded as defined on ResF/F0
M3 in

the obvious way, give exactly the invariants (8.8) on u1, relative to any special embedding of u1

in the sense of §2.3. From now on we realize the quotient map πu1
→ b via these invariants.
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11.2. Coordinates on U0 and u0. In parallel with §8.1, we now describe the unitary group U0

and its Lie algebra u0 in terms of explicit coordinates. Define the F/F0-hermitian matrices

J[0 :=

[
0 π
−π 0

]
∈ M2(F ) and J0 :=

[
J[0 0
0 1

]
∈ M3(F ).

Then J[0 and J0 determine split F/F0-hermitian spaces of dimensions 2 and 3, respectively. We
take

H0 = U(J[0) and U0 = U(J0).

Explicitly,
U0(F0) =

{
g ∈ M3(F )

∣∣ gg† = 1
}
,

where the adjoint g† = J−1
0 gt J0 is given in coordinates bya1 a2 b1
a3 a4 b2
c1 c2 d

† =

 a4 −a2 −π−1c2
−a3 a1 π−1c1
−πb2 πb1 d

 . (11.2)

Of course, H0 is described similarly in terms of J[0, and it embeds in U0, via the rule h 7→
diag(h, 1), as the stabilizer of the special vector e = (0, 0, 1). We also note that under these
coordinates, the tautological embedding of SL2 into ResF/F0

M2 identifies

SL2
∼−→ SU(J[0). (11.3)

The Lie algebra u0 is given in these coordinates by

u0(F0) =
{
x ∈ M3(F )

∣∣ x+ x† = 0
}

=


 a1 a2 b1
a3 −a1 b2
πb2 −πb1 d

 ∣∣∣∣∣∣ a1, b1, b2 ∈ F, a2, a3 ∈ F0, d ∈ F tr=0

 .

Recall that our formulation of the AT conjecture in §5 involved the choice of a π-modular
lattice Λ[0 ⊂ W [

0 = F 2. We now take for Λ[0 the standard lattice O2
F ⊂ F 2, which is indeed

π-modular for J[0. As in (5.3), we then take Λ0 = O3
F ⊂ F 3, and K0 and k0 are the respective

subgroups of U0(F0) and u0(F0) stabilizing Λ0:

K0 = U0(F0) ∩M3(OF ) =
{
g ∈ M3(OF )

∣∣ gg† = 1
}

and

k0 = u0(F0) ∩M3(OF )

=


 a1 a2 b1
a3 −a1 b2
b2π −b1π d

 ∣∣∣∣∣∣ a1, b1, b2 ∈ OF , a2, a3 ∈ OF0
, d ∈ Otr=0

F

 .

We also set
k0,rs := k0 ∩ u0,rs(F0).

Given a point x in u0, write x in the block form

x =

[
A b
c d

]
.

We realize the categorical quotient of u0 by H0 by taking the same invariants as in the previous
subsection,

πu0
: u0

// b = A× A× s1 × s1 × s1

x
� //

(
λ(x), u(x), w(x), trA, d

)
,

(11.4)

where λ, u, and w are as defined in (11.1).
As in the cases of u1 and s, we say that x is reduced if trA = d = 0. We write u0,red for the

closed subscheme of reduced points in u0. In terms of explicit coordinates,

u0,red(F0) =


 a1 a2 b1
a3 −a1 b2
b2π −b1π 0

 ∣∣∣∣∣∣ a1, a2, a3 ∈ F0, b1, b2 ∈ F

 . (11.5)
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As in previous cases, there is a natural map u0 → u0,red, x 7→ xred, sending[
A b
c d

]
7−→

[
A− 1

2 (trA) · 12 b
c 0

]
,

and this gives rise to an H0-equivariant product decomposition

u0
∼ // u0,red × s1 × s1

x
� // (xred, trA, d).

(11.6)

Just as in Lemma 8.2 for u1 and Lemma 10.10 for s, an element x ∈ u0(F0) is regular semi-simple
if and only if xred is. We set

u0,red,rs := u0,red ∩ u0,rs, k0,red := k0 ∩ u0,red(F0), and k0,red,rs := k0,red ∩ k0,rs.

11.3. Integral Cayley transform on u0. In this subsection we prove an analog for u0 of
Lemma 8.4, which pertained to the Cayley transform on u1. Let ξ ∈ S1. Recall from (10.3) the
open subscheme u◦0 ⊂ u0, which is the locus where the Cayley transform cξ is defined, and recall
from Lemma 10.5 its image U◦0,ξ ⊂ U0. Define the sets of F0-rational points

u◦◦0 :=
{
x ∈ u◦0(F0)

∣∣ det(1− x) ∈ O×F
}

and U◦◦0,ξ :=
{
g ∈ U◦0,ξ(F0)

∣∣ det(ξ + g) ∈ O×F
}
.

It is trivial to verify that cξ carries u◦◦0 isomorphically onto U◦◦0,ξ, and we then have the following.

Lemma 11.1 (Cayley transform for k0). For any ξ ∈ S1, the restriction of the Cayley map to
k0 ∩ u◦◦0 induces an isomorphism

cξ : k0 ∩ u◦◦0
∼ // K0 ∩ U◦◦0,ξ

x
� // ξ

1 + x

1− x
.

Furthermore, the sets K0 ∩ U◦◦0,ξ, as ξ varies over the four elements diag(±12,±1), cover K0.

Proof. Clearly cξ(k0 ∩ u◦◦0 ) ⊂ K0 ∩ U◦◦0,ξ, and it is also clear from the inverse formula

c−1
ξ (g) =

ξ−1g − 1

ξ−1g + 1

that c−1
ξ (K0∩U◦◦0,ξ) ⊂ k0∩u◦◦0 . This proves the first assertion. It remains to show that if g ∈ K0,

then det(ξ + g) ∈ O×F for some ξ = diag(±12,±1). In terms of the coordinates in the previous
subsection, write g in the block form

g =

[
A b
c d

]
.

Since g ∈ K0 = U0(F0) ∩GL3(OF ), we may reduce the entries of g mod π. Since g† = g−1 also
has integral entries, (11.2) shows that that gk is of the form

gk =

[
Ak bk
0 ±1

]
,

where the subscript k everywhere denotes reduction mod π. Since K0 has symplectic reduction
in the sense of Remark 5.2, Ak ∈ Sp2(k) = SL2(k). Hence Ak + 12 or Ak − 12 is invertible, since
otherwise Ak has eigenvalues 1 and −1, contradicting Ak ∈ SL2(k). The lemma follows. �

Remark 11.2. Note that k0 is not contained in u◦◦0 , nor even in u◦0(F0), i.e. cξ is not defined
on all of k0. This differs from the situation for k1. Indeed, defining u◦◦1 ⊂ u1(F0) in the obvious
way (by12 det(1− x) ∈ O×F ), the proof of Lemma 8.4 shows that k1 ⊂ u◦◦1 .

12Meaning the determinant of the F -linear endomorphism 1− x acting on the hermitian space W1; as before,

care is required when working with the coordinates for u1 in §8.
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11.4. Integral points on b. We now collect some facts related to integral points on the quotient
space b = A× A× s1 × s1 × s1. Note that this space is naturally defined over OF0

, and

b(OF0
) = OF0

×OF0
×Otr=0

F ×Otr=0
F ×Otr=0

F .

We claim that

b(OF0
) = πu0

(k0) ∪ πu1
(k1). (11.7)

Indeed, the reverse inclusion is obvious from the explicit form of the invariants (11.4) and (8.8)
on u0 and u1, respectively. For the forward inclusion, we give the following more precise lemma.
Recall the decomposition brs(F0) = brs,0 q brs,1 from (10.2), and for i ∈ {0, 1} set

b(OF0
)rs,i := b(OF0

) ∩ brs,i, bred,rs,i := bred(F0) ∩ brs,i, b(OF0
)red,rs,i := b(OF0

) ∩ bred,rs,i.

Lemma 11.3. (i) For i ∈ {0, 1},

b(OF0)rs,i = πui(ki,rs).

(ii) Let x ∈ b(OF0
) r brs(F0). Then

(a) x ∈ πu0
(k0).

(b) x ∈ πu1(k1) unless xred = (λ, u, w) with −λ ∈ F×,20 .

Furthermore, if x ∈ b(F0) lies in the closure of brs,1, then x is not exceptional in the sense of
(ii)(b).

Proof. The statements are immediately reduced to the corresponding ones for the reduced sets.
To prove (i), first let x = (λ, u, w) ∈ b(OF0)red,rs,1. We will show the existence of an element

in k1,red,rs in terms of the explicit coordinates (8.10) whose image is x. We use the formulas
(8.11) for the invariants. By Lemma 8.3, u 6= 0 since x ∈ brs,1. Choose any b ∈ D such that
Nb = u/2. Then b ∈ OD, since p 6= 2. Let α′+ := w/u. We claim that α′+ is integral. Indeed, if
instead |w/u| > 1, then |w2| > |λu2|, since λ is integral. Then by (8.13) and the fact that w is
traceless,

η(−∆) = η
(
−(λu2 + w2)

)
= η(−w2) = 1,

a contradiction to Proposition 10.2. Finally choose α′− ∈ D of norm ∆/u2. Then the same
argument shows that α′− is integral, and (8.13) shows that this suffices to solve our problem. A
similar analysis, using the coordinates in (11.5), shows that b(OF0

)red,rs,0 = πu0
(k0,red,rs).

To prove (ii), part (a) follows from the explicit construction of elements in §18.1 below.
Part (b) is straightforward, again using the explicit coordinates (8.10) and the formulas for the

invariants (8.11). For example, the condition −λ /∈ F×,20 holds on all of πu1
(u1,red(F0)) by virtue

of the facts λ = Nα and α ∈ Dtr=0.
Finally, suppose x = (λ, u, w) ∈ bred(F0) lies in the closure of bred,rs,1, with λ 6= 0. Then for

x′ = (λ′, u′, w′) ∈ bred,rs,1 sufficiently close to x, λ and λ′ will lie in the same class in F×0 /F
×,2
0 .

So −λ /∈ F×,20 by the fact just cited. �

Remark 11.4. Although s is also naturally defined over OF0 , the map s(OF0)→ b(OF0) is not
a surjection, in contrast to the map s(F0) � b(F0) on F0-rational points.

For the next statement, note that the function x 7→ det(1 − x) descends from each of s, u0,
and u1 to a common function on b, and define

b◦◦ :=
{
x ∈ b◦(F0)

∣∣ det(1− x) ∈ O×F
}
.

Lemma 11.5. Let x ∈ b(OF0
), and suppose that x lies in the closure of brs,1. Then x ∈ b◦◦.

Proof. By Lemma 11.3, x ∈ πu1
(k1). The conclusion then follows from Remark 11.2. �

Now recall our general discussion of the Cayley transform from §10.2, and that we regard B
as the common categorical quotient of S, U0, and U1 via Lemma 10.7.

Lemma 11.6. There is an inclusion of subsets of B(F0),

πU1(K1) rBrs(F0) ⊂ πU0(K0).
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Proof. Suppose that x\ ∈ πU1
(K1) is not regular semi-simple. By Lemma 8.4, we may choose

ξ = diag(±12,±1) such that x := c−1
ξ (x\) is defined and contained in πu1

(k1) ⊂ b(OF0
). Then

x ∈ πu0(k0) by Lemma 11.3(ii), and x ∈ b◦◦ by Lemma 11.5. Hence x\ = cξ(x) ∈ K0 by Lemma
11.1. �

11.5. Intersection numbers as a function on the quotient. In this subsection we consider
intersection numbers as a function on the categorical quotient in both the group and Lie algebra
settings. Recall the decomposition Brs(F0) = Brs,0 q Brs,1 from (10.9). For any odd n, by
Remark 4.4 the function g 7→ Int(g) on U1(F0)rs descends to a function on Brs,1. We extend it
by zero to Brs,0, and still denote by Int the resulting function on Brs(F0). By Remark 4.6, the
same applies to the function x 7→ `-Int(x) on u1,rs, which we consider as a function on brs(F0).
Note that, by Remark 4.5 and Remark 4.7 respectively, or by Lemma 8.8 and Proposition 8.10
when n = 3, these are finite-valued functions.

Proposition 11.7. Let n = 3. The function Int belongs to C∞rc (Brs); similarly, the function
`-Int belongs to C∞rc (brs).

Proof. To prove that the closure of the support of Int is compact, it suffices to prove that the
closure inside U1(F0) of the support of the function g 7→ Int(g) on U1(F0)rs is compact. But by
Lemma 8.8, this support is contained in the compact subgroup K1, and hence the assertion is
clear. A similar argument applies to `-Int.

Now we prove that the function `-Int on brs,1 is locally constant. By Corollary 8.11, this
assertion follows from the corresponding statement for the function `-Int on bred,rs,1. But this
follows in turn from the expressions for this function in §9.2 in terms of the quantities `−, `+,m
or, equivalently by (9.4), in terms of the functions u,w,∆ on bred(F0), all of which are locally
constant on bred,rs(F0).

The fact that Int is locally constant on Brs,1 now follows from Lemma 8.4, Corollary 8.11,
and the fact that the Cayley transform cξ, for any ξ ∈ S1, is a local homeomorphism (on its
domain of definition). �

Remark 11.8. We conjecture that the preceding assertion regarding the function Int on Brs(F0)
continues to hold for arbitrary odd n.

11.6. The reduction step. In this subsection we complete the proof that Theorem 5.21 follows
from Theorem 5.22. We begin by noting the following compatibility between transfer factors
under the Cayley transform for s, which holds for all odd n. Set s◦rs := srs ∩ s◦.

Lemma 11.9 ([35, Lem. 3.5]13). Let n be odd. Then for any y ∈ s◦rs(F0) and ξ ∈ S1,

ω
(
cξ(y)

)
= η̃

(
2n(n−1)/2

)
ω(y).

Proof. Let γ := cξ(y) ∈ Srs(F0). Write ξ = diag(ξ1 · 1n−1, ξ2), and choose ν = diag(ν1 · 1n−1, ν2)
with νν−1 = ξ as in the definition (10.5) of cξ. By the definition (5.5) of ω on Srs(F0),

ω(γ) = η̃
(
det(γ)−(n−1)/2 det(γie)i=0,...,n−1

)
= η̃

(
det
(
νc1n(y)ν−1

)−(n−1)/2
(ν1/ν2)n−1ξ

n(n−1)/2
1 det(c1n(y)ie)i=0,...,n−1

)
(by (10.7))

= η̃
(
(ξ1/ξ2)(n−1)/2(ν1/ν2)n−1

)
ω
(
c1n(y)

)
.

Since ξ1ν
2
1 = ν1ν1 and ξ2ν

2
2 = ν2ν2 are both norms, we conclude that ω(γ) = ω(c1n(y)).

Therefore we reduce to the case ξ = 1. Then

γ = (1 + y)(1− y)−1 = −1 + T,

13The proof of loc. cit. contains some miscalculations and should be corrected accordingly. This does not

affect the results in loc. cit.
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where we set T := 2(1− y)−1. We compute

det(γie)i=0,1,...,n−1 = det
(
(−1 + T )ie

)
i=0,1,...,n−1

= det(T ie)i=0,1,...,n−1

= 2n(n−1)/2 det(1− y)1−n det
(
(1− y)ie

)
i=n−1,n−2,...,0

= 2n(n−1)/2 det(1− y)1−n det(yie)i=0,1,...,n−1.

Note that 1− y = 1 + y, since y ∈ s(F0). Hence det(1 + y) det(1− y) ∈ NF×, and

η̃
(
det(1 + y) det(1− y)

)
= 1.

Recalling the definition (5.12) of ω on srs(F0), we conclude that

ω(γ) = η̃
(

det
(
(1 + y)(1− y)−1

)−n−1
2 2n(n−1)/2 det(1− y)1−n det(yie)i=0,1,...,n−1

)
= η̃

(
2n(n−1)/2

)
η̃
(
det(1 + y)−

n−1
2 det(1− y)−

n−1
2

)
ω(y)

= η̃
(
2n(n−1)/2

)
ω(y). �

Now we return to n = 3. The main part in the reduction step is given by the following
lemma. Recall from Lemma 10.3 that if a function φ′ ∈ C∞c (s) has vanishing orbital integrals
Orb(y, φ′) = 0 for all y ∈ srs,1, then the function y 7→ ω(y) ∂Orb(y, φ′) on srs,1 descends to
a function on brs,1 which, when extended by zero to brs,0, lies in C∞rc (brs); and recall from
Lemma 10.9 that if f ′ ∈ C∞c (S) is such that Orb(γ, f ′) = 0 for all γ ∈ Srs,1, then the function
γ 7→ ω(γ) ∂Orb(γ, f ′) on Srs,1 analogously descends to an element of C∞rc (Brs).

Lemma 11.10. Let f ′ ∈ C∞c (S) transfer to (1K0
, 0) ∈ C∞c (U0)× C∞c (U1), and let φ′ ∈ C∞c (s)

transfer to (1k0 , 0) ∈ C∞c (u0) × C∞c (u1). Fix ξ ∈ S1. Let x0 ∈ b◦(F0) be an element with the
property that if x0 /∈ b(OF0), then cξ(x0) /∈ πU0(K0). Then the difference function

x 7−→

{
ω
(
cξ(y)

)
∂Orb

(
cξ(y), f ′

)
− ω(y) ∂Orb(y, φ′), x = πs(y) ∈ b◦rs,1;

0, x ∈ brs,0

is locally around x0 an orbital integral function.14

Proof. Let f := 1K0
and φ := 1k0 . We may assume that x0 lies in the closure of brs,1. Choose

an open and compact (hence closed) neighborhood Vx0
of x0 contained in b◦(F0). Consider the

functions
φ′x0

:= φ′ · 1π−1
s (Vx0

) ∈ C
∞
c (s) and φx0

:= φ · 1π−1
u0

(Vx0
) ∈ C

∞
c (u0),

and similarly

f ′x0
:= f ′ · 1π−1

S (cξ(Vx0
)) ∈ C

∞
c (S) and fx0 := f · 1π−1

U0
(cξ(Vx0

)) ∈ C
∞
c (U0).

Then φ′x0
(y) = φ′(y) for all y ∈ π−1

s (Vx0), so that Orb(y, φ′x0
, s) = Orb(y, φ′, s) for all such y;

and similarly for f ′x0
and f ′. The assertion of the theorem is therefore reduced to the same

assertion for f ′x0
and φ′x0

.
We claim that, after possibly shrinking Vx0

, we have with respect to the Cayley transform
cξ : u◦0 → U0,

φx0 = c∗ξ(fx0) (11.8)

(where the right-hand side is extended by 0 from u◦0(F0) to u0(F0)). Indeed, first suppose that
x0 ∈ b(OF0

) is integral. We have

suppφx0
= k0 ∩ π−1

u0
(Vx0

) and supp fx0
= K0 ∩ π−1

U0

(
cξ(Vx0

)
)
.

Since x0 lies in the closure of brs,1, we have x0 ∈ b◦◦ by Lemma 11.5. Shrinking Vx0
if necessary,

we may therefore assume that Vx0
⊂ b(OF0

)∩b◦◦. Then by Lemma 11.1, cξ carries the left-hand
set in the display isomorphically onto the right-hand set, which proves (11.8).

If x0 is not integral, then by hypothesis cξ(x0) /∈ πU0
(K0). Hence, after possibly shrinking

Vx0 , both functions φx0 and fx0 vanish identically, so that again identity (11.8) is satisfied.

14Note that this function is not defined on all of brs(F0), but this raises no issue since the conclusion concerns

only the local behavior of the function near the point x0 ∈ b◦(F0).
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By (11.8), for all y ∈ s◦rs(F0) matched with an element x ∈ u◦0(F0) , we have

ω(y) Orb(y, φ′x0
) = Orb(x, φx0) = Orb

(
cξ(x), fx0

)
= ω

(
cξ(y)

)
Orb

(
cξ(y), f ′x0

)
.

By Lemma 11.9, we have ω(cξ(y)) = c · ω(y) for the constant c := η̃(2n(n−1)/2). Hence the
difference function c · c∗ξ(f ′x0

) − φ′x0
(viewed as an element in C∞c (s)) has identically vanishing

orbital integrals on srs,0. The same trivially holds on srs,1, since φ′x0
transfers to (φx0 , 0) and f ′x0

transfers to (fx0
, 0). Now the assertion follows from Corollary 11.12 below. �

The proof of Corollary 11.12 is based on the following theorem, which is the n = 3 case of
Conjecture 5.15 (see also Remarks 5.16). Recall from §5.4 that for φ′ ∈ C∞c (s) and h ∈ H ′(F0) =
GLn−1(F0), we define

φh ′(y) = φ′(h−1yh) and φη(h)h−1 ′(y) = η(h)φ′(h−1yh)− φ′(y).

Theorem 11.11 (Density principle). Let n = 3. Let φ′ ∈ C∞c (s) be such that Orb(y, φ′) = 0
for all y ∈ srs(F0). Then φ′ is in the kernel of the natural projection C∞c (s) → C∞c (s)H′,η, i.e.

φ′ is a linear combination of functions of the form φη(h)h−1 ′′ for φ′′ ∈ C∞c (s) and h ∈ H ′(F0).

Proof. By [34, Th. 1.1], the set of orbital integrals of regular semi-simple elements spans a weakly
dense subspace of the space all (H ′(F0), η)-invariant distributions on s(F0).15 Therefore if a test
function φ′ ∈ C∞c (s) is such that Orb(y, φ′) = 0 for all y ∈ srs(F0), then φ′ is annihilated by all
(H ′(F0), η)-invariant distributions on s(F0). This implies that φ′ lies in the kernel of the natural
projection C∞c (s)→ C∞c (s)H′,η. �

Corollary 11.12. Let φ′ ∈ C∞c (s) be such that Orb(y, φ′) = 0 for all y ∈ srs(F0). Then there
exists a function φ′[ ∈ C∞c (s) such that

ω(y) ∂Orb(y, φ′) = ω(y) Orb
(
y, φ′[

)
for all y ∈ srs(F0).

In other words, y 7→ ω(y) ∂Orb(y, φ′) is an orbital integral function on srs(F0).

Proof. By the density principle, we may assume that φ′ is of the form φη(h)h−1 ′′ for some
φ′′ ∈ C∞c (s) and h ∈ H ′(F0). By Lemma 5.12(ii),

∂Orb
(
γ, φη(h)h−1 ′′) = log|deth|Orb(γ, φ′′).

Setting φ′[ := log|deth| · φ′′ completes the proof. �

Remark 11.13. Note that this corollary is essentially a converse to Lemma 5.13(ii). Indeed,
in Corollary 11.12 above, we are given φ′, and are writing ∂Orb(y, φ′) as an orbital integral; in
Lemma 5.13(ii), we are given φ′, and are writing Orb(y, φ′) as a derivative of an orbital integral.

Proposition 11.14. Theorem 5.22 implies Theorem 5.21.

Proof. What we need to show is that Conjecture 5.10 implies Conjecture 5.6(b) when n = 3;
Proposition 5.14, Lemma 8.8, and Proposition 8.10 then take care of the rest. Suppose that
f ′ ∈ C∞c (S) transfers to (1K0

, 0), and let φ′ ∈ C∞c (s) be a function satisfying the conclusion of
Conjecture 5.10(a).

As in §11.5, we consider Int as a function in C∞rc (Brs) which vanishes identically on Brs,0, and
`-Int as a function in C∞rs (brs) which vanishes identically on brs,0. As in Lemmas 10.9 and 10.3,
respectively, we consider the function γ 7→ ω(γ) ∂Orb(γ, f ′) as an element in C∞rc (Brs) which
vanishes identically on Brs,0, and the function y 7→ ω(y) ∂Orb(y, φ′) as an element in C∞rs (brs)
which vanishes identically on brs,0. Our task is to prove that the sum

Int(g) · log q + 2ω(γ) ∂Orb(γ, f ′), (11.9)

regarded in this way as a function on Brs(F0), is an orbital integral function locally around x\0
for all x\0 ∈ B(F0). If x\0 is either in Brs,1 or outside the closure of Brs,1, then (11.9) is constant

(identically 0 in the latter case) in a neighborhood of x\0, and the conclusion follows. So let

us assume for the rest of the proof that x\0 lies in the closure of Brs,1 but is not itself regular
semi-simple.

15In [34] this is proved for sred, but it is trivial to extend the result to s.
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By Lemma 10.5(i), we may choose ξ ∈ S1 such that the inverse Cayley transform is defined

at x\0. Set x0 := c−1
ξ (x\0) ∈ b◦(F0). If x\0 ∈ πU0

(K0), then by Lemma 11.1 and (11.7), we may

furthermore choose ξ = diag(±12,±1) such that x0 ∈ b(OF0
) ∩ b◦(F0). Note that this in fact

gives us x0 ∈ b(OF0
) ⇐⇒ x\0 ∈ πU0

(K0), since if x0 ∈ b(OF0
), then x0 ∈ πu0

(k0) ∩ b◦◦ by

Lemmas 11.3(ii) and 11.5, and hence x\0 ∈ πU0(K0) by Lemma 11.1.
We claim that for all x ∈ b◦rs(F0) contained in a sufficiently small neighborhood of x0,

`-Int(x) = Int
(
cξ(x)

)
. (11.10)

Of course this holds trivially for x ∈ brs,0. If x0 ∈ b(OF0), then any x ∈ brs,1 which is sufficiently
near x0 will be contained in b(OF0)rs,1, which equals πu1(k1,rs) by Lemma 11.3(i). Hence (11.10)

holds for such x by Corollary 8.11. If x0 /∈ b(OF0
), then x\0 /∈ πU0

(K0) by our choice of ξ. Since

x\0 is not regular semi-simple, x\0 /∈ πU1
(K1) by Lemma 11.6. Hence by Lemma 8.8 both sides of

(11.10) vanish for x ∈ brs,1 sufficiently near x0. This proves the claim.
We conclude that for all x ∈ brs(F0) near x0,

Int
(
cξ(x)

)
· log q + 2ω

(
cξ(x)

)
∂Orb

(
cξ(x), f ′

)
= `-Int(x) · log q + 2ω(x) ∂Orb(x, φ′) + 2

(
ω
(
cξ(x)

)
∂Orb

(
cξ(x), f ′

)
− ω(x) ∂Orb(x, φ′)

)
.

By Theorem 5.22 and the choice of φ′, the first two terms on the right-hand side cancel. By
Lemma 11.10, the remaining expression on the right is an orbital integral function on brs(F0)
locally around x0. The proposition follows. �

12. Reduction to the reduced set

We continue to take n = 3. In this section we enact a further reduction step: we reduce the
main Lie algebra result Theorem 5.22 to an analog for the reduced sets sred(F0), u0,red(F0), and
u1,red(F0). Recall from (10.10), (11.6), and (8.9) that we have product decompositions16

s ∼= sred × s1 × s1, u0
∼= u0,red × s1 × s1, and u1

∼= u1,red × s1 × s1, (12.1)

all of which are compatible with the categorical quotient maps to b = bred × s1 × s1. The
matching relation for regular semi-simple elements in §2.3 obviously respects reducedness on
both sides. Since each of the above reduced sets is stable under the group action on the ambient
space, the formulas for orbital integrals in §5.3 make sense in the obvious way for reduced
regular semi-simple elements and functions on the reduced set (and of course we keep the same
normalizations). The transfer relation for functions then extends in the obvious way to the
reduced setting: a function φ′red ∈ C∞c (sred) and a pair (φ0,red, φ1,red) ∈ C∞c (u0,red)×C∞c (u1,red)
are transfers of each other if for each i ∈ {0, 1} and each x ∈ ui,red,rs(F0),

Orb(x, φi,red) = ω(y) Orb(y, φ′red)

whenever y ∈ sred,rs(F0) matches x. Here the transfer factor ω is the obvious one, namely
the restriction of (5.12) to sred,rs(F0). We are going to reduce Theorem 5.22 to the following
statement.

Theorem 12.1. Let n = 3. Then for any function φ′red ∈ C∞c (sred) which transfers to the pair
(1k0,red

, 0) ∈ C∞c (u0,red) × C∞c (u1,red), there exists a function φ′red,corr ∈ C∞c (sred) such that for

any y ∈ sred,rs(F0) matched with an element x ∈ u1,red,rs(F0),

2ω(y) ∂Orb(y, φ′red) = −`-Int(x) · log q + ω(y) Orb(y, φ′red,corr).

We will obtain Theorem 12.1 as a consequence of Theorems 15.1 and 16.5 below. To see that
Theorem 12.1 implies Theorem 5.22, let us first note the following straightforward lemma.

Lemma 12.2. If φ′red ∈ C∞c (sred) transfers to (1k0,red
, 0), then the function

φ′red ⊗ 1s1(OF0
)×s1(OF0

) ∈ C∞c (s) ∼= C∞c (sred × s1 × s1)

transfers to (1k0 , 0) ∈ C∞c (u0)× C∞c (u1). �

16Strictly speaking, (8.9) only gives the product decomposition for u1 on the level of F0-rational points, but

this obviously extends to an isomorphism of schemes.
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We also record the following fact about the transfer factor ω, which holds for any odd n. It
is an immediate consequence of the equation (10.11).

Lemma 12.3. Let n be odd. Then for any y ∈ srs(F0),

ω(y) = ω(yred). �

Now we return to the case n = 3.

Proposition 12.4. Theorem 12.1 implies Theorem 5.22.

Proof. The setup is parallel to the proof of Proposition 11.14: on account of Proposition 5.14,
Lemma 8.8, and Proposition 8.10, what we need to show is that Theorem 12.1 implies Conjecture
5.10(b) when n = 3. Suppose that φ′ ∈ C∞c (s) transfers to (1k0 , 0). Then φ′red := φ′|sred(F0)

transfers to (1k0,red
, 0). Let φ′red,corr ∈ C∞c (sred) be a function which satisfies the conclusion of

Theorem 12.1 for φ′red. Set

φ′′ := φ′red ⊗ 1s2
1(OF0

) and φ′′corr := φ′red,corr ⊗ 1s2
1(OF0

).

We claim that for any y ∈ s(F0)rs matched with an element x ∈ u1(F0)rs,

2ω(y) ∂Orb(y, φ′′) = −`-Int(x) · log q + ω(y) Orb(y, φ′′corr). (12.2)

Before proving the claim, let us explain how it implies the proposition. By Lemma 12.2, φ′′

transfers to (1k0 , 0). Hence φ′ − φ′′ has vanishing orbital integrals at all regular semi-simple
elements. Hence the conclusion of Conjecture 5.10(b) for φ′ follows from the claim and from
Corollary 11.12.

Now we prove the claim. Since the matching elements y and x have the same invariants,
their last two components with respect to the respective product decompositions in (12.1) are
the same. If either of these two common components does not lie in s1(OF0), then φ′′ and φ′′corr

vanish identically on the H ′(F0)-orbit of y, and x /∈ k1. Hence, using Lemma 8.8 for the `-Int
term, every term in (12.2) vanishes, and the claim holds trivially.

Now suppose that the last two components of y and x do lie in s1(OF0
). Then

∂Orb(y, φ′′) = ∂Orb(yred, φ
′
red) and Orb(y, φ′′corr) = Orb(yred, φ

′
red,corr).

Furthermore, in this case x ∈ k1 if and only if xred ∈ k1. Hence by Lemma 8.8 and Corollary
8.11,

`-Int(x) = `-Int(xred).

Since yred and xred match, and since ω(y) = ω(yred) by Lemma 12.3, we conclude that (12.2)
holds because φ′red,corr satisfies the conclusion of Theorem 12.1 for the function φ′red. This
completes the proof. �

Remark 12.5. We have formulated the notion of transfer above with respect to the particular
transfer factor ω, but this notion of course make sense relative to any transfer factor, as in
Definition 5.1 in the homogeneous group setting. In particular, for c ∈ C×, note that a function
φ′red ∈ C∞c (sred) transfers to (1k0,red

, 0) with respect to ω if and only if the function c−1φ′red

transfers to (1k0,red
, 0) with respect to the transfer factor cω. It is easy to see from this that the

truth of Theorem 12.1 is unaffected when we replace ω by a nonzero constant multiple.

13. Application of the germ expansion principle

In the rest of Part 3 of the paper, we suppress the subscript in the notation φ′red, and simply
call this function φ′. Also, from now on we systematically abuse notation and suppress the
expression (F0) when referring to sets of F0-rational points, so that b means b(F0), ui means
ui(F0), etc.

In Part 4 we prove a germ expansion of orbital integrals around each element x0 ∈ bredrbred,rs.
The rough form of this germ expansion is as in Theorem 16.1. Taking the derivative at s = 0 of
both sides, we obtain a sum decomposition as in (16.3),

ω
(
σ(x)

)
∂Orb

(
σ(x), φ′

)
= ω

(
σ(x)

)
∂Orb1

(
σ(x), φ′

)
+ ω

(
σ(x)

)
∂Orb2

(
σ(x), φ′

)
.
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Here σ(x) is some explicit element in sred above x ∈ bred,rs. We have

∂Orb1

(
σ(x), φ′

)
=

∑
n∈π−1

red(x0)/H′

∂Γn(x) Orb(n, φ′, 0), (13.1)

where

∂Γn(x) :=
d

ds

∣∣∣
s=0

Γn(x, s).

The explicit forms of the germ functions Γn(x, s), and the definitions of the orbital integrals
Orb(n, φ′, s) associated to elements which are not regular semi-simple, are given in Part 4.

Now we assume that φ′ transfers to (φ0, φ1) where φi ∈ C∞c (ui,red). Throughout the rest of
Part 3, we will assume that φ1 = 0. We will be concerned with the function on bred,rs,

x 7−→

{
∂Orb(σ(x), φ′), x ∈ bred,rs,1;

0, x ∈ bred,rs,0.

By Theorem 16.5, the term ω(σ(x)) ∂Orb2(σ(x), φ′) is an orbital integral function. We will cal-
culate ∂Orb1(σ(x), φ′). To use the formula (13.1), we need to calculate ∂Γn(x) and Orb(n, φ′, 0)
for all n ∈ π−1

red(x0)/H ′. Their values are summarized by the following table. Let us explain
some of the notation we use.

(1) Here F ′ = F0[X]/(X2 + λ0) is a quadratic F0-algebra for x0 = (λ0, u0, w0) ∈ bred.

(2) ∆ = ∆(x) for x ∈ bred,rs.

(3) The ♣ values are omitted since the corresponding values of Orb(n, φ′) vanish in our case.

(4) The ♠ values are not needed in our case since we will only need those x0 = (λ0, u0, w0) ∈
bred r bred,rs which are also in the closure of bred,rs,1 (cf. Lemma 11.3).

Element
x0 ∈ bred r bred,rs

Orbit
representative
n ∈ sred over x0

Reference
for orbit

representative
Value of ∂Γn(x)

Reference for
Orb(n, φ′, 0)

n(µ), µ ∈ F0 (17.1) Theorem 17.1 Lemma 14.2

0 n0,+
(17.2)

0
Lemma 14.1

n0,− log |∆/$|
(λ0, 0, 0) for λ0 6= 0
and F ′ 6' F, F0 × F0

y+
(18.2)

0
Lemma 14.7(a)

y− η(−λ0) log |∆/λ0|
(λ0, 0, 0) for λ0 6= 0
and F ′ ' F0 × F0

y0 (18.1)
Corollary 18.4

♠
y± (18.2) ♠

(λ0, 0, 0) for λ0 6= 0
and F ′ ' F

y++
(18.3)

0

Lemma 14.7(b)
y+− ♣
y−−

(18.4)
♣

y−+ η(−1) log |∆/λ0|
(λ0, u0, w0) for

u0 6= 0

y+
(18.5)

0
Lemma 14.8

y− log
∣∣∆/(u2

0$)
∣∣

14. The germ expansion of a function with special transfer

Throughout this section, we fix a function φ′ ∈ C∞c (sred) with transfer (1k0,red
, 0). We set

φ := 1k0,red
∈ C∞c (u0,red).

In this section, we will calculate ∂Orb1(σ(x), φ′). Note that, by Remark 16.4, the result is
independent of the choice of the non-unique matching function φ′.

14.1. Nilpotent orbital integrals. In this section, we determine the nilpotent integrals of φ′.
The nilpotent orbits are listed in §17.1. We start with the two regular nilpotent orbits. We
denote ζ(s) = ζF0

(s) = (1− q−s)−1.
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Lemma 14.1. We have

Orb(n0,−, φ
′) = −q−1ζ(1) and Orb(n0,+, φ

′) = −η(−1)q−1ζ(1).

Proof. Since φ′ transfers to (φ, 0), this follows from Theorem 19.4 and (19.3). �

Next we calculate the nilpotent orbital integrals Orb(n(µ), φ′) where n(µ) ∈ sred is the family
of nilpotent elements parametrized by µ ∈ F0, given by (17.1). When we consider Orb(n(µ), φ′)
as a function on F0, we denote it by Orbφ′ ,

Orbφ′(µ) := Orb
(
n(µ), φ′

)
.

Lemma 14.2.

Orb
(
n(µ), φ′

)
= q

η(−1)

log q
·


0, |µ| ≤ 1;

η(µ) log |µ|
|µ|

, |µ| > 1.

Proof. We first calculate the orbital integrals of φ over the family of nilpotent elements in u0

given by (19.1). As in [34, §2.1], we use the Iwasawa decomposition H0(F0) = KAN for K the
special parahoric subgroup (hence K contains SL2(OF0

) and all diagonal elements diag(a, a−1)
for a ∈ O×F , and vol(K) = 1). Write

h = k

[
z

z−1

] [
1 t

1

]
, dh = ζ(1) dk dz dt. (14.1)

By (19.2) we then have

Orb
(
n(µ), φ

)
= ζ(1)

∫
F

φK

π
0 µπzz z

0 0 0
0 πz 0

 dz

= ζ(1)|π|−1
F

∫
F

φK

0 −µzz z
0 0 0
0 −πz 0

 dz

= qζ(1) · vol
{
z ∈ F

∣∣ |z| ≤ 1 and |µzz| ≤ 1
}
.

Note now that F/F0 is ramified. We obtain

Orb
(
n(µ), φ

)
= qζ(1) ·

{
1, |µ| ≤ 1;

1/|µ|, |µ| > 1.

Recall from the proof of [34, Prop. 4.3] the functions

φ0 := 1OF0
, φ1(x) :=


η(x)

|x|
, |x| > 1;

0, |x| ≤ 1,

φ2(x) :=


1

|x|
, |x| > 1;

0, |x| ≤ 1,
φ3(x) :=


η(x) log |x|
|x|

, |x| > 1;

0, |x| ≤ 1.

Then we have the following table for their extended Fourier transforms, cf. loc. cit.,

φ̃0(v) =


0, |v| ≤ 1;

η(−v)

|v|
, |v| > 1.

φ̃1(v) =

{
q−1, |v| ≤ 1;

0, |v| > 1.

φ̃2(v) =


0, |v| ≤ 1;

η(−1)

log q ζ(1)

η(v) log |v|
|v|

− η(−v)

|v|
, |v| > 1.

φ̃3(v) =


−ζ
′(1)

ζ(1)
, |v| ≤ 1;

−ζ
′(1)

ζ(1)

1

|v|
, |v| > 1.

In terms of the four fundamental functions φi, we may rewrite the nilpotent orbital integral as

Orbφ = qζ(1) · (φ0 + φ2).
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Note that − ζ
′(1)
ζ(1) = ζ(1)q−1 log q. Hence, by Theorem 19.4, we obtain for the orbital integral of

φ′,

Orbφ′ = q
η(−1)

log q
φ3.

This completes the proof. �

14.2. Germ expansion of ∂Orb1(σ(x), φ′) around x0 = 0. We now calculate the germ expan-
sion of ∂Orb1(σ(x), φ′) around x0 = 0. In the sequel, we denote by v the normalized valuation
for F0.

We are using the section σ of πsred
|sred,rs

in a neighborhood of x0 = 0 introduced in (17.3).

Theorem 14.3. For x = (λ, u, w) ∈ bred,rs,1 near zero,

∂Orb1

(
σ(x), φ′

)
= Φ(x)− q−1ζ(1) log |∆(x)|,

where the function Φ(x) is as follows. Set t = q−1 below.

Case I: |∆| ≥ |w|2

(1) If v(∆) > 4v(u), then

Φ(x) = −t−v(u) 2(1 + t) +
(
v(∆/u4)− 1

)
(1− t)

(1− t)2
· log q.

(2) If v(∆) ≤ 4v(u) and v(∆) is odd, then

Φ(x) = −t
2v(u)−v(∆)+1

2

(
4v(u)− v(∆) + 3

)
−
(
4v(u)− v(∆)− 1

)
t

(1− t)2
· log q.

(3) If v(∆) ≤ 4v(u) and v(∆) is even, then

Φ(x) = −t
2v(u)−v(∆)

2

(
2v(u)− v(∆)

2 + 1
)
(1− t2) + t(3 + t)

(1− t)2
· log q.

Case II: |∆| < |w|2

(1) If v(w/π) ≥ 2v(u), then

Φ(x) = −t−v(u) 2(1 + t) +
(
v(∆/u4)− 1

)
(1− t)

(1− t)2
· log q.

(2) If v(w/π) < 2v(u), then

Φ(x) = −tv(u)−v(w/π) 4t+
(
v(∆) + 4v(u)− 4v(w/π) + 1

)
(1− t)

(1− t)2
· log q.

The proof of this theorem will occupy the entire subsection. The term ∂Orb1(σ(x), φ′) is
a sum of two parts, one from the two regular nilpotent orbits n0± and the other from the
one-dimensional nilpotent family n(µ).

We first determine the contribution of the two regular nilpotents. We use Lemma 14.1. Noting
that η(∆/$) = −1 when x ∈ bred,rs,1 (cf. Proposition 10.2), and taking into account the values of
∂Γ(n0±) (see table above), the total contribution of the two regular nilpotents to ∂Orb1(σ(x), φ′)
is equal to

−η(∆/$) log |∆|Orb(n0,−, φ
′) = η(∆/$)q−1ζ(1) log |∆| = −q−1ζ(1) log |∆|.

We now calculate the contribution from the one-dimensional family n(µ), which we denote by

Φ(x) =

∫
F0

∂Γn(µ)(x) Orb
(
n(µ), φ′, 0

)
dµ.

It is easier to use an equivalent formula, namely (17.5) :

Φ(x) = −η(−1)|u|−1

∫
F0

Orb
(
n
(
u−2(t+ t−1∆/$ + 2w/π)

)
, φ′
)
η(t) log |t| dt

|t|
. (14.2)

Set
w′ = w/u2, λ′ = λ/u2, ∆′ = ∆/u4 = λ′ + w′2.
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Note that η(−∆) = −1 (cf. Proposition 10.2). Denote

η1(t) = η(t)|t|−1, t ∈ F×0 .
By the formula for Orbφ′ in Lemma 14.2, and substituting t 7→ tu2, the integral (14.2) is equal
to

Φ(x) = −q−1(log q)−1|u|−1 · Ξ(x), (14.3)

where

Ξ(x) =

∫
F

log |t+ ∆′/($t) + 2w′/π| η1(t2 + ∆′/$ + 2w′t/π) log |t| dt, (14.4)

where the integrand is subject to the condition

|t+ ∆′/($t) + 2w′/π| > 1.

A simple observation is that the contribution of t with |t| = |∆′/($t)| is always zero, since
we may pair t with ∆′/($t) to see that the sum is canceled (use η(−$) = 1, η(−∆′) = −1 by
Proposition 10.2). Hence the integral in (14.4) is equal to

Ξ(x) =

∫
log |t+ ∆′/($t) + 2w′/π| η1(t2 + ∆′/$ + 2w′t/π)(2 log |t| − log |∆′/$|) dt, (14.5)

where the integrand is subject to the conditions

|t| > |∆′/$t|, |t+ ∆′/$t+ 2w′/π| > 1.

We distinguish two cases.

Case I: |∆′| ≥ |w′|2. Then the last integral (14.5) is equal to

Ξ(x) =

∫
log |t+ ∆′/($t)| η1(t2)(2 log |t| − log |∆′/$|) dt

=

∫
log |t| η1(t2)(2 log |t| − log |∆′/$|) dt,

where the integrand is subject to the conditions

t| > |∆′/$t| and |t+ ∆′/$t+ 2w′/π| = |t| > 1.

The integral is equal to

Ξ(x) =

∫
|t|>max{1,|∆′/$|1/2}

log |t| η1(t2)(2 log |t| − log |∆′/$|) dt.

Making the substitution t 7→ t−1, we obtain

Ξ(x) =

∫
|t|<min{1,|∆′/$|−1/2}

log |t|(2 log |t|+ log |∆′/$|) dt.

Set n := 1 + max{0, [−v(∆′/$)/2]} > 0. Then the integral is equal to

Ξ(x) = ζ(1)−1

(∑
i≥n

(
−2i− v(∆′/$)

)
(−i)q−i

)
· (log q)2. (14.6)

For later use we tabulate the following elementary formulas:

∑
i≥n

iti−1 =
ntn−1 − (n− 1)tn

(1− t)2
,

∑
i≥n

i(i+ 1)ti =
t
(
n(n− 1)tn+1 − 2(n2 − 1)tn + n(n+ 1)tn−1

)
(1− t)3

,

∑
i≥n

i2ti =
(n− 1)2tn+2 − (2n2 − 2n− 1)tn+1 + n2tn

(1− t)3
.

We now see that the integral (14.6) is given as follows.
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(1) If v(∆′) > 0, then n = 1 and

Ξ(x) = ζ(1)−1

( ∞∑
i=1

(
2i+ v(∆′/$)

)
iti
)
· (log q)2 =

t
(
2(1 + t) + v(∆′/$)(1− t)

)
(1− t)2

· (log q)2.

(2) If v(∆′) ≤ 0 is odd, then −v(∆′) = 2n− 3 and

Ξ(x) = ζ(1)−1

( ∞∑
i=n

(2i− 2n+ 2)iti
)
· (log q)2 =

2tn(−n− 2t+ nt)

(1− t)2
· (log q)2.

(3) If v(∆′) ≤ 0 is even, then −v(∆′) = 2n− 2 and

Ξ(x) = ζ(1)−1

( ∞∑
i=n

(2i− 2n+ 1)iti
)
· (log q)2 =

tn(n+ 3t+ t2 − nt2)

(1− t)2
· (log q)2.

Case II: |∆′| < |w′|2. In this case −λ′/w′2 ∈ 1 + πOF (note that −∆′ = −w′2 − λ′ is not a
norm). Since w′ ∈ πF0, it follows that −λ′/$ is a square and hence the following equation has
two roots

t2 + 2tw′/π + ∆′/$ = 0, t = −w′/π ±
√
−λ′/$ ∈ F0.

We label t0 as the unique root such that

|t0| = |w′/π| = |λ′/$|1/2, (14.7)

and label t1 the other root. Then |t0| > |t1| and the integral (14.5) is equal to

Ξ(x) =

∫
log
∣∣(t− t0)(t− t1)/t

∣∣ η1

(
(t− t0)(t− t1)

)
(2 log |t| − log |∆′/$|) dt,

where the integrand is subject to

|t| > |∆′/$t|,
∣∣(t− t0)(t− t1)/t

∣∣ > 1.

When |t| > |∆′/$t|, we always have |t| > |t1|. Hence the integral is reduced to

Ξ(x) =

∫
log|t− t0| η1

(
(t− t0)t

)
(2 log |t| − log |∆′/$|) dt, (14.8)

subject to

|t| > |∆′/$t|, |t− t0| > 1. (14.9)

We break the integral up as a sum of three pieces according to whether |t| is less than, greater
than, or equal to |w′/π|.

Lemma 14.4. When |t| < |w′/π|, the contribution to (14.8) is zero.

Proof. Now we have |t − t0| = |t0| and hence the contribution is zero unless |w′/π| > 1, which
we assume now. Then the contribution to (14.8) is

log |w′/π|
∫
|w′/π|>|t|>|∆′/$t|

η1(t0t) (2 log |t| − log |∆′/$|) dt = 0,

since η is ramified ! �

Lemma 14.5. When |t| > |w′/π|, the contribution to (14.8) is∫
|t|<min{1,|w′/π|−1}

(2 log |t|+ log |∆′/$|) log |t| dt. (14.10)

Proof. When |t| > |w′/π|, we have∫
|t|>max{1,|w′/π|}

log |t| (2 log |t| − log |∆′/$|) |t|−2 dt.

Substituting t→ 1/t, this becomes∫
|t|−1>max{1,|w′/π|}

log |t| (2 log |t|+ log |∆′/$|) dt.

This completes the proof. �
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Lemma 14.6. When |t| = |w′/π|, the contribution to (14.8) is

(log |w′/π|) (log |∆′/w′2|) |w′/π|−1 q−1,

when |w′/π| > 1, and zero otherwise.

Proof. The constraint |t| > |∆′/$t| in (14.9) is now superfluous. Under the assumption |t| =
|w′/π| = |t0| (cf. (14.7)), we divide the integral (14.8) into two cases: |t− t0| < |t0| and |t− t0| =
|t0|.

First we show that when |t− t0| < |t0|, the contribution to (14.8) is zero. Let x = t− t0 and
we see that the integral (14.8) becomes∫

log |x| η1(xt0) (2 log |t0| − log |∆′/$|) dx,

where x satisfies conditions coming from (14.9)

|x| < |t0|, |x| > 1.

This integral is equal to

η1(t0)(2 log |t0| − log |∆′/$|)
∫

1<|x|<|t0|
log |x| η1(x) dx.

Since η is ramified, we have ∫
1<|x|<|t0|

log |x| η1(x) dx = 0.

It remains to consider the contribution when |t − t0| = |t0|. We hence have |t − t0| = |t0| =
|t| = |w′/π| (cf. (14.7)). The integral (14.8) becomes

log |w′/π| (2 log |w′/π| − log |∆′/$|)
∫
η1

(
(t− t0)t

)
dt,

subject to

|t− t0| = |t| = |t0|, |t− t0| = |t0| > 1.

The integral is zero unless |t0| = |w′/π| > 1, in which case we have∫
|t−t0|=|t|=|w′/π|

η1

(
(t− t0)t

)
dt = |w′/π|−2

∫
|t−t0|=|t|=|w′/π|

η(1− t0/t) dt = −q−1|w′/π|−1.

This completes the proof. �

Set n := 1 + max{0,−v(w′/π)}. From the last three lemmas, we find that the integral (14.8)
is given as follows.

(1) If v(w′/π) ≥ 0, then n = 1 and the integral (14.8) is equal to

Ξ(x) = ζ(1)−1

( ∞∑
i=1

(
−2i− v(∆′/$)

)
(−i)ti

)
· (log q)2

= |u|−1 t
(
2(1 + t) + v(∆′/$)(1− t)

)
(1− t)2

· (log q)2.

(2) If v(w′/π) < 0, then n = −v(w′/π) + 1. The integral (14.10) is equal to (log q)2 times the
factor

ζ(1)−1
∞∑
i=n

(2i+ v(∆′/$))iti

= − t
n(−dn− 2n2 − 2t− dt− 4nt+ 2dnt+ 4n2t− 2t2 + dt2 + 4nt2 − dnt2 − 2n2t2)

(1− t)2
,

where d = v(∆′/$). The contribution from the last lemma is

(log |w′/π|)(log |∆′/w′2|)|w′/π|−1q−1 = −(n− 1)(d+ 2n− 2)tn · (log q)2.
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It follows that the sum (14.8) is given by

Ξ(x) = tn
4t+ (d+ 4n− 2)(1− t)

(1− t)2
· (log q)2.

Note that d+ 4n− 2 = v(∆) + 4v(u)− 4v(w/π) + 1. Hence, by (14.3), (14.4) and Case I (1),
(2), (3), Case II (1), (2), we complete the proof of Theorem 14.3.

14.3. x0-nilpotent integrals for x0 6= 0. In this subsection, we consider x0 ∈ bred r bred,rs

with x0 6= 0, and calculate the orbital integrals of the x0-nilpotent elements in sred, i.e., of the
elements in sred mapping to x0 under πs, cf. §16. These elements are listed in §18.1.

Lemma 14.7. Let x0 = (λ0, 0, 0) ∈ bred, λ0 ∈ F×0 . Assume that −λ0 /∈ F×,20 . Set F ′ =
F0[X]/(X2 + λ0).

(a) In case (0i) (i.e., F ′ 6' F ),

Orb(y+, φ
′) = η(−λ0) Orb(y−, φ

′) =
1

2
ζ(1) ·

−2q−1 + q
v(λ0)

2 (1 + q−1), 2 | v(λ0),

2q−1(q
v(λ0)+1

2 − 1), 2 - v(λ0),

when λ0 ∈ OF0
, and Orb(y+, φ

′) = Orb(y−, φ
′) = 0 when λ0 /∈ OF0

.

(b) In case (0ii) (i.e., F ′ ' F ),

Orb(y−+, φ
′) = η(−1) Orb(y+−, φ

′) = 0.

Furthermore,

Orb(y++, φ
′) = η(−1) Orb(y−−, φ

′) =
1

2
η(−α)ζ(1) ·

−2q−1 + q
v(λ0)

2 (1 + q−1), 2 | v(λ0),

2q−1(q
v(λ0)+1

2 − 1), 2 - v(λ0),

when λ0 ∈ OF0
, and Orb(y++, φ

′) = Orb(y−−, φ
′) = 0 when λ0 /∈ OF0

.

Proof. Note that φ′ matches the pair (φ0 = φ, φ1 = 0). By Theorem 19.5, we have case by case
the following.

(a) In case (0i), we have

Orb(y+, φ
′) = η(−λ0) Orb(y−, φ

′) =
1

2
Orb(y0, φ0),

where y0 is any representative of the unique semi-simple orbit in u0,red above x0 ∈ bred.

(b) In case (0ii), since Orb(y±, φ1) = 0, we have

Orb(y++, φ
′) = η(−1) Orb(y−−, φ

′) =
1

4
η(−α)

(
Orb(y+, φ0) + Orb(y−, φ0)

)
and

Orb(y−+, φ
′) = η(−1) Orb(y+−, φ

′) =
1

4
η(−α)

(
Orb(y+, φ0)−Orb(y−, φ0)

)
,

where y± ∈ u0,red are representatives of the two semi-simple orbits in u0,red above x0 ∈ bred.

Therefore it suffices to show the following in both cases: let y0 ∈ ured be any semi-simple
element with invariants x0. Then we have

Orb(y0, φ) = ζ(1) ·

−2q−1 + q
v(λ0)

2 (1 + q−1), 2 | v(λ0),

2q−1
(
q
v(λ0)+1

2 − 1
)
, 2 - v(λ0),

when λ0 ∈ OF0 , and Orb(y0, φ) = 0 when λ0 /∈ OF0 . In particular, the independence on the
choice of y0 implies that Orb(y+, φ0) = Orb(y−, φ0) in case (0ii).

We may assume that y0 is of the form

y0 =

0 −λ0/ε 0
ε 0 0
0 0 0

 , |ε| = 1.
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We use the Iwasawa decomposition (14.1) as in the proof of Lemma 14.2. Note that φ is K-
invariant. Then we have by definition

Orb(y0, φ) = ζ(1)

∫
z∈F,t∈F0

φ

 εt zz(−λ0/ε− εt2) 0
ε/zz −εt 0

0 0 0

 dz dt,

where the integrand is constrained by

|t| ≤ 1, |(zz)−1| ≤ 1, |zz(−λ0 − ε2t2)| ≤ 1.

Therefore we see that |λ0| ≤ 1 or the integral vanishes. Note that −λ0 is not a square by
assumption. The integral is then equal to∫

|t2|≤|λ0|,1≤|zz|≤|λ−1
0 |

dz dt+

∫
|λ0|<|t2|≤1,1≤|zz|≤|t−2|

dz dt. (14.11)

The first integral is equal to

q−b
v(λ0)+1

2 c(|λ0|−1 − q−1),

and the second one is equal to ∫
|λ0|<|t2|≤1

(|t|−2 − q−1)dt

=

∫
|λ0|<|t−2|≤1

dt− q−1

∫
|λ0|<|t2|≤1

dt.

We distinguish two cases.

(i) v(λ0) is even. Then the integral (14.11) is equal to

q−
v(λ0)

2 (qv(λ0) − q−1) + ((q
v(λ0)−2

2 − q−1)− q−1(1− q−
v(λ0)

2 )) = −2q−1 + q
v(λ0)

2 (1 + q−1).

(ii) v(λ0) is odd. Then the integral (14.11) is equal to

q−
v(λ0)+1

2 (qv(λ0) − q−1) + ((q
v(λ0)−1

2 − q−1)− q−1(1− q−
v(λ0)+1

2 )) = 2q−1(q
v(λ0)+1

2 − 1).

Noting the factor ζ(1), this completes the proof. �

Lemma 14.8. Let x0 = (λ0, u0, w0) ∈ bred r bred,rs with u0 6= 0. Then

Orb(y+, φ
′) = Orb(y−, φ

′) =
1

2
ζ(1) ·

{
2q−1(qv(u0)+1 − 1), |λ0| < |u0|2,

2q−1
(
q
v(λ0)+1

2 − 1
)
, |λ0| > |u0|2,

when λ0, u0 ∈ OF0 , w0 ∈ OF , and Orb(y+, φ
′) = Orb(y−, φ

′) = 0 otherwise.

Proof. By Theorem 19.5 (item (c), i.e., case (1)), we have

Orb(y+, φ
′) = Orb(y−, φ

′) =
1

2
Orb(y0, φ0),

where y0 is any representative of the unique semi-simple orbit in u0,red above x0. It remains to
show that

Orb(y0, φ) = ζ(1) ·

{
2q−1(qv(u0)+1 − 1), |λ0| < |u0|2,

2q−1(q
v(λ0)+1

2 − 1), |λ0| > |u0|2,

when λ0, u0 ∈ OF0
, w0 ∈ OF , and Orb(y0, φ) = 0 otherwise.

First we assume λ0 6= 0. We use the representative with invariants (λ0, u0, w0) (cf. (19.6) and
(19.7))

y0 =

 0 −λ0 παb
1 0 b
· · · · · · 0

 ,
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where α2 = −λ0/$,α ∈ F×0 , and −2bbα = u0. Again by the Iwasawa decomposition we arrive
at

Orb(y0, φ) = ζ(1)

∫
z∈F,t∈F0

φ

 t zz(−λ0 − t2) bz(πα+ t)
1/zz −t b/z
· · · · · · 0

 dz dt.

It is easy to see that Orb(y, φ) = 0 unless λ0, u0, w0 ∈ OF which we assume from now on. The
integrand is constrained by

|t| ≤ 1, |(zz)−1| ≤ 1, |zz(−λ0 − t2)| ≤ 1,

and

|bz(πα+ t)| ≤ 1, |b/z| ≤ 1.

Note that −λ0 = α2$ is not a square in F0. We distinguish two subcases:

• Case |α| ≥ |u0|, (i.e., |λ0| > |u0|2). Then we have |b| ≤ 1. The conditions |bz(πα + t)| ≤ 1
and |b/z| ≤ 1 are redundant by |b| ≤ 1, |zz(λ0 − t2)| ≤ 1, |(zz)−1| ≤ 1. In this case we may
simply apply the previous lemma, noting that v(λ0) is odd.

• Case |α| < |u0|, (i.e., |λ0| < |u0|2). Then we have |b| > 1. In this case the constraints are
reduced to

|bzt| ≤ 1, |z| ≥ |b|, |bzπα| ≤ 1.

Let vF denote the normalized valuation on F . We calculate the orbital integral according to
vF (z), which varies from vF (b) to −vF (bπα):

Orb(y0, φ) = ζ(1)

∫
|b|≤|z|≤1/|bπα|

(∫
|t|F≤1/|bz|

dt

)
dz. (14.12)

The double integral in (14.12) is equal to

(1− q−1)
(
qvF (b)q−vF (b) + qvF (b)−1(q−vF (b)+1 + q−vF (b)+2) + · · ·+ q−vF (α)/2−1qvF (b)+1+vF (α)

)
.

We hence arrive at

Orb(y0, φ) = ζ(1)(1− q−1)
(

1 + 1 + q + q + · · ·+ qvF (b)+
vF (α)

2 + qvF (b)+
vF (α)

2

)
= 2ζ(1)(1− q−1)

qvF (b)+
vF (α)

2 +1 − 1

q − 1

= 2ζ(1)q−1(qv(u0)+1 − 1).

Here we used that vF (u0) = vF (α) + 2vF (b) and vF (u0) = 2v(u0).

The case λ0 = 0 is similar to the case |λ0| < |u0|2 above, and we omit the details. This completes
the proof. �

14.4. Germ expansion of ∂Orb1

(
σ(x), φ′

)
around x0 6= 0. The following theorem together

with the values in Lemma 14.7 and Lemma 14.8 give the germ expansion around nonzero elements
x0 ∈ bred r bred,rs. We use the classification of such elements in §18.1.

Theorem 14.9. Let x0 = (λ0, u0, w0) ∈ bred r bred,rs be a nonzero element. Assume that, if

u0 = w0 = 0 then −λ0 /∈ F×,20 , and set F ′ = F0[X]/(X2 + λ0). Let x = (λ, u, w) ∈ bred,rs,1 be in
a small neighborhood of x0.

(a) In case (0i) (i.e., u0 = w0 = 0 and F ′ 6' F ),

∂Orb1

(
σ(x), φ′

)
= η(−λ) Orb(y−, φ

′) log |∆(x)|+ C1;

(b) In case (0ii) (i.e., u0 = w0 = 0 and F ′ ' F ),

∂Orb1

(
σ(x), φ′

)
= η(−1) Orb(y−−, φ

′) log |∆(x)|+ C2;

(c) In case (1) (i.e., u0 6= 0),

∂Orb1

(
σ(x), φ′

)
= Orb(y−, φ

′) log |∆(x)/u(x)2|+ C3;

where C1, C2, C3 are constants (depending on x0 only, independent of the choice of φ′). Here
σ(x) is the section defined by (17.3) in cases (0i) and (1), and by (18.6) in case (0ii).
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Proof. We simply denote ∆ for ∆(x). Note that η(−∆) = −1 for x ∈ bred,rs,1 (cf. Proposition
10.2). We apply Theorem 18.2 and use the notation in its statement. Case (0i) follows from the
fact |λ| is a constant when x is near x0. In case (0ii), by Lemma 14.7, we have Orb(y−+, φ

′) =
Orb(y+−, φ

′) = 0. This case then follows easily by η(z1z2) = η(∆) and since |z1z2/∆| is a
constant when x is near x0. Case (1) follows from the fact that |u(x)| is a constant when x is
near x0. �

15. Comparison

15.1. Statement of the theorem. We denote by ϕ the function on bred,rs,

ϕ(x) :=

{
2ω(y) ∂Orb(y, φ′) + `-Int(x) · log q, y ∈ sred, πs(y) = x ∈ bred,rs,1,

0, x ∈ bred,rs,0.

We define ϕ1 to be the analogous function where we replace ∂Orb by ∂Orb1, and define ϕ2 to
be

ϕ2(x) :=

{
2ω(y) ∂Orb2(y, φ′), y ∈ sred, πs(y) = x ∈ bred,rs,1,

0, x ∈ bred,rs,0.

Hence we have
ϕ = ϕ1 + ϕ2.

By Theorem 16.5, ϕ2 is an orbital integral function. Therefore, to show Theorem 12.1, it suffices
to show that ϕ1 is an orbital integral function. Indeed, we will show the following stronger result.

Theorem 15.1. For every x0 ∈ bred, there exists an open neighborhood Vx0 of x0 such that
ϕ1|Vx0

∩bred,rs,1
is a constant function.

The only non-trivial case is when x0 lies in the closure of bred,rs,1, but not in bred,rs,1 itself.
So, let us assume this. The proof of Theorem 15.1 will occupy the rest of this section. We first
treat the case x0 = 0 and then move on to the case where x0 6= 0, in the order appearing in the
table in §13.

Before proceeding, we recall from (9.4) that

vD(u) = 2m, vD(w) = 2m+ `+, vD(∆) = 4m+ 2`−,

and
v(λ) = min{`+, `−}

The last identity follows because in the expression λ = Nα′+ +Nα′−, when the valuations of both
summands are identical, there can be no cancellation.

15.2. The case x0 = 0. Theorem 14.3 calculates ω(y) ∂Orb(y, φ′) for y = σ(x) the explicit
section introduced in (17.3). Recall that in Theorem 14.3, the valuation is taken to be the
normalized valuation for F0 and therefore vD( ) = 2v( ).

We compare the formulas in Theorem 14.3 and the formulas for Int(x) in §9. We see that
the case distinctions in both formulas are identical; we furthermore see case-by-case that, when
x ∈ bred,rs,1 is close to 0,

ϕ1(x) =
−8t

(1− t)2
· log q

is constant. Here t = q−1 for the rest of this section. Hence Theorem 15.1 follows in this case.

15.3. The case x0 6= 0. The theorem holds trivially if x0 is not integral, so we assume from
now on that x0 is integral. We first consider the case x0 = (λ0, 0, 0), λ0 6= 0, and derive from §9
a convenient expression for the quantity `-Int(x) in a small neighborhood of x0.

Lemma 15.2. Let x0 = (λ0, 0, 0), λ0 6= 0. For x ∈ bred,rs,1 in a small neighborhood of x0,

`-Int(x) =


v(∆/λ)

t−v(λ0)/2(1 + t)− 2t

1− t
+ C1

(
v(λ0)

)
, 2 | v(λ0),

v(∆/λ)
2t(t−(v(λ0)+1)/2 − 1)

1− t
+ C2

(
v(λ0)

)
, 2 - v(λ0),

where C1(n) and C2(n) are explicit polynomials in n.
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Proof. For x ∈ bred,rs,1 near x0, we may assume that |λ| = |λ0| is fixed, while vD(u) = 2m and
vD(w) = 2m+ `+ are very large. Hence we may assume that m is larger than at least one of `+
or `−. To make the comparison, we will rewrite `-Int(x) from Case I (2), (3) and Case II (2)
in §9.

• If v(λ0) is even (and so is v(λ)), then the minimum among `+, `− must be `− since `+ is odd.
Hence we may assume `− = `−0 = v(λ0), and we are in case Case I (3). Hence the intersection
number is given by

`-Int(x) = 2t−`−/2
(m− `−/2 + 1)(1− t2) + t(t+ 3)

(1− t)2
+
−2(`− + 2m+ 1)t

1− t
+
−8t

(1− t)2

= 2m
t−`−/2(1 + t)− 2t

1− t

+ 2t−`−/2
(−`−/2 + 1)(1− t2) + t(t+ 3)

(1− t)2
− 2(`− + 1)t

1− t
+
−8t

(1− t)2

= v(∆/λ)
t−v(λ0)/2(1 + t)− 2t

1− t
+ C1

(
v(λ0)

)
,

where C1(n) is an explicit function of n defined by the last equality.

• If v(λ0) is odd (and so is v(λ)), we are in Case I (2) or Case II (2), depending on whether
`− ≤ `+ or not (equivalently, depending on whether |∆| ≥ |w|2 or not). In other words, this
gives a partition of the intersection of a neighborhood of x0 with the regular semi-simple set as
a disjoint union of two sets.

In Case I (2) (`− ≤ `+, `− ≤ 2m and `− odd), we have

vD(λ) = 2`−, vD(∆/λ) = 4m,

and we may assume that `− = `−0 = v(λ0). Then we have

`-Int(x) = 2t−(`−−1)/2 (2m− `− + 3)− (2m− `− − 1)t

(1− t)2
+
−2(2m+ `− + 1)t

1− t
+
−8t

(1− t)2

= 4m
t(t−(`−+1)/2 − 1)

1− t
+ 2t−(`−−1)/2 (−`− + 3) + (`− + 1)t

(1− t)2
− 2(`− + 1)t

1− t
+
−8t

(1− t)2

= v(∆/λ)
2t(t−(v(λ0)+1)/2 − 1)

1− t
+ C2

(
v(λ0)

)
,

where C2(n) is an explicit function of n defined by the last equality.

In Case II (2) (`− > `+, `+ < 2m), we have

vD(λ) = 2`+, vD(∆/λ) = 4m+ 2`− − 2`+.

Hence

`-Int(x) = 2t−(`+−1)/2 (`− − 2`+ + 2m+ 3)(1− t) + 4t

(1− t)2
+
−2(`− + 2m+ 1)t

1− t
+
−8t

(1− t)2

= 2(2m+ `− − `+)
t(t−(`++1)/2 − 1)

1− t

+ 2t−(`+−1)/2 (−`+ + 3)(1− t) + 4t

(1− t)2
− 2(`+ + 1)t

1− t
+
−8t

(1− t)2

= 2(2m+ `− − `+)
t(t−(`++1)/2 − 1)

1− t

+ 2t−(`+−1)/2 (−`+ + 3) + (`+ + 1)t

(1− t)2
− 2(`+ + 1)t

1− t
+
−8t

(1− t)2

= v(∆/λ)
2t(t−(v(λ0)+1)/2 − 1)

1− t
+ C2

(
v(λ0)

)
,

where C2(n) is the same function of n as in the last case (this is crucial). �
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We return to the proof of Theorem 15.1 for x0 = (λ0, 0, 0), λ0 6= 0. Note that −λ0 /∈ F×,20

since x0 is in the image of u1,red, cf. Lemma 11.3. Hence we can apply Theorem 14.9. We have
the two subcases (a) and (b) of that theorem.

(a) Case (0i): F ′ 6' F . By Theorem 14.9 and Lemma 14.7, we have the values of the orbital
integrals ∂Orb1(σ(x), φ′). By comparison with Lemma 15.2, we find that

ϕ1(x) =
(
C1 + Ci

(
v(λ0)

))
· log q, x ∈ bred,rs,1,

is a constant, where C1 is the constant in Theorem 14.9, and Ci(n) is the polynomial of n for i
with the same parity as v(λ0).

(b) Case (0ii): F ′ ' F (so that v(λ0) is odd by F ′ = F0[
√
−λ0] ' F0[

√
$]). Similarly we find

by Theorem 14.9 and Lemma 14.7, and by comparing with Lemma 15.2, that

ϕ1(x) =
(
C2 + C1

(
v(λ0)

))
· log q, x ∈ bred,rs,1,

is a constant, where C2 is the constant in Theorem 14.9, and C1(n) is the polynomial of n in
Lemma 15.2.

Hence Theorem 15.1 is proved for x0 = (λ0, 0, 0).

We now consider the case x0 = (λ0, u0, w0), u0 6= 0. Again, we first derive a convenient
expression for the quantity `-Int(x) in a small neighborhood of x0.

Lemma 15.3. Let x0 = (λ0, u0, w0), where u0 6= 0. Then for x ∈ bred,rs,1 in a small neighbor-
hood of x0,

`-Int(x) =


2v(∆/u2)

t(t−v(u0)−1 − 1)

(1− t)
+ C1

(
v(u0)

)
, |λ| < |u|2,

2v(∆/u2)
t(t−(v(λ0)+1)/2 − 1)

(1− t)
+ C2

(
v(λ0), v(u0)

)
, |λ| > |u|2,

where C1, C2 are explicit polynomials.

Proof. First we assume that λ0 6= 0. Then for x near x0, we have |λ| = |λ0|, |u| = |u0|, |w| = |w0|,
and `− is very large.

• In Case II (1)( `− > `+, `+ > 2m, i.e., |λ| < |u|2) we have

`-Int(x) = 2t−m
2(1 + t) + (`− − 2m− 1)(1− t)

(1− t)2
+
−2(`− + 2m+ 1)t

1− t
+
−8t

(1− t)2

= 2`−
t(t−m−1 − 1)

(1− t)
+ 2

(
t−m

2(1 + t) + (−2m− 1)(1− t)
(1− t)2

+
−(2m+ 1)t

1− t
+
−4t

(1− t)2

)
= 2`−

t(t−m0−1 − 1)

(1− t)
+ C1(m0).

• In Case II (2) (`− > `+, `+ < 2m, i.e., |λ| > |u|2) we have

`-Int(x) = 2t−(`+−1)/2 (`− − 2`+ + 2m+ 3)(1− t) + 4t

(1− t)2
+
−2(`− + 2m+ 1)t

1− t
+
−8t

(1− t)2

= 2`−

(
t−(`+0−1)/2 1

(1− t)
− t

1− t

)
+ C2(`+0,m0)

= 2`−
t(t−(`+0+1)/2 − 1)

(1− t)
+ C2(`+0,m0).

Now we assume that λ0 = 0. Then, since 0 6= x0 /∈ bred,rs, it follows that x0 has the form
x0 = (0, u0, 0), u0 6= 0. Then for x near x0 we have |u| = |u0| and `+, `− are very large. Then
the asymptotic behavior of `-Int(x) follows from Case I (1) and Case II (1) in §9.2,

`-Int(x) = 2`−
t(t−m0−1 − 1)

(1− t)
+ C1(m0). �
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Now we can finish the proof of Theorem 15.1 for x0 = (λ0, u0, w0) with u0 6= 0. We are in case
(c) of Theorem 14.9. Noting that v(∆/u2) = `−, by comparing Lemma 15.3 with Theorem 14.9
and Lemma 14.8, we find that ϕ1(x) is a constant (explicitly depending on x0) when x ∈ bred,rs,1

is near x0.
In view of the table in §13 (and the explanation), we have considered all x0 ∈ bred r bred,rs in

the closure of bred,rs,1. This completes the proof of Theorem 15.1.

Part 4. Germ expansion

In this part of the paper, F/F0 is any quadratic extension of non-archimedean local fields
of characteristic not equal to 2 (not necessarily ramified nor of odd residue characteristic). We
write F = F0[π] for π =

√
$, $ ∈ F×0 .

16. Statement of the germ expansion

Recall from §11.1 we have

πred : sred
// bred = A× A× s1

y
� //

(
λ(y), u(y), w(y)

)
where we write y in the block form

y =

[
A b
c 0

]
,

and
λ(y) = detA, u(y) = $−1cb, and w(y) = $−1cAb.

We also have
∆(y) = λ(y)u(y)2 + w(y)2.

Let y be any element in sred (not necessarily semi-simple nor regular). We say that y is
relevant if its stabilizer H ′y is contained in SL2. For a relevant element y, the determinant det
is well-defined on H ′y\H ′, and so is |det|s for s ∈ C. Let φ′ ∈ C∞c (sred), and let y ∈ sred be
relevant. We consider the integral

Orb(y, φ′, s) = τ(H ′y)

∫
H′y\H′

φ′(h−1yh)η(deth)|deth|s dh, (16.1)

where τ(H ′y) = vol(H ′y) if H ′y is compact and τ(H ′y) = 1 otherwise. In all cases except the one
in Lemma 18.1, the integral (16.1) is absolutely convergent when Re(s) � 0 and extends to a
meromorphic function of s ∈ C. Even in the exceptional case, Lemma 18.1 defines Orb(y, φ′, s)
as a meromorphic function. When the integral has no pole at s = 0, we use the notation

Orb(y, φ′) := Orb(y, φ′, 0).

For x0 ∈ bred, the elements of sred in π−1
s (x0) will be called x0-nilpotent. When x0 = 0, we

use the term nilpotent instead of 0-nilpotent.

Theorem 16.1. Let φ′ ∈ C∞c (sred) and x0 ∈ bred. There exist an open neighborhood Vx0
of x0,

a section σ : bred,rs → sred defined on Vx0
∩ bred,rs, and (explicit) continuous functions Γn(x, s)

on Vx0 ∩ bred,rs such that, as meromorphic functions in the complex variable s ∈ C,

Orb
(
σ(x), φ′, s

)
=

∑
n∈π−1

s (x0)/H′

Γn(x, s) Orb(n, φ′, s),

where the sum runs over an explicit set of representatives of relevant H ′-orbits of x0-nilpotent
elements, and where the sum should be replaced by an integral with respect to a suitable measure
when there is a continuous family of orbits n(µ), µ ∈ F0 (which only occurs when x0 = 0).

Proof. When x0 ∈ bred,rs, by (17.4) below it is easy to see that we have

Orb
(
σ(x), φ′, s

)
= Orb

(
σ(x0), φ′, s

)
,

when x is near x0, which proves Theorem 16.1 in this case. When x0 ∈ bred r bred,rs, Theorem
16.1 will follow from the explicit germ expansion given by Theorem 17.1 for the case x0 = 0,
and by Theorem 18.2 for x0 6= 0. �
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We also need a converse to the theorem above, specialized to s = 0, proved in §20. Let C1(F0)
be the space defined in §19.3.

Theorem 16.2. Let ϕ ∈ C∞rc (bred,rs). Then ϕ is an orbital integral function if and only if, for
every x0 ∈ bred, there exists an open neighborhood Vx0

of x0, such that

ϕ(x) = ω
(
σ(x)

) ∑
n∈π−1

red(x0)/H′

Γn(x, 0)ϕx0
(n) for all x ∈ Vx0

∩ bred,rs, (16.2)

where ϕx0
(n) ∈ C; when x0 = 0, the sum is to be interpreted as an integral for the one-

dimensional family of nilpotent orbits n(µ), µ ∈ F0, and the function µ 7→ ϕx0(n(µ)) is required
to define an element in C1(F0); when x0 = (λ0, 0, 0) with F0[

√
−λ0] ' F , this is understood as a

function of the form φ0 log |∆(x)|+ φ1 for constants φ0 and φ1 (cf. (18.15)).

Corollary 16.3. Let ϕ ∈ C∞rc (bred,rs) be such that the restriction of ϕ to Vx0
∩ bred,rs,0 is zero.

Assume that, for every x0 ∈ bred, there exists an open neighborhood Vx0
of x0, such that the

restriction of ϕ to Vx0
∩ bred,rs,1 is constant . Then ϕ is an orbital integral function.

Proof. It suffices to verify that such ϕ is of the form (16.2) in Theorem 16.2 for every x0 ∈ bred.
We first consider x0 = 0. In this case the nilpotent orbits in (16.2) are as in Theorem 17.1.
By Theorem 17.1 the function Γn0,−(x, 0)|Vx0

∩bred,rs,0
= −Γn0,−(x, 0)|Vx0

∩bred,rs,1
is a (nonzero)

constant and Γn0,+
(x, 0)|Vx0∩bred,rs

is a (nonzero) constant. Therefore, by suitably choosing

ϕx0(n0,−) and ϕx0(n0,+), we see that ϕ is of the form

Γn0,+
(x, 0)ϕx0

(n0,+) + Γn0,−(x, 0)ϕx0
(n0,−).

Setting ϕx0
(n) to be zero for n in the one-dimensional family of nilpotents, we see that ϕ is of

the form (16.2) for x0 = 0 ∈ bred.
For x0 6= 0, the proof is similar using Theorem 18.2. �

We will be interested in the first derivative of the orbital integral ∂Orb(σ(x), φ′) at s = 0 in
a neighborhood of x0. We have a decomposition according to the Leibniz rule

∂Orb
(
σ(x), φ′

)
= ∂Orb1

(
σ(x), φ′

)
+ ∂Orb2

(
σ(x), φ′

)
, (16.3)

where we define the two terms as

∂Orb1

(
σ(x), φ′

)
:=

∑
n∈π−1

red(x0)/H′

(
d

ds

∣∣∣
s=0

Γn(x, s)

)
Orb(n, φ′, 0)

and

∂Orb2

(
σ(x), φ′

)
:=

∑
n∈π−1

red(x0)/H′

Γn(x, 0)

(
d

ds

∣∣∣
s=0

Orb(n, φ′, s)

)
.

Remark 16.4. We point out that the first term ∂Orb1(σ(x), φ′) depends only on the quanti-
ties Orb(n, φ′) = Orb(n, φ′, 0) (and the intrinsically defined functions Γn(x, s)). In particular,
the values of Orb(σ(x), φ′), for regular semi-simple x already determine ∂Orb1(σ(x), φ′). This
observation does not hold for ∂Orb2(σ(x), φ′).

The explicit germ expansion also shows the following result, proved in §20 below.

Theorem 16.5. Fix i ∈ {0, 1}. Let φ′ ∈ C∞c (sred) match (φ, 0) where φ ∈ C∞c (ui,red). Then
the function

ϕ(x) =

{
ω
(
σ(x)

)
∂Orb2

(
σ(x), φ′

)
, x ∈ bred,rs,1−i;

0, x ∈ bred,rs,i

is an orbital integral function.

17. Germ expansion around x0 = 0

In this section, we give the explicit germ expansion around x0 ∈ bred when x0 = 0.
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17.1. Statement of the theorem. The nilpotent orbits in sred are classified in [34, §2.1]. We
list here only the relevant orbits.

• a continuous family with representatives

n(µ) := π

0 µ 1
0 0 0
0 1 0

 , µ ∈ F0 (17.1)

with stabilizer N , the upper-triangular unipotent matrices, and

• two regular (i.e., with trivial stabilizer) nilpotents with representatives

n0,+ = π

0 1 0
0 0 1
0 0 0

 , n0,− =tn0,+. (17.2)

The nilpotent orbital integrals for the continuous family n(µ) and for the regular nilpotent orbits
n0,± are defined by (16.1) and are both holomorphic at s = 0, cf. [34, Lem. 2.1]. Note that we
choose a Haar measure on N(F0) by transporting the one on F0.

We define a section

σ : bred −→ sred

by

σ(x) = π

0 −λ/π2 1
1 0 0
u w/π 0

 , x = (λ, u, w) ∈ bred. (17.3)

Theorem 17.1. For x0 = 0 and x = (λ, u, w) ∈ bred,rs near x0, there is a germ expansion of
Orb

(
σ(x), φ′, s

)
as∫

F0

Γn(µ)(x, s) Orb
(
n(µ), φ′, s

)
dµ+ η(∆/$)|∆/$|s Orb(n0,−, φ

′, s) + η(−1) Orb(n0,+, φ
′, s),

where

Γn(µ)(x, s) =


0, if (u2µ− 2w/π)2 − 4∆/$ /∈ F×,20 ;

η(−ν)
(
|ν|−s + η(∆/$)|∆/$|−sνs

)∣∣(u2µ− 2w/π)2 − 4∆/$
∣∣1/2 , if (u2µ− 2w/π)2 − 4∆/$ ∈ F×,20 .

Here ν denotes one of the two roots of

u2µ = ν +
∆/$

ν
+ 2w/π

( Γn(µ)(x, s) is independent of the choice of ν).

Corollary 17.2. If x ∈ bred,rs,1, then

Γn(µ)(x, 0) = 0.

Proof. When x ∈ bred,rs,1 we have η(∆/$) = −1, cf. Proposition 10.2. The result follows from
the formula above. �

The proof of this theorem will occupy the rest of this section. We will rely on [34, §3]. At
this point we warn the reader that we will use slightly different notation from [34]. Let slred be
the subspace π−1sred of gl3 = M3,F0

. We fix an isomorphism as representations of H ′ = GL2,

sred
∼ // slred

x � // π−1x.
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17.2. Proof of Theorem 17.1. The proof of Theorem 17.1 is essentially the same as that of
Theorem 2.7 in [34] except for some notational changes. We often write h·x = h−1xh, for h ∈ H ′
and x ∈ sred. To be consistent with [34], for x ∈ brs we rewrite (16.1) as

Orb(x, φ′, s) =

∫
H′/H′x

φ′(hxh−1)η(deth)|deth|−s dh.

We use the Iwasawa decomposition H ′(F0) = KAN for K = SL2(OF0),

h = k

[
b

a−1b

] [
1 t

1

]
, dg = dk

da db dt

|b|
.

We may write Orb
(
σ(x), φ′, s

)
as (cf. [34, (3.1)]17)∫

a,b,t∈F0

φ′K

π
 t a(−λ/$ − t2) b

1/a −t 0
b−1u (w/π − ut)ab−1 0

 η(a)|a−1b2|−s da db dt
|b|

. (17.4)

Here we used the K-invariant function

φ′K(x) :=

∫
K

φ′(kxk−1)dk.

Without loss of generality, we may assume that φ′, and hence φ′K , is invariant under translation
by sred(OF0

) := πgl3(OF0
) ∩ s.

Now all the equations from (3.1) to (3.20) in [34] hold for the orbital integral Orb(σ(x), φ′, s)
(instead of simply its value at s = 0). By this we mean to interpret them as the integral against
η(a)|a−1b2|s da db dt|b| . Indeed, all of these equations are derived from partitioning the domain of

integration into various pieces, and the fact that the function φK is invariant under translation
by sred(OF0) with compact support. It is never used in [34, §3] that s = 0.

Lemma 17.3. The term (3.4) in [34] is equal to∫
F0

Γn(µ)(x, s) Orb
(
n(µ), φ′, s

)
dµ.

Proof. After a suitable substitution, we may write [34, (3.4)] as

η(−1)|u|−1

∫
φ′K

π
0 (t+w/π)2+u2λ/$

u2t ab b
0 0 0
0 a 0

 η(abt)|a−1bt|−s da db dt
|t|

.

This is equal to

η(−1)|u|−1

∫
F0

Orb

(
n

(
(t+ w/π)2 + u2λ/$

u2t

)
, φ′, s

)
η(t)|t|−s dt

|t|
.

We rewrite this as

η(−1)|u|−1

∫
F0

Orb
(
n
(
u−2(t+ t−1∆/$ + 2w/π)

)
, φ′, s

)
η(t)|t|−s dt

|t|
. (17.5)

This is the form of the germ expansion we will use to do calculations later on. The rest is the
same as the proof of [34, Lem. 3.1]. �

Lemmas 3.2 and 3.3 of [34] remain unchanged. We recall them and indicate the necessary
changes in the proof.

Lemma 17.4. The sum of (3.3) and (3.5) in [34] is zero. The sum of (3.6) and (3.15) in [34]
is zero.

17We note the following notational changes: 1) a sign difference in λ; 2) a, b in [34] become u,w/π; and 3) the

measure dx dy du becomes da db dt.



ON THE ARITHMETIC TRANSFER CONJECTURE FOR EXOTIC SMOOTH MODULI SPACES 77

Proof. The proof in [34] can actually be simplified. In both sums, it suffices to show that∫
|y|≤1

|y|2s−1dy +

∫
|y|>1

|y|2s−1dy = 0, (17.6)

where we understand both integrals as meromorphic functions of s ∈ C obtained by analytic
continuation as follows. The first integral converges when Re(s) > 0,∫

|y|≤1

|y|2s−1dy =
1

1− q−s

∫
|y|=1

dy

|y|
,

and the second one converges when Re(s) < 0,∫
|y|>1

|y|2s−1dy =
qs

1− qs

∫
|y|=1

dy

|y|
.

These equalities give the claimed analytic continuation. The sum of the two terms is then
obviously zero. �

Lemma 17.5. The sum of the following terms in [34] is zero: (3.2), (3.8), (3.10), (3.16),
(3.17), (3.20).

Proof. The same proof as that of Lem. 3.3 in [34] still works, noting that the only ingredient is
the identity (17.6) above (for instance, in loc. cit. one only uses (17.6), when splitting the term
(II) into (3.12) plus the term following it). �

Lemma 17.6. The sum of (3.12) and (3.19) in [34] is zero.

Proof. We work with the corresponding function φ′ on slred. The integral (3.12) is equal to∫
H′

φ′

h
0 0 0

1 0 0
u w 0

h−1

 η(deth)|deth|−s dh

=

∫
H′

φ′

h
0 0 0

1 0 0
0 w 0

h−1

 η(deth)|deth|−s dh.

After a substitution, the integral (3.19) is equal to

−

∫
H′

φ′

h
0 −(w/u)2 0

0 0 0
u 0 0

h−1

 η(deth)|deth|−s dh

= −

∫
H′

φ′

h
 0 0 0

(w/u)2 0 0
0 u 0

h−1

 η(deth)|deth|−s dh

= −

∫
H′

φ′

h
0 0 0

1 0 0
0 w 0

h−1

 η(deth)|deth|−s dh,

where the first and the last equality follow, respectively, from the substitutions

h 7−→ h

[
0 −1
1 0

]
and h 7−→ h

[
w/u 0

0 u/w

]
. �
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To complete the proof, it suffices to treat the remaining terms: (3.7) and (3.9) in [34]. The
term (3.7) in [34] yields, after a suitable substitution,∫

φ′K

π
 t −at2 b

1/a −t 0
0 0 0

 η(a)|a−1b2|−s da db dt
|b|

=

∫
H′

φ′

h · π
0 0 1

1 0 0
0 0 0

h−1

 η(deth)|deth|−s dh

= η(−1) Orb(n0,+, φ
′, s).

The term (3.9) in [34] yields, after suitable substitutions,∫
φ′K

π
 0 (−λ/$ − (w/uπ)2)a 0

0 0 0
b−1u (w/π − at)ab−1 0

 η(a)|a−1b2|−s da db dt
|b|

=

∫
H′

φ′

h · π
0 −λ/$ − (w/uπ)2 0

0 0 0
u 0 0

h−1

 η(deth)|deth|−s dh

= η(∆/$)|∆/$|−s Orb(n0,−, φ
′, s).

This completes the proof of Theorem 17.1.

18. Germ expansion around x0 6= 0

In this section we consider the germ expansion near a non-zero element x0 ∈ bred r bred,rs.

18.1. Orbits in sred r sred,rs. We need to classify the orbits in the fiber of x0 = (λ0, u0, w0) ∈
bred r bred,rs. Let

y0 =

[
A b
c 0

]
∈ sred

be a semi-simple element in the fiber of x0. It follows that the dimension r of the subspace
spanned by b, Ab is then either zero or one.

Case r = 0. Then b = 0 and x0 = (λ0, 0, 0) where λ0 6= 0. We introduce the semi-simple
quadratic F0-algebra,

F ′ = F0[X]/(X2 + λ0).

In the fiber of x0 = (λ0, 0, 0), there is one semi-simple orbit, and there are two or four
non-semi-simple orbits, depending on whether F ′ is isomorphic to F or not.

Subcase 0i: F ′ 6' F . In the fiber of such x0, there is one semi-simple orbit with representative

y0 = π

0 −λ0/$ 0
1 0 0
0 0 0

 . (18.1)

There are two non-semi-simple orbits with representatives

y+ = π

0 −λ0/$ 1
1 0 0
0 0 0

 , y− = π

0 −λ0/$ 0
1 0 0
1 0 0

 , (18.2)

with trivial stabilizer.

Subcase 0ii: F ′ ' F . In this case there is one semi-simple orbit with representative

y0 = π

α 0 0
0 −α 0
0 0 0

 , α2 = −λ0/$,



ON THE ARITHMETIC TRANSFER CONJECTURE FOR EXOTIC SMOOTH MODULI SPACES 79

and there are four non-semi-simple with representatives

y++ = π

α 0 1
0 −α 1
0 0 0

 , y+− = π

α 0 1
0 −α 0
0 1 0

 , (18.3)

and

y−− =ty++, y−+ =ty+−, (18.4)

with trivial stabilizer.

Case r = 1. Then b 6= 0 and Ab is a multiple of b, i.e., b is an eigenvector of A, and
x0 = (λ0, u0, w0) with u0 6= 0. We may choose a semi-simple representative as

y0 = π

α 0 1
0 −α 0
u0 0 0

 , α ∈ F0, u0 6= 0, α2 = −λ0/$.

The stabilizer of y0 is GL1 sitting inside GL2 in the upper left corner. However, the character
η ◦ det is nontrivial on the stabilizer and hence it is not a relevant orbit. The non-semi-simple
representatives are

y+ = π

α 0 1
1 −α 0
u0 0 0

 , y− = π

α 1 1
0 −α 0
u0 0 0

 , (18.5)

and they have trivial stabilizer.

18.2. Orbital integrals. We first define the orbital integrals of the x0-nilpotent elements. All
of them are defined by (16.1) with one exceptional case:

Lemma 18.1. Let x0 = (λ0, 0, 0) with λ0 6= 0. Assume that F ′ ' F , i.e., Case 0ii. Let y = y±±
be a non-semi-simple element on sred mapping to x0. Then for φ′ ∈ C∞c (sred), the integral

Orb(y, φ, s1, s2) =

∫
a,b∈F×0 ,t∈F0

φ′K

([
1 t

1

] [
a

b

]
· y
)
η(ab)|a|s1 |b|s2 d×a d×b dt

is absolutely convergent when Re(s1) � 0,Re(s2) � 0. It has a meromorphic continuation to
(s1, s2) ∈ C2; its restriction to the diagonal s1 = s2 is meromorphic and is holomorphic at
(s1, s2) = (0, 0).

Proof. The proof is analogous to that of [34, Lem. 2.1] by the method of Tate’s thesis. We omit
the details. �

In this case we define the orbital integral Orb(y, φ′, s) to be the value at s1 = s2 = s. By
Lemma 18.1, this is a meromorphic function of s.

Theorem 18.2. Fix x0 = (λ0, u0, w0) ∈ bred r bred,rs with x0 6= 0. For x ∈ bred,rs in a small
neighborhood of x0, the orbital integral Orb(σ(x), φ′, s) is equal

(a) in case (0i) to
Orb(y+, φ

′, s) + η(λ−1∆)|λ−1∆|−s Orb(y−, φ
′, s),

where σ(x) is the section defined in (17.3);

(b) in case (0ii) to

Orb(y++, φ
′, s) + η(z1)|z1|−s Orb(y−+, φ

′, s)

+ η(z2)|z2|−s Orb(y+−, φ
′, s) + η(z1z2)|z1z2|−s Orb(y−−, φ

′, s),

where the section σ : bred,rs → sred,rs in a neighborhood of x0 is defined by

σ(x) = π

α 0 1
0 −α 1
z1 z2 0

 , (18.6)

with entries defined by the following identities,

λ = −α2$, u = z1 + z2, w = α(z1 − z2)π, ∆ = λu2 + w2 = −4α2$z1z2;
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(c) in case (1) to
Orb(y+, φ

′, s) + η(∆/$)|u−2∆/$|−s Orb(y−, φ
′, s).

where σ(x) is the section defined in (17.3).

Moreover, all the orbital integrals above are holomorphic at s = 0 except in case (0i) when
F ′ = F0 × F0, in which case Orb(y+, φ

′, s) and Orb(y−, φ
′, s) both have a simple pole at s = 0.

18.3. Proof of Theorem 18.2. Let x0 = (λ0, u0, w0) 6= 0 ∈ bred. We distinguish three cases,
labeled by (0i), (0ii) and (1), according to the case distinction in subsection 18.1. Fix a real
number R such that the support of φ′ is contained in the set{

y = π · (yij) ∈ sred

∣∣ |yij | ≤ R}. (18.7)

Case (0i) (i.e., r = 0, λ0 6= 0 and F ′ 6= F ): Then x0 = (λ0, 0, 0) with λ0 6= 0. We use (17.4) to
express the integral Orb(σ(x), φ′, s) for x = (λ, u, v) ∈ bred in a small neighborhood of (λ0, 0, 0).
We therefore assume that |λ| = |λ0| 6= 0 and hence the integrands have the following constraints,

|t| ≤ R, |a| ≤ R/|λ0|.
We split the integral over b as a sum of two pieces, according as |b| > 1 or |b| ≤ 1. The
contribution for |b| > 1 is equal, when (u,w) is small enough, to∫

|b|>1,a,t∈F0

φ′K

π
 t a(−λ/$ − t2) b

1/a −t 0
0 0 0

 η(a)|a−1b2|−s da db dt
|b|

.

This can be written as∫
a,b∈F,t∈F

· · · |deth|sdh−
∫
|b|≤1,a∈F,t∈F

· · · |deth|s dh,

where both integrals converge absolutely when Re(s) > 0. The first term extends to a meromor-
phic function

Orb(y+, φ
′, s) =

∫
a,b,t∈F0

φ′K

π
 t a(−λ/$ − t2) b

1/a −t 0
0 0 0

 η(a)|a−1b2|−s da db dt
|b|

,

while the second term is∫
|b|≤1,a,t∈F0

φ′K

π
 t a(−λ/$ − t2) 0

1/a −t 0
0 0 0

 η(a)|a−1b2|−s da db dt
|b|

=

(∫
|b|≤1

|b|2s db
|b|

)∫
a,t∈F0

φ′K

π
 t a(−λ/$ − t2) 0

1/a −t 0
0 0 0

 η(a)|a|s da dt

= ζ(−2s)Q(s),

(18.8)

where we denote by Q(s) the second integral in the next-to-last equation. From F ′ 6' F it
follows that −λ0/$ (hence −λ/$) is not a square. The norms |t|, |a| and |a|−1 are all bounded
independent of s and hence Q(s) is an entire function. Again by F0[

√
−λ0] 6' F , the quadratic

character η is nontrivial on the stabilizer of the semi-simple representative y0. It follows easily
that Q(0) = 0, and hence the second term (18.8) is holomorphic at s = 0 and hence so is
Orb(y+, φ

′, s).
Now we consider the contribution from the piece |b| ≤ 1,∫

|b|≤1,a,t∈F0

φ′K

π
 t a(−λ/$ − t2) 0

1/a −t 0
b−1u (w/π − ut)ab−1 0

 η(a)|deth|−s da db dt
|b|

.

This can be written as∫
a,b∈F,t∈F

· · · |deth|−s dh−
∫
|b|>1,a∈F,t∈F

· · · |deth|−s dh,
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where both integrals converge absolutely when Re(s) < 0. The second term is equal to∫
|b|>1,a,t∈F0

φ′K

π
 t a(−λ/$ − t2) 0

1/a −t 0
0 0 0

 η(a)|a−1b2|−s da db dt
|b|

=

(∫
|b|>1

|b|−2s db

|b|

)
Q(s)

= q−2sζ(2s)Q(s).

Now note that ζ(−2s) + q−2sζ(2s) = 0. We see that this last term cancels (18.8). The first term
can be rewritten as

Orb

0 −λ/$ 0
1 0 0
u w/π 0

 , φ′, s
 =

∫
H′

φ′

h−1 · π

0 −λ/$ 0
1 0 0
u w/π 0

h
 η(deth)|deth|s dh.

Since u and w cannot be simultaneously zero, we may make a change of variables h 7→ h0h,
where

h0 :=
1

deth1
h1 with h1 :=

[
u −w/π

wπ/λ u

]
.

The integral becomes

η(h0)|deth0|s

∫
H

φ′

h−1 · π

0 −λ/$ 0
1 0 0
1 0 0

h
 η(h)|deth|s dh

= η(h0)|deth0|s Orb(y−, φ
′, s).

Now note that deth1 = λ−1w2 + u2 = λ−1∆, and deth0 = det(h1)−1. In summary we have

Orb(y, φ′, s) = Orb(y+, φ
′, s) + η(λ−1∆)|λ−1∆|−s Orb(y−, φ

′, s), (18.9)

which proves Theorem 18.2 in this case.

Case (0ii) (i.e., r = 0 and F ′ = F ): In this case we may assume that

−λ0/$ = α2
0 6= 0.

We use the section σ(x) defined by (18.6). When x = (λ, u, w) is in a small neighborhood of
(λ0, 0, 0), we may assume |α| = |α0|. We use a variant of the Iwasawa decomposition

h = k

[
1 t

1

] [
a

b

]
, dg = dk

da db dt

|a||b|
.

Consider

φ′KN (y) =

∫
KN

φ′(kn · x) dk dn, y =

[
A b
c 0

]
, A =

[
α 0
0 −α

]
,

which may be viewed as a function of (b, c) on M1,2(F0)×M2,1(F0). For α 6= 0, we see that the
integral is absolutely convergent. Then we have

Orb(y, φ′, s) =

∫
φ′KN

π
 α 0 a

0 −α b
z1a
−1 z2b

−1 0

 η(ab)|ab|−s da db
|a||b|

.

Before we proceed, we consider a toy model: let F×0 act on F0 × F0 by a · (x, y) = (a−1x, ay)
and let η be a quadratic character (possibly trivial).

Lemma 18.3. Let φ ∈ C∞c (F0 × F0), and define for x ∈ F×0 ,

Φ(x, s) =

∫
F×0

φ(x/a, a)η(a)|a|s d×a,
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which is absolutely convergent when Re(s) � 0. For x in a small neighborhood of 0 (depending
on φ),

Φ(x, s) =

∫
F×0

φ(0, a)η(a)|a|s d×a+ η(x)|x|s
∫
F×0

φ(1/a, 0)η(a)|a|s d×a.

The identity is understood after an analytic continuation of each term on the right-hand side as
a meromorphic function of s ∈ C (without pole at s = 0, if η is non-trivial).

Proof. The proof is again analogous to that of [34, Lem. 2.1]. We omit the details. �

Using this lemma, we obtain that Orb(σ(x), φ′, s) is, in a neighborhood of x0, the value of
the following sum when s1 = s2 = s,

Orb(y++, φ
′, s1, s2) + η(z1)|z1|s Orb(y−+, φ

′, s1, s2)

+ η(z2)|z2|s Orb(y+−, φ
′, s1, s2) + η(z1z2)|z1z2|s Orb(y−−, φ

′, s1, s2).
(18.10)

Theorem 18.2 in case (0ii) now follows easily from this equality.

Case (1) (i.e., r = 1): In this case u0 6= 0. We now use the expression (17.4). We first observe
that the integrand is constrained by

|t| ≤ R, |u|/R ≤ |b| ≤ R,
where R is as in (18.7). We only consider the case λ0 = 0 (hence w0 = 0). Otherwise, the proof
of the previous cases still applies.

We break the integral over a up into two pieces: |a| is large or small. Choose a constant C.
Note that we will consider λ, w close to zero, and |u| = |u0| 6= 0. When |a| ≤ C, so that |aλ| ≤ 1
and |aw|R ≤ 1, we have∫

|a|≤C,b,t∈F0

φ′K

π
 t −at2 b

1/a −t 0
b−1u −utab−1 0

 η(a)|a−1b2|−s da db dt
|b|

. (18.11)

Now consider |a| > C. Substitute t→ t+ w/u, and note that we may assume |w/u| < 1:∫
|a|>C,b,t∈F0

φ′K

π
 t a(−λ/$ − (t− w/πu)2) b

1/a −t 0
b−1u −utab−1 0

 η(a)|a−1b2|−s da db dt
|b|

.

The condition |−utab−1| < R implies that

|at| < R2

|u|
and

∣∣at2∣∣ =

∣∣∣∣ (at)2

a

∣∣∣∣ < R4

|u|2C
.

Furthermore, for C sufficiently large, we have |at2| < R2

|u| < 1. Hence the last integral becomes∫
|a|>C,b,t∈F0

φ′K

π
 0 a(−λ/$ − (w/πu)2) b

0 0 0
b−1u −utab−1 0

 η(a)|a−1b2|−s da db dt
|b|

. (18.12)

A similar argument as in case (0i) shows that the sum of (18.11) and (18.12) can be written as

Orb

π
0 0 1

1 0 0
u 0 0

 , φ′, s
+ Orb

π
0 −λ/$ − (w/πu)2 1

0 0 0
u 0 0

 , φ′, s
 . (18.13)

Note that ∆ = λu2 + w2. It follows that the second summand in (18.13) is equal to

η(∆/$)|∆/$u2|−s Orb

π
0 1 1

0 0 0
u 0 0

 , φ′, s
 .

In summary we have proved that in the case r = 1, when x = (λ, u, w) is close to (λ0, u0, w0),
the integral Orb(σ(x), φ′, s) is equal to

Orb(y+, φ
′, s) + η(∆/$)|u−2∆/$|−s Orb(y−, φ

′, s). (18.14)
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The equations (18.9), (18.10), and (18.14) together complete the proof of Theorem 18.2 in this
case.

18.4. The exceptional case. Theorem 18.2 gives the germ expansion for Orb(σ(x), φ′, s) at
s = 0, except in case (0i) when F ′ ' F0⊕F0, in which case both Orb(y+, φ

′, s) and Orb(y−, φ
′, s)

have a pole at s = 0.

Corollary 18.4. Fix x0 = (λ0, 0, 0) ∈ bredrbred,rs with λ0 6= 0. Assume that F ′ ' F0×F0.

(a) The sum Orb(y+, φ
′, s) + Orb(y−, φ

′, s) is holomorphic at s = 0. Denote by Orb(y±, φ
′) its

value at s = 0.

(b) For x ∈ bred,rs in a small neighborhood of x0, the orbital integral Orb
(
σ(x), φ′, 0

)
(for σ(x)

defined by (17.3)) is equal to

Orb(y±, φ
′)− log |λ−1∆|

2 log q
Orb(y0, φ

′), (18.15)

and

Orb(y0, φ
′) =

∫
PGL2(F0)

φ′(h−1y0h)η(h) dh, y0 = π

0 −λ0/$ 0
1 0 0
0 0 0

 ,
where the measure on PGL2(F0) is the quotient measure on GL2(F0) divided by that of F×0 with
vol(O×F0

) = 1.

Proof. We first claim that the meromorphic functions Orb(y+, φ
′, s), resp. Orb(y−, φ

′, s), have
a simple pole at s = 0 with residue

∓Orb(y0, φ
′)

1

2 log q
.

We now prove the corollary assuming the claim. The claim immediately implies part (a). To

show (b), we note that the assumption F ′ ' F0×F0 is equivalent to −λ0 ∈ F×,20 . In this case, for
all x ∈ bred,rs near x0, we always have x ∈ bred,rs,0 (cf. Lemma 11.3), and hence η(−∆(x)) = 1
(cf. Proposition 10.2). Hence η(∆(x)/λ(x)) = η(−∆(x))/η(−λ0) = 1. By Theorem 18.2, we
have for regular semi-simple x near x0,

Orb
(
σ(x), φ′, s

)
=
(
Orb(y+, φ

′, s) + Orb(y−, φ
′, s)
)

+ (|λ−1∆|−s − 1) Orb(y−, φ
′, s),

where both terms in the right-hand side are holomorphic at s = 0 by the claim. Hence

Orb
(
σ(x), φ′, 0

)
=
(
Orb(y+, φ

′, s) + Orb(y−, φ
′, s)
)∣∣
s=0

+ (|λ−1∆|−s − 1) Orb(y−, φ
′, s)
∣∣
s=0

.

The first term is now Orb(y±, φ
′) by (a). The second term is given by − log |λ−1∆| times the

residue of Orb(y−, φ
′, s) at s = 0. By the claim we complete the proof of (b).

We now prove the claim. We only treat Orb(y+, φ
′, s), since the other case is similar. By

(17.4), Orb(y+, φ
′, s) is equal to∫

a,b,t∈F0

φ′K

π
 t a(−λ0/$ − t2) b

1/a −t 0
0 0 0

 η(a)|a−1b2|−s da db dt
|b|

.

We may view this as an integral of the form

Orb(y+, φ
′, s) =

∫
b∈F0

Φs(b)|b|−2s db

|b|
, (18.16)
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where Φs(b) extends to an entire function in s ∈ C. We may find the value

Φ0(0) =

∫
a,t∈F0

φ′K

π
 t a(−λ0/$ − t2) b

1/a −t 0
0 0 0

 η(a) da dt

= (1− q−1)−1

∫
h∈PGL2(F0)

φ′

h−1π

0 −λ0/$ 0
1 0 0
0 0 0

h
 η(deth) dh

= (1− q−1)−1 Orb(y0, φ
′),

where the extra factor is due to the different choice of measures.
By Tate’s thesis, the integral (18.16) has a simple pole at s = 0 with residue given by Φ0(0)

times the residue of ∫
|b|≤1

|b|−2s db

|b|
=
∑
i≥0

q2is(1− q−1) =
1− q−1

1− q2s
.

This last term has residue −(1− q−1)/2 log q. This shows that the function Orb(y+, φ
′, s) has a

simple pole at s = 0 with residue

−Orb(y0, φ
′)

1

2 log q
.

This completes the proof of the claim. �

19. Germ expansion for ured, and matching

In this section we present the germ expansion for the orbital integrals on ured for u = u(W ),
where W is either W0 or W1, i.e., u = u0 or u = u1.

We consider the invariants (cf. §8.2 and §11.2)

πu : ured −→ bred = A× A× s1

given by the formulas (11.1) (in the case of sred, but the cases of u0,red and u1,red are the same,
comp. (8.8) for u1,red and (11.4) for u0,red),[

A b
c d

]
7−→ (λ, u, w).

19.1. Germ expansion around x0 = 0. The germ expansion around x0 = 0 for ured is stated
in [34, Th. 2.8]. Since we will not use it directly, let us not repeat it here. We only recall the
classification of the nilpotent orbits and their orbital integrals, which are used in our calculations
in Part 3.

The nilpotent orbits for u0,red are classified in [34, §2.1]. For our purposes we only need {0}
and the continuous family

n(β) := π

0 βπ 1
0 0 0
0 π 0

 ∈ u0,red, β ∈ F0. (19.1)

The stabilizer of n(β) is the standard unipotent subgroup N sitting inside SL2 = SU(J[0)
(cf. (11.3)). We define the corresponding nilpotent orbital integrals by

Orb(n(β), φ) =

∫
H/N

φ
(
h−1n(β)h

)
dh, (19.2)

and

Orb(0, φ) = eF/F0
q−1ζF0

(1)φ(0), (19.3)

where eF/F0
is the ramification index of F/F0. It is easy to see that both expressions converge

absolutely. It is important to note here that the measure on H = U(W [) is chosen such that
vol(K) = 1 for the special parahoric subgroup K (the hyperspecial one when F/F0 is unramified).
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We also define the orbital integral for any x ∈ u0,red with compact stabilizer or any x ∈ u1,red

by

Orb(x, φ) =

∫
H

φ(h−1xh) dh,

whenever the integral is absolutely convergent (this will always be true in the cases of interest
to us).

19.2. Germ expansion around x0 6= 0. Let x0 ∈ bred r bred,rs. We first classify the H-orbits
(semi-simple or not) in ured in the fiber π−1

u (x0). Unlike the case of sred, two issues will affect
the semi-simple orbits on u: stability, and whether H = U(W [) is quasi-split or non-split.

Similar to the case sred, we distinguish two cases according to the rank r of the space spanned
by b, Ab.

• r = 0. Then x0 is of the form x0 = (λ0, 0, 0) with λ0 ∈ F×0 . A semi-simple element in ured

mapping to x0 must be of the form

y0 =

[
A 0
0 0

]
.

We need the following lemma concerning the stability issue.

Lemma 19.1. Let λ0 ∈ F0 r {0}. Then the set

Xλ0
:=
{
x ∈ su(W [)

∣∣ detx = λ0

}
forms one orbit under U(W [)(F0), unless F ′ = F0[X]/(X2 + λ0) is isomorphic to F , in which
case Xλ0

decomposes into two such orbits.

Proof. Obviously, Xλ0
is one geometric orbit (i.e., after passing to the algebraic closure F 0, all

elements of Xλ0
are conjugate). Let x0 ∈ Xλ0

, and let T = Tx0
be the stabilizer subgroup of

x0. Then T is a maximal torus in U(W [). By general principles, the number of orbits under
U(W [)(F0) in a geometric orbit is in one-to-one correspondence with

ker
[
H1(F0, T ) −→ H1

(
F0, U(W [)

)]
. (19.4)

Let F 1 be the algebraic subtorus of F× := ResF/F0
(Gm) defined by NmF/F0

= 1. Then F 1 is

the maximal torus quotient of U(W [), and (19.4) is identified with

ker
[
H1(F0, T ) −→ H1(F0, F

1)
]
. (19.5)

Now, for T there are the following possibilities, up to isomorphism.
(1) T = F×, mapping via a 7→ a/a to F 1.

(2) T = F 1 × F 1, mapping via multiplication to F 1.

(3) T = K1, mapping via NmK/F to F 1. Here K = F ′.F is a bi-quadratic extension of F0, and

K1 is the algebraic subtorus of K× := ResK/F0
(Gm), defined by NmK/F ′ = 1.

Furthermore, case (1) corresponds to the case when F ′ ' F0 ⊕ F0, case (2) to the case when
F ′ ' F , and case (3) to the remaining possibilities.

Let T ′ = ker(T → F 1). In case (1), T ′ = Gm and (19.5) is trivial. In case (2), T ′ = F 1,
and (19.5) is identified with H1(F0, F

1) = F×0 /NmF/F0
(F×) = Z/2; in case (3), the map

H1(F0, T )→ H1(F0, F
1) is identified with

F ′×/NmK/F ′(K
×)

NmF ′/F0−−−−−−→ F×0 /NmF/F0
(F×),

which is injective, and hence (19.5) is trivial. The lemma is proved. �

Subcase 0i. When F ′ is not isomorphic to F , then by Lemma 19.1, there is a unique semi-
simple orbit with invariants x0 = (λ0, 0, 0), λ0 ∈ F×0 and we fix a choice of representative

y0 ∈ ured. A non-semi-simple orbit exists only when W [ is split, and the quadratic algebra
F ′ = F0[X]/(X2 + λ0) is split as F0 × F0. We exclude in the sequel the case when F ′ is
isomorphic to F0 × F0. The reason is that the closure of bred,rs,1 in bred does not contain such
element and therefore we will not need this case in Part 3.

Subcase 0ii. When F ′ is isomorphic to F , by Lemma 19.1, there are two semi-simple orbits
mapping to x0 = (λ0, 0, 0), and we fix the representatives y+, y− ∈ ured. We will label the two
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orbits y± as follows. Consider a regular semi-simple element y in ured near y±. Choose a basis
such that y may be written in the form

y =

[
A ∗
∗ 0

]
with diagonal A = π

[
α
−α

]
, α ∈ F×0 .

Then we choose y+, resp. y−, such that all regular semi-simple elements near y+ have the
following property: z1 := 1

2 (u + w
πα ) is a norm, resp. a non-norm. Here we are using the

coordinates z1, z2 from Theorem 18.2(b). An easy calculation shows that this is possible and we
will choose a small open neighborhood Vx0,± of x0 such that, for all (λ, u, w) ∈ Vx0,±∩bred,rs, we
have η(z1) = ±1. Moreover, there are no non-semi-simple orbits in the fiber of such x0 ∈ bred.

• r = 1, then b 6= 0 and Ab is a multiple of b. It is not hard to show that there is a unique
orbit (which therefore has to be semi-simple) mapping to x0. For our calculation in Part 3, we
given an explicit representative when W [ is split. If λ0 6= 0 we choose

y0 =

 0 −λ0 b1
1 0 b2
· · · · · · 0

 , (19.6)

where b1 = παb2 with α2 = −λ0/$ (α ∈ F×0 ) and (b1b2 − b2b1)/π = u0. If λ0 = 0, we choose
any

y0 =

 0 0 b1
0 0 1
· · · · · · 0

 , Im(b1) 6= 0. (19.7)

In either case, the stabilizer is an anisotropic torus.

Having classified the orbits in π−1(x0), it is easy to prove the following explicit germ expansion.

Theorem 19.2. Let x0 = (λ0, u0, w0) 6= (0, 0, 0) ∈ bred, and let φ ∈ C∞c (ured). For x in a small
neighborhood of x0 ∈ πu(ured), let σ(x) be any element in ured mapping to x ∈ bred.

(a) If F ′ = F0[X]/(X2 + λ0) 6= F, F0 × F0, then the orbital integral Orb
(
σ(x), φ

)
is equal to

Orb(y0, φ), where y0 ∈ ured is any representative of the unique orbit π−1
u (x0).

(b) If F ′ = F0[
√
−λ0] ' F , then the orbital integral Orb(σ(x), φ) is equal to

Orb(y+, φ) 1Vx0,rs,+
+ Orb(y−, φ) 1Vx0,rs,−

.

Proof. This is proved using the same argument as (and is easier than) the case x0 = 0 in [34]. �

19.3. Matching orbital integrals around x0 = 0. As in [34, §4], we let C1(F0) be the space of
locally constant functions f on F such that, when |x| is large enough, f(x) is a linear combination
of the following functions,

η(x)|x|−1, η(x) log|x||x|−1.

Let C2(F0) be the space similarly defined by requiring that, when |x| is large enough, f(x) is a
linear combination of

|x|−1, η(x)|x|−1.

Let C(F0) = C1(F0) ∪ C2(F0). For f ∈ C(F0), we define the extended Fourier transform by [34,
§4.1]:

f̃(v) :=

∫
F0

f(v + x)η(x)
dx

|x|
,

which is understood in the sense of analytic continuation (cf. loc. cit.). We have˜̃
f(v) = γ(1, η)2f(v),

where the square of the gamma factor is equal to

γ(1, η)2 =


(
L(0, η)

L(1, η)

)2

=
(1 + q−1)2

4
η unramified;

η(−1)q−1, η ramified.
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Definition 19.3. Let (φ0, φ1) with φi ∈ C∞c (ured,i), and let φ′ ∈ C∞c (sred). Then (φ0, φ1) and
φ′ are local transfers around x0 ∈ bred if there exists a small neighborhood Vx0

of x0 in bred such
that

ω(y′) Orb(y′, φ′) = Orb(y, φi)

for any y′ ∈ sred with invariants x ∈ Vx0,rs, and any y ∈ ured,i matching y′.

We will use this definition with the following transfer factor (we are allowed to do so by
Remark 12.5, since this transfer factor differs from our original transfer factor by a constant
multiple):

ω(y′) = η
(
det(ỹie)i=0,1,...,n−1

)
, ỹ′ = y′/π, y′ ∈ sred. (19.8)

This transfer factor is chosen such that ω(σ(x)) = 1 for the section σ(x) defined by (17.3), which
we use frequently.

For φ ∈ C∞c (ured), resp. φ′ ∈ C∞c (sred), we define

Orbφ(β) := Orb
(
n(β), φ

)
, resp. Orbφ′(µ) := Orb

(
n(µ), φ′

)
, β, µ ∈ F0.

Then the functions Orbφ, resp. Orbφ′ lie in C(F0) (cf. loc. cit.). Then the matching conditions
around zero are essentially given by the extended Fourier transform between nilpotent orbital
integrals. Indeed, set (cf. loc. cit.)

κF/F0
= eF/F0

L(1, η)−1 =

{
1 + q−1, F/F0 unramified;

2, F/F0 ramified.

Theorem 19.4. The functions (φ0, φ1), φi ∈ C∞c (ured,i) and φ′ ∈ C∞c (sred) are local transfers
around zero if and only if

Orbφ0 = 2η(−1)|$|−1κ−1
F/F0

Õrbφ′ ,

and
−Orb(0, φ0) = η(−1) Orb(n0,+, φ

′) + Orb(n0,−, φ
′);

Orb(0, φ1) = η(−1) Orb(n0,+, φ
′)−Orb(n0,−, φ

′).

Proof. The statement is easily reduced to the corresponding one for πsred = slred and πured

which are given by [34, Prop. 4.4, 4.7], by comparing the germ expansions on ured and sred (and
note η(∆(x)/$) = (−1)i if x ∈ bred,rs,i, cf. Proposition 10.2). Here we note that there is an error
in the germ expansion [34, Th. 2.8(1)(i)]: τ should be τ−1 (τ being $ in the current notation).
This leads to the correction factor |$|−1 in the statement above. �

19.4. Matching orbital integrals around x0 6= 0.

Theorem 19.5. Let x0 = (λ0, u0, w0) ∈ bred, where x0 6= 0. The functions (φ0, φ1), φi ∈
C∞c (ured,i), and φ′ ∈ C∞c (sred) are local transfers around x0 if and only if the following identities
hold:

(a) In case (0i), and when F ′ 6= F0 × F0,

Orb(y0, φ0) = Orb(y+, φ
′) + η(−λ) Orb(y−, φ

′),

Orb(y0, φ1) = Orb(y+, φ
′)− η(−λ) Orb(y−, φ

′).

Here y0 ∈ ui,red is any representative of the unique orbit in π−1
ui (x0), and y± ∈ sred are the

representatives given by (18.2) of the two non-semi-simple orbits in π−1
s (x0).

(b) In case (0ii),

η(−α) Orb(y+, φ0) = Orb(y++, φ
′) + Orb(y−+, φ

′) + η(−1) Orb(y+−, φ
′) + η(−1) Orb(y−−, φ

′),

η(−α) Orb(y−, φ0) = Orb(y++, φ
′)−Orb(y−+, φ

′)− η(−1) Orb(y+−, φ
′) + η(−1) Orb(y−−, φ

′),

and

η(−α) Orb(y+, φ1) = Orb(y++, φ
′) + Orb(y−+, φ

′)− η(−1) Orb(y+−, φ
′)− η(−1) Orb(y−−, φ

′),

η(−α) Orb(y−, φ1) = Orb(y++, φ
′)−Orb(y−+, φ

′) + η(−1) Orb(y+−, φ
′)− η(−1) Orb(y−−, φ

′).

Here y+, y− ∈ ui,red are any representatives of the two semi-simple orbits in π−1
ui (x0) labeled in

§19.2, and y±± ∈ sred are the representatives given by (18.3) and (18.4) of the four non-semi-
simple orbits in π−1

s (x0).
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(c) In case (1),

Orb(y0, φ0) = Orb(y+, φ
′) + Orb(y−, φ

′),

Orb(y0, φ1) = Orb(y+, φ
′)−Orb(y−, φ

′).

Here y0 ∈ ui,red is any representative of the unique orbit in π−1
ui (x0), and y± ∈ sred are the

representatives given by (18.5) of the two non-semi-simple orbits in π−1
s (x0).

Proof. This follows by comparing Theorem 18.2 (specialized to s = 0) and Theorem 19.2. Note
that x ∈ bred,rs,0 if and only if η(∆/$) = η(−∆) = 1 (cf. Proposition 10.2). In case (0ii), we
note the following facts about the section σ defined by (18.6):

• ∆ = −4α2$z1z2 and hence η(∆) = η(z1z2).

• The choice of y+ is such that η(z1) = 1 for x ∈ Vx0,rs,+.

• The transfer factor (19.8) is given by ω(σ(x)) = η(−α). �

20. Proofs of Theorems 16.2 and 16.5

20.1. Proof of Theorem 16.2. To show the “only if” part, by Theorem 17.1 and 18.2, it
suffices to show that the function Orbφ′ lies in C1(F0). This is proved in [34, Lem. 2.3].

To show the “if” part, by [35, Prop. 3.8], it suffices to show that ϕ is a local orbital integral
function around every x0 ∈ bred, comp. Theorem 10.11. This amounts to showing the following
two lemmas.

Lemma 20.1. For each x0, and each discrete n0 ∈ π−1(x0) with nonzero germ function value
Γn0

(x, 0), there exists a function φ′ ∈ C∞c (sred) such that

Orb(n, φ′) =

{
1, n = n0;

0, n is not in the same orbit as n0.

Proof. Though not stated explicitly in [34], this can be proved in the same way as [34, Lem. 2.1,
2.3]. �

Lemma 20.2. Every function in C1(F0) arises as Orbφ′ for some φ′, and such φ′ can be chosen
so that Orb(n, φ′) = 0 for the two regular nilpotents n = n0,±.

Proof. This is proved in the same way as [34, Lem. 2.3]. �

20.2. Proof of Theorem 16.5. We need to verify the hypotheses of Theorem 16.2.

The case x0 = 0. First assume that i = 0. Then for the one-dimensional family n(µ), by
Corollary 17.2 the germ function Γn(µ)(x, 0) vanishes identically. By Theorem 17.1, we have for
x ∈ bred,rs around x0 = 0,

ϕ(x) = ∂Orb(n0,+, φ, 0) Γn0,+
(x, 0) + ∂Orb(n0,−, φ, 0) Γn0,−(x, 0).

Clearly ∂Orb(n0±, φ, 0) are constants. Therefore the function satisfies the hypotheses of Theorem
16.2 concerning the summands for these two elements. This proves the case i = 0.

Now assume that i = 1. To show that the function in Theorem 16.5 satisfies the hypotheses
of Theorem 16.2 around x0 = 0, it suffices to show that the function

∂Orbφ′(µ) :=
d

ds

∣∣∣
s=0

Orb
(
n(µ), φ′, s

)
, µ ∈ F0,

lies in C1(F0).
Since we are assuming that φ′ transfers to the zero function on u0,red, by Theorem 19.4 we

have Orbφ′ = 0 identically as a function on F0. The claim follows from the next lemma.

Lemma 20.3. If Orbφ′ = 0, then ∂Orbφ′ ∈ C1(F0).

Proof. We have

Orb(n(µ), φ′, s) =

∫
φ′K

π
0 µab b

0 0 0
0 a 0

 η(ab)|a−1b|s da db.
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When |µ| is small, this function at s = 0 is locally constant in µ ∈ F0, hence has the desired
property. We now assume that |µ| � 0. The same idea as in the proof of Theorem 18.2 shows
that this integral is a sum of two terms,∫

φ′K

π
0 µab 0

0 0 0
0 a 0

 η(ab)|a−1b|s da db,

and ∫
φ′K

π
0 µab b

0 0 0
0 0 0

 η(ab)|a−1b|s da db.

These may be rewritten as

η(µ)|µ|−1−s

∫
φ′K

π
0 b 0

0 0 0
0 a 0

 η(b)|a−2b|s da db
|a|

,

and

η(µ)|µ|−1+s

∫
φ′K

π
0 a b

0 0 0
0 0 0

 η(a)|a−1b2|s da db
|b|

,

respectively. For simplicity we write the sum as

η(µ)|µ|−1
(
|µ|−sA(s) + |µ|sB(s)

)
,

where A(s) and B(s) both have a simple pole at s = 0 with opposite residues. Write the Laurent
expansion as

A(s) =
A−1

s
+A0 +A1s+ · · · and B(s) =

B−1

s
+B0 +B1s+ · · · ,

where A−1 +B−1 = 0. Then the constant term of the Laurent expansion of |µ|−sA(s)+ |µ|sB(s)
is given by

(A0 +B0) + log |µ|(−A−1 +B−1).

Since Orbφ′ = 0 by assumption, we have A0 + B0 = 0 and A−1 = B−1 = 0. This implies that
the degree one term in the Laurent expansion of |µ|−sA(s) + |µ|sB(s) is given by

(A1 +B1)s+ log |µ|(−A0 +B0)s.

We conclude that when |µ| � 0

∂Orbφ′(µ) = η(µ)|µ|−1
(
(A1 +B1) + log |µ|(−A0 +B0)

)
,

and hence ∂Orbφ′ belongs to C1(F0), as desired. �

The case x0 6= 0. This follows easily from the explicit germ expansion Theorem 18.2, 19.2, and
19.5, with a similar argument as in the case x0 = 0. We omit the details.

With this Theorem 16.5 is proved.
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